]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/marvell/mvneta.c
net: marvell: fix MVNETA_TX_IN_PRGRS bit number
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
66 #define MVNETA_PORT_RX_RESET 0x1cc0
67 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
68 #define MVNETA_PHY_ADDR 0x2000
69 #define MVNETA_PHY_ADDR_MASK 0x1f
70 #define MVNETA_MBUS_RETRY 0x2010
71 #define MVNETA_UNIT_INTR_CAUSE 0x2080
72 #define MVNETA_UNIT_CONTROL 0x20B0
73 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
79 #define MVNETA_PORT_CONFIG 0x2400
80 #define MVNETA_UNI_PROMISC_MODE BIT(0)
81 #define MVNETA_DEF_RXQ(q) ((q) << 1)
82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
89 MVNETA_DEF_RXQ_ARP(q) | \
90 MVNETA_DEF_RXQ_TCP(q) | \
91 MVNETA_DEF_RXQ_UDP(q) | \
92 MVNETA_DEF_RXQ_BPDU(q) | \
93 MVNETA_TX_UNSET_ERR_SUM | \
94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
96 #define MVNETA_MAC_ADDR_LOW 0x2414
97 #define MVNETA_MAC_ADDR_HIGH 0x2418
98 #define MVNETA_SDMA_CONFIG 0x241c
99 #define MVNETA_SDMA_BRST_SIZE_16 4
100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
101 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
102 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
103 #define MVNETA_DESC_SWAP BIT(6)
104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
105 #define MVNETA_PORT_STATUS 0x2444
106 #define MVNETA_TX_IN_PRGRS BIT(0)
107 #define MVNETA_TX_FIFO_EMPTY BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
109 /* Only exists on Armada XP and Armada 370 */
110 #define MVNETA_SERDES_CFG 0x24A0
111 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
112 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
113 #define MVNETA_HSGMII_SERDES_PROTO 0x1107
114 #define MVNETA_TYPE_PRIO 0x24bc
115 #define MVNETA_FORCE_UNI BIT(21)
116 #define MVNETA_TXQ_CMD_1 0x24e4
117 #define MVNETA_TXQ_CMD 0x2448
118 #define MVNETA_TXQ_DISABLE_SHIFT 8
119 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
120 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
121 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
122 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
123 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
124 #define MVNETA_ACC_MODE 0x2500
125 #define MVNETA_BM_ADDRESS 0x2504
126 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
127 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
128 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
129 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
130 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
131 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
132
133 /* Exception Interrupt Port/Queue Cause register
134 *
135 * Their behavior depend of the mapping done using the PCPX2Q
136 * registers. For a given CPU if the bit associated to a queue is not
137 * set, then for the register a read from this CPU will always return
138 * 0 and a write won't do anything
139 */
140
141 #define MVNETA_INTR_NEW_CAUSE 0x25a0
142 #define MVNETA_INTR_NEW_MASK 0x25a4
143
144 /* bits 0..7 = TXQ SENT, one bit per queue.
145 * bits 8..15 = RXQ OCCUP, one bit per queue.
146 * bits 16..23 = RXQ FREE, one bit per queue.
147 * bit 29 = OLD_REG_SUM, see old reg ?
148 * bit 30 = TX_ERR_SUM, one bit for 4 ports
149 * bit 31 = MISC_SUM, one bit for 4 ports
150 */
151 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
152 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
153 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
154 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
155 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
156
157 #define MVNETA_INTR_OLD_CAUSE 0x25a8
158 #define MVNETA_INTR_OLD_MASK 0x25ac
159
160 /* Data Path Port/Queue Cause Register */
161 #define MVNETA_INTR_MISC_CAUSE 0x25b0
162 #define MVNETA_INTR_MISC_MASK 0x25b4
163
164 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
165 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
166 #define MVNETA_CAUSE_PTP BIT(4)
167
168 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
169 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
170 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
171 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
172 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
173 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
174 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
175 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
176
177 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
178 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180
181 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
182 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184
185 #define MVNETA_INTR_ENABLE 0x25b8
186 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
187 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
188
189 #define MVNETA_RXQ_CMD 0x2680
190 #define MVNETA_RXQ_DISABLE_SHIFT 8
191 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
192 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
193 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
194 #define MVNETA_GMAC_CTRL_0 0x2c00
195 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
196 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
197 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
198 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
199 #define MVNETA_GMAC_CTRL_2 0x2c08
200 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
201 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
202 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
203 #define MVNETA_GMAC2_PORT_RESET BIT(6)
204 #define MVNETA_GMAC_STATUS 0x2c10
205 #define MVNETA_GMAC_LINK_UP BIT(0)
206 #define MVNETA_GMAC_SPEED_1000 BIT(1)
207 #define MVNETA_GMAC_SPEED_100 BIT(2)
208 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
209 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
210 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
211 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
212 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
213 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
214 #define MVNETA_GMAC_SYNC_OK BIT(14)
215 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
216 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
217 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
218 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
219 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
220 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
221 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
222 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
223 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
224 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
225 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
226 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
227 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
228 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
229 #define MVNETA_GMAC_CTRL_4 0x2c90
230 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1)
231 #define MVNETA_MIB_COUNTERS_BASE 0x3000
232 #define MVNETA_MIB_LATE_COLLISION 0x7c
233 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
234 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
235 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
236 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
237 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
238 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
239 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
240 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
241 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
242 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
243 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
244 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
245 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
246 #define MVNETA_PORT_TX_RESET 0x3cf0
247 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
248 #define MVNETA_TX_MTU 0x3e0c
249 #define MVNETA_TX_TOKEN_SIZE 0x3e14
250 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
252 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
253
254 #define MVNETA_LPI_CTRL_0 0x2cc0
255 #define MVNETA_LPI_CTRL_1 0x2cc4
256 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
257 #define MVNETA_LPI_CTRL_2 0x2cc8
258 #define MVNETA_LPI_STATUS 0x2ccc
259
260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
261
262 /* Descriptor ring Macros */
263 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
264 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
265
266 /* Various constants */
267
268 /* Coalescing */
269 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
270 #define MVNETA_RX_COAL_PKTS 32
271 #define MVNETA_RX_COAL_USEC 100
272
273 /* The two bytes Marvell header. Either contains a special value used
274 * by Marvell switches when a specific hardware mode is enabled (not
275 * supported by this driver) or is filled automatically by zeroes on
276 * the RX side. Those two bytes being at the front of the Ethernet
277 * header, they allow to have the IP header aligned on a 4 bytes
278 * boundary automatically: the hardware skips those two bytes on its
279 * own.
280 */
281 #define MVNETA_MH_SIZE 2
282
283 #define MVNETA_VLAN_TAG_LEN 4
284
285 #define MVNETA_TX_CSUM_DEF_SIZE 1600
286 #define MVNETA_TX_CSUM_MAX_SIZE 9800
287 #define MVNETA_ACC_MODE_EXT1 1
288 #define MVNETA_ACC_MODE_EXT2 2
289
290 #define MVNETA_MAX_DECODE_WIN 6
291
292 /* Timeout constants */
293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
296
297 #define MVNETA_TX_MTU_MAX 0x3ffff
298
299 /* The RSS lookup table actually has 256 entries but we do not use
300 * them yet
301 */
302 #define MVNETA_RSS_LU_TABLE_SIZE 1
303
304 /* Max number of Rx descriptors */
305 #define MVNETA_MAX_RXD 512
306
307 /* Max number of Tx descriptors */
308 #define MVNETA_MAX_TXD 1024
309
310 /* Max number of allowed TCP segments for software TSO */
311 #define MVNETA_MAX_TSO_SEGS 100
312
313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314
315 /* descriptor aligned size */
316 #define MVNETA_DESC_ALIGNED_SIZE 32
317
318 /* Number of bytes to be taken into account by HW when putting incoming data
319 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321 */
322 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
323
324 #define MVNETA_RX_PKT_SIZE(mtu) \
325 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326 ETH_HLEN + ETH_FCS_LEN, \
327 cache_line_size())
328
329 /* Driver assumes that the last 3 bits are 0 */
330 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332 MVNETA_SKB_HEADROOM))
333 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD)
334
335 #define IS_TSO_HEADER(txq, addr) \
336 ((addr >= txq->tso_hdrs_phys) && \
337 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
338
339 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
340 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
341
342 enum {
343 ETHTOOL_STAT_EEE_WAKEUP,
344 ETHTOOL_STAT_SKB_ALLOC_ERR,
345 ETHTOOL_STAT_REFILL_ERR,
346 ETHTOOL_XDP_REDIRECT,
347 ETHTOOL_XDP_PASS,
348 ETHTOOL_XDP_DROP,
349 ETHTOOL_XDP_TX,
350 ETHTOOL_XDP_TX_ERR,
351 ETHTOOL_XDP_XMIT,
352 ETHTOOL_XDP_XMIT_ERR,
353 ETHTOOL_MAX_STATS,
354 };
355
356 struct mvneta_statistic {
357 unsigned short offset;
358 unsigned short type;
359 const char name[ETH_GSTRING_LEN];
360 };
361
362 #define T_REG_32 32
363 #define T_REG_64 64
364 #define T_SW 1
365
366 #define MVNETA_XDP_PASS 0
367 #define MVNETA_XDP_DROPPED BIT(0)
368 #define MVNETA_XDP_TX BIT(1)
369 #define MVNETA_XDP_REDIR BIT(2)
370
371 static const struct mvneta_statistic mvneta_statistics[] = {
372 { 0x3000, T_REG_64, "good_octets_received", },
373 { 0x3010, T_REG_32, "good_frames_received", },
374 { 0x3008, T_REG_32, "bad_octets_received", },
375 { 0x3014, T_REG_32, "bad_frames_received", },
376 { 0x3018, T_REG_32, "broadcast_frames_received", },
377 { 0x301c, T_REG_32, "multicast_frames_received", },
378 { 0x3050, T_REG_32, "unrec_mac_control_received", },
379 { 0x3058, T_REG_32, "good_fc_received", },
380 { 0x305c, T_REG_32, "bad_fc_received", },
381 { 0x3060, T_REG_32, "undersize_received", },
382 { 0x3064, T_REG_32, "fragments_received", },
383 { 0x3068, T_REG_32, "oversize_received", },
384 { 0x306c, T_REG_32, "jabber_received", },
385 { 0x3070, T_REG_32, "mac_receive_error", },
386 { 0x3074, T_REG_32, "bad_crc_event", },
387 { 0x3078, T_REG_32, "collision", },
388 { 0x307c, T_REG_32, "late_collision", },
389 { 0x2484, T_REG_32, "rx_discard", },
390 { 0x2488, T_REG_32, "rx_overrun", },
391 { 0x3020, T_REG_32, "frames_64_octets", },
392 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
393 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
394 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
395 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
396 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
397 { 0x3038, T_REG_64, "good_octets_sent", },
398 { 0x3040, T_REG_32, "good_frames_sent", },
399 { 0x3044, T_REG_32, "excessive_collision", },
400 { 0x3048, T_REG_32, "multicast_frames_sent", },
401 { 0x304c, T_REG_32, "broadcast_frames_sent", },
402 { 0x3054, T_REG_32, "fc_sent", },
403 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
404 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
405 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
406 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
407 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
408 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
409 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
410 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
411 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
412 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
413 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
414 };
415
416 struct mvneta_stats {
417 u64 rx_packets;
418 u64 rx_bytes;
419 u64 tx_packets;
420 u64 tx_bytes;
421 /* xdp */
422 u64 xdp_redirect;
423 u64 xdp_pass;
424 u64 xdp_drop;
425 u64 xdp_xmit;
426 u64 xdp_xmit_err;
427 u64 xdp_tx;
428 u64 xdp_tx_err;
429 };
430
431 struct mvneta_ethtool_stats {
432 struct mvneta_stats ps;
433 u64 skb_alloc_error;
434 u64 refill_error;
435 };
436
437 struct mvneta_pcpu_stats {
438 struct u64_stats_sync syncp;
439
440 struct mvneta_ethtool_stats es;
441 u64 rx_dropped;
442 u64 rx_errors;
443 };
444
445 struct mvneta_pcpu_port {
446 /* Pointer to the shared port */
447 struct mvneta_port *pp;
448
449 /* Pointer to the CPU-local NAPI struct */
450 struct napi_struct napi;
451
452 /* Cause of the previous interrupt */
453 u32 cause_rx_tx;
454 };
455
456 enum {
457 __MVNETA_DOWN,
458 };
459
460 struct mvneta_port {
461 u8 id;
462 struct mvneta_pcpu_port __percpu *ports;
463 struct mvneta_pcpu_stats __percpu *stats;
464
465 unsigned long state;
466
467 int pkt_size;
468 void __iomem *base;
469 struct mvneta_rx_queue *rxqs;
470 struct mvneta_tx_queue *txqs;
471 struct net_device *dev;
472 struct hlist_node node_online;
473 struct hlist_node node_dead;
474 int rxq_def;
475 /* Protect the access to the percpu interrupt registers,
476 * ensuring that the configuration remains coherent.
477 */
478 spinlock_t lock;
479 bool is_stopped;
480
481 u32 cause_rx_tx;
482 struct napi_struct napi;
483
484 struct bpf_prog *xdp_prog;
485
486 /* Core clock */
487 struct clk *clk;
488 /* AXI clock */
489 struct clk *clk_bus;
490 u8 mcast_count[256];
491 u16 tx_ring_size;
492 u16 rx_ring_size;
493
494 phy_interface_t phy_interface;
495 struct device_node *dn;
496 unsigned int tx_csum_limit;
497 struct phylink *phylink;
498 struct phylink_config phylink_config;
499 struct phy *comphy;
500
501 struct mvneta_bm *bm_priv;
502 struct mvneta_bm_pool *pool_long;
503 struct mvneta_bm_pool *pool_short;
504 int bm_win_id;
505
506 bool eee_enabled;
507 bool eee_active;
508 bool tx_lpi_enabled;
509
510 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
511
512 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
513
514 /* Flags for special SoC configurations */
515 bool neta_armada3700;
516 u16 rx_offset_correction;
517 const struct mbus_dram_target_info *dram_target_info;
518 };
519
520 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
521 * layout of the transmit and reception DMA descriptors, and their
522 * layout is therefore defined by the hardware design
523 */
524
525 #define MVNETA_TX_L3_OFF_SHIFT 0
526 #define MVNETA_TX_IP_HLEN_SHIFT 8
527 #define MVNETA_TX_L4_UDP BIT(16)
528 #define MVNETA_TX_L3_IP6 BIT(17)
529 #define MVNETA_TXD_IP_CSUM BIT(18)
530 #define MVNETA_TXD_Z_PAD BIT(19)
531 #define MVNETA_TXD_L_DESC BIT(20)
532 #define MVNETA_TXD_F_DESC BIT(21)
533 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
534 MVNETA_TXD_L_DESC | \
535 MVNETA_TXD_F_DESC)
536 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
537 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
538
539 #define MVNETA_RXD_ERR_CRC 0x0
540 #define MVNETA_RXD_BM_POOL_SHIFT 13
541 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
542 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
543 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
544 #define MVNETA_RXD_ERR_LEN BIT(18)
545 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
546 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
547 #define MVNETA_RXD_L3_IP4 BIT(25)
548 #define MVNETA_RXD_LAST_DESC BIT(26)
549 #define MVNETA_RXD_FIRST_DESC BIT(27)
550 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
551 MVNETA_RXD_LAST_DESC)
552 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
553
554 #if defined(__LITTLE_ENDIAN)
555 struct mvneta_tx_desc {
556 u32 command; /* Options used by HW for packet transmitting.*/
557 u16 reserved1; /* csum_l4 (for future use) */
558 u16 data_size; /* Data size of transmitted packet in bytes */
559 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
560 u32 reserved2; /* hw_cmd - (for future use, PMT) */
561 u32 reserved3[4]; /* Reserved - (for future use) */
562 };
563
564 struct mvneta_rx_desc {
565 u32 status; /* Info about received packet */
566 u16 reserved1; /* pnc_info - (for future use, PnC) */
567 u16 data_size; /* Size of received packet in bytes */
568
569 u32 buf_phys_addr; /* Physical address of the buffer */
570 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
571
572 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
573 u16 reserved3; /* prefetch_cmd, for future use */
574 u16 reserved4; /* csum_l4 - (for future use, PnC) */
575
576 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
577 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
578 };
579 #else
580 struct mvneta_tx_desc {
581 u16 data_size; /* Data size of transmitted packet in bytes */
582 u16 reserved1; /* csum_l4 (for future use) */
583 u32 command; /* Options used by HW for packet transmitting.*/
584 u32 reserved2; /* hw_cmd - (for future use, PMT) */
585 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
586 u32 reserved3[4]; /* Reserved - (for future use) */
587 };
588
589 struct mvneta_rx_desc {
590 u16 data_size; /* Size of received packet in bytes */
591 u16 reserved1; /* pnc_info - (for future use, PnC) */
592 u32 status; /* Info about received packet */
593
594 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
595 u32 buf_phys_addr; /* Physical address of the buffer */
596
597 u16 reserved4; /* csum_l4 - (for future use, PnC) */
598 u16 reserved3; /* prefetch_cmd, for future use */
599 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
600
601 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
602 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
603 };
604 #endif
605
606 enum mvneta_tx_buf_type {
607 MVNETA_TYPE_SKB,
608 MVNETA_TYPE_XDP_TX,
609 MVNETA_TYPE_XDP_NDO,
610 };
611
612 struct mvneta_tx_buf {
613 enum mvneta_tx_buf_type type;
614 union {
615 struct xdp_frame *xdpf;
616 struct sk_buff *skb;
617 };
618 };
619
620 struct mvneta_tx_queue {
621 /* Number of this TX queue, in the range 0-7 */
622 u8 id;
623
624 /* Number of TX DMA descriptors in the descriptor ring */
625 int size;
626
627 /* Number of currently used TX DMA descriptor in the
628 * descriptor ring
629 */
630 int count;
631 int pending;
632 int tx_stop_threshold;
633 int tx_wake_threshold;
634
635 /* Array of transmitted buffers */
636 struct mvneta_tx_buf *buf;
637
638 /* Index of last TX DMA descriptor that was inserted */
639 int txq_put_index;
640
641 /* Index of the TX DMA descriptor to be cleaned up */
642 int txq_get_index;
643
644 u32 done_pkts_coal;
645
646 /* Virtual address of the TX DMA descriptors array */
647 struct mvneta_tx_desc *descs;
648
649 /* DMA address of the TX DMA descriptors array */
650 dma_addr_t descs_phys;
651
652 /* Index of the last TX DMA descriptor */
653 int last_desc;
654
655 /* Index of the next TX DMA descriptor to process */
656 int next_desc_to_proc;
657
658 /* DMA buffers for TSO headers */
659 char *tso_hdrs;
660
661 /* DMA address of TSO headers */
662 dma_addr_t tso_hdrs_phys;
663
664 /* Affinity mask for CPUs*/
665 cpumask_t affinity_mask;
666 };
667
668 struct mvneta_rx_queue {
669 /* rx queue number, in the range 0-7 */
670 u8 id;
671
672 /* num of rx descriptors in the rx descriptor ring */
673 int size;
674
675 u32 pkts_coal;
676 u32 time_coal;
677
678 /* page_pool */
679 struct page_pool *page_pool;
680 struct xdp_rxq_info xdp_rxq;
681
682 /* Virtual address of the RX buffer */
683 void **buf_virt_addr;
684
685 /* Virtual address of the RX DMA descriptors array */
686 struct mvneta_rx_desc *descs;
687
688 /* DMA address of the RX DMA descriptors array */
689 dma_addr_t descs_phys;
690
691 /* Index of the last RX DMA descriptor */
692 int last_desc;
693
694 /* Index of the next RX DMA descriptor to process */
695 int next_desc_to_proc;
696
697 /* Index of first RX DMA descriptor to refill */
698 int first_to_refill;
699 u32 refill_num;
700 };
701
702 static enum cpuhp_state online_hpstate;
703 /* The hardware supports eight (8) rx queues, but we are only allowing
704 * the first one to be used. Therefore, let's just allocate one queue.
