]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/marvell/mvneta.c
powerpc/mm: Fix SEGV on mapped region to return SEGV_ACCERR
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
63 #define MVNETA_PORT_RX_RESET 0x1cc0
64 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
65 #define MVNETA_PHY_ADDR 0x2000
66 #define MVNETA_PHY_ADDR_MASK 0x1f
67 #define MVNETA_MBUS_RETRY 0x2010
68 #define MVNETA_UNIT_INTR_CAUSE 0x2080
69 #define MVNETA_UNIT_CONTROL 0x20B0
70 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
76 #define MVNETA_PORT_CONFIG 0x2400
77 #define MVNETA_UNI_PROMISC_MODE BIT(0)
78 #define MVNETA_DEF_RXQ(q) ((q) << 1)
79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
86 MVNETA_DEF_RXQ_ARP(q) | \
87 MVNETA_DEF_RXQ_TCP(q) | \
88 MVNETA_DEF_RXQ_UDP(q) | \
89 MVNETA_DEF_RXQ_BPDU(q) | \
90 MVNETA_TX_UNSET_ERR_SUM | \
91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
93 #define MVNETA_MAC_ADDR_LOW 0x2414
94 #define MVNETA_MAC_ADDR_HIGH 0x2418
95 #define MVNETA_SDMA_CONFIG 0x241c
96 #define MVNETA_SDMA_BRST_SIZE_16 4
97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
98 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
99 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
100 #define MVNETA_DESC_SWAP BIT(6)
101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
102 #define MVNETA_PORT_STATUS 0x2444
103 #define MVNETA_TX_IN_PRGRS BIT(1)
104 #define MVNETA_TX_FIFO_EMPTY BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
106 #define MVNETA_SERDES_CFG 0x24A0
107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
109 #define MVNETA_TYPE_PRIO 0x24bc
110 #define MVNETA_FORCE_UNI BIT(21)
111 #define MVNETA_TXQ_CMD_1 0x24e4
112 #define MVNETA_TXQ_CMD 0x2448
113 #define MVNETA_TXQ_DISABLE_SHIFT 8
114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
119 #define MVNETA_ACC_MODE 0x2500
120 #define MVNETA_BM_ADDRESS 0x2504
121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
127
128 /* Exception Interrupt Port/Queue Cause register
129 *
130 * Their behavior depend of the mapping done using the PCPX2Q
131 * registers. For a given CPU if the bit associated to a queue is not
132 * set, then for the register a read from this CPU will always return
133 * 0 and a write won't do anything
134 */
135
136 #define MVNETA_INTR_NEW_CAUSE 0x25a0
137 #define MVNETA_INTR_NEW_MASK 0x25a4
138
139 /* bits 0..7 = TXQ SENT, one bit per queue.
140 * bits 8..15 = RXQ OCCUP, one bit per queue.
141 * bits 16..23 = RXQ FREE, one bit per queue.
142 * bit 29 = OLD_REG_SUM, see old reg ?
143 * bit 30 = TX_ERR_SUM, one bit for 4 ports
144 * bit 31 = MISC_SUM, one bit for 4 ports
145 */
146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
150 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
151
152 #define MVNETA_INTR_OLD_CAUSE 0x25a8
153 #define MVNETA_INTR_OLD_MASK 0x25ac
154
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE 0x25b0
157 #define MVNETA_INTR_MISC_MASK 0x25b4
158
159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
161 #define MVNETA_CAUSE_PTP BIT(4)
162
163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
168 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
171
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175
176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179
180 #define MVNETA_INTR_ENABLE 0x25b8
181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
183
184 #define MVNETA_RXQ_CMD 0x2680
185 #define MVNETA_RXQ_DISABLE_SHIFT 8
186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0 0x2c00
190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
192 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
193 #define MVNETA_GMAC_CTRL_2 0x2c08
194 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
195 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
196 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
197 #define MVNETA_GMAC2_PORT_RESET BIT(6)
198 #define MVNETA_GMAC_STATUS 0x2c10
199 #define MVNETA_GMAC_LINK_UP BIT(0)
200 #define MVNETA_GMAC_SPEED_1000 BIT(1)
201 #define MVNETA_GMAC_SPEED_100 BIT(2)
202 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
203 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
204 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
205 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
206 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
207 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
208 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
209 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
210 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
211 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
212 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
213 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
214 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
215 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
216 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
217 #define MVNETA_MIB_COUNTERS_BASE 0x3000
218 #define MVNETA_MIB_LATE_COLLISION 0x7c
219 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
220 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
221 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
222 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
223 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
224 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
225 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
226 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
227 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
228 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
229 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
230 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
231 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
232 #define MVNETA_PORT_TX_RESET 0x3cf0
233 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
234 #define MVNETA_TX_MTU 0x3e0c
235 #define MVNETA_TX_TOKEN_SIZE 0x3e14
236 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
237 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
238 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
239
240 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
241
242 /* Descriptor ring Macros */
243 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
244 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
245
246 /* Various constants */
247
248 /* Coalescing */
249 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
250 #define MVNETA_RX_COAL_PKTS 32
251 #define MVNETA_RX_COAL_USEC 100
252
253 /* The two bytes Marvell header. Either contains a special value used
254 * by Marvell switches when a specific hardware mode is enabled (not
255 * supported by this driver) or is filled automatically by zeroes on
256 * the RX side. Those two bytes being at the front of the Ethernet
257 * header, they allow to have the IP header aligned on a 4 bytes
258 * boundary automatically: the hardware skips those two bytes on its
259 * own.
260 */
261 #define MVNETA_MH_SIZE 2
262
263 #define MVNETA_VLAN_TAG_LEN 4
264
265 #define MVNETA_TX_CSUM_DEF_SIZE 1600
266 #define MVNETA_TX_CSUM_MAX_SIZE 9800
267 #define MVNETA_ACC_MODE_EXT1 1
268 #define MVNETA_ACC_MODE_EXT2 2
269
270 #define MVNETA_MAX_DECODE_WIN 6
271
272 /* Timeout constants */
273 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
274 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
275 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
276
277 #define MVNETA_TX_MTU_MAX 0x3ffff
278
279 /* The RSS lookup table actually has 256 entries but we do not use
280 * them yet
281 */
282 #define MVNETA_RSS_LU_TABLE_SIZE 1
283
284 /* Max number of Rx descriptors */
285 #define MVNETA_MAX_RXD 128
286
287 /* Max number of Tx descriptors */
288 #define MVNETA_MAX_TXD 532
289
290 /* Max number of allowed TCP segments for software TSO */
291 #define MVNETA_MAX_TSO_SEGS 100
292
293 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
294
295 /* descriptor aligned size */
296 #define MVNETA_DESC_ALIGNED_SIZE 32
297
298 /* Number of bytes to be taken into account by HW when putting incoming data
299 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
300 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
301 */
302 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
303
304 #define MVNETA_RX_PKT_SIZE(mtu) \
305 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
306 ETH_HLEN + ETH_FCS_LEN, \
307 cache_line_size())
308
309 #define IS_TSO_HEADER(txq, addr) \
310 ((addr >= txq->tso_hdrs_phys) && \
311 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
312
313 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
314 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
315
316 struct mvneta_statistic {
317 unsigned short offset;
318 unsigned short type;
319 const char name[ETH_GSTRING_LEN];
320 };
321
322 #define T_REG_32 32
323 #define T_REG_64 64
324
325 static const struct mvneta_statistic mvneta_statistics[] = {
326 { 0x3000, T_REG_64, "good_octets_received", },
327 { 0x3010, T_REG_32, "good_frames_received", },
328 { 0x3008, T_REG_32, "bad_octets_received", },
329 { 0x3014, T_REG_32, "bad_frames_received", },
330 { 0x3018, T_REG_32, "broadcast_frames_received", },
331 { 0x301c, T_REG_32, "multicast_frames_received", },
332 { 0x3050, T_REG_32, "unrec_mac_control_received", },
333 { 0x3058, T_REG_32, "good_fc_received", },
334 { 0x305c, T_REG_32, "bad_fc_received", },
335 { 0x3060, T_REG_32, "undersize_received", },
336 { 0x3064, T_REG_32, "fragments_received", },
337 { 0x3068, T_REG_32, "oversize_received", },
338 { 0x306c, T_REG_32, "jabber_received", },
339 { 0x3070, T_REG_32, "mac_receive_error", },
340 { 0x3074, T_REG_32, "bad_crc_event", },
341 { 0x3078, T_REG_32, "collision", },
342 { 0x307c, T_REG_32, "late_collision", },
343 { 0x2484, T_REG_32, "rx_discard", },
344 { 0x2488, T_REG_32, "rx_overrun", },
345 { 0x3020, T_REG_32, "frames_64_octets", },
346 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
347 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
348 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
349 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
350 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
351 { 0x3038, T_REG_64, "good_octets_sent", },
352 { 0x3040, T_REG_32, "good_frames_sent", },
353 { 0x3044, T_REG_32, "excessive_collision", },
354 { 0x3048, T_REG_32, "multicast_frames_sent", },
355 { 0x304c, T_REG_32, "broadcast_frames_sent", },
356 { 0x3054, T_REG_32, "fc_sent", },
357 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
358 };
359
360 struct mvneta_pcpu_stats {
361 struct u64_stats_sync syncp;
362 u64 rx_packets;
363 u64 rx_bytes;
364 u64 tx_packets;
365 u64 tx_bytes;
366 };
367
368 struct mvneta_pcpu_port {
369 /* Pointer to the shared port */
370 struct mvneta_port *pp;
371
372 /* Pointer to the CPU-local NAPI struct */
373 struct napi_struct napi;
374
375 /* Cause of the previous interrupt */
376 u32 cause_rx_tx;
377 };
378
379 struct mvneta_port {
380 u8 id;
381 struct mvneta_pcpu_port __percpu *ports;
382 struct mvneta_pcpu_stats __percpu *stats;
383
384 int pkt_size;
385 unsigned int frag_size;
386 void __iomem *base;
387 struct mvneta_rx_queue *rxqs;
388 struct mvneta_tx_queue *txqs;
389 struct net_device *dev;
390 struct hlist_node node_online;
391 struct hlist_node node_dead;
392 int rxq_def;
393 /* Protect the access to the percpu interrupt registers,
394 * ensuring that the configuration remains coherent.
395 */
396 spinlock_t lock;
397 bool is_stopped;
398
399 u32 cause_rx_tx;
400 struct napi_struct napi;
401
402 /* Core clock */
403 struct clk *clk;
404 /* AXI clock */
405 struct clk *clk_bus;
406 u8 mcast_count[256];
407 u16 tx_ring_size;
408 u16 rx_ring_size;
409
410 struct mii_bus *mii_bus;
411 phy_interface_t phy_interface;
412 struct device_node *phy_node;
413 unsigned int link;
414 unsigned int duplex;
415 unsigned int speed;
416 unsigned int tx_csum_limit;
417 unsigned int use_inband_status:1;
418
419 struct mvneta_bm *bm_priv;
420 struct mvneta_bm_pool *pool_long;
421 struct mvneta_bm_pool *pool_short;
422 int bm_win_id;
423
424 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
425
426 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
427
428 /* Flags for special SoC configurations */
429 bool neta_armada3700;
430 u16 rx_offset_correction;
431 const struct mbus_dram_target_info *dram_target_info;
432 };
433
434 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
435 * layout of the transmit and reception DMA descriptors, and their
436 * layout is therefore defined by the hardware design
437 */
438
439 #define MVNETA_TX_L3_OFF_SHIFT 0
440 #define MVNETA_TX_IP_HLEN_SHIFT 8
441 #define MVNETA_TX_L4_UDP BIT(16)
442 #define MVNETA_TX_L3_IP6 BIT(17)
443 #define MVNETA_TXD_IP_CSUM BIT(18)
444 #define MVNETA_TXD_Z_PAD BIT(19)
445 #define MVNETA_TXD_L_DESC BIT(20)
446 #define MVNETA_TXD_F_DESC BIT(21)
447 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
448 MVNETA_TXD_L_DESC | \
449 MVNETA_TXD_F_DESC)
450 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
451 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
452
453 #define MVNETA_RXD_ERR_CRC 0x0
454 #define MVNETA_RXD_BM_POOL_SHIFT 13
455 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
456 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
457 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
458 #define MVNETA_RXD_ERR_LEN BIT(18)
459 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
460 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
461 #define MVNETA_RXD_L3_IP4 BIT(25)
462 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
463 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
464
465 #if defined(__LITTLE_ENDIAN)
466 struct mvneta_tx_desc {
467 u32 command; /* Options used by HW for packet transmitting.*/
468 u16 reserverd1; /* csum_l4 (for future use) */
469 u16 data_size; /* Data size of transmitted packet in bytes */
470 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
471 u32 reserved2; /* hw_cmd - (for future use, PMT) */
472 u32 reserved3[4]; /* Reserved - (for future use) */
473 };
474
475 struct mvneta_rx_desc {
476 u32 status; /* Info about received packet */
477 u16 reserved1; /* pnc_info - (for future use, PnC) */
478 u16 data_size; /* Size of received packet in bytes */
479
480 u32 buf_phys_addr; /* Physical address of the buffer */
481 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
482
483 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
484 u16 reserved3; /* prefetch_cmd, for future use */
485 u16 reserved4; /* csum_l4 - (for future use, PnC) */
486
487 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
488 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
489 };
490 #else
491 struct mvneta_tx_desc {
492 u16 data_size; /* Data size of transmitted packet in bytes */
493 u16 reserverd1; /* csum_l4 (for future use) */
494 u32 command; /* Options used by HW for packet transmitting.*/
495 u32 reserved2; /* hw_cmd - (for future use, PMT) */
496 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
497 u32 reserved3[4]; /* Reserved - (for future use) */
498 };
499
500 struct mvneta_rx_desc {
501 u16 data_size; /* Size of received packet in bytes */
502 u16 reserved1; /* pnc_info - (for future use, PnC) */
503 u32 status; /* Info about received packet */
504
505 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
506 u32 buf_phys_addr; /* Physical address of the buffer */
507
508 u16 reserved4; /* csum_l4 - (for future use, PnC) */
509 u16 reserved3; /* prefetch_cmd, for future use */
510 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
511
512 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
513 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
514 };
515 #endif
516
517 struct mvneta_tx_queue {
518 /* Number of this TX queue, in the range 0-7 */
519 u8 id;
520
521 /* Number of TX DMA descriptors in the descriptor ring */
522 int size;
523
524 /* Number of currently used TX DMA descriptor in the
525 * descriptor ring
526 */
527 int count;
528 int pending;
529 int tx_stop_threshold;
530 int tx_wake_threshold;
531
532 /* Array of transmitted skb */
533 struct sk_buff **tx_skb;
534
535 /* Index of last TX DMA descriptor that was inserted */
536 int txq_put_index;
537
538 /* Index of the TX DMA descriptor to be cleaned up */
539 int txq_get_index;
540
541 u32 done_pkts_coal;
542
543 /* Virtual address of the TX DMA descriptors array */
544 struct mvneta_tx_desc *descs;
545
546 /* DMA address of the TX DMA descriptors array */
547 dma_addr_t descs_phys;
548
549 /* Index of the last TX DMA descriptor */
550 int last_desc;
551
552 /* Index of the next TX DMA descriptor to process */
553 int next_desc_to_proc;
554
555 /* DMA buffers for TSO headers */
556 char *tso_hdrs;
557
558 /* DMA address of TSO headers */
559 dma_addr_t tso_hdrs_phys;
560
561 /* Affinity mask for CPUs*/
562 cpumask_t affinity_mask;
563 };
564
565 struct mvneta_rx_queue {
566 /* rx queue number, in the range 0-7 */
567 u8 id;
568
569 /* num of rx descriptors in the rx descriptor ring */
570 int size;
571
572 /* counter of times when mvneta_refill() failed */
573 int missed;
574
575 u32 pkts_coal;
576 u32 time_coal;
577
578 /* Virtual address of the RX buffer */
579 void **buf_virt_addr;
580
581 /* Virtual address of the RX DMA descriptors array */
582 struct mvneta_rx_desc *descs;
583
584 /* DMA address of the RX DMA descriptors array */
585 dma_addr_t descs_phys;
586
587 /* Index of the last RX DMA descriptor */
588 int last_desc;
589
590 /* Index of the next RX DMA descriptor to process */
591 int next_desc_to_proc;
592 };
593
594 static enum cpuhp_state online_hpstate;
595 /* The hardware supports eight (8) rx queues, but we are only allowing
596 * the first one to be used. Therefore, let's just allocate one queue.
