]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/marvell/mvneta.c
ASoC: wm8904: harmless underflow in wm8904_put_deemph()
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/if_vlan.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 #include <linux/io.h>
27 #include <net/tso.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_address.h>
33 #include <linux/phy.h>
34 #include <linux/clk.h>
35
36 /* Registers */
37 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
38 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
39 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
40 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
41 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
42 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
43 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
44 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
45 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
46 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
47 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
48 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
49 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
50 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
52 #define MVNETA_PORT_RX_RESET 0x1cc0
53 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
54 #define MVNETA_PHY_ADDR 0x2000
55 #define MVNETA_PHY_ADDR_MASK 0x1f
56 #define MVNETA_MBUS_RETRY 0x2010
57 #define MVNETA_UNIT_INTR_CAUSE 0x2080
58 #define MVNETA_UNIT_CONTROL 0x20B0
59 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
60 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
61 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
62 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
63 #define MVNETA_BASE_ADDR_ENABLE 0x2290
64 #define MVNETA_PORT_CONFIG 0x2400
65 #define MVNETA_UNI_PROMISC_MODE BIT(0)
66 #define MVNETA_DEF_RXQ(q) ((q) << 1)
67 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
68 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
69 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
70 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
71 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
72 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
73 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
74 MVNETA_DEF_RXQ_ARP(q) | \
75 MVNETA_DEF_RXQ_TCP(q) | \
76 MVNETA_DEF_RXQ_UDP(q) | \
77 MVNETA_DEF_RXQ_BPDU(q) | \
78 MVNETA_TX_UNSET_ERR_SUM | \
79 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
80 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
81 #define MVNETA_MAC_ADDR_LOW 0x2414
82 #define MVNETA_MAC_ADDR_HIGH 0x2418
83 #define MVNETA_SDMA_CONFIG 0x241c
84 #define MVNETA_SDMA_BRST_SIZE_16 4
85 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
86 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
87 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
88 #define MVNETA_DESC_SWAP BIT(6)
89 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
90 #define MVNETA_PORT_STATUS 0x2444
91 #define MVNETA_TX_IN_PRGRS BIT(1)
92 #define MVNETA_TX_FIFO_EMPTY BIT(8)
93 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
94 #define MVNETA_SERDES_CFG 0x24A0
95 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
96 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
97 #define MVNETA_TYPE_PRIO 0x24bc
98 #define MVNETA_FORCE_UNI BIT(21)
99 #define MVNETA_TXQ_CMD_1 0x24e4
100 #define MVNETA_TXQ_CMD 0x2448
101 #define MVNETA_TXQ_DISABLE_SHIFT 8
102 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
103 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
104 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
105 #define MVNETA_ACC_MODE 0x2500
106 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
107 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
108 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
109 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
110
111 /* Exception Interrupt Port/Queue Cause register */
112
113 #define MVNETA_INTR_NEW_CAUSE 0x25a0
114 #define MVNETA_INTR_NEW_MASK 0x25a4
115
116 /* bits 0..7 = TXQ SENT, one bit per queue.
117 * bits 8..15 = RXQ OCCUP, one bit per queue.
118 * bits 16..23 = RXQ FREE, one bit per queue.
119 * bit 29 = OLD_REG_SUM, see old reg ?
120 * bit 30 = TX_ERR_SUM, one bit for 4 ports
121 * bit 31 = MISC_SUM, one bit for 4 ports
122 */
123 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
124 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
125 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
126 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
127 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
128
129 #define MVNETA_INTR_OLD_CAUSE 0x25a8
130 #define MVNETA_INTR_OLD_MASK 0x25ac
131
132 /* Data Path Port/Queue Cause Register */
133 #define MVNETA_INTR_MISC_CAUSE 0x25b0
134 #define MVNETA_INTR_MISC_MASK 0x25b4
135
136 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
137 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
138 #define MVNETA_CAUSE_PTP BIT(4)
139
140 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
141 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
142 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
143 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
144 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
145 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
146 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
147 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
148
149 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
150 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
151 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
152
153 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
154 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
155 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
156
157 #define MVNETA_INTR_ENABLE 0x25b8
158 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
159 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
160
161 #define MVNETA_RXQ_CMD 0x2680
162 #define MVNETA_RXQ_DISABLE_SHIFT 8
163 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
164 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
165 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
166 #define MVNETA_GMAC_CTRL_0 0x2c00
167 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
168 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
169 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
170 #define MVNETA_GMAC_CTRL_2 0x2c08
171 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
172 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
173 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
174 #define MVNETA_GMAC2_PORT_RESET BIT(6)
175 #define MVNETA_GMAC_STATUS 0x2c10
176 #define MVNETA_GMAC_LINK_UP BIT(0)
177 #define MVNETA_GMAC_SPEED_1000 BIT(1)
178 #define MVNETA_GMAC_SPEED_100 BIT(2)
179 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
180 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
181 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
182 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
183 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
184 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
185 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
186 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
187 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
188 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
189 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
190 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
191 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
192 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
193 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
194 #define MVNETA_MIB_COUNTERS_BASE 0x3080
195 #define MVNETA_MIB_LATE_COLLISION 0x7c
196 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
197 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
198 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
199 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
200 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
201 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
202 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
203 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
204 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
205 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
206 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
207 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
208 #define MVNETA_PORT_TX_RESET 0x3cf0
209 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
210 #define MVNETA_TX_MTU 0x3e0c
211 #define MVNETA_TX_TOKEN_SIZE 0x3e14
212 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
213 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
214 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
215
216 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
217
218 /* Descriptor ring Macros */
219 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
220 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
221
222 /* Various constants */
223
224 /* Coalescing */
225 #define MVNETA_TXDONE_COAL_PKTS 1
226 #define MVNETA_RX_COAL_PKTS 32
227 #define MVNETA_RX_COAL_USEC 100
228
229 /* The two bytes Marvell header. Either contains a special value used
230 * by Marvell switches when a specific hardware mode is enabled (not
231 * supported by this driver) or is filled automatically by zeroes on
232 * the RX side. Those two bytes being at the front of the Ethernet
233 * header, they allow to have the IP header aligned on a 4 bytes
234 * boundary automatically: the hardware skips those two bytes on its
235 * own.
236 */
237 #define MVNETA_MH_SIZE 2
238
239 #define MVNETA_VLAN_TAG_LEN 4
240
241 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
242 #define MVNETA_TX_CSUM_MAX_SIZE 9800
243 #define MVNETA_ACC_MODE_EXT 1
244
245 /* Timeout constants */
246 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
247 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
248 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
249
250 #define MVNETA_TX_MTU_MAX 0x3ffff
251
252 /* TSO header size */
253 #define TSO_HEADER_SIZE 128
254
255 /* Max number of Rx descriptors */
256 #define MVNETA_MAX_RXD 128
257
258 /* Max number of Tx descriptors */
259 #define MVNETA_MAX_TXD 532
260
261 /* Max number of allowed TCP segments for software TSO */
262 #define MVNETA_MAX_TSO_SEGS 100
263
264 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
265
266 /* descriptor aligned size */
267 #define MVNETA_DESC_ALIGNED_SIZE 32
268
269 #define MVNETA_RX_PKT_SIZE(mtu) \
270 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
271 ETH_HLEN + ETH_FCS_LEN, \
272 MVNETA_CPU_D_CACHE_LINE_SIZE)
273
274 #define IS_TSO_HEADER(txq, addr) \
275 ((addr >= txq->tso_hdrs_phys) && \
276 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
277
278 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
279
280 struct mvneta_pcpu_stats {
281 struct u64_stats_sync syncp;
282 u64 rx_packets;
283 u64 rx_bytes;
284 u64 tx_packets;
285 u64 tx_bytes;
286 };
287
288 struct mvneta_port {
289 int pkt_size;
290 unsigned int frag_size;
291 void __iomem *base;
292 struct mvneta_rx_queue *rxqs;
293 struct mvneta_tx_queue *txqs;
294 struct net_device *dev;
295
296 u32 cause_rx_tx;
297 struct napi_struct napi;
298
299 /* Core clock */
300 struct clk *clk;
301 u8 mcast_count[256];
302 u16 tx_ring_size;
303 u16 rx_ring_size;
304 struct mvneta_pcpu_stats *stats;
305
306 struct mii_bus *mii_bus;
307 struct phy_device *phy_dev;
308 phy_interface_t phy_interface;
309 struct device_node *phy_node;
310 unsigned int link;
311 unsigned int duplex;
312 unsigned int speed;
313 unsigned int tx_csum_limit;
314 int use_inband_status:1;
315 };
316
317 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
318 * layout of the transmit and reception DMA descriptors, and their
319 * layout is therefore defined by the hardware design
320 */
321
322 #define MVNETA_TX_L3_OFF_SHIFT 0
323 #define MVNETA_TX_IP_HLEN_SHIFT 8
324 #define MVNETA_TX_L4_UDP BIT(16)
325 #define MVNETA_TX_L3_IP6 BIT(17)
326 #define MVNETA_TXD_IP_CSUM BIT(18)
327 #define MVNETA_TXD_Z_PAD BIT(19)
328 #define MVNETA_TXD_L_DESC BIT(20)
329 #define MVNETA_TXD_F_DESC BIT(21)
330 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
331 MVNETA_TXD_L_DESC | \
332 MVNETA_TXD_F_DESC)
333 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
334 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
335
336 #define MVNETA_RXD_ERR_CRC 0x0
337 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
338 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
339 #define MVNETA_RXD_ERR_LEN BIT(18)
340 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
341 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
342 #define MVNETA_RXD_L3_IP4 BIT(25)
343 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
344 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
345
346 #if defined(__LITTLE_ENDIAN)
347 struct mvneta_tx_desc {
348 u32 command; /* Options used by HW for packet transmitting.*/
349 u16 reserverd1; /* csum_l4 (for future use) */
350 u16 data_size; /* Data size of transmitted packet in bytes */
351 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
352 u32 reserved2; /* hw_cmd - (for future use, PMT) */
353 u32 reserved3[4]; /* Reserved - (for future use) */
354 };
355
356 struct mvneta_rx_desc {
357 u32 status; /* Info about received packet */
358 u16 reserved1; /* pnc_info - (for future use, PnC) */
359 u16 data_size; /* Size of received packet in bytes */
360
361 u32 buf_phys_addr; /* Physical address of the buffer */
362 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
363
364 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
365 u16 reserved3; /* prefetch_cmd, for future use */
366 u16 reserved4; /* csum_l4 - (for future use, PnC) */
367
368 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
369 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
370 };
371 #else
372 struct mvneta_tx_desc {
373 u16 data_size; /* Data size of transmitted packet in bytes */
374 u16 reserverd1; /* csum_l4 (for future use) */
375 u32 command; /* Options used by HW for packet transmitting.*/
376 u32 reserved2; /* hw_cmd - (for future use, PMT) */
377 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
378 u32 reserved3[4]; /* Reserved - (for future use) */
379 };
380
381 struct mvneta_rx_desc {
382 u16 data_size; /* Size of received packet in bytes */
383 u16 reserved1; /* pnc_info - (for future use, PnC) */
384 u32 status; /* Info about received packet */
385
386 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
387 u32 buf_phys_addr; /* Physical address of the buffer */
388
389 u16 reserved4; /* csum_l4 - (for future use, PnC) */
390 u16 reserved3; /* prefetch_cmd, for future use */
391 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
392
393 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
394 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
395 };
396 #endif
397
398 struct mvneta_tx_queue {
399 /* Number of this TX queue, in the range 0-7 */
400 u8 id;
401
402 /* Number of TX DMA descriptors in the descriptor ring */
403 int size;
404
405 /* Number of currently used TX DMA descriptor in the
406 * descriptor ring
407 */
408 int count;
409 int tx_stop_threshold;
410 int tx_wake_threshold;
411
412 /* Array of transmitted skb */
413 struct sk_buff **tx_skb;
414
415 /* Index of last TX DMA descriptor that was inserted */
416 int txq_put_index;
417
418 /* Index of the TX DMA descriptor to be cleaned up */
419 int txq_get_index;
420
421 u32 done_pkts_coal;
422
423 /* Virtual address of the TX DMA descriptors array */
424 struct mvneta_tx_desc *descs;
425
426 /* DMA address of the TX DMA descriptors array */
427 dma_addr_t descs_phys;
428
429 /* Index of the last TX DMA descriptor */
430 int last_desc;
431
432 /* Index of the next TX DMA descriptor to process */
433 int next_desc_to_proc;
434
435 /* DMA buffers for TSO headers */
436 char *tso_hdrs;
437
438 /* DMA address of TSO headers */
439 dma_addr_t tso_hdrs_phys;
440 };
441
442 struct mvneta_rx_queue {
443 /* rx queue number, in the range 0-7 */
444 u8 id;
445
446 /* num of rx descriptors in the rx descriptor ring */
447 int size;
448
449 /* counter of times when mvneta_refill() failed */
450 int missed;
451
452 u32 pkts_coal;
453 u32 time_coal;
454
455 /* Virtual address of the RX DMA descriptors array */
456 struct mvneta_rx_desc *descs;
457
458 /* DMA address of the RX DMA descriptors array */
459 dma_addr_t descs_phys;
460
461 /* Index of the last RX DMA descriptor */
462 int last_desc;
463
464 /* Index of the next RX DMA descriptor to process */
465 int next_desc_to_proc;
466 };
467
468 /* The hardware supports eight (8) rx queues, but we are only allowing
469 * the first one to be used. Therefore, let's just allocate one queue.
