]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /******************************************************************************
5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 #include <net/xfrm.h>
34
35 #include "ixgbevf.h"
36
37 const char ixgbevf_driver_name[] = "ixgbevf";
38 static const char ixgbevf_driver_string[] =
39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
40
41 static char ixgbevf_copyright[] =
42 "Copyright (c) 2009 - 2018 Intel Corporation.";
43
44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
45 [board_82599_vf] = &ixgbevf_82599_vf_info,
46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info,
47 [board_X540_vf] = &ixgbevf_X540_vf_info,
48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info,
49 [board_X550_vf] = &ixgbevf_X550_vf_info,
50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info,
51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info,
53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info,
54 };
55
56 /* ixgbevf_pci_tbl - PCI Device ID Table
57 *
58 * Wildcard entries (PCI_ANY_ID) should come last
59 * Last entry must be all 0s
60 *
61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
62 * Class, Class Mask, private data (not used) }
63 */
64 static const struct pci_device_id ixgbevf_pci_tbl[] = {
65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
74 /* required last entry */
75 {0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
81 MODULE_LICENSE("GPL v2");
82
83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
84 static int debug = -1;
85 module_param(debug, int, 0);
86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
87
88 static struct workqueue_struct *ixgbevf_wq;
89
90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
91 {
92 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
93 !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
94 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
95 queue_work(ixgbevf_wq, &adapter->service_task);
96 }
97
98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
99 {
100 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
101
102 /* flush memory to make sure state is correct before next watchdog */
103 smp_mb__before_atomic();
104 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
105 }
106
107 /* forward decls */
108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
113 struct ixgbevf_rx_buffer *old_buff);
114
115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
116 {
117 struct ixgbevf_adapter *adapter = hw->back;
118
119 if (!hw->hw_addr)
120 return;
121 hw->hw_addr = NULL;
122 dev_err(&adapter->pdev->dev, "Adapter removed\n");
123 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
124 ixgbevf_service_event_schedule(adapter);
125 }
126
127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
128 {
129 u32 value;
130
131 /* The following check not only optimizes a bit by not
132 * performing a read on the status register when the
133 * register just read was a status register read that
134 * returned IXGBE_FAILED_READ_REG. It also blocks any
135 * potential recursion.
136 */
137 if (reg == IXGBE_VFSTATUS) {
138 ixgbevf_remove_adapter(hw);
139 return;
140 }
141 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
142 if (value == IXGBE_FAILED_READ_REG)
143 ixgbevf_remove_adapter(hw);
144 }
145
146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
147 {
148 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
149 u32 value;
150
151 if (IXGBE_REMOVED(reg_addr))
152 return IXGBE_FAILED_READ_REG;
153 value = readl(reg_addr + reg);
154 if (unlikely(value == IXGBE_FAILED_READ_REG))
155 ixgbevf_check_remove(hw, reg);
156 return value;
157 }
158
159 /**
160 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
161 * @adapter: pointer to adapter struct
162 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
163 * @queue: queue to map the corresponding interrupt to
164 * @msix_vector: the vector to map to the corresponding queue
165 **/
166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
167 u8 queue, u8 msix_vector)
168 {
169 u32 ivar, index;
170 struct ixgbe_hw *hw = &adapter->hw;
171
172 if (direction == -1) {
173 /* other causes */
174 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
175 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
176 ivar &= ~0xFF;
177 ivar |= msix_vector;
178 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
179 } else {
180 /* Tx or Rx causes */
181 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
182 index = ((16 * (queue & 1)) + (8 * direction));
183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
184 ivar &= ~(0xFF << index);
185 ivar |= (msix_vector << index);
186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
187 }
188 }
189
190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
191 {
192 return ring->stats.packets;
193 }
194
195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
196 {
197 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
198 struct ixgbe_hw *hw = &adapter->hw;
199
200 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
201 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
202
203 if (head != tail)
204 return (head < tail) ?
205 tail - head : (tail + ring->count - head);
206
207 return 0;
208 }
209
210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
211 {
212 u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
213 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
214 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
215
216 clear_check_for_tx_hang(tx_ring);
217
218 /* Check for a hung queue, but be thorough. This verifies
219 * that a transmit has been completed since the previous
220 * check AND there is at least one packet pending. The
221 * ARMED bit is set to indicate a potential hang.
222 */
223 if ((tx_done_old == tx_done) && tx_pending) {
224 /* make sure it is true for two checks in a row */
225 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
226 &tx_ring->state);
227 }
228 /* reset the countdown */
229 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
230
231 /* update completed stats and continue */
232 tx_ring->tx_stats.tx_done_old = tx_done;
233
234 return false;
235 }
236
237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
238 {
239 /* Do the reset outside of interrupt context */
240 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
242 ixgbevf_service_event_schedule(adapter);
243 }
244 }
245
246 /**
247 * ixgbevf_tx_timeout - Respond to a Tx Hang
248 * @netdev: network interface device structure
249 * @txqueue: transmit queue hanging (unused)
250 **/
251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
252 {
253 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
254
255 ixgbevf_tx_timeout_reset(adapter);
256 }
257
258 /**
259 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
260 * @q_vector: board private structure
261 * @tx_ring: tx ring to clean
262 * @napi_budget: Used to determine if we are in netpoll
263 **/
264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
265 struct ixgbevf_ring *tx_ring, int napi_budget)
266 {
267 struct ixgbevf_adapter *adapter = q_vector->adapter;
268 struct ixgbevf_tx_buffer *tx_buffer;
269 union ixgbe_adv_tx_desc *tx_desc;
270 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
271 unsigned int budget = tx_ring->count / 2;
272 unsigned int i = tx_ring->next_to_clean;
273
274 if (test_bit(__IXGBEVF_DOWN, &adapter->state))
275 return true;
276
277 tx_buffer = &tx_ring->tx_buffer_info[i];
278 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
279 i -= tx_ring->count;
280
281 do {
282 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
283
284 /* if next_to_watch is not set then there is no work pending */
285 if (!eop_desc)
286 break;
287
288 /* prevent any other reads prior to eop_desc */
289 smp_rmb();
290
291 /* if DD is not set pending work has not been completed */
292 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
293 break;
294
295 /* clear next_to_watch to prevent false hangs */
296 tx_buffer->next_to_watch = NULL;
297
298 /* update the statistics for this packet */
299 total_bytes += tx_buffer->bytecount;
300 total_packets += tx_buffer->gso_segs;
301 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
302 total_ipsec++;
303
304 /* free the skb */
305 if (ring_is_xdp(tx_ring))
306 page_frag_free(tx_buffer->data);
307 else
308 napi_consume_skb(tx_buffer->skb, napi_budget);
309
310 /* unmap skb header data */
311 dma_unmap_single(tx_ring->dev,
312 dma_unmap_addr(tx_buffer, dma),
313 dma_unmap_len(tx_buffer, len),
314 DMA_TO_DEVICE);
315
316 /* clear tx_buffer data */
317 dma_unmap_len_set(tx_buffer, len, 0);
318
319 /* unmap remaining buffers */
320 while (tx_desc != eop_desc) {
321 tx_buffer++;
322 tx_desc++;
323 i++;
324 if (unlikely(!i)) {
325 i -= tx_ring->count;
326 tx_buffer = tx_ring->tx_buffer_info;
327 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
328 }
329
330 /* unmap any remaining paged data */
331 if (dma_unmap_len(tx_buffer, len)) {
332 dma_unmap_page(tx_ring->dev,
333 dma_unmap_addr(tx_buffer, dma),
334 dma_unmap_len(tx_buffer, len),
335 DMA_TO_DEVICE);
336 dma_unmap_len_set(tx_buffer, len, 0);
337 }
338 }
339
340 /* move us one more past the eop_desc for start of next pkt */
341 tx_buffer++;
342 tx_desc++;
343 i++;
344 if (unlikely(!i)) {
345 i -= tx_ring->count;
346 tx_buffer = tx_ring->tx_buffer_info;
347 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
348 }
349
350 /* issue prefetch for next Tx descriptor */
351 prefetch(tx_desc);
352
353 /* update budget accounting */
354 budget--;
355 } while (likely(budget));
356
357 i += tx_ring->count;
358 tx_ring->next_to_clean = i;
359 u64_stats_update_begin(&tx_ring->syncp);
360 tx_ring->stats.bytes += total_bytes;
361 tx_ring->stats.packets += total_packets;
362 u64_stats_update_end(&tx_ring->syncp);
363 q_vector->tx.total_bytes += total_bytes;
364 q_vector->tx.total_packets += total_packets;
365 adapter->tx_ipsec += total_ipsec;
366
367 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
368 struct ixgbe_hw *hw = &adapter->hw;
369 union ixgbe_adv_tx_desc *eop_desc;
370
371 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
372
373 pr_err("Detected Tx Unit Hang%s\n"
374 " Tx Queue <%d>\n"
375 " TDH, TDT <%x>, <%x>\n"
376 " next_to_use <%x>\n"
377 " next_to_clean <%x>\n"
378 "tx_buffer_info[next_to_clean]\n"
379 " next_to_watch <%p>\n"
380 " eop_desc->wb.status <%x>\n"
381 " time_stamp <%lx>\n"
382 " jiffies <%lx>\n",
383 ring_is_xdp(tx_ring) ? " XDP" : "",
384 tx_ring->queue_index,
385 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
386 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
387 tx_ring->next_to_use, i,
388 eop_desc, (eop_desc ? eop_desc->wb.status : 0),
389 tx_ring->tx_buffer_info[i].time_stamp, jiffies);
390
391 if (!ring_is_xdp(tx_ring))
392 netif_stop_subqueue(tx_ring->netdev,
393 tx_ring->queue_index);
394
395 /* schedule immediate reset if we believe we hung */
396 ixgbevf_tx_timeout_reset(adapter);
397
398 return true;
399 }
400
401 if (ring_is_xdp(tx_ring))
402 return !!budget;
403
404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
405 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
406 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
407 /* Make sure that anybody stopping the queue after this
408 * sees the new next_to_clean.
409 */
410 smp_mb();
411
412 if (__netif_subqueue_stopped(tx_ring->netdev,
413 tx_ring->queue_index) &&
414 !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
415 netif_wake_subqueue(tx_ring->netdev,
416 tx_ring->queue_index);
417 ++tx_ring->tx_stats.restart_queue;
418 }
419 }
420
421 return !!budget;
422 }
423
424 /**
425 * ixgbevf_rx_skb - Helper function to determine proper Rx method
426 * @q_vector: structure containing interrupt and ring information
427 * @skb: packet to send up
428 **/
429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
430 struct sk_buff *skb)
431 {
432 napi_gro_receive(&q_vector->napi, skb);
433 }
434
435 #define IXGBE_RSS_L4_TYPES_MASK \
436 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
440
441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
442 union ixgbe_adv_rx_desc *rx_desc,
443 struct sk_buff *skb)
444 {
445 u16 rss_type;
446
447 if (!(ring->netdev->features & NETIF_F_RXHASH))
448 return;
449
450 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
451 IXGBE_RXDADV_RSSTYPE_MASK;
452
453 if (!rss_type)
454 return;
455
456 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
457 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
458 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
459 }
460
461 /**
462 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
463 * @ring: structure containig ring specific data
464 * @rx_desc: current Rx descriptor being processed
465 * @skb: skb currently being received and modified
466 **/
467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
468 union ixgbe_adv_rx_desc *rx_desc,
469 struct sk_buff *skb)
470 {
471 skb_checksum_none_assert(skb);
472
473 /* Rx csum disabled */
474 if (!(ring->netdev->features & NETIF_F_RXCSUM))
475 return;
476
477 /* if IP and error */
478 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
479 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
480 ring->rx_stats.csum_err++;
481 return;
482 }
483
484 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
485 return;
486
487 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
488 ring->rx_stats.csum_err++;
489 return;
490 }
491
492 /* It must be a TCP or UDP packet with a valid checksum */
493 skb->ip_summed = CHECKSUM_UNNECESSARY;
494 }
495
496 /**
497 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
498 * @rx_ring: rx descriptor ring packet is being transacted on
499 * @rx_desc: pointer to the EOP Rx descriptor
500 * @skb: pointer to current skb being populated
501 *
502 * This function checks the ring, descriptor, and packet information in
503 * order to populate the checksum, VLAN, protocol, and other fields within
504 * the skb.
505 **/
506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
507 union ixgbe_adv_rx_desc *rx_desc,
508 struct sk_buff *skb)
509 {
510 ixgbevf_rx_hash(rx_ring, rx_desc, skb);
511 ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
512
513 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
514 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
515 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
516
517 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
518 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
519 }
520
521 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
522 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
523
524 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
525 }
526
527 static
528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
529 const unsigned int size)
530 {
531 struct ixgbevf_rx_buffer *rx_buffer;
532
533 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
534 prefetchw(rx_buffer->page);
535
536 /* we are reusing so sync this buffer for CPU use */
537 dma_sync_single_range_for_cpu(rx_ring->dev,
538 rx_buffer->dma,
539 rx_buffer->page_offset,
540 size,
541 DMA_FROM_DEVICE);
542
543 rx_buffer->pagecnt_bias--;
544
545 return rx_buffer;
546 }
547
548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
549 struct ixgbevf_rx_buffer *rx_buffer,
550 struct sk_buff *skb)
551 {
552 if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
553 /* hand second half of page back to the ring */
554 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
555 } else {
556 if (IS_ERR(skb))
557 /* We are not reusing the buffer so unmap it and free
558 * any references we are holding to it
559 */
560 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
561 ixgbevf_rx_pg_size(rx_ring),
562 DMA_FROM_DEVICE,
563 IXGBEVF_RX_DMA_ATTR);
564 __page_frag_cache_drain(rx_buffer->page,
565 rx_buffer->pagecnt_bias);
566 }
567
568 /* clear contents of rx_buffer */
569 rx_buffer->page = NULL;
570 }
571
572 /**
573 * ixgbevf_is_non_eop - process handling of non-EOP buffers
574 * @rx_ring: Rx ring being processed
575 * @rx_desc: Rx descriptor for current buffer
576 *
577 * This function updates next to clean. If the buffer is an EOP buffer
578 * this function exits returning false, otherwise it will place the
579 * sk_buff in the next buffer to be chained and return true indicating
580 * that this is in fact a non-EOP buffer.
581 **/
582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
583 union ixgbe_adv_rx_desc *rx_desc)
584 {
585 u32 ntc = rx_ring->next_to_clean + 1;
586
587 /* fetch, update, and store next to clean */
588 ntc = (ntc < rx_ring->count) ? ntc : 0;
589 rx_ring->next_to_clean = ntc;
590
591 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
592
593 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
594 return false;
595
596 return true;
597 }
598
599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
600 {
601 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
602 }
603
604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
605 struct ixgbevf_rx_buffer *bi)
606 {
607 struct page *page = bi->page;
608 dma_addr_t dma;
609
610 /* since we are recycling buffers we should seldom need to alloc */
611 if (likely(page))
612 return true;
613
614 /* alloc new page for storage */
615 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
616 if (unlikely(!page)) {
617 rx_ring->rx_stats.alloc_rx_page_failed++;
618 return false;
619 }
620
621 /* map page for use */
622 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
623 ixgbevf_rx_pg_size(rx_ring),
624 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
625
626 /* if mapping failed free memory back to system since
627 * there isn't much point in holding memory we can't use
628 */
629 if (dma_mapping_error(rx_ring->dev, dma)) {
630 __free_pages(page, ixgbevf_rx_pg_order(rx_ring));
631
632 rx_ring->rx_stats.alloc_rx_page_failed++;
633 return false;
634 }
635
636 bi->dma = dma;
637 bi->page = page;
638 bi->page_offset = ixgbevf_rx_offset(rx_ring);
639 bi->pagecnt_bias = 1;
640 rx_ring->rx_stats.alloc_rx_page++;
641
642 return true;
643 }
644
645 /**
646 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
647 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
648 * @cleaned_count: number of buffers to replace
649 **/
650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
651 u16 cleaned_count)
652 {
653 union ixgbe_adv_rx_desc *rx_desc;
654 struct ixgbevf_rx_buffer *bi;
655 unsigned int i = rx_ring->next_to_use;
656
657 /* nothing to do or no valid netdev defined */
658 if (!cleaned_count || !rx_ring->netdev)
659 return;
660
661 rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
662 bi = &rx_ring->rx_buffer_info[i];
663 i -= rx_ring->count;
664
665 do {
666 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
667 break;
668
669 /* sync the buffer for use by the device */
670 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
671 bi->page_offset,
672 ixgbevf_rx_bufsz(rx_ring),
673 DMA_FROM_DEVICE);
674
675 /* Refresh the desc even if pkt_addr didn't change
676 * because each write-back erases this info.
677 */
678 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
679
680 rx_desc++;
681 bi++;
682 i++;
683 if (unlikely(!i)) {
684 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
685 bi = rx_ring->rx_buffer_info;
686 i -= rx_ring->count;
687 }
688
689 /* clear the length for the next_to_use descriptor */
690 rx_desc->wb.upper.length = 0;
691
692 cleaned_count--;
693 } while (cleaned_count);
694
695 i += rx_ring->count;
696
697 if (rx_ring->next_to_use != i) {
698 /* record the next descriptor to use */
699 rx_ring->next_to_use = i;
700
701 /* update next to alloc since we have filled the ring */
702 rx_ring->next_to_alloc = i;
703
704 /* Force memory writes to complete before letting h/w
705 * know there are new descriptors to fetch. (Only
706 * applicable for weak-ordered memory model archs,
707 * such as IA-64).
