]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/marvell/mvneta.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40
41 /* Registers */
42 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
43 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
44 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
45 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
46 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
47 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
48 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
49 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
50 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
51 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
52 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
53 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
54 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
55 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
56 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
57 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
58 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
60 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
61 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
62 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
63 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
64 #define MVNETA_PORT_RX_RESET 0x1cc0
65 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
66 #define MVNETA_PHY_ADDR 0x2000
67 #define MVNETA_PHY_ADDR_MASK 0x1f
68 #define MVNETA_MBUS_RETRY 0x2010
69 #define MVNETA_UNIT_INTR_CAUSE 0x2080
70 #define MVNETA_UNIT_CONTROL 0x20B0
71 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
72 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
73 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
74 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
75 #define MVNETA_BASE_ADDR_ENABLE 0x2290
76 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
77 #define MVNETA_PORT_CONFIG 0x2400
78 #define MVNETA_UNI_PROMISC_MODE BIT(0)
79 #define MVNETA_DEF_RXQ(q) ((q) << 1)
80 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
81 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
82 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
83 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
84 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
85 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
86 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
87 MVNETA_DEF_RXQ_ARP(q) | \
88 MVNETA_DEF_RXQ_TCP(q) | \
89 MVNETA_DEF_RXQ_UDP(q) | \
90 MVNETA_DEF_RXQ_BPDU(q) | \
91 MVNETA_TX_UNSET_ERR_SUM | \
92 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
93 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
94 #define MVNETA_MAC_ADDR_LOW 0x2414
95 #define MVNETA_MAC_ADDR_HIGH 0x2418
96 #define MVNETA_SDMA_CONFIG 0x241c
97 #define MVNETA_SDMA_BRST_SIZE_16 4
98 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
99 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
100 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
101 #define MVNETA_DESC_SWAP BIT(6)
102 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
103 #define MVNETA_PORT_STATUS 0x2444
104 #define MVNETA_TX_IN_PRGRS BIT(1)
105 #define MVNETA_TX_FIFO_EMPTY BIT(8)
106 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
107 #define MVNETA_SERDES_CFG 0x24A0
108 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
109 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
110 #define MVNETA_TYPE_PRIO 0x24bc
111 #define MVNETA_FORCE_UNI BIT(21)
112 #define MVNETA_TXQ_CMD_1 0x24e4
113 #define MVNETA_TXQ_CMD 0x2448
114 #define MVNETA_TXQ_DISABLE_SHIFT 8
115 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
116 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
117 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
118 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
119 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
120 #define MVNETA_ACC_MODE 0x2500
121 #define MVNETA_BM_ADDRESS 0x2504
122 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
123 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
124 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
125 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
126 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
127 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
128
129 /* Exception Interrupt Port/Queue Cause register
130 *
131 * Their behavior depend of the mapping done using the PCPX2Q
132 * registers. For a given CPU if the bit associated to a queue is not
133 * set, then for the register a read from this CPU will always return
134 * 0 and a write won't do anything
135 */
136
137 #define MVNETA_INTR_NEW_CAUSE 0x25a0
138 #define MVNETA_INTR_NEW_MASK 0x25a4
139
140 /* bits 0..7 = TXQ SENT, one bit per queue.
141 * bits 8..15 = RXQ OCCUP, one bit per queue.
142 * bits 16..23 = RXQ FREE, one bit per queue.
143 * bit 29 = OLD_REG_SUM, see old reg ?
144 * bit 30 = TX_ERR_SUM, one bit for 4 ports
145 * bit 31 = MISC_SUM, one bit for 4 ports
146 */
147 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
148 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
149 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
150 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
151 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
152
153 #define MVNETA_INTR_OLD_CAUSE 0x25a8
154 #define MVNETA_INTR_OLD_MASK 0x25ac
155
156 /* Data Path Port/Queue Cause Register */
157 #define MVNETA_INTR_MISC_CAUSE 0x25b0
158 #define MVNETA_INTR_MISC_MASK 0x25b4
159
160 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
161 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
162 #define MVNETA_CAUSE_PTP BIT(4)
163
164 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
165 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
166 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
167 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
168 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
169 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
170 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
171 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
172
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
175 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
176
177 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
178 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
179 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
180
181 #define MVNETA_INTR_ENABLE 0x25b8
182 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
183 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
184
185 #define MVNETA_RXQ_CMD 0x2680
186 #define MVNETA_RXQ_DISABLE_SHIFT 8
187 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
188 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
189 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
190 #define MVNETA_GMAC_CTRL_0 0x2c00
191 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
192 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
193 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
194 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
195 #define MVNETA_GMAC_CTRL_2 0x2c08
196 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
197 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
198 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
199 #define MVNETA_GMAC2_PORT_RESET BIT(6)
200 #define MVNETA_GMAC_STATUS 0x2c10
201 #define MVNETA_GMAC_LINK_UP BIT(0)
202 #define MVNETA_GMAC_SPEED_1000 BIT(1)
203 #define MVNETA_GMAC_SPEED_100 BIT(2)
204 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
205 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
206 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
207 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
208 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
209 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
210 #define MVNETA_GMAC_SYNC_OK BIT(14)
211 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
212 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
213 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
214 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
215 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
216 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
217 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
218 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
219 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
220 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
221 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
222 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
223 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
224 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
225 #define MVNETA_GMAC_CTRL_4 0x2c90
226 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1)
227 #define MVNETA_MIB_COUNTERS_BASE 0x3000
228 #define MVNETA_MIB_LATE_COLLISION 0x7c
229 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
230 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
231 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
232 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
233 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
234 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
235 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
236 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
237 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
238 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
239 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
240 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
241 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
242 #define MVNETA_PORT_TX_RESET 0x3cf0
243 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
244 #define MVNETA_TX_MTU 0x3e0c
245 #define MVNETA_TX_TOKEN_SIZE 0x3e14
246 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
247 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
248 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
249
250 #define MVNETA_LPI_CTRL_0 0x2cc0
251 #define MVNETA_LPI_CTRL_1 0x2cc4
252 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
253 #define MVNETA_LPI_CTRL_2 0x2cc8
254 #define MVNETA_LPI_STATUS 0x2ccc
255
256 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
257
258 /* Descriptor ring Macros */
259 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
260 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
261
262 /* Various constants */
263
264 /* Coalescing */
265 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
266 #define MVNETA_RX_COAL_PKTS 32
267 #define MVNETA_RX_COAL_USEC 100
268
269 /* The two bytes Marvell header. Either contains a special value used
270 * by Marvell switches when a specific hardware mode is enabled (not
271 * supported by this driver) or is filled automatically by zeroes on
272 * the RX side. Those two bytes being at the front of the Ethernet
273 * header, they allow to have the IP header aligned on a 4 bytes
274 * boundary automatically: the hardware skips those two bytes on its
275 * own.
276 */
277 #define MVNETA_MH_SIZE 2
278
279 #define MVNETA_VLAN_TAG_LEN 4
280
281 #define MVNETA_TX_CSUM_DEF_SIZE 1600
282 #define MVNETA_TX_CSUM_MAX_SIZE 9800
283 #define MVNETA_ACC_MODE_EXT1 1
284 #define MVNETA_ACC_MODE_EXT2 2
285
286 #define MVNETA_MAX_DECODE_WIN 6
287
288 /* Timeout constants */
289 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
290 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
291 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
292
293 #define MVNETA_TX_MTU_MAX 0x3ffff
294
295 /* The RSS lookup table actually has 256 entries but we do not use
296 * them yet
297 */
298 #define MVNETA_RSS_LU_TABLE_SIZE 1
299
300 /* Max number of Rx descriptors */
301 #define MVNETA_MAX_RXD 512
302
303 /* Max number of Tx descriptors */
304 #define MVNETA_MAX_TXD 1024
305
306 /* Max number of allowed TCP segments for software TSO */
307 #define MVNETA_MAX_TSO_SEGS 100
308
309 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
310
311 /* descriptor aligned size */
312 #define MVNETA_DESC_ALIGNED_SIZE 32
313
314 /* Number of bytes to be taken into account by HW when putting incoming data
315 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
316 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
317 */
318 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
319
320 #define MVNETA_RX_PKT_SIZE(mtu) \
321 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
322 ETH_HLEN + ETH_FCS_LEN, \
323 cache_line_size())
324
325 #define IS_TSO_HEADER(txq, addr) \
326 ((addr >= txq->tso_hdrs_phys) && \
327 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
328
329 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
330 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
331
332 enum {
333 ETHTOOL_STAT_EEE_WAKEUP,
334 ETHTOOL_STAT_SKB_ALLOC_ERR,
335 ETHTOOL_STAT_REFILL_ERR,
336 ETHTOOL_MAX_STATS,
337 };
338
339 struct mvneta_statistic {
340 unsigned short offset;
341 unsigned short type;
342 const char name[ETH_GSTRING_LEN];
343 };
344
345 #define T_REG_32 32
346 #define T_REG_64 64
347 #define T_SW 1
348
349 static const struct mvneta_statistic mvneta_statistics[] = {
350 { 0x3000, T_REG_64, "good_octets_received", },
351 { 0x3010, T_REG_32, "good_frames_received", },
352 { 0x3008, T_REG_32, "bad_octets_received", },
353 { 0x3014, T_REG_32, "bad_frames_received", },
354 { 0x3018, T_REG_32, "broadcast_frames_received", },
355 { 0x301c, T_REG_32, "multicast_frames_received", },
356 { 0x3050, T_REG_32, "unrec_mac_control_received", },
357 { 0x3058, T_REG_32, "good_fc_received", },
358 { 0x305c, T_REG_32, "bad_fc_received", },
359 { 0x3060, T_REG_32, "undersize_received", },
360 { 0x3064, T_REG_32, "fragments_received", },
361 { 0x3068, T_REG_32, "oversize_received", },
362 { 0x306c, T_REG_32, "jabber_received", },
363 { 0x3070, T_REG_32, "mac_receive_error", },
364 { 0x3074, T_REG_32, "bad_crc_event", },
365 { 0x3078, T_REG_32, "collision", },
366 { 0x307c, T_REG_32, "late_collision", },
367 { 0x2484, T_REG_32, "rx_discard", },
368 { 0x2488, T_REG_32, "rx_overrun", },
369 { 0x3020, T_REG_32, "frames_64_octets", },
370 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
371 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
372 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
373 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
374 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
375 { 0x3038, T_REG_64, "good_octets_sent", },
376 { 0x3040, T_REG_32, "good_frames_sent", },
377 { 0x3044, T_REG_32, "excessive_collision", },
378 { 0x3048, T_REG_32, "multicast_frames_sent", },
379 { 0x304c, T_REG_32, "broadcast_frames_sent", },
380 { 0x3054, T_REG_32, "fc_sent", },
381 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
382 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
383 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
384 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
385 };
386
387 struct mvneta_pcpu_stats {
388 struct u64_stats_sync syncp;
389 u64 rx_packets;
390 u64 rx_bytes;
391 u64 tx_packets;
392 u64 tx_bytes;
393 };
394
395 struct mvneta_pcpu_port {
396 /* Pointer to the shared port */
397 struct mvneta_port *pp;
398
399 /* Pointer to the CPU-local NAPI struct */
400 struct napi_struct napi;
401
402 /* Cause of the previous interrupt */
403 u32 cause_rx_tx;
404 };
405
406 struct mvneta_port {
407 u8 id;
408 struct mvneta_pcpu_port __percpu *ports;
409 struct mvneta_pcpu_stats __percpu *stats;
410
411 int pkt_size;
412 void __iomem *base;
413 struct mvneta_rx_queue *rxqs;
414 struct mvneta_tx_queue *txqs;
415 struct net_device *dev;
416 struct hlist_node node_online;
417 struct hlist_node node_dead;
418 int rxq_def;
419 /* Protect the access to the percpu interrupt registers,
420 * ensuring that the configuration remains coherent.
421 */
422 spinlock_t lock;
423 bool is_stopped;
424
425 u32 cause_rx_tx;
426 struct napi_struct napi;
427
428 /* Core clock */
429 struct clk *clk;
430 /* AXI clock */
431 struct clk *clk_bus;
432 u8 mcast_count[256];
433 u16 tx_ring_size;
434 u16 rx_ring_size;
435
436 phy_interface_t phy_interface;
437 struct device_node *dn;
438 unsigned int tx_csum_limit;
439 struct phylink *phylink;
440 struct phy *comphy;
441
442 struct mvneta_bm *bm_priv;
443 struct mvneta_bm_pool *pool_long;
444 struct mvneta_bm_pool *pool_short;
445 int bm_win_id;
446
447 bool eee_enabled;
448 bool eee_active;
449 bool tx_lpi_enabled;
450
451 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
452
453 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
454
455 /* Flags for special SoC configurations */
456 bool neta_armada3700;
457 u16 rx_offset_correction;
458 const struct mbus_dram_target_info *dram_target_info;
459 };
460
461 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
462 * layout of the transmit and reception DMA descriptors, and their
463 * layout is therefore defined by the hardware design
464 */
465
466 #define MVNETA_TX_L3_OFF_SHIFT 0
467 #define MVNETA_TX_IP_HLEN_SHIFT 8
468 #define MVNETA_TX_L4_UDP BIT(16)
469 #define MVNETA_TX_L3_IP6 BIT(17)
470 #define MVNETA_TXD_IP_CSUM BIT(18)
471 #define MVNETA_TXD_Z_PAD BIT(19)
472 #define MVNETA_TXD_L_DESC BIT(20)
473 #define MVNETA_TXD_F_DESC BIT(21)
474 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
475 MVNETA_TXD_L_DESC | \
476 MVNETA_TXD_F_DESC)
477 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
478 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
479
480 #define MVNETA_RXD_ERR_CRC 0x0
481 #define MVNETA_RXD_BM_POOL_SHIFT 13
482 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
483 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
484 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
485 #define MVNETA_RXD_ERR_LEN BIT(18)
486 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
487 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
488 #define MVNETA_RXD_L3_IP4 BIT(25)
489 #define MVNETA_RXD_LAST_DESC BIT(26)
490 #define MVNETA_RXD_FIRST_DESC BIT(27)
491 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
492 MVNETA_RXD_LAST_DESC)
493 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
494
495 #if defined(__LITTLE_ENDIAN)
496 struct mvneta_tx_desc {
497 u32 command; /* Options used by HW for packet transmitting.*/
498 u16 reserved1; /* csum_l4 (for future use) */
499 u16 data_size; /* Data size of transmitted packet in bytes */
500 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
501 u32 reserved2; /* hw_cmd - (for future use, PMT) */
502 u32 reserved3[4]; /* Reserved - (for future use) */
503 };
504
505 struct mvneta_rx_desc {
506 u32 status; /* Info about received packet */
507 u16 reserved1; /* pnc_info - (for future use, PnC) */
508 u16 data_size; /* Size of received packet in bytes */
509
510 u32 buf_phys_addr; /* Physical address of the buffer */
511 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
512
513 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
514 u16 reserved3; /* prefetch_cmd, for future use */
515 u16 reserved4; /* csum_l4 - (for future use, PnC) */
516
517 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
518 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
519 };
520 #else
521 struct mvneta_tx_desc {
522 u16 data_size; /* Data size of transmitted packet in bytes */
523 u16 reserved1; /* csum_l4 (for future use) */
524 u32 command; /* Options used by HW for packet transmitting.*/
525 u32 reserved2; /* hw_cmd - (for future use, PMT) */
526 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
527 u32 reserved3[4]; /* Reserved - (for future use) */
528 };
529
530 struct mvneta_rx_desc {
531 u16 data_size; /* Size of received packet in bytes */
532 u16 reserved1; /* pnc_info - (for future use, PnC) */
533 u32 status; /* Info about received packet */
534
535 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
536 u32 buf_phys_addr; /* Physical address of the buffer */
537
538 u16 reserved4; /* csum_l4 - (for future use, PnC) */
539 u16 reserved3; /* prefetch_cmd, for future use */
540 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
541
542 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
543 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
544 };
545 #endif
546
547 struct mvneta_tx_queue {
548 /* Number of this TX queue, in the range 0-7 */
549 u8 id;
550
551 /* Number of TX DMA descriptors in the descriptor ring */
552 int size;
553
554 /* Number of currently used TX DMA descriptor in the
555 * descriptor ring
556 */
557 int count;
558 int pending;
559 int tx_stop_threshold;
560 int tx_wake_threshold;
561
562 /* Array of transmitted skb */
563 struct sk_buff **tx_skb;
564
565 /* Index of last TX DMA descriptor that was inserted */
566 int txq_put_index;
567
568 /* Index of the TX DMA descriptor to be cleaned up */
569 int txq_get_index;
570
571 u32 done_pkts_coal;
572
573 /* Virtual address of the TX DMA descriptors array */
574 struct mvneta_tx_desc *descs;
575
576 /* DMA address of the TX DMA descriptors array */
577 dma_addr_t descs_phys;
578
579 /* Index of the last TX DMA descriptor */
580 int last_desc;
581
582 /* Index of the next TX DMA descriptor to process */
583 int next_desc_to_proc;
584
585 /* DMA buffers for TSO headers */
586 char *tso_hdrs;
587
588 /* DMA address of TSO headers */
589 dma_addr_t tso_hdrs_phys;
590
591 /* Affinity mask for CPUs*/
592 cpumask_t affinity_mask;
593 };
594
595 struct mvneta_rx_queue {
596 /* rx queue number, in the range 0-7 */
597 u8 id;
598
599 /* num of rx descriptors in the rx descriptor ring */
600 int size;
601
602 u32 pkts_coal;
603 u32 time_coal;
604
605 /* Virtual address of the RX buffer */
606 void **buf_virt_addr;
607
608 /* Virtual address of the RX DMA descriptors array */
609 struct mvneta_rx_desc *descs;
610
611 /* DMA address of the RX DMA descriptors array */
612 dma_addr_t descs_phys;
613
614 /* Index of the last RX DMA descriptor */
615 int last_desc;
616
617 /* Index of the next RX DMA descriptor to process */
618 int next_desc_to_proc;
619
620 /* Index of first RX DMA descriptor to refill */
621 int first_to_refill;
622 u32 refill_num;
623
624 /* pointer to uncomplete skb buffer */
625 struct sk_buff *skb;
626 int left_size;
627
628 /* error counters */
629 u32 skb_alloc_err;
630 u32 refill_err;
631 };
632
633 static enum cpuhp_state online_hpstate;
634 /* The hardware supports eight (8) rx queues, but we are only allowing
635 * the first one to be used. Therefore, let's just allocate one queue.