705 */
706 static int rxq_number = 8;
707 static int txq_number = 8;
708
709 static int rxq_def;
710
711 static int rx_copybreak __read_mostly = 256;
712
713 /* HW BM need that each port be identify by a unique ID */
714 static int global_port_id;
715
716 #define MVNETA_DRIVER_NAME "mvneta"
717 #define MVNETA_DRIVER_VERSION "1.0"
718
719 /* Utility/helper methods */
720
721 /* Write helper method */
722 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
723 {
724 writel(data, pp->base + offset);
725 }
726
727 /* Read helper method */
728 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
729 {
730 return readl(pp->base + offset);
731 }
732
733 /* Increment txq get counter */
734 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
735 {
736 txq->txq_get_index++;
737 if (txq->txq_get_index == txq->size)
738 txq->txq_get_index = 0;
739 }
740
741 /* Increment txq put counter */
742 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
743 {
744 txq->txq_put_index++;
745 if (txq->txq_put_index == txq->size)
746 txq->txq_put_index = 0;
747 }
748
749
750 /* Clear all MIB counters */
751 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
752 {
753 int i;
754
755 /* Perform dummy reads from MIB counters */
756 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
757 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
758 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
759 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
760 }
761
762 /* Get System Network Statistics */
763 static void
764 mvneta_get_stats64(struct net_device *dev,
765 struct rtnl_link_stats64 *stats)
766 {
767 struct mvneta_port *pp = netdev_priv(dev);
768 unsigned int start;
769 int cpu;
770
771 for_each_possible_cpu(cpu) {
772 struct mvneta_pcpu_stats *cpu_stats;
773 u64 rx_packets;
774 u64 rx_bytes;
775 u64 rx_dropped;
776 u64 rx_errors;
777 u64 tx_packets;
778 u64 tx_bytes;
779
780 cpu_stats = per_cpu_ptr(pp->stats, cpu);
781 do {
782 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
783 rx_packets = cpu_stats->es.ps.rx_packets;
784 rx_bytes = cpu_stats->es.ps.rx_bytes;
785 rx_dropped = cpu_stats->rx_dropped;
786 rx_errors = cpu_stats->rx_errors;
787 tx_packets = cpu_stats->es.ps.tx_packets;
788 tx_bytes = cpu_stats->es.ps.tx_bytes;
789 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
790
791 stats->rx_packets += rx_packets;
792 stats->rx_bytes += rx_bytes;
793 stats->rx_dropped += rx_dropped;
794 stats->rx_errors += rx_errors;
795 stats->tx_packets += tx_packets;
796 stats->tx_bytes += tx_bytes;
797 }
798
799 stats->tx_dropped = dev->stats.tx_dropped;
800 }
801
802 /* Rx descriptors helper methods */
803
804 /* Checks whether the RX descriptor having this status is both the first
805 * and the last descriptor for the RX packet. Each RX packet is currently
806 * received through a single RX descriptor, so not having each RX
807 * descriptor with its first and last bits set is an error
808 */
809 static int mvneta_rxq_desc_is_first_last(u32 status)
810 {
811 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
812 MVNETA_RXD_FIRST_LAST_DESC;
813 }
814
815 /* Add number of descriptors ready to receive new packets */
816 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
817 struct mvneta_rx_queue *rxq,
818 int ndescs)
819 {
820 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
821 * be added at once
822 */
823 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
824 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
825 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
826 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
827 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
828 }
829
830 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
831 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
832 }
833
834 /* Get number of RX descriptors occupied by received packets */
835 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
836 struct mvneta_rx_queue *rxq)
837 {
838 u32 val;
839
840 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
841 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
842 }
843
844 /* Update num of rx desc called upon return from rx path or
845 * from mvneta_rxq_drop_pkts().
846 */
847 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
848 struct mvneta_rx_queue *rxq,
849 int rx_done, int rx_filled)
850 {
851 u32 val;
852
853 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
854 val = rx_done |
855 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
856 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
857 return;
858 }
859
860 /* Only 255 descriptors can be added at once */
861 while ((rx_done > 0) || (rx_filled > 0)) {
862 if (rx_done <= 0xff) {
863 val = rx_done;
864 rx_done = 0;
865 } else {
866 val = 0xff;
867 rx_done -= 0xff;
868 }
869 if (rx_filled <= 0xff) {
870 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
871 rx_filled = 0;
872 } else {
873 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
874 rx_filled -= 0xff;
875 }
876 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
877 }
878 }
879
880 /* Get pointer to next RX descriptor to be processed by SW */
881 static struct mvneta_rx_desc *
882 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
883 {
884 int rx_desc = rxq->next_desc_to_proc;
885
886 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
887 prefetch(rxq->descs + rxq->next_desc_to_proc);
888 return rxq->descs + rx_desc;
889 }
890
891 /* Change maximum receive size of the port. */
892 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
893 {
894 u32 val;
895
896 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
897 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
898 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
899 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
900 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
901 }
902
903
904 /* Set rx queue offset */
905 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
906 struct mvneta_rx_queue *rxq,
907 int offset)
908 {
909 u32 val;
910
911 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
912 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
913
914 /* Offset is in */
915 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
916 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
917 }
918
919
920 /* Tx descriptors helper methods */
921
922 /* Update HW with number of TX descriptors to be sent */
923 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
924 struct mvneta_tx_queue *txq,
925 int pend_desc)
926 {
927 u32 val;
928
929 pend_desc += txq->pending;
930
931 /* Only 255 Tx descriptors can be added at once */
932 do {
933 val = min(pend_desc, 255);
934 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
935 pend_desc -= val;
936 } while (pend_desc > 0);
937 txq->pending = 0;
938 }
939
940 /* Get pointer to next TX descriptor to be processed (send) by HW */
941 static struct mvneta_tx_desc *
942 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
943 {
944 int tx_desc = txq->next_desc_to_proc;
945
946 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
947 return txq->descs + tx_desc;
948 }
949
950 /* Release the last allocated TX descriptor. Useful to handle DMA
951 * mapping failures in the TX path.
952 */
953 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
954 {
955 if (txq->next_desc_to_proc == 0)
956 txq->next_desc_to_proc = txq->last_desc - 1;
957 else
958 txq->next_desc_to_proc--;
959 }
960
961 /* Set rxq buf size */
962 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
963 struct mvneta_rx_queue *rxq,
964 int buf_size)
965 {
966 u32 val;
967
968 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
969
970 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
971 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
972
973 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
974 }
975
976 /* Disable buffer management (BM) */
977 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
978 struct mvneta_rx_queue *rxq)
979 {
980 u32 val;
981
982 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
983 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
984 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
985 }
986
987 /* Enable buffer management (BM) */
988 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
989 struct mvneta_rx_queue *rxq)
990 {
991 u32 val;
992
993 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
994 val |= MVNETA_RXQ_HW_BUF_ALLOC;
995 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
996 }
997
998 /* Notify HW about port's assignment of pool for bigger packets */
999 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1000 struct mvneta_rx_queue *rxq)
1001 {
1002 u32 val;
1003
1004 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1005 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1006 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1007
1008 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1009 }
1010
1011 /* Notify HW about port's assignment of pool for smaller packets */
1012 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1013 struct mvneta_rx_queue *rxq)
1014 {
1015 u32 val;
1016
1017 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1018 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1019 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1020
1021 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1022 }
1023
1024 /* Set port's receive buffer size for assigned BM pool */
1025 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1026 int buf_size,
1027 u8 pool_id)
1028 {
1029 u32 val;
1030
1031 if (!IS_ALIGNED(buf_size, 8)) {
1032 dev_warn(pp->dev->dev.parent,
1033 "illegal buf_size value %d, round to %d\n",
1034 buf_size, ALIGN(buf_size, 8));
1035 buf_size = ALIGN(buf_size, 8);
1036 }
1037
1038 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1039 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1040 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1041 }
1042
1043 /* Configure MBUS window in order to enable access BM internal SRAM */
1044 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1045 u8 target, u8 attr)
1046 {
1047 u32 win_enable, win_protect;
1048 int i;
1049
1050 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1051
1052 if (pp->bm_win_id < 0) {
1053 /* Find first not occupied window */
1054 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1055 if (win_enable & (1 << i)) {
1056 pp->bm_win_id = i;
1057 break;
1058 }
1059 }
1060 if (i == MVNETA_MAX_DECODE_WIN)
1061 return -ENOMEM;
1062 } else {
1063 i = pp->bm_win_id;
1064 }
1065
1066 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1067 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1068
1069 if (i < 4)
1070 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1071
1072 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1073 (attr << 8) | target);
1074
1075 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1076
1077 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1078 win_protect |= 3 << (2 * i);
1079 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1080
1081 win_enable &= ~(1 << i);
1082 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1083
1084 return 0;
1085 }
1086
1087 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1088 {
1089 u32 wsize;
1090 u8 target, attr;
1091 int err;
1092
1093 /* Get BM window information */
1094 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1095 &target, &attr);
1096 if (err < 0)
1097 return err;
1098
1099 pp->bm_win_id = -1;
1100
1101 /* Open NETA -> BM window */
1102 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1103 target, attr);
1104 if (err < 0) {
1105 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1106 return err;
1107 }
1108 return 0;
1109 }
1110
1111 /* Assign and initialize pools for port. In case of fail
1112 * buffer manager will remain disabled for current port.
1113 */
1114 static int mvneta_bm_port_init(struct platform_device *pdev,
1115 struct mvneta_port *pp)
1116 {
1117 struct device_node *dn = pdev->dev.of_node;
1118 u32 long_pool_id, short_pool_id;
1119
1120 if (!pp->neta_armada3700) {
1121 int ret;
1122
1123 ret = mvneta_bm_port_mbus_init(pp);
1124 if (ret)
1125 return ret;
1126 }
1127
1128 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1129 netdev_info(pp->dev, "missing long pool id\n");
1130 return -EINVAL;
1131 }
1132
1133 /* Create port's long pool depending on mtu */
1134 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1135 MVNETA_BM_LONG, pp->id,
1136 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1137 if (!pp->pool_long) {
1138 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1139 return -ENOMEM;
1140 }
1141
1142 pp->pool_long->port_map |= 1 << pp->id;
1143
1144 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1145 pp->pool_long->id);
1146
1147 /* If short pool id is not defined, assume using single pool */
1148 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1149 short_pool_id = long_pool_id;
1150
1151 /* Create port's short pool */
1152 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1153 MVNETA_BM_SHORT, pp->id,
1154 MVNETA_BM_SHORT_PKT_SIZE);
1155 if (!pp->pool_short) {
1156 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1157 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1158 return -ENOMEM;
1159 }
1160
1161 if (short_pool_id != long_pool_id) {
1162 pp->pool_short->port_map |= 1 << pp->id;
1163 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1164 pp->pool_short->id);
1165 }
1166
1167 return 0;
1168 }
1169
1170 /* Update settings of a pool for bigger packets */
1171 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1172 {
1173 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1174 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1175 int num;
1176
1177 /* Release all buffers from long pool */
1178 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1179 if (hwbm_pool->buf_num) {
1180 WARN(1, "cannot free all buffers in pool %d\n",
1181 bm_pool->id);
1182 goto bm_mtu_err;
1183 }
1184
1185 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1186 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1187 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1188 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1189
1190 /* Fill entire long pool */
1191 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1192 if (num != hwbm_pool->size) {
1193 WARN(1, "pool %d: %d of %d allocated\n",
1194 bm_pool->id, num, hwbm_pool->size);
1195 goto bm_mtu_err;
1196 }
1197 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1198
1199 return;
1200
1201 bm_mtu_err:
1202 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1203 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1204
1205 pp->bm_priv = NULL;
1206 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1207 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1208 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1209 }
1210
1211 /* Start the Ethernet port RX and TX activity */
1212 static void mvneta_port_up(struct mvneta_port *pp)
1213 {
1214 int queue;
1215 u32 q_map;
1216
1217 /* Enable all initialized TXs. */
1218 q_map = 0;
1219 for (queue = 0; queue < txq_number; queue++) {
1220 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1221 if (txq->descs)
1222 q_map |= (1 << queue);
1223 }
1224 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1225
1226 q_map = 0;
1227 /* Enable all initialized RXQs. */
1228 for (queue = 0; queue < rxq_number; queue++) {
1229 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1230
1231 if (rxq->descs)
1232 q_map |= (1 << queue);
1233 }
1234 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1235 }
1236
1237 /* Stop the Ethernet port activity */
1238 static void mvneta_port_down(struct mvneta_port *pp)
1239 {
1240 u32 val;
1241 int count;
1242
1243 /* Stop Rx port activity. Check port Rx activity. */
1244 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1245
1246 /* Issue stop command for active channels only */
1247 if (val != 0)
1248 mvreg_write(pp, MVNETA_RXQ_CMD,
1249 val << MVNETA_RXQ_DISABLE_SHIFT);
1250
1251 /* Wait for all Rx activity to terminate. */
1252 count = 0;
1253 do {
1254 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1255 netdev_warn(pp->dev,
1256 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1257 val);
1258 break;
1259 }
1260 mdelay(1);
1261
1262 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1263 } while (val & MVNETA_RXQ_ENABLE_MASK);
1264
1265 /* Stop Tx port activity. Check port Tx activity. Issue stop
1266 * command for active channels only
1267 */
1268 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1269
1270 if (val != 0)
1271 mvreg_write(pp, MVNETA_TXQ_CMD,
1272 (val << MVNETA_TXQ_DISABLE_SHIFT));
1273
1274 /* Wait for all Tx activity to terminate. */
1275 count = 0;
1276 do {
1277 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1278 netdev_warn(pp->dev,
1279 "TIMEOUT for TX stopped status=0x%08x\n",
1280 val);
1281 break;
1282 }
1283 mdelay(1);
1284
1285 /* Check TX Command reg that all Txqs are stopped */
1286 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1287
1288 } while (val & MVNETA_TXQ_ENABLE_MASK);
1289
1290 /* Double check to verify that TX FIFO is empty */
1291 count = 0;
1292 do {
1293 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1294 netdev_warn(pp->dev,
1295 "TX FIFO empty timeout status=0x%08x\n",
1296 val);
1297 break;
1298 }
1299 mdelay(1);
1300
1301 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1302 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1303 (val & MVNETA_TX_IN_PRGRS));
1304
1305 udelay(200);
1306 }
1307
1308 /* Enable the port by setting the port enable bit of the MAC control register */
1309 static void mvneta_port_enable(struct mvneta_port *pp)
1310 {
1311 u32 val;
1312
1313 /* Enable port */
1314 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1315 val |= MVNETA_GMAC0_PORT_ENABLE;
1316 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1317 }
1318
1319 /* Disable the port and wait for about 200 usec before retuning */
1320 static void mvneta_port_disable(struct mvneta_port *pp)
1321 {
1322 u32 val;
1323
1324 /* Reset the Enable bit in the Serial Control Register */
1325 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1326 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1327 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1328
1329 udelay(200);
1330 }
1331
1332 /* Multicast tables methods */
1333
1334 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1335 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1336 {
1337 int offset;
1338 u32 val;
1339
1340 if (queue == -1) {
1341 val = 0;
1342 } else {
1343 val = 0x1 | (queue << 1);
1344 val |= (val << 24) | (val << 16) | (val << 8);
1345 }
1346
1347 for (offset = 0; offset <= 0xc; offset += 4)
1348 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1349 }
1350
1351 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1352 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1353 {
1354 int offset;
1355 u32 val;
1356
1357 if (queue == -1) {
1358 val = 0;
1359 } else {
1360 val = 0x1 | (queue << 1);
1361 val |= (val << 24) | (val << 16) | (val << 8);
1362 }
1363
1364 for (offset = 0; offset <= 0xfc; offset += 4)
1365 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1366
1367 }
1368
1369 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1370 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1371 {
1372 int offset;
1373 u32 val;
1374
1375 if (queue == -1) {
1376 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1377 val = 0;
1378 } else {
1379 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1380 val = 0x1 | (queue << 1);
1381 val |= (val << 24) | (val << 16) | (val << 8);
1382 }
1383
1384 for (offset = 0; offset <= 0xfc; offset += 4)
1385 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1386 }
1387
1388 static void mvneta_percpu_unmask_interrupt(void *arg)
1389 {
1390 struct mvneta_port *pp = arg;
1391
1392 /* All the queue are unmasked, but actually only the ones
1393 * mapped to this CPU will be unmasked
1394 */
1395 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1396 MVNETA_RX_INTR_MASK_ALL |
1397 MVNETA_TX_INTR_MASK_ALL |
1398 MVNETA_MISCINTR_INTR_MASK);
1399 }
1400
1401 static void mvneta_percpu_mask_interrupt(void *arg)
1402 {
1403 struct mvneta_port *pp = arg;
1404
1405 /* All the queue are masked, but actually only the ones
1406 * mapped to this CPU will be masked
1407 */
1408 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1409 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1410 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1411 }
1412
1413 static void mvneta_percpu_clear_intr_cause(void *arg)
1414 {
1415 struct mvneta_port *pp = arg;
1416
1417 /* All the queue are cleared, but actually only the ones
1418 * mapped to this CPU will be cleared
1419 */
1420 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1421 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1422 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1423 }
1424
1425 /* This method sets defaults to the NETA port:
1426 * Clears interrupt Cause and Mask registers.
1427 * Clears all MAC tables.
1428 * Sets defaults to all registers.
1429 * Resets RX and TX descriptor rings.
1430 * Resets PHY.
1431 * This method can be called after mvneta_port_down() to return the port
1432 * settings to defaults.
1433 */
1434 static void mvneta_defaults_set(struct mvneta_port *pp)
1435 {
1436 int cpu;
1437 int queue;
1438 u32 val;
1439 int max_cpu = num_present_cpus();
1440
1441 /* Clear all Cause registers */
1442 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1443
1444 /* Mask all interrupts */
1445 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1446 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1447
1448 /* Enable MBUS Retry bit16 */
1449 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1450
1451 /* Set CPU queue access map. CPUs are assigned to the RX and
1452 * TX queues modulo their number. If there is only one TX
1453 * queue then it is assigned to the CPU associated to the
1454 * default RX queue.
1455 */
1456 for_each_present_cpu(cpu) {
1457 int rxq_map = 0, txq_map = 0;
1458 int rxq, txq;
1459 if (!pp->neta_armada3700) {
1460 for (rxq = 0; rxq < rxq_number; rxq++)
1461 if ((rxq % max_cpu) == cpu)
1462 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1463
1464 for (txq = 0; txq < txq_number; txq++)
1465 if ((txq % max_cpu) == cpu)
1466 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1467
1468 /* With only one TX queue we configure a special case
1469 * which will allow to get all the irq on a single
1470 * CPU
1471 */
1472 if (txq_number == 1)
1473 txq_map = (cpu == pp->rxq_def) ?
1474 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1475
1476 } else {
1477 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1478 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1479 }
1480
1481 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1482 }
1483
1484 /* Reset RX and TX DMAs */
1485 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1486 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1487
1488 /* Disable Legacy WRR, Disable EJP, Release from reset */
1489 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1490 for (queue = 0; queue < txq_number; queue++) {
1491 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1492 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1493 }
1494
1495 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1496 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1497
1498 /* Set Port Acceleration Mode */
1499 if (pp->bm_priv)
1500 /* HW buffer management + legacy parser */
1501 val = MVNETA_ACC_MODE_EXT2;
1502 else
1503 /* SW buffer management + legacy parser */
1504 val = MVNETA_ACC_MODE_EXT1;
1505 mvreg_write(pp, MVNETA_ACC_MODE, val);
1506
1507 if (pp->bm_priv)
1508 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1509
1510 /* Update val of portCfg register accordingly with all RxQueue types */
1511 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1512 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1513
1514 val = 0;
1515 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1516 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1517
1518 /* Build PORT_SDMA_CONFIG_REG */
1519 val = 0;
1520
1521 /* Default burst size */
1522 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1523 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1524 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1525
1526 #if defined(__BIG_ENDIAN)
1527 val |= MVNETA_DESC_SWAP;
1528 #endif
1529
1530 /* Assign port SDMA configuration */
1531 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1532
1533 /* Disable PHY polling in hardware, since we're using the
1534 * kernel phylib to do this.
