]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c
ixgbe: (PTP) refactor init, cyclecounter and reset
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_ptp.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27 #include "ixgbe.h"
28 #include <linux/export.h>
29 #include <linux/ptp_classify.h>
30
31 /*
32 * The 82599 and the X540 do not have true 64bit nanosecond scale
33 * counter registers. Instead, SYSTIME is defined by a fixed point
34 * system which allows the user to define the scale counter increment
35 * value at every level change of the oscillator driving the SYSTIME
36 * value. For both devices the TIMINCA:IV field defines this
37 * increment. On the X540 device, 31 bits are provided. However on the
38 * 82599 only provides 24 bits. The time unit is determined by the
39 * clock frequency of the oscillator in combination with the TIMINCA
40 * register. When these devices link at 10Gb the oscillator has a
41 * period of 6.4ns. In order to convert the scale counter into
42 * nanoseconds the cyclecounter and timecounter structures are
43 * used. The SYSTIME registers need to be converted to ns values by use
44 * of only a right shift (division by power of 2). The following math
45 * determines the largest incvalue that will fit into the available
46 * bits in the TIMINCA register.
47 *
48 * PeriodWidth: Number of bits to store the clock period
49 * MaxWidth: The maximum width value of the TIMINCA register
50 * Period: The clock period for the oscillator
51 * round(): discard the fractional portion of the calculation
52 *
53 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
54 *
55 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
56 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
57 *
58 * The period also changes based on the link speed:
59 * At 10Gb link or no link, the period remains the same.
60 * At 1Gb link, the period is multiplied by 10. (64ns)
61 * At 100Mb link, the period is multiplied by 100. (640ns)
62 *
63 * The calculated value allows us to right shift the SYSTIME register
64 * value in order to quickly convert it into a nanosecond clock,
65 * while allowing for the maximum possible adjustment value.
66 *
67 * These diagrams are only for the 10Gb link period
68 *
69 * SYSTIMEH SYSTIMEL
70 * +--------------+ +--------------+
71 * X540 | 32 | | 1 | 3 | 28 |
72 * *--------------+ +--------------+
73 * \________ 36 bits ______/ fract
74 *
75 * +--------------+ +--------------+
76 * 82599 | 32 | | 8 | 3 | 21 |
77 * *--------------+ +--------------+
78 * \________ 43 bits ______/ fract
79 *
80 * The 36 bit X540 SYSTIME overflows every
81 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
82 *
83 * The 43 bit 82599 SYSTIME overflows every
84 * 2^43 * 10^-9 / 3600 = 2.4 hours
85 */
86 #define IXGBE_INCVAL_10GB 0x66666666
87 #define IXGBE_INCVAL_1GB 0x40000000
88 #define IXGBE_INCVAL_100 0x50000000
89
90 #define IXGBE_INCVAL_SHIFT_10GB 28
91 #define IXGBE_INCVAL_SHIFT_1GB 24
92 #define IXGBE_INCVAL_SHIFT_100 21
93
94 #define IXGBE_INCVAL_SHIFT_82599 7
95 #define IXGBE_INCPER_SHIFT_82599 24
96 #define IXGBE_MAX_TIMEADJ_VALUE 0x7FFFFFFFFFFFFFFFULL
97
98 #define IXGBE_OVERFLOW_PERIOD (HZ * 30)
99
100 #ifndef NSECS_PER_SEC
101 #define NSECS_PER_SEC 1000000000ULL
102 #endif
103
104 static struct sock_filter ptp_filter[] = {
105 PTP_FILTER
106 };
107
108 /**
109 * ixgbe_ptp_setup_sdp
110 * @hw: the hardware private structure
111 *
112 * this function enables or disables the clock out feature on SDP0 for
113 * the X540 device. It will create a 1second periodic output that can
114 * be used as the PPS (via an interrupt).
115 *
116 * It calculates when the systime will be on an exact second, and then
117 * aligns the start of the PPS signal to that value. The shift is
118 * necessary because it can change based on the link speed.