636 */
637 static int rxq_number = 8;
638 static int txq_number = 8;
639
640 static int rxq_def;
641
642 static int rx_copybreak __read_mostly = 256;
643 static int rx_header_size __read_mostly = 128;
644
645 /* HW BM need that each port be identify by a unique ID */
646 static int global_port_id;
647
648 #define MVNETA_DRIVER_NAME "mvneta"
649 #define MVNETA_DRIVER_VERSION "1.0"
650
651 /* Utility/helper methods */
652
653 /* Write helper method */
654 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
655 {
656 writel(data, pp->base + offset);
657 }
658
659 /* Read helper method */
660 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
661 {
662 return readl(pp->base + offset);
663 }
664
665 /* Increment txq get counter */
666 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
667 {
668 txq->txq_get_index++;
669 if (txq->txq_get_index == txq->size)
670 txq->txq_get_index = 0;
671 }
672
673 /* Increment txq put counter */
674 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
675 {
676 txq->txq_put_index++;
677 if (txq->txq_put_index == txq->size)
678 txq->txq_put_index = 0;
679 }
680
681
682 /* Clear all MIB counters */
683 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
684 {
685 int i;
686 u32 dummy;
687
688 /* Perform dummy reads from MIB counters */
689 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
690 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
691 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
692 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
693 }
694
695 /* Get System Network Statistics */
696 static void
697 mvneta_get_stats64(struct net_device *dev,
698 struct rtnl_link_stats64 *stats)
699 {
700 struct mvneta_port *pp = netdev_priv(dev);
701 unsigned int start;
702 int cpu;
703
704 for_each_possible_cpu(cpu) {
705 struct mvneta_pcpu_stats *cpu_stats;
706 u64 rx_packets;
707 u64 rx_bytes;
708 u64 tx_packets;
709 u64 tx_bytes;
710
711 cpu_stats = per_cpu_ptr(pp->stats, cpu);
712 do {
713 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
714 rx_packets = cpu_stats->rx_packets;
715 rx_bytes = cpu_stats->rx_bytes;
716 tx_packets = cpu_stats->tx_packets;
717 tx_bytes = cpu_stats->tx_bytes;
718 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
719
720 stats->rx_packets += rx_packets;
721 stats->rx_bytes += rx_bytes;
722 stats->tx_packets += tx_packets;
723 stats->tx_bytes += tx_bytes;
724 }
725
726 stats->rx_errors = dev->stats.rx_errors;
727 stats->rx_dropped = dev->stats.rx_dropped;
728
729 stats->tx_dropped = dev->stats.tx_dropped;
730 }
731
732 /* Rx descriptors helper methods */
733
734 /* Checks whether the RX descriptor having this status is both the first
735 * and the last descriptor for the RX packet. Each RX packet is currently
736 * received through a single RX descriptor, so not having each RX
737 * descriptor with its first and last bits set is an error
738 */
739 static int mvneta_rxq_desc_is_first_last(u32 status)
740 {
741 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
742 MVNETA_RXD_FIRST_LAST_DESC;
743 }
744
745 /* Add number of descriptors ready to receive new packets */
746 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
747 struct mvneta_rx_queue *rxq,
748 int ndescs)
749 {
750 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
751 * be added at once
752 */
753 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
754 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
755 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
756 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
757 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
758 }
759
760 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
761 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
762 }
763
764 /* Get number of RX descriptors occupied by received packets */
765 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
766 struct mvneta_rx_queue *rxq)
767 {
768 u32 val;
769
770 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
771 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
772 }
773
774 /* Update num of rx desc called upon return from rx path or
775 * from mvneta_rxq_drop_pkts().
776 */
777 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
778 struct mvneta_rx_queue *rxq,
779 int rx_done, int rx_filled)
780 {
781 u32 val;
782
783 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
784 val = rx_done |
785 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
786 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
787 return;
788 }
789
790 /* Only 255 descriptors can be added at once */
791 while ((rx_done > 0) || (rx_filled > 0)) {
792 if (rx_done <= 0xff) {
793 val = rx_done;
794 rx_done = 0;
795 } else {
796 val = 0xff;
797 rx_done -= 0xff;
798 }
799 if (rx_filled <= 0xff) {
800 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
801 rx_filled = 0;
802 } else {
803 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
804 rx_filled -= 0xff;
805 }
806 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
807 }
808 }
809
810 /* Get pointer to next RX descriptor to be processed by SW */
811 static struct mvneta_rx_desc *
812 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
813 {
814 int rx_desc = rxq->next_desc_to_proc;
815
816 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
817 prefetch(rxq->descs + rxq->next_desc_to_proc);
818 return rxq->descs + rx_desc;
819 }
820
821 /* Change maximum receive size of the port. */
822 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
823 {
824 u32 val;
825
826 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
827 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
828 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
829 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
830 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
831 }
832
833
834 /* Set rx queue offset */
835 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
836 struct mvneta_rx_queue *rxq,
837 int offset)
838 {
839 u32 val;
840
841 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
842 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
843
844 /* Offset is in */
845 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
846 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
847 }
848
849
850 /* Tx descriptors helper methods */
851
852 /* Update HW with number of TX descriptors to be sent */
853 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
854 struct mvneta_tx_queue *txq,
855 int pend_desc)
856 {
857 u32 val;
858
859 pend_desc += txq->pending;
860
861 /* Only 255 Tx descriptors can be added at once */
862 do {
863 val = min(pend_desc, 255);
864 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
865 pend_desc -= val;
866 } while (pend_desc > 0);
867 txq->pending = 0;
868 }
869
870 /* Get pointer to next TX descriptor to be processed (send) by HW */
871 static struct mvneta_tx_desc *
872 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
873 {
874 int tx_desc = txq->next_desc_to_proc;
875
876 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
877 return txq->descs + tx_desc;
878 }
879
880 /* Release the last allocated TX descriptor. Useful to handle DMA
881 * mapping failures in the TX path.
882 */
883 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
884 {
885 if (txq->next_desc_to_proc == 0)
886 txq->next_desc_to_proc = txq->last_desc - 1;
887 else
888 txq->next_desc_to_proc--;
889 }
890
891 /* Set rxq buf size */
892 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
893 struct mvneta_rx_queue *rxq,
894 int buf_size)
895 {
896 u32 val;
897
898 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
899
900 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
901 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
902
903 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
904 }
905
906 /* Disable buffer management (BM) */
907 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
908 struct mvneta_rx_queue *rxq)
909 {
910 u32 val;
911
912 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
913 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
914 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
915 }
916
917 /* Enable buffer management (BM) */
918 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
919 struct mvneta_rx_queue *rxq)
920 {
921 u32 val;
922
923 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
924 val |= MVNETA_RXQ_HW_BUF_ALLOC;
925 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
926 }
927
928 /* Notify HW about port's assignment of pool for bigger packets */
929 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
930 struct mvneta_rx_queue *rxq)
931 {
932 u32 val;
933
934 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
935 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
936 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
937
938 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
939 }
940
941 /* Notify HW about port's assignment of pool for smaller packets */
942 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
943 struct mvneta_rx_queue *rxq)
944 {
945 u32 val;
946
947 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
948 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
949 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
950
951 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
952 }
953
954 /* Set port's receive buffer size for assigned BM pool */
955 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
956 int buf_size,
957 u8 pool_id)
958 {
959 u32 val;
960
961 if (!IS_ALIGNED(buf_size, 8)) {
962 dev_warn(pp->dev->dev.parent,
963 "illegal buf_size value %d, round to %d\n",
964 buf_size, ALIGN(buf_size, 8));
965 buf_size = ALIGN(buf_size, 8);
966 }
967
968 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
969 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
970 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
971 }
972
973 /* Configure MBUS window in order to enable access BM internal SRAM */
974 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
975 u8 target, u8 attr)
976 {
977 u32 win_enable, win_protect;
978 int i;
979
980 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
981
982 if (pp->bm_win_id < 0) {
983 /* Find first not occupied window */
984 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
985 if (win_enable & (1 << i)) {
986 pp->bm_win_id = i;
987 break;
988 }
989 }
990 if (i == MVNETA_MAX_DECODE_WIN)
991 return -ENOMEM;
992 } else {
993 i = pp->bm_win_id;
994 }
995
996 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
997 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
998
999 if (i < 4)
1000 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1001
1002 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1003 (attr << 8) | target);
1004
1005 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1006
1007 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1008 win_protect |= 3 << (2 * i);
1009 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1010
1011 win_enable &= ~(1 << i);
1012 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1013
1014 return 0;
1015 }
1016
1017 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1018 {
1019 u32 wsize;
1020 u8 target, attr;
1021 int err;
1022
1023 /* Get BM window information */
1024 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1025 &target, &attr);
1026 if (err < 0)
1027 return err;
1028
1029 pp->bm_win_id = -1;
1030
1031 /* Open NETA -> BM window */
1032 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1033 target, attr);
1034 if (err < 0) {
1035 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1036 return err;
1037 }
1038 return 0;
1039 }
1040
1041 /* Assign and initialize pools for port. In case of fail
1042 * buffer manager will remain disabled for current port.
1043 */
1044 static int mvneta_bm_port_init(struct platform_device *pdev,
1045 struct mvneta_port *pp)
1046 {
1047 struct device_node *dn = pdev->dev.of_node;
1048 u32 long_pool_id, short_pool_id;
1049
1050 if (!pp->neta_armada3700) {
1051 int ret;
1052
1053 ret = mvneta_bm_port_mbus_init(pp);
1054 if (ret)
1055 return ret;
1056 }
1057
1058 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1059 netdev_info(pp->dev, "missing long pool id\n");
1060 return -EINVAL;
1061 }
1062
1063 /* Create port's long pool depending on mtu */
1064 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1065 MVNETA_BM_LONG, pp->id,
1066 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1067 if (!pp->pool_long) {
1068 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1069 return -ENOMEM;
1070 }
1071
1072 pp->pool_long->port_map |= 1 << pp->id;
1073
1074 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1075 pp->pool_long->id);
1076
1077 /* If short pool id is not defined, assume using single pool */
1078 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1079 short_pool_id = long_pool_id;
1080
1081 /* Create port's short pool */
1082 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1083 MVNETA_BM_SHORT, pp->id,
1084 MVNETA_BM_SHORT_PKT_SIZE);
1085 if (!pp->pool_short) {
1086 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1087 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1088 return -ENOMEM;
1089 }
1090
1091 if (short_pool_id != long_pool_id) {
1092 pp->pool_short->port_map |= 1 << pp->id;
1093 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1094 pp->pool_short->id);
1095 }
1096
1097 return 0;
1098 }
1099
1100 /* Update settings of a pool for bigger packets */
1101 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1102 {
1103 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1104 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1105 int num;
1106
1107 /* Release all buffers from long pool */
1108 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1109 if (hwbm_pool->buf_num) {
1110 WARN(1, "cannot free all buffers in pool %d\n",
1111 bm_pool->id);
1112 goto bm_mtu_err;
1113 }
1114
1115 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1116 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1117 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1118 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1119
1120 /* Fill entire long pool */
1121 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1122 if (num != hwbm_pool->size) {
1123 WARN(1, "pool %d: %d of %d allocated\n",
1124 bm_pool->id, num, hwbm_pool->size);
1125 goto bm_mtu_err;
1126 }
1127 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1128
1129 return;
1130
1131 bm_mtu_err:
1132 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1133 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1134
1135 pp->bm_priv = NULL;
1136 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1137 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1138 }
1139
1140 /* Start the Ethernet port RX and TX activity */
1141 static void mvneta_port_up(struct mvneta_port *pp)
1142 {
1143 int queue;
1144 u32 q_map;
1145
1146 /* Enable all initialized TXs. */
1147 q_map = 0;
1148 for (queue = 0; queue < txq_number; queue++) {
1149 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1150 if (txq->descs)
1151 q_map |= (1 << queue);
1152 }
1153 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1154
1155 q_map = 0;
1156 /* Enable all initialized RXQs. */
1157 for (queue = 0; queue < rxq_number; queue++) {
1158 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1159
1160 if (rxq->descs)
1161 q_map |= (1 << queue);
1162 }
1163 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1164 }
1165
1166 /* Stop the Ethernet port activity */
1167 static void mvneta_port_down(struct mvneta_port *pp)
1168 {
1169 u32 val;
1170 int count;
1171
1172 /* Stop Rx port activity. Check port Rx activity. */
1173 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1174
1175 /* Issue stop command for active channels only */
1176 if (val != 0)
1177 mvreg_write(pp, MVNETA_RXQ_CMD,
1178 val << MVNETA_RXQ_DISABLE_SHIFT);
1179
1180 /* Wait for all Rx activity to terminate. */
1181 count = 0;
1182 do {
1183 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1184 netdev_warn(pp->dev,
1185 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1186 val);
1187 break;
1188 }
1189 mdelay(1);
1190
1191 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1192 } while (val & MVNETA_RXQ_ENABLE_MASK);
1193
1194 /* Stop Tx port activity. Check port Tx activity. Issue stop
1195 * command for active channels only
1196 */
1197 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1198
1199 if (val != 0)
1200 mvreg_write(pp, MVNETA_TXQ_CMD,
1201 (val << MVNETA_TXQ_DISABLE_SHIFT));
1202
1203 /* Wait for all Tx activity to terminate. */
1204 count = 0;
1205 do {
1206 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1207 netdev_warn(pp->dev,
1208 "TIMEOUT for TX stopped status=0x%08x\n",
1209 val);
1210 break;
1211 }
1212 mdelay(1);
1213
1214 /* Check TX Command reg that all Txqs are stopped */
1215 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1216
1217 } while (val & MVNETA_TXQ_ENABLE_MASK);
1218
1219 /* Double check to verify that TX FIFO is empty */
1220 count = 0;
1221 do {
1222 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1223 netdev_warn(pp->dev,
1224 "TX FIFO empty timeout status=0x%08x\n",
1225 val);
1226 break;
1227 }
1228 mdelay(1);
1229
1230 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1231 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1232 (val & MVNETA_TX_IN_PRGRS));
1233
1234 udelay(200);
1235 }
1236
1237 /* Enable the port by setting the port enable bit of the MAC control register */
1238 static void mvneta_port_enable(struct mvneta_port *pp)
1239 {
1240 u32 val;
1241
1242 /* Enable port */
1243 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1244 val |= MVNETA_GMAC0_PORT_ENABLE;
1245 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1246 }
1247
1248 /* Disable the port and wait for about 200 usec before retuning */
1249 static void mvneta_port_disable(struct mvneta_port *pp)
1250 {
1251 u32 val;
1252
1253 /* Reset the Enable bit in the Serial Control Register */
1254 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1255 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1256 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1257
1258 udelay(200);
1259 }
1260
1261 /* Multicast tables methods */
1262
1263 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1264 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1265 {
1266 int offset;
1267 u32 val;
1268
1269 if (queue == -1) {
1270 val = 0;
1271 } else {
1272 val = 0x1 | (queue << 1);
1273 val |= (val << 24) | (val << 16) | (val << 8);
1274 }
1275
1276 for (offset = 0; offset <= 0xc; offset += 4)
1277 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1278 }
1279
1280 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1281 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1282 {
1283 int offset;
1284 u32 val;
1285
1286 if (queue == -1) {
1287 val = 0;
1288 } else {
1289 val = 0x1 | (queue << 1);
1290 val |= (val << 24) | (val << 16) | (val << 8);
1291 }
1292
1293 for (offset = 0; offset <= 0xfc; offset += 4)
1294 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1295
1296 }
1297
1298 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1299 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1300 {
1301 int offset;
1302 u32 val;
1303
1304 if (queue == -1) {
1305 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1306 val = 0;
1307 } else {
1308 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1309 val = 0x1 | (queue << 1);
1310 val |= (val << 24) | (val << 16) | (val << 8);
1311 }
1312
1313 for (offset = 0; offset <= 0xfc; offset += 4)
1314 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1315 }
1316
1317 static void mvneta_percpu_unmask_interrupt(void *arg)
1318 {
1319 struct mvneta_port *pp = arg;
1320
1321 /* All the queue are unmasked, but actually only the ones
1322 * mapped to this CPU will be unmasked
1323 */
1324 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1325 MVNETA_RX_INTR_MASK_ALL |
1326 MVNETA_TX_INTR_MASK_ALL |
1327 MVNETA_MISCINTR_INTR_MASK);
1328 }
1329
1330 static void mvneta_percpu_mask_interrupt(void *arg)
1331 {
1332 struct mvneta_port *pp = arg;
1333
1334 /* All the queue are masked, but actually only the ones
1335 * mapped to this CPU will be masked
1336 */
1337 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1338 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1339 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1340 }
1341
1342 static void mvneta_percpu_clear_intr_cause(void *arg)
1343 {
1344 struct mvneta_port *pp = arg;
1345
1346 /* All the queue are cleared, but actually only the ones
1347 * mapped to this CPU will be cleared
1348 */
1349 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1350 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1351 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1352 }
1353
1354 /* This method sets defaults to the NETA port:
1355 * Clears interrupt Cause and Mask registers.
