]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c
scsi: qedf: Fix a potential NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3 Intel 82599 Virtual Function driver
4 Copyright(c) 1999 - 2015 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 /******************************************************************************
28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52 #include <net/mpls.h>
53
54 #include "ixgbevf.h"
55
56 const char ixgbevf_driver_name[] = "ixgbevf";
57 static const char ixgbevf_driver_string[] =
58 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59
60 #define DRV_VERSION "4.1.0-k"
61 const char ixgbevf_driver_version[] = DRV_VERSION;
62 static char ixgbevf_copyright[] =
63 "Copyright (c) 2009 - 2015 Intel Corporation.";
64
65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66 [board_82599_vf] = &ixgbevf_82599_vf_info,
67 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info,
68 [board_X540_vf] = &ixgbevf_X540_vf_info,
69 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info,
70 [board_X550_vf] = &ixgbevf_X550_vf_info,
71 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info,
72 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
73 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info,
74 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info,
75 };
76
77 /* ixgbevf_pci_tbl - PCI Device ID Table
78 *
79 * Wildcard entries (PCI_ANY_ID) should come last
80 * Last entry must be all 0s
81 *
82 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
83 * Class, Class Mask, private data (not used) }
84 */
85 static const struct pci_device_id ixgbevf_pci_tbl[] = {
86 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
87 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
88 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
89 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
90 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
91 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
92 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
93 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
94 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
95 /* required last entry */
96 {0, }
97 };
98 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
99
100 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
101 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
104
105 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
106 static int debug = -1;
107 module_param(debug, int, 0);
108 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
109
110 static struct workqueue_struct *ixgbevf_wq;
111
112 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
113 {
114 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
115 !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
116 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
117 queue_work(ixgbevf_wq, &adapter->service_task);
118 }
119
120 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
121 {
122 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
123
124 /* flush memory to make sure state is correct before next watchdog */
125 smp_mb__before_atomic();
126 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
127 }
128
129 /* forward decls */
130 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
131 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
132 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
133
134 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
135 {
136 struct ixgbevf_adapter *adapter = hw->back;
137
138 if (!hw->hw_addr)
139 return;
140 hw->hw_addr = NULL;
141 dev_err(&adapter->pdev->dev, "Adapter removed\n");
142 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
143 ixgbevf_service_event_schedule(adapter);
144 }
145
146 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
147 {
148 u32 value;
149
150 /* The following check not only optimizes a bit by not
151 * performing a read on the status register when the
152 * register just read was a status register read that
153 * returned IXGBE_FAILED_READ_REG. It also blocks any
154 * potential recursion.
155 */
156 if (reg == IXGBE_VFSTATUS) {
157 ixgbevf_remove_adapter(hw);
158 return;
159 }
160 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
161 if (value == IXGBE_FAILED_READ_REG)
162 ixgbevf_remove_adapter(hw);
163 }
164
165 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
166 {
167 u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
168 u32 value;
169
170 if (IXGBE_REMOVED(reg_addr))
171 return IXGBE_FAILED_READ_REG;
172 value = readl(reg_addr + reg);
173 if (unlikely(value == IXGBE_FAILED_READ_REG))
174 ixgbevf_check_remove(hw, reg);
175 return value;
176 }
177
178 /**
179 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
180 * @adapter: pointer to adapter struct
181 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
182 * @queue: queue to map the corresponding interrupt to
183 * @msix_vector: the vector to map to the corresponding queue
184 **/
185 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
186 u8 queue, u8 msix_vector)
187 {
188 u32 ivar, index;
189 struct ixgbe_hw *hw = &adapter->hw;
190
191 if (direction == -1) {
192 /* other causes */
193 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
194 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
195 ivar &= ~0xFF;
196 ivar |= msix_vector;
197 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
198 } else {
199 /* Tx or Rx causes */
200 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
201 index = ((16 * (queue & 1)) + (8 * direction));
202 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
203 ivar &= ~(0xFF << index);
204 ivar |= (msix_vector << index);
205 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
206 }
207 }
208
209 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
210 struct ixgbevf_tx_buffer *tx_buffer)
211 {
212 if (tx_buffer->skb) {
213 dev_kfree_skb_any(tx_buffer->skb);
214 if (dma_unmap_len(tx_buffer, len))
215 dma_unmap_single(tx_ring->dev,
216 dma_unmap_addr(tx_buffer, dma),
217 dma_unmap_len(tx_buffer, len),
218 DMA_TO_DEVICE);
219 } else if (dma_unmap_len(tx_buffer, len)) {
220 dma_unmap_page(tx_ring->dev,
221 dma_unmap_addr(tx_buffer, dma),
222 dma_unmap_len(tx_buffer, len),
223 DMA_TO_DEVICE);
224 }
225 tx_buffer->next_to_watch = NULL;
226 tx_buffer->skb = NULL;
227 dma_unmap_len_set(tx_buffer, len, 0);
228 /* tx_buffer must be completely set up in the transmit path */
229 }
230
231 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
232 {
233 return ring->stats.packets;
234 }
235
236 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
237 {
238 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
239 struct ixgbe_hw *hw = &adapter->hw;
240
241 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
242 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
243
244 if (head != tail)
245 return (head < tail) ?
246 tail - head : (tail + ring->count - head);
247
248 return 0;
249 }
250
251 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
252 {
253 u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
254 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
255 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
256
257 clear_check_for_tx_hang(tx_ring);
258
259 /* Check for a hung queue, but be thorough. This verifies
260 * that a transmit has been completed since the previous
261 * check AND there is at least one packet pending. The
262 * ARMED bit is set to indicate a potential hang.
263 */
264 if ((tx_done_old == tx_done) && tx_pending) {
265 /* make sure it is true for two checks in a row */
266 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
267 &tx_ring->state);
268 }
269 /* reset the countdown */
270 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
271
272 /* update completed stats and continue */
273 tx_ring->tx_stats.tx_done_old = tx_done;
274
275 return false;
276 }
277
278 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
279 {
280 /* Do the reset outside of interrupt context */
281 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
282 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
283 ixgbevf_service_event_schedule(adapter);
284 }
285 }
286
287 /**
288 * ixgbevf_tx_timeout - Respond to a Tx Hang
289 * @netdev: network interface device structure
290 **/
291 static void ixgbevf_tx_timeout(struct net_device *netdev)
292 {
293 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
294
295 ixgbevf_tx_timeout_reset(adapter);
296 }
297
298 /**
299 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
300 * @q_vector: board private structure
301 * @tx_ring: tx ring to clean
302 * @napi_budget: Used to determine if we are in netpoll
303 **/
304 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
305 struct ixgbevf_ring *tx_ring, int napi_budget)
306 {
307 struct ixgbevf_adapter *adapter = q_vector->adapter;
308 struct ixgbevf_tx_buffer *tx_buffer;
309 union ixgbe_adv_tx_desc *tx_desc;
310 unsigned int total_bytes = 0, total_packets = 0;
311 unsigned int budget = tx_ring->count / 2;
312 unsigned int i = tx_ring->next_to_clean;
313
314 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
315 return true;
316
317 tx_buffer = &tx_ring->tx_buffer_info[i];
318 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
319 i -= tx_ring->count;
320
321 do {
322 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
323
324 /* if next_to_watch is not set then there is no work pending */
325 if (!eop_desc)
326 break;
327
328 /* prevent any other reads prior to eop_desc */
329 read_barrier_depends();
330
331 /* if DD is not set pending work has not been completed */
332 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
333 break;
334
335 /* clear next_to_watch to prevent false hangs */
336 tx_buffer->next_to_watch = NULL;
337
338 /* update the statistics for this packet */
339 total_bytes += tx_buffer->bytecount;
340 total_packets += tx_buffer->gso_segs;
341
342 /* free the skb */
343 napi_consume_skb(tx_buffer->skb, napi_budget);
344
345 /* unmap skb header data */
346 dma_unmap_single(tx_ring->dev,
347 dma_unmap_addr(tx_buffer, dma),
348 dma_unmap_len(tx_buffer, len),
349 DMA_TO_DEVICE);
350
351 /* clear tx_buffer data */
352 tx_buffer->skb = NULL;
353 dma_unmap_len_set(tx_buffer, len, 0);
354
355 /* unmap remaining buffers */
356 while (tx_desc != eop_desc) {
357 tx_buffer++;
358 tx_desc++;
359 i++;
360 if (unlikely(!i)) {
361 i -= tx_ring->count;
362 tx_buffer = tx_ring->tx_buffer_info;
363 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
364 }
365
366 /* unmap any remaining paged data */
367 if (dma_unmap_len(tx_buffer, len)) {
368 dma_unmap_page(tx_ring->dev,
369 dma_unmap_addr(tx_buffer, dma),
370 dma_unmap_len(tx_buffer, len),
371 DMA_TO_DEVICE);
372 dma_unmap_len_set(tx_buffer, len, 0);
373 }
374 }
375
376 /* move us one more past the eop_desc for start of next pkt */
377 tx_buffer++;
378 tx_desc++;
379 i++;
380 if (unlikely(!i)) {
381 i -= tx_ring->count;
382 tx_buffer = tx_ring->tx_buffer_info;
383 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
384 }
385
386 /* issue prefetch for next Tx descriptor */
387 prefetch(tx_desc);
388
389 /* update budget accounting */
390 budget--;
391 } while (likely(budget));
392
393 i += tx_ring->count;
394 tx_ring->next_to_clean = i;
395 u64_stats_update_begin(&tx_ring->syncp);
396 tx_ring->stats.bytes += total_bytes;
397 tx_ring->stats.packets += total_packets;
398 u64_stats_update_end(&tx_ring->syncp);
399 q_vector->tx.total_bytes += total_bytes;
400 q_vector->tx.total_packets += total_packets;
401
402 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
403 struct ixgbe_hw *hw = &adapter->hw;
404 union ixgbe_adv_tx_desc *eop_desc;
405
406 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
407
408 pr_err("Detected Tx Unit Hang\n"
409 " Tx Queue <%d>\n"
410 " TDH, TDT <%x>, <%x>\n"
411 " next_to_use <%x>\n"
412 " next_to_clean <%x>\n"
413 "tx_buffer_info[next_to_clean]\n"
414 " next_to_watch <%p>\n"
415 " eop_desc->wb.status <%x>\n"
416 " time_stamp <%lx>\n"
417 " jiffies <%lx>\n",
418 tx_ring->queue_index,
419 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
420 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
421 tx_ring->next_to_use, i,
422 eop_desc, (eop_desc ? eop_desc->wb.status : 0),
423 tx_ring->tx_buffer_info[i].time_stamp, jiffies);
424
425 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
426
427 /* schedule immediate reset if we believe we hung */
428 ixgbevf_tx_timeout_reset(adapter);
429
430 return true;
431 }
432
433 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
434 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
435 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
436 /* Make sure that anybody stopping the queue after this
437 * sees the new next_to_clean.
438 */
439 smp_mb();
440
441 if (__netif_subqueue_stopped(tx_ring->netdev,
442 tx_ring->queue_index) &&
443 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
444 netif_wake_subqueue(tx_ring->netdev,
445 tx_ring->queue_index);
446 ++tx_ring->tx_stats.restart_queue;
447 }
448 }
449
450 return !!budget;
451 }
452
453 /**
454 * ixgbevf_rx_skb - Helper function to determine proper Rx method
455 * @q_vector: structure containing interrupt and ring information
456 * @skb: packet to send up
457 **/
458 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
459 struct sk_buff *skb)
460 {
461 napi_gro_receive(&q_vector->napi, skb);
462 }
463
464 #define IXGBE_RSS_L4_TYPES_MASK \
465 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
466 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
467 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
468 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
469
470 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
471 union ixgbe_adv_rx_desc *rx_desc,
472 struct sk_buff *skb)
473 {
474 u16 rss_type;
475
476 if (!(ring->netdev->features & NETIF_F_RXHASH))
477 return;
478
479 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
480 IXGBE_RXDADV_RSSTYPE_MASK;
481
482 if (!rss_type)
483 return;
484
485 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
486 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
487 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
488 }
489
490 /**
491 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
492 * @ring: structure containig ring specific data
493 * @rx_desc: current Rx descriptor being processed
494 * @skb: skb currently being received and modified
495 **/
496 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
497 union ixgbe_adv_rx_desc *rx_desc,
498 struct sk_buff *skb)
499 {
500 skb_checksum_none_assert(skb);
501
502 /* Rx csum disabled */
503 if (!(ring->netdev->features & NETIF_F_RXCSUM))
504 return;
505
506 /* if IP and error */
507 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
508 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
509 ring->rx_stats.csum_err++;
510 return;
511 }
512
513 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
514 return;
515
516 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
517 ring->rx_stats.csum_err++;
518 return;
519 }
520
521 /* It must be a TCP or UDP packet with a valid checksum */
522 skb->ip_summed = CHECKSUM_UNNECESSARY;
523 }
524
525 /**
526 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
527 * @rx_ring: rx descriptor ring packet is being transacted on
528 * @rx_desc: pointer to the EOP Rx descriptor
529 * @skb: pointer to current skb being populated
530 *
531 * This function checks the ring, descriptor, and packet information in
532 * order to populate the checksum, VLAN, protocol, and other fields within
533 * the skb.
534 **/
535 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
536 union ixgbe_adv_rx_desc *rx_desc,
537 struct sk_buff *skb)
538 {
539 ixgbevf_rx_hash(rx_ring, rx_desc, skb);
540 ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
541
542 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
543 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
544 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
545
546 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
547 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
548 }
549
550 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
551 }
552
553 /**
554 * ixgbevf_is_non_eop - process handling of non-EOP buffers
555 * @rx_ring: Rx ring being processed
556 * @rx_desc: Rx descriptor for current buffer
557 * @skb: current socket buffer containing buffer in progress
558 *
559 * This function updates next to clean. If the buffer is an EOP buffer
560 * this function exits returning false, otherwise it will place the
561 * sk_buff in the next buffer to be chained and return true indicating
562 * that this is in fact a non-EOP buffer.
563 **/
564 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
565 union ixgbe_adv_rx_desc *rx_desc)
566 {
567 u32 ntc = rx_ring->next_to_clean + 1;
568
569 /* fetch, update, and store next to clean */
570 ntc = (ntc < rx_ring->count) ? ntc : 0;
571 rx_ring->next_to_clean = ntc;
572
573 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
574
575 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
576 return false;
577
578 return true;
579 }
580
581 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
582 struct ixgbevf_rx_buffer *bi)
583 {
584 struct page *page = bi->page;
585 dma_addr_t dma = bi->dma;
586
587 /* since we are recycling buffers we should seldom need to alloc */
588 if (likely(page))
589 return true;
590
591 /* alloc new page for storage */
592 page = dev_alloc_page();
593 if (unlikely(!page)) {
594 rx_ring->rx_stats.alloc_rx_page_failed++;
595 return false;
596 }
597
598 /* map page for use */
599 dma = dma_map_page(rx_ring->dev, page, 0,
600 PAGE_SIZE, DMA_FROM_DEVICE);
601
602 /* if mapping failed free memory back to system since
603 * there isn't much point in holding memory we can't use
604 */
605 if (dma_mapping_error(rx_ring->dev, dma)) {
606 __free_page(page);
607
608 rx_ring->rx_stats.alloc_rx_buff_failed++;
609 return false;
610 }
611
612 bi->dma = dma;
613 bi->page = page;
614 bi->page_offset = 0;
615
616 return true;
617 }
618
619 /**
620 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
621 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
622 * @cleaned_count: number of buffers to replace
623 **/
624 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
625 u16 cleaned_count)
626 {
627 union ixgbe_adv_rx_desc *rx_desc;
628 struct ixgbevf_rx_buffer *bi;
629 unsigned int i = rx_ring->next_to_use;
630
631 /* nothing to do or no valid netdev defined */
632 if (!cleaned_count || !rx_ring->netdev)
633 return;
634
635 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
636 bi = &rx_ring->rx_buffer_info[i];
637 i -= rx_ring->count;
638
639 do {
640 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
641 break;
642
643 /* Refresh the desc even if pkt_addr didn't change
644 * because each write-back erases this info.
