]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/marvell/mvneta.c
ASoC: ak5386: Add regulators to documentation and fix sparse warning
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <net/ip.h>
24 #include <net/ipv6.h>
25 #include <linux/io.h>
26 #include <net/tso.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/of_address.h>
32 #include <linux/phy.h>
33 #include <linux/clk.h>
34
35 /* Registers */
36 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
37 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
38 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
39 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
40 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
41 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
42 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
43 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
44 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
45 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
46 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
47 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
48 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
49 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
50 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
51 #define MVNETA_PORT_RX_RESET 0x1cc0
52 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
53 #define MVNETA_PHY_ADDR 0x2000
54 #define MVNETA_PHY_ADDR_MASK 0x1f
55 #define MVNETA_MBUS_RETRY 0x2010
56 #define MVNETA_UNIT_INTR_CAUSE 0x2080
57 #define MVNETA_UNIT_CONTROL 0x20B0
58 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
59 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
60 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
61 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
62 #define MVNETA_BASE_ADDR_ENABLE 0x2290
63 #define MVNETA_PORT_CONFIG 0x2400
64 #define MVNETA_UNI_PROMISC_MODE BIT(0)
65 #define MVNETA_DEF_RXQ(q) ((q) << 1)
66 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
67 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
68 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
69 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
70 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
71 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
72 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
73 MVNETA_DEF_RXQ_ARP(q) | \
74 MVNETA_DEF_RXQ_TCP(q) | \
75 MVNETA_DEF_RXQ_UDP(q) | \
76 MVNETA_DEF_RXQ_BPDU(q) | \
77 MVNETA_TX_UNSET_ERR_SUM | \
78 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
79 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
80 #define MVNETA_MAC_ADDR_LOW 0x2414
81 #define MVNETA_MAC_ADDR_HIGH 0x2418
82 #define MVNETA_SDMA_CONFIG 0x241c
83 #define MVNETA_SDMA_BRST_SIZE_16 4
84 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
85 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
86 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
87 #define MVNETA_DESC_SWAP BIT(6)
88 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
89 #define MVNETA_PORT_STATUS 0x2444
90 #define MVNETA_TX_IN_PRGRS BIT(1)
91 #define MVNETA_TX_FIFO_EMPTY BIT(8)
92 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
93 #define MVNETA_SERDES_CFG 0x24A0
94 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
95 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
96 #define MVNETA_TYPE_PRIO 0x24bc
97 #define MVNETA_FORCE_UNI BIT(21)
98 #define MVNETA_TXQ_CMD_1 0x24e4
99 #define MVNETA_TXQ_CMD 0x2448
100 #define MVNETA_TXQ_DISABLE_SHIFT 8
101 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
102 #define MVNETA_ACC_MODE 0x2500
103 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
104 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
105 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
106 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
107
108 /* Exception Interrupt Port/Queue Cause register */
109
110 #define MVNETA_INTR_NEW_CAUSE 0x25a0
111 #define MVNETA_INTR_NEW_MASK 0x25a4
112
113 /* bits 0..7 = TXQ SENT, one bit per queue.
114 * bits 8..15 = RXQ OCCUP, one bit per queue.
115 * bits 16..23 = RXQ FREE, one bit per queue.
116 * bit 29 = OLD_REG_SUM, see old reg ?
117 * bit 30 = TX_ERR_SUM, one bit for 4 ports
118 * bit 31 = MISC_SUM, one bit for 4 ports
119 */
120 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
121 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
122 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
123 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
124
125 #define MVNETA_INTR_OLD_CAUSE 0x25a8
126 #define MVNETA_INTR_OLD_MASK 0x25ac
127
128 /* Data Path Port/Queue Cause Register */
129 #define MVNETA_INTR_MISC_CAUSE 0x25b0
130 #define MVNETA_INTR_MISC_MASK 0x25b4
131
132 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
133 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
134 #define MVNETA_CAUSE_PTP BIT(4)
135
136 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
137 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
138 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
139 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
140 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
141 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
142 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
143 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
144
145 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
146 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
147 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
148
149 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
150 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
151 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
152
153 #define MVNETA_INTR_ENABLE 0x25b8
154 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
155 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
156
157 #define MVNETA_RXQ_CMD 0x2680
158 #define MVNETA_RXQ_DISABLE_SHIFT 8
159 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
160 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
161 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
162 #define MVNETA_GMAC_CTRL_0 0x2c00
163 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
164 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
165 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
166 #define MVNETA_GMAC_CTRL_2 0x2c08
167 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
168 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
169 #define MVNETA_GMAC2_PORT_RESET BIT(6)
170 #define MVNETA_GMAC_STATUS 0x2c10
171 #define MVNETA_GMAC_LINK_UP BIT(0)
172 #define MVNETA_GMAC_SPEED_1000 BIT(1)
173 #define MVNETA_GMAC_SPEED_100 BIT(2)
174 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
175 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
176 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
177 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
178 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
179 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
180 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
181 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
182 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
183 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
184 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
185 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
186 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
187 #define MVNETA_MIB_COUNTERS_BASE 0x3080
188 #define MVNETA_MIB_LATE_COLLISION 0x7c
189 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
190 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
191 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
192 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
193 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
194 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
195 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
196 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
197 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
198 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
199 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
200 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
201 #define MVNETA_PORT_TX_RESET 0x3cf0
202 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
203 #define MVNETA_TX_MTU 0x3e0c
204 #define MVNETA_TX_TOKEN_SIZE 0x3e14
205 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
206 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
207 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
208
209 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
210
211 /* Descriptor ring Macros */
212 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
213 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
214
215 /* Various constants */
216
217 /* Coalescing */
218 #define MVNETA_TXDONE_COAL_PKTS 16
219 #define MVNETA_RX_COAL_PKTS 32
220 #define MVNETA_RX_COAL_USEC 100
221
222 /* The two bytes Marvell header. Either contains a special value used
223 * by Marvell switches when a specific hardware mode is enabled (not
224 * supported by this driver) or is filled automatically by zeroes on
225 * the RX side. Those two bytes being at the front of the Ethernet
226 * header, they allow to have the IP header aligned on a 4 bytes
227 * boundary automatically: the hardware skips those two bytes on its
228 * own.
229 */
230 #define MVNETA_MH_SIZE 2
231
232 #define MVNETA_VLAN_TAG_LEN 4
233
234 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
235 #define MVNETA_TX_CSUM_MAX_SIZE 9800
236 #define MVNETA_ACC_MODE_EXT 1
237
238 /* Timeout constants */
239 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
240 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
241 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
242
243 #define MVNETA_TX_MTU_MAX 0x3ffff
244
245 /* TSO header size */
246 #define TSO_HEADER_SIZE 128
247
248 /* Max number of Rx descriptors */
249 #define MVNETA_MAX_RXD 128
250
251 /* Max number of Tx descriptors */
252 #define MVNETA_MAX_TXD 532
253
254 /* Max number of allowed TCP segments for software TSO */
255 #define MVNETA_MAX_TSO_SEGS 100
256
257 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
258
259 /* descriptor aligned size */
260 #define MVNETA_DESC_ALIGNED_SIZE 32
261
262 #define MVNETA_RX_PKT_SIZE(mtu) \
263 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
264 ETH_HLEN + ETH_FCS_LEN, \
265 MVNETA_CPU_D_CACHE_LINE_SIZE)
266
267 #define IS_TSO_HEADER(txq, addr) \
268 ((addr >= txq->tso_hdrs_phys) && \
269 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
270
271 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
272
273 struct mvneta_pcpu_stats {
274 struct u64_stats_sync syncp;
275 u64 rx_packets;
276 u64 rx_bytes;
277 u64 tx_packets;
278 u64 tx_bytes;
279 };
280
281 struct mvneta_port {
282 int pkt_size;
283 unsigned int frag_size;
284 void __iomem *base;
285 struct mvneta_rx_queue *rxqs;
286 struct mvneta_tx_queue *txqs;
287 struct net_device *dev;
288
289 u32 cause_rx_tx;
290 struct napi_struct napi;
291
292 /* Core clock */
293 struct clk *clk;
294 u8 mcast_count[256];
295 u16 tx_ring_size;
296 u16 rx_ring_size;
297 struct mvneta_pcpu_stats *stats;
298
299 struct mii_bus *mii_bus;
300 struct phy_device *phy_dev;
301 phy_interface_t phy_interface;
302 struct device_node *phy_node;
303 unsigned int link;
304 unsigned int duplex;
305 unsigned int speed;
306 };
307
308 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
309 * layout of the transmit and reception DMA descriptors, and their
310 * layout is therefore defined by the hardware design
311 */
312
313 #define MVNETA_TX_L3_OFF_SHIFT 0
314 #define MVNETA_TX_IP_HLEN_SHIFT 8
315 #define MVNETA_TX_L4_UDP BIT(16)
316 #define MVNETA_TX_L3_IP6 BIT(17)
317 #define MVNETA_TXD_IP_CSUM BIT(18)
318 #define MVNETA_TXD_Z_PAD BIT(19)
319 #define MVNETA_TXD_L_DESC BIT(20)
320 #define MVNETA_TXD_F_DESC BIT(21)
321 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
322 MVNETA_TXD_L_DESC | \
323 MVNETA_TXD_F_DESC)
324 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
325 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
326
327 #define MVNETA_RXD_ERR_CRC 0x0
328 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
329 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
330 #define MVNETA_RXD_ERR_LEN BIT(18)
331 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
332 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
333 #define MVNETA_RXD_L3_IP4 BIT(25)
334 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
335 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
336
337 #if defined(__LITTLE_ENDIAN)
338 struct mvneta_tx_desc {
339 u32 command; /* Options used by HW for packet transmitting.*/
340 u16 reserverd1; /* csum_l4 (for future use) */
341 u16 data_size; /* Data size of transmitted packet in bytes */
342 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
343 u32 reserved2; /* hw_cmd - (for future use, PMT) */
344 u32 reserved3[4]; /* Reserved - (for future use) */
345 };
346
347 struct mvneta_rx_desc {
348 u32 status; /* Info about received packet */
349 u16 reserved1; /* pnc_info - (for future use, PnC) */
350 u16 data_size; /* Size of received packet in bytes */
351
352 u32 buf_phys_addr; /* Physical address of the buffer */
353 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
354
355 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
356 u16 reserved3; /* prefetch_cmd, for future use */
357 u16 reserved4; /* csum_l4 - (for future use, PnC) */
358
359 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
360 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
361 };
362 #else
363 struct mvneta_tx_desc {
364 u16 data_size; /* Data size of transmitted packet in bytes */
365 u16 reserverd1; /* csum_l4 (for future use) */
366 u32 command; /* Options used by HW for packet transmitting.*/
367 u32 reserved2; /* hw_cmd - (for future use, PMT) */
368 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
369 u32 reserved3[4]; /* Reserved - (for future use) */
370 };
371
372 struct mvneta_rx_desc {
373 u16 data_size; /* Size of received packet in bytes */
374 u16 reserved1; /* pnc_info - (for future use, PnC) */
375 u32 status; /* Info about received packet */
376
377 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
378 u32 buf_phys_addr; /* Physical address of the buffer */
379
380 u16 reserved4; /* csum_l4 - (for future use, PnC) */
381 u16 reserved3; /* prefetch_cmd, for future use */
382 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
383
384 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
385 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
386 };
387 #endif
388
389 struct mvneta_tx_queue {
390 /* Number of this TX queue, in the range 0-7 */
391 u8 id;
392
393 /* Number of TX DMA descriptors in the descriptor ring */
394 int size;
395
396 /* Number of currently used TX DMA descriptor in the
397 * descriptor ring
398 */
399 int count;
400 int tx_stop_threshold;
401 int tx_wake_threshold;
402
403 /* Array of transmitted skb */
404 struct sk_buff **tx_skb;
405
406 /* Index of last TX DMA descriptor that was inserted */
407 int txq_put_index;
408
409 /* Index of the TX DMA descriptor to be cleaned up */
410 int txq_get_index;
411
412 u32 done_pkts_coal;
413
414 /* Virtual address of the TX DMA descriptors array */
415 struct mvneta_tx_desc *descs;
416
417 /* DMA address of the TX DMA descriptors array */
418 dma_addr_t descs_phys;
419
420 /* Index of the last TX DMA descriptor */
421 int last_desc;
422
423 /* Index of the next TX DMA descriptor to process */
424 int next_desc_to_proc;
425
426 /* DMA buffers for TSO headers */
427 char *tso_hdrs;
428
429 /* DMA address of TSO headers */
430 dma_addr_t tso_hdrs_phys;
431 };
432
433 struct mvneta_rx_queue {
434 /* rx queue number, in the range 0-7 */
435 u8 id;
436
437 /* num of rx descriptors in the rx descriptor ring */
438 int size;
439
440 /* counter of times when mvneta_refill() failed */
441 int missed;
442
443 u32 pkts_coal;
444 u32 time_coal;
445
446 /* Virtual address of the RX DMA descriptors array */
447 struct mvneta_rx_desc *descs;
448
449 /* DMA address of the RX DMA descriptors array */
450 dma_addr_t descs_phys;
451
452 /* Index of the last RX DMA descriptor */
453 int last_desc;
454
455 /* Index of the next RX DMA descriptor to process */
456 int next_desc_to_proc;
457 };
458
459 /* The hardware supports eight (8) rx queues, but we are only allowing
460 * the first one to be used. Therefore, let's just allocate one queue.