1356 * Clears all MAC tables.
1357 * Sets defaults to all registers.
1358 * Resets RX and TX descriptor rings.
1359 * Resets PHY.
1360 * This method can be called after mvneta_port_down() to return the port
1361 * settings to defaults.
1362 */
1363 static void mvneta_defaults_set(struct mvneta_port *pp)
1364 {
1365 int cpu;
1366 int queue;
1367 u32 val;
1368 int max_cpu = num_present_cpus();
1369
1370 /* Clear all Cause registers */
1371 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1372
1373 /* Mask all interrupts */
1374 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1375 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1376
1377 /* Enable MBUS Retry bit16 */
1378 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1379
1380 /* Set CPU queue access map. CPUs are assigned to the RX and
1381 * TX queues modulo their number. If there is only one TX
1382 * queue then it is assigned to the CPU associated to the
1383 * default RX queue.
1384 */
1385 for_each_present_cpu(cpu) {
1386 int rxq_map = 0, txq_map = 0;
1387 int rxq, txq;
1388 if (!pp->neta_armada3700) {
1389 for (rxq = 0; rxq < rxq_number; rxq++)
1390 if ((rxq % max_cpu) == cpu)
1391 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1392
1393 for (txq = 0; txq < txq_number; txq++)
1394 if ((txq % max_cpu) == cpu)
1395 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1396
1397 /* With only one TX queue we configure a special case
1398 * which will allow to get all the irq on a single
1399 * CPU
1400 */
1401 if (txq_number == 1)
1402 txq_map = (cpu == pp->rxq_def) ?
1403 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1404
1405 } else {
1406 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1407 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1408 }
1409
1410 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1411 }
1412
1413 /* Reset RX and TX DMAs */
1414 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1415 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1416
1417 /* Disable Legacy WRR, Disable EJP, Release from reset */
1418 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1419 for (queue = 0; queue < txq_number; queue++) {
1420 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1421 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1422 }
1423
1424 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1425 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1426
1427 /* Set Port Acceleration Mode */
1428 if (pp->bm_priv)
1429 /* HW buffer management + legacy parser */
1430 val = MVNETA_ACC_MODE_EXT2;
1431 else
1432 /* SW buffer management + legacy parser */
1433 val = MVNETA_ACC_MODE_EXT1;
1434 mvreg_write(pp, MVNETA_ACC_MODE, val);
1435
1436 if (pp->bm_priv)
1437 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1438
1439 /* Update val of portCfg register accordingly with all RxQueue types */
1440 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1441 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1442
1443 val = 0;
1444 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1445 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1446
1447 /* Build PORT_SDMA_CONFIG_REG */
1448 val = 0;
1449
1450 /* Default burst size */
1451 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1452 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1453 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1454
1455 #if defined(__BIG_ENDIAN)
1456 val |= MVNETA_DESC_SWAP;
1457 #endif
1458
1459 /* Assign port SDMA configuration */
1460 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1461
1462 /* Disable PHY polling in hardware, since we're using the
1463 * kernel phylib to do this.
1464 */
1465 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1466 val &= ~MVNETA_PHY_POLLING_ENABLE;
1467 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1468
1469 mvneta_set_ucast_table(pp, -1);
1470 mvneta_set_special_mcast_table(pp, -1);
1471 mvneta_set_other_mcast_table(pp, -1);
1472
1473 /* Set port interrupt enable register - default enable all */
1474 mvreg_write(pp, MVNETA_INTR_ENABLE,
1475 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1476 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1477
1478 mvneta_mib_counters_clear(pp);
1479 }
1480
1481 /* Set max sizes for tx queues */
1482 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1483
1484 {
1485 u32 val, size, mtu;
1486 int queue;
1487
1488 mtu = max_tx_size * 8;
1489 if (mtu > MVNETA_TX_MTU_MAX)
1490 mtu = MVNETA_TX_MTU_MAX;
1491
1492 /* Set MTU */
1493 val = mvreg_read(pp, MVNETA_TX_MTU);
1494 val &= ~MVNETA_TX_MTU_MAX;
1495 val |= mtu;
1496 mvreg_write(pp, MVNETA_TX_MTU, val);
1497
1498 /* TX token size and all TXQs token size must be larger that MTU */
1499 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1500
1501 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1502 if (size < mtu) {
1503 size = mtu;
1504 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1505 val |= size;
1506 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1507 }
1508 for (queue = 0; queue < txq_number; queue++) {
1509 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1510
1511 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1512 if (size < mtu) {
1513 size = mtu;
1514 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1515 val |= size;
1516 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1517 }
1518 }
1519 }
1520
1521 /* Set unicast address */
1522 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1523 int queue)
1524 {
1525 unsigned int unicast_reg;
1526 unsigned int tbl_offset;
1527 unsigned int reg_offset;
1528
1529 /* Locate the Unicast table entry */
1530 last_nibble = (0xf & last_nibble);
1531
1532 /* offset from unicast tbl base */
1533 tbl_offset = (last_nibble / 4) * 4;
1534
1535 /* offset within the above reg */
1536 reg_offset = last_nibble % 4;
1537
1538 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1539
1540 if (queue == -1) {
1541 /* Clear accepts frame bit at specified unicast DA tbl entry */
1542 unicast_reg &= ~(0xff << (8 * reg_offset));
1543 } else {
1544 unicast_reg &= ~(0xff << (8 * reg_offset));
1545 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1546 }
1547
1548 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1549 }
1550
1551 /* Set mac address */
1552 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1553 int queue)
1554 {
1555 unsigned int mac_h;
1556 unsigned int mac_l;
1557
1558 if (queue != -1) {
1559 mac_l = (addr[4] << 8) | (addr[5]);
1560 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1561 (addr[2] << 8) | (addr[3] << 0);
1562
1563 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1564 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1565 }
1566
1567 /* Accept frames of this address */
1568 mvneta_set_ucast_addr(pp, addr[5], queue);
1569 }
1570
1571 /* Set the number of packets that will be received before RX interrupt
1572 * will be generated by HW.
1573 */
1574 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1575 struct mvneta_rx_queue *rxq, u32 value)
1576 {
1577 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1578 value | MVNETA_RXQ_NON_OCCUPIED(0));
1579 }
1580
1581 /* Set the time delay in usec before RX interrupt will be generated by
1582 * HW.
1583 */
1584 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1585 struct mvneta_rx_queue *rxq, u32 value)
1586 {
1587 u32 val;
1588 unsigned long clk_rate;
1589
1590 clk_rate = clk_get_rate(pp->clk);
1591 val = (clk_rate / 1000000) * value;
1592
1593 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1594 }
1595
1596 /* Set threshold for TX_DONE pkts coalescing */
1597 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1598 struct mvneta_tx_queue *txq, u32 value)
1599 {
1600 u32 val;
1601
1602 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1603
1604 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1605 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1606
1607 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1608 }
1609
1610 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1611 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1612 u32 phys_addr, void *virt_addr,
1613 struct mvneta_rx_queue *rxq)
1614 {
1615 int i;
1616
1617 rx_desc->buf_phys_addr = phys_addr;
1618 i = rx_desc - rxq->descs;
1619 rxq->buf_virt_addr[i] = virt_addr;
1620 }
1621
1622 /* Decrement sent descriptors counter */
1623 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1624 struct mvneta_tx_queue *txq,
1625 int sent_desc)
1626 {
1627 u32 val;
1628
1629 /* Only 255 TX descriptors can be updated at once */
1630 while (sent_desc > 0xff) {
1631 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1632 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1633 sent_desc = sent_desc - 0xff;
1634 }
1635
1636 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1637 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1638 }
1639
1640 /* Get number of TX descriptors already sent by HW */
1641 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1642 struct mvneta_tx_queue *txq)
1643 {
1644 u32 val;
1645 int sent_desc;
1646
1647 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1648 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1649 MVNETA_TXQ_SENT_DESC_SHIFT;
1650
1651 return sent_desc;
1652 }
1653
1654 /* Get number of sent descriptors and decrement counter.
1655 * The number of sent descriptors is returned.
1656 */
1657 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1658 struct mvneta_tx_queue *txq)
1659 {
1660 int sent_desc;
1661
1662 /* Get number of sent descriptors */
1663 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1664
1665 /* Decrement sent descriptors counter */
1666 if (sent_desc)
1667 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1668
1669 return sent_desc;
1670 }
1671
1672 /* Set TXQ descriptors fields relevant for CSUM calculation */
1673 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1674 int ip_hdr_len, int l4_proto)
1675 {
1676 u32 command;
1677
1678 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1679 * G_L4_chk, L4_type; required only for checksum
1680 * calculation
1681 */
1682 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1683 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1684
1685 if (l3_proto == htons(ETH_P_IP))
1686 command |= MVNETA_TXD_IP_CSUM;
1687 else
1688 command |= MVNETA_TX_L3_IP6;
1689
1690 if (l4_proto == IPPROTO_TCP)
1691 command |= MVNETA_TX_L4_CSUM_FULL;
1692 else if (l4_proto == IPPROTO_UDP)
1693 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1694 else
1695 command |= MVNETA_TX_L4_CSUM_NOT;
1696
1697 return command;
1698 }
1699
1700
1701 /* Display more error info */
1702 static void mvneta_rx_error(struct mvneta_port *pp,
1703 struct mvneta_rx_desc *rx_desc)
1704 {
1705 u32 status = rx_desc->status;
1706
1707 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1708 case MVNETA_RXD_ERR_CRC:
1709 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1710 status, rx_desc->data_size);
1711 break;
1712 case MVNETA_RXD_ERR_OVERRUN:
1713 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1714 status, rx_desc->data_size);
1715 break;
1716 case MVNETA_RXD_ERR_LEN:
1717 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1718 status, rx_desc->data_size);
1719 break;
1720 case MVNETA_RXD_ERR_RESOURCE:
1721 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1722 status, rx_desc->data_size);
1723 break;
1724 }
1725 }
1726
1727 /* Handle RX checksum offload based on the descriptor's status */
1728 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1729 struct sk_buff *skb)
1730 {
1731 if ((pp->dev->features & NETIF_F_RXCSUM) &&
1732 (status & MVNETA_RXD_L3_IP4) &&
1733 (status & MVNETA_RXD_L4_CSUM_OK)) {
1734 skb->csum = 0;
1735 skb->ip_summed = CHECKSUM_UNNECESSARY;
1736 return;
1737 }
1738
1739 skb->ip_summed = CHECKSUM_NONE;
1740 }
1741
1742 /* Return tx queue pointer (find last set bit) according to <cause> returned
1743 * form tx_done reg. <cause> must not be null. The return value is always a
1744 * valid queue for matching the first one found in <cause>.
1745 */
1746 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1747 u32 cause)
1748 {
1749 int queue = fls(cause) - 1;
1750
1751 return &pp->txqs[queue];
1752 }
1753
1754 /* Free tx queue skbuffs */
1755 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1756 struct mvneta_tx_queue *txq, int num,
1757 struct netdev_queue *nq)
1758 {
1759 unsigned int bytes_compl = 0, pkts_compl = 0;
1760 int i;
1761
1762 for (i = 0; i < num; i++) {
1763 struct mvneta_tx_desc *tx_desc = txq->descs +
1764 txq->txq_get_index;
1765 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1766
1767 if (skb) {
1768 bytes_compl += skb->len;
1769 pkts_compl++;
1770 }
1771
1772 mvneta_txq_inc_get(txq);
1773
1774 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1775 dma_unmap_single(pp->dev->dev.parent,
1776 tx_desc->buf_phys_addr,
1777 tx_desc->data_size, DMA_TO_DEVICE);
1778 if (!skb)
1779 continue;
1780 dev_kfree_skb_any(skb);
1781 }
1782
1783 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1784 }
1785
1786 /* Handle end of transmission */
1787 static void mvneta_txq_done(struct mvneta_port *pp,
1788 struct mvneta_tx_queue *txq)
1789 {
1790 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1791 int tx_done;
1792
1793 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1794 if (!tx_done)
1795 return;
1796
1797 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1798
1799 txq->count -= tx_done;
1800
1801 if (netif_tx_queue_stopped(nq)) {
1802 if (txq->count <= txq->tx_wake_threshold)
1803 netif_tx_wake_queue(nq);
1804 }
1805 }
1806
1807 /* Refill processing for SW buffer management */
1808 /* Allocate page per descriptor */
1809 static int mvneta_rx_refill(struct mvneta_port *pp,
1810 struct mvneta_rx_desc *rx_desc,
1811 struct mvneta_rx_queue *rxq,
1812 gfp_t gfp_mask)
1813 {
1814 dma_addr_t phys_addr;
1815 struct page *page;
1816
1817 page = __dev_alloc_page(gfp_mask);
1818 if (!page)
1819 return -ENOMEM;
1820
1821 /* map page for use */
1822 phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
1823 DMA_FROM_DEVICE);
1824 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1825 __free_page(page);
1826 return -ENOMEM;
1827 }
1828
1829 phys_addr += pp->rx_offset_correction;
1830 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1831 return 0;
1832 }
1833
1834 /* Handle tx checksum */
1835 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1836 {
1837 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1838 int ip_hdr_len = 0;
1839 __be16 l3_proto = vlan_get_protocol(skb);
1840 u8 l4_proto;
1841
1842 if (l3_proto == htons(ETH_P_IP)) {
1843 struct iphdr *ip4h = ip_hdr(skb);
1844
1845 /* Calculate IPv4 checksum and L4 checksum */
1846 ip_hdr_len = ip4h->ihl;
1847 l4_proto = ip4h->protocol;
1848 } else if (l3_proto == htons(ETH_P_IPV6)) {
1849 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1850
1851 /* Read l4_protocol from one of IPv6 extra headers */
1852 if (skb_network_header_len(skb) > 0)
1853 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1854 l4_proto = ip6h->nexthdr;
1855 } else
1856 return MVNETA_TX_L4_CSUM_NOT;
1857
1858 return mvneta_txq_desc_csum(skb_network_offset(skb),
1859 l3_proto, ip_hdr_len, l4_proto);
1860 }
1861
1862 return MVNETA_TX_L4_CSUM_NOT;
1863 }
1864
1865 /* Drop packets received by the RXQ and free buffers */
1866 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1867 struct mvneta_rx_queue *rxq)
1868 {
1869 int rx_done, i;
1870
1871 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1872 if (rx_done)
1873 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1874
1875 if (pp->bm_priv) {
1876 for (i = 0; i < rx_done; i++) {
1877 struct mvneta_rx_desc *rx_desc =
1878 mvneta_rxq_next_desc_get(rxq);
1879 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1880 struct mvneta_bm_pool *bm_pool;
1881
1882 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1883 /* Return dropped buffer to the pool */
1884 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1885 rx_desc->buf_phys_addr);
1886 }
1887 return;
1888 }
1889
1890 for (i = 0; i < rxq->size; i++) {
1891 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1892 void *data = rxq->buf_virt_addr[i];
1893 if (!data || !(rx_desc->buf_phys_addr))
1894 continue;
1895
1896 dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1897 PAGE_SIZE, DMA_FROM_DEVICE);
1898 __free_page(data);
1899 }
1900 }
1901
1902 static inline
1903 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1904 {
1905 struct mvneta_rx_desc *rx_desc;
1906 int curr_desc = rxq->first_to_refill;
1907 int i;
1908
1909 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1910 rx_desc = rxq->descs + curr_desc;
1911 if (!(rx_desc->buf_phys_addr)) {
1912 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1913 pr_err("Can't refill queue %d. Done %d from %d\n",
1914 rxq->id, i, rxq->refill_num);
1915 rxq->refill_err++;
1916 break;
1917 }
1918 }
1919 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1920 }
1921 rxq->refill_num -= i;
1922 rxq->first_to_refill = curr_desc;
1923
1924 return i;
1925 }
1926
1927 /* Main rx processing when using software buffer management */
1928 static int mvneta_rx_swbm(struct napi_struct *napi,
1929 struct mvneta_port *pp, int budget,
1930 struct mvneta_rx_queue *rxq)
1931 {
1932 struct net_device *dev = pp->dev;
1933 int rx_todo, rx_proc;
1934 int refill = 0;
