]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/marvell/mvneta.c
ethernet: Use octal not symbolic permissions
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phylink.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
63 #define MVNETA_PORT_RX_RESET 0x1cc0
64 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
65 #define MVNETA_PHY_ADDR 0x2000
66 #define MVNETA_PHY_ADDR_MASK 0x1f
67 #define MVNETA_MBUS_RETRY 0x2010
68 #define MVNETA_UNIT_INTR_CAUSE 0x2080
69 #define MVNETA_UNIT_CONTROL 0x20B0
70 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
76 #define MVNETA_PORT_CONFIG 0x2400
77 #define MVNETA_UNI_PROMISC_MODE BIT(0)
78 #define MVNETA_DEF_RXQ(q) ((q) << 1)
79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
86 MVNETA_DEF_RXQ_ARP(q) | \
87 MVNETA_DEF_RXQ_TCP(q) | \
88 MVNETA_DEF_RXQ_UDP(q) | \
89 MVNETA_DEF_RXQ_BPDU(q) | \
90 MVNETA_TX_UNSET_ERR_SUM | \
91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
93 #define MVNETA_MAC_ADDR_LOW 0x2414
94 #define MVNETA_MAC_ADDR_HIGH 0x2418
95 #define MVNETA_SDMA_CONFIG 0x241c
96 #define MVNETA_SDMA_BRST_SIZE_16 4
97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
98 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
99 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
100 #define MVNETA_DESC_SWAP BIT(6)
101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
102 #define MVNETA_PORT_STATUS 0x2444
103 #define MVNETA_TX_IN_PRGRS BIT(1)
104 #define MVNETA_TX_FIFO_EMPTY BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
106 #define MVNETA_SERDES_CFG 0x24A0
107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
109 #define MVNETA_TYPE_PRIO 0x24bc
110 #define MVNETA_FORCE_UNI BIT(21)
111 #define MVNETA_TXQ_CMD_1 0x24e4
112 #define MVNETA_TXQ_CMD 0x2448
113 #define MVNETA_TXQ_DISABLE_SHIFT 8
114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
119 #define MVNETA_ACC_MODE 0x2500
120 #define MVNETA_BM_ADDRESS 0x2504
121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
127
128 /* Exception Interrupt Port/Queue Cause register
129 *
130 * Their behavior depend of the mapping done using the PCPX2Q
131 * registers. For a given CPU if the bit associated to a queue is not
132 * set, then for the register a read from this CPU will always return
133 * 0 and a write won't do anything
134 */
135
136 #define MVNETA_INTR_NEW_CAUSE 0x25a0
137 #define MVNETA_INTR_NEW_MASK 0x25a4
138
139 /* bits 0..7 = TXQ SENT, one bit per queue.
140 * bits 8..15 = RXQ OCCUP, one bit per queue.
141 * bits 16..23 = RXQ FREE, one bit per queue.
142 * bit 29 = OLD_REG_SUM, see old reg ?
143 * bit 30 = TX_ERR_SUM, one bit for 4 ports
144 * bit 31 = MISC_SUM, one bit for 4 ports
145 */
146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
150 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
151
152 #define MVNETA_INTR_OLD_CAUSE 0x25a8
153 #define MVNETA_INTR_OLD_MASK 0x25ac
154
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE 0x25b0
157 #define MVNETA_INTR_MISC_MASK 0x25b4
158
159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
161 #define MVNETA_CAUSE_PTP BIT(4)
162
163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
168 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
171
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175
176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179
180 #define MVNETA_INTR_ENABLE 0x25b8
181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
183
184 #define MVNETA_RXQ_CMD 0x2680
185 #define MVNETA_RXQ_DISABLE_SHIFT 8
186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0 0x2c00
190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
192 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
193 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
194 #define MVNETA_GMAC_CTRL_2 0x2c08
195 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
196 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
197 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
198 #define MVNETA_GMAC2_PORT_RESET BIT(6)
199 #define MVNETA_GMAC_STATUS 0x2c10
200 #define MVNETA_GMAC_LINK_UP BIT(0)
201 #define MVNETA_GMAC_SPEED_1000 BIT(1)
202 #define MVNETA_GMAC_SPEED_100 BIT(2)
203 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
206 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
207 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
208 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
209 #define MVNETA_GMAC_SYNC_OK BIT(14)
210 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
211 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
212 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
213 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
214 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
215 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
216 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
217 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
218 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
219 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
220 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
221 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
222 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
223 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
224 #define MVNETA_MIB_COUNTERS_BASE 0x3000
225 #define MVNETA_MIB_LATE_COLLISION 0x7c
226 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
227 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
228 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
229 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
230 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
231 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
232 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
233 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
234 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
235 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
236 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
237 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
238 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
239 #define MVNETA_PORT_TX_RESET 0x3cf0
240 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
241 #define MVNETA_TX_MTU 0x3e0c
242 #define MVNETA_TX_TOKEN_SIZE 0x3e14
243 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
245 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
246
247 #define MVNETA_LPI_CTRL_0 0x2cc0
248 #define MVNETA_LPI_CTRL_1 0x2cc4
249 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
250 #define MVNETA_LPI_CTRL_2 0x2cc8
251 #define MVNETA_LPI_STATUS 0x2ccc
252
253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
254
255 /* Descriptor ring Macros */
256 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
257 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
258
259 /* Various constants */
260
261 /* Coalescing */
262 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
263 #define MVNETA_RX_COAL_PKTS 32
264 #define MVNETA_RX_COAL_USEC 100
265
266 /* The two bytes Marvell header. Either contains a special value used
267 * by Marvell switches when a specific hardware mode is enabled (not
268 * supported by this driver) or is filled automatically by zeroes on
269 * the RX side. Those two bytes being at the front of the Ethernet
270 * header, they allow to have the IP header aligned on a 4 bytes
271 * boundary automatically: the hardware skips those two bytes on its
272 * own.
273 */
274 #define MVNETA_MH_SIZE 2
275
276 #define MVNETA_VLAN_TAG_LEN 4
277
278 #define MVNETA_TX_CSUM_DEF_SIZE 1600
279 #define MVNETA_TX_CSUM_MAX_SIZE 9800
280 #define MVNETA_ACC_MODE_EXT1 1
281 #define MVNETA_ACC_MODE_EXT2 2
282
283 #define MVNETA_MAX_DECODE_WIN 6
284
285 /* Timeout constants */
286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
289
290 #define MVNETA_TX_MTU_MAX 0x3ffff
291
292 /* The RSS lookup table actually has 256 entries but we do not use
293 * them yet
294 */
295 #define MVNETA_RSS_LU_TABLE_SIZE 1
296
297 /* Max number of Rx descriptors */
298 #define MVNETA_MAX_RXD 128
299
300 /* Max number of Tx descriptors */
301 #define MVNETA_MAX_TXD 532
302
303 /* Max number of allowed TCP segments for software TSO */
304 #define MVNETA_MAX_TSO_SEGS 100
305
306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
307
308 /* descriptor aligned size */
309 #define MVNETA_DESC_ALIGNED_SIZE 32
310
311 /* Number of bytes to be taken into account by HW when putting incoming data
312 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
313 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
314 */
315 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
316
317 #define MVNETA_RX_PKT_SIZE(mtu) \
318 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
319 ETH_HLEN + ETH_FCS_LEN, \
320 cache_line_size())
321
322 #define IS_TSO_HEADER(txq, addr) \
323 ((addr >= txq->tso_hdrs_phys) && \
324 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
325
326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
327 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
328
329 enum {
330 ETHTOOL_STAT_EEE_WAKEUP,
331 ETHTOOL_MAX_STATS,
332 };
333
334 struct mvneta_statistic {
335 unsigned short offset;
336 unsigned short type;
337 const char name[ETH_GSTRING_LEN];
338 };
339
340 #define T_REG_32 32
341 #define T_REG_64 64
342 #define T_SW 1
343
344 static const struct mvneta_statistic mvneta_statistics[] = {
345 { 0x3000, T_REG_64, "good_octets_received", },
346 { 0x3010, T_REG_32, "good_frames_received", },
347 { 0x3008, T_REG_32, "bad_octets_received", },
348 { 0x3014, T_REG_32, "bad_frames_received", },
349 { 0x3018, T_REG_32, "broadcast_frames_received", },
350 { 0x301c, T_REG_32, "multicast_frames_received", },
351 { 0x3050, T_REG_32, "unrec_mac_control_received", },
352 { 0x3058, T_REG_32, "good_fc_received", },
353 { 0x305c, T_REG_32, "bad_fc_received", },
354 { 0x3060, T_REG_32, "undersize_received", },
355 { 0x3064, T_REG_32, "fragments_received", },
356 { 0x3068, T_REG_32, "oversize_received", },
357 { 0x306c, T_REG_32, "jabber_received", },
358 { 0x3070, T_REG_32, "mac_receive_error", },
359 { 0x3074, T_REG_32, "bad_crc_event", },
360 { 0x3078, T_REG_32, "collision", },
361 { 0x307c, T_REG_32, "late_collision", },
362 { 0x2484, T_REG_32, "rx_discard", },
363 { 0x2488, T_REG_32, "rx_overrun", },
364 { 0x3020, T_REG_32, "frames_64_octets", },
365 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
366 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
367 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
368 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
369 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
370 { 0x3038, T_REG_64, "good_octets_sent", },
371 { 0x3040, T_REG_32, "good_frames_sent", },
372 { 0x3044, T_REG_32, "excessive_collision", },
373 { 0x3048, T_REG_32, "multicast_frames_sent", },
374 { 0x304c, T_REG_32, "broadcast_frames_sent", },
375 { 0x3054, T_REG_32, "fc_sent", },
376 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
377 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
378 };
379
380 struct mvneta_pcpu_stats {
381 struct u64_stats_sync syncp;
382 u64 rx_packets;
383 u64 rx_bytes;
384 u64 tx_packets;
385 u64 tx_bytes;
386 };
387
388 struct mvneta_pcpu_port {
389 /* Pointer to the shared port */
390 struct mvneta_port *pp;
391
392 /* Pointer to the CPU-local NAPI struct */
393 struct napi_struct napi;
394
395 /* Cause of the previous interrupt */
396 u32 cause_rx_tx;
397 };
398
399 struct mvneta_port {
400 u8 id;
401 struct mvneta_pcpu_port __percpu *ports;
402 struct mvneta_pcpu_stats __percpu *stats;
403
404 int pkt_size;
405 unsigned int frag_size;
406 void __iomem *base;
407 struct mvneta_rx_queue *rxqs;
408 struct mvneta_tx_queue *txqs;
409 struct net_device *dev;
410 struct hlist_node node_online;
411 struct hlist_node node_dead;
412 int rxq_def;
413 /* Protect the access to the percpu interrupt registers,
414 * ensuring that the configuration remains coherent.
415 */
416 spinlock_t lock;
417 bool is_stopped;
418
419 u32 cause_rx_tx;
420 struct napi_struct napi;
421
422 /* Core clock */
423 struct clk *clk;
424 /* AXI clock */
425 struct clk *clk_bus;
426 u8 mcast_count[256];
427 u16 tx_ring_size;
428 u16 rx_ring_size;
429
430 phy_interface_t phy_interface;
431 struct device_node *dn;
432 unsigned int tx_csum_limit;
433 struct phylink *phylink;
434
435 struct mvneta_bm *bm_priv;
436 struct mvneta_bm_pool *pool_long;
437 struct mvneta_bm_pool *pool_short;
438 int bm_win_id;
439
440 bool eee_enabled;
441 bool eee_active;
442 bool tx_lpi_enabled;
443
444 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
445
446 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
447
448 /* Flags for special SoC configurations */
449 bool neta_armada3700;
450 u16 rx_offset_correction;
451 const struct mbus_dram_target_info *dram_target_info;
452 };
453
454 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
455 * layout of the transmit and reception DMA descriptors, and their
456 * layout is therefore defined by the hardware design
457 */
458
459 #define MVNETA_TX_L3_OFF_SHIFT 0
460 #define MVNETA_TX_IP_HLEN_SHIFT 8
461 #define MVNETA_TX_L4_UDP BIT(16)
462 #define MVNETA_TX_L3_IP6 BIT(17)
463 #define MVNETA_TXD_IP_CSUM BIT(18)
464 #define MVNETA_TXD_Z_PAD BIT(19)
465 #define MVNETA_TXD_L_DESC BIT(20)
466 #define MVNETA_TXD_F_DESC BIT(21)
467 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
468 MVNETA_TXD_L_DESC | \
469 MVNETA_TXD_F_DESC)
470 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
471 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
472
473 #define MVNETA_RXD_ERR_CRC 0x0
474 #define MVNETA_RXD_BM_POOL_SHIFT 13
475 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
476 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
477 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
478 #define MVNETA_RXD_ERR_LEN BIT(18)
479 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
480 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
481 #define MVNETA_RXD_L3_IP4 BIT(25)
482 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
483 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
484
485 #if defined(__LITTLE_ENDIAN)
486 struct mvneta_tx_desc {
487 u32 command; /* Options used by HW for packet transmitting.*/
488 u16 reserverd1; /* csum_l4 (for future use) */
489 u16 data_size; /* Data size of transmitted packet in bytes */
490 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
491 u32 reserved2; /* hw_cmd - (for future use, PMT) */
492 u32 reserved3[4]; /* Reserved - (for future use) */
493 };
494
495 struct mvneta_rx_desc {
496 u32 status; /* Info about received packet */
497 u16 reserved1; /* pnc_info - (for future use, PnC) */
498 u16 data_size; /* Size of received packet in bytes */
499
500 u32 buf_phys_addr; /* Physical address of the buffer */
501 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
502
503 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
504 u16 reserved3; /* prefetch_cmd, for future use */
505 u16 reserved4; /* csum_l4 - (for future use, PnC) */
506
507 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
508 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
509 };
510 #else
511 struct mvneta_tx_desc {
512 u16 data_size; /* Data size of transmitted packet in bytes */
513 u16 reserverd1; /* csum_l4 (for future use) */
514 u32 command; /* Options used by HW for packet transmitting.*/
515 u32 reserved2; /* hw_cmd - (for future use, PMT) */
516 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
517 u32 reserved3[4]; /* Reserved - (for future use) */
518 };
519
520 struct mvneta_rx_desc {
521 u16 data_size; /* Size of received packet in bytes */
522 u16 reserved1; /* pnc_info - (for future use, PnC) */
523 u32 status; /* Info about received packet */
524
525 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
526 u32 buf_phys_addr; /* Physical address of the buffer */
527
528 u16 reserved4; /* csum_l4 - (for future use, PnC) */
529 u16 reserved3; /* prefetch_cmd, for future use */
530 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
531
532 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
533 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
534 };
535 #endif
536
537 struct mvneta_tx_queue {
538 /* Number of this TX queue, in the range 0-7 */
539 u8 id;
540
541 /* Number of TX DMA descriptors in the descriptor ring */
542 int size;
543
544 /* Number of currently used TX DMA descriptor in the
545 * descriptor ring
546 */
547 int count;
548 int pending;
549 int tx_stop_threshold;
550 int tx_wake_threshold;
551
552 /* Array of transmitted skb */
553 struct sk_buff **tx_skb;
554
555 /* Index of last TX DMA descriptor that was inserted */
556 int txq_put_index;
557
558 /* Index of the TX DMA descriptor to be cleaned up */
559 int txq_get_index;
560
561 u32 done_pkts_coal;
562
563 /* Virtual address of the TX DMA descriptors array */
564 struct mvneta_tx_desc *descs;
565
566 /* DMA address of the TX DMA descriptors array */
567 dma_addr_t descs_phys;
568
569 /* Index of the last TX DMA descriptor */
570 int last_desc;
571
572 /* Index of the next TX DMA descriptor to process */
573 int next_desc_to_proc;
574
575 /* DMA buffers for TSO headers */
576 char *tso_hdrs;
577
578 /* DMA address of TSO headers */
579 dma_addr_t tso_hdrs_phys;
580
581 /* Affinity mask for CPUs*/
582 cpumask_t affinity_mask;
583 };
584
585 struct mvneta_rx_queue {
586 /* rx queue number, in the range 0-7 */
587 u8 id;
588
589 /* num of rx descriptors in the rx descriptor ring */
590 int size;
591
592 /* counter of times when mvneta_refill() failed */
593 int missed;
594
595 u32 pkts_coal;
596 u32 time_coal;
597
598 /* Virtual address of the RX buffer */
599 void **buf_virt_addr;
600
601 /* Virtual address of the RX DMA descriptors array */
602 struct mvneta_rx_desc *descs;
603
604 /* DMA address of the RX DMA descriptors array */
605 dma_addr_t descs_phys;
606
607 /* Index of the last RX DMA descriptor */
608 int last_desc;
609
610 /* Index of the next RX DMA descriptor to process */
611 int next_desc_to_proc;
612 };
613
614 static enum cpuhp_state online_hpstate;
615 /* The hardware supports eight (8) rx queues, but we are only allowing
616 * the first one to be used. Therefore, let's just allocate one queue.