597 */
598 static int rxq_number = 8;
599 static int txq_number = 8;
600
601 static int rxq_def;
602
603 static int rx_copybreak __read_mostly = 256;
604
605 /* HW BM need that each port be identify by a unique ID */
606 static int global_port_id;
607
608 #define MVNETA_DRIVER_NAME "mvneta"
609 #define MVNETA_DRIVER_VERSION "1.0"
610
611 /* Utility/helper methods */
612
613 /* Write helper method */
614 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
615 {
616 writel(data, pp->base + offset);
617 }
618
619 /* Read helper method */
620 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
621 {
622 return readl(pp->base + offset);
623 }
624
625 /* Increment txq get counter */
626 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
627 {
628 txq->txq_get_index++;
629 if (txq->txq_get_index == txq->size)
630 txq->txq_get_index = 0;
631 }
632
633 /* Increment txq put counter */
634 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
635 {
636 txq->txq_put_index++;
637 if (txq->txq_put_index == txq->size)
638 txq->txq_put_index = 0;
639 }
640
641
642 /* Clear all MIB counters */
643 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
644 {
645 int i;
646 u32 dummy;
647
648 /* Perform dummy reads from MIB counters */
649 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
650 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
651 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
652 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
653 }
654
655 /* Get System Network Statistics */
656 static void
657 mvneta_get_stats64(struct net_device *dev,
658 struct rtnl_link_stats64 *stats)
659 {
660 struct mvneta_port *pp = netdev_priv(dev);
661 unsigned int start;
662 int cpu;
663
664 for_each_possible_cpu(cpu) {
665 struct mvneta_pcpu_stats *cpu_stats;
666 u64 rx_packets;
667 u64 rx_bytes;
668 u64 tx_packets;
669 u64 tx_bytes;
670
671 cpu_stats = per_cpu_ptr(pp->stats, cpu);
672 do {
673 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
674 rx_packets = cpu_stats->rx_packets;
675 rx_bytes = cpu_stats->rx_bytes;
676 tx_packets = cpu_stats->tx_packets;
677 tx_bytes = cpu_stats->tx_bytes;
678 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
679
680 stats->rx_packets += rx_packets;
681 stats->rx_bytes += rx_bytes;
682 stats->tx_packets += tx_packets;
683 stats->tx_bytes += tx_bytes;
684 }
685
686 stats->rx_errors = dev->stats.rx_errors;
687 stats->rx_dropped = dev->stats.rx_dropped;
688
689 stats->tx_dropped = dev->stats.tx_dropped;
690 }
691
692 /* Rx descriptors helper methods */
693
694 /* Checks whether the RX descriptor having this status is both the first
695 * and the last descriptor for the RX packet. Each RX packet is currently
696 * received through a single RX descriptor, so not having each RX
697 * descriptor with its first and last bits set is an error
698 */
699 static int mvneta_rxq_desc_is_first_last(u32 status)
700 {
701 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
702 MVNETA_RXD_FIRST_LAST_DESC;
703 }
704
705 /* Add number of descriptors ready to receive new packets */
706 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
707 struct mvneta_rx_queue *rxq,
708 int ndescs)
709 {
710 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
711 * be added at once
712 */
713 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
714 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
715 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
716 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
717 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
718 }
719
720 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
721 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
722 }
723
724 /* Get number of RX descriptors occupied by received packets */
725 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
726 struct mvneta_rx_queue *rxq)
727 {
728 u32 val;
729
730 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
731 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
732 }
733
734 /* Update num of rx desc called upon return from rx path or
735 * from mvneta_rxq_drop_pkts().
736 */
737 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
738 struct mvneta_rx_queue *rxq,
739 int rx_done, int rx_filled)
740 {
741 u32 val;
742
743 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
744 val = rx_done |
745 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
746 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
747 return;
748 }
749
750 /* Only 255 descriptors can be added at once */
751 while ((rx_done > 0) || (rx_filled > 0)) {
752 if (rx_done <= 0xff) {
753 val = rx_done;
754 rx_done = 0;
755 } else {
756 val = 0xff;
757 rx_done -= 0xff;
758 }
759 if (rx_filled <= 0xff) {
760 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
761 rx_filled = 0;
762 } else {
763 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
764 rx_filled -= 0xff;
765 }
766 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
767 }
768 }
769
770 /* Get pointer to next RX descriptor to be processed by SW */
771 static struct mvneta_rx_desc *
772 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
773 {
774 int rx_desc = rxq->next_desc_to_proc;
775
776 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
777 prefetch(rxq->descs + rxq->next_desc_to_proc);
778 return rxq->descs + rx_desc;
779 }
780
781 /* Change maximum receive size of the port. */
782 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
783 {
784 u32 val;
785
786 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
787 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
788 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
789 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
790 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
791 }
792
793
794 /* Set rx queue offset */
795 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
796 struct mvneta_rx_queue *rxq,
797 int offset)
798 {
799 u32 val;
800
801 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
802 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
803
804 /* Offset is in */
805 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
806 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
807 }
808
809
810 /* Tx descriptors helper methods */
811
812 /* Update HW with number of TX descriptors to be sent */
813 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
814 struct mvneta_tx_queue *txq,
815 int pend_desc)
816 {
817 u32 val;
818
819 pend_desc += txq->pending;
820
821 /* Only 255 Tx descriptors can be added at once */
822 do {
823 val = min(pend_desc, 255);
824 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
825 pend_desc -= val;
826 } while (pend_desc > 0);
827 txq->pending = 0;
828 }
829
830 /* Get pointer to next TX descriptor to be processed (send) by HW */
831 static struct mvneta_tx_desc *
832 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
833 {
834 int tx_desc = txq->next_desc_to_proc;
835
836 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
837 return txq->descs + tx_desc;
838 }
839
840 /* Release the last allocated TX descriptor. Useful to handle DMA
841 * mapping failures in the TX path.
842 */
843 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
844 {
845 if (txq->next_desc_to_proc == 0)
846 txq->next_desc_to_proc = txq->last_desc - 1;
847 else
848 txq->next_desc_to_proc--;
849 }
850
851 /* Set rxq buf size */
852 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
853 struct mvneta_rx_queue *rxq,
854 int buf_size)
855 {
856 u32 val;
857
858 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
859
860 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
861 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
862
863 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
864 }
865
866 /* Disable buffer management (BM) */
867 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
868 struct mvneta_rx_queue *rxq)
869 {
870 u32 val;
871
872 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
873 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
874 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
875 }
876
877 /* Enable buffer management (BM) */
878 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
879 struct mvneta_rx_queue *rxq)
880 {
881 u32 val;
882
883 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
884 val |= MVNETA_RXQ_HW_BUF_ALLOC;
885 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
886 }
887
888 /* Notify HW about port's assignment of pool for bigger packets */
889 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
890 struct mvneta_rx_queue *rxq)
891 {
892 u32 val;
893
894 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
895 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
896 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
897
898 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
899 }
900
901 /* Notify HW about port's assignment of pool for smaller packets */
902 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
903 struct mvneta_rx_queue *rxq)
904 {
905 u32 val;
906
907 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
908 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
909 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
910
911 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
912 }
913
914 /* Set port's receive buffer size for assigned BM pool */
915 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
916 int buf_size,
917 u8 pool_id)
918 {
919 u32 val;
920
921 if (!IS_ALIGNED(buf_size, 8)) {
922 dev_warn(pp->dev->dev.parent,
923 "illegal buf_size value %d, round to %d\n",
924 buf_size, ALIGN(buf_size, 8));
925 buf_size = ALIGN(buf_size, 8);
926 }
927
928 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
929 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
930 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
931 }
932
933 /* Configure MBUS window in order to enable access BM internal SRAM */
934 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
935 u8 target, u8 attr)
936 {
937 u32 win_enable, win_protect;
938 int i;
939
940 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
941
942 if (pp->bm_win_id < 0) {
943 /* Find first not occupied window */
944 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
945 if (win_enable & (1 << i)) {
946 pp->bm_win_id = i;
947 break;
948 }
949 }
950 if (i == MVNETA_MAX_DECODE_WIN)
951 return -ENOMEM;
952 } else {
953 i = pp->bm_win_id;
954 }
955
956 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
957 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
958
959 if (i < 4)
960 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
961
962 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
963 (attr << 8) | target);
964
965 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
966
967 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
968 win_protect |= 3 << (2 * i);
969 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
970
971 win_enable &= ~(1 << i);
972 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
973
974 return 0;
975 }
976
977 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
978 {
979 u32 wsize;
980 u8 target, attr;
981 int err;
982
983 /* Get BM window information */
984 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
985 &target, &attr);
986 if (err < 0)
987 return err;
988
989 pp->bm_win_id = -1;
990
991 /* Open NETA -> BM window */
992 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
993 target, attr);
994 if (err < 0) {
995 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
996 return err;
997 }
998 return 0;
999 }
1000
1001 /* Assign and initialize pools for port. In case of fail
1002 * buffer manager will remain disabled for current port.
1003 */
1004 static int mvneta_bm_port_init(struct platform_device *pdev,
1005 struct mvneta_port *pp)
1006 {
1007 struct device_node *dn = pdev->dev.of_node;
1008 u32 long_pool_id, short_pool_id;
1009
1010 if (!pp->neta_armada3700) {
1011 int ret;
1012
1013 ret = mvneta_bm_port_mbus_init(pp);
1014 if (ret)
1015 return ret;
1016 }
1017
1018 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1019 netdev_info(pp->dev, "missing long pool id\n");
1020 return -EINVAL;
1021 }
1022
1023 /* Create port's long pool depending on mtu */
1024 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1025 MVNETA_BM_LONG, pp->id,
1026 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1027 if (!pp->pool_long) {
1028 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1029 return -ENOMEM;
1030 }
1031
1032 pp->pool_long->port_map |= 1 << pp->id;
1033
1034 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1035 pp->pool_long->id);
1036
1037 /* If short pool id is not defined, assume using single pool */
1038 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1039 short_pool_id = long_pool_id;
1040
1041 /* Create port's short pool */
1042 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1043 MVNETA_BM_SHORT, pp->id,
1044 MVNETA_BM_SHORT_PKT_SIZE);
1045 if (!pp->pool_short) {
1046 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1047 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1048 return -ENOMEM;
1049 }
1050
1051 if (short_pool_id != long_pool_id) {
1052 pp->pool_short->port_map |= 1 << pp->id;
1053 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1054 pp->pool_short->id);
1055 }
1056
1057 return 0;
1058 }
1059
1060 /* Update settings of a pool for bigger packets */
1061 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1062 {
1063 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1064 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1065 int num;
1066
1067 /* Release all buffers from long pool */
1068 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1069 if (hwbm_pool->buf_num) {
1070 WARN(1, "cannot free all buffers in pool %d\n",
1071 bm_pool->id);
1072 goto bm_mtu_err;
1073 }
1074
1075 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1076 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1077 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1078 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1079
1080 /* Fill entire long pool */
1081 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1082 if (num != hwbm_pool->size) {
1083 WARN(1, "pool %d: %d of %d allocated\n",
1084 bm_pool->id, num, hwbm_pool->size);
1085 goto bm_mtu_err;
1086 }
1087 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1088
1089 return;
1090
1091 bm_mtu_err:
1092 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1093 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1094
1095 pp->bm_priv = NULL;
1096 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1097 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1098 }
1099
1100 /* Start the Ethernet port RX and TX activity */
1101 static void mvneta_port_up(struct mvneta_port *pp)
1102 {
1103 int queue;
1104 u32 q_map;
1105
1106 /* Enable all initialized TXs. */
1107 q_map = 0;
1108 for (queue = 0; queue < txq_number; queue++) {
1109 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1110 if (txq->descs)
1111 q_map |= (1 << queue);
1112 }
1113 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1114
1115 /* Enable all initialized RXQs. */
1116 for (queue = 0; queue < rxq_number; queue++) {
1117 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1118
1119 if (rxq->descs)
1120 q_map |= (1 << queue);
1121 }
1122 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1123 }
1124
1125 /* Stop the Ethernet port activity */
1126 static void mvneta_port_down(struct mvneta_port *pp)
1127 {
1128 u32 val;
1129 int count;
1130
1131 /* Stop Rx port activity. Check port Rx activity. */
1132 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1133
1134 /* Issue stop command for active channels only */
1135 if (val != 0)
1136 mvreg_write(pp, MVNETA_RXQ_CMD,
1137 val << MVNETA_RXQ_DISABLE_SHIFT);
1138
1139 /* Wait for all Rx activity to terminate. */
1140 count = 0;
1141 do {
1142 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1143 netdev_warn(pp->dev,
1144 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1145 val);
1146 break;
1147 }
1148 mdelay(1);
1149
1150 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1151 } while (val & MVNETA_RXQ_ENABLE_MASK);
1152
1153 /* Stop Tx port activity. Check port Tx activity. Issue stop
1154 * command for active channels only
1155 */
1156 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1157
1158 if (val != 0)
1159 mvreg_write(pp, MVNETA_TXQ_CMD,
1160 (val << MVNETA_TXQ_DISABLE_SHIFT));
1161
1162 /* Wait for all Tx activity to terminate. */
1163 count = 0;
1164 do {
1165 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1166 netdev_warn(pp->dev,
1167 "TIMEOUT for TX stopped status=0x%08x\n",
1168 val);
1169 break;
1170 }
1171 mdelay(1);
1172
1173 /* Check TX Command reg that all Txqs are stopped */
1174 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1175
1176 } while (val & MVNETA_TXQ_ENABLE_MASK);
1177
1178 /* Double check to verify that TX FIFO is empty */
1179 count = 0;
1180 do {
1181 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1182 netdev_warn(pp->dev,
1183 "TX FIFO empty timeout status=0x%08x\n",
1184 val);
1185 break;
1186 }
1187 mdelay(1);
1188
1189 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1190 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1191 (val & MVNETA_TX_IN_PRGRS));
1192
1193 udelay(200);
1194 }
1195
1196 /* Enable the port by setting the port enable bit of the MAC control register */
1197 static void mvneta_port_enable(struct mvneta_port *pp)
1198 {
1199 u32 val;
1200
1201 /* Enable port */
1202 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1203 val |= MVNETA_GMAC0_PORT_ENABLE;
1204 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1205 }
1206
1207 /* Disable the port and wait for about 200 usec before retuning */
1208 static void mvneta_port_disable(struct mvneta_port *pp)
1209 {
1210 u32 val;
1211
1212 /* Reset the Enable bit in the Serial Control Register */
1213 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1214 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1215 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1216
1217 udelay(200);
1218 }
1219
1220 /* Multicast tables methods */
1221
1222 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1223 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1224 {
1225 int offset;
1226 u32 val;
1227
1228 if (queue == -1) {
1229 val = 0;
1230 } else {
1231 val = 0x1 | (queue << 1);
1232 val |= (val << 24) | (val << 16) | (val << 8);
1233 }
1234
1235 for (offset = 0; offset <= 0xc; offset += 4)
1236 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1237 }
1238
1239 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1240 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1241 {
1242 int offset;
1243 u32 val;
1244
1245 if (queue == -1) {
1246 val = 0;
1247 } else {
1248 val = 0x1 | (queue << 1);
1249 val |= (val << 24) | (val << 16) | (val << 8);
1250 }
1251
1252 for (offset = 0; offset <= 0xfc; offset += 4)
1253 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1254
1255 }
1256
1257 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1258 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1259 {
1260 int offset;
1261 u32 val;
1262
1263 if (queue == -1) {
1264 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1265 val = 0;
1266 } else {
1267 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1268 val = 0x1 | (queue << 1);
1269 val |= (val << 24) | (val << 16) | (val << 8);
1270 }
1271
1272 for (offset = 0; offset <= 0xfc; offset += 4)
1273 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1274 }
1275
1276 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1277 {
1278 u32 val;
1279
1280 if (enable) {
1281 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1282 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1283 MVNETA_GMAC_FORCE_LINK_DOWN |
1284 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1285 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1286 MVNETA_GMAC_AN_SPEED_EN |
1287 MVNETA_GMAC_AN_DUPLEX_EN;
1288 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1289
1290 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1291 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1292 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1293
1294 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1295 val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1296 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1297 } else {
1298 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1299 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1300 MVNETA_GMAC_AN_SPEED_EN |
1301 MVNETA_GMAC_AN_DUPLEX_EN);
1302 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1303
1304 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1305 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1306 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1307
1308 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1309 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1310 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1311 }
1312 }
1313
1314 static void mvneta_percpu_unmask_interrupt(void *arg)
1315 {
1316 struct mvneta_port *pp = arg;
1317
1318 /* All the queue are unmasked, but actually only the ones
1319 * mapped to this CPU will be unmasked
1320 */
1321 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1322 MVNETA_RX_INTR_MASK_ALL |
1323 MVNETA_TX_INTR_MASK_ALL |
1324 MVNETA_MISCINTR_INTR_MASK);
1325 }
1326
1327 static void mvneta_percpu_mask_interrupt(void *arg)
1328 {
1329 struct mvneta_port *pp = arg;
1330
1331 /* All the queue are masked, but actually only the ones
1332 * mapped to this CPU will be masked
1333 */
1334 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1335 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1336 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1337 }
1338
1339 static void mvneta_percpu_clear_intr_cause(void *arg)
1340 {
1341 struct mvneta_port *pp = arg;
1342
1343 /* All the queue are cleared, but actually only the ones
1344 * mapped to this CPU will be cleared
1345 */
1346 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1347 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1348 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1349 }
1350
1351 /* This method sets defaults to the NETA port:
1352 * Clears interrupt Cause and Mask registers.