119 */
120 static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
121 {
122 struct ixgbe_hw *hw = &adapter->hw;
123 int shift = adapter->cc.shift;
124 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
125 u64 ns = 0, clock_edge = 0;
126
127 if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
128 (hw->mac.type == ixgbe_mac_X540)) {
129
130 /* disable the pin first */
131 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
132 IXGBE_WRITE_FLUSH(hw);
133
134 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
135
136 /*
137 * enable the SDP0 pin as output, and connected to the
138 * native function for Timesync (ClockOut)
139 */
140 esdp |= (IXGBE_ESDP_SDP0_DIR |
141 IXGBE_ESDP_SDP0_NATIVE);
142
143 /*
144 * enable the Clock Out feature on SDP0, and allow
145 * interrupts to occur when the pin changes
146 */
147 tsauxc = (IXGBE_TSAUXC_EN_CLK |
148 IXGBE_TSAUXC_SYNCLK |
149 IXGBE_TSAUXC_SDP0_INT);
150
151 /* clock period (or pulse length) */
152 clktiml = (u32)(NSECS_PER_SEC << shift);
153 clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
154
155 /*
156 * Account for the cyclecounter wrap-around value by
157 * using the converted ns value of the current time to
158 * check for when the next aligned second would occur.
159 */
160 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
161 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
162 ns = timecounter_cyc2time(&adapter->tc, clock_edge);
163
164 div_u64_rem(ns, NSECS_PER_SEC, &rem);
165 clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);
166
167 /* specify the initial clock start time */
168 trgttiml = (u32)clock_edge;
169 trgttimh = (u32)(clock_edge >> 32);
170
171 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
172 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
173 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
174 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
175
176 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
177 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
178 } else {
179 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
180 }
181
182 IXGBE_WRITE_FLUSH(hw);
183 }
184
185 /**
186 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
187 * @cc: the cyclecounter structure
188 *
189 * this function reads the cyclecounter registers and is called by the
190 * cyclecounter structure used to construct a ns counter from the
191 * arbitrary fixed point registers
192 */
193 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
194 {
195 struct ixgbe_adapter *adapter =
196 container_of(cc, struct ixgbe_adapter, cc);
197 struct ixgbe_hw *hw = &adapter->hw;
198 u64 stamp = 0;
199
200 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
201 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
202
203 return stamp;
204 }
205
206 /**
207 * ixgbe_ptp_adjfreq
208 * @ptp: the ptp clock structure
209 * @ppb: parts per billion adjustment from base
210 *
211 * adjust the frequency of the ptp cycle counter by the
212 * indicated ppb from the base frequency.
213 */
214 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
215 {
216 struct ixgbe_adapter *adapter =
217 container_of(ptp, struct ixgbe_adapter, ptp_caps);
218 struct ixgbe_hw *hw = &adapter->hw;
219 u64 freq;
220 u32 diff, incval;
221 int neg_adj = 0;
222
223 if (ppb < 0) {
224 neg_adj = 1;
225 ppb = -ppb;
226 }
227
228 smp_mb();
229 incval = ACCESS_ONCE(adapter->base_incval);
230
231 freq = incval;
232 freq *= ppb;
233 diff = div_u64(freq, 1000000000ULL);
234
235 incval = neg_adj ? (incval - diff) : (incval + diff);
236
237 switch (hw->mac.type) {
238 case ixgbe_mac_X540:
239 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
240 break;
241 case ixgbe_mac_82599EB:
242 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
243 (1 << IXGBE_INCPER_SHIFT_82599) |
244 incval);
245 break;
246 default:
247 break;
248 }
249
250 return 0;
251 }
252
253 /**
254 * ixgbe_ptp_adjtime
255 * @ptp: the ptp clock structure
256 * @delta: offset to adjust the cycle counter by
257 *
258 * adjust the timer by resetting the timecounter structure.