461 */
462 static int rxq_number = 1;
463 static int txq_number = 8;
464
465 static int rxq_def;
466
467 static int rx_copybreak __read_mostly = 256;
468
469 #define MVNETA_DRIVER_NAME "mvneta"
470 #define MVNETA_DRIVER_VERSION "1.0"
471
472 /* Utility/helper methods */
473
474 /* Write helper method */
475 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
476 {
477 writel(data, pp->base + offset);
478 }
479
480 /* Read helper method */
481 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
482 {
483 return readl(pp->base + offset);
484 }
485
486 /* Increment txq get counter */
487 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
488 {
489 txq->txq_get_index++;
490 if (txq->txq_get_index == txq->size)
491 txq->txq_get_index = 0;
492 }
493
494 /* Increment txq put counter */
495 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
496 {
497 txq->txq_put_index++;
498 if (txq->txq_put_index == txq->size)
499 txq->txq_put_index = 0;
500 }
501
502
503 /* Clear all MIB counters */
504 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
505 {
506 int i;
507 u32 dummy;
508
509 /* Perform dummy reads from MIB counters */
510 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
511 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
512 }
513
514 /* Get System Network Statistics */
515 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
516 struct rtnl_link_stats64 *stats)
517 {
518 struct mvneta_port *pp = netdev_priv(dev);
519 unsigned int start;
520 int cpu;
521
522 for_each_possible_cpu(cpu) {
523 struct mvneta_pcpu_stats *cpu_stats;
524 u64 rx_packets;
525 u64 rx_bytes;
526 u64 tx_packets;
527 u64 tx_bytes;
528
529 cpu_stats = per_cpu_ptr(pp->stats, cpu);
530 do {
531 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
532 rx_packets = cpu_stats->rx_packets;
533 rx_bytes = cpu_stats->rx_bytes;
534 tx_packets = cpu_stats->tx_packets;
535 tx_bytes = cpu_stats->tx_bytes;
536 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
537
538 stats->rx_packets += rx_packets;
539 stats->rx_bytes += rx_bytes;
540 stats->tx_packets += tx_packets;
541 stats->tx_bytes += tx_bytes;
542 }
543
544 stats->rx_errors = dev->stats.rx_errors;
545 stats->rx_dropped = dev->stats.rx_dropped;
546
547 stats->tx_dropped = dev->stats.tx_dropped;
548
549 return stats;
550 }
551
552 /* Rx descriptors helper methods */
553
554 /* Checks whether the RX descriptor having this status is both the first
555 * and the last descriptor for the RX packet. Each RX packet is currently
556 * received through a single RX descriptor, so not having each RX
557 * descriptor with its first and last bits set is an error
558 */
559 static int mvneta_rxq_desc_is_first_last(u32 status)
560 {
561 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
562 MVNETA_RXD_FIRST_LAST_DESC;
563 }
564
565 /* Add number of descriptors ready to receive new packets */
566 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
567 struct mvneta_rx_queue *rxq,
568 int ndescs)
569 {
570 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
571 * be added at once
572 */
573 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
574 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
575 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
576 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
577 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
578 }
579
580 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
581 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
582 }
583
584 /* Get number of RX descriptors occupied by received packets */
585 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
586 struct mvneta_rx_queue *rxq)
587 {
588 u32 val;
589
590 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
591 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
592 }
593
594 /* Update num of rx desc called upon return from rx path or
595 * from mvneta_rxq_drop_pkts().
596 */
597 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
598 struct mvneta_rx_queue *rxq,
599 int rx_done, int rx_filled)
600 {
601 u32 val;
602
603 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
604 val = rx_done |
605 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
606 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
607 return;
608 }
609
610 /* Only 255 descriptors can be added at once */
611 while ((rx_done > 0) || (rx_filled > 0)) {
612 if (rx_done <= 0xff) {
613 val = rx_done;
614 rx_done = 0;
615 } else {
616 val = 0xff;
617 rx_done -= 0xff;
618 }
619 if (rx_filled <= 0xff) {
620 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
621 rx_filled = 0;
622 } else {
623 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
624 rx_filled -= 0xff;
625 }
626 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
627 }
628 }
629
630 /* Get pointer to next RX descriptor to be processed by SW */
631 static struct mvneta_rx_desc *
632 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
633 {
634 int rx_desc = rxq->next_desc_to_proc;
635
636 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
637 prefetch(rxq->descs + rxq->next_desc_to_proc);
638 return rxq->descs + rx_desc;
639 }
640
641 /* Change maximum receive size of the port. */
642 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
643 {
644 u32 val;
645
646 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
647 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
648 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
649 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
650 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
651 }
652
653
654 /* Set rx queue offset */
655 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
656 struct mvneta_rx_queue *rxq,
657 int offset)
658 {
659 u32 val;
660
661 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
662 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
663
664 /* Offset is in */
665 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
666 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
667 }
668
669
670 /* Tx descriptors helper methods */
671
672 /* Update HW with number of TX descriptors to be sent */
673 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
674 struct mvneta_tx_queue *txq,
675 int pend_desc)
676 {
677 u32 val;
678
679 /* Only 255 descriptors can be added at once ; Assume caller
680 * process TX desriptors in quanta less than 256
681 */
682 val = pend_desc;
683 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
684 }
685
686 /* Get pointer to next TX descriptor to be processed (send) by HW */
687 static struct mvneta_tx_desc *
688 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
689 {
690 int tx_desc = txq->next_desc_to_proc;
691
692 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
693 return txq->descs + tx_desc;
694 }
695
696 /* Release the last allocated TX descriptor. Useful to handle DMA
697 * mapping failures in the TX path.
698 */
699 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
700 {
701 if (txq->next_desc_to_proc == 0)
702 txq->next_desc_to_proc = txq->last_desc - 1;
703 else
704 txq->next_desc_to_proc--;
705 }
706
707 /* Set rxq buf size */
708 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
709 struct mvneta_rx_queue *rxq,
710 int buf_size)
711 {
712 u32 val;
713
714 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
715
716 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
717 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
718
719 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
720 }
721
722 /* Disable buffer management (BM) */
723 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
724 struct mvneta_rx_queue *rxq)
725 {
726 u32 val;
727
728 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
729 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
730 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
731 }
732
733 /* Start the Ethernet port RX and TX activity */
734 static void mvneta_port_up(struct mvneta_port *pp)
735 {
736 int queue;
737 u32 q_map;
738
739 /* Enable all initialized TXs. */
740 mvneta_mib_counters_clear(pp);
741 q_map = 0;
742 for (queue = 0; queue < txq_number; queue++) {
743 struct mvneta_tx_queue *txq = &pp->txqs[queue];
744 if (txq->descs != NULL)
745 q_map |= (1 << queue);
746 }
747 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
748
749 /* Enable all initialized RXQs. */
750 q_map = 0;
751 for (queue = 0; queue < rxq_number; queue++) {
752 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
753 if (rxq->descs != NULL)
754 q_map |= (1 << queue);
755 }
756
757 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
758 }
759
760 /* Stop the Ethernet port activity */
761 static void mvneta_port_down(struct mvneta_port *pp)
762 {
763 u32 val;
764 int count;
765
766 /* Stop Rx port activity. Check port Rx activity. */
767 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
768
769 /* Issue stop command for active channels only */
770 if (val != 0)
771 mvreg_write(pp, MVNETA_RXQ_CMD,
772 val << MVNETA_RXQ_DISABLE_SHIFT);
773
774 /* Wait for all Rx activity to terminate. */
775 count = 0;
776 do {
777 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
778 netdev_warn(pp->dev,
779 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
780 val);
781 break;
782 }
783 mdelay(1);
784
785 val = mvreg_read(pp, MVNETA_RXQ_CMD);
786 } while (val & 0xff);
787
788 /* Stop Tx port activity. Check port Tx activity. Issue stop
789 * command for active channels only
790 */
791 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
792
793 if (val != 0)
794 mvreg_write(pp, MVNETA_TXQ_CMD,
795 (val << MVNETA_TXQ_DISABLE_SHIFT));
796
797 /* Wait for all Tx activity to terminate. */
798 count = 0;
799 do {
800 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
801 netdev_warn(pp->dev,
802 "TIMEOUT for TX stopped status=0x%08x\n",
803 val);
804 break;
805 }
806 mdelay(1);
807
808 /* Check TX Command reg that all Txqs are stopped */
809 val = mvreg_read(pp, MVNETA_TXQ_CMD);
810
811 } while (val & 0xff);
812
813 /* Double check to verify that TX FIFO is empty */
814 count = 0;
815 do {
816 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
817 netdev_warn(pp->dev,
818 "TX FIFO empty timeout status=0x08%x\n",
819 val);
820 break;
821 }
822 mdelay(1);
823
824 val = mvreg_read(pp, MVNETA_PORT_STATUS);
825 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
826 (val & MVNETA_TX_IN_PRGRS));
827
828 udelay(200);
829 }
830
831 /* Enable the port by setting the port enable bit of the MAC control register */
832 static void mvneta_port_enable(struct mvneta_port *pp)
833 {
834 u32 val;
835
836 /* Enable port */
837 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
838 val |= MVNETA_GMAC0_PORT_ENABLE;
839 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
840 }
841
842 /* Disable the port and wait for about 200 usec before retuning */
843 static void mvneta_port_disable(struct mvneta_port *pp)
844 {
845 u32 val;
846
847 /* Reset the Enable bit in the Serial Control Register */
848 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
849 val &= ~MVNETA_GMAC0_PORT_ENABLE;
850 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
851
852 udelay(200);
853 }
854
855 /* Multicast tables methods */
856
857 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
858 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
859 {
860 int offset;
861 u32 val;
862
863 if (queue == -1) {
864 val = 0;
865 } else {
866 val = 0x1 | (queue << 1);
867 val |= (val << 24) | (val << 16) | (val << 8);
868 }
869
870 for (offset = 0; offset <= 0xc; offset += 4)
871 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
872 }
873
874 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
875 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
876 {
877 int offset;
878 u32 val;
879
880 if (queue == -1) {
881 val = 0;
882 } else {
883 val = 0x1 | (queue << 1);
884 val |= (val << 24) | (val << 16) | (val << 8);
885 }
886
887 for (offset = 0; offset <= 0xfc; offset += 4)
888 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
889
890 }
891
892 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
893 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
894 {
895 int offset;
896 u32 val;
897
898 if (queue == -1) {
899 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
900 val = 0;
901 } else {
902 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
903 val = 0x1 | (queue << 1);
904 val |= (val << 24) | (val << 16) | (val << 8);
905 }
906
907 for (offset = 0; offset <= 0xfc; offset += 4)
908 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
909 }
910
911 /* This method sets defaults to the NETA port:
912 * Clears interrupt Cause and Mask registers.