708 */
709 wmb();
710 ixgbevf_write_tail(rx_ring, i);
711 }
712 }
713
714 /**
715 * ixgbevf_cleanup_headers - Correct corrupted or empty headers
716 * @rx_ring: rx descriptor ring packet is being transacted on
717 * @rx_desc: pointer to the EOP Rx descriptor
718 * @skb: pointer to current skb being fixed
719 *
720 * Check for corrupted packet headers caused by senders on the local L2
721 * embedded NIC switch not setting up their Tx Descriptors right. These
722 * should be very rare.
723 *
724 * Also address the case where we are pulling data in on pages only
725 * and as such no data is present in the skb header.
726 *
727 * In addition if skb is not at least 60 bytes we need to pad it so that
728 * it is large enough to qualify as a valid Ethernet frame.
729 *
730 * Returns true if an error was encountered and skb was freed.
731 **/
732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
733 union ixgbe_adv_rx_desc *rx_desc,
734 struct sk_buff *skb)
735 {
736 /* XDP packets use error pointer so abort at this point */
737 if (IS_ERR(skb))
738 return true;
739
740 /* verify that the packet does not have any known errors */
741 if (unlikely(ixgbevf_test_staterr(rx_desc,
742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
743 struct net_device *netdev = rx_ring->netdev;
744
745 if (!(netdev->features & NETIF_F_RXALL)) {
746 dev_kfree_skb_any(skb);
747 return true;
748 }
749 }
750
751 /* if eth_skb_pad returns an error the skb was freed */
752 if (eth_skb_pad(skb))
753 return true;
754
755 return false;
756 }
757
758 /**
759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
760 * @rx_ring: rx descriptor ring to store buffers on
761 * @old_buff: donor buffer to have page reused
762 *
763 * Synchronizes page for reuse by the adapter
764 **/
765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
766 struct ixgbevf_rx_buffer *old_buff)
767 {
768 struct ixgbevf_rx_buffer *new_buff;
769 u16 nta = rx_ring->next_to_alloc;
770
771 new_buff = &rx_ring->rx_buffer_info[nta];
772
773 /* update, and store next to alloc */
774 nta++;
775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
776
777 /* transfer page from old buffer to new buffer */
778 new_buff->page = old_buff->page;
779 new_buff->dma = old_buff->dma;
780 new_buff->page_offset = old_buff->page_offset;
781 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
782 }
783
784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
785 {
786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
787 struct page *page = rx_buffer->page;
788
789 /* avoid re-using remote and pfmemalloc pages */
790 if (!dev_page_is_reusable(page))
791 return false;
792
793 #if (PAGE_SIZE < 8192)
794 /* if we are only owner of page we can reuse it */
795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
796 return false;
797 #else
798 #define IXGBEVF_LAST_OFFSET \
799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
800
801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
802 return false;
803
804 #endif
805
806 /* If we have drained the page fragment pool we need to update
807 * the pagecnt_bias and page count so that we fully restock the
808 * number of references the driver holds.
809 */
810 if (unlikely(!pagecnt_bias)) {
811 page_ref_add(page, USHRT_MAX);
812 rx_buffer->pagecnt_bias = USHRT_MAX;
813 }
814
815 return true;
816 }
817
818 /**
819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
820 * @rx_ring: rx descriptor ring to transact packets on
821 * @rx_buffer: buffer containing page to add
822 * @skb: sk_buff to place the data into
823 * @size: size of buffer to be added
824 *
825 * This function will add the data contained in rx_buffer->page to the skb.
826 **/
827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
828 struct ixgbevf_rx_buffer *rx_buffer,
829 struct sk_buff *skb,
830 unsigned int size)
831 {
832 #if (PAGE_SIZE < 8192)
833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
834 #else
835 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
837 SKB_DATA_ALIGN(size);
838 #endif
839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
840 rx_buffer->page_offset, size, truesize);
841 #if (PAGE_SIZE < 8192)
842 rx_buffer->page_offset ^= truesize;
843 #else
844 rx_buffer->page_offset += truesize;
845 #endif
846 }
847
848 static
849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
850 struct ixgbevf_rx_buffer *rx_buffer,
851 struct xdp_buff *xdp,
852 union ixgbe_adv_rx_desc *rx_desc)
853 {
854 unsigned int size = xdp->data_end - xdp->data;
855 #if (PAGE_SIZE < 8192)
856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
857 #else
858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
859 xdp->data_hard_start);
860 #endif
861 unsigned int headlen;
862 struct sk_buff *skb;
863
864 /* prefetch first cache line of first page */
865 net_prefetch(xdp->data);
866
867 /* Note, we get here by enabling legacy-rx via:
868 *
869 * ethtool --set-priv-flags <dev> legacy-rx on
870 *
871 * In this mode, we currently get 0 extra XDP headroom as
872 * opposed to having legacy-rx off, where we process XDP
873 * packets going to stack via ixgbevf_build_skb().
874 *
875 * For ixgbevf_construct_skb() mode it means that the
876 * xdp->data_meta will always point to xdp->data, since
877 * the helper cannot expand the head. Should this ever
878 * changed in future for legacy-rx mode on, then lets also
879 * add xdp->data_meta handling here.
880 */
881
882 /* allocate a skb to store the frags */
883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
884 if (unlikely(!skb))
885 return NULL;
886
887 /* Determine available headroom for copy */
888 headlen = size;
889 if (headlen > IXGBEVF_RX_HDR_SIZE)
890 headlen = eth_get_headlen(skb->dev, xdp->data,
891 IXGBEVF_RX_HDR_SIZE);
892
893 /* align pull length to size of long to optimize memcpy performance */
894 memcpy(__skb_put(skb, headlen), xdp->data,
895 ALIGN(headlen, sizeof(long)));
896
897 /* update all of the pointers */
898 size -= headlen;
899 if (size) {
900 skb_add_rx_frag(skb, 0, rx_buffer->page,
901 (xdp->data + headlen) -
902 page_address(rx_buffer->page),
903 size, truesize);
904 #if (PAGE_SIZE < 8192)
905 rx_buffer->page_offset ^= truesize;
906 #else
907 rx_buffer->page_offset += truesize;
908 #endif
909 } else {
910 rx_buffer->pagecnt_bias++;
911 }
912
913 return skb;
914 }
915
916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
917 u32 qmask)
918 {
919 struct ixgbe_hw *hw = &adapter->hw;
920
921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
922 }
923
924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
925 struct ixgbevf_rx_buffer *rx_buffer,
926 struct xdp_buff *xdp,
927 union ixgbe_adv_rx_desc *rx_desc)
928 {
929 unsigned int metasize = xdp->data - xdp->data_meta;
930 #if (PAGE_SIZE < 8192)
931 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
932 #else
933 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
934 SKB_DATA_ALIGN(xdp->data_end -
935 xdp->data_hard_start);
936 #endif
937 struct sk_buff *skb;
938
939 /* Prefetch first cache line of first page. If xdp->data_meta
940 * is unused, this points to xdp->data, otherwise, we likely
941 * have a consumer accessing first few bytes of meta data,
942 * and then actual data.
943 */
944 net_prefetch(xdp->data_meta);
945
946 /* build an skb around the page buffer */
947 skb = build_skb(xdp->data_hard_start, truesize);
948 if (unlikely(!skb))
949 return NULL;
950
951 /* update pointers within the skb to store the data */
952 skb_reserve(skb, xdp->data - xdp->data_hard_start);
953 __skb_put(skb, xdp->data_end - xdp->data);
954 if (metasize)
955 skb_metadata_set(skb, metasize);
956
957 /* update buffer offset */
958 #if (PAGE_SIZE < 8192)
959 rx_buffer->page_offset ^= truesize;
960 #else
961 rx_buffer->page_offset += truesize;
962 #endif
963
964 return skb;
965 }
966
967 #define IXGBEVF_XDP_PASS 0
968 #define IXGBEVF_XDP_CONSUMED 1
969 #define IXGBEVF_XDP_TX 2
970
971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
972 struct xdp_buff *xdp)
973 {
974 struct ixgbevf_tx_buffer *tx_buffer;
975 union ixgbe_adv_tx_desc *tx_desc;
976 u32 len, cmd_type;
977 dma_addr_t dma;
978 u16 i;
979
980 len = xdp->data_end - xdp->data;
981
982 if (unlikely(!ixgbevf_desc_unused(ring)))
983 return IXGBEVF_XDP_CONSUMED;
984
985 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
986 if (dma_mapping_error(ring->dev, dma))
987 return IXGBEVF_XDP_CONSUMED;
988
989 /* record the location of the first descriptor for this packet */
990 i = ring->next_to_use;
991 tx_buffer = &ring->tx_buffer_info[i];
992
993 dma_unmap_len_set(tx_buffer, len, len);
994 dma_unmap_addr_set(tx_buffer, dma, dma);
995 tx_buffer->data = xdp->data;
996 tx_buffer->bytecount = len;
997 tx_buffer->gso_segs = 1;
998 tx_buffer->protocol = 0;
999
1000 /* Populate minimal context descriptor that will provide for the
1001 * fact that we are expected to process Ethernet frames.
1002 */
1003 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1004 struct ixgbe_adv_tx_context_desc *context_desc;
1005
1006 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1007
1008 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1009 context_desc->vlan_macip_lens =
1010 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1011 context_desc->fceof_saidx = 0;
1012 context_desc->type_tucmd_mlhl =
1013 cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1014 IXGBE_ADVTXD_DTYP_CTXT);
1015 context_desc->mss_l4len_idx = 0;
1016
1017 i = 1;
1018 }
1019
1020 /* put descriptor type bits */
1021 cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1022 IXGBE_ADVTXD_DCMD_DEXT |
1023 IXGBE_ADVTXD_DCMD_IFCS;
1024 cmd_type |= len | IXGBE_TXD_CMD;
1025
1026 tx_desc = IXGBEVF_TX_DESC(ring, i);
1027 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1028
1029 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1030 tx_desc->read.olinfo_status =
1031 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1032 IXGBE_ADVTXD_CC);
1033
1034 /* Avoid any potential race with cleanup */
1035 smp_wmb();
1036
1037 /* set next_to_watch value indicating a packet is present */
1038 i++;
1039 if (i == ring->count)
1040 i = 0;
1041
1042 tx_buffer->next_to_watch = tx_desc;
1043 ring->next_to_use = i;
1044
1045 return IXGBEVF_XDP_TX;
1046 }
1047
1048 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1049 struct ixgbevf_ring *rx_ring,
1050 struct xdp_buff *xdp)
1051 {
1052 int result = IXGBEVF_XDP_PASS;
1053 struct ixgbevf_ring *xdp_ring;
1054 struct bpf_prog *xdp_prog;
1055 u32 act;
1056
1057 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1058
1059 if (!xdp_prog)
1060 goto xdp_out;
1061
1062 act = bpf_prog_run_xdp(xdp_prog, xdp);
1063 switch (act) {
1064 case XDP_PASS:
1065 break;
1066 case XDP_TX:
1067 xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1068 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1069 if (result == IXGBEVF_XDP_CONSUMED)
1070 goto out_failure;
1071 break;
1072 default:
1073 bpf_warn_invalid_xdp_action(act);
1074 fallthrough;
1075 case XDP_ABORTED:
1076 out_failure:
1077 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1078 fallthrough; /* handle aborts by dropping packet */
1079 case XDP_DROP:
1080 result = IXGBEVF_XDP_CONSUMED;
1081 break;
1082 }
1083 xdp_out:
1084 return ERR_PTR(-result);
1085 }
1086
1087 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring,
1088 unsigned int size)
1089 {
1090 unsigned int truesize;
1091
1092 #if (PAGE_SIZE < 8192)
1093 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1094 #else
1095 truesize = ring_uses_build_skb(rx_ring) ?
1096 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) +
1097 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1098 SKB_DATA_ALIGN(size);
1099 #endif
1100 return truesize;
1101 }
1102
1103 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1104 struct ixgbevf_rx_buffer *rx_buffer,
1105 unsigned int size)
1106 {
1107 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size);
1108
1109 #if (PAGE_SIZE < 8192)
1110 rx_buffer->page_offset ^= truesize;
1111 #else
1112 rx_buffer->page_offset += truesize;
1113 #endif
1114 }
1115
1116 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1117 struct ixgbevf_ring *rx_ring,
1118 int budget)
1119 {
1120 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
1121 struct ixgbevf_adapter *adapter = q_vector->adapter;
1122 u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1123 struct sk_buff *skb = rx_ring->skb;
1124 bool xdp_xmit = false;
1125 struct xdp_buff xdp;
1126
1127 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1128 #if (PAGE_SIZE < 8192)
1129 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0);
1130 #endif
1131 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1132
1133 while (likely(total_rx_packets < budget)) {
1134 struct ixgbevf_rx_buffer *rx_buffer;
1135 union ixgbe_adv_rx_desc *rx_desc;
1136 unsigned int size;
1137
1138 /* return some buffers to hardware, one at a time is too slow */
1139 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1140 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1141 cleaned_count = 0;
1142 }
1143
1144 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1145 size = le16_to_cpu(rx_desc->wb.upper.length);
1146 if (!size)
1147 break;
1148
1149 /* This memory barrier is needed to keep us from reading
1150 * any other fields out of the rx_desc until we know the
1151 * RXD_STAT_DD bit is set
1152 */
1153 rmb();
1154
1155 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1156
1157 /* retrieve a buffer from the ring */
1158 if (!skb) {
1159 unsigned int offset = ixgbevf_rx_offset(rx_ring);
1160 unsigned char *hard_start;
1161
1162 hard_start = page_address(rx_buffer->page) +
1163 rx_buffer->page_offset - offset;
1164 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1165 #if (PAGE_SIZE > 4096)
1166 /* At larger PAGE_SIZE, frame_sz depend on len size */
1167 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size);
1168 #endif
1169 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1170 }
1171
1172 if (IS_ERR(skb)) {
1173 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1174 xdp_xmit = true;
1175 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1176 size);
1177 } else {
1178 rx_buffer->pagecnt_bias++;
1179 }
1180 total_rx_packets++;
1181 total_rx_bytes += size;
1182 } else if (skb) {
1183 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1184 } else if (ring_uses_build_skb(rx_ring)) {
1185 skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1186 &xdp, rx_desc);
1187 } else {
1188 skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1189 &xdp, rx_desc);
1190 }
1191
1192 /* exit if we failed to retrieve a buffer */
1193 if (!skb) {
1194 rx_ring->rx_stats.alloc_rx_buff_failed++;
1195 rx_buffer->pagecnt_bias++;
1196 break;
1197 }
1198
1199 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1200 cleaned_count++;
1201
1202 /* fetch next buffer in frame if non-eop */
1203 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1204 continue;
1205
1206 /* verify the packet layout is correct */
1207 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1208 skb = NULL;
1209 continue;
1210 }
1211
1212 /* probably a little skewed due to removing CRC */
1213 total_rx_bytes += skb->len;
1214
1215 /* Workaround hardware that can't do proper VEPA multicast
1216 * source pruning.
1217 */
1218 if ((skb->pkt_type == PACKET_BROADCAST ||
1219 skb->pkt_type == PACKET_MULTICAST) &&
1220 ether_addr_equal(rx_ring->netdev->dev_addr,
1221 eth_hdr(skb)->h_source)) {
1222 dev_kfree_skb_irq(skb);
1223 continue;
1224 }
1225
1226 /* populate checksum, VLAN, and protocol */
1227 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1228
1229 ixgbevf_rx_skb(q_vector, skb);
1230
1231 /* reset skb pointer */
1232 skb = NULL;
1233
1234 /* update budget accounting */
1235 total_rx_packets++;
1236 }
1237
1238 /* place incomplete frames back on ring for completion */
1239 rx_ring->skb = skb;
1240
1241 if (xdp_xmit) {
1242 struct ixgbevf_ring *xdp_ring =
1243 adapter->xdp_ring[rx_ring->queue_index];
1244
1245 /* Force memory writes to complete before letting h/w
1246 * know there are new descriptors to fetch.
1247 */
1248 wmb();
1249 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1250 }
1251
1252 u64_stats_update_begin(&rx_ring->syncp);
1253 rx_ring->stats.packets += total_rx_packets;
1254 rx_ring->stats.bytes += total_rx_bytes;
1255 u64_stats_update_end(&rx_ring->syncp);
1256 q_vector->rx.total_packets += total_rx_packets;
1257 q_vector->rx.total_bytes += total_rx_bytes;
1258
1259 return total_rx_packets;
1260 }
1261
1262 /**
1263 * ixgbevf_poll - NAPI polling calback
1264 * @napi: napi struct with our devices info in it
1265 * @budget: amount of work driver is allowed to do this pass, in packets
1266 *
1267 * This function will clean more than one or more rings associated with a
1268 * q_vector.