259 */
260 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
261 {
262 struct ixgbe_adapter *adapter =
263 container_of(ptp, struct ixgbe_adapter, ptp_caps);
264 unsigned long flags;
265 u64 now;
266
267 spin_lock_irqsave(&adapter->tmreg_lock, flags);
268
269 now = timecounter_read(&adapter->tc);
270 now += delta;
271
272 /* reset the timecounter */
273 timecounter_init(&adapter->tc,
274 &adapter->cc,
275 now);
276
277 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
278
279 ixgbe_ptp_setup_sdp(adapter);
280
281 return 0;
282 }
283
284 /**
285 * ixgbe_ptp_gettime
286 * @ptp: the ptp clock structure
287 * @ts: timespec structure to hold the current time value
288 *
289 * read the timecounter and return the correct value on ns,
290 * after converting it into a struct timespec.
291 */
292 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
293 {
294 struct ixgbe_adapter *adapter =
295 container_of(ptp, struct ixgbe_adapter, ptp_caps);
296 u64 ns;
297 u32 remainder;
298 unsigned long flags;
299
300 spin_lock_irqsave(&adapter->tmreg_lock, flags);
301 ns = timecounter_read(&adapter->tc);
302 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
303
304 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
305 ts->tv_nsec = remainder;
306
307 return 0;
308 }
309
310 /**
311 * ixgbe_ptp_settime
312 * @ptp: the ptp clock structure
313 * @ts: the timespec containing the new time for the cycle counter
314 *
315 * reset the timecounter to use a new base value instead of the kernel
316 * wall timer value.
317 */
318 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
319 const struct timespec *ts)
320 {
321 struct ixgbe_adapter *adapter =
322 container_of(ptp, struct ixgbe_adapter, ptp_caps);
323 u64 ns;
324 unsigned long flags;
325
326 ns = ts->tv_sec * 1000000000ULL;
327 ns += ts->tv_nsec;
328
329 /* reset the timecounter */
330 spin_lock_irqsave(&adapter->tmreg_lock, flags);
331 timecounter_init(&adapter->tc, &adapter->cc, ns);
332 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
333
334 ixgbe_ptp_setup_sdp(adapter);
335 return 0;
336 }
337
338 /**
339 * ixgbe_ptp_enable
340 * @ptp: the ptp clock structure
341 * @rq: the requested feature to change
342 * @on: whether to enable or disable the feature
343 *
344 * enable (or disable) ancillary features of the phc subsystem.
345 * our driver only supports the PPS feature on the X540
346 */
347 static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
348 struct ptp_clock_request *rq, int on)
349 {
350 struct ixgbe_adapter *adapter =
351 container_of(ptp, struct ixgbe_adapter, ptp_caps);
352
353 /**
354 * When PPS is enabled, unmask the interrupt for the ClockOut
355 * feature, so that the interrupt handler can send the PPS
356 * event when the clock SDP triggers. Clear mask when PPS is
357 * disabled
358 */
359 if (rq->type == PTP_CLK_REQ_PPS) {
360 switch (adapter->hw.mac.type) {
361 case ixgbe_mac_X540:
362 if (on)
363 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
364 else
365 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
366
367 ixgbe_ptp_setup_sdp(adapter);
368 return 0;
369 default:
370 break;
371 }
372 }
373
374 return -ENOTSUPP;
375 }
376
377 /**
378 * ixgbe_ptp_check_pps_event
379 * @adapter: the private adapter structure
380 * @eicr: the interrupt cause register value
381 *
382 * This function is called by the interrupt routine when checking for
383 * interrupts. It will check and handle a pps event.
384 */
385 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
386 {
387 struct ixgbe_hw *hw = &adapter->hw;
388 struct ptp_clock_event event;
389
390 switch (hw->mac.type) {
391 case ixgbe_mac_X540:
392 ptp_clock_event(adapter->ptp_clock, &event);
393 break;
394 default:
395 break;
396 }
397 }
398
399
400 /**
401 * ixgbe_ptp_overflow_check - delayed work to detect SYSTIME overflow
402 * @work: structure containing information about this work task
403 *
404 * this work function is scheduled to continue reading the timecounter
405 * in order to prevent missing when the system time registers wrap
406 * around. This needs to be run approximately twice a minute when no
407 * PTP activity is occurring.