913 * Clears all MAC tables.
914 * Sets defaults to all registers.
915 * Resets RX and TX descriptor rings.
916 * Resets PHY.
917 * This method can be called after mvneta_port_down() to return the port
918 * settings to defaults.
919 */
920 static void mvneta_defaults_set(struct mvneta_port *pp)
921 {
922 int cpu;
923 int queue;
924 u32 val;
925
926 /* Clear all Cause registers */
927 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
928 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
929 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
930
931 /* Mask all interrupts */
932 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
933 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
934 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
935 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
936
937 /* Enable MBUS Retry bit16 */
938 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
939
940 /* Set CPU queue access map - all CPUs have access to all RX
941 * queues and to all TX queues
942 */
943 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
944 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
945 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
946 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
947
948 /* Reset RX and TX DMAs */
949 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
950 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
951
952 /* Disable Legacy WRR, Disable EJP, Release from reset */
953 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
954 for (queue = 0; queue < txq_number; queue++) {
955 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
956 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
957 }
958
959 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
960 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
961
962 /* Set Port Acceleration Mode */
963 val = MVNETA_ACC_MODE_EXT;
964 mvreg_write(pp, MVNETA_ACC_MODE, val);
965
966 /* Update val of portCfg register accordingly with all RxQueue types */
967 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
968 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
969
970 val = 0;
971 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
972 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
973
974 /* Build PORT_SDMA_CONFIG_REG */
975 val = 0;
976
977 /* Default burst size */
978 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
979 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
980 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
981
982 #if defined(__BIG_ENDIAN)
983 val |= MVNETA_DESC_SWAP;
984 #endif
985
986 /* Assign port SDMA configuration */
987 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
988
989 /* Disable PHY polling in hardware, since we're using the
990 * kernel phylib to do this.
991 */
992 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
993 val &= ~MVNETA_PHY_POLLING_ENABLE;
994 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
995
996 mvneta_set_ucast_table(pp, -1);
997 mvneta_set_special_mcast_table(pp, -1);
998 mvneta_set_other_mcast_table(pp, -1);
999
1000 /* Set port interrupt enable register - default enable all */
1001 mvreg_write(pp, MVNETA_INTR_ENABLE,
1002 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1003 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1004 }
1005
1006 /* Set max sizes for tx queues */
1007 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1008
1009 {
1010 u32 val, size, mtu;
1011 int queue;
1012
1013 mtu = max_tx_size * 8;
1014 if (mtu > MVNETA_TX_MTU_MAX)
1015 mtu = MVNETA_TX_MTU_MAX;
1016
1017 /* Set MTU */
1018 val = mvreg_read(pp, MVNETA_TX_MTU);
1019 val &= ~MVNETA_TX_MTU_MAX;
1020 val |= mtu;
1021 mvreg_write(pp, MVNETA_TX_MTU, val);
1022
1023 /* TX token size and all TXQs token size must be larger that MTU */
1024 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1025
1026 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1027 if (size < mtu) {
1028 size = mtu;
1029 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1030 val |= size;
1031 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1032 }
1033 for (queue = 0; queue < txq_number; queue++) {
1034 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1035
1036 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1037 if (size < mtu) {
1038 size = mtu;
1039 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1040 val |= size;
1041 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1042 }
1043 }
1044 }
1045
1046 /* Set unicast address */
1047 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1048 int queue)
1049 {
1050 unsigned int unicast_reg;
1051 unsigned int tbl_offset;
1052 unsigned int reg_offset;
1053
1054 /* Locate the Unicast table entry */
1055 last_nibble = (0xf & last_nibble);
1056
1057 /* offset from unicast tbl base */
1058 tbl_offset = (last_nibble / 4) * 4;
1059
1060 /* offset within the above reg */
1061 reg_offset = last_nibble % 4;
1062
1063 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1064
1065 if (queue == -1) {
1066 /* Clear accepts frame bit at specified unicast DA tbl entry */
1067 unicast_reg &= ~(0xff << (8 * reg_offset));
1068 } else {
1069 unicast_reg &= ~(0xff << (8 * reg_offset));
1070 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1071 }
1072
1073 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1074 }
1075
1076 /* Set mac address */
1077 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1078 int queue)
1079 {
1080 unsigned int mac_h;
1081 unsigned int mac_l;
1082
1083 if (queue != -1) {
1084 mac_l = (addr[4] << 8) | (addr[5]);
1085 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1086 (addr[2] << 8) | (addr[3] << 0);
1087
1088 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1089 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1090 }
1091
1092 /* Accept frames of this address */
1093 mvneta_set_ucast_addr(pp, addr[5], queue);
1094 }
1095
1096 /* Set the number of packets that will be received before RX interrupt
1097 * will be generated by HW.
1098 */
1099 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1100 struct mvneta_rx_queue *rxq, u32 value)
1101 {
1102 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1103 value | MVNETA_RXQ_NON_OCCUPIED(0));
1104 rxq->pkts_coal = value;
1105 }
1106
1107 /* Set the time delay in usec before RX interrupt will be generated by
1108 * HW.
1109 */
1110 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1111 struct mvneta_rx_queue *rxq, u32 value)
1112 {
1113 u32 val;
1114 unsigned long clk_rate;
1115
1116 clk_rate = clk_get_rate(pp->clk);
1117 val = (clk_rate / 1000000) * value;
1118
1119 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1120 rxq->time_coal = value;
1121 }
1122
1123 /* Set threshold for TX_DONE pkts coalescing */
1124 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1125 struct mvneta_tx_queue *txq, u32 value)
1126 {
1127 u32 val;
1128
1129 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1130
1131 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1132 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1133
1134 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1135
1136 txq->done_pkts_coal = value;
1137 }
1138
1139 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1140 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1141 u32 phys_addr, u32 cookie)
1142 {
1143 rx_desc->buf_cookie = cookie;
1144 rx_desc->buf_phys_addr = phys_addr;
1145 }
1146
1147 /* Decrement sent descriptors counter */
1148 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1149 struct mvneta_tx_queue *txq,
1150 int sent_desc)
1151 {
1152 u32 val;
1153
1154 /* Only 255 TX descriptors can be updated at once */
1155 while (sent_desc > 0xff) {
1156 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1157 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1158 sent_desc = sent_desc - 0xff;
1159 }
1160
1161 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1162 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1163 }
1164
1165 /* Get number of TX descriptors already sent by HW */
1166 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1167 struct mvneta_tx_queue *txq)
1168 {
1169 u32 val;
1170 int sent_desc;
1171
1172 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1173 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1174 MVNETA_TXQ_SENT_DESC_SHIFT;
1175
1176 return sent_desc;
1177 }
1178
1179 /* Get number of sent descriptors and decrement counter.
1180 * The number of sent descriptors is returned.
1181 */
1182 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1183 struct mvneta_tx_queue *txq)
1184 {
1185 int sent_desc;
1186
1187 /* Get number of sent descriptors */
1188 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1189
1190 /* Decrement sent descriptors counter */
1191 if (sent_desc)
1192 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1193
1194 return sent_desc;
1195 }
1196
1197 /* Set TXQ descriptors fields relevant for CSUM calculation */
1198 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1199 int ip_hdr_len, int l4_proto)
1200 {
1201 u32 command;
1202
1203 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1204 * G_L4_chk, L4_type; required only for checksum
1205 * calculation
1206 */
1207 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1208 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1209
1210 if (l3_proto == swab16(ETH_P_IP))
1211 command |= MVNETA_TXD_IP_CSUM;
1212 else
1213 command |= MVNETA_TX_L3_IP6;
1214
1215 if (l4_proto == IPPROTO_TCP)
1216 command |= MVNETA_TX_L4_CSUM_FULL;
1217 else if (l4_proto == IPPROTO_UDP)
1218 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1219 else
1220 command |= MVNETA_TX_L4_CSUM_NOT;
1221
1222 return command;
1223 }
1224
1225
1226 /* Display more error info */
1227 static void mvneta_rx_error(struct mvneta_port *pp,
1228 struct mvneta_rx_desc *rx_desc)
1229 {
1230 u32 status = rx_desc->status;
1231
1232 if (!mvneta_rxq_desc_is_first_last(status)) {
1233 netdev_err(pp->dev,
1234 "bad rx status %08x (buffer oversize), size=%d\n",
1235 status, rx_desc->data_size);
1236 return;
1237 }
1238
1239 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1240 case MVNETA_RXD_ERR_CRC:
1241 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1242 status, rx_desc->data_size);
1243 break;
1244 case MVNETA_RXD_ERR_OVERRUN:
1245 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1246 status, rx_desc->data_size);
1247 break;
1248 case MVNETA_RXD_ERR_LEN:
1249 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1250 status, rx_desc->data_size);
1251 break;
1252 case MVNETA_RXD_ERR_RESOURCE:
1253 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1254 status, rx_desc->data_size);
1255 break;
1256 }
1257 }
1258
1259 /* Handle RX checksum offload based on the descriptor's status */
1260 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1261 struct sk_buff *skb)
1262 {
1263 if ((status & MVNETA_RXD_L3_IP4) &&
1264 (status & MVNETA_RXD_L4_CSUM_OK)) {
1265 skb->csum = 0;
1266 skb->ip_summed = CHECKSUM_UNNECESSARY;
1267 return;
1268 }
1269
1270 skb->ip_summed = CHECKSUM_NONE;
1271 }
1272
1273 /* Return tx queue pointer (find last set bit) according to <cause> returned
1274 * form tx_done reg. <cause> must not be null. The return value is always a
1275 * valid queue for matching the first one found in <cause>.