470 */
471 static int rxq_number = 1;
472 static int txq_number = 8;
473
474 static int rxq_def;
475
476 static int rx_copybreak __read_mostly = 256;
477
478 #define MVNETA_DRIVER_NAME "mvneta"
479 #define MVNETA_DRIVER_VERSION "1.0"
480
481 /* Utility/helper methods */
482
483 /* Write helper method */
484 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
485 {
486 writel(data, pp->base + offset);
487 }
488
489 /* Read helper method */
490 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
491 {
492 return readl(pp->base + offset);
493 }
494
495 /* Increment txq get counter */
496 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
497 {
498 txq->txq_get_index++;
499 if (txq->txq_get_index == txq->size)
500 txq->txq_get_index = 0;
501 }
502
503 /* Increment txq put counter */
504 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
505 {
506 txq->txq_put_index++;
507 if (txq->txq_put_index == txq->size)
508 txq->txq_put_index = 0;
509 }
510
511
512 /* Clear all MIB counters */
513 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
514 {
515 int i;
516 u32 dummy;
517
518 /* Perform dummy reads from MIB counters */
519 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
520 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
521 }
522
523 /* Get System Network Statistics */
524 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
525 struct rtnl_link_stats64 *stats)
526 {
527 struct mvneta_port *pp = netdev_priv(dev);
528 unsigned int start;
529 int cpu;
530
531 for_each_possible_cpu(cpu) {
532 struct mvneta_pcpu_stats *cpu_stats;
533 u64 rx_packets;
534 u64 rx_bytes;
535 u64 tx_packets;
536 u64 tx_bytes;
537
538 cpu_stats = per_cpu_ptr(pp->stats, cpu);
539 do {
540 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
541 rx_packets = cpu_stats->rx_packets;
542 rx_bytes = cpu_stats->rx_bytes;
543 tx_packets = cpu_stats->tx_packets;
544 tx_bytes = cpu_stats->tx_bytes;
545 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
546
547 stats->rx_packets += rx_packets;
548 stats->rx_bytes += rx_bytes;
549 stats->tx_packets += tx_packets;
550 stats->tx_bytes += tx_bytes;
551 }
552
553 stats->rx_errors = dev->stats.rx_errors;
554 stats->rx_dropped = dev->stats.rx_dropped;
555
556 stats->tx_dropped = dev->stats.tx_dropped;
557
558 return stats;
559 }
560
561 /* Rx descriptors helper methods */
562
563 /* Checks whether the RX descriptor having this status is both the first
564 * and the last descriptor for the RX packet. Each RX packet is currently
565 * received through a single RX descriptor, so not having each RX
566 * descriptor with its first and last bits set is an error
567 */
568 static int mvneta_rxq_desc_is_first_last(u32 status)
569 {
570 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
571 MVNETA_RXD_FIRST_LAST_DESC;
572 }
573
574 /* Add number of descriptors ready to receive new packets */
575 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
576 struct mvneta_rx_queue *rxq,
577 int ndescs)
578 {
579 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
580 * be added at once
581 */
582 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
583 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
584 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
585 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
586 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
587 }
588
589 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
590 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
591 }
592
593 /* Get number of RX descriptors occupied by received packets */
594 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
595 struct mvneta_rx_queue *rxq)
596 {
597 u32 val;
598
599 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
600 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
601 }
602
603 /* Update num of rx desc called upon return from rx path or
604 * from mvneta_rxq_drop_pkts().
605 */
606 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
607 struct mvneta_rx_queue *rxq,
608 int rx_done, int rx_filled)
609 {
610 u32 val;
611
612 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
613 val = rx_done |
614 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
615 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
616 return;
617 }
618
619 /* Only 255 descriptors can be added at once */
620 while ((rx_done > 0) || (rx_filled > 0)) {
621 if (rx_done <= 0xff) {
622 val = rx_done;
623 rx_done = 0;
624 } else {
625 val = 0xff;
626 rx_done -= 0xff;
627 }
628 if (rx_filled <= 0xff) {
629 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
630 rx_filled = 0;
631 } else {
632 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
633 rx_filled -= 0xff;
634 }
635 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
636 }
637 }
638
639 /* Get pointer to next RX descriptor to be processed by SW */
640 static struct mvneta_rx_desc *
641 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
642 {
643 int rx_desc = rxq->next_desc_to_proc;
644
645 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
646 prefetch(rxq->descs + rxq->next_desc_to_proc);
647 return rxq->descs + rx_desc;
648 }
649
650 /* Change maximum receive size of the port. */
651 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
652 {
653 u32 val;
654
655 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
656 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
657 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
658 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
659 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
660 }
661
662
663 /* Set rx queue offset */
664 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
665 struct mvneta_rx_queue *rxq,
666 int offset)
667 {
668 u32 val;
669
670 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
671 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
672
673 /* Offset is in */
674 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
675 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
676 }
677
678
679 /* Tx descriptors helper methods */
680
681 /* Update HW with number of TX descriptors to be sent */
682 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
683 struct mvneta_tx_queue *txq,
684 int pend_desc)
685 {
686 u32 val;
687
688 /* Only 255 descriptors can be added at once ; Assume caller
689 * process TX desriptors in quanta less than 256
690 */
691 val = pend_desc;
692 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
693 }
694
695 /* Get pointer to next TX descriptor to be processed (send) by HW */
696 static struct mvneta_tx_desc *
697 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
698 {
699 int tx_desc = txq->next_desc_to_proc;
700
701 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
702 return txq->descs + tx_desc;
703 }
704
705 /* Release the last allocated TX descriptor. Useful to handle DMA
706 * mapping failures in the TX path.
707 */
708 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
709 {
710 if (txq->next_desc_to_proc == 0)
711 txq->next_desc_to_proc = txq->last_desc - 1;
712 else
713 txq->next_desc_to_proc--;
714 }
715
716 /* Set rxq buf size */
717 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
718 struct mvneta_rx_queue *rxq,
719 int buf_size)
720 {
721 u32 val;
722
723 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
724
725 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
726 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
727
728 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
729 }
730
731 /* Disable buffer management (BM) */
732 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
733 struct mvneta_rx_queue *rxq)
734 {
735 u32 val;
736
737 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
738 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
739 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
740 }
741
742 /* Start the Ethernet port RX and TX activity */
743 static void mvneta_port_up(struct mvneta_port *pp)
744 {
745 int queue;
746 u32 q_map;
747
748 /* Enable all initialized TXs. */
749 mvneta_mib_counters_clear(pp);
750 q_map = 0;
751 for (queue = 0; queue < txq_number; queue++) {
752 struct mvneta_tx_queue *txq = &pp->txqs[queue];
753 if (txq->descs != NULL)
754 q_map |= (1 << queue);
755 }
756 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
757
758 /* Enable all initialized RXQs. */
759 q_map = 0;
760 for (queue = 0; queue < rxq_number; queue++) {
761 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
762 if (rxq->descs != NULL)
763 q_map |= (1 << queue);
764 }
765
766 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
767 }
768
769 /* Stop the Ethernet port activity */
770 static void mvneta_port_down(struct mvneta_port *pp)
771 {
772 u32 val;
773 int count;
774
775 /* Stop Rx port activity. Check port Rx activity. */
776 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
777
778 /* Issue stop command for active channels only */
779 if (val != 0)
780 mvreg_write(pp, MVNETA_RXQ_CMD,
781 val << MVNETA_RXQ_DISABLE_SHIFT);
782
783 /* Wait for all Rx activity to terminate. */
784 count = 0;
785 do {
786 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
787 netdev_warn(pp->dev,
788 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
789 val);
790 break;
791 }
792 mdelay(1);
793
794 val = mvreg_read(pp, MVNETA_RXQ_CMD);
795 } while (val & 0xff);
796
797 /* Stop Tx port activity. Check port Tx activity. Issue stop
798 * command for active channels only
799 */
800 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
801
802 if (val != 0)
803 mvreg_write(pp, MVNETA_TXQ_CMD,
804 (val << MVNETA_TXQ_DISABLE_SHIFT));
805
806 /* Wait for all Tx activity to terminate. */
807 count = 0;
808 do {
809 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
810 netdev_warn(pp->dev,
811 "TIMEOUT for TX stopped status=0x%08x\n",
812 val);
813 break;
814 }
815 mdelay(1);
816
817 /* Check TX Command reg that all Txqs are stopped */
818 val = mvreg_read(pp, MVNETA_TXQ_CMD);
819
820 } while (val & 0xff);
821
822 /* Double check to verify that TX FIFO is empty */
823 count = 0;
824 do {
825 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
826 netdev_warn(pp->dev,
827 "TX FIFO empty timeout status=0x08%x\n",
828 val);
829 break;
830 }
831 mdelay(1);
832
833 val = mvreg_read(pp, MVNETA_PORT_STATUS);
834 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
835 (val & MVNETA_TX_IN_PRGRS));
836
837 udelay(200);
838 }
839
840 /* Enable the port by setting the port enable bit of the MAC control register */
841 static void mvneta_port_enable(struct mvneta_port *pp)
842 {
843 u32 val;
844
845 /* Enable port */
846 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
847 val |= MVNETA_GMAC0_PORT_ENABLE;
848 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
849 }
850
851 /* Disable the port and wait for about 200 usec before retuning */
852 static void mvneta_port_disable(struct mvneta_port *pp)
853 {
854 u32 val;
855
856 /* Reset the Enable bit in the Serial Control Register */
857 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
858 val &= ~MVNETA_GMAC0_PORT_ENABLE;
859 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
860
861 udelay(200);
862 }
863
864 /* Multicast tables methods */
865
866 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
867 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
868 {
869 int offset;
870 u32 val;
871
872 if (queue == -1) {
873 val = 0;
874 } else {
875 val = 0x1 | (queue << 1);
876 val |= (val << 24) | (val << 16) | (val << 8);
877 }
878
879 for (offset = 0; offset <= 0xc; offset += 4)
880 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
881 }
882
883 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
884 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
885 {
886 int offset;
887 u32 val;
888
889 if (queue == -1) {
890 val = 0;
891 } else {
892 val = 0x1 | (queue << 1);
893 val |= (val << 24) | (val << 16) | (val << 8);
894 }
895
896 for (offset = 0; offset <= 0xfc; offset += 4)
897 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
898
899 }
900
901 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
902 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
903 {
904 int offset;
905 u32 val;
906
907 if (queue == -1) {
908 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
909 val = 0;
910 } else {
911 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
912 val = 0x1 | (queue << 1);
913 val |= (val << 24) | (val << 16) | (val << 8);
914 }
915
916 for (offset = 0; offset <= 0xfc; offset += 4)
917 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
918 }
919
920 /* This method sets defaults to the NETA port:
921 * Clears interrupt Cause and Mask registers.