645 */
646 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
647
648 rx_desc++;
649 bi++;
650 i++;
651 if (unlikely(!i)) {
652 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
653 bi = rx_ring->rx_buffer_info;
654 i -= rx_ring->count;
655 }
656
657 /* clear the hdr_addr for the next_to_use descriptor */
658 rx_desc->read.hdr_addr = 0;
659
660 cleaned_count--;
661 } while (cleaned_count);
662
663 i += rx_ring->count;
664
665 if (rx_ring->next_to_use != i) {
666 /* record the next descriptor to use */
667 rx_ring->next_to_use = i;
668
669 /* update next to alloc since we have filled the ring */
670 rx_ring->next_to_alloc = i;
671
672 /* Force memory writes to complete before letting h/w
673 * know there are new descriptors to fetch. (Only
674 * applicable for weak-ordered memory model archs,
675 * such as IA-64).
676 */
677 wmb();
678 ixgbevf_write_tail(rx_ring, i);
679 }
680 }
681
682 /**
683 * ixgbevf_cleanup_headers - Correct corrupted or empty headers
684 * @rx_ring: rx descriptor ring packet is being transacted on
685 * @rx_desc: pointer to the EOP Rx descriptor
686 * @skb: pointer to current skb being fixed
687 *
688 * Check for corrupted packet headers caused by senders on the local L2
689 * embedded NIC switch not setting up their Tx Descriptors right. These
690 * should be very rare.
691 *
692 * Also address the case where we are pulling data in on pages only
693 * and as such no data is present in the skb header.
694 *
695 * In addition if skb is not at least 60 bytes we need to pad it so that
696 * it is large enough to qualify as a valid Ethernet frame.
697 *
698 * Returns true if an error was encountered and skb was freed.
699 **/
700 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
701 union ixgbe_adv_rx_desc *rx_desc,
702 struct sk_buff *skb)
703 {
704 /* verify that the packet does not have any known errors */
705 if (unlikely(ixgbevf_test_staterr(rx_desc,
706 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
707 struct net_device *netdev = rx_ring->netdev;
708
709 if (!(netdev->features & NETIF_F_RXALL)) {
710 dev_kfree_skb_any(skb);
711 return true;
712 }
713 }
714
715 /* if eth_skb_pad returns an error the skb was freed */
716 if (eth_skb_pad(skb))
717 return true;
718
719 return false;
720 }
721
722 /**
723 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
724 * @rx_ring: rx descriptor ring to store buffers on
725 * @old_buff: donor buffer to have page reused
726 *
727 * Synchronizes page for reuse by the adapter
728 **/
729 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
730 struct ixgbevf_rx_buffer *old_buff)
731 {
732 struct ixgbevf_rx_buffer *new_buff;
733 u16 nta = rx_ring->next_to_alloc;
734
735 new_buff = &rx_ring->rx_buffer_info[nta];
736
737 /* update, and store next to alloc */
738 nta++;
739 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
740
741 /* transfer page from old buffer to new buffer */
742 new_buff->page = old_buff->page;
743 new_buff->dma = old_buff->dma;
744 new_buff->page_offset = old_buff->page_offset;
745
746 /* sync the buffer for use by the device */
747 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
748 new_buff->page_offset,
749 IXGBEVF_RX_BUFSZ,
750 DMA_FROM_DEVICE);
751 }
752
753 static inline bool ixgbevf_page_is_reserved(struct page *page)
754 {
755 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
756 }
757
758 /**
759 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
760 * @rx_ring: rx descriptor ring to transact packets on
761 * @rx_buffer: buffer containing page to add
762 * @rx_desc: descriptor containing length of buffer written by hardware
763 * @skb: sk_buff to place the data into
764 *
765 * This function will add the data contained in rx_buffer->page to the skb.
766 * This is done either through a direct copy if the data in the buffer is
767 * less than the skb header size, otherwise it will just attach the page as
768 * a frag to the skb.
769 *
770 * The function will then update the page offset if necessary and return
771 * true if the buffer can be reused by the adapter.
772 **/
773 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
774 struct ixgbevf_rx_buffer *rx_buffer,
775 union ixgbe_adv_rx_desc *rx_desc,
776 struct sk_buff *skb)
777 {
778 struct page *page = rx_buffer->page;
779 unsigned char *va = page_address(page) + rx_buffer->page_offset;
780 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
781 #if (PAGE_SIZE < 8192)
782 unsigned int truesize = IXGBEVF_RX_BUFSZ;
783 #else
784 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
785 #endif
786 unsigned int pull_len;
787
788 if (unlikely(skb_is_nonlinear(skb)))
789 goto add_tail_frag;
790
791 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
792 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
793
794 /* page is not reserved, we can reuse buffer as is */
795 if (likely(!ixgbevf_page_is_reserved(page)))
796 return true;
797
798 /* this page cannot be reused so discard it */
799 put_page(page);
800 return false;
801 }
802
803 /* we need the header to contain the greater of either ETH_HLEN or
804 * 60 bytes if the skb->len is less than 60 for skb_pad.
805 */
806 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
807
808 /* align pull length to size of long to optimize memcpy performance */
809 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
810
811 /* update all of the pointers */
812 va += pull_len;
813 size -= pull_len;
814
815 add_tail_frag:
816 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
817 (unsigned long)va & ~PAGE_MASK, size, truesize);
818
819 /* avoid re-using remote pages */
820 if (unlikely(ixgbevf_page_is_reserved(page)))
821 return false;
822
823 #if (PAGE_SIZE < 8192)
824 /* if we are only owner of page we can reuse it */
825 if (unlikely(page_count(page) != 1))
826 return false;
827
828 /* flip page offset to other buffer */
829 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
830
831 #else
832 /* move offset up to the next cache line */
833 rx_buffer->page_offset += truesize;
834
835 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
836 return false;
837
838 #endif
839 /* Even if we own the page, we are not allowed to use atomic_set()
840 * This would break get_page_unless_zero() users.
841 */
842 page_ref_inc(page);
843
844 return true;
845 }
846
847 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
848 union ixgbe_adv_rx_desc *rx_desc,
849 struct sk_buff *skb)
850 {
851 struct ixgbevf_rx_buffer *rx_buffer;
852 struct page *page;
853
854 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
855 page = rx_buffer->page;
856 prefetchw(page);
857
858 if (likely(!skb)) {
859 void *page_addr = page_address(page) +
860 rx_buffer->page_offset;
861
862 /* prefetch first cache line of first page */
863 prefetch(page_addr);
864 #if L1_CACHE_BYTES < 128
865 prefetch(page_addr + L1_CACHE_BYTES);
866 #endif
867
868 /* allocate a skb to store the frags */
869 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
870 IXGBEVF_RX_HDR_SIZE);
871 if (unlikely(!skb)) {
872 rx_ring->rx_stats.alloc_rx_buff_failed++;
873 return NULL;
874 }
875
876 /* we will be copying header into skb->data in
877 * pskb_may_pull so it is in our interest to prefetch
878 * it now to avoid a possible cache miss
879 */
880 prefetchw(skb->data);
881 }
882
883 /* we are reusing so sync this buffer for CPU use */
884 dma_sync_single_range_for_cpu(rx_ring->dev,
885 rx_buffer->dma,
886 rx_buffer->page_offset,
887 IXGBEVF_RX_BUFSZ,
888 DMA_FROM_DEVICE);
889
890 /* pull page into skb */
891 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
892 /* hand second half of page back to the ring */
893 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
894 } else {
895 /* we are not reusing the buffer so unmap it */
896 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
897 PAGE_SIZE, DMA_FROM_DEVICE);
898 }
899
900 /* clear contents of buffer_info */
901 rx_buffer->dma = 0;
902 rx_buffer->page = NULL;
903
904 return skb;
905 }
906
907 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
908 u32 qmask)
909 {
910 struct ixgbe_hw *hw = &adapter->hw;
911
912 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
913 }
914
915 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
916 struct ixgbevf_ring *rx_ring,
917 int budget)
918 {
919 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
920 u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
921 struct sk_buff *skb = rx_ring->skb;
922
923 while (likely(total_rx_packets < budget)) {
924 union ixgbe_adv_rx_desc *rx_desc;
925
926 /* return some buffers to hardware, one at a time is too slow */
927 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
928 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
929 cleaned_count = 0;
930 }
931
932 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
933
934 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
935 break;
936
937 /* This memory barrier is needed to keep us from reading
938 * any other fields out of the rx_desc until we know the
939 * RXD_STAT_DD bit is set
940 */
941 rmb();
942
943 /* retrieve a buffer from the ring */
944 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
945
946 /* exit if we failed to retrieve a buffer */
947 if (!skb)
948 break;
949
950 cleaned_count++;
951
952 /* fetch next buffer in frame if non-eop */
953 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
954 continue;
955
956 /* verify the packet layout is correct */
957 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
958 skb = NULL;
959 continue;
960 }
961
962 /* probably a little skewed due to removing CRC */
963 total_rx_bytes += skb->len;
964
965 /* Workaround hardware that can't do proper VEPA multicast
966 * source pruning.
967 */
968 if ((skb->pkt_type == PACKET_BROADCAST ||
969 skb->pkt_type == PACKET_MULTICAST) &&
970 ether_addr_equal(rx_ring->netdev->dev_addr,
971 eth_hdr(skb)->h_source)) {
972 dev_kfree_skb_irq(skb);
973 continue;
974 }
975
976 /* populate checksum, VLAN, and protocol */
977 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
978
979 ixgbevf_rx_skb(q_vector, skb);
980
981 /* reset skb pointer */
982 skb = NULL;
983
984 /* update budget accounting */
985 total_rx_packets++;
986 }
987
988 /* place incomplete frames back on ring for completion */
989 rx_ring->skb = skb;
990
991 u64_stats_update_begin(&rx_ring->syncp);
992 rx_ring->stats.packets += total_rx_packets;
993 rx_ring->stats.bytes += total_rx_bytes;
994 u64_stats_update_end(&rx_ring->syncp);
995 q_vector->rx.total_packets += total_rx_packets;
996 q_vector->rx.total_bytes += total_rx_bytes;
997
998 return total_rx_packets;
999 }
1000
1001 /**
1002 * ixgbevf_poll - NAPI polling calback
1003 * @napi: napi struct with our devices info in it
1004 * @budget: amount of work driver is allowed to do this pass, in packets
1005 *
1006 * This function will clean more than one or more rings associated with a
1007 * q_vector.
1008 **/
1009 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1010 {
1011 struct ixgbevf_q_vector *q_vector =
1012 container_of(napi, struct ixgbevf_q_vector, napi);
1013 struct ixgbevf_adapter *adapter = q_vector->adapter;
1014 struct ixgbevf_ring *ring;
1015 int per_ring_budget, work_done = 0;
1016 bool clean_complete = true;
1017
1018 ixgbevf_for_each_ring(ring, q_vector->tx) {
1019 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1020 clean_complete = false;
1021 }
1022
1023 if (budget <= 0)
1024 return budget;
1025
1026 /* attempt to distribute budget to each queue fairly, but don't allow
1027 * the budget to go below 1 because we'll exit polling
1028 */
1029 if (q_vector->rx.count > 1)
1030 per_ring_budget = max(budget/q_vector->rx.count, 1);
1031 else
1032 per_ring_budget = budget;
1033
1034 ixgbevf_for_each_ring(ring, q_vector->rx) {
1035 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1036 per_ring_budget);
1037 work_done += cleaned;
1038 if (cleaned >= per_ring_budget)
1039 clean_complete = false;
1040 }
1041
1042 /* If all work not completed, return budget and keep polling */
1043 if (!clean_complete)
1044 return budget;
1045 /* all work done, exit the polling mode */
1046 napi_complete_done(napi, work_done);
1047 if (adapter->rx_itr_setting == 1)
1048 ixgbevf_set_itr(q_vector);
1049 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1050 !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1051 ixgbevf_irq_enable_queues(adapter,
1052 BIT(q_vector->v_idx));
1053
1054 return 0;
1055 }
1056
1057 /**
1058 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1059 * @q_vector: structure containing interrupt and ring information
1060 **/
1061 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1062 {
1063 struct ixgbevf_adapter *adapter = q_vector->adapter;
1064 struct ixgbe_hw *hw = &adapter->hw;
1065 int v_idx = q_vector->v_idx;
1066 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1067
1068 /* set the WDIS bit to not clear the timer bits and cause an
1069 * immediate assertion of the interrupt
1070 */
1071 itr_reg |= IXGBE_EITR_CNT_WDIS;
1072
1073 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1074 }
1075
1076 /**
1077 * ixgbevf_configure_msix - Configure MSI-X hardware
1078 * @adapter: board private structure
1079 *
1080 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1081 * interrupts.
1082 **/
1083 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1084 {
1085 struct ixgbevf_q_vector *q_vector;
1086 int q_vectors, v_idx;
1087
1088 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1089 adapter->eims_enable_mask = 0;
1090
1091 /* Populate the IVAR table and set the ITR values to the
1092 * corresponding register.
1093 */
1094 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1095 struct ixgbevf_ring *ring;
1096
1097 q_vector = adapter->q_vector[v_idx];
1098
1099 ixgbevf_for_each_ring(ring, q_vector->rx)
1100 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1101
1102 ixgbevf_for_each_ring(ring, q_vector->tx)
1103 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1104
1105 if (q_vector->tx.ring && !q_vector->rx.ring) {
1106 /* Tx only vector */
1107 if (adapter->tx_itr_setting == 1)
1108 q_vector->itr = IXGBE_12K_ITR;
1109 else
1110 q_vector->itr = adapter->tx_itr_setting;
1111 } else {
1112 /* Rx or Rx/Tx vector */
1113 if (adapter->rx_itr_setting == 1)
1114 q_vector->itr = IXGBE_20K_ITR;
1115 else
1116 q_vector->itr = adapter->rx_itr_setting;
1117 }
1118
1119 /* add q_vector eims value to global eims_enable_mask */
1120 adapter->eims_enable_mask |= BIT(v_idx);
1121
1122 ixgbevf_write_eitr(q_vector);
1123 }
1124
1125 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1126 /* setup eims_other and add value to global eims_enable_mask */
1127 adapter->eims_other = BIT(v_idx);
1128 adapter->eims_enable_mask |= adapter->eims_other;
1129 }
1130
1131 enum latency_range {
1132 lowest_latency = 0,
1133 low_latency = 1,
1134 bulk_latency = 2,
1135 latency_invalid = 255
1136 };
1137
1138 /**
1139 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1140 * @q_vector: structure containing interrupt and ring information
1141 * @ring_container: structure containing ring performance data
1142 *
1143 * Stores a new ITR value based on packets and byte
1144 * counts during the last interrupt. The advantage of per interrupt
1145 * computation is faster updates and more accurate ITR for the current
1146 * traffic pattern. Constants in this function were computed
1147 * based on theoretical maximum wire speed and thresholds were set based
1148 * on testing data as well as attempting to minimize response time
1149 * while increasing bulk throughput.