1535 */
1536 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1537 val &= ~MVNETA_PHY_POLLING_ENABLE;
1538 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1539
1540 mvneta_set_ucast_table(pp, -1);
1541 mvneta_set_special_mcast_table(pp, -1);
1542 mvneta_set_other_mcast_table(pp, -1);
1543
1544 /* Set port interrupt enable register - default enable all */
1545 mvreg_write(pp, MVNETA_INTR_ENABLE,
1546 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1547 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1548
1549 mvneta_mib_counters_clear(pp);
1550 }
1551
1552 /* Set max sizes for tx queues */
1553 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1554
1555 {
1556 u32 val, size, mtu;
1557 int queue;
1558
1559 mtu = max_tx_size * 8;
1560 if (mtu > MVNETA_TX_MTU_MAX)
1561 mtu = MVNETA_TX_MTU_MAX;
1562
1563 /* Set MTU */
1564 val = mvreg_read(pp, MVNETA_TX_MTU);
1565 val &= ~MVNETA_TX_MTU_MAX;
1566 val |= mtu;
1567 mvreg_write(pp, MVNETA_TX_MTU, val);
1568
1569 /* TX token size and all TXQs token size must be larger that MTU */
1570 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1571
1572 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1573 if (size < mtu) {
1574 size = mtu;
1575 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1576 val |= size;
1577 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1578 }
1579 for (queue = 0; queue < txq_number; queue++) {
1580 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1581
1582 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1583 if (size < mtu) {
1584 size = mtu;
1585 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1586 val |= size;
1587 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1588 }
1589 }
1590 }
1591
1592 /* Set unicast address */
1593 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1594 int queue)
1595 {
1596 unsigned int unicast_reg;
1597 unsigned int tbl_offset;
1598 unsigned int reg_offset;
1599
1600 /* Locate the Unicast table entry */
1601 last_nibble = (0xf & last_nibble);
1602
1603 /* offset from unicast tbl base */
1604 tbl_offset = (last_nibble / 4) * 4;
1605
1606 /* offset within the above reg */
1607 reg_offset = last_nibble % 4;
1608
1609 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1610
1611 if (queue == -1) {
1612 /* Clear accepts frame bit at specified unicast DA tbl entry */
1613 unicast_reg &= ~(0xff << (8 * reg_offset));
1614 } else {
1615 unicast_reg &= ~(0xff << (8 * reg_offset));
1616 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1617 }
1618
1619 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1620 }
1621
1622 /* Set mac address */
1623 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1624 int queue)
1625 {
1626 unsigned int mac_h;
1627 unsigned int mac_l;
1628
1629 if (queue != -1) {
1630 mac_l = (addr[4] << 8) | (addr[5]);
1631 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1632 (addr[2] << 8) | (addr[3] << 0);
1633
1634 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1635 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1636 }
1637
1638 /* Accept frames of this address */
1639 mvneta_set_ucast_addr(pp, addr[5], queue);
1640 }
1641
1642 /* Set the number of packets that will be received before RX interrupt
1643 * will be generated by HW.
1644 */
1645 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1646 struct mvneta_rx_queue *rxq, u32 value)
1647 {
1648 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1649 value | MVNETA_RXQ_NON_OCCUPIED(0));
1650 }
1651
1652 /* Set the time delay in usec before RX interrupt will be generated by
1653 * HW.
1654 */
1655 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1656 struct mvneta_rx_queue *rxq, u32 value)
1657 {
1658 u32 val;
1659 unsigned long clk_rate;
1660
1661 clk_rate = clk_get_rate(pp->clk);
1662 val = (clk_rate / 1000000) * value;
1663
1664 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1665 }
1666
1667 /* Set threshold for TX_DONE pkts coalescing */
1668 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1669 struct mvneta_tx_queue *txq, u32 value)
1670 {
1671 u32 val;
1672
1673 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1674
1675 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1676 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1677
1678 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1679 }
1680
1681 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1682 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1683 u32 phys_addr, void *virt_addr,
1684 struct mvneta_rx_queue *rxq)
1685 {
1686 int i;
1687
1688 rx_desc->buf_phys_addr = phys_addr;
1689 i = rx_desc - rxq->descs;
1690 rxq->buf_virt_addr[i] = virt_addr;
1691 }
1692
1693 /* Decrement sent descriptors counter */
1694 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1695 struct mvneta_tx_queue *txq,
1696 int sent_desc)
1697 {
1698 u32 val;
1699
1700 /* Only 255 TX descriptors can be updated at once */
1701 while (sent_desc > 0xff) {
1702 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1703 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1704 sent_desc = sent_desc - 0xff;
1705 }
1706
1707 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1708 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1709 }
1710
1711 /* Get number of TX descriptors already sent by HW */
1712 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1713 struct mvneta_tx_queue *txq)
1714 {
1715 u32 val;
1716 int sent_desc;
1717
1718 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1719 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1720 MVNETA_TXQ_SENT_DESC_SHIFT;
1721
1722 return sent_desc;
1723 }
1724
1725 /* Get number of sent descriptors and decrement counter.
1726 * The number of sent descriptors is returned.
1727 */
1728 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1729 struct mvneta_tx_queue *txq)
1730 {
1731 int sent_desc;
1732
1733 /* Get number of sent descriptors */
1734 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1735
1736 /* Decrement sent descriptors counter */
1737 if (sent_desc)
1738 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1739
1740 return sent_desc;
1741 }
1742
1743 /* Set TXQ descriptors fields relevant for CSUM calculation */
1744 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1745 int ip_hdr_len, int l4_proto)
1746 {
1747 u32 command;
1748
1749 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1750 * G_L4_chk, L4_type; required only for checksum
1751 * calculation
1752 */
1753 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1754 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1755
1756 if (l3_proto == htons(ETH_P_IP))
1757 command |= MVNETA_TXD_IP_CSUM;
1758 else
1759 command |= MVNETA_TX_L3_IP6;
1760
1761 if (l4_proto == IPPROTO_TCP)
1762 command |= MVNETA_TX_L4_CSUM_FULL;
1763 else if (l4_proto == IPPROTO_UDP)
1764 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1765 else
1766 command |= MVNETA_TX_L4_CSUM_NOT;
1767
1768 return command;
1769 }
1770
1771
1772 /* Display more error info */
1773 static void mvneta_rx_error(struct mvneta_port *pp,
1774 struct mvneta_rx_desc *rx_desc)
1775 {
1776 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1777 u32 status = rx_desc->status;
1778
1779 /* update per-cpu counter */
1780 u64_stats_update_begin(&stats->syncp);
1781 stats->rx_errors++;
1782 u64_stats_update_end(&stats->syncp);
1783
1784 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1785 case MVNETA_RXD_ERR_CRC:
1786 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1787 status, rx_desc->data_size);
1788 break;
1789 case MVNETA_RXD_ERR_OVERRUN:
1790 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1791 status, rx_desc->data_size);
1792 break;
1793 case MVNETA_RXD_ERR_LEN:
1794 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1795 status, rx_desc->data_size);
1796 break;
1797 case MVNETA_RXD_ERR_RESOURCE:
1798 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1799 status, rx_desc->data_size);
1800 break;
1801 }
1802 }
1803
1804 /* Handle RX checksum offload based on the descriptor's status */
1805 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1806 struct sk_buff *skb)
1807 {
1808 if ((pp->dev->features & NETIF_F_RXCSUM) &&
1809 (status & MVNETA_RXD_L3_IP4) &&
1810 (status & MVNETA_RXD_L4_CSUM_OK)) {
1811 skb->csum = 0;
1812 skb->ip_summed = CHECKSUM_UNNECESSARY;
1813 return;
1814 }
1815
1816 skb->ip_summed = CHECKSUM_NONE;
1817 }
1818
1819 /* Return tx queue pointer (find last set bit) according to <cause> returned
1820 * form tx_done reg. <cause> must not be null. The return value is always a
1821 * valid queue for matching the first one found in <cause>.
1822 */
1823 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1824 u32 cause)
1825 {
1826 int queue = fls(cause) - 1;
1827
1828 return &pp->txqs[queue];
1829 }
1830
1831 /* Free tx queue skbuffs */
1832 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1833 struct mvneta_tx_queue *txq, int num,
1834 struct netdev_queue *nq, bool napi)
1835 {
1836 unsigned int bytes_compl = 0, pkts_compl = 0;
1837 struct xdp_frame_bulk bq;
1838 int i;
1839
1840 xdp_frame_bulk_init(&bq);
1841
1842 rcu_read_lock(); /* need for xdp_return_frame_bulk */
1843
1844 for (i = 0; i < num; i++) {
1845 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1846 struct mvneta_tx_desc *tx_desc = txq->descs +
1847 txq->txq_get_index;
1848
1849 mvneta_txq_inc_get(txq);
1850
1851 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1852 buf->type != MVNETA_TYPE_XDP_TX)
1853 dma_unmap_single(pp->dev->dev.parent,
1854 tx_desc->buf_phys_addr,
1855 tx_desc->data_size, DMA_TO_DEVICE);
1856 if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1857 bytes_compl += buf->skb->len;
1858 pkts_compl++;
1859 dev_kfree_skb_any(buf->skb);
1860 } else if (buf->type == MVNETA_TYPE_XDP_TX ||
1861 buf->type == MVNETA_TYPE_XDP_NDO) {
1862 if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1863 xdp_return_frame_rx_napi(buf->xdpf);
1864 else
1865 xdp_return_frame_bulk(buf->xdpf, &bq);
1866 }
1867 }
1868 xdp_flush_frame_bulk(&bq);
1869
1870 rcu_read_unlock();
1871
1872 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1873 }
1874
1875 /* Handle end of transmission */
1876 static void mvneta_txq_done(struct mvneta_port *pp,
1877 struct mvneta_tx_queue *txq)
1878 {
1879 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1880 int tx_done;
1881
1882 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1883 if (!tx_done)
1884 return;
1885
1886 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1887
1888 txq->count -= tx_done;
1889
1890 if (netif_tx_queue_stopped(nq)) {
1891 if (txq->count <= txq->tx_wake_threshold)
1892 netif_tx_wake_queue(nq);
1893 }
1894 }
1895
1896 /* Refill processing for SW buffer management */
1897 /* Allocate page per descriptor */
1898 static int mvneta_rx_refill(struct mvneta_port *pp,
1899 struct mvneta_rx_desc *rx_desc,
1900 struct mvneta_rx_queue *rxq,
1901 gfp_t gfp_mask)
1902 {
1903 dma_addr_t phys_addr;
1904 struct page *page;
1905
1906 page = page_pool_alloc_pages(rxq->page_pool,
1907 gfp_mask | __GFP_NOWARN);
1908 if (!page)
1909 return -ENOMEM;
1910
1911 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1912 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1913
1914 return 0;
1915 }
1916
1917 /* Handle tx checksum */
1918 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1919 {
1920 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1921 int ip_hdr_len = 0;
1922 __be16 l3_proto = vlan_get_protocol(skb);
1923 u8 l4_proto;
1924
1925 if (l3_proto == htons(ETH_P_IP)) {
1926 struct iphdr *ip4h = ip_hdr(skb);
1927
1928 /* Calculate IPv4 checksum and L4 checksum */
1929 ip_hdr_len = ip4h->ihl;
1930 l4_proto = ip4h->protocol;
1931 } else if (l3_proto == htons(ETH_P_IPV6)) {
1932 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1933
1934 /* Read l4_protocol from one of IPv6 extra headers */
1935 if (skb_network_header_len(skb) > 0)
1936 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1937 l4_proto = ip6h->nexthdr;
1938 } else
1939 return MVNETA_TX_L4_CSUM_NOT;
1940
1941 return mvneta_txq_desc_csum(skb_network_offset(skb),
1942 l3_proto, ip_hdr_len, l4_proto);
1943 }
1944
1945 return MVNETA_TX_L4_CSUM_NOT;
1946 }
1947
1948 /* Drop packets received by the RXQ and free buffers */
1949 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1950 struct mvneta_rx_queue *rxq)
1951 {
1952 int rx_done, i;
1953
1954 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1955 if (rx_done)
1956 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1957
1958 if (pp->bm_priv) {
1959 for (i = 0; i < rx_done; i++) {
1960 struct mvneta_rx_desc *rx_desc =
1961 mvneta_rxq_next_desc_get(rxq);
1962 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1963 struct mvneta_bm_pool *bm_pool;
1964
1965 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1966 /* Return dropped buffer to the pool */
1967 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1968 rx_desc->buf_phys_addr);
1969 }
1970 return;
1971 }
1972
1973 for (i = 0; i < rxq->size; i++) {
1974 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1975 void *data = rxq->buf_virt_addr[i];
1976 if (!data || !(rx_desc->buf_phys_addr))
1977 continue;
1978
1979 page_pool_put_full_page(rxq->page_pool, data, false);
1980 }
1981 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1982 xdp_rxq_info_unreg(&rxq->xdp_rxq);
1983 page_pool_destroy(rxq->page_pool);
1984 rxq->page_pool = NULL;
1985 }
1986
1987 static void
1988 mvneta_update_stats(struct mvneta_port *pp,
1989 struct mvneta_stats *ps)
1990 {
1991 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1992
1993 u64_stats_update_begin(&stats->syncp);
1994 stats->es.ps.rx_packets += ps->rx_packets;
1995 stats->es.ps.rx_bytes += ps->rx_bytes;
1996 /* xdp */
1997 stats->es.ps.xdp_redirect += ps->xdp_redirect;
1998 stats->es.ps.xdp_pass += ps->xdp_pass;
1999 stats->es.ps.xdp_drop += ps->xdp_drop;
2000 u64_stats_update_end(&stats->syncp);
2001 }
2002
2003 static inline
2004 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2005 {
2006 struct mvneta_rx_desc *rx_desc;
2007 int curr_desc = rxq->first_to_refill;
2008 int i;
2009
2010 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2011 rx_desc = rxq->descs + curr_desc;
2012 if (!(rx_desc->buf_phys_addr)) {
2013 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2014 struct mvneta_pcpu_stats *stats;
2015
2016 pr_err("Can't refill queue %d. Done %d from %d\n",
2017 rxq->id, i, rxq->refill_num);
2018
2019 stats = this_cpu_ptr(pp->stats);
2020 u64_stats_update_begin(&stats->syncp);
2021 stats->es.refill_error++;
2022 u64_stats_update_end(&stats->syncp);
2023 break;
2024 }
2025 }
2026 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2027 }
2028 rxq->refill_num -= i;
2029 rxq->first_to_refill = curr_desc;
2030
2031 return i;
2032 }
2033
2034 static void
2035 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2036 struct xdp_buff *xdp, struct skb_shared_info *sinfo,
2037 int sync_len)
2038 {
2039 int i;
2040
2041 for (i = 0; i < sinfo->nr_frags; i++)
2042 page_pool_put_full_page(rxq->page_pool,
2043 skb_frag_page(&sinfo->frags[i]), true);
2044 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2045 sync_len, true);
2046 }
2047
2048 static int
2049 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2050 struct xdp_frame *xdpf, bool dma_map)
2051 {
2052 struct mvneta_tx_desc *tx_desc;
2053 struct mvneta_tx_buf *buf;
2054 dma_addr_t dma_addr;
2055
2056 if (txq->count >= txq->tx_stop_threshold)
2057 return MVNETA_XDP_DROPPED;
2058
2059 tx_desc = mvneta_txq_next_desc_get(txq);
2060
2061 buf = &txq->buf[txq->txq_put_index];
2062 if (dma_map) {
2063 /* ndo_xdp_xmit */
2064 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2065 xdpf->len, DMA_TO_DEVICE);
2066 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2067 mvneta_txq_desc_put(txq);
2068 return MVNETA_XDP_DROPPED;
2069 }
2070 buf->type = MVNETA_TYPE_XDP_NDO;
2071 } else {
2072 struct page *page = virt_to_page(xdpf->data);
2073
2074 dma_addr = page_pool_get_dma_addr(page) +
2075 sizeof(*xdpf) + xdpf->headroom;
2076 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2077 xdpf->len, DMA_BIDIRECTIONAL);
2078 buf->type = MVNETA_TYPE_XDP_TX;
2079 }
2080 buf->xdpf = xdpf;
2081
2082 tx_desc->command = MVNETA_TXD_FLZ_DESC;
2083 tx_desc->buf_phys_addr = dma_addr;
2084 tx_desc->data_size = xdpf->len;
2085
2086 mvneta_txq_inc_put(txq);
2087 txq->pending++;
2088 txq->count++;
2089
2090 return MVNETA_XDP_TX;
2091 }
2092
2093 static int
2094 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2095 {
2096 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2097 struct mvneta_tx_queue *txq;
2098 struct netdev_queue *nq;
2099 struct xdp_frame *xdpf;
2100 int cpu;
2101 u32 ret;
2102
2103 xdpf = xdp_convert_buff_to_frame(xdp);
2104 if (unlikely(!xdpf))
2105 return MVNETA_XDP_DROPPED;
2106
2107 cpu = smp_processor_id();
2108 txq = &pp->txqs[cpu % txq_number];
2109 nq = netdev_get_tx_queue(pp->dev, txq->id);
2110
2111 __netif_tx_lock(nq, cpu);
2112 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2113 if (ret == MVNETA_XDP_TX) {
2114 u64_stats_update_begin(&stats->syncp);
2115 stats->es.ps.tx_bytes += xdpf->len;
2116 stats->es.ps.tx_packets++;
2117 stats->es.ps.xdp_tx++;
2118 u64_stats_update_end(&stats->syncp);
2119
2120 mvneta_txq_pend_desc_add(pp, txq, 0);
2121 } else {
2122 u64_stats_update_begin(&stats->syncp);
2123 stats->es.ps.xdp_tx_err++;
2124 u64_stats_update_end(&stats->syncp);
2125 }
2126 __netif_tx_unlock(nq);
2127
2128 return ret;
2129 }
2130
2131 static int
2132 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2133 struct xdp_frame **frames, u32 flags)
2134 {
2135 struct mvneta_port *pp = netdev_priv(dev);
2136 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2137 int i, nxmit_byte = 0, nxmit = num_frame;
2138 int cpu = smp_processor_id();
2139 struct mvneta_tx_queue *txq;
2140 struct netdev_queue *nq;
2141 u32 ret;
2142
2143 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2144 return -ENETDOWN;
2145
2146 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2147 return -EINVAL;
2148
2149 txq = &pp->txqs[cpu % txq_number];
2150 nq = netdev_get_tx_queue(pp->dev, txq->id);
2151
2152 __netif_tx_lock(nq, cpu);
2153 for (i = 0; i < num_frame; i++) {
2154 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2155 if (ret == MVNETA_XDP_TX) {
2156 nxmit_byte += frames[i]->len;
2157 } else {
2158 xdp_return_frame_rx_napi(frames[i]);
2159 nxmit--;
2160 }
2161 }
2162
2163 if (unlikely(flags & XDP_XMIT_FLUSH))
2164 mvneta_txq_pend_desc_add(pp, txq, 0);
2165 __netif_tx_unlock(nq);
2166
2167 u64_stats_update_begin(&stats->syncp);
2168 stats->es.ps.tx_bytes += nxmit_byte;
2169 stats->es.ps.tx_packets += nxmit;
2170 stats->es.ps.xdp_xmit += nxmit;
2171 stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2172 u64_stats_update_end(&stats->syncp);
2173
2174 return nxmit;
2175 }
2176
2177 static int
2178 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2179 struct bpf_prog *prog, struct xdp_buff *xdp,
2180 u32 frame_sz, struct mvneta_stats *stats)
2181 {
2182 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2183 unsigned int len, data_len, sync;
2184 u32 ret, act;
2185
2186 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2187 data_len = xdp->data_end - xdp->data;
2188 act = bpf_prog_run_xdp(prog, xdp);
2189
2190 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2191 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2192 sync = max(sync, len);
2193
2194 switch (act) {
2195 case XDP_PASS:
2196 stats->xdp_pass++;
2197 return MVNETA_XDP_PASS;
2198 case XDP_REDIRECT: {
2199 int err;
2200
2201 err = xdp_do_redirect(pp->dev, xdp, prog);
2202 if (unlikely(err)) {
2203 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2204 ret = MVNETA_XDP_DROPPED;
2205 } else {
2206 ret = MVNETA_XDP_REDIR;
2207 stats->xdp_redirect++;
2208 }
2209 break;
2210 }
2211 case XDP_TX:
2212 ret = mvneta_xdp_xmit_back(pp, xdp);
2213 if (ret != MVNETA_XDP_TX)
2214 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2215 break;
2216 default:
2217 bpf_warn_invalid_xdp_action(act);
2218 fallthrough;
2219 case XDP_ABORTED:
2220 trace_xdp_exception(pp->dev, prog, act);
2221 fallthrough;