922 * Clears all MAC tables.
923 * Sets defaults to all registers.
924 * Resets RX and TX descriptor rings.
925 * Resets PHY.
926 * This method can be called after mvneta_port_down() to return the port
927 * settings to defaults.
928 */
929 static void mvneta_defaults_set(struct mvneta_port *pp)
930 {
931 int cpu;
932 int queue;
933 u32 val;
934
935 /* Clear all Cause registers */
936 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
937 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
938 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
939
940 /* Mask all interrupts */
941 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
942 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
943 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
944 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
945
946 /* Enable MBUS Retry bit16 */
947 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
948
949 /* Set CPU queue access map - all CPUs have access to all RX
950 * queues and to all TX queues
951 */
952 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
953 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
954 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
955 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
956
957 /* Reset RX and TX DMAs */
958 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
959 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
960
961 /* Disable Legacy WRR, Disable EJP, Release from reset */
962 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
963 for (queue = 0; queue < txq_number; queue++) {
964 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
965 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
966 }
967
968 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
969 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
970
971 /* Set Port Acceleration Mode */
972 val = MVNETA_ACC_MODE_EXT;
973 mvreg_write(pp, MVNETA_ACC_MODE, val);
974
975 /* Update val of portCfg register accordingly with all RxQueue types */
976 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
977 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
978
979 val = 0;
980 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
981 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
982
983 /* Build PORT_SDMA_CONFIG_REG */
984 val = 0;
985
986 /* Default burst size */
987 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
988 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
989 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
990
991 #if defined(__BIG_ENDIAN)
992 val |= MVNETA_DESC_SWAP;
993 #endif
994
995 /* Assign port SDMA configuration */
996 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
997
998 /* Disable PHY polling in hardware, since we're using the
999 * kernel phylib to do this.
1000 */
1001 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1002 val &= ~MVNETA_PHY_POLLING_ENABLE;
1003 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1004
1005 if (pp->use_inband_status) {
1006 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1007 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1008 MVNETA_GMAC_FORCE_LINK_DOWN |
1009 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1010 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1011 MVNETA_GMAC_AN_SPEED_EN |
1012 MVNETA_GMAC_AN_DUPLEX_EN;
1013 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1014 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1015 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1016 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1017 } else {
1018 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1019 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1020 MVNETA_GMAC_AN_SPEED_EN |
1021 MVNETA_GMAC_AN_DUPLEX_EN);
1022 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1023 }
1024
1025 mvneta_set_ucast_table(pp, -1);
1026 mvneta_set_special_mcast_table(pp, -1);
1027 mvneta_set_other_mcast_table(pp, -1);
1028
1029 /* Set port interrupt enable register - default enable all */
1030 mvreg_write(pp, MVNETA_INTR_ENABLE,
1031 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1032 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1033 }
1034
1035 /* Set max sizes for tx queues */
1036 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1037
1038 {
1039 u32 val, size, mtu;
1040 int queue;
1041
1042 mtu = max_tx_size * 8;
1043 if (mtu > MVNETA_TX_MTU_MAX)
1044 mtu = MVNETA_TX_MTU_MAX;
1045
1046 /* Set MTU */
1047 val = mvreg_read(pp, MVNETA_TX_MTU);
1048 val &= ~MVNETA_TX_MTU_MAX;
1049 val |= mtu;
1050 mvreg_write(pp, MVNETA_TX_MTU, val);
1051
1052 /* TX token size and all TXQs token size must be larger that MTU */
1053 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1054
1055 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1056 if (size < mtu) {
1057 size = mtu;
1058 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1059 val |= size;
1060 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1061 }
1062 for (queue = 0; queue < txq_number; queue++) {
1063 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1064
1065 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1066 if (size < mtu) {
1067 size = mtu;
1068 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1069 val |= size;
1070 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1071 }
1072 }
1073 }
1074
1075 /* Set unicast address */
1076 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1077 int queue)
1078 {
1079 unsigned int unicast_reg;
1080 unsigned int tbl_offset;
1081 unsigned int reg_offset;
1082
1083 /* Locate the Unicast table entry */
1084 last_nibble = (0xf & last_nibble);
1085
1086 /* offset from unicast tbl base */
1087 tbl_offset = (last_nibble / 4) * 4;
1088
1089 /* offset within the above reg */
1090 reg_offset = last_nibble % 4;
1091
1092 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1093
1094 if (queue == -1) {
1095 /* Clear accepts frame bit at specified unicast DA tbl entry */
1096 unicast_reg &= ~(0xff << (8 * reg_offset));
1097 } else {
1098 unicast_reg &= ~(0xff << (8 * reg_offset));
1099 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1100 }
1101
1102 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1103 }
1104
1105 /* Set mac address */
1106 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1107 int queue)
1108 {
1109 unsigned int mac_h;
1110 unsigned int mac_l;
1111
1112 if (queue != -1) {
1113 mac_l = (addr[4] << 8) | (addr[5]);
1114 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1115 (addr[2] << 8) | (addr[3] << 0);
1116
1117 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1118 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1119 }
1120
1121 /* Accept frames of this address */
1122 mvneta_set_ucast_addr(pp, addr[5], queue);
1123 }
1124
1125 /* Set the number of packets that will be received before RX interrupt
1126 * will be generated by HW.
1127 */
1128 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1129 struct mvneta_rx_queue *rxq, u32 value)
1130 {
1131 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1132 value | MVNETA_RXQ_NON_OCCUPIED(0));
1133 rxq->pkts_coal = value;
1134 }
1135
1136 /* Set the time delay in usec before RX interrupt will be generated by
1137 * HW.
1138 */
1139 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1140 struct mvneta_rx_queue *rxq, u32 value)
1141 {
1142 u32 val;
1143 unsigned long clk_rate;
1144
1145 clk_rate = clk_get_rate(pp->clk);
1146 val = (clk_rate / 1000000) * value;
1147
1148 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1149 rxq->time_coal = value;
1150 }
1151
1152 /* Set threshold for TX_DONE pkts coalescing */
1153 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1154 struct mvneta_tx_queue *txq, u32 value)
1155 {
1156 u32 val;
1157
1158 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1159
1160 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1161 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1162
1163 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1164
1165 txq->done_pkts_coal = value;
1166 }
1167
1168 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1169 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1170 u32 phys_addr, u32 cookie)
1171 {
1172 rx_desc->buf_cookie = cookie;
1173 rx_desc->buf_phys_addr = phys_addr;
1174 }
1175
1176 /* Decrement sent descriptors counter */
1177 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1178 struct mvneta_tx_queue *txq,
1179 int sent_desc)
1180 {
1181 u32 val;
1182
1183 /* Only 255 TX descriptors can be updated at once */
1184 while (sent_desc > 0xff) {
1185 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1186 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1187 sent_desc = sent_desc - 0xff;
1188 }
1189
1190 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1191 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1192 }
1193
1194 /* Get number of TX descriptors already sent by HW */
1195 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1196 struct mvneta_tx_queue *txq)
1197 {
1198 u32 val;
1199 int sent_desc;
1200
1201 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1202 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1203 MVNETA_TXQ_SENT_DESC_SHIFT;
1204
1205 return sent_desc;
1206 }
1207
1208 /* Get number of sent descriptors and decrement counter.
1209 * The number of sent descriptors is returned.
1210 */
1211 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1212 struct mvneta_tx_queue *txq)
1213 {
1214 int sent_desc;
1215
1216 /* Get number of sent descriptors */
1217 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1218
1219 /* Decrement sent descriptors counter */
1220 if (sent_desc)
1221 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1222
1223 return sent_desc;
1224 }
1225
1226 /* Set TXQ descriptors fields relevant for CSUM calculation */
1227 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1228 int ip_hdr_len, int l4_proto)
1229 {
1230 u32 command;
1231
1232 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1233 * G_L4_chk, L4_type; required only for checksum
1234 * calculation
1235 */
1236 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1237 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1238
1239 if (l3_proto == htons(ETH_P_IP))
1240 command |= MVNETA_TXD_IP_CSUM;
1241 else
1242 command |= MVNETA_TX_L3_IP6;
1243
1244 if (l4_proto == IPPROTO_TCP)
1245 command |= MVNETA_TX_L4_CSUM_FULL;
1246 else if (l4_proto == IPPROTO_UDP)
1247 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1248 else
1249 command |= MVNETA_TX_L4_CSUM_NOT;
1250
1251 return command;
1252 }
1253
1254
1255 /* Display more error info */
1256 static void mvneta_rx_error(struct mvneta_port *pp,
1257 struct mvneta_rx_desc *rx_desc)
1258 {
1259 u32 status = rx_desc->status;
1260
1261 if (!mvneta_rxq_desc_is_first_last(status)) {
1262 netdev_err(pp->dev,
1263 "bad rx status %08x (buffer oversize), size=%d\n",
1264 status, rx_desc->data_size);
1265 return;
1266 }
1267
1268 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1269 case MVNETA_RXD_ERR_CRC:
1270 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1271 status, rx_desc->data_size);
1272 break;
1273 case MVNETA_RXD_ERR_OVERRUN:
1274 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1275 status, rx_desc->data_size);
1276 break;
1277 case MVNETA_RXD_ERR_LEN:
1278 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1279 status, rx_desc->data_size);
1280 break;
1281 case MVNETA_RXD_ERR_RESOURCE:
1282 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1283 status, rx_desc->data_size);
1284 break;
1285 }
1286 }
1287
1288 /* Handle RX checksum offload based on the descriptor's status */
1289 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1290 struct sk_buff *skb)
1291 {
1292 if ((status & MVNETA_RXD_L3_IP4) &&
1293 (status & MVNETA_RXD_L4_CSUM_OK)) {
1294 skb->csum = 0;
1295 skb->ip_summed = CHECKSUM_UNNECESSARY;
1296 return;
1297 }
1298
1299 skb->ip_summed = CHECKSUM_NONE;
1300 }
1301
1302 /* Return tx queue pointer (find last set bit) according to <cause> returned
1303 * form tx_done reg. <cause> must not be null. The return value is always a
1304 * valid queue for matching the first one found in <cause>.