1353 * Clears all MAC tables.
1354 * Sets defaults to all registers.
1355 * Resets RX and TX descriptor rings.
1356 * Resets PHY.
1357 * This method can be called after mvneta_port_down() to return the port
1358 * settings to defaults.
1359 */
1360 static void mvneta_defaults_set(struct mvneta_port *pp)
1361 {
1362 int cpu;
1363 int queue;
1364 u32 val;
1365 int max_cpu = num_present_cpus();
1366
1367 /* Clear all Cause registers */
1368 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1369
1370 /* Mask all interrupts */
1371 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1372 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1373
1374 /* Enable MBUS Retry bit16 */
1375 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1376
1377 /* Set CPU queue access map. CPUs are assigned to the RX and
1378 * TX queues modulo their number. If there is only one TX
1379 * queue then it is assigned to the CPU associated to the
1380 * default RX queue.
1381 */
1382 for_each_present_cpu(cpu) {
1383 int rxq_map = 0, txq_map = 0;
1384 int rxq, txq;
1385 if (!pp->neta_armada3700) {
1386 for (rxq = 0; rxq < rxq_number; rxq++)
1387 if ((rxq % max_cpu) == cpu)
1388 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1389
1390 for (txq = 0; txq < txq_number; txq++)
1391 if ((txq % max_cpu) == cpu)
1392 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1393
1394 /* With only one TX queue we configure a special case
1395 * which will allow to get all the irq on a single
1396 * CPU
1397 */
1398 if (txq_number == 1)
1399 txq_map = (cpu == pp->rxq_def) ?
1400 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1401
1402 } else {
1403 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1404 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1405 }
1406
1407 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1408 }
1409
1410 /* Reset RX and TX DMAs */
1411 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1412 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1413
1414 /* Disable Legacy WRR, Disable EJP, Release from reset */
1415 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1416 for (queue = 0; queue < txq_number; queue++) {
1417 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1418 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1419 }
1420
1421 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1422 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1423
1424 /* Set Port Acceleration Mode */
1425 if (pp->bm_priv)
1426 /* HW buffer management + legacy parser */
1427 val = MVNETA_ACC_MODE_EXT2;
1428 else
1429 /* SW buffer management + legacy parser */
1430 val = MVNETA_ACC_MODE_EXT1;
1431 mvreg_write(pp, MVNETA_ACC_MODE, val);
1432
1433 if (pp->bm_priv)
1434 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1435
1436 /* Update val of portCfg register accordingly with all RxQueue types */
1437 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1438 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1439
1440 val = 0;
1441 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1442 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1443
1444 /* Build PORT_SDMA_CONFIG_REG */
1445 val = 0;
1446
1447 /* Default burst size */
1448 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1449 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1450 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1451
1452 #if defined(__BIG_ENDIAN)
1453 val |= MVNETA_DESC_SWAP;
1454 #endif
1455
1456 /* Assign port SDMA configuration */
1457 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1458
1459 /* Disable PHY polling in hardware, since we're using the
1460 * kernel phylib to do this.
1461 */
1462 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1463 val &= ~MVNETA_PHY_POLLING_ENABLE;
1464 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1465
1466 mvneta_set_autoneg(pp, pp->use_inband_status);
1467 mvneta_set_ucast_table(pp, -1);
1468 mvneta_set_special_mcast_table(pp, -1);
1469 mvneta_set_other_mcast_table(pp, -1);
1470
1471 /* Set port interrupt enable register - default enable all */
1472 mvreg_write(pp, MVNETA_INTR_ENABLE,
1473 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1474 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1475
1476 mvneta_mib_counters_clear(pp);
1477 }
1478
1479 /* Set max sizes for tx queues */
1480 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1481
1482 {
1483 u32 val, size, mtu;
1484 int queue;
1485
1486 mtu = max_tx_size * 8;
1487 if (mtu > MVNETA_TX_MTU_MAX)
1488 mtu = MVNETA_TX_MTU_MAX;
1489
1490 /* Set MTU */
1491 val = mvreg_read(pp, MVNETA_TX_MTU);
1492 val &= ~MVNETA_TX_MTU_MAX;
1493 val |= mtu;
1494 mvreg_write(pp, MVNETA_TX_MTU, val);
1495
1496 /* TX token size and all TXQs token size must be larger that MTU */
1497 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1498
1499 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1500 if (size < mtu) {
1501 size = mtu;
1502 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1503 val |= size;
1504 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1505 }
1506 for (queue = 0; queue < txq_number; queue++) {
1507 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1508
1509 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1510 if (size < mtu) {
1511 size = mtu;
1512 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1513 val |= size;
1514 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1515 }
1516 }
1517 }
1518
1519 /* Set unicast address */
1520 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1521 int queue)
1522 {
1523 unsigned int unicast_reg;
1524 unsigned int tbl_offset;
1525 unsigned int reg_offset;
1526
1527 /* Locate the Unicast table entry */
1528 last_nibble = (0xf & last_nibble);
1529
1530 /* offset from unicast tbl base */
1531 tbl_offset = (last_nibble / 4) * 4;
1532
1533 /* offset within the above reg */
1534 reg_offset = last_nibble % 4;
1535
1536 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1537
1538 if (queue == -1) {
1539 /* Clear accepts frame bit at specified unicast DA tbl entry */
1540 unicast_reg &= ~(0xff << (8 * reg_offset));
1541 } else {
1542 unicast_reg &= ~(0xff << (8 * reg_offset));
1543 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1544 }
1545
1546 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1547 }
1548
1549 /* Set mac address */
1550 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1551 int queue)
1552 {
1553 unsigned int mac_h;
1554 unsigned int mac_l;
1555
1556 if (queue != -1) {
1557 mac_l = (addr[4] << 8) | (addr[5]);
1558 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1559 (addr[2] << 8) | (addr[3] << 0);
1560
1561 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1562 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1563 }
1564
1565 /* Accept frames of this address */
1566 mvneta_set_ucast_addr(pp, addr[5], queue);
1567 }
1568
1569 /* Set the number of packets that will be received before RX interrupt
1570 * will be generated by HW.
1571 */
1572 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1573 struct mvneta_rx_queue *rxq, u32 value)
1574 {
1575 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1576 value | MVNETA_RXQ_NON_OCCUPIED(0));
1577 rxq->pkts_coal = value;
1578 }
1579
1580 /* Set the time delay in usec before RX interrupt will be generated by
1581 * HW.
1582 */
1583 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1584 struct mvneta_rx_queue *rxq, u32 value)
1585 {
1586 u32 val;
1587 unsigned long clk_rate;
1588
1589 clk_rate = clk_get_rate(pp->clk);
1590 val = (clk_rate / 1000000) * value;
1591
1592 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1593 rxq->time_coal = value;
1594 }
1595
1596 /* Set threshold for TX_DONE pkts coalescing */
1597 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1598 struct mvneta_tx_queue *txq, u32 value)
1599 {
1600 u32 val;
1601
1602 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1603
1604 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1605 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1606
1607 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1608
1609 txq->done_pkts_coal = value;
1610 }
1611
1612 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1613 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1614 u32 phys_addr, void *virt_addr,
1615 struct mvneta_rx_queue *rxq)
1616 {
1617 int i;
1618
1619 rx_desc->buf_phys_addr = phys_addr;
1620 i = rx_desc - rxq->descs;
1621 rxq->buf_virt_addr[i] = virt_addr;
1622 }
1623
1624 /* Decrement sent descriptors counter */
1625 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1626 struct mvneta_tx_queue *txq,
1627 int sent_desc)
1628 {
1629 u32 val;
1630
1631 /* Only 255 TX descriptors can be updated at once */
1632 while (sent_desc > 0xff) {
1633 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1634 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1635 sent_desc = sent_desc - 0xff;
1636 }
1637
1638 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1639 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1640 }
1641
1642 /* Get number of TX descriptors already sent by HW */
1643 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1644 struct mvneta_tx_queue *txq)
1645 {
1646 u32 val;
1647 int sent_desc;
1648
1649 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1650 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1651 MVNETA_TXQ_SENT_DESC_SHIFT;
1652
1653 return sent_desc;
1654 }
1655
1656 /* Get number of sent descriptors and decrement counter.
1657 * The number of sent descriptors is returned.
1658 */
1659 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1660 struct mvneta_tx_queue *txq)
1661 {
1662 int sent_desc;
1663
1664 /* Get number of sent descriptors */
1665 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1666
1667 /* Decrement sent descriptors counter */
1668 if (sent_desc)
1669 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1670
1671 return sent_desc;
1672 }
1673
1674 /* Set TXQ descriptors fields relevant for CSUM calculation */
1675 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1676 int ip_hdr_len, int l4_proto)
1677 {
1678 u32 command;
1679
1680 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1681 * G_L4_chk, L4_type; required only for checksum
1682 * calculation
1683 */
1684 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1685 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1686
1687 if (l3_proto == htons(ETH_P_IP))
1688 command |= MVNETA_TXD_IP_CSUM;
1689 else
1690 command |= MVNETA_TX_L3_IP6;
1691
1692 if (l4_proto == IPPROTO_TCP)
1693 command |= MVNETA_TX_L4_CSUM_FULL;
1694 else if (l4_proto == IPPROTO_UDP)
1695 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1696 else
1697 command |= MVNETA_TX_L4_CSUM_NOT;
1698
1699 return command;
1700 }
1701
1702
1703 /* Display more error info */
1704 static void mvneta_rx_error(struct mvneta_port *pp,
1705 struct mvneta_rx_desc *rx_desc)
1706 {
1707 u32 status = rx_desc->status;
1708
1709 if (!mvneta_rxq_desc_is_first_last(status)) {
1710 netdev_err(pp->dev,
1711 "bad rx status %08x (buffer oversize), size=%d\n",
1712 status, rx_desc->data_size);
1713 return;
1714 }
1715
1716 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1717 case MVNETA_RXD_ERR_CRC:
1718 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1719 status, rx_desc->data_size);
1720 break;
1721 case MVNETA_RXD_ERR_OVERRUN:
1722 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1723 status, rx_desc->data_size);
1724 break;
1725 case MVNETA_RXD_ERR_LEN:
1726 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1727 status, rx_desc->data_size);
1728 break;
1729 case MVNETA_RXD_ERR_RESOURCE:
1730 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1731 status, rx_desc->data_size);
1732 break;
1733 }
1734 }
1735
1736 /* Handle RX checksum offload based on the descriptor's status */
1737 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1738 struct sk_buff *skb)
1739 {
1740 if ((status & MVNETA_RXD_L3_IP4) &&
1741 (status & MVNETA_RXD_L4_CSUM_OK)) {
1742 skb->csum = 0;
1743 skb->ip_summed = CHECKSUM_UNNECESSARY;
1744 return;
1745 }
1746
1747 skb->ip_summed = CHECKSUM_NONE;
1748 }
1749
1750 /* Return tx queue pointer (find last set bit) according to <cause> returned
1751 * form tx_done reg. <cause> must not be null. The return value is always a
1752 * valid queue for matching the first one found in <cause>.