408 */
409 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
410 {
411 unsigned long elapsed_jiffies = adapter->last_overflow_check - jiffies;
412 struct timespec ts;
413
414 if ((adapter->flags2 & IXGBE_FLAG2_PTP_ENABLED) &&
415 (elapsed_jiffies >= IXGBE_OVERFLOW_PERIOD)) {
416 ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
417 adapter->last_overflow_check = jiffies;
418 }
419 }
420
421 /**
422 * ixgbe_ptp_match - determine if this skb matches a ptp packet
423 * @skb: pointer to the skb
424 * @hwtstamp: pointer to the hwtstamp_config to check
425 *
426 * Determine whether the skb should have been timestamped, assuming the
427 * hwtstamp was set via the hwtstamp ioctl. Returns non-zero when the packet
428 * should have a timestamp waiting in the registers, and 0 otherwise.
429 *
430 * V1 packets have to check the version type to determine whether they are
431 * correct. However, we can't directly access the data because it might be
432 * fragmented in the SKB, in paged memory. In order to work around this, we
433 * use skb_copy_bits which will properly copy the data whether it is in the
434 * paged memory fragments or not. We have to copy the IP header as well as the
435 * message type.
436 */
437 static int ixgbe_ptp_match(struct sk_buff *skb, int rx_filter)
438 {
439 struct iphdr iph;
440 u8 msgtype;
441 unsigned int type, offset;
442
443 if (rx_filter == HWTSTAMP_FILTER_NONE)
444 return 0;
445
446 type = sk_run_filter(skb, ptp_filter);
447
448 if (likely(rx_filter == HWTSTAMP_FILTER_PTP_V2_EVENT))
449 return type & PTP_CLASS_V2;
450
451 /* For the remaining cases actually check message type */
452 switch (type) {
453 case PTP_CLASS_V1_IPV4:
454 skb_copy_bits(skb, OFF_IHL, &iph, sizeof(iph));
455 offset = ETH_HLEN + (iph.ihl << 2) + UDP_HLEN + OFF_PTP_CONTROL;
456 break;
457 case PTP_CLASS_V1_IPV6:
458 offset = OFF_PTP6 + OFF_PTP_CONTROL;
459 break;
460 default:
461 /* other cases invalid or handled above */
462 return 0;
463 }
464
465 /* Make sure our buffer is long enough */
466 if (skb->len < offset)
467 return 0;
468
469 skb_copy_bits(skb, offset, &msgtype, sizeof(msgtype));
470
471 switch (rx_filter) {
472 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
473 return (msgtype == IXGBE_RXMTRL_V1_SYNC_MSG);
474 break;
475 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
476 return (msgtype == IXGBE_RXMTRL_V1_DELAY_REQ_MSG);
477 break;
478 default:
479 return 0;
480 }
481 }
482
483 /**
484 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
485 * @q_vector: structure containing interrupt and ring information
486 * @skb: particular skb to send timestamp with
487 *
488 * if the timestamp is valid, we convert it into the timecounter ns
489 * value, then store that result into the shhwtstamps structure which
490 * is passed up the network stack
491 */
492 void ixgbe_ptp_tx_hwtstamp(struct ixgbe_q_vector *q_vector,
493 struct sk_buff *skb)
494 {
495 struct ixgbe_adapter *adapter;
496 struct ixgbe_hw *hw;
497 struct skb_shared_hwtstamps shhwtstamps;
498 u64 regval = 0, ns;
499 u32 tsynctxctl;
500 unsigned long flags;
501
502 /* we cannot process timestamps on a ring without a q_vector */
503 if (!q_vector || !q_vector->adapter)
504 return;
505
506 adapter = q_vector->adapter;
507 hw = &adapter->hw;
508
509 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
510 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
511 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
512
513 /*
514 * if TX timestamp is not valid, exit after clearing the
515 * timestamp registers
516 */
517 if (!(tsynctxctl & IXGBE_TSYNCTXCTL_VALID))
518 return;
519
520 spin_lock_irqsave(&adapter->tmreg_lock, flags);
521 ns = timecounter_cyc2time(&adapter->tc, regval);