1276 */
1277 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1278 u32 cause)
1279 {
1280 int queue = fls(cause) - 1;
1281
1282 return &pp->txqs[queue];
1283 }
1284
1285 /* Free tx queue skbuffs */
1286 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1287 struct mvneta_tx_queue *txq, int num)
1288 {
1289 int i;
1290
1291 for (i = 0; i < num; i++) {
1292 struct mvneta_tx_desc *tx_desc = txq->descs +
1293 txq->txq_get_index;
1294 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1295
1296 mvneta_txq_inc_get(txq);
1297
1298 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1299 dma_unmap_single(pp->dev->dev.parent,
1300 tx_desc->buf_phys_addr,
1301 tx_desc->data_size, DMA_TO_DEVICE);
1302 if (!skb)
1303 continue;
1304 dev_kfree_skb_any(skb);
1305 }
1306 }
1307
1308 /* Handle end of transmission */
1309 static void mvneta_txq_done(struct mvneta_port *pp,
1310 struct mvneta_tx_queue *txq)
1311 {
1312 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1313 int tx_done;
1314
1315 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1316 if (!tx_done)
1317 return;
1318
1319 mvneta_txq_bufs_free(pp, txq, tx_done);
1320
1321 txq->count -= tx_done;
1322
1323 if (netif_tx_queue_stopped(nq)) {
1324 if (txq->count <= txq->tx_wake_threshold)
1325 netif_tx_wake_queue(nq);
1326 }
1327 }
1328
1329 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1330 {
1331 if (likely(pp->frag_size <= PAGE_SIZE))
1332 return netdev_alloc_frag(pp->frag_size);
1333 else
1334 return kmalloc(pp->frag_size, GFP_ATOMIC);
1335 }
1336
1337 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1338 {
1339 if (likely(pp->frag_size <= PAGE_SIZE))
1340 put_page(virt_to_head_page(data));
1341 else
1342 kfree(data);
1343 }
1344
1345 /* Refill processing */
1346 static int mvneta_rx_refill(struct mvneta_port *pp,
1347 struct mvneta_rx_desc *rx_desc)
1348
1349 {
1350 dma_addr_t phys_addr;
1351 void *data;
1352
1353 data = mvneta_frag_alloc(pp);
1354 if (!data)
1355 return -ENOMEM;
1356
1357 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1358 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1359 DMA_FROM_DEVICE);
1360 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1361 mvneta_frag_free(pp, data);
1362 return -ENOMEM;
1363 }
1364
1365 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1366 return 0;
1367 }
1368
1369 /* Handle tx checksum */
1370 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1371 {
1372 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1373 int ip_hdr_len = 0;
1374 u8 l4_proto;
1375
1376 if (skb->protocol == htons(ETH_P_IP)) {
1377 struct iphdr *ip4h = ip_hdr(skb);
1378
1379 /* Calculate IPv4 checksum and L4 checksum */
1380 ip_hdr_len = ip4h->ihl;
1381 l4_proto = ip4h->protocol;
1382 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1383 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1384
1385 /* Read l4_protocol from one of IPv6 extra headers */
1386 if (skb_network_header_len(skb) > 0)
1387 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1388 l4_proto = ip6h->nexthdr;
1389 } else
1390 return MVNETA_TX_L4_CSUM_NOT;
1391
1392 return mvneta_txq_desc_csum(skb_network_offset(skb),
1393 skb->protocol, ip_hdr_len, l4_proto);
1394 }
1395
1396 return MVNETA_TX_L4_CSUM_NOT;
1397 }
1398
1399 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1400 * value
1401 */
1402 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1403 u32 cause)
1404 {
1405 int queue = fls(cause >> 8) - 1;
1406
1407 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1408 }
1409
1410 /* Drop packets received by the RXQ and free buffers */
1411 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1412 struct mvneta_rx_queue *rxq)
1413 {
1414 int rx_done, i;
1415
1416 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1417 for (i = 0; i < rxq->size; i++) {
1418 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1419 void *data = (void *)rx_desc->buf_cookie;
1420
1421 mvneta_frag_free(pp, data);
1422 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1423 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1424 }
1425
1426 if (rx_done)
1427 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1428 }
1429
1430 /* Main rx processing */
1431 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1432 struct mvneta_rx_queue *rxq)
1433 {
1434 struct net_device *dev = pp->dev;
1435 int rx_done, rx_filled;
1436 u32 rcvd_pkts = 0;
1437 u32 rcvd_bytes = 0;
1438
1439 /* Get number of received packets */
1440 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1441
1442 if (rx_todo > rx_done)
1443 rx_todo = rx_done;
1444
1445 rx_done = 0;
1446 rx_filled = 0;
1447
1448 /* Fairness NAPI loop */
1449 while (rx_done < rx_todo) {
1450 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1451 struct sk_buff *skb;
1452 unsigned char *data;
1453 u32 rx_status;
1454 int rx_bytes, err;
1455
1456 rx_done++;
1457 rx_filled++;
1458 rx_status = rx_desc->status;
1459 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1460 data = (unsigned char *)rx_desc->buf_cookie;
1461
1462 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1463 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1464 err_drop_frame:
1465 dev->stats.rx_errors++;
1466 mvneta_rx_error(pp, rx_desc);
1467 /* leave the descriptor untouched */
1468 continue;
1469 }
1470
1471 if (rx_bytes <= rx_copybreak) {
1472 /* better copy a small frame and not unmap the DMA region */
1473 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1474 if (unlikely(!skb))
1475 goto err_drop_frame;
1476
1477 dma_sync_single_range_for_cpu(dev->dev.parent,
1478 rx_desc->buf_phys_addr,
1479 MVNETA_MH_SIZE + NET_SKB_PAD,
1480 rx_bytes,
1481 DMA_FROM_DEVICE);
1482 memcpy(skb_put(skb, rx_bytes),
1483 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1484 rx_bytes);
1485
1486 skb->protocol = eth_type_trans(skb, dev);
1487 mvneta_rx_csum(pp, rx_status, skb);
1488 napi_gro_receive(&pp->napi, skb);
1489
1490 rcvd_pkts++;
1491 rcvd_bytes += rx_bytes;
1492
1493 /* leave the descriptor and buffer untouched */
1494 continue;
1495 }
1496
1497 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1498 if (!skb)
1499 goto err_drop_frame;
1500
1501 dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1502 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1503
1504 rcvd_pkts++;
1505 rcvd_bytes += rx_bytes;
1506
1507 /* Linux processing */
1508 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1509 skb_put(skb, rx_bytes);
1510
1511 skb->protocol = eth_type_trans(skb, dev);
1512
1513 mvneta_rx_csum(pp, rx_status, skb);
1514
1515 napi_gro_receive(&pp->napi, skb);
1516
1517 /* Refill processing */
1518 err = mvneta_rx_refill(pp, rx_desc);
1519 if (err) {
1520 netdev_err(dev, "Linux processing - Can't refill\n");
1521 rxq->missed++;
1522 rx_filled--;
1523 }
1524 }
1525
1526 if (rcvd_pkts) {
1527 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1528
1529 u64_stats_update_begin(&stats->syncp);
1530 stats->rx_packets += rcvd_pkts;
1531 stats->rx_bytes += rcvd_bytes;
1532 u64_stats_update_end(&stats->syncp);
1533 }
1534
1535 /* Update rxq management counters */
1536 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1537
1538 return rx_done;
1539 }
1540
1541 static inline void
1542 mvneta_tso_put_hdr(struct sk_buff *skb,
1543 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1544 {
1545 struct mvneta_tx_desc *tx_desc;
1546 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1547
1548 txq->tx_skb[txq->txq_put_index] = NULL;
1549 tx_desc = mvneta_txq_next_desc_get(txq);
1550 tx_desc->data_size = hdr_len;
1551 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1552 tx_desc->command |= MVNETA_TXD_F_DESC;
1553 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1554 txq->txq_put_index * TSO_HEADER_SIZE;
1555 mvneta_txq_inc_put(txq);
1556 }
1557
1558 static inline int
1559 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1560 struct sk_buff *skb, char *data, int size,
1561 bool last_tcp, bool is_last)
1562 {
1563 struct mvneta_tx_desc *tx_desc;
1564
1565 tx_desc = mvneta_txq_next_desc_get(txq);
1566 tx_desc->data_size = size;
1567 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1568 size, DMA_TO_DEVICE);
1569 if (unlikely(dma_mapping_error(dev->dev.parent,
1570 tx_desc->buf_phys_addr))) {
1571 mvneta_txq_desc_put(txq);
1572 return -ENOMEM;
1573 }
1574
1575 tx_desc->command = 0;
1576 txq->tx_skb[txq->txq_put_index] = NULL;
1577
1578 if (last_tcp) {
1579 /* last descriptor in the TCP packet */
1580 tx_desc->command = MVNETA_TXD_L_DESC;
1581
1582 /* last descriptor in SKB */
1583 if (is_last)
1584 txq->tx_skb[txq->txq_put_index] = skb;
1585 }
1586 mvneta_txq_inc_put(txq);
1587 return 0;
1588 }
1589
1590 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1591 struct mvneta_tx_queue *txq)
1592 {
1593 int total_len, data_left;
1594 int desc_count = 0;
1595 struct mvneta_port *pp = netdev_priv(dev);
1596 struct tso_t tso;
1597 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1598 int i;
1599
1600 /* Count needed descriptors */
1601 if ((txq->count + tso_count_descs(skb)) >= txq->size)
1602 return 0;
1603
1604 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1605 pr_info("*** Is this even possible???!?!?\n");
1606 return 0;
1607 }
1608
1609 /* Initialize the TSO handler, and prepare the first payload */
1610 tso_start(skb, &tso);
1611
1612 total_len = skb->len - hdr_len;
1613 while (total_len > 0) {
1614 char *hdr;
1615
1616 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1617 total_len -= data_left;
1618 desc_count++;
1619
1620 /* prepare packet headers: MAC + IP + TCP */
1621 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1622 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1623
1624 mvneta_tso_put_hdr(skb, pp, txq);
1625
1626 while (data_left > 0) {
1627 int size;
1628 desc_count++;
1629
1630 size = min_t(int, tso.size, data_left);
1631
1632 if (mvneta_tso_put_data(dev, txq, skb,
1633 tso.data, size,
1634 size == data_left,
1635 total_len == 0))
1636 goto err_release;
1637 data_left -= size;
1638
1639 tso_build_data(skb, &tso, size);
1640 }
1641 }
1642
1643 return desc_count;
1644
1645 err_release:
1646 /* Release all used data descriptors; header descriptors must not
1647 * be DMA-unmapped.