1305 */
1306 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1307 u32 cause)
1308 {
1309 int queue = fls(cause) - 1;
1310
1311 return &pp->txqs[queue];
1312 }
1313
1314 /* Free tx queue skbuffs */
1315 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1316 struct mvneta_tx_queue *txq, int num)
1317 {
1318 int i;
1319
1320 for (i = 0; i < num; i++) {
1321 struct mvneta_tx_desc *tx_desc = txq->descs +
1322 txq->txq_get_index;
1323 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1324
1325 mvneta_txq_inc_get(txq);
1326
1327 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1328 dma_unmap_single(pp->dev->dev.parent,
1329 tx_desc->buf_phys_addr,
1330 tx_desc->data_size, DMA_TO_DEVICE);
1331 if (!skb)
1332 continue;
1333 dev_kfree_skb_any(skb);
1334 }
1335 }
1336
1337 /* Handle end of transmission */
1338 static void mvneta_txq_done(struct mvneta_port *pp,
1339 struct mvneta_tx_queue *txq)
1340 {
1341 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1342 int tx_done;
1343
1344 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1345 if (!tx_done)
1346 return;
1347
1348 mvneta_txq_bufs_free(pp, txq, tx_done);
1349
1350 txq->count -= tx_done;
1351
1352 if (netif_tx_queue_stopped(nq)) {
1353 if (txq->count <= txq->tx_wake_threshold)
1354 netif_tx_wake_queue(nq);
1355 }
1356 }
1357
1358 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1359 {
1360 if (likely(pp->frag_size <= PAGE_SIZE))
1361 return netdev_alloc_frag(pp->frag_size);
1362 else
1363 return kmalloc(pp->frag_size, GFP_ATOMIC);
1364 }
1365
1366 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1367 {
1368 if (likely(pp->frag_size <= PAGE_SIZE))
1369 skb_free_frag(data);
1370 else
1371 kfree(data);
1372 }
1373
1374 /* Refill processing */
1375 static int mvneta_rx_refill(struct mvneta_port *pp,
1376 struct mvneta_rx_desc *rx_desc)
1377
1378 {
1379 dma_addr_t phys_addr;
1380 void *data;
1381
1382 data = mvneta_frag_alloc(pp);
1383 if (!data)
1384 return -ENOMEM;
1385
1386 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1387 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1388 DMA_FROM_DEVICE);
1389 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1390 mvneta_frag_free(pp, data);
1391 return -ENOMEM;
1392 }
1393
1394 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1395 return 0;
1396 }
1397
1398 /* Handle tx checksum */
1399 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1400 {
1401 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1402 int ip_hdr_len = 0;
1403 __be16 l3_proto = vlan_get_protocol(skb);
1404 u8 l4_proto;
1405
1406 if (l3_proto == htons(ETH_P_IP)) {
1407 struct iphdr *ip4h = ip_hdr(skb);
1408
1409 /* Calculate IPv4 checksum and L4 checksum */
1410 ip_hdr_len = ip4h->ihl;
1411 l4_proto = ip4h->protocol;
1412 } else if (l3_proto == htons(ETH_P_IPV6)) {
1413 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1414
1415 /* Read l4_protocol from one of IPv6 extra headers */
1416 if (skb_network_header_len(skb) > 0)
1417 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1418 l4_proto = ip6h->nexthdr;
1419 } else
1420 return MVNETA_TX_L4_CSUM_NOT;
1421
1422 return mvneta_txq_desc_csum(skb_network_offset(skb),
1423 l3_proto, ip_hdr_len, l4_proto);
1424 }
1425
1426 return MVNETA_TX_L4_CSUM_NOT;
1427 }
1428
1429 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1430 * value
1431 */
1432 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1433 u32 cause)
1434 {
1435 int queue = fls(cause >> 8) - 1;
1436
1437 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1438 }
1439
1440 /* Drop packets received by the RXQ and free buffers */
1441 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1442 struct mvneta_rx_queue *rxq)
1443 {
1444 int rx_done, i;
1445
1446 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1447 for (i = 0; i < rxq->size; i++) {
1448 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1449 void *data = (void *)rx_desc->buf_cookie;
1450
1451 mvneta_frag_free(pp, data);
1452 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1453 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1454 }
1455
1456 if (rx_done)
1457 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1458 }
1459
1460 /* Main rx processing */
1461 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1462 struct mvneta_rx_queue *rxq)
1463 {
1464 struct net_device *dev = pp->dev;
1465 int rx_done;
1466 u32 rcvd_pkts = 0;
1467 u32 rcvd_bytes = 0;
1468
1469 /* Get number of received packets */
1470 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1471
1472 if (rx_todo > rx_done)
1473 rx_todo = rx_done;
1474
1475 rx_done = 0;
1476
1477 /* Fairness NAPI loop */
1478 while (rx_done < rx_todo) {
1479 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1480 struct sk_buff *skb;
1481 unsigned char *data;
1482 u32 rx_status;
1483 int rx_bytes, err;
1484
1485 rx_done++;
1486 rx_status = rx_desc->status;
1487 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1488 data = (unsigned char *)rx_desc->buf_cookie;
1489
1490 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1491 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1492 err_drop_frame:
1493 dev->stats.rx_errors++;
1494 mvneta_rx_error(pp, rx_desc);
1495 /* leave the descriptor untouched */
1496 continue;
1497 }
1498
1499 if (rx_bytes <= rx_copybreak) {
1500 /* better copy a small frame and not unmap the DMA region */
1501 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1502 if (unlikely(!skb))
1503 goto err_drop_frame;
1504
1505 dma_sync_single_range_for_cpu(dev->dev.parent,
1506 rx_desc->buf_phys_addr,
1507 MVNETA_MH_SIZE + NET_SKB_PAD,
1508 rx_bytes,
1509 DMA_FROM_DEVICE);
1510 memcpy(skb_put(skb, rx_bytes),
1511 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1512 rx_bytes);
1513
1514 skb->protocol = eth_type_trans(skb, dev);
1515 mvneta_rx_csum(pp, rx_status, skb);
1516 napi_gro_receive(&pp->napi, skb);
1517
1518 rcvd_pkts++;
1519 rcvd_bytes += rx_bytes;
1520
1521 /* leave the descriptor and buffer untouched */
1522 continue;
1523 }
1524
1525 /* Refill processing */
1526 err = mvneta_rx_refill(pp, rx_desc);
1527 if (err) {
1528 netdev_err(dev, "Linux processing - Can't refill\n");
1529 rxq->missed++;
1530 goto err_drop_frame;
1531 }
1532
1533 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1534 if (!skb)
1535 goto err_drop_frame;
1536
1537 dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1538 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1539
1540 rcvd_pkts++;
1541 rcvd_bytes += rx_bytes;
1542
1543 /* Linux processing */
1544 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1545 skb_put(skb, rx_bytes);
1546
1547 skb->protocol = eth_type_trans(skb, dev);
1548
1549 mvneta_rx_csum(pp, rx_status, skb);
1550
1551 napi_gro_receive(&pp->napi, skb);
1552 }
1553
1554 if (rcvd_pkts) {
1555 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1556
1557 u64_stats_update_begin(&stats->syncp);
1558 stats->rx_packets += rcvd_pkts;
1559 stats->rx_bytes += rcvd_bytes;
1560 u64_stats_update_end(&stats->syncp);
1561 }
1562
1563 /* Update rxq management counters */
1564 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1565
1566 return rx_done;
1567 }
1568
1569 static inline void
1570 mvneta_tso_put_hdr(struct sk_buff *skb,
1571 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1572 {
1573 struct mvneta_tx_desc *tx_desc;
1574 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1575
1576 txq->tx_skb[txq->txq_put_index] = NULL;
1577 tx_desc = mvneta_txq_next_desc_get(txq);
1578 tx_desc->data_size = hdr_len;
1579 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1580 tx_desc->command |= MVNETA_TXD_F_DESC;
1581 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1582 txq->txq_put_index * TSO_HEADER_SIZE;
1583 mvneta_txq_inc_put(txq);
1584 }
1585
1586 static inline int
1587 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1588 struct sk_buff *skb, char *data, int size,
1589 bool last_tcp, bool is_last)
1590 {
1591 struct mvneta_tx_desc *tx_desc;
1592
1593 tx_desc = mvneta_txq_next_desc_get(txq);
1594 tx_desc->data_size = size;
1595 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1596 size, DMA_TO_DEVICE);
1597 if (unlikely(dma_mapping_error(dev->dev.parent,
1598 tx_desc->buf_phys_addr))) {
1599 mvneta_txq_desc_put(txq);
1600 return -ENOMEM;
1601 }
1602
1603 tx_desc->command = 0;
1604 txq->tx_skb[txq->txq_put_index] = NULL;
1605
1606 if (last_tcp) {
1607 /* last descriptor in the TCP packet */
1608 tx_desc->command = MVNETA_TXD_L_DESC;
1609
1610 /* last descriptor in SKB */
1611 if (is_last)
1612 txq->tx_skb[txq->txq_put_index] = skb;
1613 }
1614 mvneta_txq_inc_put(txq);
1615 return 0;
1616 }
1617
1618 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1619 struct mvneta_tx_queue *txq)
1620 {
1621 int total_len, data_left;
1622 int desc_count = 0;
1623 struct mvneta_port *pp = netdev_priv(dev);
1624 struct tso_t tso;
1625 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1626 int i;
1627
1628 /* Count needed descriptors */
1629 if ((txq->count + tso_count_descs(skb)) >= txq->size)
1630 return 0;
1631
1632 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1633 pr_info("*** Is this even possible???!?!?\n");
1634 return 0;
1635 }
1636
1637 /* Initialize the TSO handler, and prepare the first payload */
1638 tso_start(skb, &tso);
1639
1640 total_len = skb->len - hdr_len;
1641 while (total_len > 0) {
1642 char *hdr;
1643
1644 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1645 total_len -= data_left;
1646 desc_count++;
1647
1648 /* prepare packet headers: MAC + IP + TCP */
1649 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1650 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1651
1652 mvneta_tso_put_hdr(skb, pp, txq);
1653
1654 while (data_left > 0) {
1655 int size;
1656 desc_count++;
1657
1658 size = min_t(int, tso.size, data_left);
1659
1660 if (mvneta_tso_put_data(dev, txq, skb,
1661 tso.data, size,
1662 size == data_left,
1663 total_len == 0))
1664 goto err_release;
1665 data_left -= size;
1666
1667 tso_build_data(skb, &tso, size);
1668 }
1669 }
1670
1671 return desc_count;
1672
1673 err_release:
1674 /* Release all used data descriptors; header descriptors must not
1675 * be DMA-unmapped.