2222 case XDP_DROP:
2223 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2224 ret = MVNETA_XDP_DROPPED;
2225 stats->xdp_drop++;
2226 break;
2227 }
2228
2229 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2230 stats->rx_packets++;
2231
2232 return ret;
2233 }
2234
2235 static void
2236 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2237 struct mvneta_rx_desc *rx_desc,
2238 struct mvneta_rx_queue *rxq,
2239 struct xdp_buff *xdp, int *size,
2240 struct page *page)
2241 {
2242 unsigned char *data = page_address(page);
2243 int data_len = -MVNETA_MH_SIZE, len;
2244 struct net_device *dev = pp->dev;
2245 enum dma_data_direction dma_dir;
2246 struct skb_shared_info *sinfo;
2247
2248 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2249 len = MVNETA_MAX_RX_BUF_SIZE;
2250 data_len += len;
2251 } else {
2252 len = *size;
2253 data_len += len - ETH_FCS_LEN;
2254 }
2255 *size = *size - len;
2256
2257 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2258 dma_sync_single_for_cpu(dev->dev.parent,
2259 rx_desc->buf_phys_addr,
2260 len, dma_dir);
2261
2262 rx_desc->buf_phys_addr = 0;
2263
2264 /* Prefetch header */
2265 prefetch(data);
2266
2267 xdp->data_hard_start = data;
2268 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2269 xdp->data_end = xdp->data + data_len;
2270 xdp_set_data_meta_invalid(xdp);
2271
2272 sinfo = xdp_get_shared_info_from_buff(xdp);
2273 sinfo->nr_frags = 0;
2274 }
2275
2276 static void
2277 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2278 struct mvneta_rx_desc *rx_desc,
2279 struct mvneta_rx_queue *rxq,
2280 struct xdp_buff *xdp, int *size,
2281 struct skb_shared_info *xdp_sinfo,
2282 struct page *page)
2283 {
2284 struct net_device *dev = pp->dev;
2285 enum dma_data_direction dma_dir;
2286 int data_len, len;
2287
2288 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2289 len = MVNETA_MAX_RX_BUF_SIZE;
2290 data_len = len;
2291 } else {
2292 len = *size;
2293 data_len = len - ETH_FCS_LEN;
2294 }
2295 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2296 dma_sync_single_for_cpu(dev->dev.parent,
2297 rx_desc->buf_phys_addr,
2298 len, dma_dir);
2299 rx_desc->buf_phys_addr = 0;
2300
2301 if (data_len > 0 && xdp_sinfo->nr_frags < MAX_SKB_FRAGS) {
2302 skb_frag_t *frag = &xdp_sinfo->frags[xdp_sinfo->nr_frags++];
2303
2304 skb_frag_off_set(frag, pp->rx_offset_correction);
2305 skb_frag_size_set(frag, data_len);
2306 __skb_frag_set_page(frag, page);
2307 } else {
2308 page_pool_put_full_page(rxq->page_pool, page, true);
2309 }
2310
2311 /* last fragment */
2312 if (len == *size) {
2313 struct skb_shared_info *sinfo;
2314
2315 sinfo = xdp_get_shared_info_from_buff(xdp);
2316 sinfo->nr_frags = xdp_sinfo->nr_frags;
2317 memcpy(sinfo->frags, xdp_sinfo->frags,
2318 sinfo->nr_frags * sizeof(skb_frag_t));
2319 }
2320 *size -= len;
2321 }
2322
2323 static struct sk_buff *
2324 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2325 struct xdp_buff *xdp, u32 desc_status)
2326 {
2327 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2328 int i, num_frags = sinfo->nr_frags;
2329 struct sk_buff *skb;
2330
2331 skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2332 if (!skb)
2333 return ERR_PTR(-ENOMEM);
2334
2335 page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2336
2337 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2338 skb_put(skb, xdp->data_end - xdp->data);
2339 mvneta_rx_csum(pp, desc_status, skb);
2340
2341 for (i = 0; i < num_frags; i++) {
2342 skb_frag_t *frag = &sinfo->frags[i];
2343
2344 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2345 skb_frag_page(frag), skb_frag_off(frag),
2346 skb_frag_size(frag), PAGE_SIZE);
2347 page_pool_release_page(rxq->page_pool, skb_frag_page(frag));
2348 }
2349
2350 return skb;
2351 }
2352
2353 /* Main rx processing when using software buffer management */
2354 static int mvneta_rx_swbm(struct napi_struct *napi,
2355 struct mvneta_port *pp, int budget,
2356 struct mvneta_rx_queue *rxq)
2357 {
2358 int rx_proc = 0, rx_todo, refill, size = 0;
2359 struct net_device *dev = pp->dev;
2360 struct skb_shared_info sinfo;
2361 struct mvneta_stats ps = {};
2362 struct bpf_prog *xdp_prog;
2363 u32 desc_status, frame_sz;
2364 struct xdp_buff xdp_buf;
2365
2366 xdp_buf.data_hard_start = NULL;
2367 xdp_buf.frame_sz = PAGE_SIZE;
2368 xdp_buf.rxq = &rxq->xdp_rxq;
2369
2370 sinfo.nr_frags = 0;
2371
2372 /* Get number of received packets */
2373 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2374
2375 rcu_read_lock();
2376 xdp_prog = READ_ONCE(pp->xdp_prog);
2377
2378 /* Fairness NAPI loop */
2379 while (rx_proc < budget && rx_proc < rx_todo) {
2380 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2381 u32 rx_status, index;
2382 struct sk_buff *skb;
2383 struct page *page;
2384
2385 index = rx_desc - rxq->descs;
2386 page = (struct page *)rxq->buf_virt_addr[index];
2387
2388 rx_status = rx_desc->status;
2389 rx_proc++;
2390 rxq->refill_num++;
2391
2392 if (rx_status & MVNETA_RXD_FIRST_DESC) {
2393 /* Check errors only for FIRST descriptor */
2394 if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2395 mvneta_rx_error(pp, rx_desc);
2396 goto next;
2397 }
2398
2399 size = rx_desc->data_size;
2400 frame_sz = size - ETH_FCS_LEN;
2401 desc_status = rx_status;
2402
2403 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2404 &size, page);
2405 } else {
2406 if (unlikely(!xdp_buf.data_hard_start)) {
2407 rx_desc->buf_phys_addr = 0;
2408 page_pool_put_full_page(rxq->page_pool, page,
2409 true);
2410 goto next;
2411 }
2412
2413 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2414 &size, &sinfo, page);
2415 } /* Middle or Last descriptor */
2416
2417 if (!(rx_status & MVNETA_RXD_LAST_DESC))
2418 /* no last descriptor this time */
2419 continue;
2420
2421 if (size) {
2422 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2423 goto next;
2424 }
2425
2426 if (xdp_prog &&
2427 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2428 goto next;
2429
2430 skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2431 if (IS_ERR(skb)) {
2432 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2433
2434 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2435
2436 u64_stats_update_begin(&stats->syncp);
2437 stats->es.skb_alloc_error++;
2438 stats->rx_dropped++;
2439 u64_stats_update_end(&stats->syncp);
2440
2441 goto next;
2442 }
2443
2444 ps.rx_bytes += skb->len;
2445 ps.rx_packets++;
2446
2447 skb->protocol = eth_type_trans(skb, dev);
2448 napi_gro_receive(napi, skb);
2449 next:
2450 xdp_buf.data_hard_start = NULL;
2451 sinfo.nr_frags = 0;
2452 }
2453 rcu_read_unlock();
2454
2455 if (xdp_buf.data_hard_start)
2456 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2457
2458 if (ps.xdp_redirect)
2459 xdp_do_flush_map();
2460
2461 if (ps.rx_packets)
2462 mvneta_update_stats(pp, &ps);
2463
2464 /* return some buffers to hardware queue, one at a time is too slow */
2465 refill = mvneta_rx_refill_queue(pp, rxq);
2466
2467 /* Update rxq management counters */
2468 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2469
2470 return ps.rx_packets;
2471 }
2472
2473 /* Main rx processing when using hardware buffer management */
2474 static int mvneta_rx_hwbm(struct napi_struct *napi,
2475 struct mvneta_port *pp, int rx_todo,
2476 struct mvneta_rx_queue *rxq)
2477 {
2478 struct net_device *dev = pp->dev;
2479 int rx_done;
2480 u32 rcvd_pkts = 0;
2481 u32 rcvd_bytes = 0;
2482
2483 /* Get number of received packets */
2484 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2485
2486 if (rx_todo > rx_done)
2487 rx_todo = rx_done;
2488
2489 rx_done = 0;
2490
2491 /* Fairness NAPI loop */
2492 while (rx_done < rx_todo) {
2493 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2494 struct mvneta_bm_pool *bm_pool = NULL;
2495 struct sk_buff *skb;
2496 unsigned char *data;
2497 dma_addr_t phys_addr;
2498 u32 rx_status, frag_size;
2499 int rx_bytes, err;
2500 u8 pool_id;
2501
2502 rx_done++;
2503 rx_status = rx_desc->status;
2504 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2505 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2506 phys_addr = rx_desc->buf_phys_addr;
2507 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2508 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2509
2510 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2511 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2512 err_drop_frame_ret_pool:
2513 /* Return the buffer to the pool */
2514 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2515 rx_desc->buf_phys_addr);
2516 err_drop_frame:
2517 mvneta_rx_error(pp, rx_desc);
2518 /* leave the descriptor untouched */
2519 continue;
2520 }
2521
2522 if (rx_bytes <= rx_copybreak) {
2523 /* better copy a small frame and not unmap the DMA region */
2524 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2525 if (unlikely(!skb))
2526 goto err_drop_frame_ret_pool;
2527
2528 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2529 rx_desc->buf_phys_addr,
2530 MVNETA_MH_SIZE + NET_SKB_PAD,
2531 rx_bytes,
2532 DMA_FROM_DEVICE);
2533 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2534 rx_bytes);
2535
2536 skb->protocol = eth_type_trans(skb, dev);
2537 mvneta_rx_csum(pp, rx_status, skb);
2538 napi_gro_receive(napi, skb);
2539
2540 rcvd_pkts++;
2541 rcvd_bytes += rx_bytes;
2542
2543 /* Return the buffer to the pool */
2544 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2545 rx_desc->buf_phys_addr);
2546
2547 /* leave the descriptor and buffer untouched */
2548 continue;
2549 }
2550
2551 /* Refill processing */
2552 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2553 if (err) {
2554 struct mvneta_pcpu_stats *stats;
2555
2556 netdev_err(dev, "Linux processing - Can't refill\n");
2557
2558 stats = this_cpu_ptr(pp->stats);
2559 u64_stats_update_begin(&stats->syncp);
2560 stats->es.refill_error++;
2561 u64_stats_update_end(&stats->syncp);
2562
2563 goto err_drop_frame_ret_pool;
2564 }
2565
2566 frag_size = bm_pool->hwbm_pool.frag_size;
2567
2568 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2569
2570 /* After refill old buffer has to be unmapped regardless
2571 * the skb is successfully built or not.
2572 */
2573 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2574 bm_pool->buf_size, DMA_FROM_DEVICE);
2575 if (!skb)
2576 goto err_drop_frame;
2577
2578 rcvd_pkts++;
2579 rcvd_bytes += rx_bytes;
2580
2581 /* Linux processing */
2582 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2583 skb_put(skb, rx_bytes);
2584
2585 skb->protocol = eth_type_trans(skb, dev);
2586
2587 mvneta_rx_csum(pp, rx_status, skb);
2588
2589 napi_gro_receive(napi, skb);
2590 }
2591
2592 if (rcvd_pkts) {
2593 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2594
2595 u64_stats_update_begin(&stats->syncp);
2596 stats->es.ps.rx_packets += rcvd_pkts;
2597 stats->es.ps.rx_bytes += rcvd_bytes;
2598 u64_stats_update_end(&stats->syncp);
2599 }
2600
2601 /* Update rxq management counters */
2602 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2603
2604 return rx_done;
2605 }
2606
2607 static inline void
2608 mvneta_tso_put_hdr(struct sk_buff *skb,
2609 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2610 {
2611 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2612 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2613 struct mvneta_tx_desc *tx_desc;
2614
2615 tx_desc = mvneta_txq_next_desc_get(txq);
2616 tx_desc->data_size = hdr_len;
2617 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2618 tx_desc->command |= MVNETA_TXD_F_DESC;
2619 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2620 txq->txq_put_index * TSO_HEADER_SIZE;
2621 buf->type = MVNETA_TYPE_SKB;
2622 buf->skb = NULL;
2623
2624 mvneta_txq_inc_put(txq);
2625 }
2626
2627 static inline int
2628 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2629 struct sk_buff *skb, char *data, int size,
2630 bool last_tcp, bool is_last)
2631 {
2632 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2633 struct mvneta_tx_desc *tx_desc;
2634
2635 tx_desc = mvneta_txq_next_desc_get(txq);
2636 tx_desc->data_size = size;
2637 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2638 size, DMA_TO_DEVICE);
2639 if (unlikely(dma_mapping_error(dev->dev.parent,
2640 tx_desc->buf_phys_addr))) {
2641 mvneta_txq_desc_put(txq);
2642 return -ENOMEM;
2643 }
2644
2645 tx_desc->command = 0;
2646 buf->type = MVNETA_TYPE_SKB;
2647 buf->skb = NULL;
2648
2649 if (last_tcp) {
2650 /* last descriptor in the TCP packet */
2651 tx_desc->command = MVNETA_TXD_L_DESC;
2652
2653 /* last descriptor in SKB */
2654 if (is_last)
2655 buf->skb = skb;
2656 }
2657 mvneta_txq_inc_put(txq);
2658 return 0;
2659 }
2660
2661 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2662 struct mvneta_tx_queue *txq)
2663 {
2664 int hdr_len, total_len, data_left;
2665 int desc_count = 0;
2666 struct mvneta_port *pp = netdev_priv(dev);
2667 struct tso_t tso;
2668 int i;
2669
2670 /* Count needed descriptors */
2671 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2672 return 0;
2673
2674 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2675 pr_info("*** Is this even possible???!?!?\n");
2676 return 0;
2677 }
2678
2679 /* Initialize the TSO handler, and prepare the first payload */
2680 hdr_len = tso_start(skb, &tso);
2681
2682 total_len = skb->len - hdr_len;
2683 while (total_len > 0) {
2684 char *hdr;
2685
2686 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2687 total_len -= data_left;
2688 desc_count++;
2689
2690 /* prepare packet headers: MAC + IP + TCP */
2691 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2692 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2693
2694 mvneta_tso_put_hdr(skb, pp, txq);
2695
2696 while (data_left > 0) {
2697 int size;
2698 desc_count++;
2699
2700 size = min_t(int, tso.size, data_left);
2701
2702 if (mvneta_tso_put_data(dev, txq, skb,
2703 tso.data, size,
2704 size == data_left,
2705 total_len == 0))
2706 goto err_release;
2707 data_left -= size;
2708
2709 tso_build_data(skb, &tso, size);
2710 }
2711 }
2712
2713 return desc_count;
2714
2715 err_release:
2716 /* Release all used data descriptors; header descriptors must not
2717 * be DMA-unmapped.
2718 */
2719 for (i = desc_count - 1; i >= 0; i--) {
2720 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2721 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2722 dma_unmap_single(pp->dev->dev.parent,
2723 tx_desc->buf_phys_addr,
2724 tx_desc->data_size,
2725 DMA_TO_DEVICE);
2726 mvneta_txq_desc_put(txq);
2727 }
2728 return 0;
2729 }
2730
2731 /* Handle tx fragmentation processing */
2732 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2733 struct mvneta_tx_queue *txq)
2734 {
2735 struct mvneta_tx_desc *tx_desc;
2736 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2737
2738 for (i = 0; i < nr_frags; i++) {
2739 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2740 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2741 void *addr = skb_frag_address(frag);
2742
2743 tx_desc = mvneta_txq_next_desc_get(txq);
2744 tx_desc->data_size = skb_frag_size(frag);
2745
2746 tx_desc->buf_phys_addr =
2747 dma_map_single(pp->dev->dev.parent, addr,
2748 tx_desc->data_size, DMA_TO_DEVICE);
2749
2750 if (dma_mapping_error(pp->dev->dev.parent,
2751 tx_desc->buf_phys_addr)) {
2752 mvneta_txq_desc_put(txq);
2753 goto error;
2754 }
2755
2756 if (i == nr_frags - 1) {
2757 /* Last descriptor */
2758 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2759 buf->skb = skb;
2760 } else {
2761 /* Descriptor in the middle: Not First, Not Last */
2762 tx_desc->command = 0;
2763 buf->skb = NULL;
2764 }
2765 buf->type = MVNETA_TYPE_SKB;
2766 mvneta_txq_inc_put(txq);
2767 }
2768
2769 return 0;
2770
2771 error:
2772 /* Release all descriptors that were used to map fragments of
2773 * this packet, as well as the corresponding DMA mappings
2774 */
2775 for (i = i - 1; i >= 0; i--) {
2776 tx_desc = txq->descs + i;
2777 dma_unmap_single(pp->dev->dev.parent,
2778 tx_desc->buf_phys_addr,
2779 tx_desc->data_size,
2780 DMA_TO_DEVICE);
2781 mvneta_txq_desc_put(txq);
2782 }
2783
2784 return -ENOMEM;
2785 }
2786
2787 /* Main tx processing */
2788 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2789 {
2790 struct mvneta_port *pp = netdev_priv(dev);
2791 u16 txq_id = skb_get_queue_mapping(skb);
2792 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2793 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2794 struct mvneta_tx_desc *tx_desc;
2795 int len = skb->len;
2796 int frags = 0;
2797 u32 tx_cmd;
2798
2799 if (!netif_running(dev))
2800 goto out;
2801
2802 if (skb_is_gso(skb)) {
2803 frags = mvneta_tx_tso(skb, dev, txq);
2804 goto out;
2805 }
2806
2807 frags = skb_shinfo(skb)->nr_frags + 1;
2808
2809 /* Get a descriptor for the first part of the packet */
2810 tx_desc = mvneta_txq_next_desc_get(txq);
2811
2812 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2813
2814 tx_desc->data_size = skb_headlen(skb);
2815
2816 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2817 tx_desc->data_size,
2818 DMA_TO_DEVICE);
2819 if (unlikely(dma_mapping_error(dev->dev.parent,
2820 tx_desc->buf_phys_addr))) {
2821 mvneta_txq_desc_put(txq);
2822 frags = 0;
2823 goto out;
2824 }
2825
2826 buf->type = MVNETA_TYPE_SKB;
2827 if (frags == 1) {
2828 /* First and Last descriptor */
2829 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2830 tx_desc->command = tx_cmd;
2831 buf->skb = skb;
2832 mvneta_txq_inc_put(txq);
2833 } else {
2834 /* First but not Last */
2835 tx_cmd |= MVNETA_TXD_F_DESC;
2836 buf->skb = NULL;
2837 mvneta_txq_inc_put(txq);
2838 tx_desc->command = tx_cmd;
2839 /* Continue with other skb fragments */
2840 if (mvneta_tx_frag_process(pp, skb, txq)) {
2841 dma_unmap_single(dev->dev.parent,
2842 tx_desc->buf_phys_addr,
2843 tx_desc->data_size,
2844 DMA_TO_DEVICE);
2845 mvneta_txq_desc_put(txq);
2846 frags = 0;
2847 goto out;
2848 }
2849 }
2850
2851 out:
2852 if (frags > 0) {
2853 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2854 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2855
2856 netdev_tx_sent_queue(nq, len);
2857
2858 txq->count += frags;
2859 if (txq->count >= txq->tx_stop_threshold)
2860 netif_tx_stop_queue(nq);
2861
2862 if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2863 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2864 mvneta_txq_pend_desc_add(pp, txq, frags);
2865 else
2866 txq->pending += frags;
2867
2868 u64_stats_update_begin(&stats->syncp);
2869 stats->es.ps.tx_bytes += len;
2870 stats->es.ps.tx_packets++;
2871 u64_stats_update_end(&stats->syncp);
2872 } else {
2873 dev->stats.tx_dropped++;
2874 dev_kfree_skb_any(skb);
2875 }
2876
2877 return NETDEV_TX_OK;
2878 }
2879
2880
2881 /* Free tx resources, when resetting a port */
2882 static void mvneta_txq_done_force(struct mvneta_port *pp,
2883 struct mvneta_tx_queue *txq)
2884
2885 {
2886 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2887 int tx_done = txq->count;
2888
2889 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2890
2891 /* reset txq */
2892 txq->count = 0;
2893 txq->txq_put_index = 0;
2894 txq->txq_get_index = 0;
2895 }
2896
2897 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2898 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2899 */
2900 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2901 {
2902 struct mvneta_tx_queue *txq;
2903 struct netdev_queue *nq;
2904 int cpu = smp_processor_id();
2905
2906 while (cause_tx_done) {
2907 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2908
2909 nq = netdev_get_tx_queue(pp->dev, txq->id);
2910 __netif_tx_lock(nq, cpu);
2911
2912 if (txq->count)
2913 mvneta_txq_done(pp, txq);
2914
2915 __netif_tx_unlock(nq);
2916 cause_tx_done &= ~((1 << txq->id));
2917 }
2918 }
2919
2920 /* Compute crc8 of the specified address, using a unique algorithm ,
2921 * according to hw spec, different than generic crc8 algorithm
2922 */
2923 static int mvneta_addr_crc(unsigned char *addr)
2924 {
2925 int crc = 0;
2926 int i;
2927
2928 for (i = 0; i < ETH_ALEN; i++) {
2929 int j;
2930
2931 crc = (crc ^ addr[i]) << 8;
2932 for (j = 7; j >= 0; j--) {
2933 if (crc & (0x100 << j))
2934 crc ^= 0x107 << j;
2935 }
2936 }
2937
2938 return crc;
2939 }
2940
2941 /* This method controls the net device special MAC multicast support.