1648 */
1649 for (i = desc_count - 1; i >= 0; i--) {
1650 struct mvneta_tx_desc *tx_desc = txq->descs + i;
1651 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1652 dma_unmap_single(pp->dev->dev.parent,
1653 tx_desc->buf_phys_addr,
1654 tx_desc->data_size,
1655 DMA_TO_DEVICE);
1656 mvneta_txq_desc_put(txq);
1657 }
1658 return 0;
1659 }
1660
1661 /* Handle tx fragmentation processing */
1662 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1663 struct mvneta_tx_queue *txq)
1664 {
1665 struct mvneta_tx_desc *tx_desc;
1666 int i, nr_frags = skb_shinfo(skb)->nr_frags;
1667
1668 for (i = 0; i < nr_frags; i++) {
1669 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1670 void *addr = page_address(frag->page.p) + frag->page_offset;
1671
1672 tx_desc = mvneta_txq_next_desc_get(txq);
1673 tx_desc->data_size = frag->size;
1674
1675 tx_desc->buf_phys_addr =
1676 dma_map_single(pp->dev->dev.parent, addr,
1677 tx_desc->data_size, DMA_TO_DEVICE);
1678
1679 if (dma_mapping_error(pp->dev->dev.parent,
1680 tx_desc->buf_phys_addr)) {
1681 mvneta_txq_desc_put(txq);
1682 goto error;
1683 }
1684
1685 if (i == nr_frags - 1) {
1686 /* Last descriptor */
1687 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1688 txq->tx_skb[txq->txq_put_index] = skb;
1689 } else {
1690 /* Descriptor in the middle: Not First, Not Last */
1691 tx_desc->command = 0;
1692 txq->tx_skb[txq->txq_put_index] = NULL;
1693 }
1694 mvneta_txq_inc_put(txq);
1695 }
1696
1697 return 0;
1698
1699 error:
1700 /* Release all descriptors that were used to map fragments of
1701 * this packet, as well as the corresponding DMA mappings
1702 */
1703 for (i = i - 1; i >= 0; i--) {
1704 tx_desc = txq->descs + i;
1705 dma_unmap_single(pp->dev->dev.parent,
1706 tx_desc->buf_phys_addr,
1707 tx_desc->data_size,
1708 DMA_TO_DEVICE);
1709 mvneta_txq_desc_put(txq);
1710 }
1711
1712 return -ENOMEM;
1713 }
1714
1715 /* Main tx processing */
1716 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1717 {
1718 struct mvneta_port *pp = netdev_priv(dev);
1719 u16 txq_id = skb_get_queue_mapping(skb);
1720 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1721 struct mvneta_tx_desc *tx_desc;
1722 int frags = 0;
1723 u32 tx_cmd;
1724
1725 if (!netif_running(dev))
1726 goto out;
1727
1728 if (skb_is_gso(skb)) {
1729 frags = mvneta_tx_tso(skb, dev, txq);
1730 goto out;
1731 }
1732
1733 frags = skb_shinfo(skb)->nr_frags + 1;
1734
1735 /* Get a descriptor for the first part of the packet */
1736 tx_desc = mvneta_txq_next_desc_get(txq);
1737
1738 tx_cmd = mvneta_skb_tx_csum(pp, skb);
1739
1740 tx_desc->data_size = skb_headlen(skb);
1741
1742 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1743 tx_desc->data_size,
1744 DMA_TO_DEVICE);
1745 if (unlikely(dma_mapping_error(dev->dev.parent,
1746 tx_desc->buf_phys_addr))) {
1747 mvneta_txq_desc_put(txq);
1748 frags = 0;
1749 goto out;
1750 }
1751
1752 if (frags == 1) {
1753 /* First and Last descriptor */
1754 tx_cmd |= MVNETA_TXD_FLZ_DESC;
1755 tx_desc->command = tx_cmd;
1756 txq->tx_skb[txq->txq_put_index] = skb;
1757 mvneta_txq_inc_put(txq);
1758 } else {
1759 /* First but not Last */
1760 tx_cmd |= MVNETA_TXD_F_DESC;
1761 txq->tx_skb[txq->txq_put_index] = NULL;
1762 mvneta_txq_inc_put(txq);
1763 tx_desc->command = tx_cmd;
1764 /* Continue with other skb fragments */
1765 if (mvneta_tx_frag_process(pp, skb, txq)) {
1766 dma_unmap_single(dev->dev.parent,
1767 tx_desc->buf_phys_addr,
1768 tx_desc->data_size,
1769 DMA_TO_DEVICE);
1770 mvneta_txq_desc_put(txq);
1771 frags = 0;
1772 goto out;
1773 }
1774 }
1775
1776 out:
1777 if (frags > 0) {
1778 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1779 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1780
1781 txq->count += frags;
1782 mvneta_txq_pend_desc_add(pp, txq, frags);
1783
1784 if (txq->count >= txq->tx_stop_threshold)
1785 netif_tx_stop_queue(nq);
1786
1787 u64_stats_update_begin(&stats->syncp);
1788 stats->tx_packets++;
1789 stats->tx_bytes += skb->len;
1790 u64_stats_update_end(&stats->syncp);
1791 } else {
1792 dev->stats.tx_dropped++;
1793 dev_kfree_skb_any(skb);
1794 }
1795
1796 return NETDEV_TX_OK;
1797 }
1798
1799
1800 /* Free tx resources, when resetting a port */
1801 static void mvneta_txq_done_force(struct mvneta_port *pp,
1802 struct mvneta_tx_queue *txq)
1803
1804 {
1805 int tx_done = txq->count;
1806
1807 mvneta_txq_bufs_free(pp, txq, tx_done);
1808
1809 /* reset txq */
1810 txq->count = 0;
1811 txq->txq_put_index = 0;
1812 txq->txq_get_index = 0;
1813 }
1814
1815 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1816 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1817 */
1818 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1819 {
1820 struct mvneta_tx_queue *txq;
1821 struct netdev_queue *nq;
1822
1823 while (cause_tx_done) {
1824 txq = mvneta_tx_done_policy(pp, cause_tx_done);
1825
1826 nq = netdev_get_tx_queue(pp->dev, txq->id);
1827 __netif_tx_lock(nq, smp_processor_id());
1828
1829 if (txq->count)
1830 mvneta_txq_done(pp, txq);
1831
1832 __netif_tx_unlock(nq);
1833 cause_tx_done &= ~((1 << txq->id));
1834 }
1835 }
1836
1837 /* Compute crc8 of the specified address, using a unique algorithm ,
1838 * according to hw spec, different than generic crc8 algorithm
1839 */
1840 static int mvneta_addr_crc(unsigned char *addr)
1841 {
1842 int crc = 0;
1843 int i;
1844
1845 for (i = 0; i < ETH_ALEN; i++) {
1846 int j;
1847
1848 crc = (crc ^ addr[i]) << 8;
1849 for (j = 7; j >= 0; j--) {
1850 if (crc & (0x100 << j))
1851 crc ^= 0x107 << j;
1852 }
1853 }
1854
1855 return crc;
1856 }
1857
1858 /* This method controls the net device special MAC multicast support.
1859 * The Special Multicast Table for MAC addresses supports MAC of the form
1860 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1861 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1862 * Table entries in the DA-Filter table. This method set the Special
1863 * Multicast Table appropriate entry.
1864 */
1865 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1866 unsigned char last_byte,
1867 int queue)
1868 {
1869 unsigned int smc_table_reg;
1870 unsigned int tbl_offset;
1871 unsigned int reg_offset;
1872
1873 /* Register offset from SMC table base */
1874 tbl_offset = (last_byte / 4);
1875 /* Entry offset within the above reg */
1876 reg_offset = last_byte % 4;
1877
1878 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1879 + tbl_offset * 4));
1880
1881 if (queue == -1)
1882 smc_table_reg &= ~(0xff << (8 * reg_offset));
1883 else {
1884 smc_table_reg &= ~(0xff << (8 * reg_offset));
1885 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1886 }
1887
1888 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1889 smc_table_reg);
1890 }
1891
1892 /* This method controls the network device Other MAC multicast support.
1893 * The Other Multicast Table is used for multicast of another type.
1894 * A CRC-8 is used as an index to the Other Multicast Table entries
1895 * in the DA-Filter table.
1896 * The method gets the CRC-8 value from the calling routine and
1897 * sets the Other Multicast Table appropriate entry according to the
1898 * specified CRC-8 .
1899 */
1900 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1901 unsigned char crc8,
1902 int queue)
1903 {
1904 unsigned int omc_table_reg;
1905 unsigned int tbl_offset;
1906 unsigned int reg_offset;
1907
1908 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1909 reg_offset = crc8 % 4; /* Entry offset within the above reg */
1910
1911 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1912
1913 if (queue == -1) {
1914 /* Clear accepts frame bit at specified Other DA table entry */
1915 omc_table_reg &= ~(0xff << (8 * reg_offset));
1916 } else {
1917 omc_table_reg &= ~(0xff << (8 * reg_offset));
1918 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1919 }
1920
1921 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1922 }
1923
1924 /* The network device supports multicast using two tables:
1925 * 1) Special Multicast Table for MAC addresses of the form
1926 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1927 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1928 * Table entries in the DA-Filter table.
1929 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
1930 * is used as an index to the Other Multicast Table entries in the
1931 * DA-Filter table.