1753 */
1754 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1755 u32 cause)
1756 {
1757 int queue = fls(cause) - 1;
1758
1759 return &pp->txqs[queue];
1760 }
1761
1762 /* Free tx queue skbuffs */
1763 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1764 struct mvneta_tx_queue *txq, int num,
1765 struct netdev_queue *nq)
1766 {
1767 unsigned int bytes_compl = 0, pkts_compl = 0;
1768 int i;
1769
1770 for (i = 0; i < num; i++) {
1771 struct mvneta_tx_desc *tx_desc = txq->descs +
1772 txq->txq_get_index;
1773 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1774
1775 if (skb) {
1776 bytes_compl += skb->len;
1777 pkts_compl++;
1778 }
1779
1780 mvneta_txq_inc_get(txq);
1781
1782 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1783 dma_unmap_single(pp->dev->dev.parent,
1784 tx_desc->buf_phys_addr,
1785 tx_desc->data_size, DMA_TO_DEVICE);
1786 if (!skb)
1787 continue;
1788 dev_kfree_skb_any(skb);
1789 }
1790
1791 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1792 }
1793
1794 /* Handle end of transmission */
1795 static void mvneta_txq_done(struct mvneta_port *pp,
1796 struct mvneta_tx_queue *txq)
1797 {
1798 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1799 int tx_done;
1800
1801 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1802 if (!tx_done)
1803 return;
1804
1805 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1806
1807 txq->count -= tx_done;
1808
1809 if (netif_tx_queue_stopped(nq)) {
1810 if (txq->count <= txq->tx_wake_threshold)
1811 netif_tx_wake_queue(nq);
1812 }
1813 }
1814
1815 void *mvneta_frag_alloc(unsigned int frag_size)
1816 {
1817 if (likely(frag_size <= PAGE_SIZE))
1818 return netdev_alloc_frag(frag_size);
1819 else
1820 return kmalloc(frag_size, GFP_ATOMIC);
1821 }
1822 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1823
1824 void mvneta_frag_free(unsigned int frag_size, void *data)
1825 {
1826 if (likely(frag_size <= PAGE_SIZE))
1827 skb_free_frag(data);
1828 else
1829 kfree(data);
1830 }
1831 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1832
1833 /* Refill processing for SW buffer management */
1834 static int mvneta_rx_refill(struct mvneta_port *pp,
1835 struct mvneta_rx_desc *rx_desc,
1836 struct mvneta_rx_queue *rxq)
1837
1838 {
1839 dma_addr_t phys_addr;
1840 void *data;
1841
1842 data = mvneta_frag_alloc(pp->frag_size);
1843 if (!data)
1844 return -ENOMEM;
1845
1846 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1847 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1848 DMA_FROM_DEVICE);
1849 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1850 mvneta_frag_free(pp->frag_size, data);
1851 return -ENOMEM;
1852 }
1853
1854 phys_addr += pp->rx_offset_correction;
1855 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1856 return 0;
1857 }
1858
1859 /* Handle tx checksum */
1860 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1861 {
1862 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1863 int ip_hdr_len = 0;
1864 __be16 l3_proto = vlan_get_protocol(skb);
1865 u8 l4_proto;
1866
1867 if (l3_proto == htons(ETH_P_IP)) {
1868 struct iphdr *ip4h = ip_hdr(skb);
1869
1870 /* Calculate IPv4 checksum and L4 checksum */
1871 ip_hdr_len = ip4h->ihl;
1872 l4_proto = ip4h->protocol;
1873 } else if (l3_proto == htons(ETH_P_IPV6)) {
1874 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1875
1876 /* Read l4_protocol from one of IPv6 extra headers */
1877 if (skb_network_header_len(skb) > 0)
1878 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1879 l4_proto = ip6h->nexthdr;
1880 } else
1881 return MVNETA_TX_L4_CSUM_NOT;
1882
1883 return mvneta_txq_desc_csum(skb_network_offset(skb),
1884 l3_proto, ip_hdr_len, l4_proto);
1885 }
1886
1887 return MVNETA_TX_L4_CSUM_NOT;
1888 }
1889
1890 /* Drop packets received by the RXQ and free buffers */
1891 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1892 struct mvneta_rx_queue *rxq)
1893 {
1894 int rx_done, i;
1895
1896 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1897 if (rx_done)
1898 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1899
1900 if (pp->bm_priv) {
1901 for (i = 0; i < rx_done; i++) {
1902 struct mvneta_rx_desc *rx_desc =
1903 mvneta_rxq_next_desc_get(rxq);
1904 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1905 struct mvneta_bm_pool *bm_pool;
1906
1907 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1908 /* Return dropped buffer to the pool */
1909 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1910 rx_desc->buf_phys_addr);
1911 }
1912 return;
1913 }
1914
1915 for (i = 0; i < rxq->size; i++) {
1916 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1917 void *data = rxq->buf_virt_addr[i];
1918
1919 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1920 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1921 mvneta_frag_free(pp->frag_size, data);
1922 }
1923 }
1924
1925 /* Main rx processing when using software buffer management */
1926 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1927 struct mvneta_rx_queue *rxq)
1928 {
1929 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1930 struct net_device *dev = pp->dev;
1931 int rx_done;
1932 u32 rcvd_pkts = 0;
1933 u32 rcvd_bytes = 0;
1934
1935 /* Get number of received packets */
1936 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1937
1938 if (rx_todo > rx_done)
1939 rx_todo = rx_done;
1940
1941 rx_done = 0;
1942
1943 /* Fairness NAPI loop */
1944 while (rx_done < rx_todo) {
1945 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1946 struct sk_buff *skb;
1947 unsigned char *data;
1948 dma_addr_t phys_addr;
1949 u32 rx_status, frag_size;
1950 int rx_bytes, err, index;
1951
1952 rx_done++;
1953 rx_status = rx_desc->status;
1954 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1955 index = rx_desc - rxq->descs;
1956 data = rxq->buf_virt_addr[index];
1957 phys_addr = rx_desc->buf_phys_addr;
1958
1959 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1960 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1961 err_drop_frame:
1962 dev->stats.rx_errors++;
1963 mvneta_rx_error(pp, rx_desc);
1964 /* leave the descriptor untouched */
1965 continue;
1966 }
1967
1968 if (rx_bytes <= rx_copybreak) {
1969 /* better copy a small frame and not unmap the DMA region */
1970 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1971 if (unlikely(!skb))
1972 goto err_drop_frame;
1973
1974 dma_sync_single_range_for_cpu(dev->dev.parent,
1975 phys_addr,
1976 MVNETA_MH_SIZE + NET_SKB_PAD,
1977 rx_bytes,
1978 DMA_FROM_DEVICE);
1979 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
1980 rx_bytes);
1981
1982 skb->protocol = eth_type_trans(skb, dev);
1983 mvneta_rx_csum(pp, rx_status, skb);
1984 napi_gro_receive(&port->napi, skb);
1985
1986 rcvd_pkts++;
1987 rcvd_bytes += rx_bytes;
1988
1989 /* leave the descriptor and buffer untouched */
1990 continue;
1991 }
1992
1993 /* Refill processing */
1994 err = mvneta_rx_refill(pp, rx_desc, rxq);
1995 if (err) {
1996 netdev_err(dev, "Linux processing - Can't refill\n");
1997 rxq->missed++;
1998 goto err_drop_frame;
1999 }
2000
2001 frag_size = pp->frag_size;
2002
2003 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2004
2005 /* After refill old buffer has to be unmapped regardless
2006 * the skb is successfully built or not.
2007 */
2008 dma_unmap_single(dev->dev.parent, phys_addr,
2009 MVNETA_RX_BUF_SIZE(pp->pkt_size),
2010 DMA_FROM_DEVICE);
2011
2012 if (!skb)
2013 goto err_drop_frame;
2014
2015 rcvd_pkts++;
2016 rcvd_bytes += rx_bytes;
2017
2018 /* Linux processing */
2019 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2020 skb_put(skb, rx_bytes);
2021
2022 skb->protocol = eth_type_trans(skb, dev);
2023
2024 mvneta_rx_csum(pp, rx_status, skb);
2025
2026 napi_gro_receive(&port->napi, skb);
2027 }
2028
2029 if (rcvd_pkts) {
2030 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2031
2032 u64_stats_update_begin(&stats->syncp);
2033 stats->rx_packets += rcvd_pkts;
2034 stats->rx_bytes += rcvd_bytes;
2035 u64_stats_update_end(&stats->syncp);
2036 }
2037
2038 /* Update rxq management counters */
2039 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2040
2041 return rx_done;
2042 }
2043
2044 /* Main rx processing when using hardware buffer management */
2045 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2046 struct mvneta_rx_queue *rxq)
2047 {
2048 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2049 struct net_device *dev = pp->dev;
2050 int rx_done;
2051 u32 rcvd_pkts = 0;
2052 u32 rcvd_bytes = 0;
2053
2054 /* Get number of received packets */
2055 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2056
2057 if (rx_todo > rx_done)
2058 rx_todo = rx_done;
2059
2060 rx_done = 0;
2061
2062 /* Fairness NAPI loop */
2063 while (rx_done < rx_todo) {
2064 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2065 struct mvneta_bm_pool *bm_pool = NULL;
2066 struct sk_buff *skb;
2067 unsigned char *data;
2068 dma_addr_t phys_addr;
2069 u32 rx_status, frag_size;
2070 int rx_bytes, err;
2071 u8 pool_id;
2072
2073 rx_done++;
2074 rx_status = rx_desc->status;
2075 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2076 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2077 phys_addr = rx_desc->buf_phys_addr;
2078 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2079 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2080
2081 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2082 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2083 err_drop_frame_ret_pool:
2084 /* Return the buffer to the pool */
2085 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2086 rx_desc->buf_phys_addr);
2087 err_drop_frame:
2088 dev->stats.rx_errors++;
2089 mvneta_rx_error(pp, rx_desc);
2090 /* leave the descriptor untouched */
2091 continue;
2092 }
2093
2094 if (rx_bytes <= rx_copybreak) {
2095 /* better copy a small frame and not unmap the DMA region */
2096 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2097 if (unlikely(!skb))
2098 goto err_drop_frame_ret_pool;
2099
2100 dma_sync_single_range_for_cpu(dev->dev.parent,
2101 rx_desc->buf_phys_addr,
2102 MVNETA_MH_SIZE + NET_SKB_PAD,
2103 rx_bytes,
2104 DMA_FROM_DEVICE);
2105 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2106 rx_bytes);
2107
2108 skb->protocol = eth_type_trans(skb, dev);
2109 mvneta_rx_csum(pp, rx_status, skb);
2110 napi_gro_receive(&port->napi, skb);
2111
2112 rcvd_pkts++;
2113 rcvd_bytes += rx_bytes;
2114
2115 /* Return the buffer to the pool */
2116 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2117 rx_desc->buf_phys_addr);
2118
2119 /* leave the descriptor and buffer untouched */
2120 continue;
2121 }
2122
2123 /* Refill processing */
2124 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2125 if (err) {
2126 netdev_err(dev, "Linux processing - Can't refill\n");
2127 rxq->missed++;
2128 goto err_drop_frame_ret_pool;
2129 }
2130
2131 frag_size = bm_pool->hwbm_pool.frag_size;
2132
2133 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2134
2135 /* After refill old buffer has to be unmapped regardless
2136 * the skb is successfully built or not.
2137 */
2138 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2139 bm_pool->buf_size, DMA_FROM_DEVICE);
2140 if (!skb)
2141 goto err_drop_frame;
2142
2143 rcvd_pkts++;
2144 rcvd_bytes += rx_bytes;
2145
2146 /* Linux processing */
2147 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2148 skb_put(skb, rx_bytes);
2149
2150 skb->protocol = eth_type_trans(skb, dev);
2151
2152 mvneta_rx_csum(pp, rx_status, skb);
2153
2154 napi_gro_receive(&port->napi, skb);
2155 }
2156
2157 if (rcvd_pkts) {
2158 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2159
2160 u64_stats_update_begin(&stats->syncp);
2161 stats->rx_packets += rcvd_pkts;
2162 stats->rx_bytes += rcvd_bytes;
2163 u64_stats_update_end(&stats->syncp);
2164 }
2165
2166 /* Update rxq management counters */
2167 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2168
2169 return rx_done;
2170 }
2171
2172 static inline void
2173 mvneta_tso_put_hdr(struct sk_buff *skb,
2174 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2175 {
2176 struct mvneta_tx_desc *tx_desc;
2177 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2178
2179 txq->tx_skb[txq->txq_put_index] = NULL;
2180 tx_desc = mvneta_txq_next_desc_get(txq);
2181 tx_desc->data_size = hdr_len;
2182 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2183 tx_desc->command |= MVNETA_TXD_F_DESC;
2184 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2185 txq->txq_put_index * TSO_HEADER_SIZE;
2186 mvneta_txq_inc_put(txq);
2187 }
2188
2189 static inline int
2190 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2191 struct sk_buff *skb, char *data, int size,
2192 bool last_tcp, bool is_last)
2193 {
2194 struct mvneta_tx_desc *tx_desc;
2195
2196 tx_desc = mvneta_txq_next_desc_get(txq);
2197 tx_desc->data_size = size;
2198 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2199 size, DMA_TO_DEVICE);
2200 if (unlikely(dma_mapping_error(dev->dev.parent,
2201 tx_desc->buf_phys_addr))) {
2202 mvneta_txq_desc_put(txq);
2203 return -ENOMEM;
2204 }
2205
2206 tx_desc->command = 0;
2207 txq->tx_skb[txq->txq_put_index] = NULL;
2208
2209 if (last_tcp) {
2210 /* last descriptor in the TCP packet */
2211 tx_desc->command = MVNETA_TXD_L_DESC;
2212
2213 /* last descriptor in SKB */
2214 if (is_last)
2215 txq->tx_skb[txq->txq_put_index] = skb;
2216 }
2217 mvneta_txq_inc_put(txq);
2218 return 0;
2219 }
2220
2221 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2222 struct mvneta_tx_queue *txq)
2223 {
2224 int total_len, data_left;
2225 int desc_count = 0;
2226 struct mvneta_port *pp = netdev_priv(dev);
2227 struct tso_t tso;
2228 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2229 int i;
2230
2231 /* Count needed descriptors */
2232 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2233 return 0;
2234
2235 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2236 pr_info("*** Is this even possible???!?!?\n");
2237 return 0;
2238 }
2239
2240 /* Initialize the TSO handler, and prepare the first payload */
2241 tso_start(skb, &tso);
2242
2243 total_len = skb->len - hdr_len;
2244 while (total_len > 0) {
2245 char *hdr;
2246
2247 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2248 total_len -= data_left;
2249 desc_count++;
2250
2251 /* prepare packet headers: MAC + IP + TCP */
2252 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2253 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2254
2255 mvneta_tso_put_hdr(skb, pp, txq);
2256
2257 while (data_left > 0) {
2258 int size;
2259 desc_count++;
2260
2261 size = min_t(int, tso.size, data_left);
2262
2263 if (mvneta_tso_put_data(dev, txq, skb,
2264 tso.data, size,
2265 size == data_left,
2266 total_len == 0))
2267 goto err_release;
2268 data_left -= size;
2269
2270 tso_build_data(skb, &tso, size);
2271 }
2272 }
2273
2274 return desc_count;
2275
2276 err_release:
2277 /* Release all used data descriptors; header descriptors must not
2278 * be DMA-unmapped.