1150 **/
1151 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1152 struct ixgbevf_ring_container *ring_container)
1153 {
1154 int bytes = ring_container->total_bytes;
1155 int packets = ring_container->total_packets;
1156 u32 timepassed_us;
1157 u64 bytes_perint;
1158 u8 itr_setting = ring_container->itr;
1159
1160 if (packets == 0)
1161 return;
1162
1163 /* simple throttle rate management
1164 * 0-20MB/s lowest (100000 ints/s)
1165 * 20-100MB/s low (20000 ints/s)
1166 * 100-1249MB/s bulk (12000 ints/s)
1167 */
1168 /* what was last interrupt timeslice? */
1169 timepassed_us = q_vector->itr >> 2;
1170 bytes_perint = bytes / timepassed_us; /* bytes/usec */
1171
1172 switch (itr_setting) {
1173 case lowest_latency:
1174 if (bytes_perint > 10)
1175 itr_setting = low_latency;
1176 break;
1177 case low_latency:
1178 if (bytes_perint > 20)
1179 itr_setting = bulk_latency;
1180 else if (bytes_perint <= 10)
1181 itr_setting = lowest_latency;
1182 break;
1183 case bulk_latency:
1184 if (bytes_perint <= 20)
1185 itr_setting = low_latency;
1186 break;
1187 }
1188
1189 /* clear work counters since we have the values we need */
1190 ring_container->total_bytes = 0;
1191 ring_container->total_packets = 0;
1192
1193 /* write updated itr to ring container */
1194 ring_container->itr = itr_setting;
1195 }
1196
1197 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1198 {
1199 u32 new_itr = q_vector->itr;
1200 u8 current_itr;
1201
1202 ixgbevf_update_itr(q_vector, &q_vector->tx);
1203 ixgbevf_update_itr(q_vector, &q_vector->rx);
1204
1205 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1206
1207 switch (current_itr) {
1208 /* counts and packets in update_itr are dependent on these numbers */
1209 case lowest_latency:
1210 new_itr = IXGBE_100K_ITR;
1211 break;
1212 case low_latency:
1213 new_itr = IXGBE_20K_ITR;
1214 break;
1215 case bulk_latency:
1216 new_itr = IXGBE_12K_ITR;
1217 break;
1218 default:
1219 break;
1220 }
1221
1222 if (new_itr != q_vector->itr) {
1223 /* do an exponential smoothing */
1224 new_itr = (10 * new_itr * q_vector->itr) /
1225 ((9 * new_itr) + q_vector->itr);
1226
1227 /* save the algorithm value here */
1228 q_vector->itr = new_itr;
1229
1230 ixgbevf_write_eitr(q_vector);
1231 }
1232 }
1233
1234 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1235 {
1236 struct ixgbevf_adapter *adapter = data;
1237 struct ixgbe_hw *hw = &adapter->hw;
1238
1239 hw->mac.get_link_status = 1;
1240
1241 ixgbevf_service_event_schedule(adapter);
1242
1243 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1244
1245 return IRQ_HANDLED;
1246 }
1247
1248 /**
1249 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1250 * @irq: unused
1251 * @data: pointer to our q_vector struct for this interrupt vector
1252 **/
1253 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1254 {
1255 struct ixgbevf_q_vector *q_vector = data;
1256
1257 /* EIAM disabled interrupts (on this vector) for us */
1258 if (q_vector->rx.ring || q_vector->tx.ring)
1259 napi_schedule_irqoff(&q_vector->napi);
1260
1261 return IRQ_HANDLED;
1262 }
1263
1264 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1265 int r_idx)
1266 {
1267 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1268
1269 a->rx_ring[r_idx]->next = q_vector->rx.ring;
1270 q_vector->rx.ring = a->rx_ring[r_idx];
1271 q_vector->rx.count++;
1272 }
1273
1274 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1275 int t_idx)
1276 {
1277 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1278
1279 a->tx_ring[t_idx]->next = q_vector->tx.ring;
1280 q_vector->tx.ring = a->tx_ring[t_idx];
1281 q_vector->tx.count++;
1282 }
1283
1284 /**
1285 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1286 * @adapter: board private structure to initialize
1287 *
1288 * This function maps descriptor rings to the queue-specific vectors
1289 * we were allotted through the MSI-X enabling code. Ideally, we'd have
1290 * one vector per ring/queue, but on a constrained vector budget, we
1291 * group the rings as "efficiently" as possible. You would add new
1292 * mapping configurations in here.
1293 **/
1294 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1295 {
1296 int q_vectors;
1297 int v_start = 0;
1298 int rxr_idx = 0, txr_idx = 0;
1299 int rxr_remaining = adapter->num_rx_queues;
1300 int txr_remaining = adapter->num_tx_queues;
1301 int i, j;
1302 int rqpv, tqpv;
1303
1304 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1305
1306 /* The ideal configuration...
1307 * We have enough vectors to map one per queue.
1308 */
1309 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1310 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1311 map_vector_to_rxq(adapter, v_start, rxr_idx);
1312
1313 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1314 map_vector_to_txq(adapter, v_start, txr_idx);
1315 return 0;
1316 }
1317
1318 /* If we don't have enough vectors for a 1-to-1
1319 * mapping, we'll have to group them so there are
1320 * multiple queues per vector.
1321 */
1322 /* Re-adjusting *qpv takes care of the remainder. */
1323 for (i = v_start; i < q_vectors; i++) {
1324 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1325 for (j = 0; j < rqpv; j++) {
1326 map_vector_to_rxq(adapter, i, rxr_idx);
1327 rxr_idx++;
1328 rxr_remaining--;
1329 }
1330 }
1331 for (i = v_start; i < q_vectors; i++) {
1332 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1333 for (j = 0; j < tqpv; j++) {
1334 map_vector_to_txq(adapter, i, txr_idx);
1335 txr_idx++;
1336 txr_remaining--;
1337 }
1338 }
1339
1340 return 0;
1341 }
1342
1343 /**
1344 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1345 * @adapter: board private structure
1346 *
1347 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1348 * interrupts from the kernel.
1349 **/
1350 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1351 {
1352 struct net_device *netdev = adapter->netdev;
1353 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1354 unsigned int ri = 0, ti = 0;
1355 int vector, err;
1356
1357 for (vector = 0; vector < q_vectors; vector++) {
1358 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1359 struct msix_entry *entry = &adapter->msix_entries[vector];
1360
1361 if (q_vector->tx.ring && q_vector->rx.ring) {
1362 snprintf(q_vector->name, sizeof(q_vector->name),
1363 "%s-TxRx-%u", netdev->name, ri++);
1364 ti++;
1365 } else if (q_vector->rx.ring) {
1366 snprintf(q_vector->name, sizeof(q_vector->name),
1367 "%s-rx-%u", netdev->name, ri++);
1368 } else if (q_vector->tx.ring) {
1369 snprintf(q_vector->name, sizeof(q_vector->name),
1370 "%s-tx-%u", netdev->name, ti++);
1371 } else {
1372 /* skip this unused q_vector */
1373 continue;
1374 }
1375 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1376 q_vector->name, q_vector);
1377 if (err) {
1378 hw_dbg(&adapter->hw,
1379 "request_irq failed for MSIX interrupt Error: %d\n",
1380 err);
1381 goto free_queue_irqs;
1382 }
1383 }
1384
1385 err = request_irq(adapter->msix_entries[vector].vector,
1386 &ixgbevf_msix_other, 0, netdev->name, adapter);
1387 if (err) {
1388 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1389 err);
1390 goto free_queue_irqs;
1391 }
1392
1393 return 0;
1394
1395 free_queue_irqs:
1396 while (vector) {
1397 vector--;
1398 free_irq(adapter->msix_entries[vector].vector,
1399 adapter->q_vector[vector]);
1400 }
1401 /* This failure is non-recoverable - it indicates the system is
1402 * out of MSIX vector resources and the VF driver cannot run
1403 * without them. Set the number of msix vectors to zero
1404 * indicating that not enough can be allocated. The error
1405 * will be returned to the user indicating device open failed.
1406 * Any further attempts to force the driver to open will also
1407 * fail. The only way to recover is to unload the driver and
1408 * reload it again. If the system has recovered some MSIX
1409 * vectors then it may succeed.
1410 */
1411 adapter->num_msix_vectors = 0;
1412 return err;
1413 }
1414
1415 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1416 {
1417 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1418
1419 for (i = 0; i < q_vectors; i++) {
1420 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1421
1422 q_vector->rx.ring = NULL;
1423 q_vector->tx.ring = NULL;
1424 q_vector->rx.count = 0;
1425 q_vector->tx.count = 0;
1426 }
1427 }
1428
1429 /**
1430 * ixgbevf_request_irq - initialize interrupts
1431 * @adapter: board private structure
1432 *
1433 * Attempts to configure interrupts using the best available
1434 * capabilities of the hardware and kernel.
1435 **/
1436 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1437 {
1438 int err = ixgbevf_request_msix_irqs(adapter);
1439
1440 if (err)
1441 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1442
1443 return err;
1444 }
1445
1446 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1447 {
1448 int i, q_vectors;
1449
1450 if (!adapter->msix_entries)
1451 return;
1452
1453 q_vectors = adapter->num_msix_vectors;
1454 i = q_vectors - 1;
1455
1456 free_irq(adapter->msix_entries[i].vector, adapter);
1457 i--;
1458
1459 for (; i >= 0; i--) {
1460 /* free only the irqs that were actually requested */
1461 if (!adapter->q_vector[i]->rx.ring &&
1462 !adapter->q_vector[i]->tx.ring)
1463 continue;
1464
1465 free_irq(adapter->msix_entries[i].vector,
1466 adapter->q_vector[i]);
1467 }
1468
1469 ixgbevf_reset_q_vectors(adapter);
1470 }
1471
1472 /**
1473 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
1476 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1477 {
1478 struct ixgbe_hw *hw = &adapter->hw;
1479 int i;
1480
1481 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1482 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1483 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1484
1485 IXGBE_WRITE_FLUSH(hw);
1486
1487 for (i = 0; i < adapter->num_msix_vectors; i++)
1488 synchronize_irq(adapter->msix_entries[i].vector);
1489 }
1490
1491 /**
1492 * ixgbevf_irq_enable - Enable default interrupt generation settings
1493 * @adapter: board private structure
1494 **/
1495 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1496 {
1497 struct ixgbe_hw *hw = &adapter->hw;
1498
1499 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1500 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1501 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1502 }
1503
1504 /**
1505 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1506 * @adapter: board private structure
1507 * @ring: structure containing ring specific data
1508 *
1509 * Configure the Tx descriptor ring after a reset.
1510 **/
1511 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1512 struct ixgbevf_ring *ring)
1513 {
1514 struct ixgbe_hw *hw = &adapter->hw;
1515 u64 tdba = ring->dma;
1516 int wait_loop = 10;
1517 u32 txdctl = IXGBE_TXDCTL_ENABLE;
1518 u8 reg_idx = ring->reg_idx;
1519
1520 /* disable queue to avoid issues while updating state */
1521 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1522 IXGBE_WRITE_FLUSH(hw);
1523
1524 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1525 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1526 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1527 ring->count * sizeof(union ixgbe_adv_tx_desc));
1528
1529 /* disable head writeback */
1530 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1531 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1532
1533 /* enable relaxed ordering */
1534 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1535 (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1536 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1537
1538 /* reset head and tail pointers */
1539 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1540 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1541 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1542
1543 /* reset ntu and ntc to place SW in sync with hardwdare */
1544 ring->next_to_clean = 0;
1545 ring->next_to_use = 0;
1546
1547 /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1548 * to or less than the number of on chip descriptors, which is
1549 * currently 40.
1550 */
1551 txdctl |= (8 << 16); /* WTHRESH = 8 */
1552
1553 /* Setting PTHRESH to 32 both improves performance */
1554 txdctl |= (1u << 8) | /* HTHRESH = 1 */
1555 32; /* PTHRESH = 32 */
1556
1557 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1558
1559 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1560
1561 /* poll to verify queue is enabled */
1562 do {
1563 usleep_range(1000, 2000);
1564 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1565 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1566 if (!wait_loop)
1567 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1568 }
1569
1570 /**
1571 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1572 * @adapter: board private structure
1573 *
1574 * Configure the Tx unit of the MAC after a reset.
1575 **/
1576 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1577 {
1578 u32 i;
1579
1580 /* Setup the HW Tx Head and Tail descriptor pointers */
1581 for (i = 0; i < adapter->num_tx_queues; i++)
1582 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1583 }
1584
1585 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1586
1587 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1588 {
1589 struct ixgbe_hw *hw = &adapter->hw;
1590 u32 srrctl;
1591
1592 srrctl = IXGBE_SRRCTL_DROP_EN;
1593
1594 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1595 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1596 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1597
1598 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1599 }
1600
1601 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1602 {
1603 struct ixgbe_hw *hw = &adapter->hw;
1604
1605 /* PSRTYPE must be initialized in 82599 */
1606 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1607 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1608 IXGBE_PSRTYPE_L2HDR;
1609
1610 if (adapter->num_rx_queues > 1)
1611 psrtype |= BIT(29);
1612
1613 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1614 }
1615
1616 #define IXGBEVF_MAX_RX_DESC_POLL 10
1617 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1618 struct ixgbevf_ring *ring)
1619 {
1620 struct ixgbe_hw *hw = &adapter->hw;
1621 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1622 u32 rxdctl;
1623 u8 reg_idx = ring->reg_idx;
1624
1625 if (IXGBE_REMOVED(hw->hw_addr))
1626 return;
1627 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1628 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1629
1630 /* write value back with RXDCTL.ENABLE bit cleared */
1631 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1632
1633 /* the hardware may take up to 100us to really disable the Rx queue */
1634 do {
1635 udelay(10);
1636 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1637 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1638
1639 if (!wait_loop)
1640 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1641 reg_idx);
1642 }
1643
1644 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1645 struct ixgbevf_ring *ring)
1646 {
1647 struct ixgbe_hw *hw = &adapter->hw;
1648 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1649 u32 rxdctl;
1650 u8 reg_idx = ring->reg_idx;
1651
1652 if (IXGBE_REMOVED(hw->hw_addr))
1653 return;
1654 do {
1655 usleep_range(1000, 2000);
1656 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1657 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1658
1659 if (!wait_loop)
1660 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1661 reg_idx);
1662 }
1663
1664 /**
1665 * ixgbevf_init_rss_key - Initialize adapter RSS key
1666 * @adapter: device handle
1667 *
1668 * Allocates and initializes the RSS key if it is not allocated.