1269 **/
1270 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1271 {
1272 struct ixgbevf_q_vector *q_vector =
1273 container_of(napi, struct ixgbevf_q_vector, napi);
1274 struct ixgbevf_adapter *adapter = q_vector->adapter;
1275 struct ixgbevf_ring *ring;
1276 int per_ring_budget, work_done = 0;
1277 bool clean_complete = true;
1278
1279 ixgbevf_for_each_ring(ring, q_vector->tx) {
1280 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1281 clean_complete = false;
1282 }
1283
1284 if (budget <= 0)
1285 return budget;
1286
1287 /* attempt to distribute budget to each queue fairly, but don't allow
1288 * the budget to go below 1 because we'll exit polling
1289 */
1290 if (q_vector->rx.count > 1)
1291 per_ring_budget = max(budget/q_vector->rx.count, 1);
1292 else
1293 per_ring_budget = budget;
1294
1295 ixgbevf_for_each_ring(ring, q_vector->rx) {
1296 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1297 per_ring_budget);
1298 work_done += cleaned;
1299 if (cleaned >= per_ring_budget)
1300 clean_complete = false;
1301 }
1302
1303 /* If all work not completed, return budget and keep polling */
1304 if (!clean_complete)
1305 return budget;
1306
1307 /* Exit the polling mode, but don't re-enable interrupts if stack might
1308 * poll us due to busy-polling
1309 */
1310 if (likely(napi_complete_done(napi, work_done))) {
1311 if (adapter->rx_itr_setting == 1)
1312 ixgbevf_set_itr(q_vector);
1313 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1314 !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1315 ixgbevf_irq_enable_queues(adapter,
1316 BIT(q_vector->v_idx));
1317 }
1318
1319 return min(work_done, budget - 1);
1320 }
1321
1322 /**
1323 * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1324 * @q_vector: structure containing interrupt and ring information
1325 **/
1326 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1327 {
1328 struct ixgbevf_adapter *adapter = q_vector->adapter;
1329 struct ixgbe_hw *hw = &adapter->hw;
1330 int v_idx = q_vector->v_idx;
1331 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1332
1333 /* set the WDIS bit to not clear the timer bits and cause an
1334 * immediate assertion of the interrupt
1335 */
1336 itr_reg |= IXGBE_EITR_CNT_WDIS;
1337
1338 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1339 }
1340
1341 /**
1342 * ixgbevf_configure_msix - Configure MSI-X hardware
1343 * @adapter: board private structure
1344 *
1345 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1346 * interrupts.
1347 **/
1348 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1349 {
1350 struct ixgbevf_q_vector *q_vector;
1351 int q_vectors, v_idx;
1352
1353 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1354 adapter->eims_enable_mask = 0;
1355
1356 /* Populate the IVAR table and set the ITR values to the
1357 * corresponding register.
1358 */
1359 for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1360 struct ixgbevf_ring *ring;
1361
1362 q_vector = adapter->q_vector[v_idx];
1363
1364 ixgbevf_for_each_ring(ring, q_vector->rx)
1365 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1366
1367 ixgbevf_for_each_ring(ring, q_vector->tx)
1368 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1369
1370 if (q_vector->tx.ring && !q_vector->rx.ring) {
1371 /* Tx only vector */
1372 if (adapter->tx_itr_setting == 1)
1373 q_vector->itr = IXGBE_12K_ITR;
1374 else
1375 q_vector->itr = adapter->tx_itr_setting;
1376 } else {
1377 /* Rx or Rx/Tx vector */
1378 if (adapter->rx_itr_setting == 1)
1379 q_vector->itr = IXGBE_20K_ITR;
1380 else
1381 q_vector->itr = adapter->rx_itr_setting;
1382 }
1383
1384 /* add q_vector eims value to global eims_enable_mask */
1385 adapter->eims_enable_mask |= BIT(v_idx);
1386
1387 ixgbevf_write_eitr(q_vector);
1388 }
1389
1390 ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1391 /* setup eims_other and add value to global eims_enable_mask */
1392 adapter->eims_other = BIT(v_idx);
1393 adapter->eims_enable_mask |= adapter->eims_other;
1394 }
1395
1396 enum latency_range {
1397 lowest_latency = 0,
1398 low_latency = 1,
1399 bulk_latency = 2,
1400 latency_invalid = 255
1401 };
1402
1403 /**
1404 * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1405 * @q_vector: structure containing interrupt and ring information
1406 * @ring_container: structure containing ring performance data
1407 *
1408 * Stores a new ITR value based on packets and byte
1409 * counts during the last interrupt. The advantage of per interrupt
1410 * computation is faster updates and more accurate ITR for the current
1411 * traffic pattern. Constants in this function were computed
1412 * based on theoretical maximum wire speed and thresholds were set based
1413 * on testing data as well as attempting to minimize response time
1414 * while increasing bulk throughput.
1415 **/
1416 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1417 struct ixgbevf_ring_container *ring_container)
1418 {
1419 int bytes = ring_container->total_bytes;
1420 int packets = ring_container->total_packets;
1421 u32 timepassed_us;
1422 u64 bytes_perint;
1423 u8 itr_setting = ring_container->itr;
1424
1425 if (packets == 0)
1426 return;
1427
1428 /* simple throttle rate management
1429 * 0-20MB/s lowest (100000 ints/s)
1430 * 20-100MB/s low (20000 ints/s)
1431 * 100-1249MB/s bulk (12000 ints/s)
1432 */
1433 /* what was last interrupt timeslice? */
1434 timepassed_us = q_vector->itr >> 2;
1435 if (timepassed_us == 0)
1436 return;
1437
1438 bytes_perint = bytes / timepassed_us; /* bytes/usec */
1439
1440 switch (itr_setting) {
1441 case lowest_latency:
1442 if (bytes_perint > 10)
1443 itr_setting = low_latency;
1444 break;
1445 case low_latency:
1446 if (bytes_perint > 20)
1447 itr_setting = bulk_latency;
1448 else if (bytes_perint <= 10)
1449 itr_setting = lowest_latency;
1450 break;
1451 case bulk_latency:
1452 if (bytes_perint <= 20)
1453 itr_setting = low_latency;
1454 break;
1455 }
1456
1457 /* clear work counters since we have the values we need */
1458 ring_container->total_bytes = 0;
1459 ring_container->total_packets = 0;
1460
1461 /* write updated itr to ring container */
1462 ring_container->itr = itr_setting;
1463 }
1464
1465 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1466 {
1467 u32 new_itr = q_vector->itr;
1468 u8 current_itr;
1469
1470 ixgbevf_update_itr(q_vector, &q_vector->tx);
1471 ixgbevf_update_itr(q_vector, &q_vector->rx);
1472
1473 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1474
1475 switch (current_itr) {
1476 /* counts and packets in update_itr are dependent on these numbers */
1477 case lowest_latency:
1478 new_itr = IXGBE_100K_ITR;
1479 break;
1480 case low_latency:
1481 new_itr = IXGBE_20K_ITR;
1482 break;
1483 case bulk_latency:
1484 new_itr = IXGBE_12K_ITR;
1485 break;
1486 default:
1487 break;
1488 }
1489
1490 if (new_itr != q_vector->itr) {
1491 /* do an exponential smoothing */
1492 new_itr = (10 * new_itr * q_vector->itr) /
1493 ((9 * new_itr) + q_vector->itr);
1494
1495 /* save the algorithm value here */
1496 q_vector->itr = new_itr;
1497
1498 ixgbevf_write_eitr(q_vector);
1499 }
1500 }
1501
1502 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1503 {
1504 struct ixgbevf_adapter *adapter = data;
1505 struct ixgbe_hw *hw = &adapter->hw;
1506
1507 hw->mac.get_link_status = 1;
1508
1509 ixgbevf_service_event_schedule(adapter);
1510
1511 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1512
1513 return IRQ_HANDLED;
1514 }
1515
1516 /**
1517 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1518 * @irq: unused
1519 * @data: pointer to our q_vector struct for this interrupt vector
1520 **/
1521 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1522 {
1523 struct ixgbevf_q_vector *q_vector = data;
1524
1525 /* EIAM disabled interrupts (on this vector) for us */
1526 if (q_vector->rx.ring || q_vector->tx.ring)
1527 napi_schedule_irqoff(&q_vector->napi);
1528
1529 return IRQ_HANDLED;
1530 }
1531
1532 /**
1533 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1534 * @adapter: board private structure
1535 *
1536 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1537 * interrupts from the kernel.
1538 **/
1539 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1540 {
1541 struct net_device *netdev = adapter->netdev;
1542 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1543 unsigned int ri = 0, ti = 0;
1544 int vector, err;
1545
1546 for (vector = 0; vector < q_vectors; vector++) {
1547 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1548 struct msix_entry *entry = &adapter->msix_entries[vector];
1549
1550 if (q_vector->tx.ring && q_vector->rx.ring) {
1551 snprintf(q_vector->name, sizeof(q_vector->name),
1552 "%s-TxRx-%u", netdev->name, ri++);
1553 ti++;
1554 } else if (q_vector->rx.ring) {
1555 snprintf(q_vector->name, sizeof(q_vector->name),
1556 "%s-rx-%u", netdev->name, ri++);
1557 } else if (q_vector->tx.ring) {
1558 snprintf(q_vector->name, sizeof(q_vector->name),
1559 "%s-tx-%u", netdev->name, ti++);
1560 } else {
1561 /* skip this unused q_vector */
1562 continue;
1563 }
1564 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1565 q_vector->name, q_vector);
1566 if (err) {
1567 hw_dbg(&adapter->hw,
1568 "request_irq failed for MSIX interrupt Error: %d\n",
1569 err);
1570 goto free_queue_irqs;
1571 }
1572 }
1573
1574 err = request_irq(adapter->msix_entries[vector].vector,
1575 &ixgbevf_msix_other, 0, netdev->name, adapter);
1576 if (err) {
1577 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1578 err);
1579 goto free_queue_irqs;
1580 }
1581
1582 return 0;
1583
1584 free_queue_irqs:
1585 while (vector) {
1586 vector--;
1587 free_irq(adapter->msix_entries[vector].vector,
1588 adapter->q_vector[vector]);
1589 }
1590 /* This failure is non-recoverable - it indicates the system is
1591 * out of MSIX vector resources and the VF driver cannot run
1592 * without them. Set the number of msix vectors to zero
1593 * indicating that not enough can be allocated. The error
1594 * will be returned to the user indicating device open failed.
1595 * Any further attempts to force the driver to open will also
1596 * fail. The only way to recover is to unload the driver and
1597 * reload it again. If the system has recovered some MSIX
1598 * vectors then it may succeed.
1599 */
1600 adapter->num_msix_vectors = 0;
1601 return err;
1602 }
1603
1604 /**
1605 * ixgbevf_request_irq - initialize interrupts
1606 * @adapter: board private structure
1607 *
1608 * Attempts to configure interrupts using the best available
1609 * capabilities of the hardware and kernel.
1610 **/
1611 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1612 {
1613 int err = ixgbevf_request_msix_irqs(adapter);
1614
1615 if (err)
1616 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1617
1618 return err;
1619 }
1620
1621 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1622 {
1623 int i, q_vectors;
1624
1625 if (!adapter->msix_entries)
1626 return;
1627
1628 q_vectors = adapter->num_msix_vectors;
1629 i = q_vectors - 1;
1630
1631 free_irq(adapter->msix_entries[i].vector, adapter);
1632 i--;
1633
1634 for (; i >= 0; i--) {
1635 /* free only the irqs that were actually requested */
1636 if (!adapter->q_vector[i]->rx.ring &&
1637 !adapter->q_vector[i]->tx.ring)
1638 continue;
1639
1640 free_irq(adapter->msix_entries[i].vector,
1641 adapter->q_vector[i]);
1642 }
1643 }
1644
1645 /**
1646 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1647 * @adapter: board private structure
1648 **/
1649 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1650 {
1651 struct ixgbe_hw *hw = &adapter->hw;
1652 int i;
1653
1654 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1655 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1656 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1657
1658 IXGBE_WRITE_FLUSH(hw);
1659
1660 for (i = 0; i < adapter->num_msix_vectors; i++)
1661 synchronize_irq(adapter->msix_entries[i].vector);
1662 }
1663
1664 /**
1665 * ixgbevf_irq_enable - Enable default interrupt generation settings
1666 * @adapter: board private structure
1667 **/
1668 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1669 {
1670 struct ixgbe_hw *hw = &adapter->hw;
1671
1672 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1673 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1674 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1675 }
1676
1677 /**
1678 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1679 * @adapter: board private structure
1680 * @ring: structure containing ring specific data
1681 *
1682 * Configure the Tx descriptor ring after a reset.
1683 **/
1684 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1685 struct ixgbevf_ring *ring)
1686 {
1687 struct ixgbe_hw *hw = &adapter->hw;
1688 u64 tdba = ring->dma;
1689 int wait_loop = 10;
1690 u32 txdctl = IXGBE_TXDCTL_ENABLE;
1691 u8 reg_idx = ring->reg_idx;
1692
1693 /* disable queue to avoid issues while updating state */
1694 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1695 IXGBE_WRITE_FLUSH(hw);
1696
1697 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1698 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1699 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1700 ring->count * sizeof(union ixgbe_adv_tx_desc));
1701
1702 /* disable head writeback */
1703 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1705
1706 /* enable relaxed ordering */
1707 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1708 (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1709 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1710
1711 /* reset head and tail pointers */
1712 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1713 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1714 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1715
1716 /* reset ntu and ntc to place SW in sync with hardwdare */
1717 ring->next_to_clean = 0;
1718 ring->next_to_use = 0;
1719
1720 /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1721 * to or less than the number of on chip descriptors, which is
1722 * currently 40.
1723 */
1724 txdctl |= (8 << 16); /* WTHRESH = 8 */
1725
1726 /* Setting PTHRESH to 32 both improves performance */
1727 txdctl |= (1u << 8) | /* HTHRESH = 1 */
1728 32; /* PTHRESH = 32 */
1729
1730 /* reinitialize tx_buffer_info */
1731 memset(ring->tx_buffer_info, 0,
1732 sizeof(struct ixgbevf_tx_buffer) * ring->count);
1733
1734 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1735 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1736
1737 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1738
1739 /* poll to verify queue is enabled */
1740 do {
1741 usleep_range(1000, 2000);
1742 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1743 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1744 if (!wait_loop)
1745 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1746 }
1747
1748 /**
1749 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1750 * @adapter: board private structure
1751 *
1752 * Configure the Tx unit of the MAC after a reset.
1753 **/
1754 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1755 {
1756 u32 i;
1757
1758 /* Setup the HW Tx Head and Tail descriptor pointers */
1759 for (i = 0; i < adapter->num_tx_queues; i++)
1760 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1761 for (i = 0; i < adapter->num_xdp_queues; i++)
1762 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1763 }
1764
1765 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1766
1767 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1768 struct ixgbevf_ring *ring, int index)
1769 {
1770 struct ixgbe_hw *hw = &adapter->hw;
1771 u32 srrctl;
1772
1773 srrctl = IXGBE_SRRCTL_DROP_EN;
1774
1775 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1776 if (ring_uses_large_buffer(ring))
1777 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1778 else
1779 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1780 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1781
1782 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1783 }
1784
1785 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1786 {
1787 struct ixgbe_hw *hw = &adapter->hw;
1788
1789 /* PSRTYPE must be initialized in 82599 */
1790 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1791 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1792 IXGBE_PSRTYPE_L2HDR;
1793
1794 if (adapter->num_rx_queues > 1)
1795 psrtype |= BIT(29);
1796
1797 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1798 }
1799
1800 #define IXGBEVF_MAX_RX_DESC_POLL 10
1801 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1802 struct ixgbevf_ring *ring)
1803 {
1804 struct ixgbe_hw *hw = &adapter->hw;
1805 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1806 u32 rxdctl;
1807 u8 reg_idx = ring->reg_idx;
1808
1809 if (IXGBE_REMOVED(hw->hw_addr))
1810 return;
1811 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1812 rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1813
1814 /* write value back with RXDCTL.ENABLE bit cleared */
1815 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1816
1817 /* the hardware may take up to 100us to really disable the Rx queue */
1818 do {
1819 udelay(10);
1820 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1821 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1822
1823 if (!wait_loop)
1824 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1825 reg_idx);
1826 }
1827
1828 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1829 struct ixgbevf_ring *ring)
1830 {
1831 struct ixgbe_hw *hw = &adapter->hw;
1832 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1833 u32 rxdctl;
1834 u8 reg_idx = ring->reg_idx;
1835
1836 if (IXGBE_REMOVED(hw->hw_addr))
1837 return;
1838 do {
1839 usleep_range(1000, 2000);
1840 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1841 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1842
1843 if (!wait_loop)
1844 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1845 reg_idx);
1846 }
1847
1848 /**
1849 * ixgbevf_init_rss_key - Initialize adapter RSS key
1850 * @adapter: device handle
1851 *
1852 * Allocates and initializes the RSS key if it is not allocated.