1935 u32 rcvd_pkts = 0;
1936 u32 rcvd_bytes = 0;
1937
1938 /* Get number of received packets */
1939 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
1940 rx_proc = 0;
1941
1942 /* Fairness NAPI loop */
1943 while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
1944 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1945 unsigned char *data;
1946 struct page *page;
1947 dma_addr_t phys_addr;
1948 u32 rx_status, index;
1949 int rx_bytes, skb_size, copy_size;
1950 int frag_num, frag_size, frag_offset;
1951
1952 index = rx_desc - rxq->descs;
1953 page = (struct page *)rxq->buf_virt_addr[index];
1954 data = page_address(page);
1955 /* Prefetch header */
1956 prefetch(data);
1957
1958 phys_addr = rx_desc->buf_phys_addr;
1959 rx_status = rx_desc->status;
1960 rx_proc++;
1961 rxq->refill_num++;
1962
1963 if (rx_status & MVNETA_RXD_FIRST_DESC) {
1964 /* Check errors only for FIRST descriptor */
1965 if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
1966 mvneta_rx_error(pp, rx_desc);
1967 dev->stats.rx_errors++;
1968 /* leave the descriptor untouched */
1969 continue;
1970 }
1971 rx_bytes = rx_desc->data_size -
1972 (ETH_FCS_LEN + MVNETA_MH_SIZE);
1973
1974 /* Allocate small skb for each new packet */
1975 skb_size = max(rx_copybreak, rx_header_size);
1976 rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
1977 if (unlikely(!rxq->skb)) {
1978 netdev_err(dev,
1979 "Can't allocate skb on queue %d\n",
1980 rxq->id);
1981 dev->stats.rx_dropped++;
1982 rxq->skb_alloc_err++;
1983 continue;
1984 }
1985 copy_size = min(skb_size, rx_bytes);
1986
1987 /* Copy data from buffer to SKB, skip Marvell header */
1988 memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
1989 copy_size);
1990 skb_put(rxq->skb, copy_size);
1991 rxq->left_size = rx_bytes - copy_size;
1992
1993 mvneta_rx_csum(pp, rx_status, rxq->skb);
1994 if (rxq->left_size == 0) {
1995 int size = copy_size + MVNETA_MH_SIZE;
1996
1997 dma_sync_single_range_for_cpu(dev->dev.parent,
1998 phys_addr, 0,
1999 size,
2000 DMA_FROM_DEVICE);
2001
2002 /* leave the descriptor and buffer untouched */
2003 } else {
2004 /* refill descriptor with new buffer later */
2005 rx_desc->buf_phys_addr = 0;
2006
2007 frag_num = 0;
2008 frag_offset = copy_size + MVNETA_MH_SIZE;
2009 frag_size = min(rxq->left_size,
2010 (int)(PAGE_SIZE - frag_offset));
2011 skb_add_rx_frag(rxq->skb, frag_num, page,
2012 frag_offset, frag_size,
2013 PAGE_SIZE);
2014 dma_unmap_page(dev->dev.parent, phys_addr,
2015 PAGE_SIZE, DMA_FROM_DEVICE);
2016 rxq->left_size -= frag_size;
2017 }
2018 } else {
2019 /* Middle or Last descriptor */
2020 if (unlikely(!rxq->skb)) {
2021 pr_debug("no skb for rx_status 0x%x\n",
2022 rx_status);
2023 continue;
2024 }
2025 if (!rxq->left_size) {
2026 /* last descriptor has only FCS */
2027 /* and can be discarded */
2028 dma_sync_single_range_for_cpu(dev->dev.parent,
2029 phys_addr, 0,
2030 ETH_FCS_LEN,
2031 DMA_FROM_DEVICE);
2032 /* leave the descriptor and buffer untouched */
2033 } else {
2034 /* refill descriptor with new buffer later */
2035 rx_desc->buf_phys_addr = 0;
2036
2037 frag_num = skb_shinfo(rxq->skb)->nr_frags;
2038 frag_offset = 0;
2039 frag_size = min(rxq->left_size,
2040 (int)(PAGE_SIZE - frag_offset));
2041 skb_add_rx_frag(rxq->skb, frag_num, page,
2042 frag_offset, frag_size,
2043 PAGE_SIZE);
2044
2045 dma_unmap_page(dev->dev.parent, phys_addr,
2046 PAGE_SIZE, DMA_FROM_DEVICE);
2047
2048 rxq->left_size -= frag_size;
2049 }
2050 } /* Middle or Last descriptor */
2051
2052 if (!(rx_status & MVNETA_RXD_LAST_DESC))
2053 /* no last descriptor this time */
2054 continue;
2055
2056 if (rxq->left_size) {
2057 pr_err("get last desc, but left_size (%d) != 0\n",
2058 rxq->left_size);
2059 dev_kfree_skb_any(rxq->skb);
2060 rxq->left_size = 0;
2061 rxq->skb = NULL;
2062 continue;
2063 }
2064 rcvd_pkts++;
2065 rcvd_bytes += rxq->skb->len;
2066
2067 /* Linux processing */
2068 rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2069
2070 napi_gro_receive(napi, rxq->skb);
2071
2072 /* clean uncomplete skb pointer in queue */
2073 rxq->skb = NULL;
2074 rxq->left_size = 0;
2075 }
2076
2077 if (rcvd_pkts) {
2078 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2079
2080 u64_stats_update_begin(&stats->syncp);
2081 stats->rx_packets += rcvd_pkts;
2082 stats->rx_bytes += rcvd_bytes;
2083 u64_stats_update_end(&stats->syncp);
2084 }
2085
2086 /* return some buffers to hardware queue, one at a time is too slow */
2087 refill = mvneta_rx_refill_queue(pp, rxq);
2088
2089 /* Update rxq management counters */
2090 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2091
2092 return rcvd_pkts;
2093 }
2094
2095 /* Main rx processing when using hardware buffer management */
2096 static int mvneta_rx_hwbm(struct napi_struct *napi,
2097 struct mvneta_port *pp, int rx_todo,
2098 struct mvneta_rx_queue *rxq)
2099 {
2100 struct net_device *dev = pp->dev;
2101 int rx_done;
2102 u32 rcvd_pkts = 0;
2103 u32 rcvd_bytes = 0;
2104
2105 /* Get number of received packets */
2106 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2107
2108 if (rx_todo > rx_done)
2109 rx_todo = rx_done;
2110
2111 rx_done = 0;
2112
2113 /* Fairness NAPI loop */
2114 while (rx_done < rx_todo) {
2115 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2116 struct mvneta_bm_pool *bm_pool = NULL;
2117 struct sk_buff *skb;
2118 unsigned char *data;
2119 dma_addr_t phys_addr;
2120 u32 rx_status, frag_size;
2121 int rx_bytes, err;
2122 u8 pool_id;
2123
2124 rx_done++;
2125 rx_status = rx_desc->status;
2126 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2127 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2128 phys_addr = rx_desc->buf_phys_addr;
2129 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2130 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2131
2132 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2133 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2134 err_drop_frame_ret_pool:
2135 /* Return the buffer to the pool */
2136 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2137 rx_desc->buf_phys_addr);
2138 err_drop_frame:
2139 dev->stats.rx_errors++;
2140 mvneta_rx_error(pp, rx_desc);
2141 /* leave the descriptor untouched */
2142 continue;
2143 }
2144
2145 if (rx_bytes <= rx_copybreak) {
2146 /* better copy a small frame and not unmap the DMA region */
2147 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2148 if (unlikely(!skb))
2149 goto err_drop_frame_ret_pool;
2150
2151 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2152 rx_desc->buf_phys_addr,
2153 MVNETA_MH_SIZE + NET_SKB_PAD,
2154 rx_bytes,
2155 DMA_FROM_DEVICE);
2156 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2157 rx_bytes);
2158
2159 skb->protocol = eth_type_trans(skb, dev);
2160 mvneta_rx_csum(pp, rx_status, skb);
2161 napi_gro_receive(napi, skb);
2162
2163 rcvd_pkts++;
2164 rcvd_bytes += rx_bytes;
2165
2166 /* Return the buffer to the pool */
2167 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2168 rx_desc->buf_phys_addr);
2169
2170 /* leave the descriptor and buffer untouched */
2171 continue;
2172 }
2173
2174 /* Refill processing */
2175 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2176 if (err) {
2177 netdev_err(dev, "Linux processing - Can't refill\n");
2178 rxq->refill_err++;
2179 goto err_drop_frame_ret_pool;
2180 }
2181
2182 frag_size = bm_pool->hwbm_pool.frag_size;
2183
2184 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2185
2186 /* After refill old buffer has to be unmapped regardless
2187 * the skb is successfully built or not.
2188 */
2189 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2190 bm_pool->buf_size, DMA_FROM_DEVICE);
2191 if (!skb)
2192 goto err_drop_frame;
2193
2194 rcvd_pkts++;
2195 rcvd_bytes += rx_bytes;
2196
2197 /* Linux processing */
2198 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2199 skb_put(skb, rx_bytes);
2200
2201 skb->protocol = eth_type_trans(skb, dev);
2202
2203 mvneta_rx_csum(pp, rx_status, skb);
2204
2205 napi_gro_receive(napi, skb);
2206 }
2207
2208 if (rcvd_pkts) {
2209 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2210
2211 u64_stats_update_begin(&stats->syncp);
2212 stats->rx_packets += rcvd_pkts;
2213 stats->rx_bytes += rcvd_bytes;
2214 u64_stats_update_end(&stats->syncp);
2215 }
2216
2217 /* Update rxq management counters */
2218 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2219
2220 return rx_done;
2221 }
2222
2223 static inline void
2224 mvneta_tso_put_hdr(struct sk_buff *skb,
2225 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2226 {
2227 struct mvneta_tx_desc *tx_desc;
2228 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2229
2230 txq->tx_skb[txq->txq_put_index] = NULL;
2231 tx_desc = mvneta_txq_next_desc_get(txq);
2232 tx_desc->data_size = hdr_len;
2233 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2234 tx_desc->command |= MVNETA_TXD_F_DESC;
2235 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2236 txq->txq_put_index * TSO_HEADER_SIZE;
2237 mvneta_txq_inc_put(txq);
2238 }
2239
2240 static inline int
2241 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2242 struct sk_buff *skb, char *data, int size,
2243 bool last_tcp, bool is_last)
2244 {
2245 struct mvneta_tx_desc *tx_desc;
2246
2247 tx_desc = mvneta_txq_next_desc_get(txq);
2248 tx_desc->data_size = size;
2249 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2250 size, DMA_TO_DEVICE);
2251 if (unlikely(dma_mapping_error(dev->dev.parent,
2252 tx_desc->buf_phys_addr))) {
2253 mvneta_txq_desc_put(txq);
2254 return -ENOMEM;
2255 }
2256
2257 tx_desc->command = 0;
2258 txq->tx_skb[txq->txq_put_index] = NULL;
2259
2260 if (last_tcp) {
2261 /* last descriptor in the TCP packet */
2262 tx_desc->command = MVNETA_TXD_L_DESC;
2263
2264 /* last descriptor in SKB */
2265 if (is_last)
2266 txq->tx_skb[txq->txq_put_index] = skb;
2267 }
2268 mvneta_txq_inc_put(txq);
2269 return 0;
2270 }
2271
2272 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2273 struct mvneta_tx_queue *txq)
2274 {
2275 int total_len, data_left;
2276 int desc_count = 0;
2277 struct mvneta_port *pp = netdev_priv(dev);
2278 struct tso_t tso;
2279 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2280 int i;
2281
2282 /* Count needed descriptors */
2283 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2284 return 0;
2285
2286 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2287 pr_info("*** Is this even possible???!?!?\n");
2288 return 0;
2289 }
2290
2291 /* Initialize the TSO handler, and prepare the first payload */
2292 tso_start(skb, &tso);
2293
2294 total_len = skb->len - hdr_len;
2295 while (total_len > 0) {
2296 char *hdr;
2297
2298 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2299 total_len -= data_left;
2300 desc_count++;
2301
2302 /* prepare packet headers: MAC + IP + TCP */
2303 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2304 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2305
2306 mvneta_tso_put_hdr(skb, pp, txq);
2307
2308 while (data_left > 0) {
2309 int size;
2310 desc_count++;
2311
2312 size = min_t(int, tso.size, data_left);
2313
2314 if (mvneta_tso_put_data(dev, txq, skb,
2315 tso.data, size,
2316 size == data_left,
2317 total_len == 0))
2318 goto err_release;
2319 data_left -= size;
2320
2321 tso_build_data(skb, &tso, size);
2322 }
2323 }
2324
2325 return desc_count;
2326
2327 err_release:
2328 /* Release all used data descriptors; header descriptors must not
2329 * be DMA-unmapped.
2330 */
2331 for (i = desc_count - 1; i >= 0; i--) {
2332 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2333 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2334 dma_unmap_single(pp->dev->dev.parent,
2335 tx_desc->buf_phys_addr,
2336 tx_desc->data_size,
2337 DMA_TO_DEVICE);
2338 mvneta_txq_desc_put(txq);
2339 }
2340 return 0;
2341 }
2342
2343 /* Handle tx fragmentation processing */
2344 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2345 struct mvneta_tx_queue *txq)
2346 {
2347 struct mvneta_tx_desc *tx_desc;
2348 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2349
2350 for (i = 0; i < nr_frags; i++) {
2351 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2352 void *addr = page_address(frag->page.p) + frag->page_offset;
2353
2354 tx_desc = mvneta_txq_next_desc_get(txq);
2355 tx_desc->data_size = frag->size;
2356
2357 tx_desc->buf_phys_addr =
2358 dma_map_single(pp->dev->dev.parent, addr,
2359 tx_desc->data_size, DMA_TO_DEVICE);
2360
2361 if (dma_mapping_error(pp->dev->dev.parent,
2362 tx_desc->buf_phys_addr)) {
2363 mvneta_txq_desc_put(txq);
2364 goto error;
2365 }
2366
2367 if (i == nr_frags - 1) {
2368 /* Last descriptor */
2369 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2370 txq->tx_skb[txq->txq_put_index] = skb;
2371 } else {
2372 /* Descriptor in the middle: Not First, Not Last */
2373 tx_desc->command = 0;
2374 txq->tx_skb[txq->txq_put_index] = NULL;
2375 }
2376 mvneta_txq_inc_put(txq);
2377 }
2378
2379 return 0;
2380
2381 error:
2382 /* Release all descriptors that were used to map fragments of
2383 * this packet, as well as the corresponding DMA mappings
2384 */
2385 for (i = i - 1; i >= 0; i--) {
2386 tx_desc = txq->descs + i;
2387 dma_unmap_single(pp->dev->dev.parent,
2388 tx_desc->buf_phys_addr,
2389 tx_desc->data_size,
2390 DMA_TO_DEVICE);
2391 mvneta_txq_desc_put(txq);
2392 }
2393
2394 return -ENOMEM;
2395 }
2396
2397 /* Main tx processing */
2398 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2399 {
2400 struct mvneta_port *pp = netdev_priv(dev);
2401 u16 txq_id = skb_get_queue_mapping(skb);
2402 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2403 struct mvneta_tx_desc *tx_desc;
2404 int len = skb->len;
2405 int frags = 0;
2406 u32 tx_cmd;
2407
2408 if (!netif_running(dev))
2409 goto out;
2410
2411 if (skb_is_gso(skb)) {
2412 frags = mvneta_tx_tso(skb, dev, txq);
2413 goto out;
2414 }
2415
2416 frags = skb_shinfo(skb)->nr_frags + 1;
2417
2418 /* Get a descriptor for the first part of the packet */
2419 tx_desc = mvneta_txq_next_desc_get(txq);
2420
2421 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2422
2423 tx_desc->data_size = skb_headlen(skb);
2424
2425 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2426 tx_desc->data_size,
2427 DMA_TO_DEVICE);
2428 if (unlikely(dma_mapping_error(dev->dev.parent,
2429 tx_desc->buf_phys_addr))) {
2430 mvneta_txq_desc_put(txq);
2431 frags = 0;
2432 goto out;
2433 }
2434
2435 if (frags == 1) {
2436 /* First and Last descriptor */
2437 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2438 tx_desc->command = tx_cmd;
2439 txq->tx_skb[txq->txq_put_index] = skb;
2440 mvneta_txq_inc_put(txq);
2441 } else {
2442 /* First but not Last */
2443 tx_cmd |= MVNETA_TXD_F_DESC;
2444 txq->tx_skb[txq->txq_put_index] = NULL;
2445 mvneta_txq_inc_put(txq);
2446 tx_desc->command = tx_cmd;
2447 /* Continue with other skb fragments */
2448 if (mvneta_tx_frag_process(pp, skb, txq)) {
2449 dma_unmap_single(dev->dev.parent,
2450 tx_desc->buf_phys_addr,
2451 tx_desc->data_size,
2452 DMA_TO_DEVICE);
2453 mvneta_txq_desc_put(txq);
2454 frags = 0;
2455 goto out;
2456 }
2457 }
2458
2459 out:
2460 if (frags > 0) {
2461 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2462 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2463
2464 netdev_tx_sent_queue(nq, len);
2465
2466 txq->count += frags;
2467 if (txq->count >= txq->tx_stop_threshold)
2468 netif_tx_stop_queue(nq);
2469
2470 if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2471 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2472 mvneta_txq_pend_desc_add(pp, txq, frags);
2473 else
2474 txq->pending += frags;
2475
2476 u64_stats_update_begin(&stats->syncp);
2477 stats->tx_packets++;
2478 stats->tx_bytes += len;
2479 u64_stats_update_end(&stats->syncp);
2480 } else {
2481 dev->stats.tx_dropped++;
2482 dev_kfree_skb_any(skb);
2483 }
2484
2485 return NETDEV_TX_OK;
2486 }
2487
2488
2489 /* Free tx resources, when resetting a port */
2490 static void mvneta_txq_done_force(struct mvneta_port *pp,
2491 struct mvneta_tx_queue *txq)
2492
2493 {
2494 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2495 int tx_done = txq->count;
2496
2497 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2498
2499 /* reset txq */
2500 txq->count = 0;
2501 txq->txq_put_index = 0;
2502 txq->txq_get_index = 0;
2503 }
2504
2505 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2506 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2507 */
2508 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2509 {
2510 struct mvneta_tx_queue *txq;
2511 struct netdev_queue *nq;
2512 int cpu = smp_processor_id();
2513
2514 while (cause_tx_done) {
2515 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2516
2517 nq = netdev_get_tx_queue(pp->dev, txq->id);
2518 __netif_tx_lock(nq, cpu);
2519
2520 if (txq->count)
2521 mvneta_txq_done(pp, txq);
2522
2523 __netif_tx_unlock(nq);
2524 cause_tx_done &= ~((1 << txq->id));
2525 }
2526 }
2527
2528 /* Compute crc8 of the specified address, using a unique algorithm ,
2529 * according to hw spec, different than generic crc8 algorithm
2530 */
2531 static int mvneta_addr_crc(unsigned char *addr)
2532 {
2533 int crc = 0;
2534 int i;
2535
2536 for (i = 0; i < ETH_ALEN; i++) {
2537 int j;
2538
2539 crc = (crc ^ addr[i]) << 8;
2540 for (j = 7; j >= 0; j--) {
2541 if (crc & (0x100 << j))
2542 crc ^= 0x107 << j;
2543 }
2544 }
2545
2546 return crc;
2547 }
2548
2549 /* This method controls the net device special MAC multicast support.