522 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
523
524 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
525 shhwtstamps.hwtstamp = ns_to_ktime(ns);
526 skb_tstamp_tx(skb, &shhwtstamps);
527 }
528
529 /**
530 * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
531 * @q_vector: structure containing interrupt and ring information
532 * @rx_desc: the rx descriptor
533 * @skb: particular skb to send timestamp with
534 *
535 * if the timestamp is valid, we convert it into the timecounter ns
536 * value, then store that result into the shhwtstamps structure which
537 * is passed up the network stack
538 */
539 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
540 union ixgbe_adv_rx_desc *rx_desc,
541 struct sk_buff *skb)
542 {
543 struct ixgbe_adapter *adapter;
544 struct ixgbe_hw *hw;
545 struct skb_shared_hwtstamps *shhwtstamps;
546 u64 regval = 0, ns;
547 u32 tsyncrxctl;
548 unsigned long flags;
549
550 /* we cannot process timestamps on a ring without a q_vector */
551 if (!q_vector || !q_vector->adapter)
552 return;
553
554 adapter = q_vector->adapter;
555 hw = &adapter->hw;
556
557 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
558
559 /* Check if we have a valid timestamp and make sure the skb should
560 * have been timestamped */
561 if (likely(!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID) ||
562 !ixgbe_ptp_match(skb, adapter->rx_hwtstamp_filter)))
563 return;
564
565 /*
566 * Always read the registers, in order to clear a possible fault
567 * because of stagnant RX timestamp values for a packet that never
568 * reached the queue.
569 */
570 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
571 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
572
573 /*
574 * If the timestamp bit is set in the packet's descriptor, we know the
575 * timestamp belongs to this packet. No other packet can be
576 * timestamped until the registers for timestamping have been read.
577 * Therefor only one packet with this bit can be in the queue at a
578 * time, and the rx timestamp values that were in the registers belong
579 * to this packet.
580 *
581 * If nothing went wrong, then it should have a skb_shared_tx that we
582 * can turn into a skb_shared_hwtstamps.
583 */
584 if (unlikely(!ixgbe_test_staterr(rx_desc, IXGBE_RXDADV_STAT_TS)))
585 return;
586
587 spin_lock_irqsave(&adapter->tmreg_lock, flags);
588 ns = timecounter_cyc2time(&adapter->tc, regval);
589 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
590
591 shhwtstamps = skb_hwtstamps(skb);
592 shhwtstamps->hwtstamp = ns_to_ktime(ns);
593 }
594
595 /**
596 * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
597 * @adapter: pointer to adapter struct
598 * @ifreq: ioctl data
599 * @cmd: particular ioctl requested
600 *
601 * Outgoing time stamping can be enabled and disabled. Play nice and
602 * disable it when requested, although it shouldn't case any overhead
603 * when no packet needs it. At most one packet in the queue may be
604 * marked for time stamping, otherwise it would be impossible to tell
605 * for sure to which packet the hardware time stamp belongs.
606 *
607 * Incoming time stamping has to be configured via the hardware
608 * filters. Not all combinations are supported, in particular event
609 * type has to be specified. Matching the kind of event packet is
610 * not supported, with the exception of "all V2 events regardless of
611 * level 2 or 4".
612 *
613 * Since hardware always timestamps Path delay packets when timestamping V2
614 * packets, regardless of the type specified in the register, only use V2
615 * Event mode. This more accurately tells the user what the hardware is going
616 * to do anyways.