617 */
618 static int rxq_number = 8;
619 static int txq_number = 8;
620
621 static int rxq_def;
622
623 static int rx_copybreak __read_mostly = 256;
624
625 /* HW BM need that each port be identify by a unique ID */
626 static int global_port_id;
627
628 #define MVNETA_DRIVER_NAME "mvneta"
629 #define MVNETA_DRIVER_VERSION "1.0"
630
631 /* Utility/helper methods */
632
633 /* Write helper method */
634 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
635 {
636 writel(data, pp->base + offset);
637 }
638
639 /* Read helper method */
640 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
641 {
642 return readl(pp->base + offset);
643 }
644
645 /* Increment txq get counter */
646 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
647 {
648 txq->txq_get_index++;
649 if (txq->txq_get_index == txq->size)
650 txq->txq_get_index = 0;
651 }
652
653 /* Increment txq put counter */
654 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
655 {
656 txq->txq_put_index++;
657 if (txq->txq_put_index == txq->size)
658 txq->txq_put_index = 0;
659 }
660
661
662 /* Clear all MIB counters */
663 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
664 {
665 int i;
666 u32 dummy;
667
668 /* Perform dummy reads from MIB counters */
669 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
670 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
671 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
672 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
673 }
674
675 /* Get System Network Statistics */
676 static void
677 mvneta_get_stats64(struct net_device *dev,
678 struct rtnl_link_stats64 *stats)
679 {
680 struct mvneta_port *pp = netdev_priv(dev);
681 unsigned int start;
682 int cpu;
683
684 for_each_possible_cpu(cpu) {
685 struct mvneta_pcpu_stats *cpu_stats;
686 u64 rx_packets;
687 u64 rx_bytes;
688 u64 tx_packets;
689 u64 tx_bytes;
690
691 cpu_stats = per_cpu_ptr(pp->stats, cpu);
692 do {
693 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
694 rx_packets = cpu_stats->rx_packets;
695 rx_bytes = cpu_stats->rx_bytes;
696 tx_packets = cpu_stats->tx_packets;
697 tx_bytes = cpu_stats->tx_bytes;
698 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
699
700 stats->rx_packets += rx_packets;
701 stats->rx_bytes += rx_bytes;
702 stats->tx_packets += tx_packets;
703 stats->tx_bytes += tx_bytes;
704 }
705
706 stats->rx_errors = dev->stats.rx_errors;
707 stats->rx_dropped = dev->stats.rx_dropped;
708
709 stats->tx_dropped = dev->stats.tx_dropped;
710 }
711
712 /* Rx descriptors helper methods */
713
714 /* Checks whether the RX descriptor having this status is both the first
715 * and the last descriptor for the RX packet. Each RX packet is currently
716 * received through a single RX descriptor, so not having each RX
717 * descriptor with its first and last bits set is an error
718 */
719 static int mvneta_rxq_desc_is_first_last(u32 status)
720 {
721 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
722 MVNETA_RXD_FIRST_LAST_DESC;
723 }
724
725 /* Add number of descriptors ready to receive new packets */
726 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
727 struct mvneta_rx_queue *rxq,
728 int ndescs)
729 {
730 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
731 * be added at once
732 */
733 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
734 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
735 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
736 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
737 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
738 }
739
740 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
741 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
742 }
743
744 /* Get number of RX descriptors occupied by received packets */
745 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
746 struct mvneta_rx_queue *rxq)
747 {
748 u32 val;
749
750 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
751 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
752 }
753
754 /* Update num of rx desc called upon return from rx path or
755 * from mvneta_rxq_drop_pkts().
756 */
757 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
758 struct mvneta_rx_queue *rxq,
759 int rx_done, int rx_filled)
760 {
761 u32 val;
762
763 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
764 val = rx_done |
765 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
766 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
767 return;
768 }
769
770 /* Only 255 descriptors can be added at once */
771 while ((rx_done > 0) || (rx_filled > 0)) {
772 if (rx_done <= 0xff) {
773 val = rx_done;
774 rx_done = 0;
775 } else {
776 val = 0xff;
777 rx_done -= 0xff;
778 }
779 if (rx_filled <= 0xff) {
780 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
781 rx_filled = 0;
782 } else {
783 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
784 rx_filled -= 0xff;
785 }
786 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
787 }
788 }
789
790 /* Get pointer to next RX descriptor to be processed by SW */
791 static struct mvneta_rx_desc *
792 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
793 {
794 int rx_desc = rxq->next_desc_to_proc;
795
796 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
797 prefetch(rxq->descs + rxq->next_desc_to_proc);
798 return rxq->descs + rx_desc;
799 }
800
801 /* Change maximum receive size of the port. */
802 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
803 {
804 u32 val;
805
806 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
807 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
808 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
809 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
810 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
811 }
812
813
814 /* Set rx queue offset */
815 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
816 struct mvneta_rx_queue *rxq,
817 int offset)
818 {
819 u32 val;
820
821 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
822 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
823
824 /* Offset is in */
825 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
826 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
827 }
828
829
830 /* Tx descriptors helper methods */
831
832 /* Update HW with number of TX descriptors to be sent */
833 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
834 struct mvneta_tx_queue *txq,
835 int pend_desc)
836 {
837 u32 val;
838
839 pend_desc += txq->pending;
840
841 /* Only 255 Tx descriptors can be added at once */
842 do {
843 val = min(pend_desc, 255);
844 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
845 pend_desc -= val;
846 } while (pend_desc > 0);
847 txq->pending = 0;
848 }
849
850 /* Get pointer to next TX descriptor to be processed (send) by HW */
851 static struct mvneta_tx_desc *
852 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
853 {
854 int tx_desc = txq->next_desc_to_proc;
855
856 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
857 return txq->descs + tx_desc;
858 }
859
860 /* Release the last allocated TX descriptor. Useful to handle DMA
861 * mapping failures in the TX path.
862 */
863 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
864 {
865 if (txq->next_desc_to_proc == 0)
866 txq->next_desc_to_proc = txq->last_desc - 1;
867 else
868 txq->next_desc_to_proc--;
869 }
870
871 /* Set rxq buf size */
872 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
873 struct mvneta_rx_queue *rxq,
874 int buf_size)
875 {
876 u32 val;
877
878 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
879
880 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
881 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
882
883 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
884 }
885
886 /* Disable buffer management (BM) */
887 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
888 struct mvneta_rx_queue *rxq)
889 {
890 u32 val;
891
892 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
893 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
894 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
895 }
896
897 /* Enable buffer management (BM) */
898 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
899 struct mvneta_rx_queue *rxq)
900 {
901 u32 val;
902
903 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
904 val |= MVNETA_RXQ_HW_BUF_ALLOC;
905 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
906 }
907
908 /* Notify HW about port's assignment of pool for bigger packets */
909 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
910 struct mvneta_rx_queue *rxq)
911 {
912 u32 val;
913
914 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
915 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
916 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
917
918 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
919 }
920
921 /* Notify HW about port's assignment of pool for smaller packets */
922 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
923 struct mvneta_rx_queue *rxq)
924 {
925 u32 val;
926
927 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
928 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
929 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
930
931 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
932 }
933
934 /* Set port's receive buffer size for assigned BM pool */
935 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
936 int buf_size,
937 u8 pool_id)
938 {
939 u32 val;
940
941 if (!IS_ALIGNED(buf_size, 8)) {
942 dev_warn(pp->dev->dev.parent,
943 "illegal buf_size value %d, round to %d\n",
944 buf_size, ALIGN(buf_size, 8));
945 buf_size = ALIGN(buf_size, 8);
946 }
947
948 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
949 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
950 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
951 }
952
953 /* Configure MBUS window in order to enable access BM internal SRAM */
954 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
955 u8 target, u8 attr)
956 {
957 u32 win_enable, win_protect;
958 int i;
959
960 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
961
962 if (pp->bm_win_id < 0) {
963 /* Find first not occupied window */
964 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
965 if (win_enable & (1 << i)) {
966 pp->bm_win_id = i;
967 break;
968 }
969 }
970 if (i == MVNETA_MAX_DECODE_WIN)
971 return -ENOMEM;
972 } else {
973 i = pp->bm_win_id;
974 }
975
976 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
977 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
978
979 if (i < 4)
980 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
981
982 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
983 (attr << 8) | target);
984
985 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
986
987 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
988 win_protect |= 3 << (2 * i);
989 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
990
991 win_enable &= ~(1 << i);
992 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
993
994 return 0;
995 }
996
997 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
998 {
999 u32 wsize;
1000 u8 target, attr;
1001 int err;
1002
1003 /* Get BM window information */
1004 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1005 &target, &attr);
1006 if (err < 0)
1007 return err;
1008
1009 pp->bm_win_id = -1;
1010
1011 /* Open NETA -> BM window */
1012 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1013 target, attr);
1014 if (err < 0) {
1015 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1016 return err;
1017 }
1018 return 0;
1019 }
1020
1021 /* Assign and initialize pools for port. In case of fail
1022 * buffer manager will remain disabled for current port.
1023 */
1024 static int mvneta_bm_port_init(struct platform_device *pdev,
1025 struct mvneta_port *pp)
1026 {
1027 struct device_node *dn = pdev->dev.of_node;
1028 u32 long_pool_id, short_pool_id;
1029
1030 if (!pp->neta_armada3700) {
1031 int ret;
1032
1033 ret = mvneta_bm_port_mbus_init(pp);
1034 if (ret)
1035 return ret;
1036 }
1037
1038 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1039 netdev_info(pp->dev, "missing long pool id\n");
1040 return -EINVAL;
1041 }
1042
1043 /* Create port's long pool depending on mtu */
1044 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1045 MVNETA_BM_LONG, pp->id,
1046 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1047 if (!pp->pool_long) {
1048 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1049 return -ENOMEM;
1050 }
1051
1052 pp->pool_long->port_map |= 1 << pp->id;
1053
1054 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1055 pp->pool_long->id);
1056
1057 /* If short pool id is not defined, assume using single pool */
1058 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1059 short_pool_id = long_pool_id;
1060
1061 /* Create port's short pool */
1062 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1063 MVNETA_BM_SHORT, pp->id,
1064 MVNETA_BM_SHORT_PKT_SIZE);
1065 if (!pp->pool_short) {
1066 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1067 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1068 return -ENOMEM;
1069 }
1070
1071 if (short_pool_id != long_pool_id) {
1072 pp->pool_short->port_map |= 1 << pp->id;
1073 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1074 pp->pool_short->id);
1075 }
1076
1077 return 0;
1078 }
1079
1080 /* Update settings of a pool for bigger packets */
1081 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1082 {
1083 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1084 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1085 int num;
1086
1087 /* Release all buffers from long pool */
1088 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1089 if (hwbm_pool->buf_num) {
1090 WARN(1, "cannot free all buffers in pool %d\n",
1091 bm_pool->id);
1092 goto bm_mtu_err;
1093 }
1094
1095 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1096 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1097 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1098 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1099
1100 /* Fill entire long pool */
1101 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1102 if (num != hwbm_pool->size) {
1103 WARN(1, "pool %d: %d of %d allocated\n",
1104 bm_pool->id, num, hwbm_pool->size);
1105 goto bm_mtu_err;
1106 }
1107 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1108
1109 return;
1110
1111 bm_mtu_err:
1112 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1113 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1114
1115 pp->bm_priv = NULL;
1116 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1117 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1118 }
1119
1120 /* Start the Ethernet port RX and TX activity */
1121 static void mvneta_port_up(struct mvneta_port *pp)
1122 {
1123 int queue;
1124 u32 q_map;
1125
1126 /* Enable all initialized TXs. */
1127 q_map = 0;
1128 for (queue = 0; queue < txq_number; queue++) {
1129 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1130 if (txq->descs)
1131 q_map |= (1 << queue);
1132 }
1133 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1134
1135 /* Enable all initialized RXQs. */
1136 for (queue = 0; queue < rxq_number; queue++) {
1137 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1138
1139 if (rxq->descs)
1140 q_map |= (1 << queue);
1141 }
1142 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1143 }
1144
1145 /* Stop the Ethernet port activity */
1146 static void mvneta_port_down(struct mvneta_port *pp)
1147 {
1148 u32 val;
1149 int count;
1150
1151 /* Stop Rx port activity. Check port Rx activity. */
1152 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1153
1154 /* Issue stop command for active channels only */
1155 if (val != 0)
1156 mvreg_write(pp, MVNETA_RXQ_CMD,
1157 val << MVNETA_RXQ_DISABLE_SHIFT);
1158
1159 /* Wait for all Rx activity to terminate. */
1160 count = 0;
1161 do {
1162 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1163 netdev_warn(pp->dev,
1164 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1165 val);
1166 break;
1167 }
1168 mdelay(1);
1169
1170 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1171 } while (val & MVNETA_RXQ_ENABLE_MASK);
1172
1173 /* Stop Tx port activity. Check port Tx activity. Issue stop
1174 * command for active channels only
1175 */
1176 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1177
1178 if (val != 0)
1179 mvreg_write(pp, MVNETA_TXQ_CMD,
1180 (val << MVNETA_TXQ_DISABLE_SHIFT));
1181
1182 /* Wait for all Tx activity to terminate. */
1183 count = 0;
1184 do {
1185 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1186 netdev_warn(pp->dev,
1187 "TIMEOUT for TX stopped status=0x%08x\n",
1188 val);
1189 break;
1190 }
1191 mdelay(1);
1192
1193 /* Check TX Command reg that all Txqs are stopped */
1194 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1195
1196 } while (val & MVNETA_TXQ_ENABLE_MASK);
1197
1198 /* Double check to verify that TX FIFO is empty */
1199 count = 0;
1200 do {
1201 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1202 netdev_warn(pp->dev,
1203 "TX FIFO empty timeout status=0x%08x\n",
1204 val);
1205 break;
1206 }
1207 mdelay(1);
1208
1209 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1210 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1211 (val & MVNETA_TX_IN_PRGRS));
1212
1213 udelay(200);
1214 }
1215
1216 /* Enable the port by setting the port enable bit of the MAC control register */
1217 static void mvneta_port_enable(struct mvneta_port *pp)
1218 {
1219 u32 val;
1220
1221 /* Enable port */
1222 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1223 val |= MVNETA_GMAC0_PORT_ENABLE;
1224 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1225 }
1226
1227 /* Disable the port and wait for about 200 usec before retuning */
1228 static void mvneta_port_disable(struct mvneta_port *pp)
1229 {
1230 u32 val;
1231
1232 /* Reset the Enable bit in the Serial Control Register */
1233 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1234 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1235 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1236
1237 udelay(200);
1238 }
1239
1240 /* Multicast tables methods */
1241
1242 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1243 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1244 {
1245 int offset;
1246 u32 val;
1247
1248 if (queue == -1) {
1249 val = 0;
1250 } else {
1251 val = 0x1 | (queue << 1);
1252 val |= (val << 24) | (val << 16) | (val << 8);
1253 }
1254
1255 for (offset = 0; offset <= 0xc; offset += 4)
1256 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1257 }
1258
1259 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1260 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1261 {
1262 int offset;
1263 u32 val;
1264
1265 if (queue == -1) {
1266 val = 0;
1267 } else {
1268 val = 0x1 | (queue << 1);
1269 val |= (val << 24) | (val << 16) | (val << 8);
1270 }
1271
1272 for (offset = 0; offset <= 0xfc; offset += 4)
1273 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1274
1275 }
1276
1277 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1278 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1279 {
1280 int offset;
1281 u32 val;
1282
1283 if (queue == -1) {
1284 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1285 val = 0;
1286 } else {
1287 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1288 val = 0x1 | (queue << 1);
1289 val |= (val << 24) | (val << 16) | (val << 8);
1290 }
1291
1292 for (offset = 0; offset <= 0xfc; offset += 4)
1293 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1294 }
1295
1296 static void mvneta_percpu_unmask_interrupt(void *arg)
1297 {
1298 struct mvneta_port *pp = arg;
1299
1300 /* All the queue are unmasked, but actually only the ones
1301 * mapped to this CPU will be unmasked
1302 */
1303 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1304 MVNETA_RX_INTR_MASK_ALL |
1305 MVNETA_TX_INTR_MASK_ALL |
1306 MVNETA_MISCINTR_INTR_MASK);
1307 }
1308
1309 static void mvneta_percpu_mask_interrupt(void *arg)
1310 {
1311 struct mvneta_port *pp = arg;
1312
1313 /* All the queue are masked, but actually only the ones
1314 * mapped to this CPU will be masked
1315 */
1316 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1317 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1318 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1319 }
1320
1321 static void mvneta_percpu_clear_intr_cause(void *arg)
1322 {
1323 struct mvneta_port *pp = arg;
1324
1325 /* All the queue are cleared, but actually only the ones
1326 * mapped to this CPU will be cleared
1327 */
1328 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1329 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1330 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1331 }
1332
1333 /* This method sets defaults to the NETA port:
1334 * Clears interrupt Cause and Mask registers.