2279 */
2280 for (i = desc_count - 1; i >= 0; i--) {
2281 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2282 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2283 dma_unmap_single(pp->dev->dev.parent,
2284 tx_desc->buf_phys_addr,
2285 tx_desc->data_size,
2286 DMA_TO_DEVICE);
2287 mvneta_txq_desc_put(txq);
2288 }
2289 return 0;
2290 }
2291
2292 /* Handle tx fragmentation processing */
2293 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2294 struct mvneta_tx_queue *txq)
2295 {
2296 struct mvneta_tx_desc *tx_desc;
2297 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2298
2299 for (i = 0; i < nr_frags; i++) {
2300 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2301 void *addr = page_address(frag->page.p) + frag->page_offset;
2302
2303 tx_desc = mvneta_txq_next_desc_get(txq);
2304 tx_desc->data_size = frag->size;
2305
2306 tx_desc->buf_phys_addr =
2307 dma_map_single(pp->dev->dev.parent, addr,
2308 tx_desc->data_size, DMA_TO_DEVICE);
2309
2310 if (dma_mapping_error(pp->dev->dev.parent,
2311 tx_desc->buf_phys_addr)) {
2312 mvneta_txq_desc_put(txq);
2313 goto error;
2314 }
2315
2316 if (i == nr_frags - 1) {
2317 /* Last descriptor */
2318 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2319 txq->tx_skb[txq->txq_put_index] = skb;
2320 } else {
2321 /* Descriptor in the middle: Not First, Not Last */
2322 tx_desc->command = 0;
2323 txq->tx_skb[txq->txq_put_index] = NULL;
2324 }
2325 mvneta_txq_inc_put(txq);
2326 }
2327
2328 return 0;
2329
2330 error:
2331 /* Release all descriptors that were used to map fragments of
2332 * this packet, as well as the corresponding DMA mappings
2333 */
2334 for (i = i - 1; i >= 0; i--) {
2335 tx_desc = txq->descs + i;
2336 dma_unmap_single(pp->dev->dev.parent,
2337 tx_desc->buf_phys_addr,
2338 tx_desc->data_size,
2339 DMA_TO_DEVICE);
2340 mvneta_txq_desc_put(txq);
2341 }
2342
2343 return -ENOMEM;
2344 }
2345
2346 /* Main tx processing */
2347 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2348 {
2349 struct mvneta_port *pp = netdev_priv(dev);
2350 u16 txq_id = skb_get_queue_mapping(skb);
2351 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2352 struct mvneta_tx_desc *tx_desc;
2353 int len = skb->len;
2354 int frags = 0;
2355 u32 tx_cmd;
2356
2357 if (!netif_running(dev))
2358 goto out;
2359
2360 if (skb_is_gso(skb)) {
2361 frags = mvneta_tx_tso(skb, dev, txq);
2362 goto out;
2363 }
2364
2365 frags = skb_shinfo(skb)->nr_frags + 1;
2366
2367 /* Get a descriptor for the first part of the packet */
2368 tx_desc = mvneta_txq_next_desc_get(txq);
2369
2370 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2371
2372 tx_desc->data_size = skb_headlen(skb);
2373
2374 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2375 tx_desc->data_size,
2376 DMA_TO_DEVICE);
2377 if (unlikely(dma_mapping_error(dev->dev.parent,
2378 tx_desc->buf_phys_addr))) {
2379 mvneta_txq_desc_put(txq);
2380 frags = 0;
2381 goto out;
2382 }
2383
2384 if (frags == 1) {
2385 /* First and Last descriptor */
2386 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2387 tx_desc->command = tx_cmd;
2388 txq->tx_skb[txq->txq_put_index] = skb;
2389 mvneta_txq_inc_put(txq);
2390 } else {
2391 /* First but not Last */
2392 tx_cmd |= MVNETA_TXD_F_DESC;
2393 txq->tx_skb[txq->txq_put_index] = NULL;
2394 mvneta_txq_inc_put(txq);
2395 tx_desc->command = tx_cmd;
2396 /* Continue with other skb fragments */
2397 if (mvneta_tx_frag_process(pp, skb, txq)) {
2398 dma_unmap_single(dev->dev.parent,
2399 tx_desc->buf_phys_addr,
2400 tx_desc->data_size,
2401 DMA_TO_DEVICE);
2402 mvneta_txq_desc_put(txq);
2403 frags = 0;
2404 goto out;
2405 }
2406 }
2407
2408 out:
2409 if (frags > 0) {
2410 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2411 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2412
2413 netdev_tx_sent_queue(nq, len);
2414
2415 txq->count += frags;
2416 if (txq->count >= txq->tx_stop_threshold)
2417 netif_tx_stop_queue(nq);
2418
2419 if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2420 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2421 mvneta_txq_pend_desc_add(pp, txq, frags);
2422 else
2423 txq->pending += frags;
2424
2425 u64_stats_update_begin(&stats->syncp);
2426 stats->tx_packets++;
2427 stats->tx_bytes += len;
2428 u64_stats_update_end(&stats->syncp);
2429 } else {
2430 dev->stats.tx_dropped++;
2431 dev_kfree_skb_any(skb);
2432 }
2433
2434 return NETDEV_TX_OK;
2435 }
2436
2437
2438 /* Free tx resources, when resetting a port */
2439 static void mvneta_txq_done_force(struct mvneta_port *pp,
2440 struct mvneta_tx_queue *txq)
2441
2442 {
2443 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2444 int tx_done = txq->count;
2445
2446 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2447
2448 /* reset txq */
2449 txq->count = 0;
2450 txq->txq_put_index = 0;
2451 txq->txq_get_index = 0;
2452 }
2453
2454 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2455 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2456 */
2457 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2458 {
2459 struct mvneta_tx_queue *txq;
2460 struct netdev_queue *nq;
2461
2462 while (cause_tx_done) {
2463 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2464
2465 nq = netdev_get_tx_queue(pp->dev, txq->id);
2466 __netif_tx_lock(nq, smp_processor_id());
2467
2468 if (txq->count)
2469 mvneta_txq_done(pp, txq);
2470
2471 __netif_tx_unlock(nq);
2472 cause_tx_done &= ~((1 << txq->id));
2473 }
2474 }
2475
2476 /* Compute crc8 of the specified address, using a unique algorithm ,
2477 * according to hw spec, different than generic crc8 algorithm
2478 */
2479 static int mvneta_addr_crc(unsigned char *addr)
2480 {
2481 int crc = 0;
2482 int i;
2483
2484 for (i = 0; i < ETH_ALEN; i++) {
2485 int j;
2486
2487 crc = (crc ^ addr[i]) << 8;
2488 for (j = 7; j >= 0; j--) {
2489 if (crc & (0x100 << j))
2490 crc ^= 0x107 << j;
2491 }
2492 }
2493
2494 return crc;
2495 }
2496
2497 /* This method controls the net device special MAC multicast support.
2498 * The Special Multicast Table for MAC addresses supports MAC of the form
2499 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2500 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2501 * Table entries in the DA-Filter table. This method set the Special
2502 * Multicast Table appropriate entry.
2503 */
2504 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2505 unsigned char last_byte,
2506 int queue)
2507 {
2508 unsigned int smc_table_reg;
2509 unsigned int tbl_offset;
2510 unsigned int reg_offset;
2511
2512 /* Register offset from SMC table base */
2513 tbl_offset = (last_byte / 4);
2514 /* Entry offset within the above reg */
2515 reg_offset = last_byte % 4;
2516
2517 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2518 + tbl_offset * 4));
2519
2520 if (queue == -1)
2521 smc_table_reg &= ~(0xff << (8 * reg_offset));
2522 else {
2523 smc_table_reg &= ~(0xff << (8 * reg_offset));
2524 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2525 }
2526
2527 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2528 smc_table_reg);
2529 }
2530
2531 /* This method controls the network device Other MAC multicast support.
2532 * The Other Multicast Table is used for multicast of another type.
2533 * A CRC-8 is used as an index to the Other Multicast Table entries
2534 * in the DA-Filter table.
2535 * The method gets the CRC-8 value from the calling routine and
2536 * sets the Other Multicast Table appropriate entry according to the
2537 * specified CRC-8 .
2538 */
2539 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2540 unsigned char crc8,
2541 int queue)
2542 {
2543 unsigned int omc_table_reg;
2544 unsigned int tbl_offset;
2545 unsigned int reg_offset;
2546
2547 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2548 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2549
2550 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2551
2552 if (queue == -1) {
2553 /* Clear accepts frame bit at specified Other DA table entry */
2554 omc_table_reg &= ~(0xff << (8 * reg_offset));
2555 } else {
2556 omc_table_reg &= ~(0xff << (8 * reg_offset));
2557 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2558 }
2559
2560 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2561 }
2562
2563 /* The network device supports multicast using two tables:
2564 * 1) Special Multicast Table for MAC addresses of the form
2565 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2566 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2567 * Table entries in the DA-Filter table.
2568 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2569 * is used as an index to the Other Multicast Table entries in the
2570 * DA-Filter table.
2571 */
2572 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2573 int queue)
2574 {
2575 unsigned char crc_result = 0;
2576
2577 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2578 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2579 return 0;
2580 }
2581
2582 crc_result = mvneta_addr_crc(p_addr);
2583 if (queue == -1) {
2584 if (pp->mcast_count[crc_result] == 0) {
2585 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2586 crc_result);
2587 return -EINVAL;
2588 }
2589
2590 pp->mcast_count[crc_result]--;
2591 if (pp->mcast_count[crc_result] != 0) {
2592 netdev_info(pp->dev,
2593 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2594 pp->mcast_count[crc_result], crc_result);
2595 return -EINVAL;
2596 }
2597 } else
2598 pp->mcast_count[crc_result]++;
2599
2600 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2601
2602 return 0;
2603 }
2604
2605 /* Configure Fitering mode of Ethernet port */
2606 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2607 int is_promisc)
2608 {
2609 u32 port_cfg_reg, val;
2610
2611 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2612
2613 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2614
2615 /* Set / Clear UPM bit in port configuration register */
2616 if (is_promisc) {
2617 /* Accept all Unicast addresses */
2618 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2619 val |= MVNETA_FORCE_UNI;
2620 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2621 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2622 } else {
2623 /* Reject all Unicast addresses */
2624 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2625 val &= ~MVNETA_FORCE_UNI;
2626 }
2627
2628 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2629 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2630 }
2631
2632 /* register unicast and multicast addresses */
2633 static void mvneta_set_rx_mode(struct net_device *dev)
2634 {
2635 struct mvneta_port *pp = netdev_priv(dev);
2636 struct netdev_hw_addr *ha;
2637
2638 if (dev->flags & IFF_PROMISC) {
2639 /* Accept all: Multicast + Unicast */
2640 mvneta_rx_unicast_promisc_set(pp, 1);
2641 mvneta_set_ucast_table(pp, pp->rxq_def);
2642 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2643 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2644 } else {
2645 /* Accept single Unicast */
2646 mvneta_rx_unicast_promisc_set(pp, 0);
2647 mvneta_set_ucast_table(pp, -1);
2648 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2649
2650 if (dev->flags & IFF_ALLMULTI) {
2651 /* Accept all multicast */
2652 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2653 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2654 } else {
2655 /* Accept only initialized multicast */
2656 mvneta_set_special_mcast_table(pp, -1);
2657 mvneta_set_other_mcast_table(pp, -1);
2658
2659 if (!netdev_mc_empty(dev)) {
2660 netdev_for_each_mc_addr(ha, dev) {
2661 mvneta_mcast_addr_set(pp, ha->addr,
2662 pp->rxq_def);
2663 }
2664 }
2665 }
2666 }
2667 }
2668
2669 /* Interrupt handling - the callback for request_irq() */
2670 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2671 {
2672 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2673
2674 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2675 napi_schedule(&pp->napi);
2676
2677 return IRQ_HANDLED;
2678 }
2679
2680 /* Interrupt handling - the callback for request_percpu_irq() */
2681 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2682 {
2683 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2684
2685 disable_percpu_irq(port->pp->dev->irq);
2686 napi_schedule(&port->napi);
2687
2688 return IRQ_HANDLED;
2689 }
2690
2691 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2692 struct phy_device *phy)
2693 {
2694 struct fixed_phy_status status;
2695 struct fixed_phy_status changed = {};
2696 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2697
2698 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2699 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2700 status.speed = SPEED_1000;
2701 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2702 status.speed = SPEED_100;
2703 else
2704 status.speed = SPEED_10;
2705 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2706 changed.link = 1;
2707 changed.speed = 1;
2708 changed.duplex = 1;
2709 fixed_phy_update_state(phy, &status, &changed);
2710 return 0;
2711 }
2712
2713 /* NAPI handler
2714 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2715 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2716 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2717 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2718 * Each CPU has its own causeRxTx register
2719 */
2720 static int mvneta_poll(struct napi_struct *napi, int budget)
2721 {
2722 int rx_done = 0;
2723 u32 cause_rx_tx;
2724 int rx_queue;
2725 struct mvneta_port *pp = netdev_priv(napi->dev);
2726 struct net_device *ndev = pp->dev;
2727 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2728
2729 if (!netif_running(pp->dev)) {
2730 napi_complete(napi);
2731 return rx_done;
2732 }
2733
2734 /* Read cause register */
2735 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2736 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2737 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2738
2739 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2740 if (pp->use_inband_status && (cause_misc &
2741 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2742 MVNETA_CAUSE_LINK_CHANGE |
2743 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2744 mvneta_fixed_link_update(pp, ndev->phydev);
2745 }
2746 }
2747
2748 /* Release Tx descriptors */
2749 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2750 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2751 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2752 }
2753
2754 /* For the case where the last mvneta_poll did not process all
2755 * RX packets
2756 */
2757 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2758
2759 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2760 port->cause_rx_tx;
2761
2762 if (rx_queue) {
2763 rx_queue = rx_queue - 1;
2764 if (pp->bm_priv)
2765 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2766 else
2767 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2768 }
2769
2770 if (rx_done < budget) {
2771 cause_rx_tx = 0;
2772 napi_complete_done(napi, rx_done);
2773
2774 if (pp->neta_armada3700) {
2775 unsigned long flags;
2776
2777 local_irq_save(flags);
2778 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2779 MVNETA_RX_INTR_MASK(rxq_number) |
2780 MVNETA_TX_INTR_MASK(txq_number) |
2781 MVNETA_MISCINTR_INTR_MASK);
2782 local_irq_restore(flags);
2783 } else {
2784 enable_percpu_irq(pp->dev->irq, 0);
2785 }
2786 }
2787
2788 if (pp->neta_armada3700)
2789 pp->cause_rx_tx = cause_rx_tx;
2790 else
2791 port->cause_rx_tx = cause_rx_tx;
2792
2793 return rx_done;
2794 }
2795
2796 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2797 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2798 int num)
2799 {
2800 int i;
2801
2802 for (i = 0; i < num; i++) {
2803 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2804 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2805 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2806 __func__, rxq->id, i, num);
2807 break;
2808 }
2809 }
2810
2811 /* Add this number of RX descriptors as non occupied (ready to
2812 * get packets)
2813 */
2814 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2815
2816 return i;
2817 }
2818
2819 /* Free all packets pending transmit from all TXQs and reset TX port */
2820 static void mvneta_tx_reset(struct mvneta_port *pp)
2821 {
2822 int queue;
2823
2824 /* free the skb's in the tx ring */
2825 for (queue = 0; queue < txq_number; queue++)
2826 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2827
2828 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2829 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2830 }
2831
2832 static void mvneta_rx_reset(struct mvneta_port *pp)
2833 {
2834 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2835 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2836 }
2837
2838 /* Rx/Tx queue initialization/cleanup methods */
2839
2840 /* Create a specified RX queue */
2841 static int mvneta_rxq_init(struct mvneta_port *pp,
2842 struct mvneta_rx_queue *rxq)
2843
2844 {
2845 rxq->size = pp->rx_ring_size;
2846
2847 /* Allocate memory for RX descriptors */
2848 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2849 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2850 &rxq->descs_phys, GFP_KERNEL);
2851 if (!rxq->descs)
2852 return -ENOMEM;
2853
2854 rxq->last_desc = rxq->size - 1;
2855
2856 /* Set Rx descriptors queue starting address */
2857 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2858 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2859
2860 /* Set Offset */
2861 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2862
2863 /* Set coalescing pkts and time */
2864 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2865 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2866
2867 if (!pp->bm_priv) {
2868 /* Fill RXQ with buffers from RX pool */
2869 mvneta_rxq_buf_size_set(pp, rxq,
2870 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2871 mvneta_rxq_bm_disable(pp, rxq);
2872 mvneta_rxq_fill(pp, rxq, rxq->size);
2873 } else {
2874 mvneta_rxq_bm_enable(pp, rxq);
2875 mvneta_rxq_long_pool_set(pp, rxq);
2876 mvneta_rxq_short_pool_set(pp, rxq);
2877 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2878 }
2879
2880 return 0;
2881 }
2882
2883 /* Cleanup Rx queue */
2884 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2885 struct mvneta_rx_queue *rxq)
2886 {
2887 mvneta_rxq_drop_pkts(pp, rxq);
2888
2889 if (rxq->descs)
2890 dma_free_coherent(pp->dev->dev.parent,
2891 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2892 rxq->descs,
2893 rxq->descs_phys);
2894
2895 rxq->descs = NULL;
2896 rxq->last_desc = 0;
2897 rxq->next_desc_to_proc = 0;
2898 rxq->descs_phys = 0;
2899 }
2900
2901 /* Create and initialize a tx queue */
2902 static int mvneta_txq_init(struct mvneta_port *pp,
2903 struct mvneta_tx_queue *txq)
2904 {
2905 int cpu;
2906
2907 txq->size = pp->tx_ring_size;
2908
2909 /* A queue must always have room for at least one skb.
2910 * Therefore, stop the queue when the free entries reaches
2911 * the maximum number of descriptors per skb.