1853 **/
1854 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1855 {
1856 u32 *rss_key;
1857
1858 if (!adapter->rss_key) {
1859 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1860 if (unlikely(!rss_key))
1861 return -ENOMEM;
1862
1863 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1864 adapter->rss_key = rss_key;
1865 }
1866
1867 return 0;
1868 }
1869
1870 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1871 {
1872 struct ixgbe_hw *hw = &adapter->hw;
1873 u32 vfmrqc = 0, vfreta = 0;
1874 u16 rss_i = adapter->num_rx_queues;
1875 u8 i, j;
1876
1877 /* Fill out hash function seeds */
1878 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1879 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1880
1881 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1882 if (j == rss_i)
1883 j = 0;
1884
1885 adapter->rss_indir_tbl[i] = j;
1886
1887 vfreta |= j << (i & 0x3) * 8;
1888 if ((i & 3) == 3) {
1889 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1890 vfreta = 0;
1891 }
1892 }
1893
1894 /* Perform hash on these packet types */
1895 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1896 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1897 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1898 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1899
1900 vfmrqc |= IXGBE_VFMRQC_RSSEN;
1901
1902 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1903 }
1904
1905 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1906 struct ixgbevf_ring *ring)
1907 {
1908 struct ixgbe_hw *hw = &adapter->hw;
1909 union ixgbe_adv_rx_desc *rx_desc;
1910 u64 rdba = ring->dma;
1911 u32 rxdctl;
1912 u8 reg_idx = ring->reg_idx;
1913
1914 /* disable queue to avoid issues while updating state */
1915 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1916 ixgbevf_disable_rx_queue(adapter, ring);
1917
1918 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1919 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1920 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1921 ring->count * sizeof(union ixgbe_adv_rx_desc));
1922
1923 #ifndef CONFIG_SPARC
1924 /* enable relaxed ordering */
1925 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1926 IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1927 #else
1928 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1929 IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1930 IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1931 #endif
1932
1933 /* reset head and tail pointers */
1934 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1935 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1936 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1937
1938 /* initialize rx_buffer_info */
1939 memset(ring->rx_buffer_info, 0,
1940 sizeof(struct ixgbevf_rx_buffer) * ring->count);
1941
1942 /* initialize Rx descriptor 0 */
1943 rx_desc = IXGBEVF_RX_DESC(ring, 0);
1944 rx_desc->wb.upper.length = 0;
1945
1946 /* reset ntu and ntc to place SW in sync with hardwdare */
1947 ring->next_to_clean = 0;
1948 ring->next_to_use = 0;
1949 ring->next_to_alloc = 0;
1950
1951 ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1952
1953 /* RXDCTL.RLPML does not work on 82599 */
1954 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1955 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1956 IXGBE_RXDCTL_RLPML_EN);
1957
1958 #if (PAGE_SIZE < 8192)
1959 /* Limit the maximum frame size so we don't overrun the skb */
1960 if (ring_uses_build_skb(ring) &&
1961 !ring_uses_large_buffer(ring))
1962 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1963 IXGBE_RXDCTL_RLPML_EN;
1964 #endif
1965 }
1966
1967 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1968 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1969
1970 ixgbevf_rx_desc_queue_enable(adapter, ring);
1971 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1972 }
1973
1974 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1975 struct ixgbevf_ring *rx_ring)
1976 {
1977 struct net_device *netdev = adapter->netdev;
1978 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1979
1980 /* set build_skb and buffer size flags */
1981 clear_ring_build_skb_enabled(rx_ring);
1982 clear_ring_uses_large_buffer(rx_ring);
1983
1984 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1985 return;
1986
1987 if (PAGE_SIZE < 8192)
1988 if (max_frame > IXGBEVF_MAX_FRAME_BUILD_SKB)
1989 set_ring_uses_large_buffer(rx_ring);
1990
1991 /* 82599 can't rely on RXDCTL.RLPML to restrict the size of the frame */
1992 if (adapter->hw.mac.type == ixgbe_mac_82599_vf && !ring_uses_large_buffer(rx_ring))
1993 return;
1994
1995 set_ring_build_skb_enabled(rx_ring);
1996 }
1997
1998 /**
1999 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
2000 * @adapter: board private structure
2001 *
2002 * Configure the Rx unit of the MAC after a reset.
2003 **/
2004 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
2005 {
2006 struct ixgbe_hw *hw = &adapter->hw;
2007 struct net_device *netdev = adapter->netdev;
2008 int i, ret;
2009
2010 ixgbevf_setup_psrtype(adapter);
2011 if (hw->mac.type >= ixgbe_mac_X550_vf)
2012 ixgbevf_setup_vfmrqc(adapter);
2013
2014 spin_lock_bh(&adapter->mbx_lock);
2015 /* notify the PF of our intent to use this size of frame */
2016 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2017 spin_unlock_bh(&adapter->mbx_lock);
2018 if (ret)
2019 dev_err(&adapter->pdev->dev,
2020 "Failed to set MTU at %d\n", netdev->mtu);
2021
2022 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2023 * the Base and Length of the Rx Descriptor Ring
2024 */
2025 for (i = 0; i < adapter->num_rx_queues; i++) {
2026 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2027
2028 ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2029 ixgbevf_configure_rx_ring(adapter, rx_ring);
2030 }
2031 }
2032
2033 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2034 __be16 proto, u16 vid)
2035 {
2036 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2037 struct ixgbe_hw *hw = &adapter->hw;
2038 int err;
2039
2040 spin_lock_bh(&adapter->mbx_lock);
2041
2042 /* add VID to filter table */
2043 err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2044
2045 spin_unlock_bh(&adapter->mbx_lock);
2046
2047 /* translate error return types so error makes sense */
2048 if (err == IXGBE_ERR_MBX)
2049 return -EIO;
2050
2051 if (err == IXGBE_ERR_INVALID_ARGUMENT)
2052 return -EACCES;
2053
2054 set_bit(vid, adapter->active_vlans);
2055
2056 return err;
2057 }
2058
2059 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2060 __be16 proto, u16 vid)
2061 {
2062 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2063 struct ixgbe_hw *hw = &adapter->hw;
2064 int err;
2065
2066 spin_lock_bh(&adapter->mbx_lock);
2067
2068 /* remove VID from filter table */
2069 err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2070
2071 spin_unlock_bh(&adapter->mbx_lock);
2072
2073 clear_bit(vid, adapter->active_vlans);
2074
2075 return err;
2076 }
2077
2078 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2079 {
2080 u16 vid;
2081
2082 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2083 ixgbevf_vlan_rx_add_vid(adapter->netdev,
2084 htons(ETH_P_8021Q), vid);
2085 }
2086
2087 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2088 {
2089 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2090 struct ixgbe_hw *hw = &adapter->hw;
2091 int count = 0;
2092
2093 if (!netdev_uc_empty(netdev)) {
2094 struct netdev_hw_addr *ha;
2095
2096 netdev_for_each_uc_addr(ha, netdev) {
2097 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2098 udelay(200);
2099 }
2100 } else {
2101 /* If the list is empty then send message to PF driver to
2102 * clear all MAC VLANs on this VF.
2103 */
2104 hw->mac.ops.set_uc_addr(hw, 0, NULL);
2105 }
2106
2107 return count;
2108 }
2109
2110 /**
2111 * ixgbevf_set_rx_mode - Multicast and unicast set
2112 * @netdev: network interface device structure
2113 *
2114 * The set_rx_method entry point is called whenever the multicast address
2115 * list, unicast address list or the network interface flags are updated.
2116 * This routine is responsible for configuring the hardware for proper
2117 * multicast mode and configuring requested unicast filters.
2118 **/
2119 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2120 {
2121 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2122 struct ixgbe_hw *hw = &adapter->hw;
2123 unsigned int flags = netdev->flags;
2124 int xcast_mode;
2125
2126 /* request the most inclusive mode we need */
2127 if (flags & IFF_PROMISC)
2128 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2129 else if (flags & IFF_ALLMULTI)
2130 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2131 else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2132 xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2133 else
2134 xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2135
2136 spin_lock_bh(&adapter->mbx_lock);
2137
2138 hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2139
2140 /* reprogram multicast list */
2141 hw->mac.ops.update_mc_addr_list(hw, netdev);
2142
2143 ixgbevf_write_uc_addr_list(netdev);
2144
2145 spin_unlock_bh(&adapter->mbx_lock);
2146 }
2147
2148 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2149 {
2150 int q_idx;
2151 struct ixgbevf_q_vector *q_vector;
2152 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2153
2154 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2155 q_vector = adapter->q_vector[q_idx];
2156 napi_enable(&q_vector->napi);
2157 }
2158 }
2159
2160 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2161 {
2162 int q_idx;
2163 struct ixgbevf_q_vector *q_vector;
2164 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2165
2166 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2167 q_vector = adapter->q_vector[q_idx];
2168 napi_disable(&q_vector->napi);
2169 }
2170 }
2171
2172 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2173 {
2174 struct ixgbe_hw *hw = &adapter->hw;
2175 unsigned int def_q = 0;
2176 unsigned int num_tcs = 0;
2177 unsigned int num_rx_queues = adapter->num_rx_queues;
2178 unsigned int num_tx_queues = adapter->num_tx_queues;
2179 int err;
2180
2181 spin_lock_bh(&adapter->mbx_lock);
2182
2183 /* fetch queue configuration from the PF */
2184 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2185
2186 spin_unlock_bh(&adapter->mbx_lock);
2187
2188 if (err)
2189 return err;
2190
2191 if (num_tcs > 1) {
2192 /* we need only one Tx queue */
2193 num_tx_queues = 1;
2194
2195 /* update default Tx ring register index */
2196 adapter->tx_ring[0]->reg_idx = def_q;
2197
2198 /* we need as many queues as traffic classes */
2199 num_rx_queues = num_tcs;
2200 }
2201
2202 /* if we have a bad config abort request queue reset */
2203 if ((adapter->num_rx_queues != num_rx_queues) ||
2204 (adapter->num_tx_queues != num_tx_queues)) {
2205 /* force mailbox timeout to prevent further messages */
2206 hw->mbx.timeout = 0;
2207
2208 /* wait for watchdog to come around and bail us out */
2209 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2210 }
2211
2212 return 0;
2213 }
2214
2215 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2216 {
2217 ixgbevf_configure_dcb(adapter);
2218
2219 ixgbevf_set_rx_mode(adapter->netdev);
2220
2221 ixgbevf_restore_vlan(adapter);
2222 ixgbevf_ipsec_restore(adapter);
2223
2224 ixgbevf_configure_tx(adapter);
2225 ixgbevf_configure_rx(adapter);
2226 }
2227
2228 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2229 {
2230 /* Only save pre-reset stats if there are some */
2231 if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2232 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2233 adapter->stats.base_vfgprc;
2234 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2235 adapter->stats.base_vfgptc;
2236 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2237 adapter->stats.base_vfgorc;
2238 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2239 adapter->stats.base_vfgotc;
2240 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2241 adapter->stats.base_vfmprc;
2242 }
2243 }
2244
2245 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2246 {
2247 struct ixgbe_hw *hw = &adapter->hw;
2248
2249 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2250 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2251 adapter->stats.last_vfgorc |=
2252 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2253 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2254 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2255 adapter->stats.last_vfgotc |=
2256 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2257 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2258
2259 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2260 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2261 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2262 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2263 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2264 }
2265
2266 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2267 {
2268 struct ixgbe_hw *hw = &adapter->hw;
2269 static const int api[] = {
2270 ixgbe_mbox_api_14,
2271 ixgbe_mbox_api_13,
2272 ixgbe_mbox_api_12,
2273 ixgbe_mbox_api_11,
2274 ixgbe_mbox_api_10,
2275 ixgbe_mbox_api_unknown
2276 };
2277 int err, idx = 0;
2278
2279 spin_lock_bh(&adapter->mbx_lock);
2280
2281 while (api[idx] != ixgbe_mbox_api_unknown) {
2282 err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2283 if (!err)
2284 break;
2285 idx++;
2286 }
2287
2288 spin_unlock_bh(&adapter->mbx_lock);
2289 }
2290
2291 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2292 {
2293 struct net_device *netdev = adapter->netdev;
2294 struct ixgbe_hw *hw = &adapter->hw;
2295
2296 ixgbevf_configure_msix(adapter);
2297
2298 spin_lock_bh(&adapter->mbx_lock);
2299
2300 if (is_valid_ether_addr(hw->mac.addr))
2301 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2302 else
2303 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2304
2305 spin_unlock_bh(&adapter->mbx_lock);
2306
2307 smp_mb__before_atomic();
2308 clear_bit(__IXGBEVF_DOWN, &adapter->state);
2309 ixgbevf_napi_enable_all(adapter);
2310
2311 /* clear any pending interrupts, may auto mask */
2312 IXGBE_READ_REG(hw, IXGBE_VTEICR);
2313 ixgbevf_irq_enable(adapter);
2314
2315 /* enable transmits */
2316 netif_tx_start_all_queues(netdev);
2317
2318 ixgbevf_save_reset_stats(adapter);
2319 ixgbevf_init_last_counter_stats(adapter);
2320
2321 hw->mac.get_link_status = 1;
2322 mod_timer(&adapter->service_timer, jiffies);
2323 }
2324
2325 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2326 {
2327 ixgbevf_configure(adapter);
2328
2329 ixgbevf_up_complete(adapter);
2330 }
2331
2332 /**
2333 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2334 * @rx_ring: ring to free buffers from
2335 **/
2336 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2337 {
2338 u16 i = rx_ring->next_to_clean;
2339
2340 /* Free Rx ring sk_buff */
2341 if (rx_ring->skb) {
2342 dev_kfree_skb(rx_ring->skb);
2343 rx_ring->skb = NULL;
2344 }
2345
2346 /* Free all the Rx ring pages */
2347 while (i != rx_ring->next_to_alloc) {
2348 struct ixgbevf_rx_buffer *rx_buffer;
2349
2350 rx_buffer = &rx_ring->rx_buffer_info[i];
2351
2352 /* Invalidate cache lines that may have been written to by
2353 * device so that we avoid corrupting memory.
2354 */
2355 dma_sync_single_range_for_cpu(rx_ring->dev,
2356 rx_buffer->dma,
2357 rx_buffer->page_offset,
2358 ixgbevf_rx_bufsz(rx_ring),
2359 DMA_FROM_DEVICE);
2360
2361 /* free resources associated with mapping */
2362 dma_unmap_page_attrs(rx_ring->dev,
2363 rx_buffer->dma,
2364 ixgbevf_rx_pg_size(rx_ring),
2365 DMA_FROM_DEVICE,
2366 IXGBEVF_RX_DMA_ATTR);
2367
2368 __page_frag_cache_drain(rx_buffer->page,
2369 rx_buffer->pagecnt_bias);
2370
2371 i++;
2372 if (i == rx_ring->count)
2373 i = 0;
2374 }
2375
2376 rx_ring->next_to_alloc = 0;
2377 rx_ring->next_to_clean = 0;
2378 rx_ring->next_to_use = 0;
2379 }
2380
2381 /**
2382 * ixgbevf_clean_tx_ring - Free Tx Buffers
2383 * @tx_ring: ring to be cleaned
2384 **/
2385 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2386 {
2387 u16 i = tx_ring->next_to_clean;
2388 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2389
2390 while (i != tx_ring->next_to_use) {
2391 union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2392
2393 /* Free all the Tx ring sk_buffs */
2394 if (ring_is_xdp(tx_ring))
2395 page_frag_free(tx_buffer->data);
2396 else
2397 dev_kfree_skb_any(tx_buffer->skb);
2398
2399 /* unmap skb header data */
2400 dma_unmap_single(tx_ring->dev,
2401 dma_unmap_addr(tx_buffer, dma),
2402 dma_unmap_len(tx_buffer, len),
2403 DMA_TO_DEVICE);
2404
2405 /* check for eop_desc to determine the end of the packet */
2406 eop_desc = tx_buffer->next_to_watch;
2407 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2408
2409 /* unmap remaining buffers */
2410 while (tx_desc != eop_desc) {
2411 tx_buffer++;
2412 tx_desc++;
2413 i++;
2414 if (unlikely(i == tx_ring->count)) {
2415 i = 0;
2416 tx_buffer = tx_ring->tx_buffer_info;
2417 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2418 }
2419
2420 /* unmap any remaining paged data */
2421 if (dma_unmap_len(tx_buffer, len))
2422 dma_unmap_page(tx_ring->dev,
2423 dma_unmap_addr(tx_buffer, dma),
2424 dma_unmap_len(tx_buffer, len),
2425 DMA_TO_DEVICE);
2426 }
2427
2428 /* move us one more past the eop_desc for start of next pkt */
2429 tx_buffer++;
2430 i++;
2431 if (unlikely(i == tx_ring->count)) {
2432 i = 0;
2433 tx_buffer = tx_ring->tx_buffer_info;
2434 }
2435 }
2436
2437 /* reset next_to_use and next_to_clean */
2438 tx_ring->next_to_use = 0;
2439 tx_ring->next_to_clean = 0;
2440
2441 }
2442
2443 /**
2444 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2445 * @adapter: board private structure
2446 **/
2447 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2448 {
2449 int i;
2450
2451 for (i = 0; i < adapter->num_rx_queues; i++)
2452 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2453 }
2454
2455 /**
2456 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2457 * @adapter: board private structure
2458 **/
2459 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2460 {
2461 int i;
2462
2463 for (i = 0; i < adapter->num_tx_queues; i++)
2464 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2465 for (i = 0; i < adapter->num_xdp_queues; i++)
2466 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2467 }
2468
2469 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2470 {
2471 struct net_device *netdev = adapter->netdev;
2472 struct ixgbe_hw *hw = &adapter->hw;
2473 int i;
2474
2475 /* signal that we are down to the interrupt handler */
2476 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2477 return; /* do nothing if already down */
2478
2479 /* disable all enabled Rx queues */
2480 for (i = 0; i < adapter->num_rx_queues; i++)
2481 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2482
2483 usleep_range(10000, 20000);
2484
2485 netif_tx_stop_all_queues(netdev);
2486
2487 /* call carrier off first to avoid false dev_watchdog timeouts */
2488 netif_carrier_off(netdev);
2489 netif_tx_disable(netdev);
2490
2491 ixgbevf_irq_disable(adapter);
2492
2493 ixgbevf_napi_disable_all(adapter);
2494
2495 del_timer_sync(&adapter->service_timer);
2496
2497 /* disable transmits in the hardware now that interrupts are off */
2498 for (i = 0; i < adapter->num_tx_queues; i++) {
2499 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2500
2501 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2502 IXGBE_TXDCTL_SWFLSH);
2503 }
2504
2505 for (i = 0; i < adapter->num_xdp_queues; i++) {
2506 u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2507
2508 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2509 IXGBE_TXDCTL_SWFLSH);
2510 }
2511
2512 if (!pci_channel_offline(adapter->pdev))
2513 ixgbevf_reset(adapter);
2514
2515 ixgbevf_clean_all_tx_rings(adapter);
2516 ixgbevf_clean_all_rx_rings(adapter);
2517 }
2518
2519 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2520 {
2521 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2522 msleep(1);
2523
2524 ixgbevf_down(adapter);
2525 pci_set_master(adapter->pdev);
2526 ixgbevf_up(adapter);
2527
2528 clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2529 }
2530
2531 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2532 {
2533 struct ixgbe_hw *hw = &adapter->hw;
2534 struct net_device *netdev = adapter->netdev;
2535
2536 if (hw->mac.ops.reset_hw(hw)) {
2537 hw_dbg(hw, "PF still resetting\n");
2538 } else {
2539 hw->mac.ops.init_hw(hw);
2540 ixgbevf_negotiate_api(adapter);
2541 }
2542
2543 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2544 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2545 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2546 }
2547
2548 adapter->last_reset = jiffies;
2549 }
2550
2551 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2552 int vectors)
2553 {
2554 int vector_threshold;
2555
2556 /* We'll want at least 2 (vector_threshold):
2557 * 1) TxQ[0] + RxQ[0] handler
2558 * 2) Other (Link Status Change, etc.)