1335 * Clears all MAC tables.
1336 * Sets defaults to all registers.
1337 * Resets RX and TX descriptor rings.
1338 * Resets PHY.
1339 * This method can be called after mvneta_port_down() to return the port
1340 * settings to defaults.
1341 */
1342 static void mvneta_defaults_set(struct mvneta_port *pp)
1343 {
1344 int cpu;
1345 int queue;
1346 u32 val;
1347 int max_cpu = num_present_cpus();
1348
1349 /* Clear all Cause registers */
1350 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1351
1352 /* Mask all interrupts */
1353 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1354 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1355
1356 /* Enable MBUS Retry bit16 */
1357 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1358
1359 /* Set CPU queue access map. CPUs are assigned to the RX and
1360 * TX queues modulo their number. If there is only one TX
1361 * queue then it is assigned to the CPU associated to the
1362 * default RX queue.
1363 */
1364 for_each_present_cpu(cpu) {
1365 int rxq_map = 0, txq_map = 0;
1366 int rxq, txq;
1367 if (!pp->neta_armada3700) {
1368 for (rxq = 0; rxq < rxq_number; rxq++)
1369 if ((rxq % max_cpu) == cpu)
1370 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1371
1372 for (txq = 0; txq < txq_number; txq++)
1373 if ((txq % max_cpu) == cpu)
1374 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1375
1376 /* With only one TX queue we configure a special case
1377 * which will allow to get all the irq on a single
1378 * CPU
1379 */
1380 if (txq_number == 1)
1381 txq_map = (cpu == pp->rxq_def) ?
1382 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1383
1384 } else {
1385 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1386 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1387 }
1388
1389 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1390 }
1391
1392 /* Reset RX and TX DMAs */
1393 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1394 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1395
1396 /* Disable Legacy WRR, Disable EJP, Release from reset */
1397 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1398 for (queue = 0; queue < txq_number; queue++) {
1399 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1400 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1401 }
1402
1403 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1404 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1405
1406 /* Set Port Acceleration Mode */
1407 if (pp->bm_priv)
1408 /* HW buffer management + legacy parser */
1409 val = MVNETA_ACC_MODE_EXT2;
1410 else
1411 /* SW buffer management + legacy parser */
1412 val = MVNETA_ACC_MODE_EXT1;
1413 mvreg_write(pp, MVNETA_ACC_MODE, val);
1414
1415 if (pp->bm_priv)
1416 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1417
1418 /* Update val of portCfg register accordingly with all RxQueue types */
1419 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1420 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1421
1422 val = 0;
1423 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1424 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1425
1426 /* Build PORT_SDMA_CONFIG_REG */
1427 val = 0;
1428
1429 /* Default burst size */
1430 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1431 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1432 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1433
1434 #if defined(__BIG_ENDIAN)
1435 val |= MVNETA_DESC_SWAP;
1436 #endif
1437
1438 /* Assign port SDMA configuration */
1439 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1440
1441 /* Disable PHY polling in hardware, since we're using the
1442 * kernel phylib to do this.
1443 */
1444 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1445 val &= ~MVNETA_PHY_POLLING_ENABLE;
1446 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1447
1448 mvneta_set_ucast_table(pp, -1);
1449 mvneta_set_special_mcast_table(pp, -1);
1450 mvneta_set_other_mcast_table(pp, -1);
1451
1452 /* Set port interrupt enable register - default enable all */
1453 mvreg_write(pp, MVNETA_INTR_ENABLE,
1454 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1455 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1456
1457 mvneta_mib_counters_clear(pp);
1458 }
1459
1460 /* Set max sizes for tx queues */
1461 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1462
1463 {
1464 u32 val, size, mtu;
1465 int queue;
1466
1467 mtu = max_tx_size * 8;
1468 if (mtu > MVNETA_TX_MTU_MAX)
1469 mtu = MVNETA_TX_MTU_MAX;
1470
1471 /* Set MTU */
1472 val = mvreg_read(pp, MVNETA_TX_MTU);
1473 val &= ~MVNETA_TX_MTU_MAX;
1474 val |= mtu;
1475 mvreg_write(pp, MVNETA_TX_MTU, val);
1476
1477 /* TX token size and all TXQs token size must be larger that MTU */
1478 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1479
1480 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1481 if (size < mtu) {
1482 size = mtu;
1483 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1484 val |= size;
1485 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1486 }
1487 for (queue = 0; queue < txq_number; queue++) {
1488 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1489
1490 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1491 if (size < mtu) {
1492 size = mtu;
1493 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1494 val |= size;
1495 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1496 }
1497 }
1498 }
1499
1500 /* Set unicast address */
1501 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1502 int queue)
1503 {
1504 unsigned int unicast_reg;
1505 unsigned int tbl_offset;
1506 unsigned int reg_offset;
1507
1508 /* Locate the Unicast table entry */
1509 last_nibble = (0xf & last_nibble);
1510
1511 /* offset from unicast tbl base */
1512 tbl_offset = (last_nibble / 4) * 4;
1513
1514 /* offset within the above reg */
1515 reg_offset = last_nibble % 4;
1516
1517 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1518
1519 if (queue == -1) {
1520 /* Clear accepts frame bit at specified unicast DA tbl entry */
1521 unicast_reg &= ~(0xff << (8 * reg_offset));
1522 } else {
1523 unicast_reg &= ~(0xff << (8 * reg_offset));
1524 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1525 }
1526
1527 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1528 }
1529
1530 /* Set mac address */
1531 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1532 int queue)
1533 {
1534 unsigned int mac_h;
1535 unsigned int mac_l;
1536
1537 if (queue != -1) {
1538 mac_l = (addr[4] << 8) | (addr[5]);
1539 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1540 (addr[2] << 8) | (addr[3] << 0);
1541
1542 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1543 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1544 }
1545
1546 /* Accept frames of this address */
1547 mvneta_set_ucast_addr(pp, addr[5], queue);
1548 }
1549
1550 /* Set the number of packets that will be received before RX interrupt
1551 * will be generated by HW.
1552 */
1553 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1554 struct mvneta_rx_queue *rxq, u32 value)
1555 {
1556 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1557 value | MVNETA_RXQ_NON_OCCUPIED(0));
1558 rxq->pkts_coal = value;
1559 }
1560
1561 /* Set the time delay in usec before RX interrupt will be generated by
1562 * HW.
1563 */
1564 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1565 struct mvneta_rx_queue *rxq, u32 value)
1566 {
1567 u32 val;
1568 unsigned long clk_rate;
1569
1570 clk_rate = clk_get_rate(pp->clk);
1571 val = (clk_rate / 1000000) * value;
1572
1573 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1574 rxq->time_coal = value;
1575 }
1576
1577 /* Set threshold for TX_DONE pkts coalescing */
1578 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1579 struct mvneta_tx_queue *txq, u32 value)
1580 {
1581 u32 val;
1582
1583 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1584
1585 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1586 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1587
1588 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1589
1590 txq->done_pkts_coal = value;
1591 }
1592
1593 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1594 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1595 u32 phys_addr, void *virt_addr,
1596 struct mvneta_rx_queue *rxq)
1597 {
1598 int i;
1599
1600 rx_desc->buf_phys_addr = phys_addr;
1601 i = rx_desc - rxq->descs;
1602 rxq->buf_virt_addr[i] = virt_addr;
1603 }
1604
1605 /* Decrement sent descriptors counter */
1606 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1607 struct mvneta_tx_queue *txq,
1608 int sent_desc)
1609 {
1610 u32 val;
1611
1612 /* Only 255 TX descriptors can be updated at once */
1613 while (sent_desc > 0xff) {
1614 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1615 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1616 sent_desc = sent_desc - 0xff;
1617 }
1618
1619 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1620 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1621 }
1622
1623 /* Get number of TX descriptors already sent by HW */
1624 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1625 struct mvneta_tx_queue *txq)
1626 {
1627 u32 val;
1628 int sent_desc;
1629
1630 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1631 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1632 MVNETA_TXQ_SENT_DESC_SHIFT;
1633
1634 return sent_desc;
1635 }
1636
1637 /* Get number of sent descriptors and decrement counter.
1638 * The number of sent descriptors is returned.
1639 */
1640 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1641 struct mvneta_tx_queue *txq)
1642 {
1643 int sent_desc;
1644
1645 /* Get number of sent descriptors */
1646 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1647
1648 /* Decrement sent descriptors counter */
1649 if (sent_desc)
1650 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1651
1652 return sent_desc;
1653 }
1654
1655 /* Set TXQ descriptors fields relevant for CSUM calculation */
1656 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1657 int ip_hdr_len, int l4_proto)
1658 {
1659 u32 command;
1660
1661 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1662 * G_L4_chk, L4_type; required only for checksum
1663 * calculation
1664 */
1665 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1666 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1667
1668 if (l3_proto == htons(ETH_P_IP))
1669 command |= MVNETA_TXD_IP_CSUM;
1670 else
1671 command |= MVNETA_TX_L3_IP6;
1672
1673 if (l4_proto == IPPROTO_TCP)
1674 command |= MVNETA_TX_L4_CSUM_FULL;
1675 else if (l4_proto == IPPROTO_UDP)
1676 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1677 else
1678 command |= MVNETA_TX_L4_CSUM_NOT;
1679
1680 return command;
1681 }
1682
1683
1684 /* Display more error info */
1685 static void mvneta_rx_error(struct mvneta_port *pp,
1686 struct mvneta_rx_desc *rx_desc)
1687 {
1688 u32 status = rx_desc->status;
1689
1690 if (!mvneta_rxq_desc_is_first_last(status)) {
1691 netdev_err(pp->dev,
1692 "bad rx status %08x (buffer oversize), size=%d\n",
1693 status, rx_desc->data_size);
1694 return;
1695 }
1696
1697 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1698 case MVNETA_RXD_ERR_CRC:
1699 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1700 status, rx_desc->data_size);
1701 break;
1702 case MVNETA_RXD_ERR_OVERRUN:
1703 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1704 status, rx_desc->data_size);
1705 break;
1706 case MVNETA_RXD_ERR_LEN:
1707 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1708 status, rx_desc->data_size);
1709 break;
1710 case MVNETA_RXD_ERR_RESOURCE:
1711 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1712 status, rx_desc->data_size);
1713 break;
1714 }
1715 }
1716
1717 /* Handle RX checksum offload based on the descriptor's status */
1718 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1719 struct sk_buff *skb)
1720 {
1721 if ((status & MVNETA_RXD_L3_IP4) &&
1722 (status & MVNETA_RXD_L4_CSUM_OK)) {
1723 skb->csum = 0;
1724 skb->ip_summed = CHECKSUM_UNNECESSARY;
1725 return;
1726 }
1727
1728 skb->ip_summed = CHECKSUM_NONE;
1729 }
1730
1731 /* Return tx queue pointer (find last set bit) according to <cause> returned
1732 * form tx_done reg. <cause> must not be null. The return value is always a
1733 * valid queue for matching the first one found in <cause>.
1734 */
1735 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1736 u32 cause)
1737 {
1738 int queue = fls(cause) - 1;
1739
1740 return &pp->txqs[queue];
1741 }
1742
1743 /* Free tx queue skbuffs */
1744 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1745 struct mvneta_tx_queue *txq, int num,
1746 struct netdev_queue *nq)
1747 {
1748 unsigned int bytes_compl = 0, pkts_compl = 0;
1749 int i;
1750
1751 for (i = 0; i < num; i++) {
1752 struct mvneta_tx_desc *tx_desc = txq->descs +
1753 txq->txq_get_index;
1754 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1755
1756 if (skb) {
1757 bytes_compl += skb->len;
1758 pkts_compl++;
1759 }
1760
1761 mvneta_txq_inc_get(txq);
1762
1763 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1764 dma_unmap_single(pp->dev->dev.parent,
1765 tx_desc->buf_phys_addr,
1766 tx_desc->data_size, DMA_TO_DEVICE);
1767 if (!skb)
1768 continue;
1769 dev_kfree_skb_any(skb);
1770 }
1771
1772 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1773 }
1774
1775 /* Handle end of transmission */
1776 static void mvneta_txq_done(struct mvneta_port *pp,
1777 struct mvneta_tx_queue *txq)
1778 {
1779 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1780 int tx_done;
1781
1782 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1783 if (!tx_done)
1784 return;
1785
1786 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1787
1788 txq->count -= tx_done;
1789
1790 if (netif_tx_queue_stopped(nq)) {
1791 if (txq->count <= txq->tx_wake_threshold)
1792 netif_tx_wake_queue(nq);
1793 }
1794 }
1795
1796 void *mvneta_frag_alloc(unsigned int frag_size)
1797 {
1798 if (likely(frag_size <= PAGE_SIZE))
1799 return netdev_alloc_frag(frag_size);
1800 else
1801 return kmalloc(frag_size, GFP_ATOMIC);
1802 }
1803 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1804
1805 void mvneta_frag_free(unsigned int frag_size, void *data)
1806 {
1807 if (likely(frag_size <= PAGE_SIZE))
1808 skb_free_frag(data);
1809 else
1810 kfree(data);
1811 }
1812 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1813
1814 /* Refill processing for SW buffer management */
1815 static int mvneta_rx_refill(struct mvneta_port *pp,
1816 struct mvneta_rx_desc *rx_desc,
1817 struct mvneta_rx_queue *rxq)
1818
1819 {
1820 dma_addr_t phys_addr;
1821 void *data;
1822
1823 data = mvneta_frag_alloc(pp->frag_size);
1824 if (!data)
1825 return -ENOMEM;
1826
1827 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1828 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1829 DMA_FROM_DEVICE);
1830 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1831 mvneta_frag_free(pp->frag_size, data);
1832 return -ENOMEM;
1833 }
1834
1835 phys_addr += pp->rx_offset_correction;
1836 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1837 return 0;
1838 }
1839
1840 /* Handle tx checksum */
1841 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1842 {
1843 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1844 int ip_hdr_len = 0;
1845 __be16 l3_proto = vlan_get_protocol(skb);
1846 u8 l4_proto;
1847
1848 if (l3_proto == htons(ETH_P_IP)) {
1849 struct iphdr *ip4h = ip_hdr(skb);
1850
1851 /* Calculate IPv4 checksum and L4 checksum */
1852 ip_hdr_len = ip4h->ihl;
1853 l4_proto = ip4h->protocol;
1854 } else if (l3_proto == htons(ETH_P_IPV6)) {
1855 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1856
1857 /* Read l4_protocol from one of IPv6 extra headers */
1858 if (skb_network_header_len(skb) > 0)
1859 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1860 l4_proto = ip6h->nexthdr;
1861 } else
1862 return MVNETA_TX_L4_CSUM_NOT;
1863
1864 return mvneta_txq_desc_csum(skb_network_offset(skb),
1865 l3_proto, ip_hdr_len, l4_proto);
1866 }
1867
1868 return MVNETA_TX_L4_CSUM_NOT;
1869 }
1870
1871 /* Drop packets received by the RXQ and free buffers */
1872 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1873 struct mvneta_rx_queue *rxq)
1874 {
1875 int rx_done, i;
1876
1877 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1878 if (rx_done)
1879 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1880
1881 if (pp->bm_priv) {
1882 for (i = 0; i < rx_done; i++) {
1883 struct mvneta_rx_desc *rx_desc =
1884 mvneta_rxq_next_desc_get(rxq);
1885 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1886 struct mvneta_bm_pool *bm_pool;
1887
1888 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1889 /* Return dropped buffer to the pool */
1890 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1891 rx_desc->buf_phys_addr);
1892 }
1893 return;
1894 }
1895
1896 for (i = 0; i < rxq->size; i++) {
1897 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1898 void *data = rxq->buf_virt_addr[i];
1899
1900 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1901 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1902 mvneta_frag_free(pp->frag_size, data);
1903 }
1904 }
1905
1906 /* Main rx processing when using software buffer management */
1907 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1908 struct mvneta_rx_queue *rxq)
1909 {
1910 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1911 struct net_device *dev = pp->dev;
1912 int rx_done;
1913 u32 rcvd_pkts = 0;
1914 u32 rcvd_bytes = 0;
1915
1916 /* Get number of received packets */
1917 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1918
1919 if (rx_todo > rx_done)
1920 rx_todo = rx_done;
1921
1922 rx_done = 0;
1923
1924 /* Fairness NAPI loop */
1925 while (rx_done < rx_todo) {
1926 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1927 struct sk_buff *skb;
1928 unsigned char *data;
1929 dma_addr_t phys_addr;
1930 u32 rx_status, frag_size;
1931 int rx_bytes, err, index;
1932
1933 rx_done++;
1934 rx_status = rx_desc->status;
1935 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1936 index = rx_desc - rxq->descs;
1937 data = rxq->buf_virt_addr[index];
1938 phys_addr = rx_desc->buf_phys_addr;
1939
1940 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1941 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1942 mvneta_rx_error(pp, rx_desc);
1943 err_drop_frame:
1944 dev->stats.rx_errors++;
1945 /* leave the descriptor untouched */
1946 continue;
1947 }
1948
1949 if (rx_bytes <= rx_copybreak) {
1950 /* better copy a small frame and not unmap the DMA region */
1951 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1952 if (unlikely(!skb))
1953 goto err_drop_frame;
1954
1955 dma_sync_single_range_for_cpu(dev->dev.parent,
1956 phys_addr,
1957 MVNETA_MH_SIZE + NET_SKB_PAD,
1958 rx_bytes,
1959 DMA_FROM_DEVICE);
1960 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
1961 rx_bytes);
1962
1963 skb->protocol = eth_type_trans(skb, dev);
1964 mvneta_rx_csum(pp, rx_status, skb);
1965 napi_gro_receive(&port->napi, skb);
1966
1967 rcvd_pkts++;
1968 rcvd_bytes += rx_bytes;
1969
1970 /* leave the descriptor and buffer untouched */
1971 continue;
1972 }
1973
1974 /* Refill processing */
1975 err = mvneta_rx_refill(pp, rx_desc, rxq);
1976 if (err) {
1977 netdev_err(dev, "Linux processing - Can't refill\n");
1978 rxq->missed++;
1979 goto err_drop_frame;
1980 }
1981
1982 frag_size = pp->frag_size;
1983
1984 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1985
1986 /* After refill old buffer has to be unmapped regardless
1987 * the skb is successfully built or not.