2550 * The Special Multicast Table for MAC addresses supports MAC of the form
2551 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2552 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2553 * Table entries in the DA-Filter table. This method set the Special
2554 * Multicast Table appropriate entry.
2555 */
2556 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2557 unsigned char last_byte,
2558 int queue)
2559 {
2560 unsigned int smc_table_reg;
2561 unsigned int tbl_offset;
2562 unsigned int reg_offset;
2563
2564 /* Register offset from SMC table base */
2565 tbl_offset = (last_byte / 4);
2566 /* Entry offset within the above reg */
2567 reg_offset = last_byte % 4;
2568
2569 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2570 + tbl_offset * 4));
2571
2572 if (queue == -1)
2573 smc_table_reg &= ~(0xff << (8 * reg_offset));
2574 else {
2575 smc_table_reg &= ~(0xff << (8 * reg_offset));
2576 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2577 }
2578
2579 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2580 smc_table_reg);
2581 }
2582
2583 /* This method controls the network device Other MAC multicast support.
2584 * The Other Multicast Table is used for multicast of another type.
2585 * A CRC-8 is used as an index to the Other Multicast Table entries
2586 * in the DA-Filter table.
2587 * The method gets the CRC-8 value from the calling routine and
2588 * sets the Other Multicast Table appropriate entry according to the
2589 * specified CRC-8 .
2590 */
2591 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2592 unsigned char crc8,
2593 int queue)
2594 {
2595 unsigned int omc_table_reg;
2596 unsigned int tbl_offset;
2597 unsigned int reg_offset;
2598
2599 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2600 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2601
2602 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2603
2604 if (queue == -1) {
2605 /* Clear accepts frame bit at specified Other DA table entry */
2606 omc_table_reg &= ~(0xff << (8 * reg_offset));
2607 } else {
2608 omc_table_reg &= ~(0xff << (8 * reg_offset));
2609 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2610 }
2611
2612 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2613 }
2614
2615 /* The network device supports multicast using two tables:
2616 * 1) Special Multicast Table for MAC addresses of the form
2617 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2618 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2619 * Table entries in the DA-Filter table.
2620 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2621 * is used as an index to the Other Multicast Table entries in the
2622 * DA-Filter table.
2623 */
2624 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2625 int queue)
2626 {
2627 unsigned char crc_result = 0;
2628
2629 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2630 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2631 return 0;
2632 }
2633
2634 crc_result = mvneta_addr_crc(p_addr);
2635 if (queue == -1) {
2636 if (pp->mcast_count[crc_result] == 0) {
2637 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2638 crc_result);
2639 return -EINVAL;
2640 }
2641
2642 pp->mcast_count[crc_result]--;
2643 if (pp->mcast_count[crc_result] != 0) {
2644 netdev_info(pp->dev,
2645 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2646 pp->mcast_count[crc_result], crc_result);
2647 return -EINVAL;
2648 }
2649 } else
2650 pp->mcast_count[crc_result]++;
2651
2652 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2653
2654 return 0;
2655 }
2656
2657 /* Configure Fitering mode of Ethernet port */
2658 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2659 int is_promisc)
2660 {
2661 u32 port_cfg_reg, val;
2662
2663 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2664
2665 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2666
2667 /* Set / Clear UPM bit in port configuration register */
2668 if (is_promisc) {
2669 /* Accept all Unicast addresses */
2670 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2671 val |= MVNETA_FORCE_UNI;
2672 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2673 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2674 } else {
2675 /* Reject all Unicast addresses */
2676 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2677 val &= ~MVNETA_FORCE_UNI;
2678 }
2679
2680 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2681 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2682 }
2683
2684 /* register unicast and multicast addresses */
2685 static void mvneta_set_rx_mode(struct net_device *dev)
2686 {
2687 struct mvneta_port *pp = netdev_priv(dev);
2688 struct netdev_hw_addr *ha;
2689
2690 if (dev->flags & IFF_PROMISC) {
2691 /* Accept all: Multicast + Unicast */
2692 mvneta_rx_unicast_promisc_set(pp, 1);
2693 mvneta_set_ucast_table(pp, pp->rxq_def);
2694 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2695 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2696 } else {
2697 /* Accept single Unicast */
2698 mvneta_rx_unicast_promisc_set(pp, 0);
2699 mvneta_set_ucast_table(pp, -1);
2700 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2701
2702 if (dev->flags & IFF_ALLMULTI) {
2703 /* Accept all multicast */
2704 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2705 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2706 } else {
2707 /* Accept only initialized multicast */
2708 mvneta_set_special_mcast_table(pp, -1);
2709 mvneta_set_other_mcast_table(pp, -1);
2710
2711 if (!netdev_mc_empty(dev)) {
2712 netdev_for_each_mc_addr(ha, dev) {
2713 mvneta_mcast_addr_set(pp, ha->addr,
2714 pp->rxq_def);
2715 }
2716 }
2717 }
2718 }
2719 }
2720
2721 /* Interrupt handling - the callback for request_irq() */
2722 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2723 {
2724 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2725
2726 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2727 napi_schedule(&pp->napi);
2728
2729 return IRQ_HANDLED;
2730 }
2731
2732 /* Interrupt handling - the callback for request_percpu_irq() */
2733 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2734 {
2735 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2736
2737 disable_percpu_irq(port->pp->dev->irq);
2738 napi_schedule(&port->napi);
2739
2740 return IRQ_HANDLED;
2741 }
2742
2743 static void mvneta_link_change(struct mvneta_port *pp)
2744 {
2745 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2746
2747 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2748 }
2749
2750 /* NAPI handler
2751 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2752 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2753 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2754 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2755 * Each CPU has its own causeRxTx register
2756 */
2757 static int mvneta_poll(struct napi_struct *napi, int budget)
2758 {
2759 int rx_done = 0;
2760 u32 cause_rx_tx;
2761 int rx_queue;
2762 struct mvneta_port *pp = netdev_priv(napi->dev);
2763 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2764
2765 if (!netif_running(pp->dev)) {
2766 napi_complete(napi);
2767 return rx_done;
2768 }
2769
2770 /* Read cause register */
2771 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2772 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2773 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2774
2775 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2776
2777 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2778 MVNETA_CAUSE_LINK_CHANGE))
2779 mvneta_link_change(pp);
2780 }
2781
2782 /* Release Tx descriptors */
2783 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2784 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2785 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2786 }
2787
2788 /* For the case where the last mvneta_poll did not process all
2789 * RX packets
2790 */
2791 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2792
2793 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2794 port->cause_rx_tx;
2795
2796 if (rx_queue) {
2797 rx_queue = rx_queue - 1;
2798 if (pp->bm_priv)
2799 rx_done = mvneta_rx_hwbm(napi, pp, budget,
2800 &pp->rxqs[rx_queue]);
2801 else
2802 rx_done = mvneta_rx_swbm(napi, pp, budget,
2803 &pp->rxqs[rx_queue]);
2804 }
2805
2806 if (rx_done < budget) {
2807 cause_rx_tx = 0;
2808 napi_complete_done(napi, rx_done);
2809
2810 if (pp->neta_armada3700) {
2811 unsigned long flags;
2812
2813 local_irq_save(flags);
2814 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2815 MVNETA_RX_INTR_MASK(rxq_number) |
2816 MVNETA_TX_INTR_MASK(txq_number) |
2817 MVNETA_MISCINTR_INTR_MASK);
2818 local_irq_restore(flags);
2819 } else {
2820 enable_percpu_irq(pp->dev->irq, 0);
2821 }
2822 }
2823
2824 if (pp->neta_armada3700)
2825 pp->cause_rx_tx = cause_rx_tx;
2826 else
2827 port->cause_rx_tx = cause_rx_tx;
2828
2829 return rx_done;
2830 }
2831
2832 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2833 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2834 int num)
2835 {
2836 int i;
2837
2838 for (i = 0; i < num; i++) {
2839 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2840 if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
2841 GFP_KERNEL) != 0) {
2842 netdev_err(pp->dev,
2843 "%s:rxq %d, %d of %d buffs filled\n",
2844 __func__, rxq->id, i, num);
2845 break;
2846 }
2847 }
2848
2849 /* Add this number of RX descriptors as non occupied (ready to
2850 * get packets)
2851 */
2852 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2853
2854 return i;
2855 }
2856
2857 /* Free all packets pending transmit from all TXQs and reset TX port */
2858 static void mvneta_tx_reset(struct mvneta_port *pp)
2859 {
2860 int queue;
2861
2862 /* free the skb's in the tx ring */
2863 for (queue = 0; queue < txq_number; queue++)
2864 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2865
2866 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2867 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2868 }
2869
2870 static void mvneta_rx_reset(struct mvneta_port *pp)
2871 {
2872 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2873 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2874 }
2875
2876 /* Rx/Tx queue initialization/cleanup methods */
2877
2878 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
2879 struct mvneta_rx_queue *rxq)
2880 {
2881 rxq->size = pp->rx_ring_size;
2882
2883 /* Allocate memory for RX descriptors */
2884 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2885 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2886 &rxq->descs_phys, GFP_KERNEL);
2887 if (!rxq->descs)
2888 return -ENOMEM;
2889
2890 rxq->last_desc = rxq->size - 1;
2891
2892 return 0;
2893 }
2894
2895 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
2896 struct mvneta_rx_queue *rxq)
2897 {
2898 /* Set Rx descriptors queue starting address */
2899 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2900 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2901
2902 /* Set coalescing pkts and time */
2903 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2904 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2905
2906 if (!pp->bm_priv) {
2907 /* Set Offset */
2908 mvneta_rxq_offset_set(pp, rxq, 0);
2909 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
2910 PAGE_SIZE :
2911 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2912 mvneta_rxq_bm_disable(pp, rxq);
2913 mvneta_rxq_fill(pp, rxq, rxq->size);
2914 } else {
2915 /* Set Offset */
2916 mvneta_rxq_offset_set(pp, rxq,
2917 NET_SKB_PAD - pp->rx_offset_correction);
2918
2919 mvneta_rxq_bm_enable(pp, rxq);
2920 /* Fill RXQ with buffers from RX pool */
2921 mvneta_rxq_long_pool_set(pp, rxq);
2922 mvneta_rxq_short_pool_set(pp, rxq);
2923 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2924 }
2925 }
2926
2927 /* Create a specified RX queue */
2928 static int mvneta_rxq_init(struct mvneta_port *pp,
2929 struct mvneta_rx_queue *rxq)
2930
2931 {
2932 int ret;
2933
2934 ret = mvneta_rxq_sw_init(pp, rxq);
2935 if (ret < 0)
2936 return ret;
2937
2938 mvneta_rxq_hw_init(pp, rxq);
2939
2940 return 0;
2941 }
2942
2943 /* Cleanup Rx queue */
2944 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2945 struct mvneta_rx_queue *rxq)
2946 {
2947 mvneta_rxq_drop_pkts(pp, rxq);
2948
2949 if (rxq->skb)
2950 dev_kfree_skb_any(rxq->skb);
2951
2952 if (rxq->descs)
2953 dma_free_coherent(pp->dev->dev.parent,
2954 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2955 rxq->descs,
2956 rxq->descs_phys);
2957
2958 rxq->descs = NULL;
2959 rxq->last_desc = 0;
2960 rxq->next_desc_to_proc = 0;
2961 rxq->descs_phys = 0;
2962 rxq->first_to_refill = 0;
2963 rxq->refill_num = 0;
2964 rxq->skb = NULL;
2965 rxq->left_size = 0;
2966 }
2967
2968 static int mvneta_txq_sw_init(struct mvneta_port *pp,
2969 struct mvneta_tx_queue *txq)
2970 {
2971 int cpu;
2972
2973 txq->size = pp->tx_ring_size;
2974
2975 /* A queue must always have room for at least one skb.
2976 * Therefore, stop the queue when the free entries reaches
2977 * the maximum number of descriptors per skb.