1669 **/
1670 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1671 {
1672 u32 *rss_key;
1673
1674 if (!adapter->rss_key) {
1675 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1676 if (unlikely(!rss_key))
1677 return -ENOMEM;
1678
1679 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1680 adapter->rss_key = rss_key;
1681 }
1682
1683 return 0;
1684 }
1685
1686 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1687 {
1688 struct ixgbe_hw *hw = &adapter->hw;
1689 u32 vfmrqc = 0, vfreta = 0;
1690 u16 rss_i = adapter->num_rx_queues;
1691 u8 i, j;
1692
1693 /* Fill out hash function seeds */
1694 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1695 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1696
1697 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1698 if (j == rss_i)
1699 j = 0;
1700
1701 adapter->rss_indir_tbl[i] = j;
1702
1703 vfreta |= j << (i & 0x3) * 8;
1704 if ((i & 3) == 3) {
1705 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1706 vfreta = 0;
1707 }
1708 }
1709
1710 /* Perform hash on these packet types */
1711 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1712 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1713 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1714 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1715
1716 vfmrqc |= IXGBE_VFMRQC_RSSEN;
1717
1718 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1719 }
1720
1721 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1722 struct ixgbevf_ring *ring)
1723 {
1724 struct ixgbe_hw *hw = &adapter->hw;
1725 u64 rdba = ring->dma;
1726 u32 rxdctl;
1727 u8 reg_idx = ring->reg_idx;
1728
1729 /* disable queue to avoid issues while updating state */
1730 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1731 ixgbevf_disable_rx_queue(adapter, ring);
1732
1733 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1734 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1735 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1736 ring->count * sizeof(union ixgbe_adv_rx_desc));
1737
1738 #ifndef CONFIG_SPARC
1739 /* enable relaxed ordering */
1740 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1741 IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1742 #else
1743 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1744 IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1745 IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1746 #endif
1747
1748 /* reset head and tail pointers */
1749 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1750 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1751 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1752
1753 /* reset ntu and ntc to place SW in sync with hardwdare */
1754 ring->next_to_clean = 0;
1755 ring->next_to_use = 0;
1756 ring->next_to_alloc = 0;
1757
1758 ixgbevf_configure_srrctl(adapter, reg_idx);
1759
1760 /* allow any size packet since we can handle overflow */
1761 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1762
1763 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1764 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1765
1766 ixgbevf_rx_desc_queue_enable(adapter, ring);
1767 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1768 }
1769
1770 /**
1771 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1772 * @adapter: board private structure
1773 *
1774 * Configure the Rx unit of the MAC after a reset.
1775 **/
1776 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1777 {
1778 struct ixgbe_hw *hw = &adapter->hw;
1779 struct net_device *netdev = adapter->netdev;
1780 int i, ret;
1781
1782 ixgbevf_setup_psrtype(adapter);
1783 if (hw->mac.type >= ixgbe_mac_X550_vf)
1784 ixgbevf_setup_vfmrqc(adapter);
1785
1786 spin_lock_bh(&adapter->mbx_lock);
1787 /* notify the PF of our intent to use this size of frame */
1788 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1789 spin_unlock_bh(&adapter->mbx_lock);
1790 if (ret)
1791 dev_err(&adapter->pdev->dev,
1792 "Failed to set MTU at %d\n", netdev->mtu);
1793
1794 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1795 * the Base and Length of the Rx Descriptor Ring
1796 */
1797 for (i = 0; i < adapter->num_rx_queues; i++)
1798 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1799 }
1800
1801 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1802 __be16 proto, u16 vid)
1803 {
1804 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1805 struct ixgbe_hw *hw = &adapter->hw;
1806 int err;
1807
1808 spin_lock_bh(&adapter->mbx_lock);
1809
1810 /* add VID to filter table */
1811 err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1812
1813 spin_unlock_bh(&adapter->mbx_lock);
1814
1815 /* translate error return types so error makes sense */
1816 if (err == IXGBE_ERR_MBX)
1817 return -EIO;
1818
1819 if (err == IXGBE_ERR_INVALID_ARGUMENT)
1820 return -EACCES;
1821
1822 set_bit(vid, adapter->active_vlans);
1823
1824 return err;
1825 }
1826
1827 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1828 __be16 proto, u16 vid)
1829 {
1830 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1831 struct ixgbe_hw *hw = &adapter->hw;
1832 int err;
1833
1834 spin_lock_bh(&adapter->mbx_lock);
1835
1836 /* remove VID from filter table */
1837 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1838
1839 spin_unlock_bh(&adapter->mbx_lock);
1840
1841 clear_bit(vid, adapter->active_vlans);
1842
1843 return err;
1844 }
1845
1846 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1847 {
1848 u16 vid;
1849
1850 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1851 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1852 htons(ETH_P_8021Q), vid);
1853 }
1854
1855 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1856 {
1857 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1858 struct ixgbe_hw *hw = &adapter->hw;
1859 int count = 0;
1860
1861 if ((netdev_uc_count(netdev)) > 10) {
1862 pr_err("Too many unicast filters - No Space\n");
1863 return -ENOSPC;
1864 }
1865
1866 if (!netdev_uc_empty(netdev)) {
1867 struct netdev_hw_addr *ha;
1868
1869 netdev_for_each_uc_addr(ha, netdev) {
1870 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1871 udelay(200);
1872 }
1873 } else {
1874 /* If the list is empty then send message to PF driver to
1875 * clear all MAC VLANs on this VF.
1876 */
1877 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1878 }
1879
1880 return count;
1881 }
1882
1883 /**
1884 * ixgbevf_set_rx_mode - Multicast and unicast set
1885 * @netdev: network interface device structure
1886 *
1887 * The set_rx_method entry point is called whenever the multicast address
1888 * list, unicast address list or the network interface flags are updated.
1889 * This routine is responsible for configuring the hardware for proper
1890 * multicast mode and configuring requested unicast filters.
1891 **/
1892 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1893 {
1894 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1895 struct ixgbe_hw *hw = &adapter->hw;
1896 unsigned int flags = netdev->flags;
1897 int xcast_mode;
1898
1899 xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1900 (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1901 IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1902
1903 /* request the most inclusive mode we need */
1904 if (flags & IFF_PROMISC)
1905 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
1906 else if (flags & IFF_ALLMULTI)
1907 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
1908 else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
1909 xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
1910 else
1911 xcast_mode = IXGBEVF_XCAST_MODE_NONE;
1912
1913 spin_lock_bh(&adapter->mbx_lock);
1914
1915 hw->mac.ops.update_xcast_mode(hw, xcast_mode);
1916
1917 /* reprogram multicast list */
1918 hw->mac.ops.update_mc_addr_list(hw, netdev);
1919
1920 ixgbevf_write_uc_addr_list(netdev);
1921
1922 spin_unlock_bh(&adapter->mbx_lock);
1923 }
1924
1925 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1926 {
1927 int q_idx;
1928 struct ixgbevf_q_vector *q_vector;
1929 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1930
1931 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1932 q_vector = adapter->q_vector[q_idx];
1933 napi_enable(&q_vector->napi);
1934 }
1935 }
1936
1937 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1938 {
1939 int q_idx;
1940 struct ixgbevf_q_vector *q_vector;
1941 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1942
1943 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1944 q_vector = adapter->q_vector[q_idx];
1945 napi_disable(&q_vector->napi);
1946 }
1947 }
1948
1949 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1950 {
1951 struct ixgbe_hw *hw = &adapter->hw;
1952 unsigned int def_q = 0;
1953 unsigned int num_tcs = 0;
1954 unsigned int num_rx_queues = adapter->num_rx_queues;
1955 unsigned int num_tx_queues = adapter->num_tx_queues;
1956 int err;
1957
1958 spin_lock_bh(&adapter->mbx_lock);
1959
1960 /* fetch queue configuration from the PF */
1961 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1962
1963 spin_unlock_bh(&adapter->mbx_lock);
1964
1965 if (err)
1966 return err;
1967
1968 if (num_tcs > 1) {
1969 /* we need only one Tx queue */
1970 num_tx_queues = 1;
1971
1972 /* update default Tx ring register index */
1973 adapter->tx_ring[0]->reg_idx = def_q;
1974
1975 /* we need as many queues as traffic classes */
1976 num_rx_queues = num_tcs;
1977 }
1978
1979 /* if we have a bad config abort request queue reset */
1980 if ((adapter->num_rx_queues != num_rx_queues) ||
1981 (adapter->num_tx_queues != num_tx_queues)) {
1982 /* force mailbox timeout to prevent further messages */
1983 hw->mbx.timeout = 0;
1984
1985 /* wait for watchdog to come around and bail us out */
1986 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
1987 }
1988
1989 return 0;
1990 }
1991
1992 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1993 {
1994 ixgbevf_configure_dcb(adapter);
1995
1996 ixgbevf_set_rx_mode(adapter->netdev);
1997
1998 ixgbevf_restore_vlan(adapter);
1999
2000 ixgbevf_configure_tx(adapter);
2001 ixgbevf_configure_rx(adapter);
2002 }
2003
2004 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2005 {
2006 /* Only save pre-reset stats if there are some */
2007 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2008 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2009 adapter->stats.base_vfgprc;
2010 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2011 adapter->stats.base_vfgptc;
2012 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2013 adapter->stats.base_vfgorc;
2014 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2015 adapter->stats.base_vfgotc;
2016 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2017 adapter->stats.base_vfmprc;
2018 }
2019 }
2020
2021 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2022 {
2023 struct ixgbe_hw *hw = &adapter->hw;
2024
2025 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2026 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2027 adapter->stats.last_vfgorc |=
2028 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2029 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2030 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2031 adapter->stats.last_vfgotc |=
2032 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2033 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2034
2035 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2036 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2037 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2038 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2039 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2040 }
2041
2042 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2043 {
2044 struct ixgbe_hw *hw = &adapter->hw;
2045 int api[] = { ixgbe_mbox_api_13,
2046 ixgbe_mbox_api_12,
2047 ixgbe_mbox_api_11,
2048 ixgbe_mbox_api_10,
2049 ixgbe_mbox_api_unknown };
2050 int err, idx = 0;
2051
2052 spin_lock_bh(&adapter->mbx_lock);
2053
2054 while (api[idx] != ixgbe_mbox_api_unknown) {
2055 err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2056 if (!err)
2057 break;
2058 idx++;
2059 }
2060
2061 spin_unlock_bh(&adapter->mbx_lock);
2062 }
2063
2064 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2065 {
2066 struct net_device *netdev = adapter->netdev;
2067 struct ixgbe_hw *hw = &adapter->hw;
2068
2069 ixgbevf_configure_msix(adapter);
2070
2071 spin_lock_bh(&adapter->mbx_lock);
2072
2073 if (is_valid_ether_addr(hw->mac.addr))
2074 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2075 else
2076 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2077
2078 spin_unlock_bh(&adapter->mbx_lock);
2079
2080 smp_mb__before_atomic();
2081 clear_bit(__IXGBEVF_DOWN, &adapter->state);
2082 ixgbevf_napi_enable_all(adapter);
2083
2084 /* clear any pending interrupts, may auto mask */
2085 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2086 ixgbevf_irq_enable(adapter);
2087
2088 /* enable transmits */
2089 netif_tx_start_all_queues(netdev);
2090
2091 ixgbevf_save_reset_stats(adapter);
2092 ixgbevf_init_last_counter_stats(adapter);
2093
2094 hw->mac.get_link_status = 1;
2095 mod_timer(&adapter->service_timer, jiffies);
2096 }
2097
2098 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2099 {
2100 ixgbevf_configure(adapter);
2101
2102 ixgbevf_up_complete(adapter);
2103 }
2104
2105 /**
2106 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2107 * @rx_ring: ring to free buffers from
2108 **/
2109 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2110 {
2111 struct device *dev = rx_ring->dev;
2112 unsigned long size;
2113 unsigned int i;
2114
2115 /* Free Rx ring sk_buff */
2116 if (rx_ring->skb) {
2117 dev_kfree_skb(rx_ring->skb);
2118 rx_ring->skb = NULL;
2119 }
2120
2121 /* ring already cleared, nothing to do */
2122 if (!rx_ring->rx_buffer_info)
2123 return;
2124
2125 /* Free all the Rx ring pages */
2126 for (i = 0; i < rx_ring->count; i++) {
2127 struct ixgbevf_rx_buffer *rx_buffer;
2128
2129 rx_buffer = &rx_ring->rx_buffer_info[i];
2130 if (rx_buffer->dma)
2131 dma_unmap_page(dev, rx_buffer->dma,
2132 PAGE_SIZE, DMA_FROM_DEVICE);
2133 rx_buffer->dma = 0;
2134 if (rx_buffer->page)
2135 __free_page(rx_buffer->page);
2136 rx_buffer->page = NULL;
2137 }
2138
2139 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2140 memset(rx_ring->rx_buffer_info, 0, size);
2141
2142 /* Zero out the descriptor ring */
2143 memset(rx_ring->desc, 0, rx_ring->size);
2144 }
2145
2146 /**
2147 * ixgbevf_clean_tx_ring - Free Tx Buffers
2148 * @tx_ring: ring to be cleaned
2149 **/
2150 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2151 {
2152 struct ixgbevf_tx_buffer *tx_buffer_info;
2153 unsigned long size;
2154 unsigned int i;
2155
2156 if (!tx_ring->tx_buffer_info)
2157 return;
2158
2159 /* Free all the Tx ring sk_buffs */
2160 for (i = 0; i < tx_ring->count; i++) {
2161 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2162 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2163 }
2164
2165 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2166 memset(tx_ring->tx_buffer_info, 0, size);
2167
2168 memset(tx_ring->desc, 0, tx_ring->size);
2169 }
2170
2171 /**
2172 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2173 * @adapter: board private structure
2174 **/
2175 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2176 {
2177 int i;
2178
2179 for (i = 0; i < adapter->num_rx_queues; i++)
2180 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2181 }
2182
2183 /**
2184 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2185 * @adapter: board private structure
2186 **/
2187 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2188 {
2189 int i;
2190
2191 for (i = 0; i < adapter->num_tx_queues; i++)
2192 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2193 }
2194
2195 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2196 {
2197 struct net_device *netdev = adapter->netdev;
2198 struct ixgbe_hw *hw = &adapter->hw;
2199 int i;
2200
2201 /* signal that we are down to the interrupt handler */
2202 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2203 return; /* do nothing if already down */
2204
2205 /* disable all enabled Rx queues */
2206 for (i = 0; i < adapter->num_rx_queues; i++)
2207 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2208
2209 usleep_range(10000, 20000);
2210
2211 netif_tx_stop_all_queues(netdev);
2212
2213 /* call carrier off first to avoid false dev_watchdog timeouts */
2214 netif_carrier_off(netdev);
2215 netif_tx_disable(netdev);
2216
2217 ixgbevf_irq_disable(adapter);
2218
2219 ixgbevf_napi_disable_all(adapter);
2220
2221 del_timer_sync(&adapter->service_timer);
2222
2223 /* disable transmits in the hardware now that interrupts are off */
2224 for (i = 0; i < adapter->num_tx_queues; i++) {
2225 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2226
2227 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2228 IXGBE_TXDCTL_SWFLSH);
2229 }
2230
2231 if (!pci_channel_offline(adapter->pdev))
2232 ixgbevf_reset(adapter);
2233
2234 ixgbevf_clean_all_tx_rings(adapter);
2235 ixgbevf_clean_all_rx_rings(adapter);
2236 }
2237
2238 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2239 {
2240 WARN_ON(in_interrupt());
2241
2242 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2243 msleep(1);
2244
2245 ixgbevf_down(adapter);
2246 ixgbevf_up(adapter);
2247
2248 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2249 }
2250
2251 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2252 {
2253 struct ixgbe_hw *hw = &adapter->hw;
2254 struct net_device *netdev = adapter->netdev;
2255
2256 if (hw->mac.ops.reset_hw(hw)) {
2257 hw_dbg(hw, "PF still resetting\n");
2258 } else {
2259 hw->mac.ops.init_hw(hw);
2260 ixgbevf_negotiate_api(adapter);
2261 }
2262
2263 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2264 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2265 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2266 }
2267
2268 adapter->last_reset = jiffies;
2269 }
2270
2271 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2272 int vectors)
2273 {
2274 int vector_threshold;
2275
2276 /* We'll want at least 2 (vector_threshold):
2277 * 1) TxQ[0] + RxQ[0] handler
2278 * 2) Other (Link Status Change, etc.)