2942 * The Special Multicast Table for MAC addresses supports MAC of the form
2943 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2944 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2945 * Table entries in the DA-Filter table. This method set the Special
2946 * Multicast Table appropriate entry.
2947 */
2948 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2949 unsigned char last_byte,
2950 int queue)
2951 {
2952 unsigned int smc_table_reg;
2953 unsigned int tbl_offset;
2954 unsigned int reg_offset;
2955
2956 /* Register offset from SMC table base */
2957 tbl_offset = (last_byte / 4);
2958 /* Entry offset within the above reg */
2959 reg_offset = last_byte % 4;
2960
2961 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2962 + tbl_offset * 4));
2963
2964 if (queue == -1)
2965 smc_table_reg &= ~(0xff << (8 * reg_offset));
2966 else {
2967 smc_table_reg &= ~(0xff << (8 * reg_offset));
2968 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2969 }
2970
2971 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2972 smc_table_reg);
2973 }
2974
2975 /* This method controls the network device Other MAC multicast support.
2976 * The Other Multicast Table is used for multicast of another type.
2977 * A CRC-8 is used as an index to the Other Multicast Table entries
2978 * in the DA-Filter table.
2979 * The method gets the CRC-8 value from the calling routine and
2980 * sets the Other Multicast Table appropriate entry according to the
2981 * specified CRC-8 .
2982 */
2983 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2984 unsigned char crc8,
2985 int queue)
2986 {
2987 unsigned int omc_table_reg;
2988 unsigned int tbl_offset;
2989 unsigned int reg_offset;
2990
2991 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2992 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2993
2994 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2995
2996 if (queue == -1) {
2997 /* Clear accepts frame bit at specified Other DA table entry */
2998 omc_table_reg &= ~(0xff << (8 * reg_offset));
2999 } else {
3000 omc_table_reg &= ~(0xff << (8 * reg_offset));
3001 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3002 }
3003
3004 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
3005 }
3006
3007 /* The network device supports multicast using two tables:
3008 * 1) Special Multicast Table for MAC addresses of the form
3009 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3010 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3011 * Table entries in the DA-Filter table.
3012 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
3013 * is used as an index to the Other Multicast Table entries in the
3014 * DA-Filter table.
3015 */
3016 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3017 int queue)
3018 {
3019 unsigned char crc_result = 0;
3020
3021 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3022 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3023 return 0;
3024 }
3025
3026 crc_result = mvneta_addr_crc(p_addr);
3027 if (queue == -1) {
3028 if (pp->mcast_count[crc_result] == 0) {
3029 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3030 crc_result);
3031 return -EINVAL;
3032 }
3033
3034 pp->mcast_count[crc_result]--;
3035 if (pp->mcast_count[crc_result] != 0) {
3036 netdev_info(pp->dev,
3037 "After delete there are %d valid Mcast for crc8=0x%02x\n",
3038 pp->mcast_count[crc_result], crc_result);
3039 return -EINVAL;
3040 }
3041 } else
3042 pp->mcast_count[crc_result]++;
3043
3044 mvneta_set_other_mcast_addr(pp, crc_result, queue);
3045
3046 return 0;
3047 }
3048
3049 /* Configure Fitering mode of Ethernet port */
3050 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3051 int is_promisc)
3052 {
3053 u32 port_cfg_reg, val;
3054
3055 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3056
3057 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3058
3059 /* Set / Clear UPM bit in port configuration register */
3060 if (is_promisc) {
3061 /* Accept all Unicast addresses */
3062 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3063 val |= MVNETA_FORCE_UNI;
3064 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3065 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3066 } else {
3067 /* Reject all Unicast addresses */
3068 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3069 val &= ~MVNETA_FORCE_UNI;
3070 }
3071
3072 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3073 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3074 }
3075
3076 /* register unicast and multicast addresses */
3077 static void mvneta_set_rx_mode(struct net_device *dev)
3078 {
3079 struct mvneta_port *pp = netdev_priv(dev);
3080 struct netdev_hw_addr *ha;
3081
3082 if (dev->flags & IFF_PROMISC) {
3083 /* Accept all: Multicast + Unicast */
3084 mvneta_rx_unicast_promisc_set(pp, 1);
3085 mvneta_set_ucast_table(pp, pp->rxq_def);
3086 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3087 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3088 } else {
3089 /* Accept single Unicast */
3090 mvneta_rx_unicast_promisc_set(pp, 0);
3091 mvneta_set_ucast_table(pp, -1);
3092 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3093
3094 if (dev->flags & IFF_ALLMULTI) {
3095 /* Accept all multicast */
3096 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3097 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3098 } else {
3099 /* Accept only initialized multicast */
3100 mvneta_set_special_mcast_table(pp, -1);
3101 mvneta_set_other_mcast_table(pp, -1);
3102
3103 if (!netdev_mc_empty(dev)) {
3104 netdev_for_each_mc_addr(ha, dev) {
3105 mvneta_mcast_addr_set(pp, ha->addr,
3106 pp->rxq_def);
3107 }
3108 }
3109 }
3110 }
3111 }
3112
3113 /* Interrupt handling - the callback for request_irq() */
3114 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3115 {
3116 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3117
3118 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3119 napi_schedule(&pp->napi);
3120
3121 return IRQ_HANDLED;
3122 }
3123
3124 /* Interrupt handling - the callback for request_percpu_irq() */
3125 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3126 {
3127 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3128
3129 disable_percpu_irq(port->pp->dev->irq);
3130 napi_schedule(&port->napi);
3131
3132 return IRQ_HANDLED;
3133 }
3134
3135 static void mvneta_link_change(struct mvneta_port *pp)
3136 {
3137 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3138
3139 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3140 }
3141
3142 /* NAPI handler
3143 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3144 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3145 * Bits 8 -15 of the cause Rx Tx register indicate that are received
3146 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3147 * Each CPU has its own causeRxTx register
3148 */
3149 static int mvneta_poll(struct napi_struct *napi, int budget)
3150 {
3151 int rx_done = 0;
3152 u32 cause_rx_tx;
3153 int rx_queue;
3154 struct mvneta_port *pp = netdev_priv(napi->dev);
3155 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3156
3157 if (!netif_running(pp->dev)) {
3158 napi_complete(napi);
3159 return rx_done;
3160 }
3161
3162 /* Read cause register */
3163 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3164 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3165 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3166
3167 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3168
3169 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3170 MVNETA_CAUSE_LINK_CHANGE))
3171 mvneta_link_change(pp);
3172 }
3173
3174 /* Release Tx descriptors */
3175 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3176 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3177 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3178 }
3179
3180 /* For the case where the last mvneta_poll did not process all
3181 * RX packets
3182 */
3183 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3184 port->cause_rx_tx;
3185
3186 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3187 if (rx_queue) {
3188 rx_queue = rx_queue - 1;
3189 if (pp->bm_priv)
3190 rx_done = mvneta_rx_hwbm(napi, pp, budget,
3191 &pp->rxqs[rx_queue]);
3192 else
3193 rx_done = mvneta_rx_swbm(napi, pp, budget,
3194 &pp->rxqs[rx_queue]);
3195 }
3196
3197 if (rx_done < budget) {
3198 cause_rx_tx = 0;
3199 napi_complete_done(napi, rx_done);
3200
3201 if (pp->neta_armada3700) {
3202 unsigned long flags;
3203
3204 local_irq_save(flags);
3205 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3206 MVNETA_RX_INTR_MASK(rxq_number) |
3207 MVNETA_TX_INTR_MASK(txq_number) |
3208 MVNETA_MISCINTR_INTR_MASK);
3209 local_irq_restore(flags);
3210 } else {
3211 enable_percpu_irq(pp->dev->irq, 0);
3212 }
3213 }
3214
3215 if (pp->neta_armada3700)
3216 pp->cause_rx_tx = cause_rx_tx;
3217 else
3218 port->cause_rx_tx = cause_rx_tx;
3219
3220 return rx_done;
3221 }
3222
3223 static int mvneta_create_page_pool(struct mvneta_port *pp,
3224 struct mvneta_rx_queue *rxq, int size)
3225 {
3226 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3227 struct page_pool_params pp_params = {
3228 .order = 0,
3229 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3230 .pool_size = size,
3231 .nid = NUMA_NO_NODE,
3232 .dev = pp->dev->dev.parent,
3233 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3234 .offset = pp->rx_offset_correction,
3235 .max_len = MVNETA_MAX_RX_BUF_SIZE,
3236 };
3237 int err;
3238
3239 rxq->page_pool = page_pool_create(&pp_params);
3240 if (IS_ERR(rxq->page_pool)) {
3241 err = PTR_ERR(rxq->page_pool);
3242 rxq->page_pool = NULL;
3243 return err;
3244 }
3245
3246 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0);
3247 if (err < 0)
3248 goto err_free_pp;
3249
3250 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3251 rxq->page_pool);
3252 if (err)
3253 goto err_unregister_rxq;
3254
3255 return 0;
3256
3257 err_unregister_rxq:
3258 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3259 err_free_pp:
3260 page_pool_destroy(rxq->page_pool);
3261 rxq->page_pool = NULL;
3262 return err;
3263 }
3264
3265 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3266 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3267 int num)
3268 {
3269 int i, err;
3270
3271 err = mvneta_create_page_pool(pp, rxq, num);
3272 if (err < 0)
3273 return err;
3274
3275 for (i = 0; i < num; i++) {
3276 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3277 if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3278 GFP_KERNEL) != 0) {
3279 netdev_err(pp->dev,
3280 "%s:rxq %d, %d of %d buffs filled\n",
3281 __func__, rxq->id, i, num);
3282 break;
3283 }
3284 }
3285
3286 /* Add this number of RX descriptors as non occupied (ready to
3287 * get packets)
3288 */
3289 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3290
3291 return i;
3292 }
3293
3294 /* Free all packets pending transmit from all TXQs and reset TX port */
3295 static void mvneta_tx_reset(struct mvneta_port *pp)
3296 {
3297 int queue;
3298
3299 /* free the skb's in the tx ring */
3300 for (queue = 0; queue < txq_number; queue++)
3301 mvneta_txq_done_force(pp, &pp->txqs[queue]);
3302
3303 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3304 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3305 }
3306
3307 static void mvneta_rx_reset(struct mvneta_port *pp)
3308 {
3309 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3310 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3311 }
3312
3313 /* Rx/Tx queue initialization/cleanup methods */
3314
3315 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3316 struct mvneta_rx_queue *rxq)
3317 {
3318 rxq->size = pp->rx_ring_size;
3319
3320 /* Allocate memory for RX descriptors */
3321 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3322 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3323 &rxq->descs_phys, GFP_KERNEL);
3324 if (!rxq->descs)
3325 return -ENOMEM;
3326
3327 rxq->last_desc = rxq->size - 1;
3328
3329 return 0;
3330 }
3331
3332 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3333 struct mvneta_rx_queue *rxq)
3334 {
3335 /* Set Rx descriptors queue starting address */
3336 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3337 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3338
3339 /* Set coalescing pkts and time */
3340 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3341 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3342
3343 if (!pp->bm_priv) {
3344 /* Set Offset */
3345 mvneta_rxq_offset_set(pp, rxq, 0);
3346 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3347 MVNETA_MAX_RX_BUF_SIZE :
3348 MVNETA_RX_BUF_SIZE(pp->pkt_size));
3349 mvneta_rxq_bm_disable(pp, rxq);
3350 mvneta_rxq_fill(pp, rxq, rxq->size);
3351 } else {
3352 /* Set Offset */
3353 mvneta_rxq_offset_set(pp, rxq,
3354 NET_SKB_PAD - pp->rx_offset_correction);
3355
3356 mvneta_rxq_bm_enable(pp, rxq);
3357 /* Fill RXQ with buffers from RX pool */
3358 mvneta_rxq_long_pool_set(pp, rxq);
3359 mvneta_rxq_short_pool_set(pp, rxq);
3360 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3361 }
3362 }
3363
3364 /* Create a specified RX queue */
3365 static int mvneta_rxq_init(struct mvneta_port *pp,
3366 struct mvneta_rx_queue *rxq)
3367
3368 {
3369 int ret;
3370
3371 ret = mvneta_rxq_sw_init(pp, rxq);
3372 if (ret < 0)
3373 return ret;
3374
3375 mvneta_rxq_hw_init(pp, rxq);
3376
3377 return 0;
3378 }
3379
3380 /* Cleanup Rx queue */
3381 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3382 struct mvneta_rx_queue *rxq)
3383 {
3384 mvneta_rxq_drop_pkts(pp, rxq);
3385
3386 if (rxq->descs)
3387 dma_free_coherent(pp->dev->dev.parent,
3388 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3389 rxq->descs,
3390 rxq->descs_phys);
3391
3392 rxq->descs = NULL;
3393 rxq->last_desc = 0;
3394 rxq->next_desc_to_proc = 0;
3395 rxq->descs_phys = 0;
3396 rxq->first_to_refill = 0;
3397 rxq->refill_num = 0;
3398 }
3399
3400 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3401 struct mvneta_tx_queue *txq)
3402 {
3403 int cpu;
3404
3405 txq->size = pp->tx_ring_size;
3406
3407 /* A queue must always have room for at least one skb.
3408 * Therefore, stop the queue when the free entries reaches
3409 * the maximum number of descriptors per skb.