1988 */
1989 dma_unmap_single(dev->dev.parent, phys_addr,
1990 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1991 DMA_FROM_DEVICE);
1992
1993 if (!skb)
1994 goto err_drop_frame;
1995
1996 rcvd_pkts++;
1997 rcvd_bytes += rx_bytes;
1998
1999 /* Linux processing */
2000 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2001 skb_put(skb, rx_bytes);
2002
2003 skb->protocol = eth_type_trans(skb, dev);
2004
2005 mvneta_rx_csum(pp, rx_status, skb);
2006
2007 napi_gro_receive(&port->napi, skb);
2008 }
2009
2010 if (rcvd_pkts) {
2011 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2012
2013 u64_stats_update_begin(&stats->syncp);
2014 stats->rx_packets += rcvd_pkts;
2015 stats->rx_bytes += rcvd_bytes;
2016 u64_stats_update_end(&stats->syncp);
2017 }
2018
2019 /* Update rxq management counters */
2020 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2021
2022 return rx_done;
2023 }
2024
2025 /* Main rx processing when using hardware buffer management */
2026 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2027 struct mvneta_rx_queue *rxq)
2028 {
2029 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2030 struct net_device *dev = pp->dev;
2031 int rx_done;
2032 u32 rcvd_pkts = 0;
2033 u32 rcvd_bytes = 0;
2034
2035 /* Get number of received packets */
2036 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2037
2038 if (rx_todo > rx_done)
2039 rx_todo = rx_done;
2040
2041 rx_done = 0;
2042
2043 /* Fairness NAPI loop */
2044 while (rx_done < rx_todo) {
2045 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2046 struct mvneta_bm_pool *bm_pool = NULL;
2047 struct sk_buff *skb;
2048 unsigned char *data;
2049 dma_addr_t phys_addr;
2050 u32 rx_status, frag_size;
2051 int rx_bytes, err;
2052 u8 pool_id;
2053
2054 rx_done++;
2055 rx_status = rx_desc->status;
2056 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2057 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2058 phys_addr = rx_desc->buf_phys_addr;
2059 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2060 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2061
2062 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2063 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2064 err_drop_frame_ret_pool:
2065 /* Return the buffer to the pool */
2066 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2067 rx_desc->buf_phys_addr);
2068 err_drop_frame:
2069 dev->stats.rx_errors++;
2070 mvneta_rx_error(pp, rx_desc);
2071 /* leave the descriptor untouched */
2072 continue;
2073 }
2074
2075 if (rx_bytes <= rx_copybreak) {
2076 /* better copy a small frame and not unmap the DMA region */
2077 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2078 if (unlikely(!skb))
2079 goto err_drop_frame_ret_pool;
2080
2081 dma_sync_single_range_for_cpu(dev->dev.parent,
2082 rx_desc->buf_phys_addr,
2083 MVNETA_MH_SIZE + NET_SKB_PAD,
2084 rx_bytes,
2085 DMA_FROM_DEVICE);
2086 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2087 rx_bytes);
2088
2089 skb->protocol = eth_type_trans(skb, dev);
2090 mvneta_rx_csum(pp, rx_status, skb);
2091 napi_gro_receive(&port->napi, skb);
2092
2093 rcvd_pkts++;
2094 rcvd_bytes += rx_bytes;
2095
2096 /* Return the buffer to the pool */
2097 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2098 rx_desc->buf_phys_addr);
2099
2100 /* leave the descriptor and buffer untouched */
2101 continue;
2102 }
2103
2104 /* Refill processing */
2105 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2106 if (err) {
2107 netdev_err(dev, "Linux processing - Can't refill\n");
2108 rxq->missed++;
2109 goto err_drop_frame_ret_pool;
2110 }
2111
2112 frag_size = bm_pool->hwbm_pool.frag_size;
2113
2114 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2115
2116 /* After refill old buffer has to be unmapped regardless
2117 * the skb is successfully built or not.
2118 */
2119 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2120 bm_pool->buf_size, DMA_FROM_DEVICE);
2121 if (!skb)
2122 goto err_drop_frame;
2123
2124 rcvd_pkts++;
2125 rcvd_bytes += rx_bytes;
2126
2127 /* Linux processing */
2128 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2129 skb_put(skb, rx_bytes);
2130
2131 skb->protocol = eth_type_trans(skb, dev);
2132
2133 mvneta_rx_csum(pp, rx_status, skb);
2134
2135 napi_gro_receive(&port->napi, skb);
2136 }
2137
2138 if (rcvd_pkts) {
2139 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2140
2141 u64_stats_update_begin(&stats->syncp);
2142 stats->rx_packets += rcvd_pkts;
2143 stats->rx_bytes += rcvd_bytes;
2144 u64_stats_update_end(&stats->syncp);
2145 }
2146
2147 /* Update rxq management counters */
2148 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2149
2150 return rx_done;
2151 }
2152
2153 static inline void
2154 mvneta_tso_put_hdr(struct sk_buff *skb,
2155 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2156 {
2157 struct mvneta_tx_desc *tx_desc;
2158 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2159
2160 txq->tx_skb[txq->txq_put_index] = NULL;
2161 tx_desc = mvneta_txq_next_desc_get(txq);
2162 tx_desc->data_size = hdr_len;
2163 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2164 tx_desc->command |= MVNETA_TXD_F_DESC;
2165 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2166 txq->txq_put_index * TSO_HEADER_SIZE;
2167 mvneta_txq_inc_put(txq);
2168 }
2169
2170 static inline int
2171 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2172 struct sk_buff *skb, char *data, int size,
2173 bool last_tcp, bool is_last)
2174 {
2175 struct mvneta_tx_desc *tx_desc;
2176
2177 tx_desc = mvneta_txq_next_desc_get(txq);
2178 tx_desc->data_size = size;
2179 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2180 size, DMA_TO_DEVICE);
2181 if (unlikely(dma_mapping_error(dev->dev.parent,
2182 tx_desc->buf_phys_addr))) {
2183 mvneta_txq_desc_put(txq);
2184 return -ENOMEM;
2185 }
2186
2187 tx_desc->command = 0;
2188 txq->tx_skb[txq->txq_put_index] = NULL;
2189
2190 if (last_tcp) {
2191 /* last descriptor in the TCP packet */
2192 tx_desc->command = MVNETA_TXD_L_DESC;
2193
2194 /* last descriptor in SKB */
2195 if (is_last)
2196 txq->tx_skb[txq->txq_put_index] = skb;
2197 }
2198 mvneta_txq_inc_put(txq);
2199 return 0;
2200 }
2201
2202 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2203 struct mvneta_tx_queue *txq)
2204 {
2205 int total_len, data_left;
2206 int desc_count = 0;
2207 struct mvneta_port *pp = netdev_priv(dev);
2208 struct tso_t tso;
2209 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2210 int i;
2211
2212 /* Count needed descriptors */
2213 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2214 return 0;
2215
2216 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2217 pr_info("*** Is this even possible???!?!?\n");
2218 return 0;
2219 }
2220
2221 /* Initialize the TSO handler, and prepare the first payload */
2222 tso_start(skb, &tso);
2223
2224 total_len = skb->len - hdr_len;
2225 while (total_len > 0) {
2226 char *hdr;
2227
2228 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2229 total_len -= data_left;
2230 desc_count++;
2231
2232 /* prepare packet headers: MAC + IP + TCP */
2233 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2234 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2235
2236 mvneta_tso_put_hdr(skb, pp, txq);
2237
2238 while (data_left > 0) {
2239 int size;
2240 desc_count++;
2241
2242 size = min_t(int, tso.size, data_left);
2243
2244 if (mvneta_tso_put_data(dev, txq, skb,
2245 tso.data, size,
2246 size == data_left,
2247 total_len == 0))
2248 goto err_release;
2249 data_left -= size;
2250
2251 tso_build_data(skb, &tso, size);
2252 }
2253 }
2254
2255 return desc_count;
2256
2257 err_release:
2258 /* Release all used data descriptors; header descriptors must not
2259 * be DMA-unmapped.
2260 */
2261 for (i = desc_count - 1; i >= 0; i--) {
2262 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2263 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2264 dma_unmap_single(pp->dev->dev.parent,
2265 tx_desc->buf_phys_addr,
2266 tx_desc->data_size,
2267 DMA_TO_DEVICE);
2268 mvneta_txq_desc_put(txq);
2269 }
2270 return 0;
2271 }
2272
2273 /* Handle tx fragmentation processing */
2274 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2275 struct mvneta_tx_queue *txq)
2276 {
2277 struct mvneta_tx_desc *tx_desc;
2278 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2279
2280 for (i = 0; i < nr_frags; i++) {
2281 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2282 void *addr = page_address(frag->page.p) + frag->page_offset;
2283
2284 tx_desc = mvneta_txq_next_desc_get(txq);
2285 tx_desc->data_size = frag->size;
2286
2287 tx_desc->buf_phys_addr =
2288 dma_map_single(pp->dev->dev.parent, addr,
2289 tx_desc->data_size, DMA_TO_DEVICE);
2290
2291 if (dma_mapping_error(pp->dev->dev.parent,
2292 tx_desc->buf_phys_addr)) {
2293 mvneta_txq_desc_put(txq);
2294 goto error;
2295 }
2296
2297 if (i == nr_frags - 1) {
2298 /* Last descriptor */
2299 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2300 txq->tx_skb[txq->txq_put_index] = skb;
2301 } else {
2302 /* Descriptor in the middle: Not First, Not Last */
2303 tx_desc->command = 0;
2304 txq->tx_skb[txq->txq_put_index] = NULL;
2305 }
2306 mvneta_txq_inc_put(txq);
2307 }
2308
2309 return 0;
2310
2311 error:
2312 /* Release all descriptors that were used to map fragments of
2313 * this packet, as well as the corresponding DMA mappings
2314 */
2315 for (i = i - 1; i >= 0; i--) {
2316 tx_desc = txq->descs + i;
2317 dma_unmap_single(pp->dev->dev.parent,
2318 tx_desc->buf_phys_addr,
2319 tx_desc->data_size,
2320 DMA_TO_DEVICE);
2321 mvneta_txq_desc_put(txq);
2322 }
2323
2324 return -ENOMEM;
2325 }
2326
2327 /* Main tx processing */
2328 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2329 {
2330 struct mvneta_port *pp = netdev_priv(dev);
2331 u16 txq_id = skb_get_queue_mapping(skb);
2332 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2333 struct mvneta_tx_desc *tx_desc;
2334 int len = skb->len;
2335 int frags = 0;
2336 u32 tx_cmd;
2337
2338 if (!netif_running(dev))
2339 goto out;
2340
2341 if (skb_is_gso(skb)) {
2342 frags = mvneta_tx_tso(skb, dev, txq);
2343 goto out;
2344 }
2345
2346 frags = skb_shinfo(skb)->nr_frags + 1;
2347
2348 /* Get a descriptor for the first part of the packet */
2349 tx_desc = mvneta_txq_next_desc_get(txq);
2350
2351 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2352
2353 tx_desc->data_size = skb_headlen(skb);
2354
2355 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2356 tx_desc->data_size,
2357 DMA_TO_DEVICE);
2358 if (unlikely(dma_mapping_error(dev->dev.parent,
2359 tx_desc->buf_phys_addr))) {
2360 mvneta_txq_desc_put(txq);
2361 frags = 0;
2362 goto out;
2363 }
2364
2365 if (frags == 1) {
2366 /* First and Last descriptor */
2367 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2368 tx_desc->command = tx_cmd;
2369 txq->tx_skb[txq->txq_put_index] = skb;
2370 mvneta_txq_inc_put(txq);
2371 } else {
2372 /* First but not Last */
2373 tx_cmd |= MVNETA_TXD_F_DESC;
2374 txq->tx_skb[txq->txq_put_index] = NULL;
2375 mvneta_txq_inc_put(txq);
2376 tx_desc->command = tx_cmd;
2377 /* Continue with other skb fragments */
2378 if (mvneta_tx_frag_process(pp, skb, txq)) {
2379 dma_unmap_single(dev->dev.parent,
2380 tx_desc->buf_phys_addr,
2381 tx_desc->data_size,
2382 DMA_TO_DEVICE);
2383 mvneta_txq_desc_put(txq);
2384 frags = 0;
2385 goto out;
2386 }
2387 }
2388
2389 out:
2390 if (frags > 0) {
2391 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2392 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2393
2394 netdev_tx_sent_queue(nq, len);
2395
2396 txq->count += frags;
2397 if (txq->count >= txq->tx_stop_threshold)
2398 netif_tx_stop_queue(nq);
2399
2400 if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2401 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2402 mvneta_txq_pend_desc_add(pp, txq, frags);
2403 else
2404 txq->pending += frags;
2405
2406 u64_stats_update_begin(&stats->syncp);
2407 stats->tx_packets++;
2408 stats->tx_bytes += len;
2409 u64_stats_update_end(&stats->syncp);
2410 } else {
2411 dev->stats.tx_dropped++;
2412 dev_kfree_skb_any(skb);
2413 }
2414
2415 return NETDEV_TX_OK;
2416 }
2417
2418
2419 /* Free tx resources, when resetting a port */
2420 static void mvneta_txq_done_force(struct mvneta_port *pp,
2421 struct mvneta_tx_queue *txq)
2422
2423 {
2424 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2425 int tx_done = txq->count;
2426
2427 mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2428
2429 /* reset txq */
2430 txq->count = 0;
2431 txq->txq_put_index = 0;
2432 txq->txq_get_index = 0;
2433 }
2434
2435 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2436 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2437 */
2438 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2439 {
2440 struct mvneta_tx_queue *txq;
2441 struct netdev_queue *nq;
2442
2443 while (cause_tx_done) {
2444 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2445
2446 nq = netdev_get_tx_queue(pp->dev, txq->id);
2447 __netif_tx_lock(nq, smp_processor_id());
2448
2449 if (txq->count)
2450 mvneta_txq_done(pp, txq);
2451
2452 __netif_tx_unlock(nq);
2453 cause_tx_done &= ~((1 << txq->id));
2454 }
2455 }
2456
2457 /* Compute crc8 of the specified address, using a unique algorithm ,
2458 * according to hw spec, different than generic crc8 algorithm
2459 */
2460 static int mvneta_addr_crc(unsigned char *addr)
2461 {
2462 int crc = 0;
2463 int i;
2464
2465 for (i = 0; i < ETH_ALEN; i++) {
2466 int j;
2467
2468 crc = (crc ^ addr[i]) << 8;
2469 for (j = 7; j >= 0; j--) {
2470 if (crc & (0x100 << j))
2471 crc ^= 0x107 << j;
2472 }
2473 }
2474
2475 return crc;
2476 }
2477
2478 /* This method controls the net device special MAC multicast support.