1676 */
1677 for (i = desc_count - 1; i >= 0; i--) {
1678 struct mvneta_tx_desc *tx_desc = txq->descs + i;
1679 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1680 dma_unmap_single(pp->dev->dev.parent,
1681 tx_desc->buf_phys_addr,
1682 tx_desc->data_size,
1683 DMA_TO_DEVICE);
1684 mvneta_txq_desc_put(txq);
1685 }
1686 return 0;
1687 }
1688
1689 /* Handle tx fragmentation processing */
1690 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1691 struct mvneta_tx_queue *txq)
1692 {
1693 struct mvneta_tx_desc *tx_desc;
1694 int i, nr_frags = skb_shinfo(skb)->nr_frags;
1695
1696 for (i = 0; i < nr_frags; i++) {
1697 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1698 void *addr = page_address(frag->page.p) + frag->page_offset;
1699
1700 tx_desc = mvneta_txq_next_desc_get(txq);
1701 tx_desc->data_size = frag->size;
1702
1703 tx_desc->buf_phys_addr =
1704 dma_map_single(pp->dev->dev.parent, addr,
1705 tx_desc->data_size, DMA_TO_DEVICE);
1706
1707 if (dma_mapping_error(pp->dev->dev.parent,
1708 tx_desc->buf_phys_addr)) {
1709 mvneta_txq_desc_put(txq);
1710 goto error;
1711 }
1712
1713 if (i == nr_frags - 1) {
1714 /* Last descriptor */
1715 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1716 txq->tx_skb[txq->txq_put_index] = skb;
1717 } else {
1718 /* Descriptor in the middle: Not First, Not Last */
1719 tx_desc->command = 0;
1720 txq->tx_skb[txq->txq_put_index] = NULL;
1721 }
1722 mvneta_txq_inc_put(txq);
1723 }
1724
1725 return 0;
1726
1727 error:
1728 /* Release all descriptors that were used to map fragments of
1729 * this packet, as well as the corresponding DMA mappings
1730 */
1731 for (i = i - 1; i >= 0; i--) {
1732 tx_desc = txq->descs + i;
1733 dma_unmap_single(pp->dev->dev.parent,
1734 tx_desc->buf_phys_addr,
1735 tx_desc->data_size,
1736 DMA_TO_DEVICE);
1737 mvneta_txq_desc_put(txq);
1738 }
1739
1740 return -ENOMEM;
1741 }
1742
1743 /* Main tx processing */
1744 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1745 {
1746 struct mvneta_port *pp = netdev_priv(dev);
1747 u16 txq_id = skb_get_queue_mapping(skb);
1748 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1749 struct mvneta_tx_desc *tx_desc;
1750 int len = skb->len;
1751 int frags = 0;
1752 u32 tx_cmd;
1753
1754 if (!netif_running(dev))
1755 goto out;
1756
1757 if (skb_is_gso(skb)) {
1758 frags = mvneta_tx_tso(skb, dev, txq);
1759 goto out;
1760 }
1761
1762 frags = skb_shinfo(skb)->nr_frags + 1;
1763
1764 /* Get a descriptor for the first part of the packet */
1765 tx_desc = mvneta_txq_next_desc_get(txq);
1766
1767 tx_cmd = mvneta_skb_tx_csum(pp, skb);
1768
1769 tx_desc->data_size = skb_headlen(skb);
1770
1771 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1772 tx_desc->data_size,
1773 DMA_TO_DEVICE);
1774 if (unlikely(dma_mapping_error(dev->dev.parent,
1775 tx_desc->buf_phys_addr))) {
1776 mvneta_txq_desc_put(txq);
1777 frags = 0;
1778 goto out;
1779 }
1780
1781 if (frags == 1) {
1782 /* First and Last descriptor */
1783 tx_cmd |= MVNETA_TXD_FLZ_DESC;
1784 tx_desc->command = tx_cmd;
1785 txq->tx_skb[txq->txq_put_index] = skb;
1786 mvneta_txq_inc_put(txq);
1787 } else {
1788 /* First but not Last */
1789 tx_cmd |= MVNETA_TXD_F_DESC;
1790 txq->tx_skb[txq->txq_put_index] = NULL;
1791 mvneta_txq_inc_put(txq);
1792 tx_desc->command = tx_cmd;
1793 /* Continue with other skb fragments */
1794 if (mvneta_tx_frag_process(pp, skb, txq)) {
1795 dma_unmap_single(dev->dev.parent,
1796 tx_desc->buf_phys_addr,
1797 tx_desc->data_size,
1798 DMA_TO_DEVICE);
1799 mvneta_txq_desc_put(txq);
1800 frags = 0;
1801 goto out;
1802 }
1803 }
1804
1805 out:
1806 if (frags > 0) {
1807 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1808 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1809
1810 txq->count += frags;
1811 mvneta_txq_pend_desc_add(pp, txq, frags);
1812
1813 if (txq->count >= txq->tx_stop_threshold)
1814 netif_tx_stop_queue(nq);
1815
1816 u64_stats_update_begin(&stats->syncp);
1817 stats->tx_packets++;
1818 stats->tx_bytes += len;
1819 u64_stats_update_end(&stats->syncp);
1820 } else {
1821 dev->stats.tx_dropped++;
1822 dev_kfree_skb_any(skb);
1823 }
1824
1825 return NETDEV_TX_OK;
1826 }
1827
1828
1829 /* Free tx resources, when resetting a port */
1830 static void mvneta_txq_done_force(struct mvneta_port *pp,
1831 struct mvneta_tx_queue *txq)
1832
1833 {
1834 int tx_done = txq->count;
1835
1836 mvneta_txq_bufs_free(pp, txq, tx_done);
1837
1838 /* reset txq */
1839 txq->count = 0;
1840 txq->txq_put_index = 0;
1841 txq->txq_get_index = 0;
1842 }
1843
1844 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1845 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1846 */
1847 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1848 {
1849 struct mvneta_tx_queue *txq;
1850 struct netdev_queue *nq;
1851
1852 while (cause_tx_done) {
1853 txq = mvneta_tx_done_policy(pp, cause_tx_done);
1854
1855 nq = netdev_get_tx_queue(pp->dev, txq->id);
1856 __netif_tx_lock(nq, smp_processor_id());
1857
1858 if (txq->count)
1859 mvneta_txq_done(pp, txq);
1860
1861 __netif_tx_unlock(nq);
1862 cause_tx_done &= ~((1 << txq->id));
1863 }
1864 }
1865
1866 /* Compute crc8 of the specified address, using a unique algorithm ,
1867 * according to hw spec, different than generic crc8 algorithm
1868 */
1869 static int mvneta_addr_crc(unsigned char *addr)
1870 {
1871 int crc = 0;
1872 int i;
1873
1874 for (i = 0; i < ETH_ALEN; i++) {
1875 int j;
1876
1877 crc = (crc ^ addr[i]) << 8;
1878 for (j = 7; j >= 0; j--) {
1879 if (crc & (0x100 << j))
1880 crc ^= 0x107 << j;
1881 }
1882 }
1883
1884 return crc;
1885 }
1886
1887 /* This method controls the net device special MAC multicast support.
1888 * The Special Multicast Table for MAC addresses supports MAC of the form
1889 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1890 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1891 * Table entries in the DA-Filter table. This method set the Special
1892 * Multicast Table appropriate entry.
1893 */
1894 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1895 unsigned char last_byte,
1896 int queue)
1897 {
1898 unsigned int smc_table_reg;
1899 unsigned int tbl_offset;
1900 unsigned int reg_offset;
1901
1902 /* Register offset from SMC table base */
1903 tbl_offset = (last_byte / 4);
1904 /* Entry offset within the above reg */
1905 reg_offset = last_byte % 4;
1906
1907 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1908 + tbl_offset * 4));
1909
1910 if (queue == -1)
1911 smc_table_reg &= ~(0xff << (8 * reg_offset));
1912 else {
1913 smc_table_reg &= ~(0xff << (8 * reg_offset));
1914 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1915 }
1916
1917 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1918 smc_table_reg);
1919 }
1920
1921 /* This method controls the network device Other MAC multicast support.
1922 * The Other Multicast Table is used for multicast of another type.
1923 * A CRC-8 is used as an index to the Other Multicast Table entries
1924 * in the DA-Filter table.
1925 * The method gets the CRC-8 value from the calling routine and
1926 * sets the Other Multicast Table appropriate entry according to the
1927 * specified CRC-8 .
1928 */
1929 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1930 unsigned char crc8,
1931 int queue)
1932 {
1933 unsigned int omc_table_reg;
1934 unsigned int tbl_offset;
1935 unsigned int reg_offset;
1936
1937 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1938 reg_offset = crc8 % 4; /* Entry offset within the above reg */
1939
1940 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1941
1942 if (queue == -1) {
1943 /* Clear accepts frame bit at specified Other DA table entry */
1944 omc_table_reg &= ~(0xff << (8 * reg_offset));
1945 } else {
1946 omc_table_reg &= ~(0xff << (8 * reg_offset));
1947 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1948 }
1949
1950 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1951 }
1952
1953 /* The network device supports multicast using two tables:
1954 * 1) Special Multicast Table for MAC addresses of the form
1955 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1956 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1957 * Table entries in the DA-Filter table.
1958 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
1959 * is used as an index to the Other Multicast Table entries in the
1960 * DA-Filter table.