2912 */
2913 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2914 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2915
2916
2917 /* Allocate memory for TX descriptors */
2918 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2919 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2920 &txq->descs_phys, GFP_KERNEL);
2921 if (!txq->descs)
2922 return -ENOMEM;
2923
2924 txq->last_desc = txq->size - 1;
2925
2926 /* Set maximum bandwidth for enabled TXQs */
2927 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2928 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2929
2930 /* Set Tx descriptors queue starting address */
2931 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2932 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2933
2934 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2935 GFP_KERNEL);
2936 if (!txq->tx_skb) {
2937 dma_free_coherent(pp->dev->dev.parent,
2938 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2939 txq->descs, txq->descs_phys);
2940 return -ENOMEM;
2941 }
2942
2943 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2944 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2945 txq->size * TSO_HEADER_SIZE,
2946 &txq->tso_hdrs_phys, GFP_KERNEL);
2947 if (!txq->tso_hdrs) {
2948 kfree(txq->tx_skb);
2949 dma_free_coherent(pp->dev->dev.parent,
2950 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2951 txq->descs, txq->descs_phys);
2952 return -ENOMEM;
2953 }
2954 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2955
2956 /* Setup XPS mapping */
2957 if (txq_number > 1)
2958 cpu = txq->id % num_present_cpus();
2959 else
2960 cpu = pp->rxq_def % num_present_cpus();
2961 cpumask_set_cpu(cpu, &txq->affinity_mask);
2962 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2963
2964 return 0;
2965 }
2966
2967 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2968 static void mvneta_txq_deinit(struct mvneta_port *pp,
2969 struct mvneta_tx_queue *txq)
2970 {
2971 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2972
2973 kfree(txq->tx_skb);
2974
2975 if (txq->tso_hdrs)
2976 dma_free_coherent(pp->dev->dev.parent,
2977 txq->size * TSO_HEADER_SIZE,
2978 txq->tso_hdrs, txq->tso_hdrs_phys);
2979 if (txq->descs)
2980 dma_free_coherent(pp->dev->dev.parent,
2981 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2982 txq->descs, txq->descs_phys);
2983
2984 netdev_tx_reset_queue(nq);
2985
2986 txq->descs = NULL;
2987 txq->last_desc = 0;
2988 txq->next_desc_to_proc = 0;
2989 txq->descs_phys = 0;
2990
2991 /* Set minimum bandwidth for disabled TXQs */
2992 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2993 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2994
2995 /* Set Tx descriptors queue starting address and size */
2996 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2997 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2998 }
2999
3000 /* Cleanup all Tx queues */
3001 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3002 {
3003 int queue;
3004
3005 for (queue = 0; queue < txq_number; queue++)
3006 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3007 }
3008
3009 /* Cleanup all Rx queues */
3010 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3011 {
3012 int queue;
3013
3014 for (queue = 0; queue < txq_number; queue++)
3015 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3016 }
3017
3018
3019 /* Init all Rx queues */
3020 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3021 {
3022 int queue;
3023
3024 for (queue = 0; queue < rxq_number; queue++) {
3025 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3026
3027 if (err) {
3028 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3029 __func__, queue);
3030 mvneta_cleanup_rxqs(pp);
3031 return err;
3032 }
3033 }
3034
3035 return 0;
3036 }
3037
3038 /* Init all tx queues */
3039 static int mvneta_setup_txqs(struct mvneta_port *pp)
3040 {
3041 int queue;
3042
3043 for (queue = 0; queue < txq_number; queue++) {
3044 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3045 if (err) {
3046 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3047 __func__, queue);
3048 mvneta_cleanup_txqs(pp);
3049 return err;
3050 }
3051 }
3052
3053 return 0;
3054 }
3055
3056 static void mvneta_start_dev(struct mvneta_port *pp)
3057 {
3058 int cpu;
3059 struct net_device *ndev = pp->dev;
3060
3061 mvneta_max_rx_size_set(pp, pp->pkt_size);
3062 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3063
3064 /* start the Rx/Tx activity */
3065 mvneta_port_enable(pp);
3066
3067 if (!pp->neta_armada3700) {
3068 /* Enable polling on the port */
3069 for_each_online_cpu(cpu) {
3070 struct mvneta_pcpu_port *port =
3071 per_cpu_ptr(pp->ports, cpu);
3072
3073 napi_enable(&port->napi);
3074 }
3075 } else {
3076 napi_enable(&pp->napi);
3077 }
3078
3079 /* Unmask interrupts. It has to be done from each CPU */
3080 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3081
3082 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3083 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3084 MVNETA_CAUSE_LINK_CHANGE |
3085 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3086
3087 phy_start(ndev->phydev);
3088 netif_tx_start_all_queues(pp->dev);
3089 }
3090
3091 static void mvneta_stop_dev(struct mvneta_port *pp)
3092 {
3093 unsigned int cpu;
3094 struct net_device *ndev = pp->dev;
3095
3096 phy_stop(ndev->phydev);
3097
3098 if (!pp->neta_armada3700) {
3099 for_each_online_cpu(cpu) {
3100 struct mvneta_pcpu_port *port =
3101 per_cpu_ptr(pp->ports, cpu);
3102
3103 napi_disable(&port->napi);
3104 }
3105 } else {
3106 napi_disable(&pp->napi);
3107 }
3108
3109 netif_carrier_off(pp->dev);
3110
3111 mvneta_port_down(pp);
3112 netif_tx_stop_all_queues(pp->dev);
3113
3114 /* Stop the port activity */
3115 mvneta_port_disable(pp);
3116
3117 /* Clear all ethernet port interrupts */
3118 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3119
3120 /* Mask all ethernet port interrupts */
3121 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3122
3123 mvneta_tx_reset(pp);
3124 mvneta_rx_reset(pp);
3125 }
3126
3127 static void mvneta_percpu_enable(void *arg)
3128 {
3129 struct mvneta_port *pp = arg;
3130
3131 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3132 }
3133
3134 static void mvneta_percpu_disable(void *arg)
3135 {
3136 struct mvneta_port *pp = arg;
3137
3138 disable_percpu_irq(pp->dev->irq);
3139 }
3140
3141 /* Change the device mtu */
3142 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3143 {
3144 struct mvneta_port *pp = netdev_priv(dev);
3145 int ret;
3146
3147 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3148 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3149 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3150 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3151 }
3152
3153 dev->mtu = mtu;
3154
3155 if (!netif_running(dev)) {
3156 if (pp->bm_priv)
3157 mvneta_bm_update_mtu(pp, mtu);
3158
3159 netdev_update_features(dev);
3160 return 0;
3161 }
3162
3163 /* The interface is running, so we have to force a
3164 * reallocation of the queues
3165 */
3166 mvneta_stop_dev(pp);
3167 on_each_cpu(mvneta_percpu_disable, pp, true);
3168
3169 mvneta_cleanup_txqs(pp);
3170 mvneta_cleanup_rxqs(pp);
3171
3172 if (pp->bm_priv)
3173 mvneta_bm_update_mtu(pp, mtu);
3174
3175 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3176 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3177 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3178
3179 ret = mvneta_setup_rxqs(pp);
3180 if (ret) {
3181 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3182 return ret;
3183 }
3184
3185 ret = mvneta_setup_txqs(pp);
3186 if (ret) {
3187 netdev_err(dev, "unable to setup txqs after MTU change\n");
3188 return ret;
3189 }
3190
3191 on_each_cpu(mvneta_percpu_enable, pp, true);
3192 mvneta_start_dev(pp);
3193 mvneta_port_up(pp);
3194
3195 netdev_update_features(dev);
3196
3197 return 0;
3198 }
3199
3200 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3201 netdev_features_t features)
3202 {
3203 struct mvneta_port *pp = netdev_priv(dev);
3204
3205 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3206 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3207 netdev_info(dev,
3208 "Disable IP checksum for MTU greater than %dB\n",
3209 pp->tx_csum_limit);
3210 }
3211
3212 return features;
3213 }
3214
3215 /* Get mac address */
3216 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3217 {
3218 u32 mac_addr_l, mac_addr_h;
3219
3220 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3221 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3222 addr[0] = (mac_addr_h >> 24) & 0xFF;
3223 addr[1] = (mac_addr_h >> 16) & 0xFF;
3224 addr[2] = (mac_addr_h >> 8) & 0xFF;
3225 addr[3] = mac_addr_h & 0xFF;
3226 addr[4] = (mac_addr_l >> 8) & 0xFF;
3227 addr[5] = mac_addr_l & 0xFF;
3228 }
3229
3230 /* Handle setting mac address */
3231 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3232 {
3233 struct mvneta_port *pp = netdev_priv(dev);
3234 struct sockaddr *sockaddr = addr;
3235 int ret;
3236
3237 ret = eth_prepare_mac_addr_change(dev, addr);
3238 if (ret < 0)
3239 return ret;
3240 /* Remove previous address table entry */
3241 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3242
3243 /* Set new addr in hw */
3244 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3245
3246 eth_commit_mac_addr_change(dev, addr);
3247 return 0;
3248 }
3249
3250 static void mvneta_adjust_link(struct net_device *ndev)
3251 {
3252 struct mvneta_port *pp = netdev_priv(ndev);
3253 struct phy_device *phydev = ndev->phydev;
3254 int status_change = 0;
3255
3256 if (phydev->link) {
3257 if ((pp->speed != phydev->speed) ||
3258 (pp->duplex != phydev->duplex)) {
3259 u32 val;
3260
3261 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3262 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3263 MVNETA_GMAC_CONFIG_GMII_SPEED |
3264 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3265
3266 if (phydev->duplex)
3267 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3268
3269 if (phydev->speed == SPEED_1000)
3270 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3271 else if (phydev->speed == SPEED_100)
3272 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3273
3274 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3275
3276 pp->duplex = phydev->duplex;
3277 pp->speed = phydev->speed;
3278 }
3279 }
3280
3281 if (phydev->link != pp->link) {
3282 if (!phydev->link) {
3283 pp->duplex = -1;
3284 pp->speed = 0;
3285 }
3286
3287 pp->link = phydev->link;
3288 status_change = 1;
3289 }
3290
3291 if (status_change) {
3292 if (phydev->link) {
3293 if (!pp->use_inband_status) {
3294 u32 val = mvreg_read(pp,
3295 MVNETA_GMAC_AUTONEG_CONFIG);
3296 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3297 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3298 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3299 val);
3300 }
3301 mvneta_port_up(pp);
3302 } else {
3303 if (!pp->use_inband_status) {
3304 u32 val = mvreg_read(pp,
3305 MVNETA_GMAC_AUTONEG_CONFIG);
3306 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3307 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3308 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3309 val);
3310 }
3311 mvneta_port_down(pp);
3312 }
3313 phy_print_status(phydev);
3314 }
3315 }
3316
3317 static int mvneta_mdio_probe(struct mvneta_port *pp)
3318 {
3319 struct phy_device *phy_dev;
3320 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3321
3322 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3323 pp->phy_interface);
3324 if (!phy_dev) {
3325 netdev_err(pp->dev, "could not find the PHY\n");
3326 return -ENODEV;
3327 }
3328
3329 phy_ethtool_get_wol(phy_dev, &wol);
3330 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3331
3332 phy_dev->supported &= PHY_GBIT_FEATURES;
3333 phy_dev->advertising = phy_dev->supported;
3334
3335 pp->link = 0;
3336 pp->duplex = 0;
3337 pp->speed = 0;
3338
3339 return 0;
3340 }
3341
3342 static void mvneta_mdio_remove(struct mvneta_port *pp)
3343 {
3344 struct net_device *ndev = pp->dev;
3345
3346 phy_disconnect(ndev->phydev);
3347 }
3348
3349 /* Electing a CPU must be done in an atomic way: it should be done
3350 * after or before the removal/insertion of a CPU and this function is
3351 * not reentrant.
3352 */
3353 static void mvneta_percpu_elect(struct mvneta_port *pp)
3354 {
3355 int elected_cpu = 0, max_cpu, cpu, i = 0;
3356
3357 /* Use the cpu associated to the rxq when it is online, in all
3358 * the other cases, use the cpu 0 which can't be offline.
3359 */
3360 if (cpu_online(pp->rxq_def))
3361 elected_cpu = pp->rxq_def;
3362
3363 max_cpu = num_present_cpus();
3364
3365 for_each_online_cpu(cpu) {
3366 int rxq_map = 0, txq_map = 0;
3367 int rxq;
3368
3369 for (rxq = 0; rxq < rxq_number; rxq++)
3370 if ((rxq % max_cpu) == cpu)
3371 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3372
3373 if (cpu == elected_cpu)
3374 /* Map the default receive queue queue to the
3375 * elected CPU
3376 */
3377 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3378
3379 /* We update the TX queue map only if we have one
3380 * queue. In this case we associate the TX queue to
3381 * the CPU bound to the default RX queue
3382 */
3383 if (txq_number == 1)
3384 txq_map = (cpu == elected_cpu) ?
3385 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3386 else
3387 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3388 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3389
3390 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3391
3392 /* Update the interrupt mask on each CPU according the
3393 * new mapping
3394 */
3395 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3396 pp, true);
3397 i++;
3398
3399 }
3400 };
3401
3402 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3403 {
3404 int other_cpu;
3405 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3406 node_online);
3407 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3408
3409
3410 spin_lock(&pp->lock);
3411 /*
3412 * Configuring the driver for a new CPU while the driver is
3413 * stopping is racy, so just avoid it.
3414 */
3415 if (pp->is_stopped) {
3416 spin_unlock(&pp->lock);
3417 return 0;
3418 }
3419 netif_tx_stop_all_queues(pp->dev);
3420
3421 /*
3422 * We have to synchronise on tha napi of each CPU except the one
3423 * just being woken up
3424 */
3425 for_each_online_cpu(other_cpu) {
3426 if (other_cpu != cpu) {
3427 struct mvneta_pcpu_port *other_port =
3428 per_cpu_ptr(pp->ports, other_cpu);
3429
3430 napi_synchronize(&other_port->napi);
3431 }
3432 }
3433
3434 /* Mask all ethernet port interrupts */
3435 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3436 napi_enable(&port->napi);
3437
3438 /*
3439 * Enable per-CPU interrupts on the CPU that is
3440 * brought up.
3441 */
3442 mvneta_percpu_enable(pp);
3443
3444 /*
3445 * Enable per-CPU interrupt on the one CPU we care
3446 * about.
3447 */
3448 mvneta_percpu_elect(pp);
3449
3450 /* Unmask all ethernet port interrupts */
3451 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3452 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3453 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3454 MVNETA_CAUSE_LINK_CHANGE |
3455 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3456 netif_tx_start_all_queues(pp->dev);
3457 spin_unlock(&pp->lock);
3458 return 0;
3459 }
3460
3461 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3462 {
3463 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3464 node_online);
3465 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3466
3467 /*
3468 * Thanks to this lock we are sure that any pending cpu election is
3469 * done.