2479 * The Special Multicast Table for MAC addresses supports MAC of the form
2480 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2481 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2482 * Table entries in the DA-Filter table. This method set the Special
2483 * Multicast Table appropriate entry.
2484 */
2485 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2486 unsigned char last_byte,
2487 int queue)
2488 {
2489 unsigned int smc_table_reg;
2490 unsigned int tbl_offset;
2491 unsigned int reg_offset;
2492
2493 /* Register offset from SMC table base */
2494 tbl_offset = (last_byte / 4);
2495 /* Entry offset within the above reg */
2496 reg_offset = last_byte % 4;
2497
2498 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2499 + tbl_offset * 4));
2500
2501 if (queue == -1)
2502 smc_table_reg &= ~(0xff << (8 * reg_offset));
2503 else {
2504 smc_table_reg &= ~(0xff << (8 * reg_offset));
2505 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2506 }
2507
2508 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2509 smc_table_reg);
2510 }
2511
2512 /* This method controls the network device Other MAC multicast support.
2513 * The Other Multicast Table is used for multicast of another type.
2514 * A CRC-8 is used as an index to the Other Multicast Table entries
2515 * in the DA-Filter table.
2516 * The method gets the CRC-8 value from the calling routine and
2517 * sets the Other Multicast Table appropriate entry according to the
2518 * specified CRC-8 .
2519 */
2520 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2521 unsigned char crc8,
2522 int queue)
2523 {
2524 unsigned int omc_table_reg;
2525 unsigned int tbl_offset;
2526 unsigned int reg_offset;
2527
2528 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2529 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2530
2531 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2532
2533 if (queue == -1) {
2534 /* Clear accepts frame bit at specified Other DA table entry */
2535 omc_table_reg &= ~(0xff << (8 * reg_offset));
2536 } else {
2537 omc_table_reg &= ~(0xff << (8 * reg_offset));
2538 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2539 }
2540
2541 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2542 }
2543
2544 /* The network device supports multicast using two tables:
2545 * 1) Special Multicast Table for MAC addresses of the form
2546 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2547 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2548 * Table entries in the DA-Filter table.
2549 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2550 * is used as an index to the Other Multicast Table entries in the
2551 * DA-Filter table.
2552 */
2553 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2554 int queue)
2555 {
2556 unsigned char crc_result = 0;
2557
2558 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2559 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2560 return 0;
2561 }
2562
2563 crc_result = mvneta_addr_crc(p_addr);
2564 if (queue == -1) {
2565 if (pp->mcast_count[crc_result] == 0) {
2566 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2567 crc_result);
2568 return -EINVAL;
2569 }
2570
2571 pp->mcast_count[crc_result]--;
2572 if (pp->mcast_count[crc_result] != 0) {
2573 netdev_info(pp->dev,
2574 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2575 pp->mcast_count[crc_result], crc_result);
2576 return -EINVAL;
2577 }
2578 } else
2579 pp->mcast_count[crc_result]++;
2580
2581 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2582
2583 return 0;
2584 }
2585
2586 /* Configure Fitering mode of Ethernet port */
2587 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2588 int is_promisc)
2589 {
2590 u32 port_cfg_reg, val;
2591
2592 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2593
2594 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2595
2596 /* Set / Clear UPM bit in port configuration register */
2597 if (is_promisc) {
2598 /* Accept all Unicast addresses */
2599 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2600 val |= MVNETA_FORCE_UNI;
2601 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2602 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2603 } else {
2604 /* Reject all Unicast addresses */
2605 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2606 val &= ~MVNETA_FORCE_UNI;
2607 }
2608
2609 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2610 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2611 }
2612
2613 /* register unicast and multicast addresses */
2614 static void mvneta_set_rx_mode(struct net_device *dev)
2615 {
2616 struct mvneta_port *pp = netdev_priv(dev);
2617 struct netdev_hw_addr *ha;
2618
2619 if (dev->flags & IFF_PROMISC) {
2620 /* Accept all: Multicast + Unicast */
2621 mvneta_rx_unicast_promisc_set(pp, 1);
2622 mvneta_set_ucast_table(pp, pp->rxq_def);
2623 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2624 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2625 } else {
2626 /* Accept single Unicast */
2627 mvneta_rx_unicast_promisc_set(pp, 0);
2628 mvneta_set_ucast_table(pp, -1);
2629 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2630
2631 if (dev->flags & IFF_ALLMULTI) {
2632 /* Accept all multicast */
2633 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2634 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2635 } else {
2636 /* Accept only initialized multicast */
2637 mvneta_set_special_mcast_table(pp, -1);
2638 mvneta_set_other_mcast_table(pp, -1);
2639
2640 if (!netdev_mc_empty(dev)) {
2641 netdev_for_each_mc_addr(ha, dev) {
2642 mvneta_mcast_addr_set(pp, ha->addr,
2643 pp->rxq_def);
2644 }
2645 }
2646 }
2647 }
2648 }
2649
2650 /* Interrupt handling - the callback for request_irq() */
2651 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2652 {
2653 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2654
2655 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2656 napi_schedule(&pp->napi);
2657
2658 return IRQ_HANDLED;
2659 }
2660
2661 /* Interrupt handling - the callback for request_percpu_irq() */
2662 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2663 {
2664 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2665
2666 disable_percpu_irq(port->pp->dev->irq);
2667 napi_schedule(&port->napi);
2668
2669 return IRQ_HANDLED;
2670 }
2671
2672 static void mvneta_link_change(struct mvneta_port *pp)
2673 {
2674 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2675
2676 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2677 }
2678
2679 /* NAPI handler
2680 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2681 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2682 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2683 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2684 * Each CPU has its own causeRxTx register
2685 */
2686 static int mvneta_poll(struct napi_struct *napi, int budget)
2687 {
2688 int rx_done = 0;
2689 u32 cause_rx_tx;
2690 int rx_queue;
2691 struct mvneta_port *pp = netdev_priv(napi->dev);
2692 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2693
2694 if (!netif_running(pp->dev)) {
2695 napi_complete(napi);
2696 return rx_done;
2697 }
2698
2699 /* Read cause register */
2700 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2701 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2702 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2703
2704 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2705
2706 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2707 MVNETA_CAUSE_LINK_CHANGE))
2708 mvneta_link_change(pp);
2709 }
2710
2711 /* Release Tx descriptors */
2712 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2713 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2714 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2715 }
2716
2717 /* For the case where the last mvneta_poll did not process all
2718 * RX packets
2719 */
2720 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2721
2722 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2723 port->cause_rx_tx;
2724
2725 if (rx_queue) {
2726 rx_queue = rx_queue - 1;
2727 if (pp->bm_priv)
2728 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2729 else
2730 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2731 }
2732
2733 if (rx_done < budget) {
2734 cause_rx_tx = 0;
2735 napi_complete_done(napi, rx_done);
2736
2737 if (pp->neta_armada3700) {
2738 unsigned long flags;
2739
2740 local_irq_save(flags);
2741 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2742 MVNETA_RX_INTR_MASK(rxq_number) |
2743 MVNETA_TX_INTR_MASK(txq_number) |
2744 MVNETA_MISCINTR_INTR_MASK);
2745 local_irq_restore(flags);
2746 } else {
2747 enable_percpu_irq(pp->dev->irq, 0);
2748 }
2749 }
2750
2751 if (pp->neta_armada3700)
2752 pp->cause_rx_tx = cause_rx_tx;
2753 else
2754 port->cause_rx_tx = cause_rx_tx;
2755
2756 return rx_done;
2757 }
2758
2759 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2760 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2761 int num)
2762 {
2763 int i;
2764
2765 for (i = 0; i < num; i++) {
2766 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2767 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2768 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2769 __func__, rxq->id, i, num);
2770 break;
2771 }
2772 }
2773
2774 /* Add this number of RX descriptors as non occupied (ready to
2775 * get packets)
2776 */
2777 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2778
2779 return i;
2780 }
2781
2782 /* Free all packets pending transmit from all TXQs and reset TX port */
2783 static void mvneta_tx_reset(struct mvneta_port *pp)
2784 {
2785 int queue;
2786
2787 /* free the skb's in the tx ring */
2788 for (queue = 0; queue < txq_number; queue++)
2789 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2790
2791 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2792 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2793 }
2794
2795 static void mvneta_rx_reset(struct mvneta_port *pp)
2796 {
2797 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2798 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2799 }
2800
2801 /* Rx/Tx queue initialization/cleanup methods */
2802
2803 /* Create a specified RX queue */
2804 static int mvneta_rxq_init(struct mvneta_port *pp,
2805 struct mvneta_rx_queue *rxq)
2806
2807 {
2808 rxq->size = pp->rx_ring_size;
2809
2810 /* Allocate memory for RX descriptors */
2811 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2812 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2813 &rxq->descs_phys, GFP_KERNEL);
2814 if (!rxq->descs)
2815 return -ENOMEM;
2816
2817 rxq->last_desc = rxq->size - 1;
2818
2819 /* Set Rx descriptors queue starting address */
2820 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2821 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2822
2823 /* Set Offset */
2824 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2825
2826 /* Set coalescing pkts and time */
2827 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2828 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2829
2830 if (!pp->bm_priv) {
2831 /* Fill RXQ with buffers from RX pool */
2832 mvneta_rxq_buf_size_set(pp, rxq,
2833 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2834 mvneta_rxq_bm_disable(pp, rxq);
2835 mvneta_rxq_fill(pp, rxq, rxq->size);
2836 } else {
2837 mvneta_rxq_bm_enable(pp, rxq);
2838 mvneta_rxq_long_pool_set(pp, rxq);
2839 mvneta_rxq_short_pool_set(pp, rxq);
2840 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2841 }
2842
2843 return 0;
2844 }
2845
2846 /* Cleanup Rx queue */
2847 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2848 struct mvneta_rx_queue *rxq)
2849 {
2850 mvneta_rxq_drop_pkts(pp, rxq);
2851
2852 if (rxq->descs)
2853 dma_free_coherent(pp->dev->dev.parent,
2854 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2855 rxq->descs,
2856 rxq->descs_phys);
2857
2858 rxq->descs = NULL;
2859 rxq->last_desc = 0;
2860 rxq->next_desc_to_proc = 0;
2861 rxq->descs_phys = 0;
2862 }
2863
2864 /* Create and initialize a tx queue */
2865 static int mvneta_txq_init(struct mvneta_port *pp,
2866 struct mvneta_tx_queue *txq)
2867 {
2868 int cpu;
2869
2870 txq->size = pp->tx_ring_size;
2871
2872 /* A queue must always have room for at least one skb.
2873 * Therefore, stop the queue when the free entries reaches
2874 * the maximum number of descriptors per skb.