1961 */
1962 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1963 int queue)
1964 {
1965 unsigned char crc_result = 0;
1966
1967 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1968 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1969 return 0;
1970 }
1971
1972 crc_result = mvneta_addr_crc(p_addr);
1973 if (queue == -1) {
1974 if (pp->mcast_count[crc_result] == 0) {
1975 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1976 crc_result);
1977 return -EINVAL;
1978 }
1979
1980 pp->mcast_count[crc_result]--;
1981 if (pp->mcast_count[crc_result] != 0) {
1982 netdev_info(pp->dev,
1983 "After delete there are %d valid Mcast for crc8=0x%02x\n",
1984 pp->mcast_count[crc_result], crc_result);
1985 return -EINVAL;
1986 }
1987 } else
1988 pp->mcast_count[crc_result]++;
1989
1990 mvneta_set_other_mcast_addr(pp, crc_result, queue);
1991
1992 return 0;
1993 }
1994
1995 /* Configure Fitering mode of Ethernet port */
1996 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1997 int is_promisc)
1998 {
1999 u32 port_cfg_reg, val;
2000
2001 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2002
2003 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2004
2005 /* Set / Clear UPM bit in port configuration register */
2006 if (is_promisc) {
2007 /* Accept all Unicast addresses */
2008 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2009 val |= MVNETA_FORCE_UNI;
2010 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2011 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2012 } else {
2013 /* Reject all Unicast addresses */
2014 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2015 val &= ~MVNETA_FORCE_UNI;
2016 }
2017
2018 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2019 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2020 }
2021
2022 /* register unicast and multicast addresses */
2023 static void mvneta_set_rx_mode(struct net_device *dev)
2024 {
2025 struct mvneta_port *pp = netdev_priv(dev);
2026 struct netdev_hw_addr *ha;
2027
2028 if (dev->flags & IFF_PROMISC) {
2029 /* Accept all: Multicast + Unicast */
2030 mvneta_rx_unicast_promisc_set(pp, 1);
2031 mvneta_set_ucast_table(pp, rxq_def);
2032 mvneta_set_special_mcast_table(pp, rxq_def);
2033 mvneta_set_other_mcast_table(pp, rxq_def);
2034 } else {
2035 /* Accept single Unicast */
2036 mvneta_rx_unicast_promisc_set(pp, 0);
2037 mvneta_set_ucast_table(pp, -1);
2038 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2039
2040 if (dev->flags & IFF_ALLMULTI) {
2041 /* Accept all multicast */
2042 mvneta_set_special_mcast_table(pp, rxq_def);
2043 mvneta_set_other_mcast_table(pp, rxq_def);
2044 } else {
2045 /* Accept only initialized multicast */
2046 mvneta_set_special_mcast_table(pp, -1);
2047 mvneta_set_other_mcast_table(pp, -1);
2048
2049 if (!netdev_mc_empty(dev)) {
2050 netdev_for_each_mc_addr(ha, dev) {
2051 mvneta_mcast_addr_set(pp, ha->addr,
2052 rxq_def);
2053 }
2054 }
2055 }
2056 }
2057 }
2058
2059 /* Interrupt handling - the callback for request_irq() */
2060 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2061 {
2062 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2063
2064 /* Mask all interrupts */
2065 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2066
2067 napi_schedule(&pp->napi);
2068
2069 return IRQ_HANDLED;
2070 }
2071
2072 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2073 struct phy_device *phy)
2074 {
2075 struct fixed_phy_status status;
2076 struct fixed_phy_status changed = {};
2077 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2078
2079 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2080 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2081 status.speed = SPEED_1000;
2082 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2083 status.speed = SPEED_100;
2084 else
2085 status.speed = SPEED_10;
2086 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2087 changed.link = 1;
2088 changed.speed = 1;
2089 changed.duplex = 1;
2090 fixed_phy_update_state(phy, &status, &changed);
2091 return 0;
2092 }
2093
2094 /* NAPI handler
2095 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2096 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2097 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2098 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2099 * Each CPU has its own causeRxTx register
2100 */
2101 static int mvneta_poll(struct napi_struct *napi, int budget)
2102 {
2103 int rx_done = 0;
2104 u32 cause_rx_tx;
2105 unsigned long flags;
2106 struct mvneta_port *pp = netdev_priv(napi->dev);
2107
2108 if (!netif_running(pp->dev)) {
2109 napi_complete(napi);
2110 return rx_done;
2111 }
2112
2113 /* Read cause register */
2114 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2115 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2116 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2117
2118 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2119 if (pp->use_inband_status && (cause_misc &
2120 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2121 MVNETA_CAUSE_LINK_CHANGE |
2122 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2123 mvneta_fixed_link_update(pp, pp->phy_dev);
2124 }
2125 }
2126
2127 /* Release Tx descriptors */
2128 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2129 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2130 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2131 }
2132
2133 /* For the case where the last mvneta_poll did not process all
2134 * RX packets
2135 */
2136 cause_rx_tx |= pp->cause_rx_tx;
2137 if (rxq_number > 1) {
2138 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
2139 int count;
2140 struct mvneta_rx_queue *rxq;
2141 /* get rx queue number from cause_rx_tx */
2142 rxq = mvneta_rx_policy(pp, cause_rx_tx);
2143 if (!rxq)
2144 break;
2145
2146 /* process the packet in that rx queue */
2147 count = mvneta_rx(pp, budget, rxq);
2148 rx_done += count;
2149 budget -= count;
2150 if (budget > 0) {
2151 /* set off the rx bit of the
2152 * corresponding bit in the cause rx
2153 * tx register, so that next iteration
2154 * will find the next rx queue where
2155 * packets are received on
2156 */
2157 cause_rx_tx &= ~((1 << rxq->id) << 8);
2158 }
2159 }
2160 } else {
2161 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2162 budget -= rx_done;
2163 }
2164
2165 if (budget > 0) {
2166 cause_rx_tx = 0;
2167 napi_complete(napi);
2168 local_irq_save(flags);
2169 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2170 MVNETA_RX_INTR_MASK(rxq_number) |
2171 MVNETA_TX_INTR_MASK(txq_number) |
2172 MVNETA_MISCINTR_INTR_MASK);
2173 local_irq_restore(flags);
2174 }
2175
2176 pp->cause_rx_tx = cause_rx_tx;
2177 return rx_done;
2178 }
2179
2180 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2181 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2182 int num)
2183 {
2184 int i;
2185
2186 for (i = 0; i < num; i++) {
2187 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2188 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2189 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2190 __func__, rxq->id, i, num);
2191 break;
2192 }
2193 }
2194
2195 /* Add this number of RX descriptors as non occupied (ready to
2196 * get packets)
2197 */
2198 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2199
2200 return i;
2201 }
2202
2203 /* Free all packets pending transmit from all TXQs and reset TX port */
2204 static void mvneta_tx_reset(struct mvneta_port *pp)
2205 {
2206 int queue;
2207
2208 /* free the skb's in the tx ring */
2209 for (queue = 0; queue < txq_number; queue++)
2210 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2211
2212 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2213 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2214 }
2215
2216 static void mvneta_rx_reset(struct mvneta_port *pp)
2217 {
2218 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2219 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2220 }
2221
2222 /* Rx/Tx queue initialization/cleanup methods */
2223
2224 /* Create a specified RX queue */
2225 static int mvneta_rxq_init(struct mvneta_port *pp,
2226 struct mvneta_rx_queue *rxq)
2227
2228 {
2229 rxq->size = pp->rx_ring_size;
2230
2231 /* Allocate memory for RX descriptors */
2232 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2233 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2234 &rxq->descs_phys, GFP_KERNEL);
2235 if (rxq->descs == NULL)
2236 return -ENOMEM;
2237
2238 BUG_ON(rxq->descs !=
2239 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2240
2241 rxq->last_desc = rxq->size - 1;
2242
2243 /* Set Rx descriptors queue starting address */
2244 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2245 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2246
2247 /* Set Offset */
2248 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2249
2250 /* Set coalescing pkts and time */
2251 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2252 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2253
2254 /* Fill RXQ with buffers from RX pool */
2255 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2256 mvneta_rxq_bm_disable(pp, rxq);
2257 mvneta_rxq_fill(pp, rxq, rxq->size);
2258
2259 return 0;
2260 }
2261
2262 /* Cleanup Rx queue */
2263 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2264 struct mvneta_rx_queue *rxq)
2265 {
2266 mvneta_rxq_drop_pkts(pp, rxq);
2267
2268 if (rxq->descs)
2269 dma_free_coherent(pp->dev->dev.parent,
2270 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2271 rxq->descs,
2272 rxq->descs_phys);
2273
2274 rxq->descs = NULL;
2275 rxq->last_desc = 0;
2276 rxq->next_desc_to_proc = 0;
2277 rxq->descs_phys = 0;
2278 }
2279
2280 /* Create and initialize a tx queue */
2281 static int mvneta_txq_init(struct mvneta_port *pp,
2282 struct mvneta_tx_queue *txq)
2283 {
2284 txq->size = pp->tx_ring_size;
2285
2286 /* A queue must always have room for at least one skb.
2287 * Therefore, stop the queue when the free entries reaches
2288 * the maximum number of descriptors per skb.