617 */
618 int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
619 struct ifreq *ifr, int cmd)
620 {
621 struct ixgbe_hw *hw = &adapter->hw;
622 struct hwtstamp_config config;
623 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
624 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
625 u32 tsync_rx_mtrl = 0;
626 bool is_l4 = false;
627 bool is_l2 = false;
628 u32 regval;
629
630 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
631 return -EFAULT;
632
633 /* reserved for future extensions */
634 if (config.flags)
635 return -EINVAL;
636
637 switch (config.tx_type) {
638 case HWTSTAMP_TX_OFF:
639 tsync_tx_ctl = 0;
640 case HWTSTAMP_TX_ON:
641 break;
642 default:
643 return -ERANGE;
644 }
645
646 switch (config.rx_filter) {
647 case HWTSTAMP_FILTER_NONE:
648 tsync_rx_ctl = 0;
649 break;
650 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
651 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
652 tsync_rx_mtrl = IXGBE_RXMTRL_V1_SYNC_MSG;
653 is_l4 = true;
654 break;
655 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
656 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
657 tsync_rx_mtrl = IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
658 is_l4 = true;
659 break;
660 case HWTSTAMP_FILTER_PTP_V2_EVENT:
661 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
662 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
663 case HWTSTAMP_FILTER_PTP_V2_SYNC:
664 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
665 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
666 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
667 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
668 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
669 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
670 is_l2 = true;
671 is_l4 = true;
672 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
673 break;
674 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
675 case HWTSTAMP_FILTER_ALL:
676 default:
677 /*
678 * register RXMTRL must be set in order to do V1 packets,
679 * therefore it is not possible to time stamp both V1 Sync and
680 * Delay_Req messages and hardware does not support
681 * timestamping all packets => return error
682 */
683 config.rx_filter = HWTSTAMP_FILTER_NONE;
684 return -ERANGE;
685 }
686
687 if (hw->mac.type == ixgbe_mac_82598EB) {
688 if (tsync_rx_ctl | tsync_tx_ctl)
689 return -ERANGE;
690 return 0;
691 }
692
693 /* Store filter value for later use */
694 adapter->rx_hwtstamp_filter = config.rx_filter;
695
696 /* define ethertype filter for timestamped packets */
697 if (is_l2)
698 IXGBE_WRITE_REG(hw, IXGBE_ETQF(3),
699 (IXGBE_ETQF_FILTER_EN | /* enable filter */
700 IXGBE_ETQF_1588 | /* enable timestamping */
701 ETH_P_1588)); /* 1588 eth protocol type */
702 else
703 IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), 0);
704
705 #define PTP_PORT 319
706 /* L4 Queue Filter[3]: filter by destination port and protocol */
707 if (is_l4) {
708 u32 ftqf = (IXGBE_FTQF_PROTOCOL_UDP /* UDP */
709 | IXGBE_FTQF_POOL_MASK_EN /* Pool not compared */
710 | IXGBE_FTQF_QUEUE_ENABLE);
711
712 ftqf |= ((IXGBE_FTQF_PROTOCOL_COMP_MASK /* protocol check */
713 & IXGBE_FTQF_DEST_PORT_MASK /* dest check */
714 & IXGBE_FTQF_SOURCE_PORT_MASK) /* source check */
715 << IXGBE_FTQF_5TUPLE_MASK_SHIFT);
716
717 IXGBE_WRITE_REG(hw, IXGBE_L34T_IMIR(3),
718 (3 << IXGBE_IMIR_RX_QUEUE_SHIFT_82599 |
719 IXGBE_IMIR_SIZE_BP_82599));
720
721 /* enable port check */
722 IXGBE_WRITE_REG(hw, IXGBE_SDPQF(3),
723 (htons(PTP_PORT) |
724 htons(PTP_PORT) << 16));
725
726 IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), ftqf);
727
728 tsync_rx_mtrl |= PTP_PORT << 16;
729 } else {
730 IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), 0);
731 }
732
733 /* enable/disable TX */
734 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
735 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
736 regval |= tsync_tx_ctl;
737 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
738
739 /* enable/disable RX */
740 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
741 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
742 regval |= tsync_rx_ctl;
743 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
744
745 /* define which PTP packets are time stamped */
746 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
747
748 IXGBE_WRITE_FLUSH(hw);
749
750 /* clear TX/RX time stamp registers, just to be sure */
751 regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
752 regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
753
754 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
755 -EFAULT : 0;
756 }
757
758 /**
759 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
760 * @adapter: pointer to the adapter structure
761 *
762 * This function should be called to set the proper values for the TIMINCA
763 * register and tell the cyclecounter structure what the tick rate of SYSTIME
764 * is. It does not directly modify SYSTIME registers or the timecounter
765 * structure. It should be called whenever a new TIMINCA value is necessary,
766 * such as during initialization or when the link speed changes.