2875 */
2876 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2877 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2878
2879
2880 /* Allocate memory for TX descriptors */
2881 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2882 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2883 &txq->descs_phys, GFP_KERNEL);
2884 if (!txq->descs)
2885 return -ENOMEM;
2886
2887 txq->last_desc = txq->size - 1;
2888
2889 /* Set maximum bandwidth for enabled TXQs */
2890 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2891 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2892
2893 /* Set Tx descriptors queue starting address */
2894 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2895 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2896
2897 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2898 GFP_KERNEL);
2899 if (!txq->tx_skb) {
2900 dma_free_coherent(pp->dev->dev.parent,
2901 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2902 txq->descs, txq->descs_phys);
2903 return -ENOMEM;
2904 }
2905
2906 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2907 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2908 txq->size * TSO_HEADER_SIZE,
2909 &txq->tso_hdrs_phys, GFP_KERNEL);
2910 if (!txq->tso_hdrs) {
2911 kfree(txq->tx_skb);
2912 dma_free_coherent(pp->dev->dev.parent,
2913 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2914 txq->descs, txq->descs_phys);
2915 return -ENOMEM;
2916 }
2917 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2918
2919 /* Setup XPS mapping */
2920 if (txq_number > 1)
2921 cpu = txq->id % num_present_cpus();
2922 else
2923 cpu = pp->rxq_def % num_present_cpus();
2924 cpumask_set_cpu(cpu, &txq->affinity_mask);
2925 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2926
2927 return 0;
2928 }
2929
2930 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2931 static void mvneta_txq_deinit(struct mvneta_port *pp,
2932 struct mvneta_tx_queue *txq)
2933 {
2934 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2935
2936 kfree(txq->tx_skb);
2937
2938 if (txq->tso_hdrs)
2939 dma_free_coherent(pp->dev->dev.parent,
2940 txq->size * TSO_HEADER_SIZE,
2941 txq->tso_hdrs, txq->tso_hdrs_phys);
2942 if (txq->descs)
2943 dma_free_coherent(pp->dev->dev.parent,
2944 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2945 txq->descs, txq->descs_phys);
2946
2947 netdev_tx_reset_queue(nq);
2948
2949 txq->descs = NULL;
2950 txq->last_desc = 0;
2951 txq->next_desc_to_proc = 0;
2952 txq->descs_phys = 0;
2953
2954 /* Set minimum bandwidth for disabled TXQs */
2955 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2956 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2957
2958 /* Set Tx descriptors queue starting address and size */
2959 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2960 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2961 }
2962
2963 /* Cleanup all Tx queues */
2964 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2965 {
2966 int queue;
2967
2968 for (queue = 0; queue < txq_number; queue++)
2969 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2970 }
2971
2972 /* Cleanup all Rx queues */
2973 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2974 {
2975 int queue;
2976
2977 for (queue = 0; queue < rxq_number; queue++)
2978 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2979 }
2980
2981
2982 /* Init all Rx queues */
2983 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2984 {
2985 int queue;
2986
2987 for (queue = 0; queue < rxq_number; queue++) {
2988 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2989
2990 if (err) {
2991 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2992 __func__, queue);
2993 mvneta_cleanup_rxqs(pp);
2994 return err;
2995 }
2996 }
2997
2998 return 0;
2999 }
3000
3001 /* Init all tx queues */
3002 static int mvneta_setup_txqs(struct mvneta_port *pp)
3003 {
3004 int queue;
3005
3006 for (queue = 0; queue < txq_number; queue++) {
3007 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3008 if (err) {
3009 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3010 __func__, queue);
3011 mvneta_cleanup_txqs(pp);
3012 return err;
3013 }
3014 }
3015
3016 return 0;
3017 }
3018
3019 static void mvneta_start_dev(struct mvneta_port *pp)
3020 {
3021 int cpu;
3022
3023 mvneta_max_rx_size_set(pp, pp->pkt_size);
3024 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3025
3026 /* start the Rx/Tx activity */
3027 mvneta_port_enable(pp);
3028
3029 if (!pp->neta_armada3700) {
3030 /* Enable polling on the port */
3031 for_each_online_cpu(cpu) {
3032 struct mvneta_pcpu_port *port =
3033 per_cpu_ptr(pp->ports, cpu);
3034
3035 napi_enable(&port->napi);
3036 }
3037 } else {
3038 napi_enable(&pp->napi);
3039 }
3040
3041 /* Unmask interrupts. It has to be done from each CPU */
3042 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3043
3044 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3045 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3046 MVNETA_CAUSE_LINK_CHANGE);
3047
3048 phylink_start(pp->phylink);
3049 netif_tx_start_all_queues(pp->dev);
3050 }
3051
3052 static void mvneta_stop_dev(struct mvneta_port *pp)
3053 {
3054 unsigned int cpu;
3055
3056 phylink_stop(pp->phylink);
3057
3058 if (!pp->neta_armada3700) {
3059 for_each_online_cpu(cpu) {
3060 struct mvneta_pcpu_port *port =
3061 per_cpu_ptr(pp->ports, cpu);
3062
3063 napi_disable(&port->napi);
3064 }
3065 } else {
3066 napi_disable(&pp->napi);
3067 }
3068
3069 netif_carrier_off(pp->dev);
3070
3071 mvneta_port_down(pp);
3072 netif_tx_stop_all_queues(pp->dev);
3073
3074 /* Stop the port activity */
3075 mvneta_port_disable(pp);
3076
3077 /* Clear all ethernet port interrupts */
3078 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3079
3080 /* Mask all ethernet port interrupts */
3081 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3082
3083 mvneta_tx_reset(pp);
3084 mvneta_rx_reset(pp);
3085 }
3086
3087 static void mvneta_percpu_enable(void *arg)
3088 {
3089 struct mvneta_port *pp = arg;
3090
3091 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3092 }
3093
3094 static void mvneta_percpu_disable(void *arg)
3095 {
3096 struct mvneta_port *pp = arg;
3097
3098 disable_percpu_irq(pp->dev->irq);
3099 }
3100
3101 /* Change the device mtu */
3102 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3103 {
3104 struct mvneta_port *pp = netdev_priv(dev);
3105 int ret;
3106
3107 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3108 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3109 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3110 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3111 }
3112
3113 dev->mtu = mtu;
3114
3115 if (!netif_running(dev)) {
3116 if (pp->bm_priv)
3117 mvneta_bm_update_mtu(pp, mtu);
3118
3119 netdev_update_features(dev);
3120 return 0;
3121 }
3122
3123 /* The interface is running, so we have to force a
3124 * reallocation of the queues
3125 */
3126 mvneta_stop_dev(pp);
3127 on_each_cpu(mvneta_percpu_disable, pp, true);
3128
3129 mvneta_cleanup_txqs(pp);
3130 mvneta_cleanup_rxqs(pp);
3131
3132 if (pp->bm_priv)
3133 mvneta_bm_update_mtu(pp, mtu);
3134
3135 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3136 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3137 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3138
3139 ret = mvneta_setup_rxqs(pp);
3140 if (ret) {
3141 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3142 return ret;
3143 }
3144
3145 ret = mvneta_setup_txqs(pp);
3146 if (ret) {
3147 netdev_err(dev, "unable to setup txqs after MTU change\n");
3148 return ret;
3149 }
3150
3151 on_each_cpu(mvneta_percpu_enable, pp, true);
3152 mvneta_start_dev(pp);
3153 mvneta_port_up(pp);
3154
3155 netdev_update_features(dev);
3156
3157 return 0;
3158 }
3159
3160 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3161 netdev_features_t features)
3162 {
3163 struct mvneta_port *pp = netdev_priv(dev);
3164
3165 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3166 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3167 netdev_info(dev,
3168 "Disable IP checksum for MTU greater than %dB\n",
3169 pp->tx_csum_limit);
3170 }
3171
3172 return features;
3173 }
3174
3175 /* Get mac address */
3176 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3177 {
3178 u32 mac_addr_l, mac_addr_h;
3179
3180 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3181 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3182 addr[0] = (mac_addr_h >> 24) & 0xFF;
3183 addr[1] = (mac_addr_h >> 16) & 0xFF;
3184 addr[2] = (mac_addr_h >> 8) & 0xFF;
3185 addr[3] = mac_addr_h & 0xFF;
3186 addr[4] = (mac_addr_l >> 8) & 0xFF;
3187 addr[5] = mac_addr_l & 0xFF;
3188 }
3189
3190 /* Handle setting mac address */
3191 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3192 {
3193 struct mvneta_port *pp = netdev_priv(dev);
3194 struct sockaddr *sockaddr = addr;
3195 int ret;
3196
3197 ret = eth_prepare_mac_addr_change(dev, addr);
3198 if (ret < 0)
3199 return ret;
3200 /* Remove previous address table entry */
3201 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3202
3203 /* Set new addr in hw */
3204 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3205
3206 eth_commit_mac_addr_change(dev, addr);
3207 return 0;
3208 }
3209
3210 static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
3211 struct phylink_link_state *state)
3212 {
3213 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3214
3215 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3216 if (state->interface != PHY_INTERFACE_MODE_NA &&
3217 state->interface != PHY_INTERFACE_MODE_QSGMII &&
3218 state->interface != PHY_INTERFACE_MODE_SGMII &&
3219 !phy_interface_mode_is_8023z(state->interface) &&
3220 !phy_interface_mode_is_rgmii(state->interface)) {
3221 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3222 return;
3223 }
3224
3225 /* Allow all the expected bits */
3226 phylink_set(mask, Autoneg);
3227 phylink_set_port_modes(mask);
3228
3229 /* Asymmetric pause is unsupported */
3230 phylink_set(mask, Pause);
3231 /* Half-duplex at speeds higher than 100Mbit is unsupported */
3232 phylink_set(mask, 1000baseT_Full);
3233 phylink_set(mask, 1000baseX_Full);
3234
3235 if (!phy_interface_mode_is_8023z(state->interface)) {
3236 /* 10M and 100M are only supported in non-802.3z mode */
3237 phylink_set(mask, 10baseT_Half);
3238 phylink_set(mask, 10baseT_Full);
3239 phylink_set(mask, 100baseT_Half);
3240 phylink_set(mask, 100baseT_Full);
3241 }
3242
3243 bitmap_and(supported, supported, mask,
3244 __ETHTOOL_LINK_MODE_MASK_NBITS);
3245 bitmap_and(state->advertising, state->advertising, mask,
3246 __ETHTOOL_LINK_MODE_MASK_NBITS);
3247 }
3248
3249 static int mvneta_mac_link_state(struct net_device *ndev,
3250 struct phylink_link_state *state)
3251 {
3252 struct mvneta_port *pp = netdev_priv(ndev);
3253 u32 gmac_stat;
3254
3255 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3256
3257 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3258 state->speed = SPEED_1000;
3259 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3260 state->speed = SPEED_100;
3261 else
3262 state->speed = SPEED_10;
3263
3264 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3265 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3266 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3267
3268 state->pause = 0;
3269 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3270 state->pause |= MLO_PAUSE_RX;
3271 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3272 state->pause |= MLO_PAUSE_TX;
3273
3274 return 1;
3275 }
3276
3277 static void mvneta_mac_an_restart(struct net_device *ndev)
3278 {
3279 struct mvneta_port *pp = netdev_priv(ndev);
3280 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3281
3282 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3283 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3284 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3285 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3286 }
3287
3288 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
3289 const struct phylink_link_state *state)
3290 {
3291 struct mvneta_port *pp = netdev_priv(ndev);
3292 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3293 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3294 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3295 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3296
3297 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3298 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3299 MVNETA_GMAC2_PORT_RESET);
3300 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3301 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3302 MVNETA_GMAC_INBAND_RESTART_AN |
3303 MVNETA_GMAC_CONFIG_MII_SPEED |
3304 MVNETA_GMAC_CONFIG_GMII_SPEED |
3305 MVNETA_GMAC_AN_SPEED_EN |
3306 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3307 MVNETA_GMAC_CONFIG_FLOW_CTRL |
3308 MVNETA_GMAC_AN_FLOW_CTRL_EN |
3309 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3310 MVNETA_GMAC_AN_DUPLEX_EN);
3311
3312 /* Even though it might look weird, when we're configured in
3313 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3314 */
3315 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3316
3317 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3318 state->interface == PHY_INTERFACE_MODE_SGMII ||
3319 phy_interface_mode_is_8023z(state->interface))
3320 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3321
3322 if (phylink_test(state->advertising, Pause))
3323 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3324 if (state->pause & MLO_PAUSE_TXRX_MASK)
3325 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3326
3327 if (!phylink_autoneg_inband(mode)) {
3328 /* Phy or fixed speed */
3329 if (state->duplex)
3330 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3331
3332 if (state->speed == SPEED_1000)
3333 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3334 else if (state->speed == SPEED_100)
3335 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3336 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3337 /* SGMII mode receives the state from the PHY */
3338 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3339 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3340 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3341 MVNETA_GMAC_FORCE_LINK_PASS)) |
3342 MVNETA_GMAC_INBAND_AN_ENABLE |
3343 MVNETA_GMAC_AN_SPEED_EN |
3344 MVNETA_GMAC_AN_DUPLEX_EN;
3345 } else {
3346 /* 802.3z negotiation - only 1000base-X */
3347 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3348 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3349 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3350 MVNETA_GMAC_FORCE_LINK_PASS)) |
3351 MVNETA_GMAC_INBAND_AN_ENABLE |
3352 MVNETA_GMAC_CONFIG_GMII_SPEED |
3353 /* The MAC only supports FD mode */
3354 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3355
3356 if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3357 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3358 }
3359
3360 /* Armada 370 documentation says we can only change the port mode
3361 * and in-band enable when the link is down, so force it down
3362 * while making these changes. We also do this for GMAC_CTRL2 */
3363 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3364 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3365 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3366 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3367 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3368 MVNETA_GMAC_FORCE_LINK_DOWN);
3369 }
3370
3371 if (new_ctrl0 != gmac_ctrl0)
3372 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3373 if (new_ctrl2 != gmac_ctrl2)
3374 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3375 if (new_clk != gmac_clk)
3376 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3377 if (new_an != gmac_an)
3378 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3379
3380 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3381 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3382 MVNETA_GMAC2_PORT_RESET) != 0)
3383 continue;
3384 }
3385 }
3386
3387 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3388 {
3389 u32 lpi_ctl1;
3390
3391 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3392 if (enable)
3393 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3394 else
3395 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3396 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3397 }
3398
3399 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode)
3400 {
3401 struct mvneta_port *pp = netdev_priv(ndev);
3402 u32 val;
3403
3404 mvneta_port_down(pp);
3405
3406 if (!phylink_autoneg_inband(mode)) {
3407 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3408 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3409 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3410 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3411 }
3412
3413 pp->eee_active = false;
3414 mvneta_set_eee(pp, false);
3415 }
3416
3417 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3418 struct phy_device *phy)
3419 {
3420 struct mvneta_port *pp = netdev_priv(ndev);
3421 u32 val;
3422
3423 if (!phylink_autoneg_inband(mode)) {
3424 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3425 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3426 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3427 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3428 }
3429
3430 mvneta_port_up(pp);
3431
3432 if (phy && pp->eee_enabled) {
3433 pp->eee_active = phy_init_eee(phy, 0) >= 0;
3434 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3435 }
3436 }
3437
3438 static const struct phylink_mac_ops mvneta_phylink_ops = {
3439 .validate = mvneta_validate,
3440 .mac_link_state = mvneta_mac_link_state,
3441 .mac_an_restart = mvneta_mac_an_restart,
3442 .mac_config = mvneta_mac_config,
3443 .mac_link_down = mvneta_mac_link_down,
3444 .mac_link_up = mvneta_mac_link_up,
3445 };
3446
3447 static int mvneta_mdio_probe(struct mvneta_port *pp)
3448 {
3449 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3450 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3451
3452 if (err)
3453 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3454
3455 phylink_ethtool_get_wol(pp->phylink, &wol);
3456 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3457
3458 return err;
3459 }
3460
3461 static void mvneta_mdio_remove(struct mvneta_port *pp)
3462 {
3463 phylink_disconnect_phy(pp->phylink);
3464 }
3465
3466 /* Electing a CPU must be done in an atomic way: it should be done
3467 * after or before the removal/insertion of a CPU and this function is
3468 * not reentrant.
3469 */
3470 static void mvneta_percpu_elect(struct mvneta_port *pp)
3471 {
3472 int elected_cpu = 0, max_cpu, cpu, i = 0;
3473
3474 /* Use the cpu associated to the rxq when it is online, in all
3475 * the other cases, use the cpu 0 which can't be offline.
3476 */
3477 if (cpu_online(pp->rxq_def))
3478 elected_cpu = pp->rxq_def;
3479
3480 max_cpu = num_present_cpus();
3481
3482 for_each_online_cpu(cpu) {
3483 int rxq_map = 0, txq_map = 0;
3484 int rxq;
3485
3486 for (rxq = 0; rxq < rxq_number; rxq++)
3487 if ((rxq % max_cpu) == cpu)
3488 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3489
3490 if (cpu == elected_cpu)
3491 /* Map the default receive queue queue to the
3492 * elected CPU
3493 */
3494 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3495
3496 /* We update the TX queue map only if we have one
3497 * queue. In this case we associate the TX queue to
3498 * the CPU bound to the default RX queue
3499 */
3500 if (txq_number == 1)
3501 txq_map = (cpu == elected_cpu) ?
3502 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3503 else
3504 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3505 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3506
3507 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3508
3509 /* Update the interrupt mask on each CPU according the
3510 * new mapping
3511 */
3512 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3513 pp, true);
3514 i++;
3515
3516 }
3517 };
3518
3519 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3520 {
3521 int other_cpu;
3522 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3523 node_online);
3524 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3525
3526
3527 spin_lock(&pp->lock);
3528 /*
3529 * Configuring the driver for a new CPU while the driver is
3530 * stopping is racy, so just avoid it.
3531 */
3532 if (pp->is_stopped) {
3533 spin_unlock(&pp->lock);
3534 return 0;
3535 }
3536 netif_tx_stop_all_queues(pp->dev);
3537
3538 /*
3539 * We have to synchronise on tha napi of each CPU except the one
3540 * just being woken up
3541 */
3542 for_each_online_cpu(other_cpu) {
3543 if (other_cpu != cpu) {
3544 struct mvneta_pcpu_port *other_port =
3545 per_cpu_ptr(pp->ports, other_cpu);
3546
3547 napi_synchronize(&other_port->napi);
3548 }
3549 }
3550
3551 /* Mask all ethernet port interrupts */
3552 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3553 napi_enable(&port->napi);
3554
3555 /*
3556 * Enable per-CPU interrupts on the CPU that is
3557 * brought up.
3558 */
3559 mvneta_percpu_enable(pp);
3560
3561 /*
3562 * Enable per-CPU interrupt on the one CPU we care
3563 * about.
3564 */
3565 mvneta_percpu_elect(pp);
3566
3567 /* Unmask all ethernet port interrupts */
3568 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3569 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3570 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3571 MVNETA_CAUSE_LINK_CHANGE);
3572 netif_tx_start_all_queues(pp->dev);
3573 spin_unlock(&pp->lock);
3574 return 0;
3575 }
3576
3577 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3578 {
3579 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3580 node_online);
3581 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3582
3583 /*
3584 * Thanks to this lock we are sure that any pending cpu election is
3585 * done.