1932 */
1933 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1934 int queue)
1935 {
1936 unsigned char crc_result = 0;
1937
1938 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1939 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1940 return 0;
1941 }
1942
1943 crc_result = mvneta_addr_crc(p_addr);
1944 if (queue == -1) {
1945 if (pp->mcast_count[crc_result] == 0) {
1946 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1947 crc_result);
1948 return -EINVAL;
1949 }
1950
1951 pp->mcast_count[crc_result]--;
1952 if (pp->mcast_count[crc_result] != 0) {
1953 netdev_info(pp->dev,
1954 "After delete there are %d valid Mcast for crc8=0x%02x\n",
1955 pp->mcast_count[crc_result], crc_result);
1956 return -EINVAL;
1957 }
1958 } else
1959 pp->mcast_count[crc_result]++;
1960
1961 mvneta_set_other_mcast_addr(pp, crc_result, queue);
1962
1963 return 0;
1964 }
1965
1966 /* Configure Fitering mode of Ethernet port */
1967 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1968 int is_promisc)
1969 {
1970 u32 port_cfg_reg, val;
1971
1972 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1973
1974 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1975
1976 /* Set / Clear UPM bit in port configuration register */
1977 if (is_promisc) {
1978 /* Accept all Unicast addresses */
1979 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1980 val |= MVNETA_FORCE_UNI;
1981 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1982 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1983 } else {
1984 /* Reject all Unicast addresses */
1985 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1986 val &= ~MVNETA_FORCE_UNI;
1987 }
1988
1989 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1990 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1991 }
1992
1993 /* register unicast and multicast addresses */
1994 static void mvneta_set_rx_mode(struct net_device *dev)
1995 {
1996 struct mvneta_port *pp = netdev_priv(dev);
1997 struct netdev_hw_addr *ha;
1998
1999 if (dev->flags & IFF_PROMISC) {
2000 /* Accept all: Multicast + Unicast */
2001 mvneta_rx_unicast_promisc_set(pp, 1);
2002 mvneta_set_ucast_table(pp, rxq_def);
2003 mvneta_set_special_mcast_table(pp, rxq_def);
2004 mvneta_set_other_mcast_table(pp, rxq_def);
2005 } else {
2006 /* Accept single Unicast */
2007 mvneta_rx_unicast_promisc_set(pp, 0);
2008 mvneta_set_ucast_table(pp, -1);
2009 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2010
2011 if (dev->flags & IFF_ALLMULTI) {
2012 /* Accept all multicast */
2013 mvneta_set_special_mcast_table(pp, rxq_def);
2014 mvneta_set_other_mcast_table(pp, rxq_def);
2015 } else {
2016 /* Accept only initialized multicast */
2017 mvneta_set_special_mcast_table(pp, -1);
2018 mvneta_set_other_mcast_table(pp, -1);
2019
2020 if (!netdev_mc_empty(dev)) {
2021 netdev_for_each_mc_addr(ha, dev) {
2022 mvneta_mcast_addr_set(pp, ha->addr,
2023 rxq_def);
2024 }
2025 }
2026 }
2027 }
2028 }
2029
2030 /* Interrupt handling - the callback for request_irq() */
2031 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2032 {
2033 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2034
2035 /* Mask all interrupts */
2036 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2037
2038 napi_schedule(&pp->napi);
2039
2040 return IRQ_HANDLED;
2041 }
2042
2043 /* NAPI handler
2044 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2045 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2046 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2047 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2048 * Each CPU has its own causeRxTx register
2049 */
2050 static int mvneta_poll(struct napi_struct *napi, int budget)
2051 {
2052 int rx_done = 0;
2053 u32 cause_rx_tx;
2054 unsigned long flags;
2055 struct mvneta_port *pp = netdev_priv(napi->dev);
2056
2057 if (!netif_running(pp->dev)) {
2058 napi_complete(napi);
2059 return rx_done;
2060 }
2061
2062 /* Read cause register */
2063 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
2064 (MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2065
2066 /* Release Tx descriptors */
2067 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2068 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2069 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2070 }
2071
2072 /* For the case where the last mvneta_poll did not process all
2073 * RX packets
2074 */
2075 cause_rx_tx |= pp->cause_rx_tx;
2076 if (rxq_number > 1) {
2077 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
2078 int count;
2079 struct mvneta_rx_queue *rxq;
2080 /* get rx queue number from cause_rx_tx */
2081 rxq = mvneta_rx_policy(pp, cause_rx_tx);
2082 if (!rxq)
2083 break;
2084
2085 /* process the packet in that rx queue */
2086 count = mvneta_rx(pp, budget, rxq);
2087 rx_done += count;
2088 budget -= count;
2089 if (budget > 0) {
2090 /* set off the rx bit of the
2091 * corresponding bit in the cause rx
2092 * tx register, so that next iteration
2093 * will find the next rx queue where
2094 * packets are received on
2095 */
2096 cause_rx_tx &= ~((1 << rxq->id) << 8);
2097 }
2098 }
2099 } else {
2100 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2101 budget -= rx_done;
2102 }
2103
2104 if (budget > 0) {
2105 cause_rx_tx = 0;
2106 napi_complete(napi);
2107 local_irq_save(flags);
2108 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2109 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2110 local_irq_restore(flags);
2111 }
2112
2113 pp->cause_rx_tx = cause_rx_tx;
2114 return rx_done;
2115 }
2116
2117 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2118 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2119 int num)
2120 {
2121 int i;
2122
2123 for (i = 0; i < num; i++) {
2124 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2125 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2126 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2127 __func__, rxq->id, i, num);
2128 break;
2129 }
2130 }
2131
2132 /* Add this number of RX descriptors as non occupied (ready to
2133 * get packets)
2134 */
2135 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2136
2137 return i;
2138 }
2139
2140 /* Free all packets pending transmit from all TXQs and reset TX port */
2141 static void mvneta_tx_reset(struct mvneta_port *pp)
2142 {
2143 int queue;
2144
2145 /* free the skb's in the tx ring */
2146 for (queue = 0; queue < txq_number; queue++)
2147 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2148
2149 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2150 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2151 }
2152
2153 static void mvneta_rx_reset(struct mvneta_port *pp)
2154 {
2155 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2156 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2157 }
2158
2159 /* Rx/Tx queue initialization/cleanup methods */
2160
2161 /* Create a specified RX queue */
2162 static int mvneta_rxq_init(struct mvneta_port *pp,
2163 struct mvneta_rx_queue *rxq)
2164
2165 {
2166 rxq->size = pp->rx_ring_size;
2167
2168 /* Allocate memory for RX descriptors */
2169 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2170 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2171 &rxq->descs_phys, GFP_KERNEL);
2172 if (rxq->descs == NULL)
2173 return -ENOMEM;
2174
2175 BUG_ON(rxq->descs !=
2176 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2177
2178 rxq->last_desc = rxq->size - 1;
2179
2180 /* Set Rx descriptors queue starting address */
2181 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2182 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2183
2184 /* Set Offset */
2185 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2186
2187 /* Set coalescing pkts and time */
2188 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2189 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2190
2191 /* Fill RXQ with buffers from RX pool */
2192 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2193 mvneta_rxq_bm_disable(pp, rxq);
2194 mvneta_rxq_fill(pp, rxq, rxq->size);
2195
2196 return 0;
2197 }
2198
2199 /* Cleanup Rx queue */
2200 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2201 struct mvneta_rx_queue *rxq)
2202 {
2203 mvneta_rxq_drop_pkts(pp, rxq);
2204
2205 if (rxq->descs)
2206 dma_free_coherent(pp->dev->dev.parent,
2207 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2208 rxq->descs,
2209 rxq->descs_phys);
2210
2211 rxq->descs = NULL;
2212 rxq->last_desc = 0;
2213 rxq->next_desc_to_proc = 0;
2214 rxq->descs_phys = 0;
2215 }
2216
2217 /* Create and initialize a tx queue */
2218 static int mvneta_txq_init(struct mvneta_port *pp,
2219 struct mvneta_tx_queue *txq)
2220 {
2221 txq->size = pp->tx_ring_size;
2222
2223 /* A queue must always have room for at least one skb.
2224 * Therefore, stop the queue when the free entries reaches
2225 * the maximum number of descriptors per skb.
2226 */
2227 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2228 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2229
2230
2231 /* Allocate memory for TX descriptors */
2232 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2233 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2234 &txq->descs_phys, GFP_KERNEL);
2235 if (txq->descs == NULL)
2236 return -ENOMEM;
2237
2238 /* Make sure descriptor address is cache line size aligned */
2239 BUG_ON(txq->descs !=
2240 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2241
2242 txq->last_desc = txq->size - 1;
2243
2244 /* Set maximum bandwidth for enabled TXQs */
2245 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2246 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2247
2248 /* Set Tx descriptors queue starting address */
2249 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2250 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2251
2252 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2253 if (txq->tx_skb == NULL) {
2254 dma_free_coherent(pp->dev->dev.parent,
2255 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2256 txq->descs, txq->descs_phys);
2257 return -ENOMEM;
2258 }
2259
2260 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2261 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2262 txq->size * TSO_HEADER_SIZE,
2263 &txq->tso_hdrs_phys, GFP_KERNEL);
2264 if (txq->tso_hdrs == NULL) {
2265 kfree(txq->tx_skb);
2266 dma_free_coherent(pp->dev->dev.parent,
2267 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2268 txq->descs, txq->descs_phys);
2269 return -ENOMEM;
2270 }
2271 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2272
2273 return 0;
2274 }
2275
2276 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2277 static void mvneta_txq_deinit(struct mvneta_port *pp,
2278 struct mvneta_tx_queue *txq)
2279 {
2280 kfree(txq->tx_skb);
2281
2282 if (txq->tso_hdrs)
2283 dma_free_coherent(pp->dev->dev.parent,
2284 txq->size * TSO_HEADER_SIZE,
2285 txq->tso_hdrs, txq->tso_hdrs_phys);
2286 if (txq->descs)
2287 dma_free_coherent(pp->dev->dev.parent,
2288 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2289 txq->descs, txq->descs_phys);
2290
2291 txq->descs = NULL;
2292 txq->last_desc = 0;
2293 txq->next_desc_to_proc = 0;
2294 txq->descs_phys = 0;
2295
2296 /* Set minimum bandwidth for disabled TXQs */
2297 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2298 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2299