2279 */
2280 vector_threshold = MIN_MSIX_COUNT;
2281
2282 /* The more we get, the more we will assign to Tx/Rx Cleanup
2283 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2284 * Right now, we simply care about how many we'll get; we'll
2285 * set them up later while requesting irq's.
2286 */
2287 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2288 vector_threshold, vectors);
2289
2290 if (vectors < 0) {
2291 dev_err(&adapter->pdev->dev,
2292 "Unable to allocate MSI-X interrupts\n");
2293 kfree(adapter->msix_entries);
2294 adapter->msix_entries = NULL;
2295 return vectors;
2296 }
2297
2298 /* Adjust for only the vectors we'll use, which is minimum
2299 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2300 * vectors we were allocated.
2301 */
2302 adapter->num_msix_vectors = vectors;
2303
2304 return 0;
2305 }
2306
2307 /**
2308 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2309 * @adapter: board private structure to initialize
2310 *
2311 * This is the top level queue allocation routine. The order here is very
2312 * important, starting with the "most" number of features turned on at once,
2313 * and ending with the smallest set of features. This way large combinations
2314 * can be allocated if they're turned on, and smaller combinations are the
2315 * fallthrough conditions.
2316 *
2317 **/
2318 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2319 {
2320 struct ixgbe_hw *hw = &adapter->hw;
2321 unsigned int def_q = 0;
2322 unsigned int num_tcs = 0;
2323 int err;
2324
2325 /* Start with base case */
2326 adapter->num_rx_queues = 1;
2327 adapter->num_tx_queues = 1;
2328
2329 spin_lock_bh(&adapter->mbx_lock);
2330
2331 /* fetch queue configuration from the PF */
2332 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2333
2334 spin_unlock_bh(&adapter->mbx_lock);
2335
2336 if (err)
2337 return;
2338
2339 /* we need as many queues as traffic classes */
2340 if (num_tcs > 1) {
2341 adapter->num_rx_queues = num_tcs;
2342 } else {
2343 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2344
2345 switch (hw->api_version) {
2346 case ixgbe_mbox_api_11:
2347 case ixgbe_mbox_api_12:
2348 case ixgbe_mbox_api_13:
2349 adapter->num_rx_queues = rss;
2350 adapter->num_tx_queues = rss;
2351 default:
2352 break;
2353 }
2354 }
2355 }
2356
2357 /**
2358 * ixgbevf_alloc_queues - Allocate memory for all rings
2359 * @adapter: board private structure to initialize
2360 *
2361 * We allocate one ring per queue at run-time since we don't know the
2362 * number of queues at compile-time. The polling_netdev array is
2363 * intended for Multiqueue, but should work fine with a single queue.
2364 **/
2365 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2366 {
2367 struct ixgbevf_ring *ring;
2368 int rx = 0, tx = 0;
2369
2370 for (; tx < adapter->num_tx_queues; tx++) {
2371 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2372 if (!ring)
2373 goto err_allocation;
2374
2375 ring->dev = &adapter->pdev->dev;
2376 ring->netdev = adapter->netdev;
2377 ring->count = adapter->tx_ring_count;
2378 ring->queue_index = tx;
2379 ring->reg_idx = tx;
2380
2381 adapter->tx_ring[tx] = ring;
2382 }
2383
2384 for (; rx < adapter->num_rx_queues; rx++) {
2385 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2386 if (!ring)
2387 goto err_allocation;
2388
2389 ring->dev = &adapter->pdev->dev;
2390 ring->netdev = adapter->netdev;
2391
2392 ring->count = adapter->rx_ring_count;
2393 ring->queue_index = rx;
2394 ring->reg_idx = rx;
2395
2396 adapter->rx_ring[rx] = ring;
2397 }
2398
2399 return 0;
2400
2401 err_allocation:
2402 while (tx) {
2403 kfree(adapter->tx_ring[--tx]);
2404 adapter->tx_ring[tx] = NULL;
2405 }
2406
2407 while (rx) {
2408 kfree(adapter->rx_ring[--rx]);
2409 adapter->rx_ring[rx] = NULL;
2410 }
2411 return -ENOMEM;
2412 }
2413
2414 /**
2415 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2416 * @adapter: board private structure to initialize
2417 *
2418 * Attempt to configure the interrupts using the best available
2419 * capabilities of the hardware and the kernel.
2420 **/
2421 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2422 {
2423 struct net_device *netdev = adapter->netdev;
2424 int err;
2425 int vector, v_budget;
2426
2427 /* It's easy to be greedy for MSI-X vectors, but it really
2428 * doesn't do us much good if we have a lot more vectors
2429 * than CPU's. So let's be conservative and only ask for
2430 * (roughly) the same number of vectors as there are CPU's.
2431 * The default is to use pairs of vectors.
2432 */
2433 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2434 v_budget = min_t(int, v_budget, num_online_cpus());
2435 v_budget += NON_Q_VECTORS;
2436
2437 /* A failure in MSI-X entry allocation isn't fatal, but it does
2438 * mean we disable MSI-X capabilities of the adapter.
2439 */
2440 adapter->msix_entries = kcalloc(v_budget,
2441 sizeof(struct msix_entry), GFP_KERNEL);
2442 if (!adapter->msix_entries)
2443 return -ENOMEM;
2444
2445 for (vector = 0; vector < v_budget; vector++)
2446 adapter->msix_entries[vector].entry = vector;
2447
2448 err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2449 if (err)
2450 return err;
2451
2452 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2453 if (err)
2454 return err;
2455
2456 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2457 }
2458
2459 /**
2460 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2461 * @adapter: board private structure to initialize
2462 *
2463 * We allocate one q_vector per queue interrupt. If allocation fails we
2464 * return -ENOMEM.
2465 **/
2466 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2467 {
2468 int q_idx, num_q_vectors;
2469 struct ixgbevf_q_vector *q_vector;
2470
2471 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2472
2473 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2474 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2475 if (!q_vector)
2476 goto err_out;
2477 q_vector->adapter = adapter;
2478 q_vector->v_idx = q_idx;
2479 netif_napi_add(adapter->netdev, &q_vector->napi,
2480 ixgbevf_poll, 64);
2481 adapter->q_vector[q_idx] = q_vector;
2482 }
2483
2484 return 0;
2485
2486 err_out:
2487 while (q_idx) {
2488 q_idx--;
2489 q_vector = adapter->q_vector[q_idx];
2490 #ifdef CONFIG_NET_RX_BUSY_POLL
2491 napi_hash_del(&q_vector->napi);
2492 #endif
2493 netif_napi_del(&q_vector->napi);
2494 kfree(q_vector);
2495 adapter->q_vector[q_idx] = NULL;
2496 }
2497 return -ENOMEM;
2498 }
2499
2500 /**
2501 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2502 * @adapter: board private structure to initialize
2503 *
2504 * This function frees the memory allocated to the q_vectors. In addition if
2505 * NAPI is enabled it will delete any references to the NAPI struct prior
2506 * to freeing the q_vector.
2507 **/
2508 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2509 {
2510 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2511
2512 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2513 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2514
2515 adapter->q_vector[q_idx] = NULL;
2516 #ifdef CONFIG_NET_RX_BUSY_POLL
2517 napi_hash_del(&q_vector->napi);
2518 #endif
2519 netif_napi_del(&q_vector->napi);
2520 kfree(q_vector);
2521 }
2522 }
2523
2524 /**
2525 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2526 * @adapter: board private structure
2527 *
2528 **/
2529 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2530 {
2531 if (!adapter->msix_entries)
2532 return;
2533
2534 pci_disable_msix(adapter->pdev);
2535 kfree(adapter->msix_entries);
2536 adapter->msix_entries = NULL;
2537 }
2538
2539 /**
2540 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2541 * @adapter: board private structure to initialize
2542 *
2543 **/
2544 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2545 {
2546 int err;
2547
2548 /* Number of supported queues */
2549 ixgbevf_set_num_queues(adapter);
2550
2551 err = ixgbevf_set_interrupt_capability(adapter);
2552 if (err) {
2553 hw_dbg(&adapter->hw,
2554 "Unable to setup interrupt capabilities\n");
2555 goto err_set_interrupt;
2556 }
2557
2558 err = ixgbevf_alloc_q_vectors(adapter);
2559 if (err) {
2560 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2561 goto err_alloc_q_vectors;
2562 }
2563
2564 err = ixgbevf_alloc_queues(adapter);
2565 if (err) {
2566 pr_err("Unable to allocate memory for queues\n");
2567 goto err_alloc_queues;
2568 }
2569
2570 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2571 (adapter->num_rx_queues > 1) ? "Enabled" :
2572 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2573
2574 set_bit(__IXGBEVF_DOWN, &adapter->state);
2575
2576 return 0;
2577 err_alloc_queues:
2578 ixgbevf_free_q_vectors(adapter);
2579 err_alloc_q_vectors:
2580 ixgbevf_reset_interrupt_capability(adapter);
2581 err_set_interrupt:
2582 return err;
2583 }
2584
2585 /**
2586 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2587 * @adapter: board private structure to clear interrupt scheme on
2588 *
2589 * We go through and clear interrupt specific resources and reset the structure
2590 * to pre-load conditions
2591 **/
2592 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2593 {
2594 int i;
2595
2596 for (i = 0; i < adapter->num_tx_queues; i++) {
2597 kfree(adapter->tx_ring[i]);
2598 adapter->tx_ring[i] = NULL;
2599 }
2600 for (i = 0; i < adapter->num_rx_queues; i++) {
2601 kfree(adapter->rx_ring[i]);
2602 adapter->rx_ring[i] = NULL;
2603 }
2604
2605 adapter->num_tx_queues = 0;
2606 adapter->num_rx_queues = 0;
2607
2608 ixgbevf_free_q_vectors(adapter);
2609 ixgbevf_reset_interrupt_capability(adapter);
2610 }
2611
2612 /**
2613 * ixgbevf_sw_init - Initialize general software structures
2614 * @adapter: board private structure to initialize
2615 *
2616 * ixgbevf_sw_init initializes the Adapter private data structure.
2617 * Fields are initialized based on PCI device information and
2618 * OS network device settings (MTU size).
2619 **/
2620 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2621 {
2622 struct ixgbe_hw *hw = &adapter->hw;
2623 struct pci_dev *pdev = adapter->pdev;
2624 struct net_device *netdev = adapter->netdev;
2625 int err;
2626
2627 /* PCI config space info */
2628 hw->vendor_id = pdev->vendor;
2629 hw->device_id = pdev->device;
2630 hw->revision_id = pdev->revision;
2631 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2632 hw->subsystem_device_id = pdev->subsystem_device;
2633
2634 hw->mbx.ops.init_params(hw);
2635
2636 if (hw->mac.type >= ixgbe_mac_X550_vf) {
2637 err = ixgbevf_init_rss_key(adapter);
2638 if (err)
2639 goto out;
2640 }
2641
2642 /* assume legacy case in which PF would only give VF 2 queues */
2643 hw->mac.max_tx_queues = 2;
2644 hw->mac.max_rx_queues = 2;
2645
2646 /* lock to protect mailbox accesses */
2647 spin_lock_init(&adapter->mbx_lock);
2648
2649 err = hw->mac.ops.reset_hw(hw);
2650 if (err) {
2651 dev_info(&pdev->dev,
2652 "PF still in reset state. Is the PF interface up?\n");
2653 } else {
2654 err = hw->mac.ops.init_hw(hw);
2655 if (err) {
2656 pr_err("init_shared_code failed: %d\n", err);
2657 goto out;
2658 }
2659 ixgbevf_negotiate_api(adapter);
2660 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2661 if (err)
2662 dev_info(&pdev->dev, "Error reading MAC address\n");
2663 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2664 dev_info(&pdev->dev,
2665 "MAC address not assigned by administrator.\n");
2666 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2667 }
2668
2669 if (!is_valid_ether_addr(netdev->dev_addr)) {
2670 dev_info(&pdev->dev, "Assigning random MAC address\n");
2671 eth_hw_addr_random(netdev);
2672 ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2673 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2674 }
2675
2676 /* Enable dynamic interrupt throttling rates */
2677 adapter->rx_itr_setting = 1;
2678 adapter->tx_itr_setting = 1;
2679
2680 /* set default ring sizes */
2681 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2682 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2683
2684 set_bit(__IXGBEVF_DOWN, &adapter->state);
2685 return 0;
2686
2687 out:
2688 return err;
2689 }
2690
2691 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
2692 { \
2693 u32 current_counter = IXGBE_READ_REG(hw, reg); \
2694 if (current_counter < last_counter) \
2695 counter += 0x100000000LL; \
2696 last_counter = current_counter; \
2697 counter &= 0xFFFFFFFF00000000LL; \
2698 counter |= current_counter; \
2699 }
2700
2701 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2702 { \
2703 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
2704 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
2705 u64 current_counter = (current_counter_msb << 32) | \
2706 current_counter_lsb; \
2707 if (current_counter < last_counter) \
2708 counter += 0x1000000000LL; \
2709 last_counter = current_counter; \
2710 counter &= 0xFFFFFFF000000000LL; \
2711 counter |= current_counter; \
2712 }
2713 /**
2714 * ixgbevf_update_stats - Update the board statistics counters.
2715 * @adapter: board private structure
2716 **/
2717 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2718 {
2719 struct ixgbe_hw *hw = &adapter->hw;
2720 int i;
2721
2722 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2723 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2724 return;
2725
2726 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2727 adapter->stats.vfgprc);
2728 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2729 adapter->stats.vfgptc);
2730 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2731 adapter->stats.last_vfgorc,
2732 adapter->stats.vfgorc);
2733 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2734 adapter->stats.last_vfgotc,
2735 adapter->stats.vfgotc);
2736 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2737 adapter->stats.vfmprc);
2738
2739 for (i = 0; i < adapter->num_rx_queues; i++) {
2740 adapter->hw_csum_rx_error +=
2741 adapter->rx_ring[i]->hw_csum_rx_error;
2742 adapter->rx_ring[i]->hw_csum_rx_error = 0;
2743 }
2744 }
2745
2746 /**
2747 * ixgbevf_service_timer - Timer Call-back
2748 * @data: pointer to adapter cast into an unsigned long
2749 **/
2750 static void ixgbevf_service_timer(unsigned long data)
2751 {
2752 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2753
2754 /* Reset the timer */
2755 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2756
2757 ixgbevf_service_event_schedule(adapter);
2758 }
2759
2760 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2761 {
2762 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
2763 return;
2764
2765 /* If we're already down or resetting, just bail */
2766 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2767 test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
2768 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2769 return;
2770
2771 adapter->tx_timeout_count++;
2772
2773 rtnl_lock();
2774 ixgbevf_reinit_locked(adapter);
2775 rtnl_unlock();
2776 }
2777
2778 /**
2779 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2780 * @adapter: pointer to the device adapter structure
2781 *
2782 * This function serves two purposes. First it strobes the interrupt lines
2783 * in order to make certain interrupts are occurring. Secondly it sets the
2784 * bits needed to check for TX hangs. As a result we should immediately
2785 * determine if a hang has occurred.