2978 */
2979 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2980 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2981
2982 /* Allocate memory for TX descriptors */
2983 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2984 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2985 &txq->descs_phys, GFP_KERNEL);
2986 if (!txq->descs)
2987 return -ENOMEM;
2988
2989 txq->last_desc = txq->size - 1;
2990
2991 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2992 GFP_KERNEL);
2993 if (!txq->tx_skb) {
2994 dma_free_coherent(pp->dev->dev.parent,
2995 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2996 txq->descs, txq->descs_phys);
2997 return -ENOMEM;
2998 }
2999
3000 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3001 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3002 txq->size * TSO_HEADER_SIZE,
3003 &txq->tso_hdrs_phys, GFP_KERNEL);
3004 if (!txq->tso_hdrs) {
3005 kfree(txq->tx_skb);
3006 dma_free_coherent(pp->dev->dev.parent,
3007 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3008 txq->descs, txq->descs_phys);
3009 return -ENOMEM;
3010 }
3011
3012 /* Setup XPS mapping */
3013 if (txq_number > 1)
3014 cpu = txq->id % num_present_cpus();
3015 else
3016 cpu = pp->rxq_def % num_present_cpus();
3017 cpumask_set_cpu(cpu, &txq->affinity_mask);
3018 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3019
3020 return 0;
3021 }
3022
3023 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3024 struct mvneta_tx_queue *txq)
3025 {
3026 /* Set maximum bandwidth for enabled TXQs */
3027 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3028 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3029
3030 /* Set Tx descriptors queue starting address */
3031 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3032 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3033
3034 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3035 }
3036
3037 /* Create and initialize a tx queue */
3038 static int mvneta_txq_init(struct mvneta_port *pp,
3039 struct mvneta_tx_queue *txq)
3040 {
3041 int ret;
3042
3043 ret = mvneta_txq_sw_init(pp, txq);
3044 if (ret < 0)
3045 return ret;
3046
3047 mvneta_txq_hw_init(pp, txq);
3048
3049 return 0;
3050 }
3051
3052 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3053 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3054 struct mvneta_tx_queue *txq)
3055 {
3056 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3057
3058 kfree(txq->tx_skb);
3059
3060 if (txq->tso_hdrs)
3061 dma_free_coherent(pp->dev->dev.parent,
3062 txq->size * TSO_HEADER_SIZE,
3063 txq->tso_hdrs, txq->tso_hdrs_phys);
3064 if (txq->descs)
3065 dma_free_coherent(pp->dev->dev.parent,
3066 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3067 txq->descs, txq->descs_phys);
3068
3069 netdev_tx_reset_queue(nq);
3070
3071 txq->descs = NULL;
3072 txq->last_desc = 0;
3073 txq->next_desc_to_proc = 0;
3074 txq->descs_phys = 0;
3075 }
3076
3077 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3078 struct mvneta_tx_queue *txq)
3079 {
3080 /* Set minimum bandwidth for disabled TXQs */
3081 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3082 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3083
3084 /* Set Tx descriptors queue starting address and size */
3085 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3086 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3087 }
3088
3089 static void mvneta_txq_deinit(struct mvneta_port *pp,
3090 struct mvneta_tx_queue *txq)
3091 {
3092 mvneta_txq_sw_deinit(pp, txq);
3093 mvneta_txq_hw_deinit(pp, txq);
3094 }
3095
3096 /* Cleanup all Tx queues */
3097 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3098 {
3099 int queue;
3100
3101 for (queue = 0; queue < txq_number; queue++)
3102 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3103 }
3104
3105 /* Cleanup all Rx queues */
3106 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3107 {
3108 int queue;
3109
3110 for (queue = 0; queue < rxq_number; queue++)
3111 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3112 }
3113
3114
3115 /* Init all Rx queues */
3116 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3117 {
3118 int queue;
3119
3120 for (queue = 0; queue < rxq_number; queue++) {
3121 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3122
3123 if (err) {
3124 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3125 __func__, queue);
3126 mvneta_cleanup_rxqs(pp);
3127 return err;
3128 }
3129 }
3130
3131 return 0;
3132 }
3133
3134 /* Init all tx queues */
3135 static int mvneta_setup_txqs(struct mvneta_port *pp)
3136 {
3137 int queue;
3138
3139 for (queue = 0; queue < txq_number; queue++) {
3140 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3141 if (err) {
3142 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3143 __func__, queue);
3144 mvneta_cleanup_txqs(pp);
3145 return err;
3146 }
3147 }
3148
3149 return 0;
3150 }
3151
3152 static int mvneta_comphy_init(struct mvneta_port *pp)
3153 {
3154 int ret;
3155
3156 if (!pp->comphy)
3157 return 0;
3158
3159 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET,
3160 pp->phy_interface);
3161 if (ret)
3162 return ret;
3163
3164 return phy_power_on(pp->comphy);
3165 }
3166
3167 static void mvneta_start_dev(struct mvneta_port *pp)
3168 {
3169 int cpu;
3170
3171 WARN_ON(mvneta_comphy_init(pp));
3172
3173 mvneta_max_rx_size_set(pp, pp->pkt_size);
3174 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3175
3176 /* start the Rx/Tx activity */
3177 mvneta_port_enable(pp);
3178
3179 if (!pp->neta_armada3700) {
3180 /* Enable polling on the port */
3181 for_each_online_cpu(cpu) {
3182 struct mvneta_pcpu_port *port =
3183 per_cpu_ptr(pp->ports, cpu);
3184
3185 napi_enable(&port->napi);
3186 }
3187 } else {
3188 napi_enable(&pp->napi);
3189 }
3190
3191 /* Unmask interrupts. It has to be done from each CPU */
3192 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3193
3194 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3195 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3196 MVNETA_CAUSE_LINK_CHANGE);
3197
3198 phylink_start(pp->phylink);
3199 netif_tx_start_all_queues(pp->dev);
3200 }
3201
3202 static void mvneta_stop_dev(struct mvneta_port *pp)
3203 {
3204 unsigned int cpu;
3205
3206 phylink_stop(pp->phylink);
3207
3208 if (!pp->neta_armada3700) {
3209 for_each_online_cpu(cpu) {
3210 struct mvneta_pcpu_port *port =
3211 per_cpu_ptr(pp->ports, cpu);
3212
3213 napi_disable(&port->napi);
3214 }
3215 } else {
3216 napi_disable(&pp->napi);
3217 }
3218
3219 netif_carrier_off(pp->dev);
3220
3221 mvneta_port_down(pp);
3222 netif_tx_stop_all_queues(pp->dev);
3223
3224 /* Stop the port activity */
3225 mvneta_port_disable(pp);
3226
3227 /* Clear all ethernet port interrupts */
3228 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3229
3230 /* Mask all ethernet port interrupts */
3231 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3232
3233 mvneta_tx_reset(pp);
3234 mvneta_rx_reset(pp);
3235
3236 WARN_ON(phy_power_off(pp->comphy));
3237 }
3238
3239 static void mvneta_percpu_enable(void *arg)
3240 {
3241 struct mvneta_port *pp = arg;
3242
3243 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3244 }
3245
3246 static void mvneta_percpu_disable(void *arg)
3247 {
3248 struct mvneta_port *pp = arg;
3249
3250 disable_percpu_irq(pp->dev->irq);
3251 }
3252
3253 /* Change the device mtu */
3254 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3255 {
3256 struct mvneta_port *pp = netdev_priv(dev);
3257 int ret;
3258
3259 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3260 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3261 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3262 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3263 }
3264
3265 dev->mtu = mtu;
3266
3267 if (!netif_running(dev)) {
3268 if (pp->bm_priv)
3269 mvneta_bm_update_mtu(pp, mtu);
3270
3271 netdev_update_features(dev);
3272 return 0;
3273 }
3274
3275 /* The interface is running, so we have to force a
3276 * reallocation of the queues
3277 */
3278 mvneta_stop_dev(pp);
3279 on_each_cpu(mvneta_percpu_disable, pp, true);
3280
3281 mvneta_cleanup_txqs(pp);
3282 mvneta_cleanup_rxqs(pp);
3283
3284 if (pp->bm_priv)
3285 mvneta_bm_update_mtu(pp, mtu);
3286
3287 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3288
3289 ret = mvneta_setup_rxqs(pp);
3290 if (ret) {
3291 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3292 return ret;
3293 }
3294
3295 ret = mvneta_setup_txqs(pp);
3296 if (ret) {
3297 netdev_err(dev, "unable to setup txqs after MTU change\n");
3298 return ret;
3299 }
3300
3301 on_each_cpu(mvneta_percpu_enable, pp, true);
3302 mvneta_start_dev(pp);
3303
3304 netdev_update_features(dev);
3305
3306 return 0;
3307 }
3308
3309 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3310 netdev_features_t features)
3311 {
3312 struct mvneta_port *pp = netdev_priv(dev);
3313
3314 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3315 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3316 netdev_info(dev,
3317 "Disable IP checksum for MTU greater than %dB\n",
3318 pp->tx_csum_limit);
3319 }
3320
3321 return features;
3322 }
3323
3324 /* Get mac address */
3325 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3326 {
3327 u32 mac_addr_l, mac_addr_h;
3328
3329 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3330 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3331 addr[0] = (mac_addr_h >> 24) & 0xFF;
3332 addr[1] = (mac_addr_h >> 16) & 0xFF;
3333 addr[2] = (mac_addr_h >> 8) & 0xFF;
3334 addr[3] = mac_addr_h & 0xFF;
3335 addr[4] = (mac_addr_l >> 8) & 0xFF;
3336 addr[5] = mac_addr_l & 0xFF;
3337 }
3338
3339 /* Handle setting mac address */
3340 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3341 {
3342 struct mvneta_port *pp = netdev_priv(dev);
3343 struct sockaddr *sockaddr = addr;
3344 int ret;
3345
3346 ret = eth_prepare_mac_addr_change(dev, addr);
3347 if (ret < 0)
3348 return ret;
3349 /* Remove previous address table entry */
3350 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3351
3352 /* Set new addr in hw */
3353 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3354
3355 eth_commit_mac_addr_change(dev, addr);
3356 return 0;
3357 }
3358
3359 static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
3360 struct phylink_link_state *state)
3361 {
3362 struct mvneta_port *pp = netdev_priv(ndev);
3363 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3364
3365 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3366 if (state->interface != PHY_INTERFACE_MODE_NA &&
3367 state->interface != PHY_INTERFACE_MODE_QSGMII &&
3368 state->interface != PHY_INTERFACE_MODE_SGMII &&
3369 !phy_interface_mode_is_8023z(state->interface) &&
3370 !phy_interface_mode_is_rgmii(state->interface)) {
3371 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3372 return;
3373 }
3374
3375 /* Allow all the expected bits */
3376 phylink_set(mask, Autoneg);
3377 phylink_set_port_modes(mask);
3378
3379 /* Asymmetric pause is unsupported */
3380 phylink_set(mask, Pause);
3381
3382 /* Half-duplex at speeds higher than 100Mbit is unsupported */
3383 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3384 phylink_set(mask, 1000baseT_Full);
3385 phylink_set(mask, 1000baseX_Full);
3386 }
3387 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3388 phylink_set(mask, 2500baseT_Full);
3389 phylink_set(mask, 2500baseX_Full);
3390 }
3391
3392 if (!phy_interface_mode_is_8023z(state->interface)) {
3393 /* 10M and 100M are only supported in non-802.3z mode */
3394 phylink_set(mask, 10baseT_Half);
3395 phylink_set(mask, 10baseT_Full);
3396 phylink_set(mask, 100baseT_Half);
3397 phylink_set(mask, 100baseT_Full);
3398 }
3399
3400 bitmap_and(supported, supported, mask,
3401 __ETHTOOL_LINK_MODE_MASK_NBITS);
3402 bitmap_and(state->advertising, state->advertising, mask,
3403 __ETHTOOL_LINK_MODE_MASK_NBITS);
3404
3405 /* We can only operate at 2500BaseX or 1000BaseX. If requested
3406 * to advertise both, only report advertising at 2500BaseX.
3407 */
3408 phylink_helper_basex_speed(state);
3409 }
3410
3411 static int mvneta_mac_link_state(struct net_device *ndev,
3412 struct phylink_link_state *state)
3413 {
3414 struct mvneta_port *pp = netdev_priv(ndev);
3415 u32 gmac_stat;
3416
3417 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3418
3419 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3420 state->speed =
3421 state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3422 SPEED_2500 : SPEED_1000;
3423 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3424 state->speed = SPEED_100;
3425 else
3426 state->speed = SPEED_10;
3427
3428 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3429 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3430 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3431
3432 state->pause = 0;
3433 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3434 state->pause |= MLO_PAUSE_RX;
3435 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3436 state->pause |= MLO_PAUSE_TX;
3437
3438 return 1;
3439 }
3440
3441 static void mvneta_mac_an_restart(struct net_device *ndev)
3442 {
3443 struct mvneta_port *pp = netdev_priv(ndev);
3444 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3445
3446 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3447 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3448 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3449 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3450 }
3451
3452 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
3453 const struct phylink_link_state *state)
3454 {
3455 struct mvneta_port *pp = netdev_priv(ndev);
3456 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3457 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3458 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3459 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3460 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3461
3462 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3463 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3464 MVNETA_GMAC2_PORT_RESET);
3465 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3466 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3467 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3468 MVNETA_GMAC_INBAND_RESTART_AN |
3469 MVNETA_GMAC_CONFIG_MII_SPEED |
3470 MVNETA_GMAC_CONFIG_GMII_SPEED |
3471 MVNETA_GMAC_AN_SPEED_EN |
3472 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3473 MVNETA_GMAC_CONFIG_FLOW_CTRL |
3474 MVNETA_GMAC_AN_FLOW_CTRL_EN |
3475 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3476 MVNETA_GMAC_AN_DUPLEX_EN);
3477
3478 /* Even though it might look weird, when we're configured in
3479 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3480 */
3481 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3482
3483 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3484 state->interface == PHY_INTERFACE_MODE_SGMII ||
3485 phy_interface_mode_is_8023z(state->interface))
3486 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3487
3488 if (phylink_test(state->advertising, Pause))
3489 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3490 if (state->pause & MLO_PAUSE_TXRX_MASK)
3491 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3492
3493 if (!phylink_autoneg_inband(mode)) {
3494 /* Phy or fixed speed */
3495 if (state->duplex)
3496 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3497
3498 if (state->speed == SPEED_1000 || state->speed == SPEED_2500)
3499 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3500 else if (state->speed == SPEED_100)
3501 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3502 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3503 /* SGMII mode receives the state from the PHY */
3504 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3505 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3506 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3507 MVNETA_GMAC_FORCE_LINK_PASS)) |
3508 MVNETA_GMAC_INBAND_AN_ENABLE |
3509 MVNETA_GMAC_AN_SPEED_EN |
3510 MVNETA_GMAC_AN_DUPLEX_EN;
3511 } else {
3512 /* 802.3z negotiation - only 1000base-X */
3513 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3514 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3515 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3516 MVNETA_GMAC_FORCE_LINK_PASS)) |
3517 MVNETA_GMAC_INBAND_AN_ENABLE |
3518 MVNETA_GMAC_CONFIG_GMII_SPEED |
3519 /* The MAC only supports FD mode */
3520 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3521
3522 if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3523 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3524 }
3525
3526 /* Armada 370 documentation says we can only change the port mode
3527 * and in-band enable when the link is down, so force it down
3528 * while making these changes. We also do this for GMAC_CTRL2 */
3529 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3530 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3531 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3532 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3533 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3534 MVNETA_GMAC_FORCE_LINK_DOWN);
3535 }
3536
3537
3538 /* When at 2.5G, the link partner can send frames with shortened
3539 * preambles.
3540 */
3541 if (state->speed == SPEED_2500)
3542 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3543
3544 if (pp->comphy && pp->phy_interface != state->interface &&
3545 (state->interface == PHY_INTERFACE_MODE_SGMII ||
3546 state->interface == PHY_INTERFACE_MODE_1000BASEX ||
3547 state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3548 pp->phy_interface = state->interface;
3549
3550 WARN_ON(phy_power_off(pp->comphy));
3551 WARN_ON(mvneta_comphy_init(pp));
3552 }
3553
3554 if (new_ctrl0 != gmac_ctrl0)
3555 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3556 if (new_ctrl2 != gmac_ctrl2)
3557 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3558 if (new_ctrl4 != gmac_ctrl4)
3559 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3560 if (new_clk != gmac_clk)
3561 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3562 if (new_an != gmac_an)
3563 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3564
3565 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3566 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3567 MVNETA_GMAC2_PORT_RESET) != 0)
3568 continue;
3569 }
3570 }
3571
3572 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3573 {
3574 u32 lpi_ctl1;
3575
3576 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3577 if (enable)
3578 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3579 else
3580 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3581 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3582 }
3583
3584 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode,
3585 phy_interface_t interface)
3586 {
3587 struct mvneta_port *pp = netdev_priv(ndev);
3588 u32 val;
3589
3590 mvneta_port_down(pp);
3591
3592 if (!phylink_autoneg_inband(mode)) {
3593 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3594 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3595 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3596 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3597 }
3598
3599 pp->eee_active = false;
3600 mvneta_set_eee(pp, false);
3601 }
3602
3603 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3604 phy_interface_t interface,
3605 struct phy_device *phy)
3606 {
3607 struct mvneta_port *pp = netdev_priv(ndev);
3608 u32 val;
3609
3610 if (!phylink_autoneg_inband(mode)) {
3611 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3612 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3613 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3614 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3615 }
3616
3617 mvneta_port_up(pp);
3618
3619 if (phy && pp->eee_enabled) {
3620 pp->eee_active = phy_init_eee(phy, 0) >= 0;
3621 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3622 }
3623 }
3624
3625 static const struct phylink_mac_ops mvneta_phylink_ops = {
3626 .validate = mvneta_validate,
3627 .mac_link_state = mvneta_mac_link_state,
3628 .mac_an_restart = mvneta_mac_an_restart,
3629 .mac_config = mvneta_mac_config,
3630 .mac_link_down = mvneta_mac_link_down,
3631 .mac_link_up = mvneta_mac_link_up,
3632 };
3633
3634 static int mvneta_mdio_probe(struct mvneta_port *pp)
3635 {
3636 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3637 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3638
3639 if (err)
3640 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3641
3642 phylink_ethtool_get_wol(pp->phylink, &wol);
3643 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3644
3645 return err;
3646 }
3647
3648 static void mvneta_mdio_remove(struct mvneta_port *pp)
3649 {
3650 phylink_disconnect_phy(pp->phylink);
3651 }
3652
3653 /* Electing a CPU must be done in an atomic way: it should be done
3654 * after or before the removal/insertion of a CPU and this function is
3655 * not reentrant.
3656 */
3657 static void mvneta_percpu_elect(struct mvneta_port *pp)
3658 {
3659 int elected_cpu = 0, max_cpu, cpu, i = 0;
3660
3661 /* Use the cpu associated to the rxq when it is online, in all
3662 * the other cases, use the cpu 0 which can't be offline.
3663 */
3664 if (cpu_online(pp->rxq_def))
3665 elected_cpu = pp->rxq_def;
3666
3667 max_cpu = num_present_cpus();
3668
3669 for_each_online_cpu(cpu) {
3670 int rxq_map = 0, txq_map = 0;
3671 int rxq;
3672
3673 for (rxq = 0; rxq < rxq_number; rxq++)
3674 if ((rxq % max_cpu) == cpu)
3675 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3676
3677 if (cpu == elected_cpu)
3678 /* Map the default receive queue queue to the
3679 * elected CPU
3680 */
3681 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3682
3683 /* We update the TX queue map only if we have one
3684 * queue. In this case we associate the TX queue to
3685 * the CPU bound to the default RX queue
3686 */
3687 if (txq_number == 1)
3688 txq_map = (cpu == elected_cpu) ?
3689 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3690 else
3691 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3692 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3693
3694 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3695
3696 /* Update the interrupt mask on each CPU according the
3697 * new mapping
3698 */
3699 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3700 pp, true);
3701 i++;
3702
3703 }
3704 };
3705
3706 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3707 {
3708 int other_cpu;
3709 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3710 node_online);
3711 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3712
3713
3714 spin_lock(&pp->lock);
3715 /*
3716 * Configuring the driver for a new CPU while the driver is
3717 * stopping is racy, so just avoid it.
3718 */
3719 if (pp->is_stopped) {
3720 spin_unlock(&pp->lock);
3721 return 0;
3722 }
3723 netif_tx_stop_all_queues(pp->dev);
3724
3725 /*
3726 * We have to synchronise on tha napi of each CPU except the one
3727 * just being woken up
3728 */
3729 for_each_online_cpu(other_cpu) {
3730 if (other_cpu != cpu) {
3731 struct mvneta_pcpu_port *other_port =
3732 per_cpu_ptr(pp->ports, other_cpu);
3733
3734 napi_synchronize(&other_port->napi);
3735 }
3736 }
3737
3738 /* Mask all ethernet port interrupts */
3739 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3740 napi_enable(&port->napi);
3741
3742 /*
3743 * Enable per-CPU interrupts on the CPU that is
3744 * brought up.
3745 */
3746 mvneta_percpu_enable(pp);
3747
3748 /*
3749 * Enable per-CPU interrupt on the one CPU we care
3750 * about.
3751 */
3752 mvneta_percpu_elect(pp);
3753
3754 /* Unmask all ethernet port interrupts */
3755 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3756 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3757 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3758 MVNETA_CAUSE_LINK_CHANGE);
3759 netif_tx_start_all_queues(pp->dev);
3760 spin_unlock(&pp->lock);
3761 return 0;
3762 }
3763
3764 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3765 {
3766 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3767 node_online);
3768 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3769
3770 /*
3771 * Thanks to this lock we are sure that any pending cpu election is
3772 * done.