2300 /* Set Tx descriptors queue starting address and size */
2301 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2302 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2303 }
2304
2305 /* Cleanup all Tx queues */
2306 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2307 {
2308 int queue;
2309
2310 for (queue = 0; queue < txq_number; queue++)
2311 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2312 }
2313
2314 /* Cleanup all Rx queues */
2315 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2316 {
2317 int queue;
2318
2319 for (queue = 0; queue < rxq_number; queue++)
2320 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2321 }
2322
2323
2324 /* Init all Rx queues */
2325 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2326 {
2327 int queue;
2328
2329 for (queue = 0; queue < rxq_number; queue++) {
2330 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2331 if (err) {
2332 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2333 __func__, queue);
2334 mvneta_cleanup_rxqs(pp);
2335 return err;
2336 }
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* Init all tx queues */
2343 static int mvneta_setup_txqs(struct mvneta_port *pp)
2344 {
2345 int queue;
2346
2347 for (queue = 0; queue < txq_number; queue++) {
2348 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2349 if (err) {
2350 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2351 __func__, queue);
2352 mvneta_cleanup_txqs(pp);
2353 return err;
2354 }
2355 }
2356
2357 return 0;
2358 }
2359
2360 static void mvneta_start_dev(struct mvneta_port *pp)
2361 {
2362 mvneta_max_rx_size_set(pp, pp->pkt_size);
2363 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2364
2365 /* start the Rx/Tx activity */
2366 mvneta_port_enable(pp);
2367
2368 /* Enable polling on the port */
2369 napi_enable(&pp->napi);
2370
2371 /* Unmask interrupts */
2372 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2373 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2374
2375 phy_start(pp->phy_dev);
2376 netif_tx_start_all_queues(pp->dev);
2377 }
2378
2379 static void mvneta_stop_dev(struct mvneta_port *pp)
2380 {
2381 phy_stop(pp->phy_dev);
2382
2383 napi_disable(&pp->napi);
2384
2385 netif_carrier_off(pp->dev);
2386
2387 mvneta_port_down(pp);
2388 netif_tx_stop_all_queues(pp->dev);
2389
2390 /* Stop the port activity */
2391 mvneta_port_disable(pp);
2392
2393 /* Clear all ethernet port interrupts */
2394 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2395 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2396
2397 /* Mask all ethernet port interrupts */
2398 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2399 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2400 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2401
2402 mvneta_tx_reset(pp);
2403 mvneta_rx_reset(pp);
2404 }
2405
2406 /* Return positive if MTU is valid */
2407 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2408 {
2409 if (mtu < 68) {
2410 netdev_err(dev, "cannot change mtu to less than 68\n");
2411 return -EINVAL;
2412 }
2413
2414 /* 9676 == 9700 - 20 and rounding to 8 */
2415 if (mtu > 9676) {
2416 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2417 mtu = 9676;
2418 }
2419
2420 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2421 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2422 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2423 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2424 }
2425
2426 return mtu;
2427 }
2428
2429 /* Change the device mtu */
2430 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2431 {
2432 struct mvneta_port *pp = netdev_priv(dev);
2433 int ret;
2434
2435 mtu = mvneta_check_mtu_valid(dev, mtu);
2436 if (mtu < 0)
2437 return -EINVAL;
2438
2439 dev->mtu = mtu;
2440
2441 if (!netif_running(dev))
2442 return 0;
2443
2444 /* The interface is running, so we have to force a
2445 * reallocation of the queues
2446 */
2447 mvneta_stop_dev(pp);
2448
2449 mvneta_cleanup_txqs(pp);
2450 mvneta_cleanup_rxqs(pp);
2451
2452 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2453 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2454 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2455
2456 ret = mvneta_setup_rxqs(pp);
2457 if (ret) {
2458 netdev_err(dev, "unable to setup rxqs after MTU change\n");
2459 return ret;
2460 }
2461
2462 ret = mvneta_setup_txqs(pp);
2463 if (ret) {
2464 netdev_err(dev, "unable to setup txqs after MTU change\n");
2465 return ret;
2466 }
2467
2468 mvneta_start_dev(pp);
2469 mvneta_port_up(pp);
2470
2471 return 0;
2472 }
2473
2474 /* Get mac address */
2475 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2476 {
2477 u32 mac_addr_l, mac_addr_h;
2478
2479 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2480 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2481 addr[0] = (mac_addr_h >> 24) & 0xFF;
2482 addr[1] = (mac_addr_h >> 16) & 0xFF;
2483 addr[2] = (mac_addr_h >> 8) & 0xFF;
2484 addr[3] = mac_addr_h & 0xFF;
2485 addr[4] = (mac_addr_l >> 8) & 0xFF;
2486 addr[5] = mac_addr_l & 0xFF;
2487 }
2488
2489 /* Handle setting mac address */
2490 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2491 {
2492 struct mvneta_port *pp = netdev_priv(dev);
2493 struct sockaddr *sockaddr = addr;
2494 int ret;
2495
2496 ret = eth_prepare_mac_addr_change(dev, addr);
2497 if (ret < 0)
2498 return ret;
2499 /* Remove previous address table entry */
2500 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2501
2502 /* Set new addr in hw */
2503 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2504
2505 eth_commit_mac_addr_change(dev, addr);
2506 return 0;
2507 }
2508
2509 static void mvneta_adjust_link(struct net_device *ndev)
2510 {
2511 struct mvneta_port *pp = netdev_priv(ndev);
2512 struct phy_device *phydev = pp->phy_dev;
2513 int status_change = 0;
2514
2515 if (phydev->link) {
2516 if ((pp->speed != phydev->speed) ||
2517 (pp->duplex != phydev->duplex)) {
2518 u32 val;
2519
2520 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2521 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2522 MVNETA_GMAC_CONFIG_GMII_SPEED |
2523 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2524 MVNETA_GMAC_AN_SPEED_EN |
2525 MVNETA_GMAC_AN_DUPLEX_EN);
2526
2527 if (phydev->duplex)
2528 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2529
2530 if (phydev->speed == SPEED_1000)
2531 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2532 else
2533 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2534
2535 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2536
2537 pp->duplex = phydev->duplex;
2538 pp->speed = phydev->speed;
2539 }
2540 }
2541
2542 if (phydev->link != pp->link) {
2543 if (!phydev->link) {
2544 pp->duplex = -1;
2545 pp->speed = 0;
2546 }
2547
2548 pp->link = phydev->link;
2549 status_change = 1;
2550 }
2551
2552 if (status_change) {
2553 if (phydev->link) {
2554 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2555 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2556 MVNETA_GMAC_FORCE_LINK_DOWN);
2557 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2558 mvneta_port_up(pp);
2559 netdev_info(pp->dev, "link up\n");
2560 } else {
2561 mvneta_port_down(pp);
2562 netdev_info(pp->dev, "link down\n");
2563 }
2564 }
2565 }
2566
2567 static int mvneta_mdio_probe(struct mvneta_port *pp)
2568 {
2569 struct phy_device *phy_dev;
2570
2571 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2572 pp->phy_interface);
2573 if (!phy_dev) {
2574 netdev_err(pp->dev, "could not find the PHY\n");
2575 return -ENODEV;
2576 }
2577
2578 phy_dev->supported &= PHY_GBIT_FEATURES;
2579 phy_dev->advertising = phy_dev->supported;
2580
2581 pp->phy_dev = phy_dev;
2582 pp->link = 0;
2583 pp->duplex = 0;
2584 pp->speed = 0;
2585
2586 return 0;
2587 }
2588
2589 static void mvneta_mdio_remove(struct mvneta_port *pp)
2590 {
2591 phy_disconnect(pp->phy_dev);
2592 pp->phy_dev = NULL;
2593 }
2594
2595 static int mvneta_open(struct net_device *dev)
2596 {
2597 struct mvneta_port *pp = netdev_priv(dev);
2598 int ret;
2599
2600 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2601 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2602 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2603
2604 ret = mvneta_setup_rxqs(pp);
2605 if (ret)
2606 return ret;
2607
2608 ret = mvneta_setup_txqs(pp);
2609 if (ret)
2610 goto err_cleanup_rxqs;
2611
2612 /* Connect to port interrupt line */
2613 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2614 MVNETA_DRIVER_NAME, pp);
2615 if (ret) {
2616 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2617 goto err_cleanup_txqs;
2618 }
2619
2620 /* In default link is down */
2621 netif_carrier_off(pp->dev);
2622
2623 ret = mvneta_mdio_probe(pp);
2624 if (ret < 0) {
2625 netdev_err(dev, "cannot probe MDIO bus\n");
2626 goto err_free_irq;
2627 }
2628
2629 mvneta_start_dev(pp);
2630
2631 return 0;
2632
2633 err_free_irq:
2634 free_irq(pp->dev->irq, pp);
2635 err_cleanup_txqs:
2636 mvneta_cleanup_txqs(pp);
2637 err_cleanup_rxqs:
2638 mvneta_cleanup_rxqs(pp);
2639 return ret;
2640 }
2641
2642 /* Stop the port, free port interrupt line */
2643 static int mvneta_stop(struct net_device *dev)
2644 {
2645 struct mvneta_port *pp = netdev_priv(dev);
2646
2647 mvneta_stop_dev(pp);
2648 mvneta_mdio_remove(pp);
2649 free_irq(dev->irq, pp);
2650 mvneta_cleanup_rxqs(pp);
2651 mvneta_cleanup_txqs(pp);
2652
2653 return 0;
2654 }
2655
2656 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2657 {
2658 struct mvneta_port *pp = netdev_priv(dev);
2659 int ret;
2660
2661 if (!pp->phy_dev)
2662 return -ENOTSUPP;
2663
2664 ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2665 if (!ret)
2666 mvneta_adjust_link(dev);
2667
2668 return ret;
2669 }
2670
2671 /* Ethtool methods */
2672
2673 /* Get settings (phy address, speed) for ethtools */
2674 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2675 {
2676 struct mvneta_port *pp = netdev_priv(dev);
2677
2678 if (!pp->phy_dev)
2679 return -ENODEV;
2680
2681 return phy_ethtool_gset(pp->phy_dev, cmd);
2682 }
2683
2684 /* Set settings (phy address, speed) for ethtools */
2685 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2686 {
2687 struct mvneta_port *pp = netdev_priv(dev);
2688
2689 if (!pp->phy_dev)
2690 return -ENODEV;
2691
2692 return phy_ethtool_sset(pp->phy_dev, cmd);
2693 }
2694
2695 /* Set interrupt coalescing for ethtools */
2696 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2697 struct ethtool_coalesce *c)
2698 {
2699 struct mvneta_port *pp = netdev_priv(dev);
2700 int queue;
2701
2702 for (queue = 0; queue < rxq_number; queue++) {
2703 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2704 rxq->time_coal = c->rx_coalesce_usecs;
2705 rxq->pkts_coal = c->rx_max_coalesced_frames;
2706 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2707 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2708 }
2709
2710 for (queue = 0; queue < txq_number; queue++) {
2711 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2712 txq->done_pkts_coal = c->tx_max_coalesced_frames;
2713 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2714 }
2715
2716 return 0;
2717 }
2718
2719 /* get coalescing for ethtools */
2720 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2721 struct ethtool_coalesce *c)
2722 {
2723 struct mvneta_port *pp = netdev_priv(dev);
2724