2786 **/
2787 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2788 {
2789 struct ixgbe_hw *hw = &adapter->hw;
2790 u32 eics = 0;
2791 int i;
2792
2793 /* If we're down or resetting, just bail */
2794 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2795 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2796 return;
2797
2798 /* Force detection of hung controller */
2799 if (netif_carrier_ok(adapter->netdev)) {
2800 for (i = 0; i < adapter->num_tx_queues; i++)
2801 set_check_for_tx_hang(adapter->tx_ring[i]);
2802 }
2803
2804 /* get one bit for every active Tx/Rx interrupt vector */
2805 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2806 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2807
2808 if (qv->rx.ring || qv->tx.ring)
2809 eics |= BIT(i);
2810 }
2811
2812 /* Cause software interrupt to ensure rings are cleaned */
2813 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2814 }
2815
2816 /**
2817 * ixgbevf_watchdog_update_link - update the link status
2818 * @adapter: pointer to the device adapter structure
2819 **/
2820 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2821 {
2822 struct ixgbe_hw *hw = &adapter->hw;
2823 u32 link_speed = adapter->link_speed;
2824 bool link_up = adapter->link_up;
2825 s32 err;
2826
2827 spin_lock_bh(&adapter->mbx_lock);
2828
2829 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2830
2831 spin_unlock_bh(&adapter->mbx_lock);
2832
2833 /* if check for link returns error we will need to reset */
2834 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2835 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
2836 link_up = false;
2837 }
2838
2839 adapter->link_up = link_up;
2840 adapter->link_speed = link_speed;
2841 }
2842
2843 /**
2844 * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2845 * print link up message
2846 * @adapter: pointer to the device adapter structure
2847 **/
2848 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2849 {
2850 struct net_device *netdev = adapter->netdev;
2851
2852 /* only continue if link was previously down */
2853 if (netif_carrier_ok(netdev))
2854 return;
2855
2856 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2857 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2858 "10 Gbps" :
2859 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2860 "1 Gbps" :
2861 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2862 "100 Mbps" :
2863 "unknown speed");
2864
2865 netif_carrier_on(netdev);
2866 }
2867
2868 /**
2869 * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2870 * print link down message
2871 * @adapter: pointer to the adapter structure
2872 **/
2873 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2874 {
2875 struct net_device *netdev = adapter->netdev;
2876
2877 adapter->link_speed = 0;
2878
2879 /* only continue if link was up previously */
2880 if (!netif_carrier_ok(netdev))
2881 return;
2882
2883 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2884
2885 netif_carrier_off(netdev);
2886 }
2887
2888 /**
2889 * ixgbevf_watchdog_subtask - worker thread to bring link up
2890 * @work: pointer to work_struct containing our data
2891 **/
2892 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2893 {
2894 /* if interface is down do nothing */
2895 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2896 test_bit(__IXGBEVF_RESETTING, &adapter->state))
2897 return;
2898
2899 ixgbevf_watchdog_update_link(adapter);
2900
2901 if (adapter->link_up)
2902 ixgbevf_watchdog_link_is_up(adapter);
2903 else
2904 ixgbevf_watchdog_link_is_down(adapter);
2905
2906 ixgbevf_update_stats(adapter);
2907 }
2908
2909 /**
2910 * ixgbevf_service_task - manages and runs subtasks
2911 * @work: pointer to work_struct containing our data
2912 **/
2913 static void ixgbevf_service_task(struct work_struct *work)
2914 {
2915 struct ixgbevf_adapter *adapter = container_of(work,
2916 struct ixgbevf_adapter,
2917 service_task);
2918 struct ixgbe_hw *hw = &adapter->hw;
2919
2920 if (IXGBE_REMOVED(hw->hw_addr)) {
2921 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2922 rtnl_lock();
2923 ixgbevf_down(adapter);
2924 rtnl_unlock();
2925 }
2926 return;
2927 }
2928
2929 ixgbevf_queue_reset_subtask(adapter);
2930 ixgbevf_reset_subtask(adapter);
2931 ixgbevf_watchdog_subtask(adapter);
2932 ixgbevf_check_hang_subtask(adapter);
2933
2934 ixgbevf_service_event_complete(adapter);
2935 }
2936
2937 /**
2938 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2939 * @tx_ring: Tx descriptor ring for a specific queue
2940 *
2941 * Free all transmit software resources
2942 **/
2943 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2944 {
2945 ixgbevf_clean_tx_ring(tx_ring);
2946
2947 vfree(tx_ring->tx_buffer_info);
2948 tx_ring->tx_buffer_info = NULL;
2949
2950 /* if not set, then don't free */
2951 if (!tx_ring->desc)
2952 return;
2953
2954 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2955 tx_ring->dma);
2956
2957 tx_ring->desc = NULL;
2958 }
2959
2960 /**
2961 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2962 * @adapter: board private structure
2963 *
2964 * Free all transmit software resources
2965 **/
2966 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2967 {
2968 int i;
2969
2970 for (i = 0; i < adapter->num_tx_queues; i++)
2971 if (adapter->tx_ring[i]->desc)
2972 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2973 }
2974
2975 /**
2976 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2977 * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2978 *
2979 * Return 0 on success, negative on failure
2980 **/
2981 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2982 {
2983 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
2984 int size;
2985
2986 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2987 tx_ring->tx_buffer_info = vzalloc(size);
2988 if (!tx_ring->tx_buffer_info)
2989 goto err;
2990
2991 /* round up to nearest 4K */
2992 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2993 tx_ring->size = ALIGN(tx_ring->size, 4096);
2994
2995 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2996 &tx_ring->dma, GFP_KERNEL);
2997 if (!tx_ring->desc)
2998 goto err;
2999
3000 return 0;
3001
3002 err:
3003 vfree(tx_ring->tx_buffer_info);
3004 tx_ring->tx_buffer_info = NULL;
3005 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3006 return -ENOMEM;
3007 }
3008
3009 /**
3010 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3011 * @adapter: board private structure
3012 *
3013 * If this function returns with an error, then it's possible one or
3014 * more of the rings is populated (while the rest are not). It is the
3015 * callers duty to clean those orphaned rings.
3016 *
3017 * Return 0 on success, negative on failure
3018 **/
3019 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3020 {
3021 int i, err = 0;
3022
3023 for (i = 0; i < adapter->num_tx_queues; i++) {
3024 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3025 if (!err)
3026 continue;
3027 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3028 break;
3029 }
3030
3031 return err;
3032 }
3033
3034 /**
3035 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3036 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3037 *
3038 * Returns 0 on success, negative on failure
3039 **/
3040 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3041 {
3042 int size;
3043
3044 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3045 rx_ring->rx_buffer_info = vzalloc(size);
3046 if (!rx_ring->rx_buffer_info)
3047 goto err;
3048
3049 /* Round up to nearest 4K */
3050 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3051 rx_ring->size = ALIGN(rx_ring->size, 4096);
3052
3053 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3054 &rx_ring->dma, GFP_KERNEL);
3055
3056 if (!rx_ring->desc)
3057 goto err;
3058
3059 return 0;
3060 err:
3061 vfree(rx_ring->rx_buffer_info);
3062 rx_ring->rx_buffer_info = NULL;
3063 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3064 return -ENOMEM;
3065 }
3066
3067 /**
3068 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3069 * @adapter: board private structure
3070 *
3071 * If this function returns with an error, then it's possible one or
3072 * more of the rings is populated (while the rest are not). It is the
3073 * callers duty to clean those orphaned rings.
3074 *
3075 * Return 0 on success, negative on failure
3076 **/
3077 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3078 {
3079 int i, err = 0;
3080
3081 for (i = 0; i < adapter->num_rx_queues; i++) {
3082 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3083 if (!err)
3084 continue;
3085 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3086 break;
3087 }
3088 return err;
3089 }
3090
3091 /**
3092 * ixgbevf_free_rx_resources - Free Rx Resources
3093 * @rx_ring: ring to clean the resources from
3094 *
3095 * Free all receive software resources
3096 **/
3097 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3098 {
3099 ixgbevf_clean_rx_ring(rx_ring);
3100
3101 vfree(rx_ring->rx_buffer_info);
3102 rx_ring->rx_buffer_info = NULL;
3103
3104 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3105 rx_ring->dma);
3106
3107 rx_ring->desc = NULL;
3108 }
3109
3110 /**
3111 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3112 * @adapter: board private structure
3113 *
3114 * Free all receive software resources
3115 **/
3116 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3117 {
3118 int i;
3119
3120 for (i = 0; i < adapter->num_rx_queues; i++)
3121 if (adapter->rx_ring[i]->desc)
3122 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3123 }
3124
3125 /**
3126 * ixgbevf_open - Called when a network interface is made active
3127 * @netdev: network interface device structure
3128 *
3129 * Returns 0 on success, negative value on failure
3130 *
3131 * The open entry point is called when a network interface is made
3132 * active by the system (IFF_UP). At this point all resources needed
3133 * for transmit and receive operations are allocated, the interrupt
3134 * handler is registered with the OS, the watchdog timer is started,
3135 * and the stack is notified that the interface is ready.
3136 **/
3137 int ixgbevf_open(struct net_device *netdev)
3138 {
3139 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3140 struct ixgbe_hw *hw = &adapter->hw;
3141 int err;
3142
3143 /* A previous failure to open the device because of a lack of
3144 * available MSIX vector resources may have reset the number
3145 * of msix vectors variable to zero. The only way to recover
3146 * is to unload/reload the driver and hope that the system has
3147 * been able to recover some MSIX vector resources.
3148 */
3149 if (!adapter->num_msix_vectors)
3150 return -ENOMEM;
3151
3152 if (hw->adapter_stopped) {
3153 ixgbevf_reset(adapter);
3154 /* if adapter is still stopped then PF isn't up and
3155 * the VF can't start.
3156 */
3157 if (hw->adapter_stopped) {
3158 err = IXGBE_ERR_MBX;
3159 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3160 goto err_setup_reset;
3161 }
3162 }
3163
3164 /* disallow open during test */
3165 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3166 return -EBUSY;
3167
3168 netif_carrier_off(netdev);
3169
3170 /* allocate transmit descriptors */
3171 err = ixgbevf_setup_all_tx_resources(adapter);
3172 if (err)
3173 goto err_setup_tx;
3174
3175 /* allocate receive descriptors */
3176 err = ixgbevf_setup_all_rx_resources(adapter);
3177 if (err)
3178 goto err_setup_rx;
3179
3180 ixgbevf_configure(adapter);
3181
3182 /* Map the Tx/Rx rings to the vectors we were allotted.
3183 * if request_irq will be called in this function map_rings
3184 * must be called *before* up_complete
3185 */
3186 ixgbevf_map_rings_to_vectors(adapter);
3187
3188 err = ixgbevf_request_irq(adapter);
3189 if (err)
3190 goto err_req_irq;
3191
3192 ixgbevf_up_complete(adapter);
3193
3194 return 0;
3195
3196 err_req_irq:
3197 ixgbevf_down(adapter);
3198 err_setup_rx:
3199 ixgbevf_free_all_rx_resources(adapter);
3200 err_setup_tx:
3201 ixgbevf_free_all_tx_resources(adapter);
3202 ixgbevf_reset(adapter);
3203
3204 err_setup_reset:
3205
3206 return err;
3207 }
3208
3209 /**
3210 * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3211 * @adapter: the private adapter struct
3212 *
3213 * This function should contain the necessary work common to both suspending
3214 * and closing of the device.
3215 */
3216 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3217 {
3218 ixgbevf_down(adapter);
3219 ixgbevf_free_irq(adapter);
3220 ixgbevf_free_all_tx_resources(adapter);
3221 ixgbevf_free_all_rx_resources(adapter);
3222 }
3223
3224 /**
3225 * ixgbevf_close - Disables a network interface
3226 * @netdev: network interface device structure
3227 *
3228 * Returns 0, this is not allowed to fail
3229 *
3230 * The close entry point is called when an interface is de-activated
3231 * by the OS. The hardware is still under the drivers control, but
3232 * needs to be disabled. A global MAC reset is issued to stop the
3233 * hardware, and all transmit and receive resources are freed.
3234 **/
3235 int ixgbevf_close(struct net_device *netdev)
3236 {
3237 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3238
3239 if (netif_device_present(netdev))
3240 ixgbevf_close_suspend(adapter);
3241
3242 return 0;
3243 }
3244
3245 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3246 {
3247 struct net_device *dev = adapter->netdev;
3248
3249 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3250 &adapter->state))
3251 return;
3252
3253 /* if interface is down do nothing */
3254 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3255 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3256 return;
3257
3258 /* Hardware has to reinitialize queues and interrupts to
3259 * match packet buffer alignment. Unfortunately, the
3260 * hardware is not flexible enough to do this dynamically.