3773 */
3774 spin_lock(&pp->lock);
3775 /* Mask all ethernet port interrupts */
3776 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3777 spin_unlock(&pp->lock);
3778
3779 napi_synchronize(&port->napi);
3780 napi_disable(&port->napi);
3781 /* Disable per-CPU interrupts on the CPU that is brought down. */
3782 mvneta_percpu_disable(pp);
3783 return 0;
3784 }
3785
3786 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3787 {
3788 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3789 node_dead);
3790
3791 /* Check if a new CPU must be elected now this on is down */
3792 spin_lock(&pp->lock);
3793 mvneta_percpu_elect(pp);
3794 spin_unlock(&pp->lock);
3795 /* Unmask all ethernet port interrupts */
3796 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3797 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3798 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3799 MVNETA_CAUSE_LINK_CHANGE);
3800 netif_tx_start_all_queues(pp->dev);
3801 return 0;
3802 }
3803
3804 static int mvneta_open(struct net_device *dev)
3805 {
3806 struct mvneta_port *pp = netdev_priv(dev);
3807 int ret;
3808
3809 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3810
3811 ret = mvneta_setup_rxqs(pp);
3812 if (ret)
3813 return ret;
3814
3815 ret = mvneta_setup_txqs(pp);
3816 if (ret)
3817 goto err_cleanup_rxqs;
3818
3819 /* Connect to port interrupt line */
3820 if (pp->neta_armada3700)
3821 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3822 dev->name, pp);
3823 else
3824 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3825 dev->name, pp->ports);
3826 if (ret) {
3827 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3828 goto err_cleanup_txqs;
3829 }
3830
3831 if (!pp->neta_armada3700) {
3832 /* Enable per-CPU interrupt on all the CPU to handle our RX
3833 * queue interrupts
3834 */
3835 on_each_cpu(mvneta_percpu_enable, pp, true);
3836
3837 pp->is_stopped = false;
3838 /* Register a CPU notifier to handle the case where our CPU
3839 * might be taken offline.
3840 */
3841 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3842 &pp->node_online);
3843 if (ret)
3844 goto err_free_irq;
3845
3846 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3847 &pp->node_dead);
3848 if (ret)
3849 goto err_free_online_hp;
3850 }
3851
3852 ret = mvneta_mdio_probe(pp);
3853 if (ret < 0) {
3854 netdev_err(dev, "cannot probe MDIO bus\n");
3855 goto err_free_dead_hp;
3856 }
3857
3858 mvneta_start_dev(pp);
3859
3860 return 0;
3861
3862 err_free_dead_hp:
3863 if (!pp->neta_armada3700)
3864 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3865 &pp->node_dead);
3866 err_free_online_hp:
3867 if (!pp->neta_armada3700)
3868 cpuhp_state_remove_instance_nocalls(online_hpstate,
3869 &pp->node_online);
3870 err_free_irq:
3871 if (pp->neta_armada3700) {
3872 free_irq(pp->dev->irq, pp);
3873 } else {
3874 on_each_cpu(mvneta_percpu_disable, pp, true);
3875 free_percpu_irq(pp->dev->irq, pp->ports);
3876 }
3877 err_cleanup_txqs:
3878 mvneta_cleanup_txqs(pp);
3879 err_cleanup_rxqs:
3880 mvneta_cleanup_rxqs(pp);
3881 return ret;
3882 }
3883
3884 /* Stop the port, free port interrupt line */
3885 static int mvneta_stop(struct net_device *dev)
3886 {
3887 struct mvneta_port *pp = netdev_priv(dev);
3888
3889 if (!pp->neta_armada3700) {
3890 /* Inform that we are stopping so we don't want to setup the
3891 * driver for new CPUs in the notifiers. The code of the
3892 * notifier for CPU online is protected by the same spinlock,
3893 * so when we get the lock, the notifer work is done.
3894 */
3895 spin_lock(&pp->lock);
3896 pp->is_stopped = true;
3897 spin_unlock(&pp->lock);
3898
3899 mvneta_stop_dev(pp);
3900 mvneta_mdio_remove(pp);
3901
3902 cpuhp_state_remove_instance_nocalls(online_hpstate,
3903 &pp->node_online);
3904 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3905 &pp->node_dead);
3906 on_each_cpu(mvneta_percpu_disable, pp, true);
3907 free_percpu_irq(dev->irq, pp->ports);
3908 } else {
3909 mvneta_stop_dev(pp);
3910 mvneta_mdio_remove(pp);
3911 free_irq(dev->irq, pp);
3912 }
3913
3914 mvneta_cleanup_rxqs(pp);
3915 mvneta_cleanup_txqs(pp);
3916
3917 return 0;
3918 }
3919
3920 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3921 {
3922 struct mvneta_port *pp = netdev_priv(dev);
3923
3924 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3925 }
3926
3927 /* Ethtool methods */
3928
3929 /* Set link ksettings (phy address, speed) for ethtools */
3930 static int
3931 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3932 const struct ethtool_link_ksettings *cmd)
3933 {
3934 struct mvneta_port *pp = netdev_priv(ndev);
3935
3936 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3937 }
3938
3939 /* Get link ksettings for ethtools */
3940 static int
3941 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3942 struct ethtool_link_ksettings *cmd)
3943 {
3944 struct mvneta_port *pp = netdev_priv(ndev);
3945
3946 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3947 }
3948
3949 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3950 {
3951 struct mvneta_port *pp = netdev_priv(dev);
3952
3953 return phylink_ethtool_nway_reset(pp->phylink);
3954 }
3955
3956 /* Set interrupt coalescing for ethtools */
3957 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3958 struct ethtool_coalesce *c)
3959 {
3960 struct mvneta_port *pp = netdev_priv(dev);
3961 int queue;
3962
3963 for (queue = 0; queue < rxq_number; queue++) {
3964 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3965 rxq->time_coal = c->rx_coalesce_usecs;
3966 rxq->pkts_coal = c->rx_max_coalesced_frames;
3967 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3968 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3969 }
3970
3971 for (queue = 0; queue < txq_number; queue++) {
3972 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3973 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3974 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3975 }
3976
3977 return 0;
3978 }
3979
3980 /* get coalescing for ethtools */
3981 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3982 struct ethtool_coalesce *c)
3983 {
3984 struct mvneta_port *pp = netdev_priv(dev);
3985
3986 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3987 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3988
3989 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3990 return 0;
3991 }
3992
3993
3994 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3995 struct ethtool_drvinfo *drvinfo)
3996 {
3997 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3998 sizeof(drvinfo->driver));
3999 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4000 sizeof(drvinfo->version));
4001 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4002 sizeof(drvinfo->bus_info));
4003 }
4004
4005
4006 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4007 struct ethtool_ringparam *ring)
4008 {
4009 struct mvneta_port *pp = netdev_priv(netdev);
4010
4011 ring->rx_max_pending = MVNETA_MAX_RXD;
4012 ring->tx_max_pending = MVNETA_MAX_TXD;
4013 ring->rx_pending = pp->rx_ring_size;
4014 ring->tx_pending = pp->tx_ring_size;
4015 }
4016
4017 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4018 struct ethtool_ringparam *ring)
4019 {
4020 struct mvneta_port *pp = netdev_priv(dev);
4021
4022 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4023 return -EINVAL;
4024 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4025 ring->rx_pending : MVNETA_MAX_RXD;
4026
4027 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4028 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4029 if (pp->tx_ring_size != ring->tx_pending)
4030 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4031 pp->tx_ring_size, ring->tx_pending);
4032
4033 if (netif_running(dev)) {
4034 mvneta_stop(dev);
4035 if (mvneta_open(dev)) {
4036 netdev_err(dev,
4037 "error on opening device after ring param change\n");
4038 return -ENOMEM;
4039 }
4040 }
4041
4042 return 0;
4043 }
4044
4045 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4046 struct ethtool_pauseparam *pause)
4047 {
4048 struct mvneta_port *pp = netdev_priv(dev);
4049
4050 phylink_ethtool_get_pauseparam(pp->phylink, pause);
4051 }
4052
4053 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4054 struct ethtool_pauseparam *pause)
4055 {
4056 struct mvneta_port *pp = netdev_priv(dev);
4057
4058 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4059 }
4060
4061 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4062 u8 *data)
4063 {
4064 if (sset == ETH_SS_STATS) {
4065 int i;
4066
4067 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4068 memcpy(data + i * ETH_GSTRING_LEN,
4069 mvneta_statistics[i].name, ETH_GSTRING_LEN);
4070 }
4071 }
4072
4073 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4074 {
4075 const struct mvneta_statistic *s;
4076 void __iomem *base = pp->base;
4077 u32 high, low;
4078 u64 val;
4079 int i;
4080
4081 for (i = 0, s = mvneta_statistics;
4082 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4083 s++, i++) {
4084 val = 0;
4085
4086 switch (s->type) {
4087 case T_REG_32:
4088 val = readl_relaxed(base + s->offset);
4089 break;
4090 case T_REG_64:
4091 /* Docs say to read low 32-bit then high */
4092 low = readl_relaxed(base + s->offset);
4093 high = readl_relaxed(base + s->offset + 4);
4094 val = (u64)high << 32 | low;
4095 break;
4096 case T_SW:
4097 switch (s->offset) {
4098 case ETHTOOL_STAT_EEE_WAKEUP:
4099 val = phylink_get_eee_err(pp->phylink);
4100 break;
4101 case ETHTOOL_STAT_SKB_ALLOC_ERR:
4102 val = pp->rxqs[0].skb_alloc_err;
4103 break;
4104 case ETHTOOL_STAT_REFILL_ERR:
4105 val = pp->rxqs[0].refill_err;
4106 break;
4107 }
4108 break;
4109 }
4110
4111 pp->ethtool_stats[i] += val;
4112 }
4113 }
4114
4115 static void mvneta_ethtool_get_stats(struct net_device *dev,
4116 struct ethtool_stats *stats, u64 *data)
4117 {
4118 struct mvneta_port *pp = netdev_priv(dev);
4119 int i;
4120
4121 mvneta_ethtool_update_stats(pp);
4122
4123 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4124 *data++ = pp->ethtool_stats[i];
4125 }
4126
4127 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4128 {
4129 if (sset == ETH_SS_STATS)
4130 return ARRAY_SIZE(mvneta_statistics);
4131 return -EOPNOTSUPP;
4132 }
4133
4134 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4135 {
4136 return MVNETA_RSS_LU_TABLE_SIZE;
4137 }
4138
4139 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4140 struct ethtool_rxnfc *info,
4141 u32 *rules __always_unused)
4142 {
4143 switch (info->cmd) {
4144 case ETHTOOL_GRXRINGS:
4145 info->data = rxq_number;
4146 return 0;
4147 case ETHTOOL_GRXFH:
4148 return -EOPNOTSUPP;
4149 default:
4150 return -EOPNOTSUPP;
4151 }
4152 }
4153
4154 static int mvneta_config_rss(struct mvneta_port *pp)
4155 {
4156 int cpu;
4157 u32 val;
4158
4159 netif_tx_stop_all_queues(pp->dev);
4160
4161 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4162
4163 if (!pp->neta_armada3700) {
4164 /* We have to synchronise on the napi of each CPU */
4165 for_each_online_cpu(cpu) {
4166 struct mvneta_pcpu_port *pcpu_port =
4167 per_cpu_ptr(pp->ports, cpu);
4168
4169 napi_synchronize(&pcpu_port->napi);
4170 napi_disable(&pcpu_port->napi);
4171 }
4172 } else {
4173 napi_synchronize(&pp->napi);
4174 napi_disable(&pp->napi);
4175 }
4176
4177 pp->rxq_def = pp->indir[0];
4178
4179 /* Update unicast mapping */
4180 mvneta_set_rx_mode(pp->dev);
4181
4182 /* Update val of portCfg register accordingly with all RxQueue types */
4183 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4184 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4185
4186 /* Update the elected CPU matching the new rxq_def */
4187 spin_lock(&pp->lock);
4188 mvneta_percpu_elect(pp);
4189 spin_unlock(&pp->lock);
4190
4191 if (!pp->neta_armada3700) {
4192 /* We have to synchronise on the napi of each CPU */
4193 for_each_online_cpu(cpu) {
4194 struct mvneta_pcpu_port *pcpu_port =
4195 per_cpu_ptr(pp->ports, cpu);
4196
4197 napi_enable(&pcpu_port->napi);
4198 }
4199 } else {
4200 napi_enable(&pp->napi);
4201 }
4202
4203 netif_tx_start_all_queues(pp->dev);
4204
4205 return 0;
4206 }
4207
4208 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4209 const u8 *key, const u8 hfunc)
4210 {
4211 struct mvneta_port *pp = netdev_priv(dev);
4212
4213 /* Current code for Armada 3700 doesn't support RSS features yet */
4214 if (pp->neta_armada3700)
4215 return -EOPNOTSUPP;
4216
4217 /* We require at least one supported parameter to be changed
4218 * and no change in any of the unsupported parameters
4219 */
4220 if (key ||
4221 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4222 return -EOPNOTSUPP;
4223
4224 if (!indir)
4225 return 0;
4226
4227 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4228
4229 return mvneta_config_rss(pp);
4230 }
4231
4232 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4233 u8 *hfunc)
4234 {
4235 struct mvneta_port *pp = netdev_priv(dev);
4236
4237 /* Current code for Armada 3700 doesn't support RSS features yet */
4238 if (pp->neta_armada3700)
4239 return -EOPNOTSUPP;
4240
4241 if (hfunc)
4242 *hfunc = ETH_RSS_HASH_TOP;
4243
4244 if (!indir)
4245 return 0;
4246
4247 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4248
4249 return 0;
4250 }
4251
4252 static void mvneta_ethtool_get_wol(struct net_device *dev,
4253 struct ethtool_wolinfo *wol)
4254 {
4255 struct mvneta_port *pp = netdev_priv(dev);
4256
4257 phylink_ethtool_get_wol(pp->phylink, wol);
4258 }
4259
4260 static int mvneta_ethtool_set_wol(struct net_device *dev,
4261 struct ethtool_wolinfo *wol)
4262 {
4263 struct mvneta_port *pp = netdev_priv(dev);
4264 int ret;
4265
4266 ret = phylink_ethtool_set_wol(pp->phylink, wol);
4267 if (!ret)
4268 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4269
4270 return ret;
4271 }
4272
4273 static int mvneta_ethtool_get_eee(struct net_device *dev,
4274 struct ethtool_eee *eee)
4275 {
4276 struct mvneta_port *pp = netdev_priv(dev);
4277 u32 lpi_ctl0;
4278
4279 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4280
4281 eee->eee_enabled = pp->eee_enabled;
4282 eee->eee_active = pp->eee_active;
4283 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4284 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4285
4286 return phylink_ethtool_get_eee(pp->phylink, eee);
4287 }
4288
4289 static int mvneta_ethtool_set_eee(struct net_device *dev,
4290 struct ethtool_eee *eee)
4291 {
4292 struct mvneta_port *pp = netdev_priv(dev);
4293 u32 lpi_ctl0;
4294
4295 /* The Armada 37x documents do not give limits for this other than
4296 * it being an 8-bit register. */
4297 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4298 return -EINVAL;
4299
4300 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4301 lpi_ctl0 &= ~(0xff << 8);
4302 lpi_ctl0 |= eee->tx_lpi_timer << 8;
4303 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4304
4305 pp->eee_enabled = eee->eee_enabled;
4306 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4307
4308 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4309
4310 return phylink_ethtool_set_eee(pp->phylink, eee);
4311 }
4312
4313 static const struct net_device_ops mvneta_netdev_ops = {
4314 .ndo_open = mvneta_open,
4315 .ndo_stop = mvneta_stop,
4316 .ndo_start_xmit = mvneta_tx,
4317 .ndo_set_rx_mode = mvneta_set_rx_mode,
4318 .ndo_set_mac_address = mvneta_set_mac_addr,
4319 .ndo_change_mtu = mvneta_change_mtu,
4320 .ndo_fix_features = mvneta_fix_features,
4321 .ndo_get_stats64 = mvneta_get_stats64,
4322 .ndo_do_ioctl = mvneta_ioctl,
4323 };
4324
4325 static const struct ethtool_ops mvneta_eth_tool_ops = {
4326 .nway_reset = mvneta_ethtool_nway_reset,
4327 .get_link = ethtool_op_get_link,
4328 .set_coalesce = mvneta_ethtool_set_coalesce,
4329 .get_coalesce = mvneta_ethtool_get_coalesce,
4330 .get_drvinfo = mvneta_ethtool_get_drvinfo,
4331 .get_ringparam = mvneta_ethtool_get_ringparam,
4332 .set_ringparam = mvneta_ethtool_set_ringparam,
4333 .get_pauseparam = mvneta_ethtool_get_pauseparam,
4334 .set_pauseparam = mvneta_ethtool_set_pauseparam,
4335 .get_strings = mvneta_ethtool_get_strings,
4336 .get_ethtool_stats = mvneta_ethtool_get_stats,
4337 .get_sset_count = mvneta_ethtool_get_sset_count,
4338 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4339 .get_rxnfc = mvneta_ethtool_get_rxnfc,
4340 .get_rxfh = mvneta_ethtool_get_rxfh,
4341 .set_rxfh = mvneta_ethtool_set_rxfh,
4342 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4343 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4344 .get_wol = mvneta_ethtool_get_wol,
4345 .set_wol = mvneta_ethtool_set_wol,
4346 .get_eee = mvneta_ethtool_get_eee,
4347 .set_eee = mvneta_ethtool_set_eee,
4348 };
4349
4350 /* Initialize hw */
4351 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4352 {
4353 int queue;
4354
4355 /* Disable port */
4356 mvneta_port_disable(pp);
4357
4358 /* Set port default values */
4359 mvneta_defaults_set(pp);
4360
4361 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4362 if (!pp->txqs)
4363 return -ENOMEM;
4364
4365 /* Initialize TX descriptor rings */
4366 for (queue = 0; queue < txq_number; queue++) {
4367 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4368 txq->id = queue;
4369 txq->size = pp->tx_ring_size;
4370 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4371 }
4372
4373 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4374 if (!pp->rxqs)
4375 return -ENOMEM;
4376
4377 /* Create Rx descriptor rings */
4378 for (queue = 0; queue < rxq_number; queue++) {
4379 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4380 rxq->id = queue;
4381 rxq->size = pp->rx_ring_size;
4382 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4383 rxq->time_coal = MVNETA_RX_COAL_USEC;
4384 rxq->buf_virt_addr
4385 = devm_kmalloc_array(pp->dev->dev.parent,
4386 rxq->size,
4387 sizeof(*rxq->buf_virt_addr),
4388 GFP_KERNEL);
4389 if (!rxq->buf_virt_addr)
4390 return -ENOMEM;
4391 }
4392
4393 return 0;
4394 }
4395
4396 /* platform glue : initialize decoding windows */
4397 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4398 const struct mbus_dram_target_info *dram)
4399 {
4400 u32 win_enable;
4401 u32 win_protect;
4402 int i;
4403
4404 for (i = 0; i < 6; i++) {
4405 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4406 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4407
4408 if (i < 4)
4409 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4410 }
4411
4412 win_enable = 0x3f;
4413 win_protect = 0;
4414
4415 if (dram) {
4416 for (i = 0; i < dram->num_cs; i++) {
4417 const struct mbus_dram_window *cs = dram->cs + i;
4418
4419 mvreg_write(pp, MVNETA_WIN_BASE(i),
4420 (cs->base & 0xffff0000) |
4421 (cs->mbus_attr << 8) |
4422 dram->mbus_dram_target_id);
4423
4424 mvreg_write(pp, MVNETA_WIN_SIZE(i),
4425 (cs->size - 1) & 0xffff0000);
4426
4427 win_enable &= ~(1 << i);
4428 win_protect |= 3 << (2 * i);
4429 }
4430 } else {
4431 /* For Armada3700 open default 4GB Mbus window, leaving
4432 * arbitration of target/attribute to a different layer
4433 * of configuration.