2725 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
2726 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
2727
2728 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
2729 return 0;
2730 }
2731
2732
2733 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2734 struct ethtool_drvinfo *drvinfo)
2735 {
2736 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2737 sizeof(drvinfo->driver));
2738 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2739 sizeof(drvinfo->version));
2740 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2741 sizeof(drvinfo->bus_info));
2742 }
2743
2744
2745 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2746 struct ethtool_ringparam *ring)
2747 {
2748 struct mvneta_port *pp = netdev_priv(netdev);
2749
2750 ring->rx_max_pending = MVNETA_MAX_RXD;
2751 ring->tx_max_pending = MVNETA_MAX_TXD;
2752 ring->rx_pending = pp->rx_ring_size;
2753 ring->tx_pending = pp->tx_ring_size;
2754 }
2755
2756 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2757 struct ethtool_ringparam *ring)
2758 {
2759 struct mvneta_port *pp = netdev_priv(dev);
2760
2761 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2762 return -EINVAL;
2763 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2764 ring->rx_pending : MVNETA_MAX_RXD;
2765
2766 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
2767 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
2768 if (pp->tx_ring_size != ring->tx_pending)
2769 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
2770 pp->tx_ring_size, ring->tx_pending);
2771
2772 if (netif_running(dev)) {
2773 mvneta_stop(dev);
2774 if (mvneta_open(dev)) {
2775 netdev_err(dev,
2776 "error on opening device after ring param change\n");
2777 return -ENOMEM;
2778 }
2779 }
2780
2781 return 0;
2782 }
2783
2784 static const struct net_device_ops mvneta_netdev_ops = {
2785 .ndo_open = mvneta_open,
2786 .ndo_stop = mvneta_stop,
2787 .ndo_start_xmit = mvneta_tx,
2788 .ndo_set_rx_mode = mvneta_set_rx_mode,
2789 .ndo_set_mac_address = mvneta_set_mac_addr,
2790 .ndo_change_mtu = mvneta_change_mtu,
2791 .ndo_get_stats64 = mvneta_get_stats64,
2792 .ndo_do_ioctl = mvneta_ioctl,
2793 };
2794
2795 const struct ethtool_ops mvneta_eth_tool_ops = {
2796 .get_link = ethtool_op_get_link,
2797 .get_settings = mvneta_ethtool_get_settings,
2798 .set_settings = mvneta_ethtool_set_settings,
2799 .set_coalesce = mvneta_ethtool_set_coalesce,
2800 .get_coalesce = mvneta_ethtool_get_coalesce,
2801 .get_drvinfo = mvneta_ethtool_get_drvinfo,
2802 .get_ringparam = mvneta_ethtool_get_ringparam,
2803 .set_ringparam = mvneta_ethtool_set_ringparam,
2804 };
2805
2806 /* Initialize hw */
2807 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
2808 {
2809 int queue;
2810
2811 /* Disable port */
2812 mvneta_port_disable(pp);
2813
2814 /* Set port default values */
2815 mvneta_defaults_set(pp);
2816
2817 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
2818 GFP_KERNEL);
2819 if (!pp->txqs)
2820 return -ENOMEM;
2821
2822 /* Initialize TX descriptor rings */
2823 for (queue = 0; queue < txq_number; queue++) {
2824 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2825 txq->id = queue;
2826 txq->size = pp->tx_ring_size;
2827 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2828 }
2829
2830 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
2831 GFP_KERNEL);
2832 if (!pp->rxqs)
2833 return -ENOMEM;
2834
2835 /* Create Rx descriptor rings */
2836 for (queue = 0; queue < rxq_number; queue++) {
2837 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2838 rxq->id = queue;
2839 rxq->size = pp->rx_ring_size;
2840 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2841 rxq->time_coal = MVNETA_RX_COAL_USEC;
2842 }
2843
2844 return 0;
2845 }
2846
2847 /* platform glue : initialize decoding windows */
2848 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2849 const struct mbus_dram_target_info *dram)
2850 {
2851 u32 win_enable;
2852 u32 win_protect;
2853 int i;
2854
2855 for (i = 0; i < 6; i++) {
2856 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2857 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2858
2859 if (i < 4)
2860 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2861 }
2862
2863 win_enable = 0x3f;
2864 win_protect = 0;
2865
2866 for (i = 0; i < dram->num_cs; i++) {
2867 const struct mbus_dram_window *cs = dram->cs + i;
2868 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2869 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2870
2871 mvreg_write(pp, MVNETA_WIN_SIZE(i),
2872 (cs->size - 1) & 0xffff0000);
2873
2874 win_enable &= ~(1 << i);
2875 win_protect |= 3 << (2 * i);
2876 }
2877
2878 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2879 }
2880
2881 /* Power up the port */
2882 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2883 {
2884 u32 ctrl;
2885
2886 /* MAC Cause register should be cleared */
2887 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2888
2889 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2890
2891 /* Even though it might look weird, when we're configured in
2892 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2893 */
2894 switch(phy_mode) {
2895 case PHY_INTERFACE_MODE_QSGMII:
2896 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2897 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2898 break;
2899 case PHY_INTERFACE_MODE_SGMII:
2900 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2901 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2902 break;
2903 case PHY_INTERFACE_MODE_RGMII:
2904 case PHY_INTERFACE_MODE_RGMII_ID:
2905 ctrl |= MVNETA_GMAC2_PORT_RGMII;
2906 break;
2907 default:
2908 return -EINVAL;
2909 }
2910
2911 /* Cancel Port Reset */
2912 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
2913 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
2914
2915 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2916 MVNETA_GMAC2_PORT_RESET) != 0)
2917 continue;
2918
2919 return 0;
2920 }
2921
2922 /* Device initialization routine */
2923 static int mvneta_probe(struct platform_device *pdev)
2924 {
2925 const struct mbus_dram_target_info *dram_target_info;
2926 struct resource *res;
2927 struct device_node *dn = pdev->dev.of_node;
2928 struct device_node *phy_node;
2929 struct mvneta_port *pp;
2930 struct net_device *dev;
2931 const char *dt_mac_addr;
2932 char hw_mac_addr[ETH_ALEN];
2933 const char *mac_from;
2934 int phy_mode;
2935 int err;
2936
2937 /* Our multiqueue support is not complete, so for now, only
2938 * allow the usage of the first RX queue
2939 */
2940 if (rxq_def != 0) {
2941 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2942 return -EINVAL;
2943 }
2944
2945 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2946 if (!dev)
2947 return -ENOMEM;
2948
2949 dev->irq = irq_of_parse_and_map(dn, 0);
2950 if (dev->irq == 0) {
2951 err = -EINVAL;
2952 goto err_free_netdev;
2953 }
2954
2955 phy_node = of_parse_phandle(dn, "phy", 0);
2956 if (!phy_node) {
2957 if (!of_phy_is_fixed_link(dn)) {
2958 dev_err(&pdev->dev, "no PHY specified\n");
2959 err = -ENODEV;
2960 goto err_free_irq;
2961 }
2962
2963 err = of_phy_register_fixed_link(dn);
2964 if (err < 0) {
2965 dev_err(&pdev->dev, "cannot register fixed PHY\n");
2966 goto err_free_irq;
2967 }
2968
2969 /* In the case of a fixed PHY, the DT node associated
2970 * to the PHY is the Ethernet MAC DT node.
2971 */
2972 phy_node = dn;
2973 }
2974
2975 phy_mode = of_get_phy_mode(dn);
2976 if (phy_mode < 0) {
2977 dev_err(&pdev->dev, "incorrect phy-mode\n");
2978 err = -EINVAL;
2979 goto err_free_irq;
2980 }
2981
2982 dev->tx_queue_len = MVNETA_MAX_TXD;
2983 dev->watchdog_timeo = 5 * HZ;
2984 dev->netdev_ops = &mvneta_netdev_ops;
2985
2986 dev->ethtool_ops = &mvneta_eth_tool_ops;
2987
2988 pp = netdev_priv(dev);
2989 pp->phy_node = phy_node;
2990 pp->phy_interface = phy_mode;
2991
2992 pp->clk = devm_clk_get(&pdev->dev, NULL);
2993 if (IS_ERR(pp->clk)) {
2994 err = PTR_ERR(pp->clk);
2995 goto err_free_irq;
2996 }
2997
2998 clk_prepare_enable(pp->clk);
2999
3000 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3001 pp->base = devm_ioremap_resource(&pdev->dev, res);
3002 if (IS_ERR(pp->base)) {
3003 err = PTR_ERR(pp->base);
3004 goto err_clk;
3005 }
3006
3007 /* Alloc per-cpu stats */
3008 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3009 if (!pp->stats) {
3010 err = -ENOMEM;
3011 goto err_clk;
3012 }
3013
3014 dt_mac_addr = of_get_mac_address(dn);
3015 if (dt_mac_addr) {
3016 mac_from = "device tree";
3017 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3018 } else {
3019 mvneta_get_mac_addr(pp, hw_mac_addr);
3020 if (is_valid_ether_addr(hw_mac_addr)) {
3021 mac_from = "hardware";
3022 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3023 } else {
3024 mac_from = "random";
3025 eth_hw_addr_random(dev);
3026 }
3027 }
3028
3029 pp->tx_ring_size = MVNETA_MAX_TXD;
3030 pp->rx_ring_size = MVNETA_MAX_RXD;
3031
3032 pp->dev = dev;
3033 SET_NETDEV_DEV(dev, &pdev->dev);
3034
3035 err = mvneta_init(&pdev->dev, pp);
3036 if (err < 0)
3037 goto err_free_stats;
3038
3039 err = mvneta_port_power_up(pp, phy_mode);
3040 if (err < 0) {
3041 dev_err(&pdev->dev, "can't power up port\n");
3042 goto err_free_stats;
3043 }
3044
3045 dram_target_info = mv_mbus_dram_info();
3046 if (dram_target_info)
3047 mvneta_conf_mbus_windows(pp, dram_target_info);
3048
3049 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3050
3051 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3052 dev->hw_features |= dev->features;
3053 dev->vlan_features |= dev->features;
3054 dev->priv_flags |= IFF_UNICAST_FLT;
3055 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3056
3057 err = register_netdev(dev);
3058 if (err < 0) {
3059 dev_err(&pdev->dev, "failed to register\n");
3060 goto err_free_stats;
3061 }
3062
3063 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3064 dev->dev_addr);
3065
3066 platform_set_drvdata(pdev, pp->dev);
3067
3068 return 0;
3069
3070 err_free_stats:
3071 free_percpu(pp->stats);
3072 err_clk:
3073 clk_disable_unprepare(pp->clk);
3074 err_free_irq:
3075 irq_dispose_mapping(dev->irq);
3076 err_free_netdev:
3077 free_netdev(dev);
3078 return err;
3079 }
3080
3081 /* Device removal routine */
3082 static int mvneta_remove(struct platform_device *pdev)
3083 {
3084 struct net_device *dev = platform_get_drvdata(pdev);
3085 struct mvneta_port *pp = netdev_priv(dev);
3086
3087 unregister_netdev(dev);
3088 clk_disable_unprepare(pp->clk);
3089 free_percpu(pp->stats);
3090 irq_dispose_mapping(dev->irq);
3091 free_netdev(dev);
3092
3093 return 0;
3094 }
3095
3096 static const struct of_device_id mvneta_match[] = {
3097 { .compatible = "marvell,armada-370-neta" },
3098 { }
3099 };
3100 MODULE_DEVICE_TABLE(of, mvneta_match);
3101
3102 static struct platform_driver mvneta_driver = {
3103 .probe = mvneta_probe,
3104 .remove = mvneta_remove,
3105 .driver = {
3106 .name = MVNETA_DRIVER_NAME,
3107 .of_match_table = mvneta_match,
3108 },
3109 };
3110
3111 module_platform_driver(mvneta_driver);
3112
3113 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3114 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3115 MODULE_LICENSE("GPL");
3116
3117 module_param(rxq_number, int, S_IRUGO);
3118 module_param(txq_number, int, S_IRUGO);
3119
3120 module_param(rxq_def, int, S_IRUGO);
3121 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);