767 */
768 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
769 {
770 struct ixgbe_hw *hw = &adapter->hw;
771 u32 incval = 0;
772 u32 shift = 0;
773 unsigned long flags;
774
775 /**
776 * Scale the NIC cycle counter by a large factor so that
777 * relatively small corrections to the frequency can be added
778 * or subtracted. The drawbacks of a large factor include
779 * (a) the clock register overflows more quickly, (b) the cycle
780 * counter structure must be able to convert the systime value
781 * to nanoseconds using only a multiplier and a right-shift,
782 * and (c) the value must fit within the timinca register space
783 * => math based on internal DMA clock rate and available bits
784 *
785 * Note that when there is no link, internal DMA clock is same as when
786 * link speed is 10Gb. Set the registers correctly even when link is
787 * down to preserve the clock setting
788 */
789 switch (adapter->link_speed) {
790 case IXGBE_LINK_SPEED_100_FULL:
791 incval = IXGBE_INCVAL_100;
792 shift = IXGBE_INCVAL_SHIFT_100;
793 break;
794 case IXGBE_LINK_SPEED_1GB_FULL:
795 incval = IXGBE_INCVAL_1GB;
796 shift = IXGBE_INCVAL_SHIFT_1GB;
797 break;
798 case IXGBE_LINK_SPEED_10GB_FULL:
799 default:
800 incval = IXGBE_INCVAL_10GB;
801 shift = IXGBE_INCVAL_SHIFT_10GB;
802 break;
803 }
804
805 /**
806 * Modify the calculated values to fit within the correct
807 * number of bits specified by the hardware. The 82599 doesn't
808 * have the same space as the X540, so bitshift the calculated
809 * values to fit.
810 */
811 switch (hw->mac.type) {
812 case ixgbe_mac_X540:
813 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
814 break;
815 case ixgbe_mac_82599EB:
816 incval >>= IXGBE_INCVAL_SHIFT_82599;
817 shift -= IXGBE_INCVAL_SHIFT_82599;
818 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
819 (1 << IXGBE_INCPER_SHIFT_82599) |
820 incval);
821 break;
822 default:
823 /* other devices aren't supported */
824 return;
825 }
826
827 /* update the base incval used to calculate frequency adjustment */
828 ACCESS_ONCE(adapter->base_incval) = incval;
829 smp_mb();
830
831 /* need lock to prevent incorrect read while modifying cyclecounter */
832 spin_lock_irqsave(&adapter->tmreg_lock, flags);
833
834 memset(&adapter->cc, 0, sizeof(adapter->cc));
835 adapter->cc.read = ixgbe_ptp_read;
836 adapter->cc.mask = CLOCKSOURCE_MASK(64);
837 adapter->cc.shift = shift;
838 adapter->cc.mult = 1;
839
840 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
841 }
842
843 /**
844 * ixgbe_ptp_reset
845 * @adapter: the ixgbe private board structure
846 *
847 * When the MAC resets, all timesync features are reset. This function should be
848 * called to re-enable the PTP clock structure. It will re-init the timecounter
849 * structure based on the kernel time as well as setup the cycle counter data.