2559 */
2560 vector_threshold = MIN_MSIX_COUNT;
2561
2562 /* The more we get, the more we will assign to Tx/Rx Cleanup
2563 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2564 * Right now, we simply care about how many we'll get; we'll
2565 * set them up later while requesting irq's.
2566 */
2567 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2568 vector_threshold, vectors);
2569
2570 if (vectors < 0) {
2571 dev_err(&adapter->pdev->dev,
2572 "Unable to allocate MSI-X interrupts\n");
2573 kfree(adapter->msix_entries);
2574 adapter->msix_entries = NULL;
2575 return vectors;
2576 }
2577
2578 /* Adjust for only the vectors we'll use, which is minimum
2579 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2580 * vectors we were allocated.
2581 */
2582 adapter->num_msix_vectors = vectors;
2583
2584 return 0;
2585 }
2586
2587 /**
2588 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2589 * @adapter: board private structure to initialize
2590 *
2591 * This is the top level queue allocation routine. The order here is very
2592 * important, starting with the "most" number of features turned on at once,
2593 * and ending with the smallest set of features. This way large combinations
2594 * can be allocated if they're turned on, and smaller combinations are the
2595 * fall through conditions.
2596 *
2597 **/
2598 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2599 {
2600 struct ixgbe_hw *hw = &adapter->hw;
2601 unsigned int def_q = 0;
2602 unsigned int num_tcs = 0;
2603 int err;
2604
2605 /* Start with base case */
2606 adapter->num_rx_queues = 1;
2607 adapter->num_tx_queues = 1;
2608 adapter->num_xdp_queues = 0;
2609
2610 spin_lock_bh(&adapter->mbx_lock);
2611
2612 /* fetch queue configuration from the PF */
2613 err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2614
2615 spin_unlock_bh(&adapter->mbx_lock);
2616
2617 if (err)
2618 return;
2619
2620 /* we need as many queues as traffic classes */
2621 if (num_tcs > 1) {
2622 adapter->num_rx_queues = num_tcs;
2623 } else {
2624 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2625
2626 switch (hw->api_version) {
2627 case ixgbe_mbox_api_11:
2628 case ixgbe_mbox_api_12:
2629 case ixgbe_mbox_api_13:
2630 case ixgbe_mbox_api_14:
2631 if (adapter->xdp_prog &&
2632 hw->mac.max_tx_queues == rss)
2633 rss = rss > 3 ? 2 : 1;
2634
2635 adapter->num_rx_queues = rss;
2636 adapter->num_tx_queues = rss;
2637 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2638 break;
2639 default:
2640 break;
2641 }
2642 }
2643 }
2644
2645 /**
2646 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2647 * @adapter: board private structure to initialize
2648 *
2649 * Attempt to configure the interrupts using the best available
2650 * capabilities of the hardware and the kernel.
2651 **/
2652 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2653 {
2654 int vector, v_budget;
2655
2656 /* It's easy to be greedy for MSI-X vectors, but it really
2657 * doesn't do us much good if we have a lot more vectors
2658 * than CPU's. So let's be conservative and only ask for
2659 * (roughly) the same number of vectors as there are CPU's.
2660 * The default is to use pairs of vectors.
2661 */
2662 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2663 v_budget = min_t(int, v_budget, num_online_cpus());
2664 v_budget += NON_Q_VECTORS;
2665
2666 adapter->msix_entries = kcalloc(v_budget,
2667 sizeof(struct msix_entry), GFP_KERNEL);
2668 if (!adapter->msix_entries)
2669 return -ENOMEM;
2670
2671 for (vector = 0; vector < v_budget; vector++)
2672 adapter->msix_entries[vector].entry = vector;
2673
2674 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2675 * does not support any other modes, so we will simply fail here. Note
2676 * that we clean up the msix_entries pointer else-where.
2677 */
2678 return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2679 }
2680
2681 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2682 struct ixgbevf_ring_container *head)
2683 {
2684 ring->next = head->ring;
2685 head->ring = ring;
2686 head->count++;
2687 }
2688
2689 /**
2690 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2691 * @adapter: board private structure to initialize
2692 * @v_idx: index of vector in adapter struct
2693 * @txr_count: number of Tx rings for q vector
2694 * @txr_idx: index of first Tx ring to assign
2695 * @xdp_count: total number of XDP rings to allocate
2696 * @xdp_idx: index of first XDP ring to allocate
2697 * @rxr_count: number of Rx rings for q vector
2698 * @rxr_idx: index of first Rx ring to assign
2699 *
2700 * We allocate one q_vector. If allocation fails we return -ENOMEM.
2701 **/
2702 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2703 int txr_count, int txr_idx,
2704 int xdp_count, int xdp_idx,
2705 int rxr_count, int rxr_idx)
2706 {
2707 struct ixgbevf_q_vector *q_vector;
2708 int reg_idx = txr_idx + xdp_idx;
2709 struct ixgbevf_ring *ring;
2710 int ring_count, size;
2711
2712 ring_count = txr_count + xdp_count + rxr_count;
2713 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2714
2715 /* allocate q_vector and rings */
2716 q_vector = kzalloc(size, GFP_KERNEL);
2717 if (!q_vector)
2718 return -ENOMEM;
2719
2720 /* initialize NAPI */
2721 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2722
2723 /* tie q_vector and adapter together */
2724 adapter->q_vector[v_idx] = q_vector;
2725 q_vector->adapter = adapter;
2726 q_vector->v_idx = v_idx;
2727
2728 /* initialize pointer to rings */
2729 ring = q_vector->ring;
2730
2731 while (txr_count) {
2732 /* assign generic ring traits */
2733 ring->dev = &adapter->pdev->dev;
2734 ring->netdev = adapter->netdev;
2735
2736 /* configure backlink on ring */
2737 ring->q_vector = q_vector;
2738
2739 /* update q_vector Tx values */
2740 ixgbevf_add_ring(ring, &q_vector->tx);
2741
2742 /* apply Tx specific ring traits */
2743 ring->count = adapter->tx_ring_count;
2744 ring->queue_index = txr_idx;
2745 ring->reg_idx = reg_idx;
2746
2747 /* assign ring to adapter */
2748 adapter->tx_ring[txr_idx] = ring;
2749
2750 /* update count and index */
2751 txr_count--;
2752 txr_idx++;
2753 reg_idx++;
2754
2755 /* push pointer to next ring */
2756 ring++;
2757 }
2758
2759 while (xdp_count) {
2760 /* assign generic ring traits */
2761 ring->dev = &adapter->pdev->dev;
2762 ring->netdev = adapter->netdev;
2763
2764 /* configure backlink on ring */
2765 ring->q_vector = q_vector;
2766
2767 /* update q_vector Tx values */
2768 ixgbevf_add_ring(ring, &q_vector->tx);
2769
2770 /* apply Tx specific ring traits */
2771 ring->count = adapter->tx_ring_count;
2772 ring->queue_index = xdp_idx;
2773 ring->reg_idx = reg_idx;
2774 set_ring_xdp(ring);
2775
2776 /* assign ring to adapter */
2777 adapter->xdp_ring[xdp_idx] = ring;
2778
2779 /* update count and index */
2780 xdp_count--;
2781 xdp_idx++;
2782 reg_idx++;
2783
2784 /* push pointer to next ring */
2785 ring++;
2786 }
2787
2788 while (rxr_count) {
2789 /* assign generic ring traits */
2790 ring->dev = &adapter->pdev->dev;
2791 ring->netdev = adapter->netdev;
2792
2793 /* configure backlink on ring */
2794 ring->q_vector = q_vector;
2795
2796 /* update q_vector Rx values */
2797 ixgbevf_add_ring(ring, &q_vector->rx);
2798
2799 /* apply Rx specific ring traits */
2800 ring->count = adapter->rx_ring_count;
2801 ring->queue_index = rxr_idx;
2802 ring->reg_idx = rxr_idx;
2803
2804 /* assign ring to adapter */
2805 adapter->rx_ring[rxr_idx] = ring;
2806
2807 /* update count and index */
2808 rxr_count--;
2809 rxr_idx++;
2810
2811 /* push pointer to next ring */
2812 ring++;
2813 }
2814
2815 return 0;
2816 }
2817
2818 /**
2819 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2820 * @adapter: board private structure to initialize
2821 * @v_idx: index of vector in adapter struct
2822 *
2823 * This function frees the memory allocated to the q_vector. In addition if
2824 * NAPI is enabled it will delete any references to the NAPI struct prior
2825 * to freeing the q_vector.
2826 **/
2827 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2828 {
2829 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2830 struct ixgbevf_ring *ring;
2831
2832 ixgbevf_for_each_ring(ring, q_vector->tx) {
2833 if (ring_is_xdp(ring))
2834 adapter->xdp_ring[ring->queue_index] = NULL;
2835 else
2836 adapter->tx_ring[ring->queue_index] = NULL;
2837 }
2838
2839 ixgbevf_for_each_ring(ring, q_vector->rx)
2840 adapter->rx_ring[ring->queue_index] = NULL;
2841
2842 adapter->q_vector[v_idx] = NULL;
2843 netif_napi_del(&q_vector->napi);
2844
2845 /* ixgbevf_get_stats() might access the rings on this vector,
2846 * we must wait a grace period before freeing it.
2847 */
2848 kfree_rcu(q_vector, rcu);
2849 }
2850
2851 /**
2852 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2853 * @adapter: board private structure to initialize
2854 *
2855 * We allocate one q_vector per queue interrupt. If allocation fails we
2856 * return -ENOMEM.
2857 **/
2858 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2859 {
2860 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2861 int rxr_remaining = adapter->num_rx_queues;
2862 int txr_remaining = adapter->num_tx_queues;
2863 int xdp_remaining = adapter->num_xdp_queues;
2864 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2865 int err;
2866
2867 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2868 for (; rxr_remaining; v_idx++, q_vectors--) {
2869 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2870
2871 err = ixgbevf_alloc_q_vector(adapter, v_idx,
2872 0, 0, 0, 0, rqpv, rxr_idx);
2873 if (err)
2874 goto err_out;
2875
2876 /* update counts and index */
2877 rxr_remaining -= rqpv;
2878 rxr_idx += rqpv;
2879 }
2880 }
2881
2882 for (; q_vectors; v_idx++, q_vectors--) {
2883 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2884 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2885 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2886
2887 err = ixgbevf_alloc_q_vector(adapter, v_idx,
2888 tqpv, txr_idx,
2889 xqpv, xdp_idx,
2890 rqpv, rxr_idx);
2891
2892 if (err)
2893 goto err_out;
2894
2895 /* update counts and index */
2896 rxr_remaining -= rqpv;
2897 rxr_idx += rqpv;
2898 txr_remaining -= tqpv;
2899 txr_idx += tqpv;
2900 xdp_remaining -= xqpv;
2901 xdp_idx += xqpv;
2902 }
2903
2904 return 0;
2905
2906 err_out:
2907 while (v_idx) {
2908 v_idx--;
2909 ixgbevf_free_q_vector(adapter, v_idx);
2910 }
2911
2912 return -ENOMEM;
2913 }
2914
2915 /**
2916 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2917 * @adapter: board private structure to initialize
2918 *
2919 * This function frees the memory allocated to the q_vectors. In addition if
2920 * NAPI is enabled it will delete any references to the NAPI struct prior
2921 * to freeing the q_vector.
2922 **/
2923 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2924 {
2925 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2926
2927 while (q_vectors) {
2928 q_vectors--;
2929 ixgbevf_free_q_vector(adapter, q_vectors);
2930 }
2931 }
2932
2933 /**
2934 * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2935 * @adapter: board private structure
2936 *
2937 **/
2938 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2939 {
2940 if (!adapter->msix_entries)
2941 return;
2942
2943 pci_disable_msix(adapter->pdev);
2944 kfree(adapter->msix_entries);
2945 adapter->msix_entries = NULL;
2946 }
2947
2948 /**
2949 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2950 * @adapter: board private structure to initialize
2951 *
2952 **/
2953 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2954 {
2955 int err;
2956
2957 /* Number of supported queues */
2958 ixgbevf_set_num_queues(adapter);
2959
2960 err = ixgbevf_set_interrupt_capability(adapter);
2961 if (err) {
2962 hw_dbg(&adapter->hw,
2963 "Unable to setup interrupt capabilities\n");
2964 goto err_set_interrupt;
2965 }
2966
2967 err = ixgbevf_alloc_q_vectors(adapter);
2968 if (err) {
2969 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2970 goto err_alloc_q_vectors;
2971 }
2972
2973 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2974 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2975 adapter->num_rx_queues, adapter->num_tx_queues,
2976 adapter->num_xdp_queues);
2977
2978 set_bit(__IXGBEVF_DOWN, &adapter->state);
2979
2980 return 0;
2981 err_alloc_q_vectors:
2982 ixgbevf_reset_interrupt_capability(adapter);
2983 err_set_interrupt:
2984 return err;
2985 }
2986
2987 /**
2988 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2989 * @adapter: board private structure to clear interrupt scheme on
2990 *
2991 * We go through and clear interrupt specific resources and reset the structure
2992 * to pre-load conditions
2993 **/
2994 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2995 {
2996 adapter->num_tx_queues = 0;
2997 adapter->num_xdp_queues = 0;
2998 adapter->num_rx_queues = 0;
2999
3000 ixgbevf_free_q_vectors(adapter);
3001 ixgbevf_reset_interrupt_capability(adapter);
3002 }
3003
3004 /**
3005 * ixgbevf_sw_init - Initialize general software structures
3006 * @adapter: board private structure to initialize
3007 *
3008 * ixgbevf_sw_init initializes the Adapter private data structure.
3009 * Fields are initialized based on PCI device information and
3010 * OS network device settings (MTU size).
3011 **/
3012 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3013 {
3014 struct ixgbe_hw *hw = &adapter->hw;
3015 struct pci_dev *pdev = adapter->pdev;
3016 struct net_device *netdev = adapter->netdev;
3017 int err;
3018
3019 /* PCI config space info */
3020 hw->vendor_id = pdev->vendor;
3021 hw->device_id = pdev->device;
3022 hw->revision_id = pdev->revision;
3023 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3024 hw->subsystem_device_id = pdev->subsystem_device;
3025
3026 hw->mbx.ops.init_params(hw);
3027
3028 if (hw->mac.type >= ixgbe_mac_X550_vf) {
3029 err = ixgbevf_init_rss_key(adapter);
3030 if (err)
3031 goto out;
3032 }
3033
3034 /* assume legacy case in which PF would only give VF 2 queues */
3035 hw->mac.max_tx_queues = 2;
3036 hw->mac.max_rx_queues = 2;
3037
3038 /* lock to protect mailbox accesses */
3039 spin_lock_init(&adapter->mbx_lock);
3040
3041 err = hw->mac.ops.reset_hw(hw);
3042 if (err) {
3043 dev_info(&pdev->dev,
3044 "PF still in reset state. Is the PF interface up?\n");
3045 } else {
3046 err = hw->mac.ops.init_hw(hw);
3047 if (err) {
3048 pr_err("init_shared_code failed: %d\n", err);
3049 goto out;
3050 }
3051 ixgbevf_negotiate_api(adapter);
3052 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3053 if (err)
3054 dev_info(&pdev->dev, "Error reading MAC address\n");
3055 else if (is_zero_ether_addr(adapter->hw.mac.addr))
3056 dev_info(&pdev->dev,
3057 "MAC address not assigned by administrator.\n");
3058 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
3059 }
3060
3061 if (!is_valid_ether_addr(netdev->dev_addr)) {
3062 dev_info(&pdev->dev, "Assigning random MAC address\n");
3063 eth_hw_addr_random(netdev);
3064 ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3065 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3066 }
3067
3068 /* Enable dynamic interrupt throttling rates */
3069 adapter->rx_itr_setting = 1;
3070 adapter->tx_itr_setting = 1;
3071
3072 /* set default ring sizes */
3073 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3074 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3075
3076 set_bit(__IXGBEVF_DOWN, &adapter->state);
3077 return 0;
3078
3079 out:
3080 return err;
3081 }
3082
3083 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \
3084 { \
3085 u32 current_counter = IXGBE_READ_REG(hw, reg); \
3086 if (current_counter < last_counter) \
3087 counter += 0x100000000LL; \
3088 last_counter = current_counter; \
3089 counter &= 0xFFFFFFFF00000000LL; \
3090 counter |= current_counter; \
3091 }
3092
3093 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3094 { \
3095 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \
3096 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \
3097 u64 current_counter = (current_counter_msb << 32) | \
3098 current_counter_lsb; \
3099 if (current_counter < last_counter) \
3100 counter += 0x1000000000LL; \
3101 last_counter = current_counter; \
3102 counter &= 0xFFFFFFF000000000LL; \
3103 counter |= current_counter; \
3104 }
3105 /**
3106 * ixgbevf_update_stats - Update the board statistics counters.