3470 */
3471 spin_lock(&pp->lock);
3472 /* Mask all ethernet port interrupts */
3473 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3474 spin_unlock(&pp->lock);
3475
3476 napi_synchronize(&port->napi);
3477 napi_disable(&port->napi);
3478 /* Disable per-CPU interrupts on the CPU that is brought down. */
3479 mvneta_percpu_disable(pp);
3480 return 0;
3481 }
3482
3483 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3484 {
3485 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3486 node_dead);
3487
3488 /* Check if a new CPU must be elected now this on is down */
3489 spin_lock(&pp->lock);
3490 mvneta_percpu_elect(pp);
3491 spin_unlock(&pp->lock);
3492 /* Unmask all ethernet port interrupts */
3493 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3494 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3495 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3496 MVNETA_CAUSE_LINK_CHANGE |
3497 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3498 netif_tx_start_all_queues(pp->dev);
3499 return 0;
3500 }
3501
3502 static int mvneta_open(struct net_device *dev)
3503 {
3504 struct mvneta_port *pp = netdev_priv(dev);
3505 int ret;
3506
3507 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3508 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3509 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3510
3511 ret = mvneta_setup_rxqs(pp);
3512 if (ret)
3513 return ret;
3514
3515 ret = mvneta_setup_txqs(pp);
3516 if (ret)
3517 goto err_cleanup_rxqs;
3518
3519 /* Connect to port interrupt line */
3520 if (pp->neta_armada3700)
3521 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3522 dev->name, pp);
3523 else
3524 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3525 dev->name, pp->ports);
3526 if (ret) {
3527 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3528 goto err_cleanup_txqs;
3529 }
3530
3531 if (!pp->neta_armada3700) {
3532 /* Enable per-CPU interrupt on all the CPU to handle our RX
3533 * queue interrupts
3534 */
3535 on_each_cpu(mvneta_percpu_enable, pp, true);
3536
3537 pp->is_stopped = false;
3538 /* Register a CPU notifier to handle the case where our CPU
3539 * might be taken offline.
3540 */
3541 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3542 &pp->node_online);
3543 if (ret)
3544 goto err_free_irq;
3545
3546 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3547 &pp->node_dead);
3548 if (ret)
3549 goto err_free_online_hp;
3550 }
3551
3552 /* In default link is down */
3553 netif_carrier_off(pp->dev);
3554
3555 ret = mvneta_mdio_probe(pp);
3556 if (ret < 0) {
3557 netdev_err(dev, "cannot probe MDIO bus\n");
3558 goto err_free_dead_hp;
3559 }
3560
3561 mvneta_start_dev(pp);
3562
3563 return 0;
3564
3565 err_free_dead_hp:
3566 if (!pp->neta_armada3700)
3567 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3568 &pp->node_dead);
3569 err_free_online_hp:
3570 if (!pp->neta_armada3700)
3571 cpuhp_state_remove_instance_nocalls(online_hpstate,
3572 &pp->node_online);
3573 err_free_irq:
3574 if (pp->neta_armada3700) {
3575 free_irq(pp->dev->irq, pp);
3576 } else {
3577 on_each_cpu(mvneta_percpu_disable, pp, true);
3578 free_percpu_irq(pp->dev->irq, pp->ports);
3579 }
3580 err_cleanup_txqs:
3581 mvneta_cleanup_txqs(pp);
3582 err_cleanup_rxqs:
3583 mvneta_cleanup_rxqs(pp);
3584 return ret;
3585 }
3586
3587 /* Stop the port, free port interrupt line */
3588 static int mvneta_stop(struct net_device *dev)
3589 {
3590 struct mvneta_port *pp = netdev_priv(dev);
3591
3592 if (!pp->neta_armada3700) {
3593 /* Inform that we are stopping so we don't want to setup the
3594 * driver for new CPUs in the notifiers. The code of the
3595 * notifier for CPU online is protected by the same spinlock,
3596 * so when we get the lock, the notifer work is done.
3597 */
3598 spin_lock(&pp->lock);
3599 pp->is_stopped = true;
3600 spin_unlock(&pp->lock);
3601
3602 mvneta_stop_dev(pp);
3603 mvneta_mdio_remove(pp);
3604
3605 cpuhp_state_remove_instance_nocalls(online_hpstate,
3606 &pp->node_online);
3607 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3608 &pp->node_dead);
3609 on_each_cpu(mvneta_percpu_disable, pp, true);
3610 free_percpu_irq(dev->irq, pp->ports);
3611 } else {
3612 mvneta_stop_dev(pp);
3613 mvneta_mdio_remove(pp);
3614 free_irq(dev->irq, pp);
3615 }
3616
3617 mvneta_cleanup_rxqs(pp);
3618 mvneta_cleanup_txqs(pp);
3619
3620 return 0;
3621 }
3622
3623 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3624 {
3625 if (!dev->phydev)
3626 return -ENOTSUPP;
3627
3628 return phy_mii_ioctl(dev->phydev, ifr, cmd);
3629 }
3630
3631 /* Ethtool methods */
3632
3633 /* Set link ksettings (phy address, speed) for ethtools */
3634 static int
3635 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3636 const struct ethtool_link_ksettings *cmd)
3637 {
3638 struct mvneta_port *pp = netdev_priv(ndev);
3639 struct phy_device *phydev = ndev->phydev;
3640
3641 if (!phydev)
3642 return -ENODEV;
3643
3644 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3645 u32 val;
3646
3647 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3648
3649 if (cmd->base.autoneg == AUTONEG_DISABLE) {
3650 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3651 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3652 MVNETA_GMAC_CONFIG_GMII_SPEED |
3653 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3654
3655 if (phydev->duplex)
3656 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3657
3658 if (phydev->speed == SPEED_1000)
3659 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3660 else if (phydev->speed == SPEED_100)
3661 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3662
3663 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3664 }
3665
3666 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3667 netdev_info(pp->dev, "autoneg status set to %i\n",
3668 pp->use_inband_status);
3669
3670 if (netif_running(ndev)) {
3671 mvneta_port_down(pp);
3672 mvneta_port_up(pp);
3673 }
3674 }
3675
3676 return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3677 }
3678
3679 /* Set interrupt coalescing for ethtools */
3680 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3681 struct ethtool_coalesce *c)
3682 {
3683 struct mvneta_port *pp = netdev_priv(dev);
3684 int queue;
3685
3686 for (queue = 0; queue < rxq_number; queue++) {
3687 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3688 rxq->time_coal = c->rx_coalesce_usecs;
3689 rxq->pkts_coal = c->rx_max_coalesced_frames;
3690 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3691 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3692 }
3693
3694 for (queue = 0; queue < txq_number; queue++) {
3695 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3696 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3697 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3698 }
3699
3700 return 0;
3701 }
3702
3703 /* get coalescing for ethtools */
3704 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3705 struct ethtool_coalesce *c)
3706 {
3707 struct mvneta_port *pp = netdev_priv(dev);
3708
3709 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3710 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3711
3712 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3713 return 0;
3714 }
3715
3716
3717 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3718 struct ethtool_drvinfo *drvinfo)
3719 {
3720 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3721 sizeof(drvinfo->driver));
3722 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3723 sizeof(drvinfo->version));
3724 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3725 sizeof(drvinfo->bus_info));
3726 }
3727
3728
3729 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3730 struct ethtool_ringparam *ring)
3731 {
3732 struct mvneta_port *pp = netdev_priv(netdev);
3733
3734 ring->rx_max_pending = MVNETA_MAX_RXD;
3735 ring->tx_max_pending = MVNETA_MAX_TXD;
3736 ring->rx_pending = pp->rx_ring_size;
3737 ring->tx_pending = pp->tx_ring_size;
3738 }
3739
3740 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3741 struct ethtool_ringparam *ring)
3742 {
3743 struct mvneta_port *pp = netdev_priv(dev);
3744
3745 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3746 return -EINVAL;
3747 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3748 ring->rx_pending : MVNETA_MAX_RXD;
3749
3750 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3751 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3752 if (pp->tx_ring_size != ring->tx_pending)
3753 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3754 pp->tx_ring_size, ring->tx_pending);
3755
3756 if (netif_running(dev)) {
3757 mvneta_stop(dev);
3758 if (mvneta_open(dev)) {
3759 netdev_err(dev,
3760 "error on opening device after ring param change\n");
3761 return -ENOMEM;
3762 }
3763 }
3764
3765 return 0;
3766 }
3767
3768 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3769 u8 *data)
3770 {
3771 if (sset == ETH_SS_STATS) {
3772 int i;
3773
3774 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3775 memcpy(data + i * ETH_GSTRING_LEN,
3776 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3777 }
3778 }
3779
3780 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3781 {
3782 const struct mvneta_statistic *s;
3783 void __iomem *base = pp->base;
3784 u32 high, low, val;
3785 u64 val64;
3786 int i;
3787
3788 for (i = 0, s = mvneta_statistics;
3789 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3790 s++, i++) {
3791 switch (s->type) {
3792 case T_REG_32:
3793 val = readl_relaxed(base + s->offset);
3794 pp->ethtool_stats[i] += val;
3795 break;
3796 case T_REG_64:
3797 /* Docs say to read low 32-bit then high */
3798 low = readl_relaxed(base + s->offset);
3799 high = readl_relaxed(base + s->offset + 4);
3800 val64 = (u64)high << 32 | low;
3801 pp->ethtool_stats[i] += val64;
3802 break;
3803 }
3804 }
3805 }
3806
3807 static void mvneta_ethtool_get_stats(struct net_device *dev,
3808 struct ethtool_stats *stats, u64 *data)
3809 {
3810 struct mvneta_port *pp = netdev_priv(dev);
3811 int i;
3812
3813 mvneta_ethtool_update_stats(pp);
3814
3815 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3816 *data++ = pp->ethtool_stats[i];
3817 }
3818
3819 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3820 {
3821 if (sset == ETH_SS_STATS)
3822 return ARRAY_SIZE(mvneta_statistics);
3823 return -EOPNOTSUPP;
3824 }
3825
3826 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3827 {
3828 return MVNETA_RSS_LU_TABLE_SIZE;
3829 }
3830
3831 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3832 struct ethtool_rxnfc *info,
3833 u32 *rules __always_unused)
3834 {
3835 switch (info->cmd) {
3836 case ETHTOOL_GRXRINGS:
3837 info->data = rxq_number;
3838 return 0;
3839 case ETHTOOL_GRXFH:
3840 return -EOPNOTSUPP;
3841 default:
3842 return -EOPNOTSUPP;
3843 }
3844 }
3845
3846 static int mvneta_config_rss(struct mvneta_port *pp)
3847 {
3848 int cpu;
3849 u32 val;
3850
3851 netif_tx_stop_all_queues(pp->dev);
3852
3853 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3854
3855 /* We have to synchronise on the napi of each CPU */
3856 for_each_online_cpu(cpu) {
3857 struct mvneta_pcpu_port *pcpu_port =
3858 per_cpu_ptr(pp->ports, cpu);
3859
3860 napi_synchronize(&pcpu_port->napi);
3861 napi_disable(&pcpu_port->napi);
3862 }
3863
3864 pp->rxq_def = pp->indir[0];
3865
3866 /* Update unicast mapping */
3867 mvneta_set_rx_mode(pp->dev);
3868
3869 /* Update val of portCfg register accordingly with all RxQueue types */
3870 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3871 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3872
3873 /* Update the elected CPU matching the new rxq_def */
3874 spin_lock(&pp->lock);
3875 mvneta_percpu_elect(pp);
3876 spin_unlock(&pp->lock);
3877
3878 /* We have to synchronise on the napi of each CPU */
3879 for_each_online_cpu(cpu) {
3880 struct mvneta_pcpu_port *pcpu_port =
3881 per_cpu_ptr(pp->ports, cpu);
3882
3883 napi_enable(&pcpu_port->napi);
3884 }
3885
3886 netif_tx_start_all_queues(pp->dev);
3887
3888 return 0;
3889 }
3890
3891 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3892 const u8 *key, const u8 hfunc)
3893 {
3894 struct mvneta_port *pp = netdev_priv(dev);
3895
3896 /* Current code for Armada 3700 doesn't support RSS features yet */
3897 if (pp->neta_armada3700)
3898 return -EOPNOTSUPP;
3899
3900 /* We require at least one supported parameter to be changed
3901 * and no change in any of the unsupported parameters
3902 */
3903 if (key ||
3904 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3905 return -EOPNOTSUPP;
3906
3907 if (!indir)
3908 return 0;
3909
3910 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3911
3912 return mvneta_config_rss(pp);
3913 }
3914
3915 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3916 u8 *hfunc)
3917 {
3918 struct mvneta_port *pp = netdev_priv(dev);
3919
3920 /* Current code for Armada 3700 doesn't support RSS features yet */
3921 if (pp->neta_armada3700)
3922 return -EOPNOTSUPP;
3923
3924 if (hfunc)
3925 *hfunc = ETH_RSS_HASH_TOP;
3926
3927 if (!indir)
3928 return 0;
3929
3930 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3931
3932 return 0;
3933 }
3934
3935 static void mvneta_ethtool_get_wol(struct net_device *dev,
3936 struct ethtool_wolinfo *wol)
3937 {
3938 wol->supported = 0;
3939 wol->wolopts = 0;
3940
3941 if (dev->phydev)
3942 phy_ethtool_get_wol(dev->phydev, wol);
3943 }
3944
3945 static int mvneta_ethtool_set_wol(struct net_device *dev,
3946 struct ethtool_wolinfo *wol)
3947 {
3948 int ret;
3949
3950 if (!dev->phydev)
3951 return -EOPNOTSUPP;
3952
3953 ret = phy_ethtool_set_wol(dev->phydev, wol);
3954 if (!ret)
3955 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
3956
3957 return ret;
3958 }
3959
3960 static const struct net_device_ops mvneta_netdev_ops = {
3961 .ndo_open = mvneta_open,
3962 .ndo_stop = mvneta_stop,
3963 .ndo_start_xmit = mvneta_tx,
3964 .ndo_set_rx_mode = mvneta_set_rx_mode,
3965 .ndo_set_mac_address = mvneta_set_mac_addr,
3966 .ndo_change_mtu = mvneta_change_mtu,
3967 .ndo_fix_features = mvneta_fix_features,
3968 .ndo_get_stats64 = mvneta_get_stats64,
3969 .ndo_do_ioctl = mvneta_ioctl,
3970 };
3971
3972 static const struct ethtool_ops mvneta_eth_tool_ops = {
3973 .nway_reset = phy_ethtool_nway_reset,
3974 .get_link = ethtool_op_get_link,
3975 .set_coalesce = mvneta_ethtool_set_coalesce,
3976 .get_coalesce = mvneta_ethtool_get_coalesce,
3977 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3978 .get_ringparam = mvneta_ethtool_get_ringparam,
3979 .set_ringparam = mvneta_ethtool_set_ringparam,
3980 .get_strings = mvneta_ethtool_get_strings,
3981 .get_ethtool_stats = mvneta_ethtool_get_stats,
3982 .get_sset_count = mvneta_ethtool_get_sset_count,
3983 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3984 .get_rxnfc = mvneta_ethtool_get_rxnfc,
3985 .get_rxfh = mvneta_ethtool_get_rxfh,
3986 .set_rxfh = mvneta_ethtool_set_rxfh,
3987 .get_link_ksettings = phy_ethtool_get_link_ksettings,
3988 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3989 .get_wol = mvneta_ethtool_get_wol,
3990 .set_wol = mvneta_ethtool_set_wol,
3991 };
3992
3993 /* Initialize hw */
3994 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3995 {
3996 int queue;
3997
3998 /* Disable port */
3999 mvneta_port_disable(pp);
4000
4001 /* Set port default values */
4002 mvneta_defaults_set(pp);
4003
4004 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4005 if (!pp->txqs)
4006 return -ENOMEM;
4007
4008 /* Initialize TX descriptor rings */
4009 for (queue = 0; queue < txq_number; queue++) {
4010 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4011 txq->id = queue;
4012 txq->size = pp->tx_ring_size;
4013 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4014 }
4015
4016 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4017 if (!pp->rxqs)
4018 return -ENOMEM;
4019
4020 /* Create Rx descriptor rings */
4021 for (queue = 0; queue < rxq_number; queue++) {
4022 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4023 rxq->id = queue;
4024 rxq->size = pp->rx_ring_size;
4025 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4026 rxq->time_coal = MVNETA_RX_COAL_USEC;
4027 rxq->buf_virt_addr
4028 = devm_kmalloc_array(pp->dev->dev.parent,
4029 rxq->size,
4030 sizeof(*rxq->buf_virt_addr),
4031 GFP_KERNEL);
4032 if (!rxq->buf_virt_addr)
4033 return -ENOMEM;
4034 }
4035
4036 return 0;
4037 }
4038
4039 /* platform glue : initialize decoding windows */
4040 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4041 const struct mbus_dram_target_info *dram)
4042 {
4043 u32 win_enable;
4044 u32 win_protect;
4045 int i;
4046
4047 for (i = 0; i < 6; i++) {
4048 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4049 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4050
4051 if (i < 4)
4052 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4053 }
4054
4055 win_enable = 0x3f;
4056 win_protect = 0;
4057
4058 if (dram) {
4059 for (i = 0; i < dram->num_cs; i++) {
4060 const struct mbus_dram_window *cs = dram->cs + i;
4061
4062 mvreg_write(pp, MVNETA_WIN_BASE(i),
4063 (cs->base & 0xffff0000) |
4064 (cs->mbus_attr << 8) |
4065 dram->mbus_dram_target_id);
4066
4067 mvreg_write(pp, MVNETA_WIN_SIZE(i),
4068 (cs->size - 1) & 0xffff0000);
4069
4070 win_enable &= ~(1 << i);
4071 win_protect |= 3 << (2 * i);
4072 }
4073 } else {
4074 /* For Armada3700 open default 4GB Mbus window, leaving
4075 * arbitration of target/attribute to a different layer
4076 * of configuration.