3261 */
3262 rtnl_lock();
3263
3264 if (netif_running(dev))
3265 ixgbevf_close(dev);
3266
3267 ixgbevf_clear_interrupt_scheme(adapter);
3268 ixgbevf_init_interrupt_scheme(adapter);
3269
3270 if (netif_running(dev))
3271 ixgbevf_open(dev);
3272
3273 rtnl_unlock();
3274 }
3275
3276 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3277 u32 vlan_macip_lens, u32 type_tucmd,
3278 u32 mss_l4len_idx)
3279 {
3280 struct ixgbe_adv_tx_context_desc *context_desc;
3281 u16 i = tx_ring->next_to_use;
3282
3283 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3284
3285 i++;
3286 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3287
3288 /* set bits to identify this as an advanced context descriptor */
3289 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3290
3291 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3292 context_desc->seqnum_seed = 0;
3293 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3294 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3295 }
3296
3297 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3298 struct ixgbevf_tx_buffer *first,
3299 u8 *hdr_len)
3300 {
3301 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3302 struct sk_buff *skb = first->skb;
3303 union {
3304 struct iphdr *v4;
3305 struct ipv6hdr *v6;
3306 unsigned char *hdr;
3307 } ip;
3308 union {
3309 struct tcphdr *tcp;
3310 unsigned char *hdr;
3311 } l4;
3312 u32 paylen, l4_offset;
3313 int err;
3314
3315 if (skb->ip_summed != CHECKSUM_PARTIAL)
3316 return 0;
3317
3318 if (!skb_is_gso(skb))
3319 return 0;
3320
3321 err = skb_cow_head(skb, 0);
3322 if (err < 0)
3323 return err;
3324
3325 if (eth_p_mpls(first->protocol))
3326 ip.hdr = skb_inner_network_header(skb);
3327 else
3328 ip.hdr = skb_network_header(skb);
3329 l4.hdr = skb_checksum_start(skb);
3330
3331 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3332 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3333
3334 /* initialize outer IP header fields */
3335 if (ip.v4->version == 4) {
3336 unsigned char *csum_start = skb_checksum_start(skb);
3337 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3338
3339 /* IP header will have to cancel out any data that
3340 * is not a part of the outer IP header
3341 */
3342 ip.v4->check = csum_fold(csum_partial(trans_start,
3343 csum_start - trans_start,
3344 0));
3345 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3346
3347 ip.v4->tot_len = 0;
3348 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3349 IXGBE_TX_FLAGS_CSUM |
3350 IXGBE_TX_FLAGS_IPV4;
3351 } else {
3352 ip.v6->payload_len = 0;
3353 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3354 IXGBE_TX_FLAGS_CSUM;
3355 }
3356
3357 /* determine offset of inner transport header */
3358 l4_offset = l4.hdr - skb->data;
3359
3360 /* compute length of segmentation header */
3361 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3362
3363 /* remove payload length from inner checksum */
3364 paylen = skb->len - l4_offset;
3365 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3366
3367 /* update gso size and bytecount with header size */
3368 first->gso_segs = skb_shinfo(skb)->gso_segs;
3369 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3370
3371 /* mss_l4len_id: use 1 as index for TSO */
3372 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3373 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3374 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3375
3376 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3377 vlan_macip_lens = l4.hdr - ip.hdr;
3378 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3379 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3380
3381 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3382 type_tucmd, mss_l4len_idx);
3383
3384 return 1;
3385 }
3386
3387 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3388 {
3389 unsigned int offset = 0;
3390
3391 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3392
3393 return offset == skb_checksum_start_offset(skb);
3394 }
3395
3396 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3397 struct ixgbevf_tx_buffer *first)
3398 {
3399 struct sk_buff *skb = first->skb;
3400 u32 vlan_macip_lens = 0;
3401 u32 type_tucmd = 0;
3402
3403 if (skb->ip_summed != CHECKSUM_PARTIAL)
3404 goto no_csum;
3405
3406 switch (skb->csum_offset) {
3407 case offsetof(struct tcphdr, check):
3408 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3409 /* fall through */
3410 case offsetof(struct udphdr, check):
3411 break;
3412 case offsetof(struct sctphdr, checksum):
3413 /* validate that this is actually an SCTP request */
3414 if (((first->protocol == htons(ETH_P_IP)) &&
3415 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3416 ((first->protocol == htons(ETH_P_IPV6)) &&
3417 ixgbevf_ipv6_csum_is_sctp(skb))) {
3418 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3419 break;
3420 }
3421 /* fall through */
3422 default:
3423 skb_checksum_help(skb);
3424 goto no_csum;
3425 }
3426 /* update TX checksum flag */
3427 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3428 vlan_macip_lens = skb_checksum_start_offset(skb) -
3429 skb_network_offset(skb);
3430 no_csum:
3431 /* vlan_macip_lens: MACLEN, VLAN tag */
3432 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3433 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3434
3435 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
3436 }
3437
3438 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3439 {
3440 /* set type for advanced descriptor with frame checksum insertion */
3441 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3442 IXGBE_ADVTXD_DCMD_IFCS |
3443 IXGBE_ADVTXD_DCMD_DEXT);
3444
3445 /* set HW VLAN bit if VLAN is present */
3446 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3447 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3448
3449 /* set segmentation enable bits for TSO/FSO */
3450 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3451 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3452
3453 return cmd_type;
3454 }
3455
3456 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3457 u32 tx_flags, unsigned int paylen)
3458 {
3459 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3460
3461 /* enable L4 checksum for TSO and TX checksum offload */
3462 if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3463 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3464
3465 /* enble IPv4 checksum for TSO */
3466 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3467 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3468
3469 /* use index 1 context for TSO/FSO/FCOE */
3470 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3471 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3472
3473 /* Check Context must be set if Tx switch is enabled, which it
3474 * always is for case where virtual functions are running
3475 */
3476 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3477
3478 tx_desc->read.olinfo_status = olinfo_status;
3479 }
3480
3481 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3482 struct ixgbevf_tx_buffer *first,
3483 const u8 hdr_len)
3484 {
3485 dma_addr_t dma;
3486 struct sk_buff *skb = first->skb;
3487 struct ixgbevf_tx_buffer *tx_buffer;
3488 union ixgbe_adv_tx_desc *tx_desc;
3489 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3490 unsigned int data_len = skb->data_len;
3491 unsigned int size = skb_headlen(skb);
3492 unsigned int paylen = skb->len - hdr_len;
3493 u32 tx_flags = first->tx_flags;
3494 __le32 cmd_type;
3495 u16 i = tx_ring->next_to_use;
3496
3497 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3498
3499 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3500 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3501
3502 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3503 if (dma_mapping_error(tx_ring->dev, dma))
3504 goto dma_error;
3505
3506 /* record length, and DMA address */
3507 dma_unmap_len_set(first, len, size);
3508 dma_unmap_addr_set(first, dma, dma);
3509
3510 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3511
3512 for (;;) {
3513 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3514 tx_desc->read.cmd_type_len =
3515 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3516
3517 i++;
3518 tx_desc++;
3519 if (i == tx_ring->count) {
3520 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3521 i = 0;
3522 }
3523
3524 dma += IXGBE_MAX_DATA_PER_TXD;
3525 size -= IXGBE_MAX_DATA_PER_TXD;
3526
3527 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3528 tx_desc->read.olinfo_status = 0;
3529 }
3530
3531 if (likely(!data_len))
3532 break;
3533
3534 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3535
3536 i++;
3537 tx_desc++;
3538 if (i == tx_ring->count) {
3539 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3540 i = 0;
3541 }
3542
3543 size = skb_frag_size(frag);
3544 data_len -= size;
3545
3546 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3547 DMA_TO_DEVICE);
3548 if (dma_mapping_error(tx_ring->dev, dma))
3549 goto dma_error;
3550
3551 tx_buffer = &tx_ring->tx_buffer_info[i];
3552 dma_unmap_len_set(tx_buffer, len, size);
3553 dma_unmap_addr_set(tx_buffer, dma, dma);
3554
3555 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3556 tx_desc->read.olinfo_status = 0;
3557
3558 frag++;
3559 }
3560
3561 /* write last descriptor with RS and EOP bits */
3562 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3563 tx_desc->read.cmd_type_len = cmd_type;
3564
3565 /* set the timestamp */
3566 first->time_stamp = jiffies;
3567
3568 /* Force memory writes to complete before letting h/w know there
3569 * are new descriptors to fetch. (Only applicable for weak-ordered
3570 * memory model archs, such as IA-64).
3571 *
3572 * We also need this memory barrier (wmb) to make certain all of the
3573 * status bits have been updated before next_to_watch is written.
3574 */
3575 wmb();
3576
3577 /* set next_to_watch value indicating a packet is present */
3578 first->next_to_watch = tx_desc;
3579
3580 i++;
3581 if (i == tx_ring->count)
3582 i = 0;
3583
3584 tx_ring->next_to_use = i;
3585
3586 /* notify HW of packet */
3587 ixgbevf_write_tail(tx_ring, i);
3588
3589 return;
3590 dma_error:
3591 dev_err(tx_ring->dev, "TX DMA map failed\n");
3592
3593 /* clear dma mappings for failed tx_buffer_info map */
3594 for (;;) {
3595 tx_buffer = &tx_ring->tx_buffer_info[i];
3596 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3597 if (tx_buffer == first)
3598 break;
3599 if (i == 0)
3600 i = tx_ring->count;
3601 i--;
3602 }
3603
3604 tx_ring->next_to_use = i;
3605 }
3606
3607 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3608 {
3609 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3610 /* Herbert's original patch had:
3611 * smp_mb__after_netif_stop_queue();
3612 * but since that doesn't exist yet, just open code it.
3613 */
3614 smp_mb();
3615
3616 /* We need to check again in a case another CPU has just
3617 * made room available.
3618 */
3619 if (likely(ixgbevf_desc_unused(tx_ring) < size))
3620 return -EBUSY;
3621
3622 /* A reprieve! - use start_queue because it doesn't call schedule */
3623 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3624 ++tx_ring->tx_stats.restart_queue;
3625
3626 return 0;
3627 }
3628
3629 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3630 {
3631 if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3632 return 0;
3633 return __ixgbevf_maybe_stop_tx(tx_ring, size);
3634 }
3635
3636 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3637 {
3638 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3639 struct ixgbevf_tx_buffer *first;
3640 struct ixgbevf_ring *tx_ring;
3641 int tso;
3642 u32 tx_flags = 0;
3643 u16 count = TXD_USE_COUNT(skb_headlen(skb));
3644 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3645 unsigned short f;
3646 #endif
3647 u8 hdr_len = 0;
3648 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3649
3650 if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3651 dev_kfree_skb_any(skb);
3652 return NETDEV_TX_OK;
3653 }
3654
3655 tx_ring = adapter->tx_ring[skb->queue_mapping];
3656
3657 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3658 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3659 * + 2 desc gap to keep tail from touching head,
3660 * + 1 desc for context descriptor,
3661 * otherwise try next time
3662 */
3663 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3664 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3665 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3666 #else
3667 count += skb_shinfo(skb)->nr_frags;
3668 #endif
3669 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3670 tx_ring->tx_stats.tx_busy++;
3671 return NETDEV_TX_BUSY;
3672 }
3673
3674 /* record the location of the first descriptor for this packet */
3675 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3676 first->skb = skb;
3677 first->bytecount = skb->len;
3678 first->gso_segs = 1;
3679
3680 if (skb_vlan_tag_present(skb)) {
3681 tx_flags |= skb_vlan_tag_get(skb);
3682 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3683 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3684 }
3685
3686 /* record initial flags and protocol */
3687 first->tx_flags = tx_flags;
3688 first->protocol = vlan_get_protocol(skb);
3689
3690 tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3691 if (tso < 0)
3692 goto out_drop;
3693 else if (!tso)
3694 ixgbevf_tx_csum(tx_ring, first);
3695
3696 ixgbevf_tx_map(tx_ring, first, hdr_len);
3697
3698 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3699
3700 return NETDEV_TX_OK;
3701
3702 out_drop:
3703 dev_kfree_skb_any(first->skb);
3704 first->skb = NULL;
3705
3706 return NETDEV_TX_OK;
3707 }
3708
3709 /**
3710 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3711 * @netdev: network interface device structure
3712 * @p: pointer to an address structure
3713 *
3714 * Returns 0 on success, negative on failure
3715 **/
3716 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3717 {
3718 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3719 struct ixgbe_hw *hw = &adapter->hw;
3720 struct sockaddr *addr = p;
3721 int err;
3722
3723 if (!is_valid_ether_addr(addr->sa_data))
3724 return -EADDRNOTAVAIL;
3725
3726 spin_lock_bh(&adapter->mbx_lock);
3727
3728 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
3729
3730 spin_unlock_bh(&adapter->mbx_lock);
3731
3732 if (err)
3733 return -EPERM;
3734
3735 ether_addr_copy(hw->mac.addr, addr->sa_data);
3736 ether_addr_copy(netdev->dev_addr, addr->sa_data);
3737
3738 return 0;
3739 }
3740
3741 /**
3742 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3743 * @netdev: network interface device structure
3744 * @new_mtu: new value for maximum frame size
3745 *
3746 * Returns 0 on success, negative on failure
3747 **/
3748 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3749 {
3750 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3751 struct ixgbe_hw *hw = &adapter->hw;
3752 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3753 int ret;
3754
3755 spin_lock_bh(&adapter->mbx_lock);
3756 /* notify the PF of our intent to use this size of frame */
3757 ret = hw->mac.ops.set_rlpml(hw, max_frame);
3758 spin_unlock_bh(&adapter->mbx_lock);
3759 if (ret)
3760 return -EINVAL;
3761
3762 hw_dbg(hw, "changing MTU from %d to %d\n",
3763 netdev->mtu, new_mtu);
3764
3765 /* must set new MTU before calling down or up */
3766 netdev->mtu = new_mtu;
3767
3768 return 0;
3769 }
3770
3771 #ifdef CONFIG_NET_POLL_CONTROLLER
3772 /* Polling 'interrupt' - used by things like netconsole to send skbs
3773 * without having to re-enable interrupts. It's not called while
3774 * the interrupt routine is executing.
3775 */
3776 static void ixgbevf_netpoll(struct net_device *netdev)
3777 {
3778 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3779 int i;
3780
3781 /* if interface is down do nothing */
3782 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3783 return;
3784 for (i = 0; i < adapter->num_rx_queues; i++)
3785 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3786 }
3787 #endif /* CONFIG_NET_POLL_CONTROLLER */
3788
3789 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3790 {
3791 struct net_device *netdev = pci_get_drvdata(pdev);
3792 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3793 #ifdef CONFIG_PM
3794 int retval = 0;
3795 #endif
3796
3797 rtnl_lock();
3798 netif_device_detach(netdev);
3799
3800 if (netif_running(netdev))
3801 ixgbevf_close_suspend(adapter);
3802
3803 ixgbevf_clear_interrupt_scheme(adapter);
3804 rtnl_unlock();
3805
3806 #ifdef CONFIG_PM
3807 retval = pci_save_state(pdev);
3808 if (retval)
3809 return retval;
3810
3811 #endif
3812 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3813 pci_disable_device(pdev);
3814
3815 return 0;
3816 }
3817
3818 #ifdef CONFIG_PM
3819 static int ixgbevf_resume(struct pci_dev *pdev)
3820 {
3821 struct net_device *netdev = pci_get_drvdata(pdev);
3822 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3823 u32 err;
3824
3825 pci_restore_state(pdev);
3826 /* pci_restore_state clears dev->state_saved so call
3827 * pci_save_state to restore it.