3107 * @adapter: board private structure
3108 **/
3109 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3110 {
3111 struct ixgbe_hw *hw = &adapter->hw;
3112 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3113 u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3114 int i;
3115
3116 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3117 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3118 return;
3119
3120 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3121 adapter->stats.vfgprc);
3122 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3123 adapter->stats.vfgptc);
3124 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3125 adapter->stats.last_vfgorc,
3126 adapter->stats.vfgorc);
3127 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3128 adapter->stats.last_vfgotc,
3129 adapter->stats.vfgotc);
3130 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3131 adapter->stats.vfmprc);
3132
3133 for (i = 0; i < adapter->num_rx_queues; i++) {
3134 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3135
3136 hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3137 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3138 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3139 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3140 }
3141
3142 adapter->hw_csum_rx_error = hw_csum_rx_error;
3143 adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3144 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3145 adapter->alloc_rx_page = alloc_rx_page;
3146 }
3147
3148 /**
3149 * ixgbevf_service_timer - Timer Call-back
3150 * @t: pointer to timer_list struct
3151 **/
3152 static void ixgbevf_service_timer(struct timer_list *t)
3153 {
3154 struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3155 service_timer);
3156
3157 /* Reset the timer */
3158 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3159
3160 ixgbevf_service_event_schedule(adapter);
3161 }
3162
3163 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3164 {
3165 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3166 return;
3167
3168 rtnl_lock();
3169 /* If we're already down or resetting, just bail */
3170 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3171 test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3172 test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3173 rtnl_unlock();
3174 return;
3175 }
3176
3177 adapter->tx_timeout_count++;
3178
3179 ixgbevf_reinit_locked(adapter);
3180 rtnl_unlock();
3181 }
3182
3183 /**
3184 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3185 * @adapter: pointer to the device adapter structure
3186 *
3187 * This function serves two purposes. First it strobes the interrupt lines
3188 * in order to make certain interrupts are occurring. Secondly it sets the
3189 * bits needed to check for TX hangs. As a result we should immediately
3190 * determine if a hang has occurred.
3191 **/
3192 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3193 {
3194 struct ixgbe_hw *hw = &adapter->hw;
3195 u32 eics = 0;
3196 int i;
3197
3198 /* If we're down or resetting, just bail */
3199 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3200 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3201 return;
3202
3203 /* Force detection of hung controller */
3204 if (netif_carrier_ok(adapter->netdev)) {
3205 for (i = 0; i < adapter->num_tx_queues; i++)
3206 set_check_for_tx_hang(adapter->tx_ring[i]);
3207 for (i = 0; i < adapter->num_xdp_queues; i++)
3208 set_check_for_tx_hang(adapter->xdp_ring[i]);
3209 }
3210
3211 /* get one bit for every active Tx/Rx interrupt vector */
3212 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3213 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3214
3215 if (qv->rx.ring || qv->tx.ring)
3216 eics |= BIT(i);
3217 }
3218
3219 /* Cause software interrupt to ensure rings are cleaned */
3220 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3221 }
3222
3223 /**
3224 * ixgbevf_watchdog_update_link - update the link status
3225 * @adapter: pointer to the device adapter structure
3226 **/
3227 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3228 {
3229 struct ixgbe_hw *hw = &adapter->hw;
3230 u32 link_speed = adapter->link_speed;
3231 bool link_up = adapter->link_up;
3232 s32 err;
3233
3234 spin_lock_bh(&adapter->mbx_lock);
3235
3236 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3237
3238 spin_unlock_bh(&adapter->mbx_lock);
3239
3240 /* if check for link returns error we will need to reset */
3241 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3242 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3243 link_up = false;
3244 }
3245
3246 adapter->link_up = link_up;
3247 adapter->link_speed = link_speed;
3248 }
3249
3250 /**
3251 * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3252 * print link up message
3253 * @adapter: pointer to the device adapter structure
3254 **/
3255 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3256 {
3257 struct net_device *netdev = adapter->netdev;
3258
3259 /* only continue if link was previously down */
3260 if (netif_carrier_ok(netdev))
3261 return;
3262
3263 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3264 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3265 "10 Gbps" :
3266 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3267 "1 Gbps" :
3268 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3269 "100 Mbps" :
3270 "unknown speed");
3271
3272 netif_carrier_on(netdev);
3273 }
3274
3275 /**
3276 * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3277 * print link down message
3278 * @adapter: pointer to the adapter structure
3279 **/
3280 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3281 {
3282 struct net_device *netdev = adapter->netdev;
3283
3284 adapter->link_speed = 0;
3285
3286 /* only continue if link was up previously */
3287 if (!netif_carrier_ok(netdev))
3288 return;
3289
3290 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3291
3292 netif_carrier_off(netdev);
3293 }
3294
3295 /**
3296 * ixgbevf_watchdog_subtask - worker thread to bring link up
3297 * @adapter: board private structure
3298 **/
3299 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3300 {
3301 /* if interface is down do nothing */
3302 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3303 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3304 return;
3305
3306 ixgbevf_watchdog_update_link(adapter);
3307
3308 if (adapter->link_up)
3309 ixgbevf_watchdog_link_is_up(adapter);
3310 else
3311 ixgbevf_watchdog_link_is_down(adapter);
3312
3313 ixgbevf_update_stats(adapter);
3314 }
3315
3316 /**
3317 * ixgbevf_service_task - manages and runs subtasks
3318 * @work: pointer to work_struct containing our data
3319 **/
3320 static void ixgbevf_service_task(struct work_struct *work)
3321 {
3322 struct ixgbevf_adapter *adapter = container_of(work,
3323 struct ixgbevf_adapter,
3324 service_task);
3325 struct ixgbe_hw *hw = &adapter->hw;
3326
3327 if (IXGBE_REMOVED(hw->hw_addr)) {
3328 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3329 rtnl_lock();
3330 ixgbevf_down(adapter);
3331 rtnl_unlock();
3332 }
3333 return;
3334 }
3335
3336 ixgbevf_queue_reset_subtask(adapter);
3337 ixgbevf_reset_subtask(adapter);
3338 ixgbevf_watchdog_subtask(adapter);
3339 ixgbevf_check_hang_subtask(adapter);
3340
3341 ixgbevf_service_event_complete(adapter);
3342 }
3343
3344 /**
3345 * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3346 * @tx_ring: Tx descriptor ring for a specific queue
3347 *
3348 * Free all transmit software resources
3349 **/
3350 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3351 {
3352 ixgbevf_clean_tx_ring(tx_ring);
3353
3354 vfree(tx_ring->tx_buffer_info);
3355 tx_ring->tx_buffer_info = NULL;
3356
3357 /* if not set, then don't free */
3358 if (!tx_ring->desc)
3359 return;
3360
3361 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3362 tx_ring->dma);
3363
3364 tx_ring->desc = NULL;
3365 }
3366
3367 /**
3368 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3369 * @adapter: board private structure
3370 *
3371 * Free all transmit software resources
3372 **/
3373 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3374 {
3375 int i;
3376
3377 for (i = 0; i < adapter->num_tx_queues; i++)
3378 if (adapter->tx_ring[i]->desc)
3379 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3380 for (i = 0; i < adapter->num_xdp_queues; i++)
3381 if (adapter->xdp_ring[i]->desc)
3382 ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3383 }
3384
3385 /**
3386 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3387 * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3388 *
3389 * Return 0 on success, negative on failure
3390 **/
3391 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3392 {
3393 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3394 int size;
3395
3396 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3397 tx_ring->tx_buffer_info = vmalloc(size);
3398 if (!tx_ring->tx_buffer_info)
3399 goto err;
3400
3401 u64_stats_init(&tx_ring->syncp);
3402
3403 /* round up to nearest 4K */
3404 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3405 tx_ring->size = ALIGN(tx_ring->size, 4096);
3406
3407 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3408 &tx_ring->dma, GFP_KERNEL);
3409 if (!tx_ring->desc)
3410 goto err;
3411
3412 return 0;
3413
3414 err:
3415 vfree(tx_ring->tx_buffer_info);
3416 tx_ring->tx_buffer_info = NULL;
3417 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3418 return -ENOMEM;
3419 }
3420
3421 /**
3422 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3423 * @adapter: board private structure
3424 *
3425 * If this function returns with an error, then it's possible one or
3426 * more of the rings is populated (while the rest are not). It is the
3427 * callers duty to clean those orphaned rings.
3428 *
3429 * Return 0 on success, negative on failure
3430 **/
3431 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3432 {
3433 int i, j = 0, err = 0;
3434
3435 for (i = 0; i < adapter->num_tx_queues; i++) {
3436 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3437 if (!err)
3438 continue;
3439 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3440 goto err_setup_tx;
3441 }
3442
3443 for (j = 0; j < adapter->num_xdp_queues; j++) {
3444 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3445 if (!err)
3446 continue;
3447 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3448 goto err_setup_tx;
3449 }
3450
3451 return 0;
3452 err_setup_tx:
3453 /* rewind the index freeing the rings as we go */
3454 while (j--)
3455 ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3456 while (i--)
3457 ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3458
3459 return err;
3460 }
3461
3462 /**
3463 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3464 * @adapter: board private structure
3465 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3466 *
3467 * Returns 0 on success, negative on failure
3468 **/
3469 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3470 struct ixgbevf_ring *rx_ring)
3471 {
3472 int size;
3473
3474 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3475 rx_ring->rx_buffer_info = vmalloc(size);
3476 if (!rx_ring->rx_buffer_info)
3477 goto err;
3478
3479 u64_stats_init(&rx_ring->syncp);
3480
3481 /* Round up to nearest 4K */
3482 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3483 rx_ring->size = ALIGN(rx_ring->size, 4096);
3484
3485 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3486 &rx_ring->dma, GFP_KERNEL);
3487
3488 if (!rx_ring->desc)
3489 goto err;
3490
3491 /* XDP RX-queue info */
3492 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3493 rx_ring->queue_index, 0) < 0)
3494 goto err;
3495
3496 rx_ring->xdp_prog = adapter->xdp_prog;
3497
3498 return 0;
3499 err:
3500 vfree(rx_ring->rx_buffer_info);
3501 rx_ring->rx_buffer_info = NULL;
3502 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3503 return -ENOMEM;
3504 }
3505
3506 /**
3507 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3508 * @adapter: board private structure
3509 *
3510 * If this function returns with an error, then it's possible one or
3511 * more of the rings is populated (while the rest are not). It is the
3512 * callers duty to clean those orphaned rings.
3513 *
3514 * Return 0 on success, negative on failure
3515 **/
3516 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3517 {
3518 int i, err = 0;
3519
3520 for (i = 0; i < adapter->num_rx_queues; i++) {
3521 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3522 if (!err)
3523 continue;
3524 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3525 goto err_setup_rx;
3526 }
3527
3528 return 0;
3529 err_setup_rx:
3530 /* rewind the index freeing the rings as we go */
3531 while (i--)
3532 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3533 return err;
3534 }
3535
3536 /**
3537 * ixgbevf_free_rx_resources - Free Rx Resources
3538 * @rx_ring: ring to clean the resources from
3539 *
3540 * Free all receive software resources
3541 **/
3542 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3543 {
3544 ixgbevf_clean_rx_ring(rx_ring);
3545
3546 rx_ring->xdp_prog = NULL;
3547 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3548 vfree(rx_ring->rx_buffer_info);
3549 rx_ring->rx_buffer_info = NULL;
3550
3551 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3552 rx_ring->dma);
3553
3554 rx_ring->desc = NULL;
3555 }
3556
3557 /**
3558 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3559 * @adapter: board private structure
3560 *
3561 * Free all receive software resources
3562 **/
3563 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3564 {
3565 int i;
3566
3567 for (i = 0; i < adapter->num_rx_queues; i++)
3568 if (adapter->rx_ring[i]->desc)
3569 ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3570 }
3571
3572 /**
3573 * ixgbevf_open - Called when a network interface is made active
3574 * @netdev: network interface device structure
3575 *
3576 * Returns 0 on success, negative value on failure
3577 *
3578 * The open entry point is called when a network interface is made
3579 * active by the system (IFF_UP). At this point all resources needed
3580 * for transmit and receive operations are allocated, the interrupt
3581 * handler is registered with the OS, the watchdog timer is started,
3582 * and the stack is notified that the interface is ready.
3583 **/
3584 int ixgbevf_open(struct net_device *netdev)
3585 {
3586 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3587 struct ixgbe_hw *hw = &adapter->hw;
3588 int err;
3589
3590 /* A previous failure to open the device because of a lack of
3591 * available MSIX vector resources may have reset the number
3592 * of msix vectors variable to zero. The only way to recover
3593 * is to unload/reload the driver and hope that the system has
3594 * been able to recover some MSIX vector resources.
3595 */
3596 if (!adapter->num_msix_vectors)
3597 return -ENOMEM;
3598
3599 if (hw->adapter_stopped) {
3600 ixgbevf_reset(adapter);
3601 /* if adapter is still stopped then PF isn't up and
3602 * the VF can't start.
3603 */
3604 if (hw->adapter_stopped) {
3605 err = IXGBE_ERR_MBX;
3606 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3607 goto err_setup_reset;
3608 }
3609 }
3610
3611 /* disallow open during test */
3612 if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3613 return -EBUSY;
3614
3615 netif_carrier_off(netdev);
3616
3617 /* allocate transmit descriptors */
3618 err = ixgbevf_setup_all_tx_resources(adapter);
3619 if (err)
3620 goto err_setup_tx;
3621
3622 /* allocate receive descriptors */
3623 err = ixgbevf_setup_all_rx_resources(adapter);
3624 if (err)
3625 goto err_setup_rx;
3626
3627 ixgbevf_configure(adapter);
3628
3629 err = ixgbevf_request_irq(adapter);
3630 if (err)
3631 goto err_req_irq;
3632
3633 /* Notify the stack of the actual queue counts. */
3634 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3635 if (err)
3636 goto err_set_queues;
3637
3638 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3639 if (err)
3640 goto err_set_queues;
3641
3642 ixgbevf_up_complete(adapter);
3643
3644 return 0;
3645
3646 err_set_queues:
3647 ixgbevf_free_irq(adapter);
3648 err_req_irq:
3649 ixgbevf_free_all_rx_resources(adapter);
3650 err_setup_rx:
3651 ixgbevf_free_all_tx_resources(adapter);
3652 err_setup_tx:
3653 ixgbevf_reset(adapter);
3654 err_setup_reset:
3655
3656 return err;
3657 }
3658
3659 /**
3660 * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3661 * @adapter: the private adapter struct
3662 *
3663 * This function should contain the necessary work common to both suspending
3664 * and closing of the device.
3665 */
3666 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3667 {
3668 ixgbevf_down(adapter);
3669 ixgbevf_free_irq(adapter);
3670 ixgbevf_free_all_tx_resources(adapter);
3671 ixgbevf_free_all_rx_resources(adapter);
3672 }
3673
3674 /**
3675 * ixgbevf_close - Disables a network interface
3676 * @netdev: network interface device structure
3677 *
3678 * Returns 0, this is not allowed to fail
3679 *
3680 * The close entry point is called when an interface is de-activated
3681 * by the OS. The hardware is still under the drivers control, but
3682 * needs to be disabled. A global MAC reset is issued to stop the
3683 * hardware, and all transmit and receive resources are freed.
3684 **/
3685 int ixgbevf_close(struct net_device *netdev)
3686 {
3687 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3688
3689 if (netif_device_present(netdev))
3690 ixgbevf_close_suspend(adapter);
3691
3692 return 0;
3693 }
3694
3695 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3696 {
3697 struct net_device *dev = adapter->netdev;
3698
3699 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3700 &adapter->state))
3701 return;
3702
3703 /* if interface is down do nothing */
3704 if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3705 test_bit(__IXGBEVF_RESETTING, &adapter->state))
3706 return;
3707
3708 /* Hardware has to reinitialize queues and interrupts to
3709 * match packet buffer alignment. Unfortunately, the
3710 * hardware is not flexible enough to do this dynamically.