4077 */
4078 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4079 win_enable &= ~BIT(0);
4080 win_protect = 3;
4081 }
4082
4083 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4084 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4085 }
4086
4087 /* Power up the port */
4088 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4089 {
4090 u32 ctrl;
4091
4092 /* MAC Cause register should be cleared */
4093 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4094
4095 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4096
4097 /* Even though it might look weird, when we're configured in
4098 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4099 */
4100 switch(phy_mode) {
4101 case PHY_INTERFACE_MODE_QSGMII:
4102 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4103 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4104 break;
4105 case PHY_INTERFACE_MODE_SGMII:
4106 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4107 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4108 break;
4109 case PHY_INTERFACE_MODE_RGMII:
4110 case PHY_INTERFACE_MODE_RGMII_ID:
4111 case PHY_INTERFACE_MODE_RGMII_RXID:
4112 case PHY_INTERFACE_MODE_RGMII_TXID:
4113 ctrl |= MVNETA_GMAC2_PORT_RGMII;
4114 break;
4115 default:
4116 return -EINVAL;
4117 }
4118
4119 /* Cancel Port Reset */
4120 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
4121 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
4122
4123 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4124 MVNETA_GMAC2_PORT_RESET) != 0)
4125 continue;
4126
4127 return 0;
4128 }
4129
4130 /* Device initialization routine */
4131 static int mvneta_probe(struct platform_device *pdev)
4132 {
4133 struct resource *res;
4134 struct device_node *dn = pdev->dev.of_node;
4135 struct device_node *phy_node;
4136 struct device_node *bm_node;
4137 struct mvneta_port *pp;
4138 struct net_device *dev;
4139 const char *dt_mac_addr;
4140 char hw_mac_addr[ETH_ALEN];
4141 const char *mac_from;
4142 const char *managed;
4143 int tx_csum_limit;
4144 int phy_mode;
4145 int err;
4146 int cpu;
4147
4148 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4149 if (!dev)
4150 return -ENOMEM;
4151
4152 dev->irq = irq_of_parse_and_map(dn, 0);
4153 if (dev->irq == 0) {
4154 err = -EINVAL;
4155 goto err_free_netdev;
4156 }
4157
4158 phy_node = of_parse_phandle(dn, "phy", 0);
4159 if (!phy_node) {
4160 if (!of_phy_is_fixed_link(dn)) {
4161 dev_err(&pdev->dev, "no PHY specified\n");
4162 err = -ENODEV;
4163 goto err_free_irq;
4164 }
4165
4166 err = of_phy_register_fixed_link(dn);
4167 if (err < 0) {
4168 dev_err(&pdev->dev, "cannot register fixed PHY\n");
4169 goto err_free_irq;
4170 }
4171
4172 /* In the case of a fixed PHY, the DT node associated
4173 * to the PHY is the Ethernet MAC DT node.
4174 */
4175 phy_node = of_node_get(dn);
4176 }
4177
4178 phy_mode = of_get_phy_mode(dn);
4179 if (phy_mode < 0) {
4180 dev_err(&pdev->dev, "incorrect phy-mode\n");
4181 err = -EINVAL;
4182 goto err_put_phy_node;
4183 }
4184
4185 dev->tx_queue_len = MVNETA_MAX_TXD;
4186 dev->watchdog_timeo = 5 * HZ;
4187 dev->netdev_ops = &mvneta_netdev_ops;
4188
4189 dev->ethtool_ops = &mvneta_eth_tool_ops;
4190
4191 pp = netdev_priv(dev);
4192 spin_lock_init(&pp->lock);
4193 pp->phy_node = phy_node;
4194 pp->phy_interface = phy_mode;
4195
4196 err = of_property_read_string(dn, "managed", &managed);
4197 pp->use_inband_status = (err == 0 &&
4198 strcmp(managed, "in-band-status") == 0);
4199
4200 pp->rxq_def = rxq_def;
4201
4202 /* Set RX packet offset correction for platforms, whose
4203 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4204 * platforms and 0B for 32-bit ones.
4205 */
4206 pp->rx_offset_correction =
4207 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4208
4209 pp->indir[0] = rxq_def;
4210
4211 /* Get special SoC configurations */
4212 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4213 pp->neta_armada3700 = true;
4214
4215 pp->clk = devm_clk_get(&pdev->dev, "core");
4216 if (IS_ERR(pp->clk))
4217 pp->clk = devm_clk_get(&pdev->dev, NULL);
4218 if (IS_ERR(pp->clk)) {
4219 err = PTR_ERR(pp->clk);
4220 goto err_put_phy_node;
4221 }
4222
4223 clk_prepare_enable(pp->clk);
4224
4225 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4226 if (!IS_ERR(pp->clk_bus))
4227 clk_prepare_enable(pp->clk_bus);
4228
4229 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4230 pp->base = devm_ioremap_resource(&pdev->dev, res);
4231 if (IS_ERR(pp->base)) {
4232 err = PTR_ERR(pp->base);
4233 goto err_clk;
4234 }
4235
4236 /* Alloc per-cpu port structure */
4237 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4238 if (!pp->ports) {
4239 err = -ENOMEM;
4240 goto err_clk;
4241 }
4242
4243 /* Alloc per-cpu stats */
4244 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4245 if (!pp->stats) {
4246 err = -ENOMEM;
4247 goto err_free_ports;
4248 }
4249
4250 dt_mac_addr = of_get_mac_address(dn);
4251 if (dt_mac_addr) {
4252 mac_from = "device tree";
4253 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4254 } else {
4255 mvneta_get_mac_addr(pp, hw_mac_addr);
4256 if (is_valid_ether_addr(hw_mac_addr)) {
4257 mac_from = "hardware";
4258 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4259 } else {
4260 mac_from = "random";
4261 eth_hw_addr_random(dev);
4262 }
4263 }
4264
4265 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4266 if (tx_csum_limit < 0 ||
4267 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4268 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4269 dev_info(&pdev->dev,
4270 "Wrong TX csum limit in DT, set to %dB\n",
4271 MVNETA_TX_CSUM_DEF_SIZE);
4272 }
4273 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4274 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4275 } else {
4276 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4277 }
4278
4279 pp->tx_csum_limit = tx_csum_limit;
4280
4281 pp->dram_target_info = mv_mbus_dram_info();
4282 /* Armada3700 requires setting default configuration of Mbus
4283 * windows, however without using filled mbus_dram_target_info
4284 * structure.
4285 */
4286 if (pp->dram_target_info || pp->neta_armada3700)
4287 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4288
4289 pp->tx_ring_size = MVNETA_MAX_TXD;
4290 pp->rx_ring_size = MVNETA_MAX_RXD;
4291
4292 pp->dev = dev;
4293 SET_NETDEV_DEV(dev, &pdev->dev);
4294
4295 pp->id = global_port_id++;
4296
4297 /* Obtain access to BM resources if enabled and already initialized */
4298 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4299 if (bm_node && bm_node->data) {
4300 pp->bm_priv = bm_node->data;
4301 err = mvneta_bm_port_init(pdev, pp);
4302 if (err < 0) {
4303 dev_info(&pdev->dev, "use SW buffer management\n");
4304 pp->bm_priv = NULL;
4305 }
4306 }
4307 of_node_put(bm_node);
4308
4309 err = mvneta_init(&pdev->dev, pp);
4310 if (err < 0)
4311 goto err_netdev;
4312
4313 err = mvneta_port_power_up(pp, phy_mode);
4314 if (err < 0) {
4315 dev_err(&pdev->dev, "can't power up port\n");
4316 goto err_netdev;
4317 }
4318
4319 /* Armada3700 network controller does not support per-cpu
4320 * operation, so only single NAPI should be initialized.
4321 */
4322 if (pp->neta_armada3700) {
4323 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4324 } else {
4325 for_each_present_cpu(cpu) {
4326 struct mvneta_pcpu_port *port =
4327 per_cpu_ptr(pp->ports, cpu);
4328
4329 netif_napi_add(dev, &port->napi, mvneta_poll,
4330 NAPI_POLL_WEIGHT);
4331 port->pp = pp;
4332 }
4333 }
4334
4335 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO;
4336 dev->hw_features |= dev->features;
4337 dev->vlan_features |= dev->features;
4338 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4339 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4340
4341 /* MTU range: 68 - 9676 */
4342 dev->min_mtu = ETH_MIN_MTU;
4343 /* 9676 == 9700 - 20 and rounding to 8 */
4344 dev->max_mtu = 9676;
4345
4346 err = register_netdev(dev);
4347 if (err < 0) {
4348 dev_err(&pdev->dev, "failed to register\n");
4349 goto err_free_stats;
4350 }
4351
4352 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4353 dev->dev_addr);
4354
4355 platform_set_drvdata(pdev, pp->dev);
4356
4357 if (pp->use_inband_status) {
4358 struct phy_device *phy = of_phy_find_device(dn);
4359
4360 mvneta_fixed_link_update(pp, phy);
4361
4362 put_device(&phy->mdio.dev);
4363 }
4364
4365 return 0;
4366
4367 err_netdev:
4368 unregister_netdev(dev);
4369 if (pp->bm_priv) {
4370 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4371 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4372 1 << pp->id);
4373 }
4374 err_free_stats:
4375 free_percpu(pp->stats);
4376 err_free_ports:
4377 free_percpu(pp->ports);
4378 err_clk:
4379 clk_disable_unprepare(pp->clk_bus);
4380 clk_disable_unprepare(pp->clk);
4381 err_put_phy_node:
4382 of_node_put(phy_node);
4383 if (of_phy_is_fixed_link(dn))
4384 of_phy_deregister_fixed_link(dn);
4385 err_free_irq:
4386 irq_dispose_mapping(dev->irq);
4387 err_free_netdev:
4388 free_netdev(dev);
4389 return err;
4390 }
4391
4392 /* Device removal routine */
4393 static int mvneta_remove(struct platform_device *pdev)
4394 {
4395 struct net_device *dev = platform_get_drvdata(pdev);
4396 struct device_node *dn = pdev->dev.of_node;
4397 struct mvneta_port *pp = netdev_priv(dev);
4398
4399 unregister_netdev(dev);
4400 clk_disable_unprepare(pp->clk_bus);
4401 clk_disable_unprepare(pp->clk);
4402 free_percpu(pp->ports);
4403 free_percpu(pp->stats);
4404 if (of_phy_is_fixed_link(dn))
4405 of_phy_deregister_fixed_link(dn);
4406 irq_dispose_mapping(dev->irq);
4407 of_node_put(pp->phy_node);
4408 free_netdev(dev);
4409
4410 if (pp->bm_priv) {
4411 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4412 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4413 1 << pp->id);
4414 }
4415
4416 return 0;
4417 }
4418
4419 #ifdef CONFIG_PM_SLEEP
4420 static int mvneta_suspend(struct device *device)
4421 {
4422 struct net_device *dev = dev_get_drvdata(device);
4423 struct mvneta_port *pp = netdev_priv(dev);
4424
4425 if (netif_running(dev))
4426 mvneta_stop(dev);
4427 netif_device_detach(dev);
4428 clk_disable_unprepare(pp->clk_bus);
4429 clk_disable_unprepare(pp->clk);
4430 return 0;
4431 }
4432
4433 static int mvneta_resume(struct device *device)
4434 {
4435 struct platform_device *pdev = to_platform_device(device);
4436 struct net_device *dev = dev_get_drvdata(device);
4437 struct mvneta_port *pp = netdev_priv(dev);
4438 int err;
4439
4440 clk_prepare_enable(pp->clk);
4441 if (!IS_ERR(pp->clk_bus))
4442 clk_prepare_enable(pp->clk_bus);
4443 if (pp->dram_target_info || pp->neta_armada3700)
4444 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4445 if (pp->bm_priv) {
4446 err = mvneta_bm_port_init(pdev, pp);
4447 if (err < 0) {
4448 dev_info(&pdev->dev, "use SW buffer management\n");
4449 pp->bm_priv = NULL;
4450 }
4451 }
4452 mvneta_defaults_set(pp);
4453 err = mvneta_port_power_up(pp, pp->phy_interface);
4454 if (err < 0) {
4455 dev_err(device, "can't power up port\n");
4456 return err;
4457 }
4458
4459 if (pp->use_inband_status)
4460 mvneta_fixed_link_update(pp, dev->phydev);
4461
4462 netif_device_attach(dev);
4463 if (netif_running(dev)) {
4464 mvneta_open(dev);
4465 mvneta_set_rx_mode(dev);
4466 }
4467
4468 return 0;
4469 }
4470 #endif
4471
4472 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4473
4474 static const struct of_device_id mvneta_match[] = {
4475 { .compatible = "marvell,armada-370-neta" },
4476 { .compatible = "marvell,armada-xp-neta" },
4477 { .compatible = "marvell,armada-3700-neta" },
4478 { }
4479 };
4480 MODULE_DEVICE_TABLE(of, mvneta_match);
4481
4482 static struct platform_driver mvneta_driver = {
4483 .probe = mvneta_probe,
4484 .remove = mvneta_remove,
4485 .driver = {
4486 .name = MVNETA_DRIVER_NAME,
4487 .of_match_table = mvneta_match,
4488 .pm = &mvneta_pm_ops,
4489 },
4490 };
4491
4492 static int __init mvneta_driver_init(void)
4493 {
4494 int ret;
4495
4496 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4497 mvneta_cpu_online,
4498 mvneta_cpu_down_prepare);
4499 if (ret < 0)
4500 goto out;
4501 online_hpstate = ret;
4502 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4503 NULL, mvneta_cpu_dead);
4504 if (ret)
4505 goto err_dead;
4506
4507 ret = platform_driver_register(&mvneta_driver);
4508 if (ret)
4509 goto err;
4510 return 0;
4511
4512 err:
4513 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4514 err_dead:
4515 cpuhp_remove_multi_state(online_hpstate);
4516 out:
4517 return ret;
4518 }
4519 module_init(mvneta_driver_init);
4520
4521 static void __exit mvneta_driver_exit(void)
4522 {
4523 platform_driver_unregister(&mvneta_driver);
4524 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4525 cpuhp_remove_multi_state(online_hpstate);
4526 }
4527 module_exit(mvneta_driver_exit);
4528
4529 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4530 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4531 MODULE_LICENSE("GPL");
4532
4533 module_param(rxq_number, int, S_IRUGO);
4534 module_param(txq_number, int, S_IRUGO);
4535
4536 module_param(rxq_def, int, S_IRUGO);
4537 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);