3586 */
3587 spin_lock(&pp->lock);
3588 /* Mask all ethernet port interrupts */
3589 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3590 spin_unlock(&pp->lock);
3591
3592 napi_synchronize(&port->napi);
3593 napi_disable(&port->napi);
3594 /* Disable per-CPU interrupts on the CPU that is brought down. */
3595 mvneta_percpu_disable(pp);
3596 return 0;
3597 }
3598
3599 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3600 {
3601 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3602 node_dead);
3603
3604 /* Check if a new CPU must be elected now this on is down */
3605 spin_lock(&pp->lock);
3606 mvneta_percpu_elect(pp);
3607 spin_unlock(&pp->lock);
3608 /* Unmask all ethernet port interrupts */
3609 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3610 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3611 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3612 MVNETA_CAUSE_LINK_CHANGE);
3613 netif_tx_start_all_queues(pp->dev);
3614 return 0;
3615 }
3616
3617 static int mvneta_open(struct net_device *dev)
3618 {
3619 struct mvneta_port *pp = netdev_priv(dev);
3620 int ret;
3621
3622 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3623 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3624 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3625
3626 ret = mvneta_setup_rxqs(pp);
3627 if (ret)
3628 return ret;
3629
3630 ret = mvneta_setup_txqs(pp);
3631 if (ret)
3632 goto err_cleanup_rxqs;
3633
3634 /* Connect to port interrupt line */
3635 if (pp->neta_armada3700)
3636 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3637 dev->name, pp);
3638 else
3639 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3640 dev->name, pp->ports);
3641 if (ret) {
3642 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3643 goto err_cleanup_txqs;
3644 }
3645
3646 if (!pp->neta_armada3700) {
3647 /* Enable per-CPU interrupt on all the CPU to handle our RX
3648 * queue interrupts
3649 */
3650 on_each_cpu(mvneta_percpu_enable, pp, true);
3651
3652 pp->is_stopped = false;
3653 /* Register a CPU notifier to handle the case where our CPU
3654 * might be taken offline.
3655 */
3656 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3657 &pp->node_online);
3658 if (ret)
3659 goto err_free_irq;
3660
3661 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3662 &pp->node_dead);
3663 if (ret)
3664 goto err_free_online_hp;
3665 }
3666
3667 /* In default link is down */
3668 netif_carrier_off(pp->dev);
3669
3670 ret = mvneta_mdio_probe(pp);
3671 if (ret < 0) {
3672 netdev_err(dev, "cannot probe MDIO bus\n");
3673 goto err_free_dead_hp;
3674 }
3675
3676 mvneta_start_dev(pp);
3677
3678 return 0;
3679
3680 err_free_dead_hp:
3681 if (!pp->neta_armada3700)
3682 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3683 &pp->node_dead);
3684 err_free_online_hp:
3685 if (!pp->neta_armada3700)
3686 cpuhp_state_remove_instance_nocalls(online_hpstate,
3687 &pp->node_online);
3688 err_free_irq:
3689 if (pp->neta_armada3700) {
3690 free_irq(pp->dev->irq, pp);
3691 } else {
3692 on_each_cpu(mvneta_percpu_disable, pp, true);
3693 free_percpu_irq(pp->dev->irq, pp->ports);
3694 }
3695 err_cleanup_txqs:
3696 mvneta_cleanup_txqs(pp);
3697 err_cleanup_rxqs:
3698 mvneta_cleanup_rxqs(pp);
3699 return ret;
3700 }
3701
3702 /* Stop the port, free port interrupt line */
3703 static int mvneta_stop(struct net_device *dev)
3704 {
3705 struct mvneta_port *pp = netdev_priv(dev);
3706
3707 if (!pp->neta_armada3700) {
3708 /* Inform that we are stopping so we don't want to setup the
3709 * driver for new CPUs in the notifiers. The code of the
3710 * notifier for CPU online is protected by the same spinlock,
3711 * so when we get the lock, the notifer work is done.
3712 */
3713 spin_lock(&pp->lock);
3714 pp->is_stopped = true;
3715 spin_unlock(&pp->lock);
3716
3717 mvneta_stop_dev(pp);
3718 mvneta_mdio_remove(pp);
3719
3720 cpuhp_state_remove_instance_nocalls(online_hpstate,
3721 &pp->node_online);
3722 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3723 &pp->node_dead);
3724 on_each_cpu(mvneta_percpu_disable, pp, true);
3725 free_percpu_irq(dev->irq, pp->ports);
3726 } else {
3727 mvneta_stop_dev(pp);
3728 mvneta_mdio_remove(pp);
3729 free_irq(dev->irq, pp);
3730 }
3731
3732 mvneta_cleanup_rxqs(pp);
3733 mvneta_cleanup_txqs(pp);
3734
3735 return 0;
3736 }
3737
3738 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3739 {
3740 struct mvneta_port *pp = netdev_priv(dev);
3741
3742 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3743 }
3744
3745 /* Ethtool methods */
3746
3747 /* Set link ksettings (phy address, speed) for ethtools */
3748 static int
3749 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3750 const struct ethtool_link_ksettings *cmd)
3751 {
3752 struct mvneta_port *pp = netdev_priv(ndev);
3753
3754 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3755 }
3756
3757 /* Get link ksettings for ethtools */
3758 static int
3759 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3760 struct ethtool_link_ksettings *cmd)
3761 {
3762 struct mvneta_port *pp = netdev_priv(ndev);
3763
3764 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3765 }
3766
3767 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3768 {
3769 struct mvneta_port *pp = netdev_priv(dev);
3770
3771 return phylink_ethtool_nway_reset(pp->phylink);
3772 }
3773
3774 /* Set interrupt coalescing for ethtools */
3775 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3776 struct ethtool_coalesce *c)
3777 {
3778 struct mvneta_port *pp = netdev_priv(dev);
3779 int queue;
3780
3781 for (queue = 0; queue < rxq_number; queue++) {
3782 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3783 rxq->time_coal = c->rx_coalesce_usecs;
3784 rxq->pkts_coal = c->rx_max_coalesced_frames;
3785 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3786 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3787 }
3788
3789 for (queue = 0; queue < txq_number; queue++) {
3790 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3791 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3792 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3793 }
3794
3795 return 0;
3796 }
3797
3798 /* get coalescing for ethtools */
3799 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3800 struct ethtool_coalesce *c)
3801 {
3802 struct mvneta_port *pp = netdev_priv(dev);
3803
3804 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3805 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3806
3807 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3808 return 0;
3809 }
3810
3811
3812 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3813 struct ethtool_drvinfo *drvinfo)
3814 {
3815 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3816 sizeof(drvinfo->driver));
3817 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3818 sizeof(drvinfo->version));
3819 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3820 sizeof(drvinfo->bus_info));
3821 }
3822
3823
3824 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3825 struct ethtool_ringparam *ring)
3826 {
3827 struct mvneta_port *pp = netdev_priv(netdev);
3828
3829 ring->rx_max_pending = MVNETA_MAX_RXD;
3830 ring->tx_max_pending = MVNETA_MAX_TXD;
3831 ring->rx_pending = pp->rx_ring_size;
3832 ring->tx_pending = pp->tx_ring_size;
3833 }
3834
3835 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3836 struct ethtool_ringparam *ring)
3837 {
3838 struct mvneta_port *pp = netdev_priv(dev);
3839
3840 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3841 return -EINVAL;
3842 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3843 ring->rx_pending : MVNETA_MAX_RXD;
3844
3845 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3846 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3847 if (pp->tx_ring_size != ring->tx_pending)
3848 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3849 pp->tx_ring_size, ring->tx_pending);
3850
3851 if (netif_running(dev)) {
3852 mvneta_stop(dev);
3853 if (mvneta_open(dev)) {
3854 netdev_err(dev,
3855 "error on opening device after ring param change\n");
3856 return -ENOMEM;
3857 }
3858 }
3859
3860 return 0;
3861 }
3862
3863 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
3864 struct ethtool_pauseparam *pause)
3865 {
3866 struct mvneta_port *pp = netdev_priv(dev);
3867
3868 phylink_ethtool_get_pauseparam(pp->phylink, pause);
3869 }
3870
3871 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
3872 struct ethtool_pauseparam *pause)
3873 {
3874 struct mvneta_port *pp = netdev_priv(dev);
3875
3876 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
3877 }
3878
3879 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3880 u8 *data)
3881 {
3882 if (sset == ETH_SS_STATS) {
3883 int i;
3884
3885 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3886 memcpy(data + i * ETH_GSTRING_LEN,
3887 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3888 }
3889 }
3890
3891 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3892 {
3893 const struct mvneta_statistic *s;
3894 void __iomem *base = pp->base;
3895 u32 high, low;
3896 u64 val;
3897 int i;
3898
3899 for (i = 0, s = mvneta_statistics;
3900 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3901 s++, i++) {
3902 val = 0;
3903
3904 switch (s->type) {
3905 case T_REG_32:
3906 val = readl_relaxed(base + s->offset);
3907 break;
3908 case T_REG_64:
3909 /* Docs say to read low 32-bit then high */
3910 low = readl_relaxed(base + s->offset);
3911 high = readl_relaxed(base + s->offset + 4);
3912 val = (u64)high << 32 | low;
3913 break;
3914 case T_SW:
3915 switch (s->offset) {
3916 case ETHTOOL_STAT_EEE_WAKEUP:
3917 val = phylink_get_eee_err(pp->phylink);
3918 break;
3919 }
3920 break;
3921 }
3922
3923 pp->ethtool_stats[i] += val;
3924 }
3925 }
3926
3927 static void mvneta_ethtool_get_stats(struct net_device *dev,
3928 struct ethtool_stats *stats, u64 *data)
3929 {
3930 struct mvneta_port *pp = netdev_priv(dev);
3931 int i;
3932
3933 mvneta_ethtool_update_stats(pp);
3934
3935 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3936 *data++ = pp->ethtool_stats[i];
3937 }
3938
3939 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3940 {
3941 if (sset == ETH_SS_STATS)
3942 return ARRAY_SIZE(mvneta_statistics);
3943 return -EOPNOTSUPP;
3944 }
3945
3946 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3947 {
3948 return MVNETA_RSS_LU_TABLE_SIZE;
3949 }
3950
3951 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3952 struct ethtool_rxnfc *info,
3953 u32 *rules __always_unused)
3954 {
3955 switch (info->cmd) {
3956 case ETHTOOL_GRXRINGS:
3957 info->data = rxq_number;
3958 return 0;
3959 case ETHTOOL_GRXFH:
3960 return -EOPNOTSUPP;
3961 default:
3962 return -EOPNOTSUPP;
3963 }
3964 }
3965
3966 static int mvneta_config_rss(struct mvneta_port *pp)
3967 {
3968 int cpu;
3969 u32 val;
3970
3971 netif_tx_stop_all_queues(pp->dev);
3972
3973 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3974
3975 /* We have to synchronise on the napi of each CPU */
3976 for_each_online_cpu(cpu) {
3977 struct mvneta_pcpu_port *pcpu_port =
3978 per_cpu_ptr(pp->ports, cpu);
3979
3980 napi_synchronize(&pcpu_port->napi);
3981 napi_disable(&pcpu_port->napi);
3982 }
3983
3984 pp->rxq_def = pp->indir[0];
3985
3986 /* Update unicast mapping */
3987 mvneta_set_rx_mode(pp->dev);
3988
3989 /* Update val of portCfg register accordingly with all RxQueue types */
3990 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3991 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3992
3993 /* Update the elected CPU matching the new rxq_def */
3994 spin_lock(&pp->lock);
3995 mvneta_percpu_elect(pp);
3996 spin_unlock(&pp->lock);
3997
3998 /* We have to synchronise on the napi of each CPU */
3999 for_each_online_cpu(cpu) {
4000 struct mvneta_pcpu_port *pcpu_port =
4001 per_cpu_ptr(pp->ports, cpu);
4002
4003 napi_enable(&pcpu_port->napi);
4004 }
4005
4006 netif_tx_start_all_queues(pp->dev);
4007
4008 return 0;
4009 }
4010
4011 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4012 const u8 *key, const u8 hfunc)
4013 {
4014 struct mvneta_port *pp = netdev_priv(dev);
4015
4016 /* Current code for Armada 3700 doesn't support RSS features yet */
4017 if (pp->neta_armada3700)
4018 return -EOPNOTSUPP;
4019
4020 /* We require at least one supported parameter to be changed
4021 * and no change in any of the unsupported parameters
4022 */
4023 if (key ||
4024 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4025 return -EOPNOTSUPP;
4026
4027 if (!indir)
4028 return 0;
4029
4030 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4031
4032 return mvneta_config_rss(pp);
4033 }
4034
4035 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4036 u8 *hfunc)
4037 {
4038 struct mvneta_port *pp = netdev_priv(dev);
4039
4040 /* Current code for Armada 3700 doesn't support RSS features yet */
4041 if (pp->neta_armada3700)
4042 return -EOPNOTSUPP;
4043
4044 if (hfunc)
4045 *hfunc = ETH_RSS_HASH_TOP;
4046
4047 if (!indir)
4048 return 0;
4049
4050 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4051
4052 return 0;
4053 }
4054
4055 static void mvneta_ethtool_get_wol(struct net_device *dev,
4056 struct ethtool_wolinfo *wol)
4057 {
4058 struct mvneta_port *pp = netdev_priv(dev);
4059
4060 phylink_ethtool_get_wol(pp->phylink, wol);
4061 }
4062
4063 static int mvneta_ethtool_set_wol(struct net_device *dev,
4064 struct ethtool_wolinfo *wol)
4065 {
4066 struct mvneta_port *pp = netdev_priv(dev);
4067 int ret;
4068
4069 ret = phylink_ethtool_set_wol(pp->phylink, wol);
4070 if (!ret)
4071 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4072
4073 return ret;
4074 }
4075
4076 static int mvneta_ethtool_get_module_info(struct net_device *dev,
4077 struct ethtool_modinfo *modinfo)
4078 {
4079 struct mvneta_port *pp = netdev_priv(dev);
4080
4081 return phylink_ethtool_get_module_info(pp->phylink, modinfo);
4082 }
4083
4084 static int mvneta_ethtool_get_module_eeprom(struct net_device *dev,
4085 struct ethtool_eeprom *ee, u8 *buf)
4086 {
4087 struct mvneta_port *pp = netdev_priv(dev);
4088
4089 return phylink_ethtool_get_module_eeprom(pp->phylink, ee, buf);
4090 }
4091
4092 static int mvneta_ethtool_get_eee(struct net_device *dev,
4093 struct ethtool_eee *eee)
4094 {
4095 struct mvneta_port *pp = netdev_priv(dev);
4096 u32 lpi_ctl0;
4097
4098 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4099
4100 eee->eee_enabled = pp->eee_enabled;
4101 eee->eee_active = pp->eee_active;
4102 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4103 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4104
4105 return phylink_ethtool_get_eee(pp->phylink, eee);
4106 }
4107
4108 static int mvneta_ethtool_set_eee(struct net_device *dev,
4109 struct ethtool_eee *eee)
4110 {
4111 struct mvneta_port *pp = netdev_priv(dev);
4112 u32 lpi_ctl0;
4113
4114 /* The Armada 37x documents do not give limits for this other than
4115 * it being an 8-bit register. */
4116 if (eee->tx_lpi_enabled &&
4117 (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255))
4118 return -EINVAL;
4119
4120 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4121 lpi_ctl0 &= ~(0xff << 8);
4122 lpi_ctl0 |= eee->tx_lpi_timer << 8;
4123 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4124
4125 pp->eee_enabled = eee->eee_enabled;
4126 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4127
4128 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4129
4130 return phylink_ethtool_set_eee(pp->phylink, eee);
4131 }
4132
4133 static const struct net_device_ops mvneta_netdev_ops = {
4134 .ndo_open = mvneta_open,
4135 .ndo_stop = mvneta_stop,
4136 .ndo_start_xmit = mvneta_tx,
4137 .ndo_set_rx_mode = mvneta_set_rx_mode,
4138 .ndo_set_mac_address = mvneta_set_mac_addr,
4139 .ndo_change_mtu = mvneta_change_mtu,
4140 .ndo_fix_features = mvneta_fix_features,
4141 .ndo_get_stats64 = mvneta_get_stats64,
4142 .ndo_do_ioctl = mvneta_ioctl,
4143 };
4144
4145 static const struct ethtool_ops mvneta_eth_tool_ops = {
4146 .nway_reset = mvneta_ethtool_nway_reset,
4147 .get_link = ethtool_op_get_link,
4148 .set_coalesce = mvneta_ethtool_set_coalesce,
4149 .get_coalesce = mvneta_ethtool_get_coalesce,
4150 .get_drvinfo = mvneta_ethtool_get_drvinfo,
4151 .get_ringparam = mvneta_ethtool_get_ringparam,
4152 .set_ringparam = mvneta_ethtool_set_ringparam,
4153 .get_pauseparam = mvneta_ethtool_get_pauseparam,
4154 .set_pauseparam = mvneta_ethtool_set_pauseparam,
4155 .get_strings = mvneta_ethtool_get_strings,
4156 .get_ethtool_stats = mvneta_ethtool_get_stats,
4157 .get_sset_count = mvneta_ethtool_get_sset_count,
4158 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4159 .get_rxnfc = mvneta_ethtool_get_rxnfc,
4160 .get_rxfh = mvneta_ethtool_get_rxfh,
4161 .set_rxfh = mvneta_ethtool_set_rxfh,
4162 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4163 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4164 .get_wol = mvneta_ethtool_get_wol,
4165 .set_wol = mvneta_ethtool_set_wol,
4166 .get_module_info = mvneta_ethtool_get_module_info,
4167 .get_module_eeprom = mvneta_ethtool_get_module_eeprom,
4168 .get_eee = mvneta_ethtool_get_eee,
4169 .set_eee = mvneta_ethtool_set_eee,
4170 };
4171
4172 /* Initialize hw */
4173 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4174 {
4175 int queue;
4176
4177 /* Disable port */
4178 mvneta_port_disable(pp);
4179
4180 /* Set port default values */
4181 mvneta_defaults_set(pp);
4182
4183 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4184 if (!pp->txqs)
4185 return -ENOMEM;
4186
4187 /* Initialize TX descriptor rings */
4188 for (queue = 0; queue < txq_number; queue++) {
4189 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4190 txq->id = queue;
4191 txq->size = pp->tx_ring_size;
4192 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4193 }
4194
4195 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4196 if (!pp->rxqs)
4197 return -ENOMEM;
4198
4199 /* Create Rx descriptor rings */
4200 for (queue = 0; queue < rxq_number; queue++) {
4201 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4202 rxq->id = queue;
4203 rxq->size = pp->rx_ring_size;
4204 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4205 rxq->time_coal = MVNETA_RX_COAL_USEC;
4206 rxq->buf_virt_addr
4207 = devm_kmalloc_array(pp->dev->dev.parent,
4208 rxq->size,
4209 sizeof(*rxq->buf_virt_addr),
4210 GFP_KERNEL);
4211 if (!rxq->buf_virt_addr)
4212 return -ENOMEM;
4213 }
4214
4215 return 0;
4216 }
4217
4218 /* platform glue : initialize decoding windows */
4219 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4220 const struct mbus_dram_target_info *dram)
4221 {
4222 u32 win_enable;
4223 u32 win_protect;
4224 int i;
4225
4226 for (i = 0; i < 6; i++) {
4227 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4228 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4229
4230 if (i < 4)
4231 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4232 }
4233
4234 win_enable = 0x3f;
4235 win_protect = 0;
4236
4237 if (dram) {
4238 for (i = 0; i < dram->num_cs; i++) {
4239 const struct mbus_dram_window *cs = dram->cs + i;
4240
4241 mvreg_write(pp, MVNETA_WIN_BASE(i),
4242 (cs->base & 0xffff0000) |
4243 (cs->mbus_attr << 8) |
4244 dram->mbus_dram_target_id);
4245
4246 mvreg_write(pp, MVNETA_WIN_SIZE(i),
4247 (cs->size - 1) & 0xffff0000);
4248
4249 win_enable &= ~(1 << i);
4250 win_protect |= 3 << (2 * i);
4251 }
4252 } else {
4253 /* For Armada3700 open default 4GB Mbus window, leaving
4254 * arbitration of target/attribute to a different layer
4255 * of configuration.