3410 */
3411 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3412 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3413
3414 /* Allocate memory for TX descriptors */
3415 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3416 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3417 &txq->descs_phys, GFP_KERNEL);
3418 if (!txq->descs)
3419 return -ENOMEM;
3420
3421 txq->last_desc = txq->size - 1;
3422
3423 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3424 if (!txq->buf)
3425 return -ENOMEM;
3426
3427 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3428 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3429 txq->size * TSO_HEADER_SIZE,
3430 &txq->tso_hdrs_phys, GFP_KERNEL);
3431 if (!txq->tso_hdrs)
3432 return -ENOMEM;
3433
3434 /* Setup XPS mapping */
3435 if (pp->neta_armada3700)
3436 cpu = 0;
3437 else if (txq_number > 1)
3438 cpu = txq->id % num_present_cpus();
3439 else
3440 cpu = pp->rxq_def % num_present_cpus();
3441 cpumask_set_cpu(cpu, &txq->affinity_mask);
3442 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3443
3444 return 0;
3445 }
3446
3447 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3448 struct mvneta_tx_queue *txq)
3449 {
3450 /* Set maximum bandwidth for enabled TXQs */
3451 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3452 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3453
3454 /* Set Tx descriptors queue starting address */
3455 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3456 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3457
3458 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3459 }
3460
3461 /* Create and initialize a tx queue */
3462 static int mvneta_txq_init(struct mvneta_port *pp,
3463 struct mvneta_tx_queue *txq)
3464 {
3465 int ret;
3466
3467 ret = mvneta_txq_sw_init(pp, txq);
3468 if (ret < 0)
3469 return ret;
3470
3471 mvneta_txq_hw_init(pp, txq);
3472
3473 return 0;
3474 }
3475
3476 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3477 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3478 struct mvneta_tx_queue *txq)
3479 {
3480 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3481
3482 kfree(txq->buf);
3483
3484 if (txq->tso_hdrs)
3485 dma_free_coherent(pp->dev->dev.parent,
3486 txq->size * TSO_HEADER_SIZE,
3487 txq->tso_hdrs, txq->tso_hdrs_phys);
3488 if (txq->descs)
3489 dma_free_coherent(pp->dev->dev.parent,
3490 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3491 txq->descs, txq->descs_phys);
3492
3493 netdev_tx_reset_queue(nq);
3494
3495 txq->descs = NULL;
3496 txq->last_desc = 0;
3497 txq->next_desc_to_proc = 0;
3498 txq->descs_phys = 0;
3499 }
3500
3501 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3502 struct mvneta_tx_queue *txq)
3503 {
3504 /* Set minimum bandwidth for disabled TXQs */
3505 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3506 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3507
3508 /* Set Tx descriptors queue starting address and size */
3509 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3510 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3511 }
3512
3513 static void mvneta_txq_deinit(struct mvneta_port *pp,
3514 struct mvneta_tx_queue *txq)
3515 {
3516 mvneta_txq_sw_deinit(pp, txq);
3517 mvneta_txq_hw_deinit(pp, txq);
3518 }
3519
3520 /* Cleanup all Tx queues */
3521 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3522 {
3523 int queue;
3524
3525 for (queue = 0; queue < txq_number; queue++)
3526 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3527 }
3528
3529 /* Cleanup all Rx queues */
3530 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3531 {
3532 int queue;
3533
3534 for (queue = 0; queue < rxq_number; queue++)
3535 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3536 }
3537
3538
3539 /* Init all Rx queues */
3540 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3541 {
3542 int queue;
3543
3544 for (queue = 0; queue < rxq_number; queue++) {
3545 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3546
3547 if (err) {
3548 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3549 __func__, queue);
3550 mvneta_cleanup_rxqs(pp);
3551 return err;
3552 }
3553 }
3554
3555 return 0;
3556 }
3557
3558 /* Init all tx queues */
3559 static int mvneta_setup_txqs(struct mvneta_port *pp)
3560 {
3561 int queue;
3562
3563 for (queue = 0; queue < txq_number; queue++) {
3564 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3565 if (err) {
3566 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3567 __func__, queue);
3568 mvneta_cleanup_txqs(pp);
3569 return err;
3570 }
3571 }
3572
3573 return 0;
3574 }
3575
3576 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3577 {
3578 int ret;
3579
3580 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3581 if (ret)
3582 return ret;
3583
3584 return phy_power_on(pp->comphy);
3585 }
3586
3587 static int mvneta_config_interface(struct mvneta_port *pp,
3588 phy_interface_t interface)
3589 {
3590 int ret = 0;
3591
3592 if (pp->comphy) {
3593 if (interface == PHY_INTERFACE_MODE_SGMII ||
3594 interface == PHY_INTERFACE_MODE_1000BASEX ||
3595 interface == PHY_INTERFACE_MODE_2500BASEX) {
3596 ret = mvneta_comphy_init(pp, interface);
3597 }
3598 } else {
3599 switch (interface) {
3600 case PHY_INTERFACE_MODE_QSGMII:
3601 mvreg_write(pp, MVNETA_SERDES_CFG,
3602 MVNETA_QSGMII_SERDES_PROTO);
3603 break;
3604
3605 case PHY_INTERFACE_MODE_SGMII:
3606 case PHY_INTERFACE_MODE_1000BASEX:
3607 mvreg_write(pp, MVNETA_SERDES_CFG,
3608 MVNETA_SGMII_SERDES_PROTO);
3609 break;
3610
3611 case PHY_INTERFACE_MODE_2500BASEX:
3612 mvreg_write(pp, MVNETA_SERDES_CFG,
3613 MVNETA_HSGMII_SERDES_PROTO);
3614 break;
3615 default:
3616 break;
3617 }
3618 }
3619
3620 pp->phy_interface = interface;
3621
3622 return ret;
3623 }
3624
3625 static void mvneta_start_dev(struct mvneta_port *pp)
3626 {
3627 int cpu;
3628
3629 WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3630
3631 mvneta_max_rx_size_set(pp, pp->pkt_size);
3632 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3633
3634 /* start the Rx/Tx activity */
3635 mvneta_port_enable(pp);
3636
3637 if (!pp->neta_armada3700) {
3638 /* Enable polling on the port */
3639 for_each_online_cpu(cpu) {
3640 struct mvneta_pcpu_port *port =
3641 per_cpu_ptr(pp->ports, cpu);
3642
3643 napi_enable(&port->napi);
3644 }
3645 } else {
3646 napi_enable(&pp->napi);
3647 }
3648
3649 /* Unmask interrupts. It has to be done from each CPU */
3650 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3651
3652 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3653 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3654 MVNETA_CAUSE_LINK_CHANGE);
3655
3656 phylink_start(pp->phylink);
3657
3658 /* We may have called phylink_speed_down before */
3659 phylink_speed_up(pp->phylink);
3660
3661 netif_tx_start_all_queues(pp->dev);
3662
3663 clear_bit(__MVNETA_DOWN, &pp->state);
3664 }
3665
3666 static void mvneta_stop_dev(struct mvneta_port *pp)
3667 {
3668 unsigned int cpu;
3669
3670 set_bit(__MVNETA_DOWN, &pp->state);
3671
3672 if (device_may_wakeup(&pp->dev->dev))
3673 phylink_speed_down(pp->phylink, false);
3674
3675 phylink_stop(pp->phylink);
3676
3677 if (!pp->neta_armada3700) {
3678 for_each_online_cpu(cpu) {
3679 struct mvneta_pcpu_port *port =
3680 per_cpu_ptr(pp->ports, cpu);
3681
3682 napi_disable(&port->napi);
3683 }
3684 } else {
3685 napi_disable(&pp->napi);
3686 }
3687
3688 netif_carrier_off(pp->dev);
3689
3690 mvneta_port_down(pp);
3691 netif_tx_stop_all_queues(pp->dev);
3692
3693 /* Stop the port activity */
3694 mvneta_port_disable(pp);
3695
3696 /* Clear all ethernet port interrupts */
3697 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3698
3699 /* Mask all ethernet port interrupts */
3700 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3701
3702 mvneta_tx_reset(pp);
3703 mvneta_rx_reset(pp);
3704
3705 WARN_ON(phy_power_off(pp->comphy));
3706 }
3707
3708 static void mvneta_percpu_enable(void *arg)
3709 {
3710 struct mvneta_port *pp = arg;
3711
3712 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3713 }
3714
3715 static void mvneta_percpu_disable(void *arg)
3716 {
3717 struct mvneta_port *pp = arg;
3718
3719 disable_percpu_irq(pp->dev->irq);
3720 }
3721
3722 /* Change the device mtu */
3723 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3724 {
3725 struct mvneta_port *pp = netdev_priv(dev);
3726 int ret;
3727
3728 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3729 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3730 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3731 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3732 }
3733
3734 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3735 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3736 return -EINVAL;
3737 }
3738
3739 dev->mtu = mtu;
3740
3741 if (!netif_running(dev)) {
3742 if (pp->bm_priv)
3743 mvneta_bm_update_mtu(pp, mtu);
3744
3745 netdev_update_features(dev);
3746 return 0;
3747 }
3748
3749 /* The interface is running, so we have to force a
3750 * reallocation of the queues
3751 */
3752 mvneta_stop_dev(pp);
3753 on_each_cpu(mvneta_percpu_disable, pp, true);
3754
3755 mvneta_cleanup_txqs(pp);
3756 mvneta_cleanup_rxqs(pp);
3757
3758 if (pp->bm_priv)
3759 mvneta_bm_update_mtu(pp, mtu);
3760
3761 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3762
3763 ret = mvneta_setup_rxqs(pp);
3764 if (ret) {
3765 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3766 return ret;
3767 }
3768
3769 ret = mvneta_setup_txqs(pp);
3770 if (ret) {
3771 netdev_err(dev, "unable to setup txqs after MTU change\n");
3772 return ret;
3773 }
3774
3775 on_each_cpu(mvneta_percpu_enable, pp, true);
3776 mvneta_start_dev(pp);
3777
3778 netdev_update_features(dev);
3779
3780 return 0;
3781 }
3782
3783 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3784 netdev_features_t features)
3785 {
3786 struct mvneta_port *pp = netdev_priv(dev);
3787
3788 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3789 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3790 netdev_info(dev,
3791 "Disable IP checksum for MTU greater than %dB\n",
3792 pp->tx_csum_limit);
3793 }
3794
3795 return features;
3796 }
3797
3798 /* Get mac address */
3799 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3800 {
3801 u32 mac_addr_l, mac_addr_h;
3802
3803 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3804 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3805 addr[0] = (mac_addr_h >> 24) & 0xFF;
3806 addr[1] = (mac_addr_h >> 16) & 0xFF;
3807 addr[2] = (mac_addr_h >> 8) & 0xFF;
3808 addr[3] = mac_addr_h & 0xFF;
3809 addr[4] = (mac_addr_l >> 8) & 0xFF;
3810 addr[5] = mac_addr_l & 0xFF;
3811 }
3812
3813 /* Handle setting mac address */
3814 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3815 {
3816 struct mvneta_port *pp = netdev_priv(dev);
3817 struct sockaddr *sockaddr = addr;
3818 int ret;
3819
3820 ret = eth_prepare_mac_addr_change(dev, addr);
3821 if (ret < 0)
3822 return ret;
3823 /* Remove previous address table entry */
3824 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3825
3826 /* Set new addr in hw */
3827 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3828
3829 eth_commit_mac_addr_change(dev, addr);
3830 return 0;
3831 }
3832
3833 static void mvneta_validate(struct phylink_config *config,
3834 unsigned long *supported,
3835 struct phylink_link_state *state)
3836 {
3837 struct net_device *ndev = to_net_dev(config->dev);
3838 struct mvneta_port *pp = netdev_priv(ndev);
3839 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3840
3841 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3842 if (state->interface != PHY_INTERFACE_MODE_NA &&
3843 state->interface != PHY_INTERFACE_MODE_QSGMII &&
3844 state->interface != PHY_INTERFACE_MODE_SGMII &&
3845 !phy_interface_mode_is_8023z(state->interface) &&
3846 !phy_interface_mode_is_rgmii(state->interface)) {
3847 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3848 return;
3849 }
3850
3851 /* Allow all the expected bits */
3852 phylink_set(mask, Autoneg);
3853 phylink_set_port_modes(mask);
3854
3855 /* Asymmetric pause is unsupported */
3856 phylink_set(mask, Pause);
3857
3858 /* Half-duplex at speeds higher than 100Mbit is unsupported */
3859 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3860 phylink_set(mask, 1000baseT_Full);
3861 phylink_set(mask, 1000baseX_Full);
3862 }
3863 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3864 phylink_set(mask, 2500baseT_Full);
3865 phylink_set(mask, 2500baseX_Full);
3866 }
3867
3868 if (!phy_interface_mode_is_8023z(state->interface)) {
3869 /* 10M and 100M are only supported in non-802.3z mode */
3870 phylink_set(mask, 10baseT_Half);
3871 phylink_set(mask, 10baseT_Full);
3872 phylink_set(mask, 100baseT_Half);
3873 phylink_set(mask, 100baseT_Full);
3874 }
3875
3876 bitmap_and(supported, supported, mask,
3877 __ETHTOOL_LINK_MODE_MASK_NBITS);
3878 bitmap_and(state->advertising, state->advertising, mask,
3879 __ETHTOOL_LINK_MODE_MASK_NBITS);
3880
3881 /* We can only operate at 2500BaseX or 1000BaseX. If requested
3882 * to advertise both, only report advertising at 2500BaseX.
3883 */
3884 phylink_helper_basex_speed(state);
3885 }
3886
3887 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3888 struct phylink_link_state *state)
3889 {
3890 struct net_device *ndev = to_net_dev(config->dev);
3891 struct mvneta_port *pp = netdev_priv(ndev);
3892 u32 gmac_stat;
3893
3894 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3895
3896 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3897 state->speed =
3898 state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3899 SPEED_2500 : SPEED_1000;
3900 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3901 state->speed = SPEED_100;
3902 else
3903 state->speed = SPEED_10;
3904
3905 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3906 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3907 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3908
3909 state->pause = 0;
3910 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3911 state->pause |= MLO_PAUSE_RX;
3912 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3913 state->pause |= MLO_PAUSE_TX;
3914 }
3915
3916 static void mvneta_mac_an_restart(struct phylink_config *config)
3917 {
3918 struct net_device *ndev = to_net_dev(config->dev);
3919 struct mvneta_port *pp = netdev_priv(ndev);
3920 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3921
3922 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3923 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3924 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3925 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3926 }
3927
3928 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3929 const struct phylink_link_state *state)
3930 {
3931 struct net_device *ndev = to_net_dev(config->dev);
3932 struct mvneta_port *pp = netdev_priv(ndev);
3933 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3934 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3935 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3936 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3937 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3938
3939 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3940 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3941 MVNETA_GMAC2_PORT_RESET);
3942 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3943 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3944 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3945 MVNETA_GMAC_INBAND_RESTART_AN |
3946 MVNETA_GMAC_AN_SPEED_EN |
3947 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3948 MVNETA_GMAC_AN_FLOW_CTRL_EN |
3949 MVNETA_GMAC_AN_DUPLEX_EN);
3950
3951 /* Even though it might look weird, when we're configured in
3952 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3953 */
3954 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3955
3956 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3957 state->interface == PHY_INTERFACE_MODE_SGMII ||
3958 phy_interface_mode_is_8023z(state->interface))
3959 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3960
3961 if (phylink_test(state->advertising, Pause))
3962 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3963
3964 if (!phylink_autoneg_inband(mode)) {
3965 /* Phy or fixed speed - nothing to do, leave the
3966 * configured speed, duplex and flow control as-is.
3967 */
3968 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3969 /* SGMII mode receives the state from the PHY */
3970 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3971 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3972 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3973 MVNETA_GMAC_FORCE_LINK_PASS |
3974 MVNETA_GMAC_CONFIG_MII_SPEED |
3975 MVNETA_GMAC_CONFIG_GMII_SPEED |
3976 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3977 MVNETA_GMAC_INBAND_AN_ENABLE |
3978 MVNETA_GMAC_AN_SPEED_EN |
3979 MVNETA_GMAC_AN_DUPLEX_EN;
3980 } else {
3981 /* 802.3z negotiation - only 1000base-X */
3982 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3983 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3984 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3985 MVNETA_GMAC_FORCE_LINK_PASS |
3986 MVNETA_GMAC_CONFIG_MII_SPEED)) |
3987 MVNETA_GMAC_INBAND_AN_ENABLE |
3988 MVNETA_GMAC_CONFIG_GMII_SPEED |
3989 /* The MAC only supports FD mode */
3990 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3991
3992 if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3993 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3994 }
3995
3996 /* Armada 370 documentation says we can only change the port mode
3997 * and in-band enable when the link is down, so force it down
3998 * while making these changes. We also do this for GMAC_CTRL2 */
3999 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
4000 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
4001 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
4002 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4003 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
4004 MVNETA_GMAC_FORCE_LINK_DOWN);
4005 }
4006
4007
4008 /* When at 2.5G, the link partner can send frames with shortened
4009 * preambles.
4010 */
4011 if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4012 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4013
4014 if (pp->phy_interface != state->interface) {
4015 if (pp->comphy)
4016 WARN_ON(phy_power_off(pp->comphy));
4017 WARN_ON(mvneta_config_interface(pp, state->interface));
4018 }
4019
4020 if (new_ctrl0 != gmac_ctrl0)
4021 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4022 if (new_ctrl2 != gmac_ctrl2)
4023 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4024 if (new_ctrl4 != gmac_ctrl4)
4025 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4026 if (new_clk != gmac_clk)
4027 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4028 if (new_an != gmac_an)
4029 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4030
4031 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4032 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4033 MVNETA_GMAC2_PORT_RESET) != 0)
4034 continue;
4035 }
4036 }
4037
4038 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4039 {
4040 u32 lpi_ctl1;
4041
4042 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4043 if (enable)
4044 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4045 else
4046 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4047 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4048 }
4049
4050 static void mvneta_mac_link_down(struct phylink_config *config,
4051 unsigned int mode, phy_interface_t interface)
4052 {
4053 struct net_device *ndev = to_net_dev(config->dev);
4054 struct mvneta_port *pp = netdev_priv(ndev);
4055 u32 val;
4056
4057 mvneta_port_down(pp);
4058
4059 if (!phylink_autoneg_inband(mode)) {
4060 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4061 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4062 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4063 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4064 }
4065
4066 pp->eee_active = false;
4067 mvneta_set_eee(pp, false);
4068 }
4069
4070 static void mvneta_mac_link_up(struct phylink_config *config,
4071 struct phy_device *phy,
4072 unsigned int mode, phy_interface_t interface,
4073 int speed, int duplex,
4074 bool tx_pause, bool rx_pause)
4075 {
4076 struct net_device *ndev = to_net_dev(config->dev);
4077 struct mvneta_port *pp = netdev_priv(ndev);
4078 u32 val;
4079
4080 if (!phylink_autoneg_inband(mode)) {
4081 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4082 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4083 MVNETA_GMAC_CONFIG_MII_SPEED |
4084 MVNETA_GMAC_CONFIG_GMII_SPEED |
4085 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4086 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4087 val |= MVNETA_GMAC_FORCE_LINK_PASS;
4088
4089 if (speed == SPEED_1000 || speed == SPEED_2500)
4090 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4091 else if (speed == SPEED_100)
4092 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4093
4094 if (duplex == DUPLEX_FULL)
4095 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4096
4097 if (tx_pause || rx_pause)
4098 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4099
4100 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4101 } else {
4102 /* When inband doesn't cover flow control or flow control is
4103 * disabled, we need to manually configure it. This bit will
4104 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4105 */
4106 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4107 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4108
4109 if (tx_pause || rx_pause)
4110 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4111
4112 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4113 }
4114
4115 mvneta_port_up(pp);
4116
4117 if (phy && pp->eee_enabled) {
4118 pp->eee_active = phy_init_eee(phy, 0) >= 0;
4119 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4120 }
4121 }
4122
4123 static const struct phylink_mac_ops mvneta_phylink_ops = {
4124 .validate = mvneta_validate,
4125 .mac_pcs_get_state = mvneta_mac_pcs_get_state,
4126 .mac_an_restart = mvneta_mac_an_restart,
4127 .mac_config = mvneta_mac_config,
4128 .mac_link_down = mvneta_mac_link_down,
4129 .mac_link_up = mvneta_mac_link_up,
4130 };
4131
4132 static int mvneta_mdio_probe(struct mvneta_port *pp)
4133 {
4134 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4135 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4136
4137 if (err)
4138 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4139
4140 phylink_ethtool_get_wol(pp->phylink, &wol);
4141 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4142
4143 /* PHY WoL may be enabled but device wakeup disabled */
4144 if (wol.supported)
4145 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4146
4147 return err;
4148 }
4149
4150 static void mvneta_mdio_remove(struct mvneta_port *pp)
4151 {
4152 phylink_disconnect_phy(pp->phylink);
4153 }
4154
4155 /* Electing a CPU must be done in an atomic way: it should be done
4156 * after or before the removal/insertion of a CPU and this function is
4157 * not reentrant.
4158 */
4159 static void mvneta_percpu_elect(struct mvneta_port *pp)
4160 {
4161 int elected_cpu = 0, max_cpu, cpu, i = 0;
4162
4163 /* Use the cpu associated to the rxq when it is online, in all
4164 * the other cases, use the cpu 0 which can't be offline.
4165 */
4166 if (cpu_online(pp->rxq_def))
4167 elected_cpu = pp->rxq_def;
4168
4169 max_cpu = num_present_cpus();
4170
4171 for_each_online_cpu(cpu) {
4172 int rxq_map = 0, txq_map = 0;
4173 int rxq;
4174
4175 for (rxq = 0; rxq < rxq_number; rxq++)
4176 if ((rxq % max_cpu) == cpu)
4177 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4178
4179 if (cpu == elected_cpu)
4180 /* Map the default receive queue queue to the
4181 * elected CPU
4182 */
4183 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4184
4185 /* We update the TX queue map only if we have one
4186 * queue. In this case we associate the TX queue to
4187 * the CPU bound to the default RX queue
4188 */
4189 if (txq_number == 1)
4190 txq_map = (cpu == elected_cpu) ?
4191 MVNETA_CPU_TXQ_ACCESS(1) : 0;
4192 else
4193 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4194 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4195
4196 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4197
4198 /* Update the interrupt mask on each CPU according the
4199 * new mapping
4200 */
4201 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4202 pp, true);
4203 i++;
4204
4205 }
4206 };
4207
4208 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4209 {
4210 int other_cpu;
4211 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4212 node_online);
4213 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4214
4215 /* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
4216 * are routed to CPU 0, so we don't need all the cpu-hotplug support
4217 */
4218 if (pp->neta_armada3700)
4219 return 0;
4220
4221 spin_lock(&pp->lock);
4222 /*
4223 * Configuring the driver for a new CPU while the driver is
4224 * stopping is racy, so just avoid it.
4225 */
4226 if (pp->is_stopped) {
4227 spin_unlock(&pp->lock);
4228 return 0;
4229 }
4230 netif_tx_stop_all_queues(pp->dev);
4231
4232 /*
4233 * We have to synchronise on tha napi of each CPU except the one
4234 * just being woken up
4235 */
4236 for_each_online_cpu(other_cpu) {
4237 if (other_cpu != cpu) {
4238 struct mvneta_pcpu_port *other_port =
4239 per_cpu_ptr(pp->ports, other_cpu);
4240
4241 napi_synchronize(&other_port->napi);
4242 }
4243 }
4244
4245 /* Mask all ethernet port interrupts */
4246 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4247 napi_enable(&port->napi);
4248
4249 /*
4250 * Enable per-CPU interrupts on the CPU that is
4251 * brought up.