3711 */
3712 rtnl_lock();
3713
3714 if (netif_running(dev))
3715 ixgbevf_close(dev);
3716
3717 ixgbevf_clear_interrupt_scheme(adapter);
3718 ixgbevf_init_interrupt_scheme(adapter);
3719
3720 if (netif_running(dev))
3721 ixgbevf_open(dev);
3722
3723 rtnl_unlock();
3724 }
3725
3726 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3727 u32 vlan_macip_lens, u32 fceof_saidx,
3728 u32 type_tucmd, u32 mss_l4len_idx)
3729 {
3730 struct ixgbe_adv_tx_context_desc *context_desc;
3731 u16 i = tx_ring->next_to_use;
3732
3733 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3734
3735 i++;
3736 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3737
3738 /* set bits to identify this as an advanced context descriptor */
3739 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3740
3741 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3742 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx);
3743 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3744 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3745 }
3746
3747 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3748 struct ixgbevf_tx_buffer *first,
3749 u8 *hdr_len,
3750 struct ixgbevf_ipsec_tx_data *itd)
3751 {
3752 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3753 struct sk_buff *skb = first->skb;
3754 union {
3755 struct iphdr *v4;
3756 struct ipv6hdr *v6;
3757 unsigned char *hdr;
3758 } ip;
3759 union {
3760 struct tcphdr *tcp;
3761 unsigned char *hdr;
3762 } l4;
3763 u32 paylen, l4_offset;
3764 u32 fceof_saidx = 0;
3765 int err;
3766
3767 if (skb->ip_summed != CHECKSUM_PARTIAL)
3768 return 0;
3769
3770 if (!skb_is_gso(skb))
3771 return 0;
3772
3773 err = skb_cow_head(skb, 0);
3774 if (err < 0)
3775 return err;
3776
3777 if (eth_p_mpls(first->protocol))
3778 ip.hdr = skb_inner_network_header(skb);
3779 else
3780 ip.hdr = skb_network_header(skb);
3781 l4.hdr = skb_checksum_start(skb);
3782
3783 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3784 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3785
3786 /* initialize outer IP header fields */
3787 if (ip.v4->version == 4) {
3788 unsigned char *csum_start = skb_checksum_start(skb);
3789 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3790 int len = csum_start - trans_start;
3791
3792 /* IP header will have to cancel out any data that
3793 * is not a part of the outer IP header, so set to
3794 * a reverse csum if needed, else init check to 0.
3795 */
3796 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3797 csum_fold(csum_partial(trans_start,
3798 len, 0)) : 0;
3799 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3800
3801 ip.v4->tot_len = 0;
3802 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3803 IXGBE_TX_FLAGS_CSUM |
3804 IXGBE_TX_FLAGS_IPV4;
3805 } else {
3806 ip.v6->payload_len = 0;
3807 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3808 IXGBE_TX_FLAGS_CSUM;
3809 }
3810
3811 /* determine offset of inner transport header */
3812 l4_offset = l4.hdr - skb->data;
3813
3814 /* compute length of segmentation header */
3815 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3816
3817 /* remove payload length from inner checksum */
3818 paylen = skb->len - l4_offset;
3819 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3820
3821 /* update gso size and bytecount with header size */
3822 first->gso_segs = skb_shinfo(skb)->gso_segs;
3823 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3824
3825 /* mss_l4len_id: use 1 as index for TSO */
3826 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3827 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3828 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3829
3830 fceof_saidx |= itd->pfsa;
3831 type_tucmd |= itd->flags | itd->trailer_len;
3832
3833 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3834 vlan_macip_lens = l4.hdr - ip.hdr;
3835 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3836 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3837
3838 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3839 mss_l4len_idx);
3840
3841 return 1;
3842 }
3843
3844 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3845 struct ixgbevf_tx_buffer *first,
3846 struct ixgbevf_ipsec_tx_data *itd)
3847 {
3848 struct sk_buff *skb = first->skb;
3849 u32 vlan_macip_lens = 0;
3850 u32 fceof_saidx = 0;
3851 u32 type_tucmd = 0;
3852
3853 if (skb->ip_summed != CHECKSUM_PARTIAL)
3854 goto no_csum;
3855
3856 switch (skb->csum_offset) {
3857 case offsetof(struct tcphdr, check):
3858 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3859 fallthrough;
3860 case offsetof(struct udphdr, check):
3861 break;
3862 case offsetof(struct sctphdr, checksum):
3863 /* validate that this is actually an SCTP request */
3864 if (skb_csum_is_sctp(skb)) {
3865 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3866 break;
3867 }
3868 fallthrough;
3869 default:
3870 skb_checksum_help(skb);
3871 goto no_csum;
3872 }
3873
3874 if (first->protocol == htons(ETH_P_IP))
3875 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3876
3877 /* update TX checksum flag */
3878 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3879 vlan_macip_lens = skb_checksum_start_offset(skb) -
3880 skb_network_offset(skb);
3881 no_csum:
3882 /* vlan_macip_lens: MACLEN, VLAN tag */
3883 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3884 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3885
3886 fceof_saidx |= itd->pfsa;
3887 type_tucmd |= itd->flags | itd->trailer_len;
3888
3889 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3890 fceof_saidx, type_tucmd, 0);
3891 }
3892
3893 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3894 {
3895 /* set type for advanced descriptor with frame checksum insertion */
3896 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3897 IXGBE_ADVTXD_DCMD_IFCS |
3898 IXGBE_ADVTXD_DCMD_DEXT);
3899
3900 /* set HW VLAN bit if VLAN is present */
3901 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3902 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3903
3904 /* set segmentation enable bits for TSO/FSO */
3905 if (tx_flags & IXGBE_TX_FLAGS_TSO)
3906 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3907
3908 return cmd_type;
3909 }
3910
3911 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3912 u32 tx_flags, unsigned int paylen)
3913 {
3914 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3915
3916 /* enable L4 checksum for TSO and TX checksum offload */
3917 if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3918 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3919
3920 /* enble IPv4 checksum for TSO */
3921 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3922 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3923
3924 /* enable IPsec */
3925 if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3926 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3927
3928 /* use index 1 context for TSO/FSO/FCOE/IPSEC */
3929 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3930 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3931
3932 /* Check Context must be set if Tx switch is enabled, which it
3933 * always is for case where virtual functions are running
3934 */
3935 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3936
3937 tx_desc->read.olinfo_status = olinfo_status;
3938 }
3939
3940 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3941 struct ixgbevf_tx_buffer *first,
3942 const u8 hdr_len)
3943 {
3944 struct sk_buff *skb = first->skb;
3945 struct ixgbevf_tx_buffer *tx_buffer;
3946 union ixgbe_adv_tx_desc *tx_desc;
3947 skb_frag_t *frag;
3948 dma_addr_t dma;
3949 unsigned int data_len, size;
3950 u32 tx_flags = first->tx_flags;
3951 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3952 u16 i = tx_ring->next_to_use;
3953
3954 tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3955
3956 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3957
3958 size = skb_headlen(skb);
3959 data_len = skb->data_len;
3960
3961 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3962
3963 tx_buffer = first;
3964
3965 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3966 if (dma_mapping_error(tx_ring->dev, dma))
3967 goto dma_error;
3968
3969 /* record length, and DMA address */
3970 dma_unmap_len_set(tx_buffer, len, size);
3971 dma_unmap_addr_set(tx_buffer, dma, dma);
3972
3973 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3974
3975 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3976 tx_desc->read.cmd_type_len =
3977 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3978
3979 i++;
3980 tx_desc++;
3981 if (i == tx_ring->count) {
3982 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3983 i = 0;
3984 }
3985 tx_desc->read.olinfo_status = 0;
3986
3987 dma += IXGBE_MAX_DATA_PER_TXD;
3988 size -= IXGBE_MAX_DATA_PER_TXD;
3989
3990 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3991 }
3992
3993 if (likely(!data_len))
3994 break;
3995
3996 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3997
3998 i++;
3999 tx_desc++;
4000 if (i == tx_ring->count) {
4001 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4002 i = 0;
4003 }
4004 tx_desc->read.olinfo_status = 0;
4005
4006 size = skb_frag_size(frag);
4007 data_len -= size;
4008
4009 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4010 DMA_TO_DEVICE);
4011
4012 tx_buffer = &tx_ring->tx_buffer_info[i];
4013 }
4014
4015 /* write last descriptor with RS and EOP bits */
4016 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4017 tx_desc->read.cmd_type_len = cmd_type;
4018
4019 /* set the timestamp */
4020 first->time_stamp = jiffies;
4021
4022 skb_tx_timestamp(skb);
4023
4024 /* Force memory writes to complete before letting h/w know there
4025 * are new descriptors to fetch. (Only applicable for weak-ordered
4026 * memory model archs, such as IA-64).
4027 *
4028 * We also need this memory barrier (wmb) to make certain all of the
4029 * status bits have been updated before next_to_watch is written.
4030 */
4031 wmb();
4032
4033 /* set next_to_watch value indicating a packet is present */
4034 first->next_to_watch = tx_desc;
4035
4036 i++;
4037 if (i == tx_ring->count)
4038 i = 0;
4039
4040 tx_ring->next_to_use = i;
4041
4042 /* notify HW of packet */
4043 ixgbevf_write_tail(tx_ring, i);
4044
4045 return;
4046 dma_error:
4047 dev_err(tx_ring->dev, "TX DMA map failed\n");
4048 tx_buffer = &tx_ring->tx_buffer_info[i];
4049
4050 /* clear dma mappings for failed tx_buffer_info map */
4051 while (tx_buffer != first) {
4052 if (dma_unmap_len(tx_buffer, len))
4053 dma_unmap_page(tx_ring->dev,
4054 dma_unmap_addr(tx_buffer, dma),
4055 dma_unmap_len(tx_buffer, len),
4056 DMA_TO_DEVICE);
4057 dma_unmap_len_set(tx_buffer, len, 0);
4058
4059 if (i-- == 0)
4060 i += tx_ring->count;
4061 tx_buffer = &tx_ring->tx_buffer_info[i];
4062 }
4063
4064 if (dma_unmap_len(tx_buffer, len))
4065 dma_unmap_single(tx_ring->dev,
4066 dma_unmap_addr(tx_buffer, dma),
4067 dma_unmap_len(tx_buffer, len),
4068 DMA_TO_DEVICE);
4069 dma_unmap_len_set(tx_buffer, len, 0);
4070
4071 dev_kfree_skb_any(tx_buffer->skb);
4072 tx_buffer->skb = NULL;
4073
4074 tx_ring->next_to_use = i;
4075 }
4076
4077 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4078 {
4079 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4080 /* Herbert's original patch had:
4081 * smp_mb__after_netif_stop_queue();
4082 * but since that doesn't exist yet, just open code it.
4083 */
4084 smp_mb();
4085
4086 /* We need to check again in a case another CPU has just
4087 * made room available.
4088 */
4089 if (likely(ixgbevf_desc_unused(tx_ring) < size))
4090 return -EBUSY;
4091
4092 /* A reprieve! - use start_queue because it doesn't call schedule */
4093 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4094 ++tx_ring->tx_stats.restart_queue;
4095
4096 return 0;
4097 }
4098
4099 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4100 {
4101 if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4102 return 0;
4103 return __ixgbevf_maybe_stop_tx(tx_ring, size);
4104 }
4105
4106 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4107 struct ixgbevf_ring *tx_ring)
4108 {
4109 struct ixgbevf_tx_buffer *first;
4110 int tso;
4111 u32 tx_flags = 0;
4112 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4113 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4114 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4115 unsigned short f;
4116 #endif
4117 u8 hdr_len = 0;
4118 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4119
4120 if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4121 dev_kfree_skb_any(skb);
4122 return NETDEV_TX_OK;
4123 }
4124
4125 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4126 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4127 * + 2 desc gap to keep tail from touching head,
4128 * + 1 desc for context descriptor,
4129 * otherwise try next time
4130 */
4131 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4132 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4133 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
4134
4135 count += TXD_USE_COUNT(skb_frag_size(frag));
4136 }
4137 #else
4138 count += skb_shinfo(skb)->nr_frags;
4139 #endif
4140 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4141 tx_ring->tx_stats.tx_busy++;
4142 return NETDEV_TX_BUSY;
4143 }
4144
4145 /* record the location of the first descriptor for this packet */
4146 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4147 first->skb = skb;
4148 first->bytecount = skb->len;
4149 first->gso_segs = 1;
4150
4151 if (skb_vlan_tag_present(skb)) {
4152 tx_flags |= skb_vlan_tag_get(skb);
4153 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4154 tx_flags |= IXGBE_TX_FLAGS_VLAN;
4155 }
4156
4157 /* record initial flags and protocol */
4158 first->tx_flags = tx_flags;
4159 first->protocol = vlan_get_protocol(skb);
4160
4161 #ifdef CONFIG_IXGBEVF_IPSEC
4162 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4163 goto out_drop;
4164 #endif
4165 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4166 if (tso < 0)
4167 goto out_drop;
4168 else if (!tso)
4169 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4170
4171 ixgbevf_tx_map(tx_ring, first, hdr_len);
4172
4173 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4174
4175 return NETDEV_TX_OK;
4176
4177 out_drop:
4178 dev_kfree_skb_any(first->skb);
4179 first->skb = NULL;
4180
4181 return NETDEV_TX_OK;
4182 }
4183
4184 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4185 {
4186 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4187 struct ixgbevf_ring *tx_ring;
4188
4189 if (skb->len <= 0) {
4190 dev_kfree_skb_any(skb);
4191 return NETDEV_TX_OK;
4192 }
4193
4194 /* The minimum packet size for olinfo paylen is 17 so pad the skb
4195 * in order to meet this minimum size requirement.
4196 */
4197 if (skb->len < 17) {
4198 if (skb_padto(skb, 17))
4199 return NETDEV_TX_OK;
4200 skb->len = 17;
4201 }
4202
4203 tx_ring = adapter->tx_ring[skb->queue_mapping];
4204 return ixgbevf_xmit_frame_ring(skb, tx_ring);
4205 }
4206
4207 /**
4208 * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4209 * @netdev: network interface device structure
4210 * @p: pointer to an address structure
4211 *
4212 * Returns 0 on success, negative on failure
4213 **/
4214 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4215 {
4216 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4217 struct ixgbe_hw *hw = &adapter->hw;
4218 struct sockaddr *addr = p;
4219 int err;
4220
4221 if (!is_valid_ether_addr(addr->sa_data))
4222 return -EADDRNOTAVAIL;
4223
4224 spin_lock_bh(&adapter->mbx_lock);
4225
4226 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4227
4228 spin_unlock_bh(&adapter->mbx_lock);
4229
4230 if (err)
4231 return -EPERM;
4232
4233 ether_addr_copy(hw->mac.addr, addr->sa_data);
4234 ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4235 ether_addr_copy(netdev->dev_addr, addr->sa_data);
4236
4237 return 0;
4238 }
4239
4240 /**
4241 * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4242 * @netdev: network interface device structure
4243 * @new_mtu: new value for maximum frame size
4244 *
4245 * Returns 0 on success, negative on failure
4246 **/
4247 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4248 {
4249 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4250 struct ixgbe_hw *hw = &adapter->hw;
4251 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4252 int ret;
4253
4254 /* prevent MTU being changed to a size unsupported by XDP */
4255 if (adapter->xdp_prog) {
4256 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4257 return -EPERM;
4258 }
4259
4260 spin_lock_bh(&adapter->mbx_lock);
4261 /* notify the PF of our intent to use this size of frame */
4262 ret = hw->mac.ops.set_rlpml(hw, max_frame);
4263 spin_unlock_bh(&adapter->mbx_lock);
4264 if (ret)
4265 return -EINVAL;
4266
4267 hw_dbg(hw, "changing MTU from %d to %d\n",
4268 netdev->mtu, new_mtu);
4269
4270 /* must set new MTU before calling down or up */
4271 netdev->mtu = new_mtu;
4272
4273 if (netif_running(netdev))
4274 ixgbevf_reinit_locked(adapter);
4275
4276 return 0;
4277 }
4278
4279 static int __maybe_unused ixgbevf_suspend(struct device *dev_d)
4280 {
4281 struct net_device *netdev = dev_get_drvdata(dev_d);
4282 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4283
4284 rtnl_lock();
4285 netif_device_detach(netdev);
4286
4287 if (netif_running(netdev))
4288 ixgbevf_close_suspend(adapter);
4289
4290 ixgbevf_clear_interrupt_scheme(adapter);
4291 rtnl_unlock();
4292
4293 return 0;
4294 }
4295
4296 static int __maybe_unused ixgbevf_resume(struct device *dev_d)
4297 {
4298 struct pci_dev *pdev = to_pci_dev(dev_d);
4299 struct net_device *netdev = pci_get_drvdata(pdev);
4300 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4301 u32 err;
4302
4303 adapter->hw.hw_addr = adapter->io_addr;
4304 smp_mb__before_atomic();
4305 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4306 pci_set_master(pdev);
4307
4308 ixgbevf_reset(adapter);
4309
4310 rtnl_lock();
4311 err = ixgbevf_init_interrupt_scheme(adapter);
4312 if (!err && netif_running(netdev))
4313 err = ixgbevf_open(netdev);
4314 rtnl_unlock();
4315 if (err)
4316 return err;
4317
4318 netif_device_attach(netdev);
4319
4320 return err;
4321 }
4322
4323 static void ixgbevf_shutdown(struct pci_dev *pdev)
4324 {
4325 ixgbevf_suspend(&pdev->dev);
4326 }
4327
4328 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4329 const struct ixgbevf_ring *ring)
4330 {
4331 u64 bytes, packets;
4332 unsigned int start;
4333
4334 if (ring) {
4335 do {
4336 start = u64_stats_fetch_begin_irq(&ring->syncp);
4337 bytes = ring->stats.bytes;
4338 packets = ring->stats.packets;
4339 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4340 stats->tx_bytes += bytes;
4341 stats->tx_packets += packets;
4342 }
4343 }
4344
4345 static void ixgbevf_get_stats(struct net_device *netdev,
4346 struct rtnl_link_stats64 *stats)
4347 {
4348 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4349 unsigned int start;
4350 u64 bytes, packets;
4351 const struct ixgbevf_ring *ring;
4352 int i;
4353
4354 ixgbevf_update_stats(adapter);
4355
4356 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4357
4358 rcu_read_lock();
4359 for (i = 0; i < adapter->num_rx_queues; i++) {
4360 ring = adapter->rx_ring[i];
4361 do {
4362 start = u64_stats_fetch_begin_irq(&ring->syncp);
4363 bytes = ring->stats.bytes;
4364 packets = ring->stats.packets;
4365 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4366 stats->rx_bytes += bytes;
4367 stats->rx_packets += packets;
4368 }
4369
4370 for (i = 0; i < adapter->num_tx_queues; i++) {
4371 ring = adapter->tx_ring[i];
4372 ixgbevf_get_tx_ring_stats(stats, ring);
4373 }
4374
4375 for (i = 0; i < adapter->num_xdp_queues; i++) {
4376 ring = adapter->xdp_ring[i];
4377 ixgbevf_get_tx_ring_stats(stats, ring);
4378 }
4379 rcu_read_unlock();
4380 }
4381
4382 #define IXGBEVF_MAX_MAC_HDR_LEN 127
4383 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511
4384
4385 static netdev_features_t
4386 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4387 netdev_features_t features)
4388 {
4389 unsigned int network_hdr_len, mac_hdr_len;
4390
4391 /* Make certain the headers can be described by a context descriptor */
4392 mac_hdr_len = skb_network_header(skb) - skb->data;
4393 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4394 return features & ~(NETIF_F_HW_CSUM |
4395 NETIF_F_SCTP_CRC |
4396 NETIF_F_HW_VLAN_CTAG_TX |
4397 NETIF_F_TSO |
4398 NETIF_F_TSO6);
4399
4400 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4401 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN))
4402 return features & ~(NETIF_F_HW_CSUM |
4403 NETIF_F_SCTP_CRC |
4404 NETIF_F_TSO |
4405 NETIF_F_TSO6);
4406
4407 /* We can only support IPV4 TSO in tunnels if we can mangle the
4408 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4409 */
4410 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4411 features &= ~NETIF_F_TSO;
4412
4413 return features;
4414 }
4415
4416 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4417 {
4418 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4419 struct ixgbevf_adapter *adapter = netdev_priv(dev);
4420 struct bpf_prog *old_prog;
4421
4422 /* verify ixgbevf ring attributes are sufficient for XDP */
4423 for (i = 0; i < adapter->num_rx_queues; i++) {
4424 struct ixgbevf_ring *ring = adapter->rx_ring[i];
4425
4426 if (frame_size > ixgbevf_rx_bufsz(ring))
4427 return -EINVAL;
4428 }
4429
4430 old_prog = xchg(&adapter->xdp_prog, prog);
4431
4432 /* If transitioning XDP modes reconfigure rings */
4433 if (!!prog != !!old_prog) {
4434 /* Hardware has to reinitialize queues and interrupts to
4435 * match packet buffer alignment. Unfortunately, the
4436 * hardware is not flexible enough to do this dynamically.