4256 */
4257 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4258 win_enable &= ~BIT(0);
4259 win_protect = 3;
4260 }
4261
4262 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4263 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4264 }
4265
4266 /* Power up the port */
4267 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4268 {
4269 /* MAC Cause register should be cleared */
4270 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4271
4272 if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4273 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4274 else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4275 phy_mode == PHY_INTERFACE_MODE_1000BASEX)
4276 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4277 else if (!phy_interface_mode_is_rgmii(phy_mode))
4278 return -EINVAL;
4279
4280 return 0;
4281 }
4282
4283 /* Device initialization routine */
4284 static int mvneta_probe(struct platform_device *pdev)
4285 {
4286 struct resource *res;
4287 struct device_node *dn = pdev->dev.of_node;
4288 struct device_node *bm_node;
4289 struct mvneta_port *pp;
4290 struct net_device *dev;
4291 struct phylink *phylink;
4292 const char *dt_mac_addr;
4293 char hw_mac_addr[ETH_ALEN];
4294 const char *mac_from;
4295 int tx_csum_limit;
4296 int phy_mode;
4297 int err;
4298 int cpu;
4299
4300 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4301 if (!dev)
4302 return -ENOMEM;
4303
4304 dev->irq = irq_of_parse_and_map(dn, 0);
4305 if (dev->irq == 0) {
4306 err = -EINVAL;
4307 goto err_free_netdev;
4308 }
4309
4310 phy_mode = of_get_phy_mode(dn);
4311 if (phy_mode < 0) {
4312 dev_err(&pdev->dev, "incorrect phy-mode\n");
4313 err = -EINVAL;
4314 goto err_free_irq;
4315 }
4316
4317 phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
4318 &mvneta_phylink_ops);
4319 if (IS_ERR(phylink)) {
4320 err = PTR_ERR(phylink);
4321 goto err_free_irq;
4322 }
4323
4324 dev->tx_queue_len = MVNETA_MAX_TXD;
4325 dev->watchdog_timeo = 5 * HZ;
4326 dev->netdev_ops = &mvneta_netdev_ops;
4327
4328 dev->ethtool_ops = &mvneta_eth_tool_ops;
4329
4330 pp = netdev_priv(dev);
4331 spin_lock_init(&pp->lock);
4332 pp->phylink = phylink;
4333 pp->phy_interface = phy_mode;
4334 pp->dn = dn;
4335
4336 pp->rxq_def = rxq_def;
4337
4338 /* Set RX packet offset correction for platforms, whose
4339 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4340 * platforms and 0B for 32-bit ones.
4341 */
4342 pp->rx_offset_correction =
4343 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4344
4345 pp->indir[0] = rxq_def;
4346
4347 /* Get special SoC configurations */
4348 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4349 pp->neta_armada3700 = true;
4350
4351 pp->clk = devm_clk_get(&pdev->dev, "core");
4352 if (IS_ERR(pp->clk))
4353 pp->clk = devm_clk_get(&pdev->dev, NULL);
4354 if (IS_ERR(pp->clk)) {
4355 err = PTR_ERR(pp->clk);
4356 goto err_free_phylink;
4357 }
4358
4359 clk_prepare_enable(pp->clk);
4360
4361 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4362 if (!IS_ERR(pp->clk_bus))
4363 clk_prepare_enable(pp->clk_bus);
4364
4365 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4366 pp->base = devm_ioremap_resource(&pdev->dev, res);
4367 if (IS_ERR(pp->base)) {
4368 err = PTR_ERR(pp->base);
4369 goto err_clk;
4370 }
4371
4372 /* Alloc per-cpu port structure */
4373 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4374 if (!pp->ports) {
4375 err = -ENOMEM;
4376 goto err_clk;
4377 }
4378
4379 /* Alloc per-cpu stats */
4380 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4381 if (!pp->stats) {
4382 err = -ENOMEM;
4383 goto err_free_ports;
4384 }
4385
4386 dt_mac_addr = of_get_mac_address(dn);
4387 if (dt_mac_addr) {
4388 mac_from = "device tree";
4389 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4390 } else {
4391 mvneta_get_mac_addr(pp, hw_mac_addr);
4392 if (is_valid_ether_addr(hw_mac_addr)) {
4393 mac_from = "hardware";
4394 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4395 } else {
4396 mac_from = "random";
4397 eth_hw_addr_random(dev);
4398 }
4399 }
4400
4401 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4402 if (tx_csum_limit < 0 ||
4403 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4404 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4405 dev_info(&pdev->dev,
4406 "Wrong TX csum limit in DT, set to %dB\n",
4407 MVNETA_TX_CSUM_DEF_SIZE);
4408 }
4409 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4410 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4411 } else {
4412 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4413 }
4414
4415 pp->tx_csum_limit = tx_csum_limit;
4416
4417 pp->dram_target_info = mv_mbus_dram_info();
4418 /* Armada3700 requires setting default configuration of Mbus
4419 * windows, however without using filled mbus_dram_target_info
4420 * structure.
4421 */
4422 if (pp->dram_target_info || pp->neta_armada3700)
4423 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4424
4425 pp->tx_ring_size = MVNETA_MAX_TXD;
4426 pp->rx_ring_size = MVNETA_MAX_RXD;
4427
4428 pp->dev = dev;
4429 SET_NETDEV_DEV(dev, &pdev->dev);
4430
4431 pp->id = global_port_id++;
4432
4433 /* Obtain access to BM resources if enabled and already initialized */
4434 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4435 if (bm_node && bm_node->data) {
4436 pp->bm_priv = bm_node->data;
4437 err = mvneta_bm_port_init(pdev, pp);
4438 if (err < 0) {
4439 dev_info(&pdev->dev, "use SW buffer management\n");
4440 pp->bm_priv = NULL;
4441 }
4442 }
4443 of_node_put(bm_node);
4444
4445 err = mvneta_init(&pdev->dev, pp);
4446 if (err < 0)
4447 goto err_netdev;
4448
4449 err = mvneta_port_power_up(pp, phy_mode);
4450 if (err < 0) {
4451 dev_err(&pdev->dev, "can't power up port\n");
4452 goto err_netdev;
4453 }
4454
4455 /* Armada3700 network controller does not support per-cpu
4456 * operation, so only single NAPI should be initialized.
4457 */
4458 if (pp->neta_armada3700) {
4459 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4460 } else {
4461 for_each_present_cpu(cpu) {
4462 struct mvneta_pcpu_port *port =
4463 per_cpu_ptr(pp->ports, cpu);
4464
4465 netif_napi_add(dev, &port->napi, mvneta_poll,
4466 NAPI_POLL_WEIGHT);
4467 port->pp = pp;
4468 }
4469 }
4470
4471 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO;
4472 dev->hw_features |= dev->features;
4473 dev->vlan_features |= dev->features;
4474 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4475 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4476
4477 /* MTU range: 68 - 9676 */
4478 dev->min_mtu = ETH_MIN_MTU;
4479 /* 9676 == 9700 - 20 and rounding to 8 */
4480 dev->max_mtu = 9676;
4481
4482 err = register_netdev(dev);
4483 if (err < 0) {
4484 dev_err(&pdev->dev, "failed to register\n");
4485 goto err_free_stats;
4486 }
4487
4488 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4489 dev->dev_addr);
4490
4491 platform_set_drvdata(pdev, pp->dev);
4492
4493 return 0;
4494
4495 err_netdev:
4496 unregister_netdev(dev);
4497 if (pp->bm_priv) {
4498 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4499 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4500 1 << pp->id);
4501 }
4502 err_free_stats:
4503 free_percpu(pp->stats);
4504 err_free_ports:
4505 free_percpu(pp->ports);
4506 err_clk:
4507 clk_disable_unprepare(pp->clk_bus);
4508 clk_disable_unprepare(pp->clk);
4509 err_free_phylink:
4510 if (pp->phylink)
4511 phylink_destroy(pp->phylink);
4512 err_free_irq:
4513 irq_dispose_mapping(dev->irq);
4514 err_free_netdev:
4515 free_netdev(dev);
4516 return err;
4517 }
4518
4519 /* Device removal routine */
4520 static int mvneta_remove(struct platform_device *pdev)
4521 {
4522 struct net_device *dev = platform_get_drvdata(pdev);
4523 struct mvneta_port *pp = netdev_priv(dev);
4524
4525 unregister_netdev(dev);
4526 clk_disable_unprepare(pp->clk_bus);
4527 clk_disable_unprepare(pp->clk);
4528 free_percpu(pp->ports);
4529 free_percpu(pp->stats);
4530 irq_dispose_mapping(dev->irq);
4531 phylink_destroy(pp->phylink);
4532 free_netdev(dev);
4533
4534 if (pp->bm_priv) {
4535 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4536 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4537 1 << pp->id);
4538 }
4539
4540 return 0;
4541 }
4542
4543 #ifdef CONFIG_PM_SLEEP
4544 static int mvneta_suspend(struct device *device)
4545 {
4546 struct net_device *dev = dev_get_drvdata(device);
4547 struct mvneta_port *pp = netdev_priv(dev);
4548
4549 rtnl_lock();
4550 if (netif_running(dev))
4551 mvneta_stop(dev);
4552 rtnl_unlock();
4553 netif_device_detach(dev);
4554 clk_disable_unprepare(pp->clk_bus);
4555 clk_disable_unprepare(pp->clk);
4556 return 0;
4557 }
4558
4559 static int mvneta_resume(struct device *device)
4560 {
4561 struct platform_device *pdev = to_platform_device(device);
4562 struct net_device *dev = dev_get_drvdata(device);
4563 struct mvneta_port *pp = netdev_priv(dev);
4564 int err;
4565
4566 clk_prepare_enable(pp->clk);
4567 if (!IS_ERR(pp->clk_bus))
4568 clk_prepare_enable(pp->clk_bus);
4569 if (pp->dram_target_info || pp->neta_armada3700)
4570 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4571 if (pp->bm_priv) {
4572 err = mvneta_bm_port_init(pdev, pp);
4573 if (err < 0) {
4574 dev_info(&pdev->dev, "use SW buffer management\n");
4575 pp->bm_priv = NULL;
4576 }
4577 }
4578 mvneta_defaults_set(pp);
4579 err = mvneta_port_power_up(pp, pp->phy_interface);
4580 if (err < 0) {
4581 dev_err(device, "can't power up port\n");
4582 return err;
4583 }
4584
4585 netif_device_attach(dev);
4586 rtnl_lock();
4587 if (netif_running(dev)) {
4588 mvneta_open(dev);
4589 mvneta_set_rx_mode(dev);
4590 }
4591 rtnl_unlock();
4592
4593 return 0;
4594 }
4595 #endif
4596
4597 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4598
4599 static const struct of_device_id mvneta_match[] = {
4600 { .compatible = "marvell,armada-370-neta" },
4601 { .compatible = "marvell,armada-xp-neta" },
4602 { .compatible = "marvell,armada-3700-neta" },
4603 { }
4604 };
4605 MODULE_DEVICE_TABLE(of, mvneta_match);
4606
4607 static struct platform_driver mvneta_driver = {
4608 .probe = mvneta_probe,
4609 .remove = mvneta_remove,
4610 .driver = {
4611 .name = MVNETA_DRIVER_NAME,
4612 .of_match_table = mvneta_match,
4613 .pm = &mvneta_pm_ops,
4614 },
4615 };
4616
4617 static int __init mvneta_driver_init(void)
4618 {
4619 int ret;
4620
4621 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4622 mvneta_cpu_online,
4623 mvneta_cpu_down_prepare);
4624 if (ret < 0)
4625 goto out;
4626 online_hpstate = ret;
4627 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4628 NULL, mvneta_cpu_dead);
4629 if (ret)
4630 goto err_dead;
4631
4632 ret = platform_driver_register(&mvneta_driver);
4633 if (ret)
4634 goto err;
4635 return 0;
4636
4637 err:
4638 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4639 err_dead:
4640 cpuhp_remove_multi_state(online_hpstate);
4641 out:
4642 return ret;
4643 }
4644 module_init(mvneta_driver_init);
4645
4646 static void __exit mvneta_driver_exit(void)
4647 {
4648 platform_driver_unregister(&mvneta_driver);
4649 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4650 cpuhp_remove_multi_state(online_hpstate);
4651 }
4652 module_exit(mvneta_driver_exit);
4653
4654 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4655 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4656 MODULE_LICENSE("GPL");
4657
4658 module_param(rxq_number, int, 0444);
4659 module_param(txq_number, int, 0444);
4660
4661 module_param(rxq_def, int, 0444);
4662 module_param(rx_copybreak, int, 0644);