2289 */
2290 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2291 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2292
2293
2294 /* Allocate memory for TX descriptors */
2295 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2296 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2297 &txq->descs_phys, GFP_KERNEL);
2298 if (txq->descs == NULL)
2299 return -ENOMEM;
2300
2301 /* Make sure descriptor address is cache line size aligned */
2302 BUG_ON(txq->descs !=
2303 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2304
2305 txq->last_desc = txq->size - 1;
2306
2307 /* Set maximum bandwidth for enabled TXQs */
2308 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2309 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2310
2311 /* Set Tx descriptors queue starting address */
2312 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2313 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2314
2315 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2316 if (txq->tx_skb == NULL) {
2317 dma_free_coherent(pp->dev->dev.parent,
2318 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2319 txq->descs, txq->descs_phys);
2320 return -ENOMEM;
2321 }
2322
2323 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2324 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2325 txq->size * TSO_HEADER_SIZE,
2326 &txq->tso_hdrs_phys, GFP_KERNEL);
2327 if (txq->tso_hdrs == NULL) {
2328 kfree(txq->tx_skb);
2329 dma_free_coherent(pp->dev->dev.parent,
2330 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2331 txq->descs, txq->descs_phys);
2332 return -ENOMEM;
2333 }
2334 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2335
2336 return 0;
2337 }
2338
2339 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2340 static void mvneta_txq_deinit(struct mvneta_port *pp,
2341 struct mvneta_tx_queue *txq)
2342 {
2343 kfree(txq->tx_skb);
2344
2345 if (txq->tso_hdrs)
2346 dma_free_coherent(pp->dev->dev.parent,
2347 txq->size * TSO_HEADER_SIZE,
2348 txq->tso_hdrs, txq->tso_hdrs_phys);
2349 if (txq->descs)
2350 dma_free_coherent(pp->dev->dev.parent,
2351 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2352 txq->descs, txq->descs_phys);
2353
2354 txq->descs = NULL;
2355 txq->last_desc = 0;
2356 txq->next_desc_to_proc = 0;
2357 txq->descs_phys = 0;
2358
2359 /* Set minimum bandwidth for disabled TXQs */
2360 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2361 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2362
2363 /* Set Tx descriptors queue starting address and size */
2364 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2365 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2366 }
2367
2368 /* Cleanup all Tx queues */
2369 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2370 {
2371 int queue;
2372
2373 for (queue = 0; queue < txq_number; queue++)
2374 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2375 }
2376
2377 /* Cleanup all Rx queues */
2378 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2379 {
2380 int queue;
2381
2382 for (queue = 0; queue < rxq_number; queue++)
2383 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2384 }
2385
2386
2387 /* Init all Rx queues */
2388 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2389 {
2390 int queue;
2391
2392 for (queue = 0; queue < rxq_number; queue++) {
2393 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2394 if (err) {
2395 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2396 __func__, queue);
2397 mvneta_cleanup_rxqs(pp);
2398 return err;
2399 }
2400 }
2401
2402 return 0;
2403 }
2404
2405 /* Init all tx queues */
2406 static int mvneta_setup_txqs(struct mvneta_port *pp)
2407 {
2408 int queue;
2409
2410 for (queue = 0; queue < txq_number; queue++) {
2411 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2412 if (err) {
2413 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2414 __func__, queue);
2415 mvneta_cleanup_txqs(pp);
2416 return err;
2417 }
2418 }
2419
2420 return 0;
2421 }
2422
2423 static void mvneta_start_dev(struct mvneta_port *pp)
2424 {
2425 mvneta_max_rx_size_set(pp, pp->pkt_size);
2426 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2427
2428 /* start the Rx/Tx activity */
2429 mvneta_port_enable(pp);
2430
2431 /* Enable polling on the port */
2432 napi_enable(&pp->napi);
2433
2434 /* Unmask interrupts */
2435 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2436 MVNETA_RX_INTR_MASK(rxq_number) |
2437 MVNETA_TX_INTR_MASK(txq_number) |
2438 MVNETA_MISCINTR_INTR_MASK);
2439 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2440 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2441 MVNETA_CAUSE_LINK_CHANGE |
2442 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2443
2444 phy_start(pp->phy_dev);
2445 netif_tx_start_all_queues(pp->dev);
2446 }
2447
2448 static void mvneta_stop_dev(struct mvneta_port *pp)
2449 {
2450 phy_stop(pp->phy_dev);
2451
2452 napi_disable(&pp->napi);
2453
2454 netif_carrier_off(pp->dev);
2455
2456 mvneta_port_down(pp);
2457 netif_tx_stop_all_queues(pp->dev);
2458
2459 /* Stop the port activity */
2460 mvneta_port_disable(pp);
2461
2462 /* Clear all ethernet port interrupts */
2463 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2464 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2465
2466 /* Mask all ethernet port interrupts */
2467 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2468 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2469 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2470
2471 mvneta_tx_reset(pp);
2472 mvneta_rx_reset(pp);
2473 }
2474
2475 /* Return positive if MTU is valid */
2476 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2477 {
2478 if (mtu < 68) {
2479 netdev_err(dev, "cannot change mtu to less than 68\n");
2480 return -EINVAL;
2481 }
2482
2483 /* 9676 == 9700 - 20 and rounding to 8 */
2484 if (mtu > 9676) {
2485 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2486 mtu = 9676;
2487 }
2488
2489 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2490 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2491 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2492 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2493 }
2494
2495 return mtu;
2496 }
2497
2498 /* Change the device mtu */
2499 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2500 {
2501 struct mvneta_port *pp = netdev_priv(dev);
2502 int ret;
2503
2504 mtu = mvneta_check_mtu_valid(dev, mtu);
2505 if (mtu < 0)
2506 return -EINVAL;
2507
2508 dev->mtu = mtu;
2509
2510 if (!netif_running(dev)) {
2511 netdev_update_features(dev);
2512 return 0;
2513 }
2514
2515 /* The interface is running, so we have to force a
2516 * reallocation of the queues
2517 */
2518 mvneta_stop_dev(pp);
2519
2520 mvneta_cleanup_txqs(pp);
2521 mvneta_cleanup_rxqs(pp);
2522
2523 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2524 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2525 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2526
2527 ret = mvneta_setup_rxqs(pp);
2528 if (ret) {
2529 netdev_err(dev, "unable to setup rxqs after MTU change\n");
2530 return ret;
2531 }
2532
2533 ret = mvneta_setup_txqs(pp);
2534 if (ret) {
2535 netdev_err(dev, "unable to setup txqs after MTU change\n");
2536 return ret;
2537 }
2538
2539 mvneta_start_dev(pp);
2540 mvneta_port_up(pp);
2541
2542 netdev_update_features(dev);
2543
2544 return 0;
2545 }
2546
2547 static netdev_features_t mvneta_fix_features(struct net_device *dev,
2548 netdev_features_t features)
2549 {
2550 struct mvneta_port *pp = netdev_priv(dev);
2551
2552 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
2553 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
2554 netdev_info(dev,
2555 "Disable IP checksum for MTU greater than %dB\n",
2556 pp->tx_csum_limit);
2557 }
2558
2559 return features;
2560 }
2561
2562 /* Get mac address */
2563 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2564 {
2565 u32 mac_addr_l, mac_addr_h;
2566
2567 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2568 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2569 addr[0] = (mac_addr_h >> 24) & 0xFF;
2570 addr[1] = (mac_addr_h >> 16) & 0xFF;
2571 addr[2] = (mac_addr_h >> 8) & 0xFF;
2572 addr[3] = mac_addr_h & 0xFF;
2573 addr[4] = (mac_addr_l >> 8) & 0xFF;
2574 addr[5] = mac_addr_l & 0xFF;
2575 }
2576
2577 /* Handle setting mac address */
2578 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2579 {
2580 struct mvneta_port *pp = netdev_priv(dev);
2581 struct sockaddr *sockaddr = addr;
2582 int ret;
2583
2584 ret = eth_prepare_mac_addr_change(dev, addr);
2585 if (ret < 0)
2586 return ret;
2587 /* Remove previous address table entry */
2588 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2589
2590 /* Set new addr in hw */
2591 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2592
2593 eth_commit_mac_addr_change(dev, addr);
2594 return 0;
2595 }
2596
2597 static void mvneta_adjust_link(struct net_device *ndev)
2598 {
2599 struct mvneta_port *pp = netdev_priv(ndev);
2600 struct phy_device *phydev = pp->phy_dev;
2601 int status_change = 0;
2602
2603 if (phydev->link) {
2604 if ((pp->speed != phydev->speed) ||
2605 (pp->duplex != phydev->duplex)) {
2606 u32 val;
2607
2608 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2609 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2610 MVNETA_GMAC_CONFIG_GMII_SPEED |
2611 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2612
2613 if (phydev->duplex)
2614 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2615
2616 if (phydev->speed == SPEED_1000)
2617 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2618 else if (phydev->speed == SPEED_100)
2619 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2620
2621 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2622
2623 pp->duplex = phydev->duplex;
2624 pp->speed = phydev->speed;
2625 }
2626 }
2627
2628 if (phydev->link != pp->link) {
2629 if (!phydev->link) {
2630 pp->duplex = -1;
2631 pp->speed = 0;
2632 }
2633
2634 pp->link = phydev->link;
2635 status_change = 1;
2636 }
2637
2638 if (status_change) {
2639 if (phydev->link) {
2640 if (!pp->use_inband_status) {
2641 u32 val = mvreg_read(pp,
2642 MVNETA_GMAC_AUTONEG_CONFIG);
2643 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2644 val |= MVNETA_GMAC_FORCE_LINK_PASS;
2645 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2646 val);
2647 }
2648 mvneta_port_up(pp);
2649 } else {
2650 if (!pp->use_inband_status) {
2651 u32 val = mvreg_read(pp,
2652 MVNETA_GMAC_AUTONEG_CONFIG);
2653 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2654 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2655 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2656 val);
2657 }
2658 mvneta_port_down(pp);
2659 }
2660 phy_print_status(phydev);
2661 }
2662 }
2663
2664 static int mvneta_mdio_probe(struct mvneta_port *pp)
2665 {
2666 struct phy_device *phy_dev;
2667
2668 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2669 pp->phy_interface);
2670 if (!phy_dev) {
2671 netdev_err(pp->dev, "could not find the PHY\n");
2672 return -ENODEV;
2673 }
2674
2675 phy_dev->supported &= PHY_GBIT_FEATURES;
2676 phy_dev->advertising = phy_dev->supported;
2677
2678 pp->phy_dev = phy_dev;
2679 pp->link = 0;
2680 pp->duplex = 0;
2681 pp->speed = 0;
2682
2683 return 0;
2684 }
2685
2686 static void mvneta_mdio_remove(struct mvneta_port *pp)
2687 {
2688 phy_disconnect(pp->phy_dev);
2689 pp->phy_dev = NULL;
2690 }
2691
2692 static int mvneta_open(struct net_device *dev)
2693 {
2694 struct mvneta_port *pp = netdev_priv(dev);
2695 int ret;
2696
2697 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2698 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2699 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2700
2701 ret = mvneta_setup_rxqs(pp);
2702 if (ret)
2703 return ret;
2704
2705 ret = mvneta_setup_txqs(pp);
2706 if (ret)
2707 goto err_cleanup_rxqs;
2708
2709 /* Connect to port interrupt line */
2710 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2711 MVNETA_DRIVER_NAME, pp);
2712 if (ret) {
2713 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2714 goto err_cleanup_txqs;
2715 }
2716
2717 /* In default link is down */
2718 netif_carrier_off(pp->dev);