4252 */
4253 mvneta_percpu_enable(pp);
4254
4255 /*
4256 * Enable per-CPU interrupt on the one CPU we care
4257 * about.
4258 */
4259 mvneta_percpu_elect(pp);
4260
4261 /* Unmask all ethernet port interrupts */
4262 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4263 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4264 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4265 MVNETA_CAUSE_LINK_CHANGE);
4266 netif_tx_start_all_queues(pp->dev);
4267 spin_unlock(&pp->lock);
4268 return 0;
4269 }
4270
4271 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4272 {
4273 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4274 node_online);
4275 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4276
4277 /*
4278 * Thanks to this lock we are sure that any pending cpu election is
4279 * done.
4280 */
4281 spin_lock(&pp->lock);
4282 /* Mask all ethernet port interrupts */
4283 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4284 spin_unlock(&pp->lock);
4285
4286 napi_synchronize(&port->napi);
4287 napi_disable(&port->napi);
4288 /* Disable per-CPU interrupts on the CPU that is brought down. */
4289 mvneta_percpu_disable(pp);
4290 return 0;
4291 }
4292
4293 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4294 {
4295 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4296 node_dead);
4297
4298 /* Check if a new CPU must be elected now this on is down */
4299 spin_lock(&pp->lock);
4300 mvneta_percpu_elect(pp);
4301 spin_unlock(&pp->lock);
4302 /* Unmask all ethernet port interrupts */
4303 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4304 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4305 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4306 MVNETA_CAUSE_LINK_CHANGE);
4307 netif_tx_start_all_queues(pp->dev);
4308 return 0;
4309 }
4310
4311 static int mvneta_open(struct net_device *dev)
4312 {
4313 struct mvneta_port *pp = netdev_priv(dev);
4314 int ret;
4315
4316 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4317
4318 ret = mvneta_setup_rxqs(pp);
4319 if (ret)
4320 return ret;
4321
4322 ret = mvneta_setup_txqs(pp);
4323 if (ret)
4324 goto err_cleanup_rxqs;
4325
4326 /* Connect to port interrupt line */
4327 if (pp->neta_armada3700)
4328 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4329 dev->name, pp);
4330 else
4331 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4332 dev->name, pp->ports);
4333 if (ret) {
4334 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4335 goto err_cleanup_txqs;
4336 }
4337
4338 if (!pp->neta_armada3700) {
4339 /* Enable per-CPU interrupt on all the CPU to handle our RX
4340 * queue interrupts
4341 */
4342 on_each_cpu(mvneta_percpu_enable, pp, true);
4343
4344 pp->is_stopped = false;
4345 /* Register a CPU notifier to handle the case where our CPU
4346 * might be taken offline.
4347 */
4348 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4349 &pp->node_online);
4350 if (ret)
4351 goto err_free_irq;
4352
4353 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4354 &pp->node_dead);
4355 if (ret)
4356 goto err_free_online_hp;
4357 }
4358
4359 ret = mvneta_mdio_probe(pp);
4360 if (ret < 0) {
4361 netdev_err(dev, "cannot probe MDIO bus\n");
4362 goto err_free_dead_hp;
4363 }
4364
4365 mvneta_start_dev(pp);
4366
4367 return 0;
4368
4369 err_free_dead_hp:
4370 if (!pp->neta_armada3700)
4371 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4372 &pp->node_dead);
4373 err_free_online_hp:
4374 if (!pp->neta_armada3700)
4375 cpuhp_state_remove_instance_nocalls(online_hpstate,
4376 &pp->node_online);
4377 err_free_irq:
4378 if (pp->neta_armada3700) {
4379 free_irq(pp->dev->irq, pp);
4380 } else {
4381 on_each_cpu(mvneta_percpu_disable, pp, true);
4382 free_percpu_irq(pp->dev->irq, pp->ports);
4383 }
4384 err_cleanup_txqs:
4385 mvneta_cleanup_txqs(pp);
4386 err_cleanup_rxqs:
4387 mvneta_cleanup_rxqs(pp);
4388 return ret;
4389 }
4390
4391 /* Stop the port, free port interrupt line */
4392 static int mvneta_stop(struct net_device *dev)
4393 {
4394 struct mvneta_port *pp = netdev_priv(dev);
4395
4396 if (!pp->neta_armada3700) {
4397 /* Inform that we are stopping so we don't want to setup the
4398 * driver for new CPUs in the notifiers. The code of the
4399 * notifier for CPU online is protected by the same spinlock,
4400 * so when we get the lock, the notifer work is done.
4401 */
4402 spin_lock(&pp->lock);
4403 pp->is_stopped = true;
4404 spin_unlock(&pp->lock);
4405
4406 mvneta_stop_dev(pp);
4407 mvneta_mdio_remove(pp);
4408
4409 cpuhp_state_remove_instance_nocalls(online_hpstate,
4410 &pp->node_online);
4411 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4412 &pp->node_dead);
4413 on_each_cpu(mvneta_percpu_disable, pp, true);
4414 free_percpu_irq(dev->irq, pp->ports);
4415 } else {
4416 mvneta_stop_dev(pp);
4417 mvneta_mdio_remove(pp);
4418 free_irq(dev->irq, pp);
4419 }
4420
4421 mvneta_cleanup_rxqs(pp);
4422 mvneta_cleanup_txqs(pp);
4423
4424 return 0;
4425 }
4426
4427 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4428 {
4429 struct mvneta_port *pp = netdev_priv(dev);
4430
4431 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4432 }
4433
4434 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4435 struct netlink_ext_ack *extack)
4436 {
4437 bool need_update, running = netif_running(dev);
4438 struct mvneta_port *pp = netdev_priv(dev);
4439 struct bpf_prog *old_prog;
4440
4441 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4442 NL_SET_ERR_MSG_MOD(extack, "MTU too large for XDP");
4443 return -EOPNOTSUPP;
4444 }
4445
4446 if (pp->bm_priv) {
4447 NL_SET_ERR_MSG_MOD(extack,
4448 "Hardware Buffer Management not supported on XDP");
4449 return -EOPNOTSUPP;
4450 }
4451
4452 need_update = !!pp->xdp_prog != !!prog;
4453 if (running && need_update)
4454 mvneta_stop(dev);
4455
4456 old_prog = xchg(&pp->xdp_prog, prog);
4457 if (old_prog)
4458 bpf_prog_put(old_prog);
4459
4460 if (running && need_update)
4461 return mvneta_open(dev);
4462
4463 return 0;
4464 }
4465
4466 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4467 {
4468 switch (xdp->command) {
4469 case XDP_SETUP_PROG:
4470 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4471 default:
4472 return -EINVAL;
4473 }
4474 }
4475
4476 /* Ethtool methods */
4477
4478 /* Set link ksettings (phy address, speed) for ethtools */
4479 static int
4480 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4481 const struct ethtool_link_ksettings *cmd)
4482 {
4483 struct mvneta_port *pp = netdev_priv(ndev);
4484
4485 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4486 }
4487
4488 /* Get link ksettings for ethtools */
4489 static int
4490 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4491 struct ethtool_link_ksettings *cmd)
4492 {
4493 struct mvneta_port *pp = netdev_priv(ndev);
4494
4495 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4496 }
4497
4498 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4499 {
4500 struct mvneta_port *pp = netdev_priv(dev);
4501
4502 return phylink_ethtool_nway_reset(pp->phylink);
4503 }
4504
4505 /* Set interrupt coalescing for ethtools */
4506 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4507 struct ethtool_coalesce *c)
4508 {
4509 struct mvneta_port *pp = netdev_priv(dev);
4510 int queue;
4511
4512 for (queue = 0; queue < rxq_number; queue++) {
4513 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4514 rxq->time_coal = c->rx_coalesce_usecs;
4515 rxq->pkts_coal = c->rx_max_coalesced_frames;
4516 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4517 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4518 }
4519
4520 for (queue = 0; queue < txq_number; queue++) {
4521 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4522 txq->done_pkts_coal = c->tx_max_coalesced_frames;
4523 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4524 }
4525
4526 return 0;
4527 }
4528
4529 /* get coalescing for ethtools */
4530 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4531 struct ethtool_coalesce *c)
4532 {
4533 struct mvneta_port *pp = netdev_priv(dev);
4534
4535 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
4536 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
4537
4538 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
4539 return 0;
4540 }
4541
4542
4543 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4544 struct ethtool_drvinfo *drvinfo)
4545 {
4546 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4547 sizeof(drvinfo->driver));
4548 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4549 sizeof(drvinfo->version));
4550 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4551 sizeof(drvinfo->bus_info));
4552 }
4553
4554
4555 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4556 struct ethtool_ringparam *ring)
4557 {
4558 struct mvneta_port *pp = netdev_priv(netdev);
4559
4560 ring->rx_max_pending = MVNETA_MAX_RXD;
4561 ring->tx_max_pending = MVNETA_MAX_TXD;
4562 ring->rx_pending = pp->rx_ring_size;
4563 ring->tx_pending = pp->tx_ring_size;
4564 }
4565
4566 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4567 struct ethtool_ringparam *ring)
4568 {
4569 struct mvneta_port *pp = netdev_priv(dev);
4570
4571 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4572 return -EINVAL;
4573 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4574 ring->rx_pending : MVNETA_MAX_RXD;
4575
4576 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4577 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4578 if (pp->tx_ring_size != ring->tx_pending)
4579 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4580 pp->tx_ring_size, ring->tx_pending);
4581
4582 if (netif_running(dev)) {
4583 mvneta_stop(dev);
4584 if (mvneta_open(dev)) {
4585 netdev_err(dev,
4586 "error on opening device after ring param change\n");
4587 return -ENOMEM;
4588 }
4589 }
4590
4591 return 0;
4592 }
4593
4594 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4595 struct ethtool_pauseparam *pause)
4596 {
4597 struct mvneta_port *pp = netdev_priv(dev);
4598
4599 phylink_ethtool_get_pauseparam(pp->phylink, pause);
4600 }
4601
4602 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4603 struct ethtool_pauseparam *pause)
4604 {
4605 struct mvneta_port *pp = netdev_priv(dev);
4606
4607 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4608 }
4609
4610 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4611 u8 *data)
4612 {
4613 if (sset == ETH_SS_STATS) {
4614 int i;
4615
4616 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4617 memcpy(data + i * ETH_GSTRING_LEN,
4618 mvneta_statistics[i].name, ETH_GSTRING_LEN);
4619 }
4620 }
4621
4622 static void
4623 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4624 struct mvneta_ethtool_stats *es)
4625 {
4626 unsigned int start;
4627 int cpu;
4628
4629 for_each_possible_cpu(cpu) {
4630 struct mvneta_pcpu_stats *stats;
4631 u64 skb_alloc_error;
4632 u64 refill_error;
4633 u64 xdp_redirect;
4634 u64 xdp_xmit_err;
4635 u64 xdp_tx_err;
4636 u64 xdp_pass;
4637 u64 xdp_drop;
4638 u64 xdp_xmit;
4639 u64 xdp_tx;
4640
4641 stats = per_cpu_ptr(pp->stats, cpu);
4642 do {
4643 start = u64_stats_fetch_begin_irq(&stats->syncp);
4644 skb_alloc_error = stats->es.skb_alloc_error;
4645 refill_error = stats->es.refill_error;
4646 xdp_redirect = stats->es.ps.xdp_redirect;
4647 xdp_pass = stats->es.ps.xdp_pass;
4648 xdp_drop = stats->es.ps.xdp_drop;
4649 xdp_xmit = stats->es.ps.xdp_xmit;
4650 xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4651 xdp_tx = stats->es.ps.xdp_tx;
4652 xdp_tx_err = stats->es.ps.xdp_tx_err;
4653 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4654
4655 es->skb_alloc_error += skb_alloc_error;
4656 es->refill_error += refill_error;
4657 es->ps.xdp_redirect += xdp_redirect;
4658 es->ps.xdp_pass += xdp_pass;
4659 es->ps.xdp_drop += xdp_drop;
4660 es->ps.xdp_xmit += xdp_xmit;
4661 es->ps.xdp_xmit_err += xdp_xmit_err;
4662 es->ps.xdp_tx += xdp_tx;
4663 es->ps.xdp_tx_err += xdp_tx_err;
4664 }
4665 }
4666
4667 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4668 {
4669 struct mvneta_ethtool_stats stats = {};
4670 const struct mvneta_statistic *s;
4671 void __iomem *base = pp->base;
4672 u32 high, low;
4673 u64 val;
4674 int i;
4675
4676 mvneta_ethtool_update_pcpu_stats(pp, &stats);
4677 for (i = 0, s = mvneta_statistics;
4678 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4679 s++, i++) {
4680 switch (s->type) {
4681 case T_REG_32:
4682 val = readl_relaxed(base + s->offset);
4683 pp->ethtool_stats[i] += val;
4684 break;
4685 case T_REG_64:
4686 /* Docs say to read low 32-bit then high */
4687 low = readl_relaxed(base + s->offset);
4688 high = readl_relaxed(base + s->offset + 4);
4689 val = (u64)high << 32 | low;
4690 pp->ethtool_stats[i] += val;
4691 break;
4692 case T_SW:
4693 switch (s->offset) {
4694 case ETHTOOL_STAT_EEE_WAKEUP:
4695 val = phylink_get_eee_err(pp->phylink);
4696 pp->ethtool_stats[i] += val;
4697 break;
4698 case ETHTOOL_STAT_SKB_ALLOC_ERR:
4699 pp->ethtool_stats[i] = stats.skb_alloc_error;
4700 break;
4701 case ETHTOOL_STAT_REFILL_ERR:
4702 pp->ethtool_stats[i] = stats.refill_error;
4703 break;
4704 case ETHTOOL_XDP_REDIRECT:
4705 pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4706 break;
4707 case ETHTOOL_XDP_PASS:
4708 pp->ethtool_stats[i] = stats.ps.xdp_pass;
4709 break;
4710 case ETHTOOL_XDP_DROP:
4711 pp->ethtool_stats[i] = stats.ps.xdp_drop;
4712 break;
4713 case ETHTOOL_XDP_TX:
4714 pp->ethtool_stats[i] = stats.ps.xdp_tx;
4715 break;
4716 case ETHTOOL_XDP_TX_ERR:
4717 pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4718 break;
4719 case ETHTOOL_XDP_XMIT:
4720 pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4721 break;
4722 case ETHTOOL_XDP_XMIT_ERR:
4723 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4724 break;
4725 }
4726 break;
4727 }
4728 }
4729 }
4730
4731 static void mvneta_ethtool_get_stats(struct net_device *dev,
4732 struct ethtool_stats *stats, u64 *data)
4733 {
4734 struct mvneta_port *pp = netdev_priv(dev);
4735 int i;
4736
4737 mvneta_ethtool_update_stats(pp);
4738
4739 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4740 *data++ = pp->ethtool_stats[i];
4741 }
4742
4743 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4744 {
4745 if (sset == ETH_SS_STATS)
4746 return ARRAY_SIZE(mvneta_statistics);
4747 return -EOPNOTSUPP;
4748 }
4749
4750 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4751 {
4752 return MVNETA_RSS_LU_TABLE_SIZE;
4753 }
4754
4755 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4756 struct ethtool_rxnfc *info,
4757 u32 *rules __always_unused)
4758 {
4759 switch (info->cmd) {
4760 case ETHTOOL_GRXRINGS:
4761 info->data = rxq_number;
4762 return 0;
4763 case ETHTOOL_GRXFH:
4764 return -EOPNOTSUPP;
4765 default:
4766 return -EOPNOTSUPP;
4767 }
4768 }
4769
4770 static int mvneta_config_rss(struct mvneta_port *pp)
4771 {
4772 int cpu;
4773 u32 val;
4774
4775 netif_tx_stop_all_queues(pp->dev);
4776
4777 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4778
4779 if (!pp->neta_armada3700) {
4780 /* We have to synchronise on the napi of each CPU */
4781 for_each_online_cpu(cpu) {
4782 struct mvneta_pcpu_port *pcpu_port =
4783 per_cpu_ptr(pp->ports, cpu);
4784
4785 napi_synchronize(&pcpu_port->napi);
4786 napi_disable(&pcpu_port->napi);
4787 }
4788 } else {
4789 napi_synchronize(&pp->napi);
4790 napi_disable(&pp->napi);
4791 }
4792
4793 pp->rxq_def = pp->indir[0];
4794
4795 /* Update unicast mapping */
4796 mvneta_set_rx_mode(pp->dev);
4797
4798 /* Update val of portCfg register accordingly with all RxQueue types */
4799 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4800 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4801
4802 /* Update the elected CPU matching the new rxq_def */
4803 spin_lock(&pp->lock);
4804 mvneta_percpu_elect(pp);
4805 spin_unlock(&pp->lock);
4806
4807 if (!pp->neta_armada3700) {
4808 /* We have to synchronise on the napi of each CPU */
4809 for_each_online_cpu(cpu) {
4810 struct mvneta_pcpu_port *pcpu_port =
4811 per_cpu_ptr(pp->ports, cpu);
4812
4813 napi_enable(&pcpu_port->napi);
4814 }
4815 } else {
4816 napi_enable(&pp->napi);
4817 }
4818
4819 netif_tx_start_all_queues(pp->dev);
4820
4821 return 0;
4822 }
4823
4824 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4825 const u8 *key, const u8 hfunc)
4826 {
4827 struct mvneta_port *pp = netdev_priv(dev);
4828
4829 /* Current code for Armada 3700 doesn't support RSS features yet */
4830 if (pp->neta_armada3700)
4831 return -EOPNOTSUPP;
4832
4833 /* We require at least one supported parameter to be changed
4834 * and no change in any of the unsupported parameters
4835 */
4836 if (key ||
4837 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4838 return -EOPNOTSUPP;
4839
4840 if (!indir)
4841 return 0;
4842
4843 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4844
4845 return mvneta_config_rss(pp);
4846 }
4847
4848 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4849 u8 *hfunc)
4850 {
4851 struct mvneta_port *pp = netdev_priv(dev);
4852
4853 /* Current code for Armada 3700 doesn't support RSS features yet */
4854 if (pp->neta_armada3700)
4855 return -EOPNOTSUPP;
4856
4857 if (hfunc)
4858 *hfunc = ETH_RSS_HASH_TOP;
4859
4860 if (!indir)
4861 return 0;
4862
4863 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4864
4865 return 0;
4866 }
4867
4868 static void mvneta_ethtool_get_wol(struct net_device *dev,
4869 struct ethtool_wolinfo *wol)
4870 {
4871 struct mvneta_port *pp = netdev_priv(dev);
4872
4873 phylink_ethtool_get_wol(pp->phylink, wol);
4874 }
4875
4876 static int mvneta_ethtool_set_wol(struct net_device *dev,
4877 struct ethtool_wolinfo *wol)
4878 {
4879 struct mvneta_port *pp = netdev_priv(dev);
4880 int ret;
4881
4882 ret = phylink_ethtool_set_wol(pp->phylink, wol);
4883 if (!ret)
4884 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4885
4886 return ret;
4887 }
4888
4889 static int mvneta_ethtool_get_eee(struct net_device *dev,
4890 struct ethtool_eee *eee)
4891 {
4892 struct mvneta_port *pp = netdev_priv(dev);
4893 u32 lpi_ctl0;
4894
4895 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4896
4897 eee->eee_enabled = pp->eee_enabled;
4898 eee->eee_active = pp->eee_active;
4899 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4900 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4901
4902 return phylink_ethtool_get_eee(pp->phylink, eee);
4903 }
4904
4905 static int mvneta_ethtool_set_eee(struct net_device *dev,
4906 struct ethtool_eee *eee)
4907 {
4908 struct mvneta_port *pp = netdev_priv(dev);
4909 u32 lpi_ctl0;
4910
4911 /* The Armada 37x documents do not give limits for this other than
4912 * it being an 8-bit register. */
4913 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4914 return -EINVAL;
4915
4916 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4917 lpi_ctl0 &= ~(0xff << 8);
4918 lpi_ctl0 |= eee->tx_lpi_timer << 8;
4919 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4920
4921 pp->eee_enabled = eee->eee_enabled;
4922 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4923
4924 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4925
4926 return phylink_ethtool_set_eee(pp->phylink, eee);
4927 }
4928
4929 static const struct net_device_ops mvneta_netdev_ops = {
4930 .ndo_open = mvneta_open,
4931 .ndo_stop = mvneta_stop,
4932 .ndo_start_xmit = mvneta_tx,
4933 .ndo_set_rx_mode = mvneta_set_rx_mode,
4934 .ndo_set_mac_address = mvneta_set_mac_addr,
4935 .ndo_change_mtu = mvneta_change_mtu,
4936 .ndo_fix_features = mvneta_fix_features,
4937 .ndo_get_stats64 = mvneta_get_stats64,
4938 .ndo_do_ioctl = mvneta_ioctl,
4939 .ndo_bpf = mvneta_xdp,
4940 .ndo_xdp_xmit = mvneta_xdp_xmit,
4941 };
4942
4943 static const struct ethtool_ops mvneta_eth_tool_ops = {
4944 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4945 ETHTOOL_COALESCE_MAX_FRAMES,
4946 .nway_reset = mvneta_ethtool_nway_reset,
4947 .get_link = ethtool_op_get_link,
4948 .set_coalesce = mvneta_ethtool_set_coalesce,
4949 .get_coalesce = mvneta_ethtool_get_coalesce,
4950 .get_drvinfo = mvneta_ethtool_get_drvinfo,
4951 .get_ringparam = mvneta_ethtool_get_ringparam,
4952 .set_ringparam = mvneta_ethtool_set_ringparam,
4953 .get_pauseparam = mvneta_ethtool_get_pauseparam,
4954 .set_pauseparam = mvneta_ethtool_set_pauseparam,
4955 .get_strings = mvneta_ethtool_get_strings,
4956 .get_ethtool_stats = mvneta_ethtool_get_stats,
4957 .get_sset_count = mvneta_ethtool_get_sset_count,
4958 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4959 .get_rxnfc = mvneta_ethtool_get_rxnfc,
4960 .get_rxfh = mvneta_ethtool_get_rxfh,
4961 .set_rxfh = mvneta_ethtool_set_rxfh,
4962 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4963 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4964 .get_wol = mvneta_ethtool_get_wol,
4965 .set_wol = mvneta_ethtool_set_wol,
4966 .get_eee = mvneta_ethtool_get_eee,
4967 .set_eee = mvneta_ethtool_set_eee,
4968 };
4969
4970 /* Initialize hw */
4971 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4972 {
4973 int queue;
4974
4975 /* Disable port */
4976 mvneta_port_disable(pp);
4977
4978 /* Set port default values */
4979 mvneta_defaults_set(pp);
4980
4981 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4982 if (!pp->txqs)
4983 return -ENOMEM;
4984
4985 /* Initialize TX descriptor rings */
4986 for (queue = 0; queue < txq_number; queue++) {
4987 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4988 txq->id = queue;
4989 txq->size = pp->tx_ring_size;
4990 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4991 }
4992
4993 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4994 if (!pp->rxqs)
4995 return -ENOMEM;
4996
4997 /* Create Rx descriptor rings */
4998 for (queue = 0; queue < rxq_number; queue++) {
4999 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5000 rxq->id = queue;
5001 rxq->size = pp->rx_ring_size;
5002 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
5003 rxq->time_coal = MVNETA_RX_COAL_USEC;
5004 rxq->buf_virt_addr
5005 = devm_kmalloc_array(pp->dev->dev.parent,
5006 rxq->size,
5007 sizeof(*rxq->buf_virt_addr),
5008 GFP_KERNEL);
5009 if (!rxq->buf_virt_addr)
5010 return -ENOMEM;
5011 }
5012
5013 return 0;
5014 }
5015
5016 /* platform glue : initialize decoding windows */
5017 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5018 const struct mbus_dram_target_info *dram)
5019 {
5020 u32 win_enable;
5021 u32 win_protect;
5022 int i;
5023
5024 for (i = 0; i < 6; i++) {
5025 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5026 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5027
5028 if (i < 4)
5029 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5030 }
5031
5032 win_enable = 0x3f;
5033 win_protect = 0;
5034
5035 if (dram) {
5036 for (i = 0; i < dram->num_cs; i++) {
5037 const struct mbus_dram_window *cs = dram->cs + i;
5038
5039 mvreg_write(pp, MVNETA_WIN_BASE(i),
5040 (cs->base & 0xffff0000) |
5041 (cs->mbus_attr << 8) |
5042 dram->mbus_dram_target_id);
5043
5044 mvreg_write(pp, MVNETA_WIN_SIZE(i),
5045 (cs->size - 1) & 0xffff0000);
5046
5047 win_enable &= ~(1 << i);
5048 win_protect |= 3 << (2 * i);
5049 }
5050 } else {
5051 /* For Armada3700 open default 4GB Mbus window, leaving
5052 * arbitration of target/attribute to a different layer
5053 * of configuration.