850 */
851 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
852 {
853 struct ixgbe_hw *hw = &adapter->hw;
854 unsigned long flags;
855
856 /* set SYSTIME registers to 0 just in case */
857 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
858 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
859 IXGBE_WRITE_FLUSH(hw);
860
861 ixgbe_ptp_start_cyclecounter(adapter);
862
863 spin_lock_irqsave(&adapter->tmreg_lock, flags);
864
865 /* reset the ns time counter */
866 timecounter_init(&adapter->tc, &adapter->cc,
867 ktime_to_ns(ktime_get_real()));
868
869 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
870
871 /*
872 * Now that the shift has been calculated and the systime
873 * registers reset, (re-)enable the Clock out feature
874 */
875 ixgbe_ptp_setup_sdp(adapter);
876 }
877
878 /**
879 * ixgbe_ptp_init
880 * @adapter: the ixgbe private adapter structure
881 *
882 * This function performs the required steps for enabling ptp
883 * support. If ptp support has already been loaded it simply calls the
884 * cyclecounter init routine and exits.
885 */
886 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
887 {
888 struct net_device *netdev = adapter->netdev;
889
890 switch (adapter->hw.mac.type) {
891 case ixgbe_mac_X540:
892 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
893 adapter->ptp_caps.owner = THIS_MODULE;
894 adapter->ptp_caps.max_adj = 250000000;
895 adapter->ptp_caps.n_alarm = 0;
896 adapter->ptp_caps.n_ext_ts = 0;
897 adapter->ptp_caps.n_per_out = 0;
898 adapter->ptp_caps.pps = 1;
899 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
900 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
901 adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
902 adapter->ptp_caps.settime = ixgbe_ptp_settime;
903 adapter->ptp_caps.enable = ixgbe_ptp_enable;
904 break;
905 case ixgbe_mac_82599EB:
906 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
907 adapter->ptp_caps.owner = THIS_MODULE;
908 adapter->ptp_caps.max_adj = 250000000;
909 adapter->ptp_caps.n_alarm = 0;
910 adapter->ptp_caps.n_ext_ts = 0;
911 adapter->ptp_caps.n_per_out = 0;
912 adapter->ptp_caps.pps = 0;
913 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
914 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
915 adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
916 adapter->ptp_caps.settime = ixgbe_ptp_settime;
917 adapter->ptp_caps.enable = ixgbe_ptp_enable;
918 break;
919 default:
920 adapter->ptp_clock = NULL;
921 return;
922 }
923
924 /* initialize the ptp filter */
925 if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter)))
926 e_dev_warn("ptp_filter_init failed\n");
927
928 spin_lock_init(&adapter->tmreg_lock);
929
930 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
931 &adapter->pdev->dev);
932 if (IS_ERR(adapter->ptp_clock)) {
933 adapter->ptp_clock = NULL;
934 e_dev_err("ptp_clock_register failed\n");
935 } else
936 e_dev_info("registered PHC device on %s\n", netdev->name);
937
938 ixgbe_ptp_reset(adapter);
939
940 /* set the flag that PTP has been enabled */
941 adapter->flags2 |= IXGBE_FLAG2_PTP_ENABLED;
942
943 return;
944 }
945
946 /**
947 * ixgbe_ptp_stop - disable ptp device and stop the overflow check
948 * @adapter: pointer to adapter struct
949 *
950 * this function stops the ptp support, and cancels the delayed work.
951 */
952 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
953 {
954 /* stop the overflow check task */
955 adapter->flags2 &= ~(IXGBE_FLAG2_PTP_ENABLED |
956 IXGBE_FLAG2_PTP_PPS_ENABLED);
957
958 ixgbe_ptp_setup_sdp(adapter);
959
960 if (adapter->ptp_clock) {
961 ptp_clock_unregister(adapter->ptp_clock);
962 adapter->ptp_clock = NULL;
963 e_dev_info("removed PHC on %s\n",
964 adapter->netdev->name);
965 }
966 }