4434 */
4435 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4436 win_enable &= ~BIT(0);
4437 win_protect = 3;
4438 }
4439
4440 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4441 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4442 }
4443
4444 /* Power up the port */
4445 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4446 {
4447 /* MAC Cause register should be cleared */
4448 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4449
4450 if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4451 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4452 else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4453 phy_interface_mode_is_8023z(phy_mode))
4454 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4455 else if (!phy_interface_mode_is_rgmii(phy_mode))
4456 return -EINVAL;
4457
4458 return 0;
4459 }
4460
4461 /* Device initialization routine */
4462 static int mvneta_probe(struct platform_device *pdev)
4463 {
4464 struct resource *res;
4465 struct device_node *dn = pdev->dev.of_node;
4466 struct device_node *bm_node;
4467 struct mvneta_port *pp;
4468 struct net_device *dev;
4469 struct phylink *phylink;
4470 struct phy *comphy;
4471 const char *dt_mac_addr;
4472 char hw_mac_addr[ETH_ALEN];
4473 const char *mac_from;
4474 int tx_csum_limit;
4475 int phy_mode;
4476 int err;
4477 int cpu;
4478
4479 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
4480 txq_number, rxq_number);
4481 if (!dev)
4482 return -ENOMEM;
4483
4484 dev->irq = irq_of_parse_and_map(dn, 0);
4485 if (dev->irq == 0)
4486 return -EINVAL;
4487
4488 phy_mode = of_get_phy_mode(dn);
4489 if (phy_mode < 0) {
4490 dev_err(&pdev->dev, "incorrect phy-mode\n");
4491 err = -EINVAL;
4492 goto err_free_irq;
4493 }
4494
4495 comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
4496 if (comphy == ERR_PTR(-EPROBE_DEFER)) {
4497 err = -EPROBE_DEFER;
4498 goto err_free_irq;
4499 } else if (IS_ERR(comphy)) {
4500 comphy = NULL;
4501 }
4502
4503 phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
4504 &mvneta_phylink_ops);
4505 if (IS_ERR(phylink)) {
4506 err = PTR_ERR(phylink);
4507 goto err_free_irq;
4508 }
4509
4510 dev->tx_queue_len = MVNETA_MAX_TXD;
4511 dev->watchdog_timeo = 5 * HZ;
4512 dev->netdev_ops = &mvneta_netdev_ops;
4513
4514 dev->ethtool_ops = &mvneta_eth_tool_ops;
4515
4516 pp = netdev_priv(dev);
4517 spin_lock_init(&pp->lock);
4518 pp->phylink = phylink;
4519 pp->comphy = comphy;
4520 pp->phy_interface = phy_mode;
4521 pp->dn = dn;
4522
4523 pp->rxq_def = rxq_def;
4524 pp->indir[0] = rxq_def;
4525
4526 /* Get special SoC configurations */
4527 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4528 pp->neta_armada3700 = true;
4529
4530 pp->clk = devm_clk_get(&pdev->dev, "core");
4531 if (IS_ERR(pp->clk))
4532 pp->clk = devm_clk_get(&pdev->dev, NULL);
4533 if (IS_ERR(pp->clk)) {
4534 err = PTR_ERR(pp->clk);
4535 goto err_free_phylink;
4536 }
4537
4538 clk_prepare_enable(pp->clk);
4539
4540 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4541 if (!IS_ERR(pp->clk_bus))
4542 clk_prepare_enable(pp->clk_bus);
4543
4544 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4545 pp->base = devm_ioremap_resource(&pdev->dev, res);
4546 if (IS_ERR(pp->base)) {
4547 err = PTR_ERR(pp->base);
4548 goto err_clk;
4549 }
4550
4551 /* Alloc per-cpu port structure */
4552 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4553 if (!pp->ports) {
4554 err = -ENOMEM;
4555 goto err_clk;
4556 }
4557
4558 /* Alloc per-cpu stats */
4559 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4560 if (!pp->stats) {
4561 err = -ENOMEM;
4562 goto err_free_ports;
4563 }
4564
4565 dt_mac_addr = of_get_mac_address(dn);
4566 if (!IS_ERR(dt_mac_addr)) {
4567 mac_from = "device tree";
4568 ether_addr_copy(dev->dev_addr, dt_mac_addr);
4569 } else {
4570 mvneta_get_mac_addr(pp, hw_mac_addr);
4571 if (is_valid_ether_addr(hw_mac_addr)) {
4572 mac_from = "hardware";
4573 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4574 } else {
4575 mac_from = "random";
4576 eth_hw_addr_random(dev);
4577 }
4578 }
4579
4580 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4581 if (tx_csum_limit < 0 ||
4582 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4583 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4584 dev_info(&pdev->dev,
4585 "Wrong TX csum limit in DT, set to %dB\n",
4586 MVNETA_TX_CSUM_DEF_SIZE);
4587 }
4588 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4589 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4590 } else {
4591 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4592 }
4593
4594 pp->tx_csum_limit = tx_csum_limit;
4595
4596 pp->dram_target_info = mv_mbus_dram_info();
4597 /* Armada3700 requires setting default configuration of Mbus
4598 * windows, however without using filled mbus_dram_target_info
4599 * structure.
4600 */
4601 if (pp->dram_target_info || pp->neta_armada3700)
4602 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4603
4604 pp->tx_ring_size = MVNETA_MAX_TXD;
4605 pp->rx_ring_size = MVNETA_MAX_RXD;
4606
4607 pp->dev = dev;
4608 SET_NETDEV_DEV(dev, &pdev->dev);
4609
4610 pp->id = global_port_id++;
4611 pp->rx_offset_correction = 0; /* not relevant for SW BM */
4612
4613 /* Obtain access to BM resources if enabled and already initialized */
4614 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4615 if (bm_node) {
4616 pp->bm_priv = mvneta_bm_get(bm_node);
4617 if (pp->bm_priv) {
4618 err = mvneta_bm_port_init(pdev, pp);
4619 if (err < 0) {
4620 dev_info(&pdev->dev,
4621 "use SW buffer management\n");
4622 mvneta_bm_put(pp->bm_priv);
4623 pp->bm_priv = NULL;
4624 }
4625 }
4626 /* Set RX packet offset correction for platforms, whose
4627 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4628 * platforms and 0B for 32-bit ones.
4629 */
4630 pp->rx_offset_correction = max(0,
4631 NET_SKB_PAD -
4632 MVNETA_RX_PKT_OFFSET_CORRECTION);
4633 }
4634 of_node_put(bm_node);
4635
4636 err = mvneta_init(&pdev->dev, pp);
4637 if (err < 0)
4638 goto err_netdev;
4639
4640 err = mvneta_port_power_up(pp, phy_mode);
4641 if (err < 0) {
4642 dev_err(&pdev->dev, "can't power up port\n");
4643 goto err_netdev;
4644 }
4645
4646 /* Armada3700 network controller does not support per-cpu
4647 * operation, so only single NAPI should be initialized.
4648 */
4649 if (pp->neta_armada3700) {
4650 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4651 } else {
4652 for_each_present_cpu(cpu) {
4653 struct mvneta_pcpu_port *port =
4654 per_cpu_ptr(pp->ports, cpu);
4655
4656 netif_napi_add(dev, &port->napi, mvneta_poll,
4657 NAPI_POLL_WEIGHT);
4658 port->pp = pp;
4659 }
4660 }
4661
4662 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4663 NETIF_F_TSO | NETIF_F_RXCSUM;
4664 dev->hw_features |= dev->features;
4665 dev->vlan_features |= dev->features;
4666 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4667 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4668
4669 /* MTU range: 68 - 9676 */
4670 dev->min_mtu = ETH_MIN_MTU;
4671 /* 9676 == 9700 - 20 and rounding to 8 */
4672 dev->max_mtu = 9676;
4673
4674 err = register_netdev(dev);
4675 if (err < 0) {
4676 dev_err(&pdev->dev, "failed to register\n");
4677 goto err_netdev;
4678 }
4679
4680 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4681 dev->dev_addr);
4682
4683 platform_set_drvdata(pdev, pp->dev);
4684
4685 return 0;
4686
4687 err_netdev:
4688 if (pp->bm_priv) {
4689 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4690 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4691 1 << pp->id);
4692 mvneta_bm_put(pp->bm_priv);
4693 }
4694 free_percpu(pp->stats);
4695 err_free_ports:
4696 free_percpu(pp->ports);
4697 err_clk:
4698 clk_disable_unprepare(pp->clk_bus);
4699 clk_disable_unprepare(pp->clk);
4700 err_free_phylink:
4701 if (pp->phylink)
4702 phylink_destroy(pp->phylink);
4703 err_free_irq:
4704 irq_dispose_mapping(dev->irq);
4705 return err;
4706 }
4707
4708 /* Device removal routine */
4709 static int mvneta_remove(struct platform_device *pdev)
4710 {
4711 struct net_device *dev = platform_get_drvdata(pdev);
4712 struct mvneta_port *pp = netdev_priv(dev);
4713
4714 unregister_netdev(dev);
4715 clk_disable_unprepare(pp->clk_bus);
4716 clk_disable_unprepare(pp->clk);
4717 free_percpu(pp->ports);
4718 free_percpu(pp->stats);
4719 irq_dispose_mapping(dev->irq);
4720 phylink_destroy(pp->phylink);
4721
4722 if (pp->bm_priv) {
4723 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4724 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4725 1 << pp->id);
4726 mvneta_bm_put(pp->bm_priv);
4727 }
4728
4729 return 0;
4730 }
4731
4732 #ifdef CONFIG_PM_SLEEP
4733 static int mvneta_suspend(struct device *device)
4734 {
4735 int queue;
4736 struct net_device *dev = dev_get_drvdata(device);
4737 struct mvneta_port *pp = netdev_priv(dev);
4738
4739 if (!netif_running(dev))
4740 goto clean_exit;
4741
4742 if (!pp->neta_armada3700) {
4743 spin_lock(&pp->lock);
4744 pp->is_stopped = true;
4745 spin_unlock(&pp->lock);
4746
4747 cpuhp_state_remove_instance_nocalls(online_hpstate,
4748 &pp->node_online);
4749 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4750 &pp->node_dead);
4751 }
4752
4753 rtnl_lock();
4754 mvneta_stop_dev(pp);
4755 rtnl_unlock();
4756
4757 for (queue = 0; queue < rxq_number; queue++) {
4758 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4759
4760 mvneta_rxq_drop_pkts(pp, rxq);
4761 }
4762
4763 for (queue = 0; queue < txq_number; queue++) {
4764 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4765
4766 mvneta_txq_hw_deinit(pp, txq);
4767 }
4768
4769 clean_exit:
4770 netif_device_detach(dev);
4771 clk_disable_unprepare(pp->clk_bus);
4772 clk_disable_unprepare(pp->clk);
4773
4774 return 0;
4775 }
4776
4777 static int mvneta_resume(struct device *device)
4778 {
4779 struct platform_device *pdev = to_platform_device(device);
4780 struct net_device *dev = dev_get_drvdata(device);
4781 struct mvneta_port *pp = netdev_priv(dev);
4782 int err, queue;
4783
4784 clk_prepare_enable(pp->clk);
4785 if (!IS_ERR(pp->clk_bus))
4786 clk_prepare_enable(pp->clk_bus);
4787 if (pp->dram_target_info || pp->neta_armada3700)
4788 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4789 if (pp->bm_priv) {
4790 err = mvneta_bm_port_init(pdev, pp);
4791 if (err < 0) {
4792 dev_info(&pdev->dev, "use SW buffer management\n");
4793 pp->bm_priv = NULL;
4794 }
4795 }
4796 mvneta_defaults_set(pp);
4797 err = mvneta_port_power_up(pp, pp->phy_interface);
4798 if (err < 0) {
4799 dev_err(device, "can't power up port\n");
4800 return err;
4801 }
4802
4803 netif_device_attach(dev);
4804
4805 if (!netif_running(dev))
4806 return 0;
4807
4808 for (queue = 0; queue < rxq_number; queue++) {
4809 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4810
4811 rxq->next_desc_to_proc = 0;
4812 mvneta_rxq_hw_init(pp, rxq);
4813 }
4814
4815 for (queue = 0; queue < txq_number; queue++) {
4816 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4817
4818 txq->next_desc_to_proc = 0;
4819 mvneta_txq_hw_init(pp, txq);
4820 }
4821
4822 if (!pp->neta_armada3700) {
4823 spin_lock(&pp->lock);
4824 pp->is_stopped = false;
4825 spin_unlock(&pp->lock);
4826 cpuhp_state_add_instance_nocalls(online_hpstate,
4827 &pp->node_online);
4828 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4829 &pp->node_dead);
4830 }
4831
4832 rtnl_lock();
4833 mvneta_start_dev(pp);
4834 rtnl_unlock();
4835 mvneta_set_rx_mode(dev);
4836
4837 return 0;
4838 }
4839 #endif
4840
4841 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4842
4843 static const struct of_device_id mvneta_match[] = {
4844 { .compatible = "marvell,armada-370-neta" },
4845 { .compatible = "marvell,armada-xp-neta" },
4846 { .compatible = "marvell,armada-3700-neta" },
4847 { }
4848 };
4849 MODULE_DEVICE_TABLE(of, mvneta_match);
4850
4851 static struct platform_driver mvneta_driver = {
4852 .probe = mvneta_probe,
4853 .remove = mvneta_remove,
4854 .driver = {
4855 .name = MVNETA_DRIVER_NAME,
4856 .of_match_table = mvneta_match,
4857 .pm = &mvneta_pm_ops,
4858 },
4859 };
4860
4861 static int __init mvneta_driver_init(void)
4862 {
4863 int ret;
4864
4865 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4866 mvneta_cpu_online,
4867 mvneta_cpu_down_prepare);
4868 if (ret < 0)
4869 goto out;
4870 online_hpstate = ret;
4871 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4872 NULL, mvneta_cpu_dead);
4873 if (ret)
4874 goto err_dead;
4875
4876 ret = platform_driver_register(&mvneta_driver);
4877 if (ret)
4878 goto err;
4879 return 0;
4880
4881 err:
4882 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4883 err_dead:
4884 cpuhp_remove_multi_state(online_hpstate);
4885 out:
4886 return ret;
4887 }
4888 module_init(mvneta_driver_init);
4889
4890 static void __exit mvneta_driver_exit(void)
4891 {
4892 platform_driver_unregister(&mvneta_driver);
4893 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4894 cpuhp_remove_multi_state(online_hpstate);
4895 }
4896 module_exit(mvneta_driver_exit);
4897
4898 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4899 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4900 MODULE_LICENSE("GPL");
4901
4902 module_param(rxq_number, int, 0444);
4903 module_param(txq_number, int, 0444);
4904
4905 module_param(rxq_def, int, 0444);
4906 module_param(rx_copybreak, int, 0644);