5054 */
5055 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5056 win_enable &= ~BIT(0);
5057 win_protect = 3;
5058 }
5059
5060 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5061 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5062 }
5063
5064 /* Power up the port */
5065 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5066 {
5067 /* MAC Cause register should be cleared */
5068 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5069
5070 if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5071 phy_mode != PHY_INTERFACE_MODE_SGMII &&
5072 !phy_interface_mode_is_8023z(phy_mode) &&
5073 !phy_interface_mode_is_rgmii(phy_mode))
5074 return -EINVAL;
5075
5076 return 0;
5077 }
5078
5079 /* Device initialization routine */
5080 static int mvneta_probe(struct platform_device *pdev)
5081 {
5082 struct device_node *dn = pdev->dev.of_node;
5083 struct device_node *bm_node;
5084 struct mvneta_port *pp;
5085 struct net_device *dev;
5086 struct phylink *phylink;
5087 struct phy *comphy;
5088 const char *dt_mac_addr;
5089 char hw_mac_addr[ETH_ALEN];
5090 phy_interface_t phy_mode;
5091 const char *mac_from;
5092 int tx_csum_limit;
5093 int err;
5094 int cpu;
5095
5096 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5097 txq_number, rxq_number);
5098 if (!dev)
5099 return -ENOMEM;
5100
5101 dev->irq = irq_of_parse_and_map(dn, 0);
5102 if (dev->irq == 0)
5103 return -EINVAL;
5104
5105 err = of_get_phy_mode(dn, &phy_mode);
5106 if (err) {
5107 dev_err(&pdev->dev, "incorrect phy-mode\n");
5108 goto err_free_irq;
5109 }
5110
5111 comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5112 if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5113 err = -EPROBE_DEFER;
5114 goto err_free_irq;
5115 } else if (IS_ERR(comphy)) {
5116 comphy = NULL;
5117 }
5118
5119 pp = netdev_priv(dev);
5120 spin_lock_init(&pp->lock);
5121
5122 pp->phylink_config.dev = &dev->dev;
5123 pp->phylink_config.type = PHYLINK_NETDEV;
5124
5125 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5126 phy_mode, &mvneta_phylink_ops);
5127 if (IS_ERR(phylink)) {
5128 err = PTR_ERR(phylink);
5129 goto err_free_irq;
5130 }
5131
5132 dev->tx_queue_len = MVNETA_MAX_TXD;
5133 dev->watchdog_timeo = 5 * HZ;
5134 dev->netdev_ops = &mvneta_netdev_ops;
5135
5136 dev->ethtool_ops = &mvneta_eth_tool_ops;
5137
5138 pp->phylink = phylink;
5139 pp->comphy = comphy;
5140 pp->phy_interface = phy_mode;
5141 pp->dn = dn;
5142
5143 pp->rxq_def = rxq_def;
5144 pp->indir[0] = rxq_def;
5145
5146 /* Get special SoC configurations */
5147 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5148 pp->neta_armada3700 = true;
5149
5150 pp->clk = devm_clk_get(&pdev->dev, "core");
5151 if (IS_ERR(pp->clk))
5152 pp->clk = devm_clk_get(&pdev->dev, NULL);
5153 if (IS_ERR(pp->clk)) {
5154 err = PTR_ERR(pp->clk);
5155 goto err_free_phylink;
5156 }
5157
5158 clk_prepare_enable(pp->clk);
5159
5160 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5161 if (!IS_ERR(pp->clk_bus))
5162 clk_prepare_enable(pp->clk_bus);
5163
5164 pp->base = devm_platform_ioremap_resource(pdev, 0);
5165 if (IS_ERR(pp->base)) {
5166 err = PTR_ERR(pp->base);
5167 goto err_clk;
5168 }
5169
5170 /* Alloc per-cpu port structure */
5171 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5172 if (!pp->ports) {
5173 err = -ENOMEM;
5174 goto err_clk;
5175 }
5176
5177 /* Alloc per-cpu stats */
5178 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5179 if (!pp->stats) {
5180 err = -ENOMEM;
5181 goto err_free_ports;
5182 }
5183
5184 dt_mac_addr = of_get_mac_address(dn);
5185 if (!IS_ERR(dt_mac_addr)) {
5186 mac_from = "device tree";
5187 ether_addr_copy(dev->dev_addr, dt_mac_addr);
5188 } else {
5189 mvneta_get_mac_addr(pp, hw_mac_addr);
5190 if (is_valid_ether_addr(hw_mac_addr)) {
5191 mac_from = "hardware";
5192 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5193 } else {
5194 mac_from = "random";
5195 eth_hw_addr_random(dev);
5196 }
5197 }
5198
5199 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5200 if (tx_csum_limit < 0 ||
5201 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5202 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5203 dev_info(&pdev->dev,
5204 "Wrong TX csum limit in DT, set to %dB\n",
5205 MVNETA_TX_CSUM_DEF_SIZE);
5206 }
5207 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5208 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5209 } else {
5210 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5211 }
5212
5213 pp->tx_csum_limit = tx_csum_limit;
5214
5215 pp->dram_target_info = mv_mbus_dram_info();
5216 /* Armada3700 requires setting default configuration of Mbus
5217 * windows, however without using filled mbus_dram_target_info
5218 * structure.
5219 */
5220 if (pp->dram_target_info || pp->neta_armada3700)
5221 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5222
5223 pp->tx_ring_size = MVNETA_MAX_TXD;
5224 pp->rx_ring_size = MVNETA_MAX_RXD;
5225
5226 pp->dev = dev;
5227 SET_NETDEV_DEV(dev, &pdev->dev);
5228
5229 pp->id = global_port_id++;
5230
5231 /* Obtain access to BM resources if enabled and already initialized */
5232 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5233 if (bm_node) {
5234 pp->bm_priv = mvneta_bm_get(bm_node);
5235 if (pp->bm_priv) {
5236 err = mvneta_bm_port_init(pdev, pp);
5237 if (err < 0) {
5238 dev_info(&pdev->dev,
5239 "use SW buffer management\n");
5240 mvneta_bm_put(pp->bm_priv);
5241 pp->bm_priv = NULL;
5242 }
5243 }
5244 /* Set RX packet offset correction for platforms, whose
5245 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5246 * platforms and 0B for 32-bit ones.
5247 */
5248 pp->rx_offset_correction = max(0,
5249 NET_SKB_PAD -
5250 MVNETA_RX_PKT_OFFSET_CORRECTION);
5251 }
5252 of_node_put(bm_node);
5253
5254 /* sw buffer management */
5255 if (!pp->bm_priv)
5256 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5257
5258 err = mvneta_init(&pdev->dev, pp);
5259 if (err < 0)
5260 goto err_netdev;
5261
5262 err = mvneta_port_power_up(pp, pp->phy_interface);
5263 if (err < 0) {
5264 dev_err(&pdev->dev, "can't power up port\n");
5265 goto err_netdev;
5266 }
5267
5268 /* Armada3700 network controller does not support per-cpu
5269 * operation, so only single NAPI should be initialized.
5270 */
5271 if (pp->neta_armada3700) {
5272 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5273 } else {
5274 for_each_present_cpu(cpu) {
5275 struct mvneta_pcpu_port *port =
5276 per_cpu_ptr(pp->ports, cpu);
5277
5278 netif_napi_add(dev, &port->napi, mvneta_poll,
5279 NAPI_POLL_WEIGHT);
5280 port->pp = pp;
5281 }
5282 }
5283
5284 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5285 NETIF_F_TSO | NETIF_F_RXCSUM;
5286 dev->hw_features |= dev->features;
5287 dev->vlan_features |= dev->features;
5288 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5289 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5290
5291 /* MTU range: 68 - 9676 */
5292 dev->min_mtu = ETH_MIN_MTU;
5293 /* 9676 == 9700 - 20 and rounding to 8 */
5294 dev->max_mtu = 9676;
5295
5296 err = register_netdev(dev);
5297 if (err < 0) {
5298 dev_err(&pdev->dev, "failed to register\n");
5299 goto err_netdev;
5300 }
5301
5302 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5303 dev->dev_addr);
5304
5305 platform_set_drvdata(pdev, pp->dev);
5306
5307 return 0;
5308
5309 err_netdev:
5310 if (pp->bm_priv) {
5311 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5312 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5313 1 << pp->id);
5314 mvneta_bm_put(pp->bm_priv);
5315 }
5316 free_percpu(pp->stats);
5317 err_free_ports:
5318 free_percpu(pp->ports);
5319 err_clk:
5320 clk_disable_unprepare(pp->clk_bus);
5321 clk_disable_unprepare(pp->clk);
5322 err_free_phylink:
5323 if (pp->phylink)
5324 phylink_destroy(pp->phylink);
5325 err_free_irq:
5326 irq_dispose_mapping(dev->irq);
5327 return err;
5328 }
5329
5330 /* Device removal routine */
5331 static int mvneta_remove(struct platform_device *pdev)
5332 {
5333 struct net_device *dev = platform_get_drvdata(pdev);
5334 struct mvneta_port *pp = netdev_priv(dev);
5335
5336 unregister_netdev(dev);
5337 clk_disable_unprepare(pp->clk_bus);
5338 clk_disable_unprepare(pp->clk);
5339 free_percpu(pp->ports);
5340 free_percpu(pp->stats);
5341 irq_dispose_mapping(dev->irq);
5342 phylink_destroy(pp->phylink);
5343
5344 if (pp->bm_priv) {
5345 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5346 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5347 1 << pp->id);
5348 mvneta_bm_put(pp->bm_priv);
5349 }
5350
5351 return 0;
5352 }
5353
5354 #ifdef CONFIG_PM_SLEEP
5355 static int mvneta_suspend(struct device *device)
5356 {
5357 int queue;
5358 struct net_device *dev = dev_get_drvdata(device);
5359 struct mvneta_port *pp = netdev_priv(dev);
5360
5361 if (!netif_running(dev))
5362 goto clean_exit;
5363
5364 if (!pp->neta_armada3700) {
5365 spin_lock(&pp->lock);
5366 pp->is_stopped = true;
5367 spin_unlock(&pp->lock);
5368
5369 cpuhp_state_remove_instance_nocalls(online_hpstate,
5370 &pp->node_online);
5371 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5372 &pp->node_dead);
5373 }
5374
5375 rtnl_lock();
5376 mvneta_stop_dev(pp);
5377 rtnl_unlock();
5378
5379 for (queue = 0; queue < rxq_number; queue++) {
5380 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5381
5382 mvneta_rxq_drop_pkts(pp, rxq);
5383 }
5384
5385 for (queue = 0; queue < txq_number; queue++) {
5386 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5387
5388 mvneta_txq_hw_deinit(pp, txq);
5389 }
5390
5391 clean_exit:
5392 netif_device_detach(dev);
5393 clk_disable_unprepare(pp->clk_bus);
5394 clk_disable_unprepare(pp->clk);
5395
5396 return 0;
5397 }
5398
5399 static int mvneta_resume(struct device *device)
5400 {
5401 struct platform_device *pdev = to_platform_device(device);
5402 struct net_device *dev = dev_get_drvdata(device);
5403 struct mvneta_port *pp = netdev_priv(dev);
5404 int err, queue;
5405
5406 clk_prepare_enable(pp->clk);
5407 if (!IS_ERR(pp->clk_bus))
5408 clk_prepare_enable(pp->clk_bus);
5409 if (pp->dram_target_info || pp->neta_armada3700)
5410 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5411 if (pp->bm_priv) {
5412 err = mvneta_bm_port_init(pdev, pp);
5413 if (err < 0) {
5414 dev_info(&pdev->dev, "use SW buffer management\n");
5415 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5416 pp->bm_priv = NULL;
5417 }
5418 }
5419 mvneta_defaults_set(pp);
5420 err = mvneta_port_power_up(pp, pp->phy_interface);
5421 if (err < 0) {
5422 dev_err(device, "can't power up port\n");
5423 return err;
5424 }
5425
5426 netif_device_attach(dev);
5427
5428 if (!netif_running(dev))
5429 return 0;
5430
5431 for (queue = 0; queue < rxq_number; queue++) {
5432 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5433
5434 rxq->next_desc_to_proc = 0;
5435 mvneta_rxq_hw_init(pp, rxq);
5436 }
5437
5438 for (queue = 0; queue < txq_number; queue++) {
5439 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5440
5441 txq->next_desc_to_proc = 0;
5442 mvneta_txq_hw_init(pp, txq);
5443 }
5444
5445 if (!pp->neta_armada3700) {
5446 spin_lock(&pp->lock);
5447 pp->is_stopped = false;
5448 spin_unlock(&pp->lock);
5449 cpuhp_state_add_instance_nocalls(online_hpstate,
5450 &pp->node_online);
5451 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5452 &pp->node_dead);
5453 }
5454
5455 rtnl_lock();
5456 mvneta_start_dev(pp);
5457 rtnl_unlock();
5458 mvneta_set_rx_mode(dev);
5459
5460 return 0;
5461 }
5462 #endif
5463
5464 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5465
5466 static const struct of_device_id mvneta_match[] = {
5467 { .compatible = "marvell,armada-370-neta" },
5468 { .compatible = "marvell,armada-xp-neta" },
5469 { .compatible = "marvell,armada-3700-neta" },
5470 { }
5471 };
5472 MODULE_DEVICE_TABLE(of, mvneta_match);
5473
5474 static struct platform_driver mvneta_driver = {
5475 .probe = mvneta_probe,
5476 .remove = mvneta_remove,
5477 .driver = {
5478 .name = MVNETA_DRIVER_NAME,
5479 .of_match_table = mvneta_match,
5480 .pm = &mvneta_pm_ops,
5481 },
5482 };
5483
5484 static int __init mvneta_driver_init(void)
5485 {
5486 int ret;
5487
5488 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5489 mvneta_cpu_online,
5490 mvneta_cpu_down_prepare);
5491 if (ret < 0)
5492 goto out;
5493 online_hpstate = ret;
5494 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5495 NULL, mvneta_cpu_dead);
5496 if (ret)
5497 goto err_dead;
5498
5499 ret = platform_driver_register(&mvneta_driver);
5500 if (ret)
5501 goto err;
5502 return 0;
5503
5504 err:
5505 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5506 err_dead:
5507 cpuhp_remove_multi_state(online_hpstate);
5508 out:
5509 return ret;
5510 }
5511 module_init(mvneta_driver_init);
5512
5513 static void __exit mvneta_driver_exit(void)
5514 {
5515 platform_driver_unregister(&mvneta_driver);
5516 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5517 cpuhp_remove_multi_state(online_hpstate);
5518 }
5519 module_exit(mvneta_driver_exit);
5520
5521 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5522 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5523 MODULE_LICENSE("GPL");
5524
5525 module_param(rxq_number, int, 0444);
5526 module_param(txq_number, int, 0444);
5527
5528 module_param(rxq_def, int, 0444);
5529 module_param(rx_copybreak, int, 0644);