3828 */
3829 pci_save_state(pdev);
3830
3831 err = pci_enable_device_mem(pdev);
3832 if (err) {
3833 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3834 return err;
3835 }
3836
3837 adapter->hw.hw_addr = adapter->io_addr;
3838 smp_mb__before_atomic();
3839 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3840 pci_set_master(pdev);
3841
3842 ixgbevf_reset(adapter);
3843
3844 rtnl_lock();
3845 err = ixgbevf_init_interrupt_scheme(adapter);
3846 rtnl_unlock();
3847 if (err) {
3848 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3849 return err;
3850 }
3851
3852 if (netif_running(netdev)) {
3853 err = ixgbevf_open(netdev);
3854 if (err)
3855 return err;
3856 }
3857
3858 netif_device_attach(netdev);
3859
3860 return err;
3861 }
3862
3863 #endif /* CONFIG_PM */
3864 static void ixgbevf_shutdown(struct pci_dev *pdev)
3865 {
3866 ixgbevf_suspend(pdev, PMSG_SUSPEND);
3867 }
3868
3869 static void ixgbevf_get_stats(struct net_device *netdev,
3870 struct rtnl_link_stats64 *stats)
3871 {
3872 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3873 unsigned int start;
3874 u64 bytes, packets;
3875 const struct ixgbevf_ring *ring;
3876 int i;
3877
3878 ixgbevf_update_stats(adapter);
3879
3880 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3881
3882 for (i = 0; i < adapter->num_rx_queues; i++) {
3883 ring = adapter->rx_ring[i];
3884 do {
3885 start = u64_stats_fetch_begin_irq(&ring->syncp);
3886 bytes = ring->stats.bytes;
3887 packets = ring->stats.packets;
3888 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3889 stats->rx_bytes += bytes;
3890 stats->rx_packets += packets;
3891 }
3892
3893 for (i = 0; i < adapter->num_tx_queues; i++) {
3894 ring = adapter->tx_ring[i];
3895 do {
3896 start = u64_stats_fetch_begin_irq(&ring->syncp);
3897 bytes = ring->stats.bytes;
3898 packets = ring->stats.packets;
3899 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3900 stats->tx_bytes += bytes;
3901 stats->tx_packets += packets;
3902 }
3903 }
3904
3905 #define IXGBEVF_MAX_MAC_HDR_LEN 127
3906 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511
3907
3908 static netdev_features_t
3909 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
3910 netdev_features_t features)
3911 {
3912 unsigned int network_hdr_len, mac_hdr_len;
3913
3914 /* Make certain the headers can be described by a context descriptor */
3915 mac_hdr_len = skb_network_header(skb) - skb->data;
3916 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
3917 return features & ~(NETIF_F_HW_CSUM |
3918 NETIF_F_SCTP_CRC |
3919 NETIF_F_HW_VLAN_CTAG_TX |
3920 NETIF_F_TSO |
3921 NETIF_F_TSO6);
3922
3923 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3924 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN))
3925 return features & ~(NETIF_F_HW_CSUM |
3926 NETIF_F_SCTP_CRC |
3927 NETIF_F_TSO |
3928 NETIF_F_TSO6);
3929
3930 /* We can only support IPV4 TSO in tunnels if we can mangle the
3931 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3932 */
3933 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3934 features &= ~NETIF_F_TSO;
3935
3936 return features;
3937 }
3938
3939 static const struct net_device_ops ixgbevf_netdev_ops = {
3940 .ndo_open = ixgbevf_open,
3941 .ndo_stop = ixgbevf_close,
3942 .ndo_start_xmit = ixgbevf_xmit_frame,
3943 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
3944 .ndo_get_stats64 = ixgbevf_get_stats,
3945 .ndo_validate_addr = eth_validate_addr,
3946 .ndo_set_mac_address = ixgbevf_set_mac,
3947 .ndo_change_mtu = ixgbevf_change_mtu,
3948 .ndo_tx_timeout = ixgbevf_tx_timeout,
3949 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
3950 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
3951 #ifdef CONFIG_NET_POLL_CONTROLLER
3952 .ndo_poll_controller = ixgbevf_netpoll,
3953 #endif
3954 .ndo_features_check = ixgbevf_features_check,
3955 };
3956
3957 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3958 {
3959 dev->netdev_ops = &ixgbevf_netdev_ops;
3960 ixgbevf_set_ethtool_ops(dev);
3961 dev->watchdog_timeo = 5 * HZ;
3962 }
3963
3964 /**
3965 * ixgbevf_probe - Device Initialization Routine
3966 * @pdev: PCI device information struct
3967 * @ent: entry in ixgbevf_pci_tbl
3968 *
3969 * Returns 0 on success, negative on failure
3970 *
3971 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3972 * The OS initialization, configuring of the adapter private structure,
3973 * and a hardware reset occur.
3974 **/
3975 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3976 {
3977 struct net_device *netdev;
3978 struct ixgbevf_adapter *adapter = NULL;
3979 struct ixgbe_hw *hw = NULL;
3980 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3981 int err, pci_using_dac;
3982 bool disable_dev = false;
3983
3984 err = pci_enable_device(pdev);
3985 if (err)
3986 return err;
3987
3988 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3989 pci_using_dac = 1;
3990 } else {
3991 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3992 if (err) {
3993 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3994 goto err_dma;
3995 }
3996 pci_using_dac = 0;
3997 }
3998
3999 err = pci_request_regions(pdev, ixgbevf_driver_name);
4000 if (err) {
4001 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4002 goto err_pci_reg;
4003 }
4004
4005 pci_set_master(pdev);
4006
4007 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4008 MAX_TX_QUEUES);
4009 if (!netdev) {
4010 err = -ENOMEM;
4011 goto err_alloc_etherdev;
4012 }
4013
4014 SET_NETDEV_DEV(netdev, &pdev->dev);
4015
4016 adapter = netdev_priv(netdev);
4017
4018 adapter->netdev = netdev;
4019 adapter->pdev = pdev;
4020 hw = &adapter->hw;
4021 hw->back = adapter;
4022 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4023
4024 /* call save state here in standalone driver because it relies on
4025 * adapter struct to exist, and needs to call netdev_priv
4026 */
4027 pci_save_state(pdev);
4028
4029 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4030 pci_resource_len(pdev, 0));
4031 adapter->io_addr = hw->hw_addr;
4032 if (!hw->hw_addr) {
4033 err = -EIO;
4034 goto err_ioremap;
4035 }
4036
4037 ixgbevf_assign_netdev_ops(netdev);
4038
4039 /* Setup HW API */
4040 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4041 hw->mac.type = ii->mac;
4042
4043 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4044 sizeof(struct ixgbe_mbx_operations));
4045
4046 /* setup the private structure */
4047 err = ixgbevf_sw_init(adapter);
4048 if (err)
4049 goto err_sw_init;
4050
4051 /* The HW MAC address was set and/or determined in sw_init */
4052 if (!is_valid_ether_addr(netdev->dev_addr)) {
4053 pr_err("invalid MAC address\n");
4054 err = -EIO;
4055 goto err_sw_init;
4056 }
4057
4058 netdev->hw_features = NETIF_F_SG |
4059 NETIF_F_TSO |
4060 NETIF_F_TSO6 |
4061 NETIF_F_RXCSUM |
4062 NETIF_F_HW_CSUM |
4063 NETIF_F_SCTP_CRC;
4064
4065 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4066 NETIF_F_GSO_GRE_CSUM | \
4067 NETIF_F_GSO_IPXIP4 | \
4068 NETIF_F_GSO_IPXIP6 | \
4069 NETIF_F_GSO_UDP_TUNNEL | \
4070 NETIF_F_GSO_UDP_TUNNEL_CSUM)
4071
4072 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4073 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4074 IXGBEVF_GSO_PARTIAL_FEATURES;
4075
4076 netdev->features = netdev->hw_features;
4077
4078 if (pci_using_dac)
4079 netdev->features |= NETIF_F_HIGHDMA;
4080
4081 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4082 netdev->mpls_features |= NETIF_F_SG |
4083 NETIF_F_TSO |
4084 NETIF_F_TSO6 |
4085 NETIF_F_HW_CSUM;
4086 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4087 netdev->hw_enc_features |= netdev->vlan_features;
4088
4089 /* set this bit last since it cannot be part of vlan_features */
4090 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4091 NETIF_F_HW_VLAN_CTAG_RX |
4092 NETIF_F_HW_VLAN_CTAG_TX;
4093
4094 netdev->priv_flags |= IFF_UNICAST_FLT;
4095
4096 /* MTU range: 68 - 1504 or 9710 */
4097 netdev->min_mtu = ETH_MIN_MTU;
4098 switch (adapter->hw.api_version) {
4099 case ixgbe_mbox_api_11:
4100 case ixgbe_mbox_api_12:
4101 case ixgbe_mbox_api_13:
4102 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4103 (ETH_HLEN + ETH_FCS_LEN);
4104 break;
4105 default:
4106 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4107 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4108 (ETH_HLEN + ETH_FCS_LEN);
4109 else
4110 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4111 break;
4112 }
4113
4114 if (IXGBE_REMOVED(hw->hw_addr)) {
4115 err = -EIO;
4116 goto err_sw_init;
4117 }
4118
4119 setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4120 (unsigned long)adapter);
4121
4122 INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4123 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4124 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4125
4126 err = ixgbevf_init_interrupt_scheme(adapter);
4127 if (err)
4128 goto err_sw_init;
4129
4130 strcpy(netdev->name, "eth%d");
4131
4132 err = register_netdev(netdev);
4133 if (err)
4134 goto err_register;
4135
4136 pci_set_drvdata(pdev, netdev);
4137 netif_carrier_off(netdev);
4138
4139 ixgbevf_init_last_counter_stats(adapter);
4140
4141 /* print the VF info */
4142 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4143 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4144
4145 switch (hw->mac.type) {
4146 case ixgbe_mac_X550_vf:
4147 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4148 break;
4149 case ixgbe_mac_X540_vf:
4150 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4151 break;
4152 case ixgbe_mac_82599_vf:
4153 default:
4154 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4155 break;
4156 }
4157
4158 return 0;
4159
4160 err_register:
4161 ixgbevf_clear_interrupt_scheme(adapter);
4162 err_sw_init:
4163 ixgbevf_reset_interrupt_capability(adapter);
4164 iounmap(adapter->io_addr);
4165 kfree(adapter->rss_key);
4166 err_ioremap:
4167 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4168 free_netdev(netdev);
4169 err_alloc_etherdev:
4170 pci_release_regions(pdev);
4171 err_pci_reg:
4172 err_dma:
4173 if (!adapter || disable_dev)
4174 pci_disable_device(pdev);
4175 return err;
4176 }
4177
4178 /**
4179 * ixgbevf_remove - Device Removal Routine
4180 * @pdev: PCI device information struct
4181 *
4182 * ixgbevf_remove is called by the PCI subsystem to alert the driver
4183 * that it should release a PCI device. The could be caused by a
4184 * Hot-Plug event, or because the driver is going to be removed from
4185 * memory.
4186 **/
4187 static void ixgbevf_remove(struct pci_dev *pdev)
4188 {
4189 struct net_device *netdev = pci_get_drvdata(pdev);
4190 struct ixgbevf_adapter *adapter;
4191 bool disable_dev;
4192
4193 if (!netdev)
4194 return;
4195
4196 adapter = netdev_priv(netdev);
4197
4198 set_bit(__IXGBEVF_REMOVING, &adapter->state);
4199 cancel_work_sync(&adapter->service_task);
4200
4201 if (netdev->reg_state == NETREG_REGISTERED)
4202 unregister_netdev(netdev);
4203
4204 ixgbevf_clear_interrupt_scheme(adapter);
4205 ixgbevf_reset_interrupt_capability(adapter);
4206
4207 iounmap(adapter->io_addr);
4208 pci_release_regions(pdev);
4209
4210 hw_dbg(&adapter->hw, "Remove complete\n");
4211
4212 kfree(adapter->rss_key);
4213 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4214 free_netdev(netdev);
4215
4216 if (disable_dev)
4217 pci_disable_device(pdev);
4218 }
4219
4220 /**
4221 * ixgbevf_io_error_detected - called when PCI error is detected
4222 * @pdev: Pointer to PCI device
4223 * @state: The current pci connection state
4224 *
4225 * This function is called after a PCI bus error affecting
4226 * this device has been detected.
4227 **/
4228 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4229 pci_channel_state_t state)
4230 {
4231 struct net_device *netdev = pci_get_drvdata(pdev);
4232 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4233
4234 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4235 return PCI_ERS_RESULT_DISCONNECT;
4236
4237 rtnl_lock();
4238 netif_device_detach(netdev);
4239
4240 if (state == pci_channel_io_perm_failure) {
4241 rtnl_unlock();
4242 return PCI_ERS_RESULT_DISCONNECT;
4243 }
4244
4245 if (netif_running(netdev))
4246 ixgbevf_close_suspend(adapter);
4247
4248 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4249 pci_disable_device(pdev);
4250 rtnl_unlock();
4251
4252 /* Request a slot slot reset. */
4253 return PCI_ERS_RESULT_NEED_RESET;
4254 }
4255
4256 /**
4257 * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4258 * @pdev: Pointer to PCI device
4259 *
4260 * Restart the card from scratch, as if from a cold-boot. Implementation
4261 * resembles the first-half of the ixgbevf_resume routine.
4262 **/
4263 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4264 {
4265 struct net_device *netdev = pci_get_drvdata(pdev);
4266 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4267
4268 if (pci_enable_device_mem(pdev)) {
4269 dev_err(&pdev->dev,
4270 "Cannot re-enable PCI device after reset.\n");
4271 return PCI_ERS_RESULT_DISCONNECT;
4272 }
4273
4274 adapter->hw.hw_addr = adapter->io_addr;
4275 smp_mb__before_atomic();
4276 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4277 pci_set_master(pdev);
4278
4279 ixgbevf_reset(adapter);
4280
4281 return PCI_ERS_RESULT_RECOVERED;
4282 }
4283
4284 /**
4285 * ixgbevf_io_resume - called when traffic can start flowing again.
4286 * @pdev: Pointer to PCI device
4287 *
4288 * This callback is called when the error recovery driver tells us that
4289 * its OK to resume normal operation. Implementation resembles the
4290 * second-half of the ixgbevf_resume routine.
4291 **/
4292 static void ixgbevf_io_resume(struct pci_dev *pdev)
4293 {
4294 struct net_device *netdev = pci_get_drvdata(pdev);
4295
4296 rtnl_lock();
4297 if (netif_running(netdev))
4298 ixgbevf_open(netdev);
4299
4300 netif_device_attach(netdev);
4301 rtnl_unlock();
4302 }
4303
4304 /* PCI Error Recovery (ERS) */
4305 static const struct pci_error_handlers ixgbevf_err_handler = {
4306 .error_detected = ixgbevf_io_error_detected,
4307 .slot_reset = ixgbevf_io_slot_reset,
4308 .resume = ixgbevf_io_resume,
4309 };
4310
4311 static struct pci_driver ixgbevf_driver = {
4312 .name = ixgbevf_driver_name,
4313 .id_table = ixgbevf_pci_tbl,
4314 .probe = ixgbevf_probe,
4315 .remove = ixgbevf_remove,
4316 #ifdef CONFIG_PM
4317 /* Power Management Hooks */
4318 .suspend = ixgbevf_suspend,
4319 .resume = ixgbevf_resume,
4320 #endif
4321 .shutdown = ixgbevf_shutdown,
4322 .err_handler = &ixgbevf_err_handler
4323 };
4324
4325 /**
4326 * ixgbevf_init_module - Driver Registration Routine
4327 *
4328 * ixgbevf_init_module is the first routine called when the driver is
4329 * loaded. All it does is register with the PCI subsystem.
4330 **/
4331 static int __init ixgbevf_init_module(void)
4332 {
4333 pr_info("%s - version %s\n", ixgbevf_driver_string,
4334 ixgbevf_driver_version);
4335
4336 pr_info("%s\n", ixgbevf_copyright);
4337 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4338 if (!ixgbevf_wq) {
4339 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4340 return -ENOMEM;
4341 }
4342
4343 return pci_register_driver(&ixgbevf_driver);
4344 }
4345
4346 module_init(ixgbevf_init_module);
4347
4348 /**
4349 * ixgbevf_exit_module - Driver Exit Cleanup Routine
4350 *
4351 * ixgbevf_exit_module is called just before the driver is removed
4352 * from memory.
4353 **/
4354 static void __exit ixgbevf_exit_module(void)
4355 {
4356 pci_unregister_driver(&ixgbevf_driver);
4357 if (ixgbevf_wq) {
4358 destroy_workqueue(ixgbevf_wq);
4359 ixgbevf_wq = NULL;
4360 }
4361 }
4362
4363 #ifdef DEBUG
4364 /**
4365 * ixgbevf_get_hw_dev_name - return device name string
4366 * used by hardware layer to print debugging information
4367 **/
4368 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4369 {
4370 struct ixgbevf_adapter *adapter = hw->back;
4371
4372 return adapter->netdev->name;
4373 }
4374
4375 #endif
4376 module_exit(ixgbevf_exit_module);
4377
4378 /* ixgbevf_main.c */