4437 */
4438 if (netif_running(dev))
4439 ixgbevf_close(dev);
4440
4441 ixgbevf_clear_interrupt_scheme(adapter);
4442 ixgbevf_init_interrupt_scheme(adapter);
4443
4444 if (netif_running(dev))
4445 ixgbevf_open(dev);
4446 } else {
4447 for (i = 0; i < adapter->num_rx_queues; i++)
4448 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4449 }
4450
4451 if (old_prog)
4452 bpf_prog_put(old_prog);
4453
4454 return 0;
4455 }
4456
4457 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4458 {
4459 switch (xdp->command) {
4460 case XDP_SETUP_PROG:
4461 return ixgbevf_xdp_setup(dev, xdp->prog);
4462 default:
4463 return -EINVAL;
4464 }
4465 }
4466
4467 static const struct net_device_ops ixgbevf_netdev_ops = {
4468 .ndo_open = ixgbevf_open,
4469 .ndo_stop = ixgbevf_close,
4470 .ndo_start_xmit = ixgbevf_xmit_frame,
4471 .ndo_set_rx_mode = ixgbevf_set_rx_mode,
4472 .ndo_get_stats64 = ixgbevf_get_stats,
4473 .ndo_validate_addr = eth_validate_addr,
4474 .ndo_set_mac_address = ixgbevf_set_mac,
4475 .ndo_change_mtu = ixgbevf_change_mtu,
4476 .ndo_tx_timeout = ixgbevf_tx_timeout,
4477 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid,
4478 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid,
4479 .ndo_features_check = ixgbevf_features_check,
4480 .ndo_bpf = ixgbevf_xdp,
4481 };
4482
4483 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4484 {
4485 dev->netdev_ops = &ixgbevf_netdev_ops;
4486 ixgbevf_set_ethtool_ops(dev);
4487 dev->watchdog_timeo = 5 * HZ;
4488 }
4489
4490 /**
4491 * ixgbevf_probe - Device Initialization Routine
4492 * @pdev: PCI device information struct
4493 * @ent: entry in ixgbevf_pci_tbl
4494 *
4495 * Returns 0 on success, negative on failure
4496 *
4497 * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4498 * The OS initialization, configuring of the adapter private structure,
4499 * and a hardware reset occur.
4500 **/
4501 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4502 {
4503 struct net_device *netdev;
4504 struct ixgbevf_adapter *adapter = NULL;
4505 struct ixgbe_hw *hw = NULL;
4506 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4507 int err, pci_using_dac;
4508 bool disable_dev = false;
4509
4510 err = pci_enable_device(pdev);
4511 if (err)
4512 return err;
4513
4514 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4515 pci_using_dac = 1;
4516 } else {
4517 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4518 if (err) {
4519 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4520 goto err_dma;
4521 }
4522 pci_using_dac = 0;
4523 }
4524
4525 err = pci_request_regions(pdev, ixgbevf_driver_name);
4526 if (err) {
4527 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4528 goto err_pci_reg;
4529 }
4530
4531 pci_set_master(pdev);
4532
4533 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4534 MAX_TX_QUEUES);
4535 if (!netdev) {
4536 err = -ENOMEM;
4537 goto err_alloc_etherdev;
4538 }
4539
4540 SET_NETDEV_DEV(netdev, &pdev->dev);
4541
4542 adapter = netdev_priv(netdev);
4543
4544 adapter->netdev = netdev;
4545 adapter->pdev = pdev;
4546 hw = &adapter->hw;
4547 hw->back = adapter;
4548 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4549
4550 /* call save state here in standalone driver because it relies on
4551 * adapter struct to exist, and needs to call netdev_priv
4552 */
4553 pci_save_state(pdev);
4554
4555 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4556 pci_resource_len(pdev, 0));
4557 adapter->io_addr = hw->hw_addr;
4558 if (!hw->hw_addr) {
4559 err = -EIO;
4560 goto err_ioremap;
4561 }
4562
4563 ixgbevf_assign_netdev_ops(netdev);
4564
4565 /* Setup HW API */
4566 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4567 hw->mac.type = ii->mac;
4568
4569 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4570 sizeof(struct ixgbe_mbx_operations));
4571
4572 /* setup the private structure */
4573 err = ixgbevf_sw_init(adapter);
4574 if (err)
4575 goto err_sw_init;
4576
4577 /* The HW MAC address was set and/or determined in sw_init */
4578 if (!is_valid_ether_addr(netdev->dev_addr)) {
4579 pr_err("invalid MAC address\n");
4580 err = -EIO;
4581 goto err_sw_init;
4582 }
4583
4584 netdev->hw_features = NETIF_F_SG |
4585 NETIF_F_TSO |
4586 NETIF_F_TSO6 |
4587 NETIF_F_RXCSUM |
4588 NETIF_F_HW_CSUM |
4589 NETIF_F_SCTP_CRC;
4590
4591 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4592 NETIF_F_GSO_GRE_CSUM | \
4593 NETIF_F_GSO_IPXIP4 | \
4594 NETIF_F_GSO_IPXIP6 | \
4595 NETIF_F_GSO_UDP_TUNNEL | \
4596 NETIF_F_GSO_UDP_TUNNEL_CSUM)
4597
4598 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4599 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4600 IXGBEVF_GSO_PARTIAL_FEATURES;
4601
4602 netdev->features = netdev->hw_features;
4603
4604 if (pci_using_dac)
4605 netdev->features |= NETIF_F_HIGHDMA;
4606
4607 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4608 netdev->mpls_features |= NETIF_F_SG |
4609 NETIF_F_TSO |
4610 NETIF_F_TSO6 |
4611 NETIF_F_HW_CSUM;
4612 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4613 netdev->hw_enc_features |= netdev->vlan_features;
4614
4615 /* set this bit last since it cannot be part of vlan_features */
4616 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4617 NETIF_F_HW_VLAN_CTAG_RX |
4618 NETIF_F_HW_VLAN_CTAG_TX;
4619
4620 netdev->priv_flags |= IFF_UNICAST_FLT;
4621
4622 /* MTU range: 68 - 1504 or 9710 */
4623 netdev->min_mtu = ETH_MIN_MTU;
4624 switch (adapter->hw.api_version) {
4625 case ixgbe_mbox_api_11:
4626 case ixgbe_mbox_api_12:
4627 case ixgbe_mbox_api_13:
4628 case ixgbe_mbox_api_14:
4629 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4630 (ETH_HLEN + ETH_FCS_LEN);
4631 break;
4632 default:
4633 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4634 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4635 (ETH_HLEN + ETH_FCS_LEN);
4636 else
4637 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4638 break;
4639 }
4640
4641 if (IXGBE_REMOVED(hw->hw_addr)) {
4642 err = -EIO;
4643 goto err_sw_init;
4644 }
4645
4646 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4647
4648 INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4649 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4650 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4651
4652 err = ixgbevf_init_interrupt_scheme(adapter);
4653 if (err)
4654 goto err_sw_init;
4655
4656 strcpy(netdev->name, "eth%d");
4657
4658 err = register_netdev(netdev);
4659 if (err)
4660 goto err_register;
4661
4662 pci_set_drvdata(pdev, netdev);
4663 netif_carrier_off(netdev);
4664 ixgbevf_init_ipsec_offload(adapter);
4665
4666 ixgbevf_init_last_counter_stats(adapter);
4667
4668 /* print the VF info */
4669 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4670 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4671
4672 switch (hw->mac.type) {
4673 case ixgbe_mac_X550_vf:
4674 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4675 break;
4676 case ixgbe_mac_X540_vf:
4677 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4678 break;
4679 case ixgbe_mac_82599_vf:
4680 default:
4681 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4682 break;
4683 }
4684
4685 return 0;
4686
4687 err_register:
4688 ixgbevf_clear_interrupt_scheme(adapter);
4689 err_sw_init:
4690 ixgbevf_reset_interrupt_capability(adapter);
4691 iounmap(adapter->io_addr);
4692 kfree(adapter->rss_key);
4693 err_ioremap:
4694 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4695 free_netdev(netdev);
4696 err_alloc_etherdev:
4697 pci_release_regions(pdev);
4698 err_pci_reg:
4699 err_dma:
4700 if (!adapter || disable_dev)
4701 pci_disable_device(pdev);
4702 return err;
4703 }
4704
4705 /**
4706 * ixgbevf_remove - Device Removal Routine
4707 * @pdev: PCI device information struct
4708 *
4709 * ixgbevf_remove is called by the PCI subsystem to alert the driver
4710 * that it should release a PCI device. The could be caused by a
4711 * Hot-Plug event, or because the driver is going to be removed from
4712 * memory.
4713 **/
4714 static void ixgbevf_remove(struct pci_dev *pdev)
4715 {
4716 struct net_device *netdev = pci_get_drvdata(pdev);
4717 struct ixgbevf_adapter *adapter;
4718 bool disable_dev;
4719
4720 if (!netdev)
4721 return;
4722
4723 adapter = netdev_priv(netdev);
4724
4725 set_bit(__IXGBEVF_REMOVING, &adapter->state);
4726 cancel_work_sync(&adapter->service_task);
4727
4728 if (netdev->reg_state == NETREG_REGISTERED)
4729 unregister_netdev(netdev);
4730
4731 ixgbevf_stop_ipsec_offload(adapter);
4732 ixgbevf_clear_interrupt_scheme(adapter);
4733 ixgbevf_reset_interrupt_capability(adapter);
4734
4735 iounmap(adapter->io_addr);
4736 pci_release_regions(pdev);
4737
4738 hw_dbg(&adapter->hw, "Remove complete\n");
4739
4740 kfree(adapter->rss_key);
4741 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4742 free_netdev(netdev);
4743
4744 if (disable_dev)
4745 pci_disable_device(pdev);
4746 }
4747
4748 /**
4749 * ixgbevf_io_error_detected - called when PCI error is detected
4750 * @pdev: Pointer to PCI device
4751 * @state: The current pci connection state
4752 *
4753 * This function is called after a PCI bus error affecting
4754 * this device has been detected.
4755 **/
4756 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4757 pci_channel_state_t state)
4758 {
4759 struct net_device *netdev = pci_get_drvdata(pdev);
4760 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4761
4762 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4763 return PCI_ERS_RESULT_DISCONNECT;
4764
4765 rtnl_lock();
4766 netif_device_detach(netdev);
4767
4768 if (netif_running(netdev))
4769 ixgbevf_close_suspend(adapter);
4770
4771 if (state == pci_channel_io_perm_failure) {
4772 rtnl_unlock();
4773 return PCI_ERS_RESULT_DISCONNECT;
4774 }
4775
4776 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4777 pci_disable_device(pdev);
4778 rtnl_unlock();
4779
4780 /* Request a slot slot reset. */
4781 return PCI_ERS_RESULT_NEED_RESET;
4782 }
4783
4784 /**
4785 * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4786 * @pdev: Pointer to PCI device
4787 *
4788 * Restart the card from scratch, as if from a cold-boot. Implementation
4789 * resembles the first-half of the ixgbevf_resume routine.
4790 **/
4791 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4792 {
4793 struct net_device *netdev = pci_get_drvdata(pdev);
4794 struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4795
4796 if (pci_enable_device_mem(pdev)) {
4797 dev_err(&pdev->dev,
4798 "Cannot re-enable PCI device after reset.\n");
4799 return PCI_ERS_RESULT_DISCONNECT;
4800 }
4801
4802 adapter->hw.hw_addr = adapter->io_addr;
4803 smp_mb__before_atomic();
4804 clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4805 pci_set_master(pdev);
4806
4807 ixgbevf_reset(adapter);
4808
4809 return PCI_ERS_RESULT_RECOVERED;
4810 }
4811
4812 /**
4813 * ixgbevf_io_resume - called when traffic can start flowing again.
4814 * @pdev: Pointer to PCI device
4815 *
4816 * This callback is called when the error recovery driver tells us that
4817 * its OK to resume normal operation. Implementation resembles the
4818 * second-half of the ixgbevf_resume routine.
4819 **/
4820 static void ixgbevf_io_resume(struct pci_dev *pdev)
4821 {
4822 struct net_device *netdev = pci_get_drvdata(pdev);
4823
4824 rtnl_lock();
4825 if (netif_running(netdev))
4826 ixgbevf_open(netdev);
4827
4828 netif_device_attach(netdev);
4829 rtnl_unlock();
4830 }
4831
4832 /* PCI Error Recovery (ERS) */
4833 static const struct pci_error_handlers ixgbevf_err_handler = {
4834 .error_detected = ixgbevf_io_error_detected,
4835 .slot_reset = ixgbevf_io_slot_reset,
4836 .resume = ixgbevf_io_resume,
4837 };
4838
4839 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume);
4840
4841 static struct pci_driver ixgbevf_driver = {
4842 .name = ixgbevf_driver_name,
4843 .id_table = ixgbevf_pci_tbl,
4844 .probe = ixgbevf_probe,
4845 .remove = ixgbevf_remove,
4846
4847 /* Power Management Hooks */
4848 .driver.pm = &ixgbevf_pm_ops,
4849
4850 .shutdown = ixgbevf_shutdown,
4851 .err_handler = &ixgbevf_err_handler
4852 };
4853
4854 /**
4855 * ixgbevf_init_module - Driver Registration Routine
4856 *
4857 * ixgbevf_init_module is the first routine called when the driver is
4858 * loaded. All it does is register with the PCI subsystem.
4859 **/
4860 static int __init ixgbevf_init_module(void)
4861 {
4862 pr_info("%s\n", ixgbevf_driver_string);
4863 pr_info("%s\n", ixgbevf_copyright);
4864 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4865 if (!ixgbevf_wq) {
4866 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4867 return -ENOMEM;
4868 }
4869
4870 return pci_register_driver(&ixgbevf_driver);
4871 }
4872
4873 module_init(ixgbevf_init_module);
4874
4875 /**
4876 * ixgbevf_exit_module - Driver Exit Cleanup Routine
4877 *
4878 * ixgbevf_exit_module is called just before the driver is removed
4879 * from memory.
4880 **/
4881 static void __exit ixgbevf_exit_module(void)
4882 {
4883 pci_unregister_driver(&ixgbevf_driver);
4884 if (ixgbevf_wq) {
4885 destroy_workqueue(ixgbevf_wq);
4886 ixgbevf_wq = NULL;
4887 }
4888 }
4889
4890 #ifdef DEBUG
4891 /**
4892 * ixgbevf_get_hw_dev_name - return device name string
4893 * used by hardware layer to print debugging information
4894 * @hw: pointer to private hardware struct
4895 **/
4896 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4897 {
4898 struct ixgbevf_adapter *adapter = hw->back;
4899
4900 return adapter->netdev->name;
4901 }
4902
4903 #endif
4904 module_exit(ixgbevf_exit_module);
4905
4906 /* ixgbevf_main.c */