2719
2720 ret = mvneta_mdio_probe(pp);
2721 if (ret < 0) {
2722 netdev_err(dev, "cannot probe MDIO bus\n");
2723 goto err_free_irq;
2724 }
2725
2726 mvneta_start_dev(pp);
2727
2728 return 0;
2729
2730 err_free_irq:
2731 free_irq(pp->dev->irq, pp);
2732 err_cleanup_txqs:
2733 mvneta_cleanup_txqs(pp);
2734 err_cleanup_rxqs:
2735 mvneta_cleanup_rxqs(pp);
2736 return ret;
2737 }
2738
2739 /* Stop the port, free port interrupt line */
2740 static int mvneta_stop(struct net_device *dev)
2741 {
2742 struct mvneta_port *pp = netdev_priv(dev);
2743
2744 mvneta_stop_dev(pp);
2745 mvneta_mdio_remove(pp);
2746 free_irq(dev->irq, pp);
2747 mvneta_cleanup_rxqs(pp);
2748 mvneta_cleanup_txqs(pp);
2749
2750 return 0;
2751 }
2752
2753 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2754 {
2755 struct mvneta_port *pp = netdev_priv(dev);
2756
2757 if (!pp->phy_dev)
2758 return -ENOTSUPP;
2759
2760 return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2761 }
2762
2763 /* Ethtool methods */
2764
2765 /* Get settings (phy address, speed) for ethtools */
2766 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2767 {
2768 struct mvneta_port *pp = netdev_priv(dev);
2769
2770 if (!pp->phy_dev)
2771 return -ENODEV;
2772
2773 return phy_ethtool_gset(pp->phy_dev, cmd);
2774 }
2775
2776 /* Set settings (phy address, speed) for ethtools */
2777 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2778 {
2779 struct mvneta_port *pp = netdev_priv(dev);
2780
2781 if (!pp->phy_dev)
2782 return -ENODEV;
2783
2784 return phy_ethtool_sset(pp->phy_dev, cmd);
2785 }
2786
2787 /* Set interrupt coalescing for ethtools */
2788 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2789 struct ethtool_coalesce *c)
2790 {
2791 struct mvneta_port *pp = netdev_priv(dev);
2792 int queue;
2793
2794 for (queue = 0; queue < rxq_number; queue++) {
2795 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2796 rxq->time_coal = c->rx_coalesce_usecs;
2797 rxq->pkts_coal = c->rx_max_coalesced_frames;
2798 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2799 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2800 }
2801
2802 for (queue = 0; queue < txq_number; queue++) {
2803 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2804 txq->done_pkts_coal = c->tx_max_coalesced_frames;
2805 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2806 }
2807
2808 return 0;
2809 }
2810
2811 /* get coalescing for ethtools */
2812 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2813 struct ethtool_coalesce *c)
2814 {
2815 struct mvneta_port *pp = netdev_priv(dev);
2816
2817 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
2818 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
2819
2820 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
2821 return 0;
2822 }
2823
2824
2825 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2826 struct ethtool_drvinfo *drvinfo)
2827 {
2828 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2829 sizeof(drvinfo->driver));
2830 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2831 sizeof(drvinfo->version));
2832 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2833 sizeof(drvinfo->bus_info));
2834 }
2835
2836
2837 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2838 struct ethtool_ringparam *ring)
2839 {
2840 struct mvneta_port *pp = netdev_priv(netdev);
2841
2842 ring->rx_max_pending = MVNETA_MAX_RXD;
2843 ring->tx_max_pending = MVNETA_MAX_TXD;
2844 ring->rx_pending = pp->rx_ring_size;
2845 ring->tx_pending = pp->tx_ring_size;
2846 }
2847
2848 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2849 struct ethtool_ringparam *ring)
2850 {
2851 struct mvneta_port *pp = netdev_priv(dev);
2852
2853 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2854 return -EINVAL;
2855 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2856 ring->rx_pending : MVNETA_MAX_RXD;
2857
2858 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
2859 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
2860 if (pp->tx_ring_size != ring->tx_pending)
2861 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
2862 pp->tx_ring_size, ring->tx_pending);
2863
2864 if (netif_running(dev)) {
2865 mvneta_stop(dev);
2866 if (mvneta_open(dev)) {
2867 netdev_err(dev,
2868 "error on opening device after ring param change\n");
2869 return -ENOMEM;
2870 }
2871 }
2872
2873 return 0;
2874 }
2875
2876 static const struct net_device_ops mvneta_netdev_ops = {
2877 .ndo_open = mvneta_open,
2878 .ndo_stop = mvneta_stop,
2879 .ndo_start_xmit = mvneta_tx,
2880 .ndo_set_rx_mode = mvneta_set_rx_mode,
2881 .ndo_set_mac_address = mvneta_set_mac_addr,
2882 .ndo_change_mtu = mvneta_change_mtu,
2883 .ndo_fix_features = mvneta_fix_features,
2884 .ndo_get_stats64 = mvneta_get_stats64,
2885 .ndo_do_ioctl = mvneta_ioctl,
2886 };
2887
2888 const struct ethtool_ops mvneta_eth_tool_ops = {
2889 .get_link = ethtool_op_get_link,
2890 .get_settings = mvneta_ethtool_get_settings,
2891 .set_settings = mvneta_ethtool_set_settings,
2892 .set_coalesce = mvneta_ethtool_set_coalesce,
2893 .get_coalesce = mvneta_ethtool_get_coalesce,
2894 .get_drvinfo = mvneta_ethtool_get_drvinfo,
2895 .get_ringparam = mvneta_ethtool_get_ringparam,
2896 .set_ringparam = mvneta_ethtool_set_ringparam,
2897 };
2898
2899 /* Initialize hw */
2900 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
2901 {
2902 int queue;
2903
2904 /* Disable port */
2905 mvneta_port_disable(pp);
2906
2907 /* Set port default values */
2908 mvneta_defaults_set(pp);
2909
2910 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
2911 GFP_KERNEL);
2912 if (!pp->txqs)
2913 return -ENOMEM;
2914
2915 /* Initialize TX descriptor rings */
2916 for (queue = 0; queue < txq_number; queue++) {
2917 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2918 txq->id = queue;
2919 txq->size = pp->tx_ring_size;
2920 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2921 }
2922
2923 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
2924 GFP_KERNEL);
2925 if (!pp->rxqs)
2926 return -ENOMEM;
2927
2928 /* Create Rx descriptor rings */
2929 for (queue = 0; queue < rxq_number; queue++) {
2930 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2931 rxq->id = queue;
2932 rxq->size = pp->rx_ring_size;
2933 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2934 rxq->time_coal = MVNETA_RX_COAL_USEC;
2935 }
2936
2937 return 0;
2938 }
2939
2940 /* platform glue : initialize decoding windows */
2941 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2942 const struct mbus_dram_target_info *dram)
2943 {
2944 u32 win_enable;
2945 u32 win_protect;
2946 int i;
2947
2948 for (i = 0; i < 6; i++) {
2949 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2950 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2951
2952 if (i < 4)
2953 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2954 }
2955
2956 win_enable = 0x3f;
2957 win_protect = 0;
2958
2959 for (i = 0; i < dram->num_cs; i++) {
2960 const struct mbus_dram_window *cs = dram->cs + i;
2961 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2962 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2963
2964 mvreg_write(pp, MVNETA_WIN_SIZE(i),
2965 (cs->size - 1) & 0xffff0000);
2966
2967 win_enable &= ~(1 << i);
2968 win_protect |= 3 << (2 * i);
2969 }
2970
2971 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2972 }
2973
2974 /* Power up the port */
2975 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2976 {
2977 u32 ctrl;
2978
2979 /* MAC Cause register should be cleared */
2980 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2981
2982 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2983
2984 /* Even though it might look weird, when we're configured in
2985 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2986 */
2987 switch(phy_mode) {
2988 case PHY_INTERFACE_MODE_QSGMII:
2989 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2990 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2991 break;
2992 case PHY_INTERFACE_MODE_SGMII:
2993 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2994 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2995 break;
2996 case PHY_INTERFACE_MODE_RGMII:
2997 case PHY_INTERFACE_MODE_RGMII_ID:
2998 ctrl |= MVNETA_GMAC2_PORT_RGMII;
2999 break;
3000 default:
3001 return -EINVAL;
3002 }
3003
3004 if (pp->use_inband_status)
3005 ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3006
3007 /* Cancel Port Reset */
3008 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3009 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3010
3011 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3012 MVNETA_GMAC2_PORT_RESET) != 0)
3013 continue;
3014
3015 return 0;
3016 }
3017
3018 /* Device initialization routine */
3019 static int mvneta_probe(struct platform_device *pdev)
3020 {
3021 const struct mbus_dram_target_info *dram_target_info;
3022 struct resource *res;
3023 struct device_node *dn = pdev->dev.of_node;
3024 struct device_node *phy_node;
3025 struct mvneta_port *pp;
3026 struct net_device *dev;
3027 const char *dt_mac_addr;
3028 char hw_mac_addr[ETH_ALEN];
3029 const char *mac_from;
3030 const char *managed;
3031 int phy_mode;
3032 int err;
3033
3034 /* Our multiqueue support is not complete, so for now, only
3035 * allow the usage of the first RX queue
3036 */
3037 if (rxq_def != 0) {
3038 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
3039 return -EINVAL;
3040 }
3041
3042 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3043 if (!dev)
3044 return -ENOMEM;
3045
3046 dev->irq = irq_of_parse_and_map(dn, 0);
3047 if (dev->irq == 0) {
3048 err = -EINVAL;
3049 goto err_free_netdev;
3050 }
3051
3052 phy_node = of_parse_phandle(dn, "phy", 0);
3053 if (!phy_node) {
3054 if (!of_phy_is_fixed_link(dn)) {
3055 dev_err(&pdev->dev, "no PHY specified\n");
3056 err = -ENODEV;
3057 goto err_free_irq;
3058 }
3059
3060 err = of_phy_register_fixed_link(dn);
3061 if (err < 0) {
3062 dev_err(&pdev->dev, "cannot register fixed PHY\n");
3063 goto err_free_irq;
3064 }
3065
3066 /* In the case of a fixed PHY, the DT node associated
3067 * to the PHY is the Ethernet MAC DT node.
3068 */
3069 phy_node = of_node_get(dn);
3070 }
3071
3072 phy_mode = of_get_phy_mode(dn);
3073 if (phy_mode < 0) {
3074 dev_err(&pdev->dev, "incorrect phy-mode\n");
3075 err = -EINVAL;
3076 goto err_put_phy_node;
3077 }
3078
3079 dev->tx_queue_len = MVNETA_MAX_TXD;
3080 dev->watchdog_timeo = 5 * HZ;
3081 dev->netdev_ops = &mvneta_netdev_ops;
3082
3083 dev->ethtool_ops = &mvneta_eth_tool_ops;
3084
3085 pp = netdev_priv(dev);
3086 pp->phy_node = phy_node;
3087 pp->phy_interface = phy_mode;
3088
3089 err = of_property_read_string(dn, "managed", &managed);
3090 pp->use_inband_status = (err == 0 &&
3091 strcmp(managed, "in-band-status") == 0);
3092
3093 pp->clk = devm_clk_get(&pdev->dev, NULL);
3094 if (IS_ERR(pp->clk)) {
3095 err = PTR_ERR(pp->clk);
3096 goto err_put_phy_node;
3097 }
3098
3099 clk_prepare_enable(pp->clk);
3100
3101 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3102 pp->base = devm_ioremap_resource(&pdev->dev, res);
3103 if (IS_ERR(pp->base)) {
3104 err = PTR_ERR(pp->base);
3105 goto err_clk;
3106 }
3107
3108 /* Alloc per-cpu stats */
3109 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3110 if (!pp->stats) {
3111 err = -ENOMEM;
3112 goto err_clk;
3113 }
3114
3115 dt_mac_addr = of_get_mac_address(dn);
3116 if (dt_mac_addr) {
3117 mac_from = "device tree";
3118 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3119 } else {
3120 mvneta_get_mac_addr(pp, hw_mac_addr);
3121 if (is_valid_ether_addr(hw_mac_addr)) {
3122 mac_from = "hardware";
3123 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3124 } else {
3125 mac_from = "random";
3126 eth_hw_addr_random(dev);
3127 }
3128 }
3129
3130 if (of_device_is_compatible(dn, "marvell,armada-370-neta"))
3131 pp->tx_csum_limit = 1600;
3132
3133 pp->tx_ring_size = MVNETA_MAX_TXD;
3134 pp->rx_ring_size = MVNETA_MAX_RXD;
3135
3136 pp->dev = dev;
3137 SET_NETDEV_DEV(dev, &pdev->dev);
3138
3139 err = mvneta_init(&pdev->dev, pp);
3140 if (err < 0)
3141 goto err_free_stats;
3142
3143 err = mvneta_port_power_up(pp, phy_mode);
3144 if (err < 0) {
3145 dev_err(&pdev->dev, "can't power up port\n");
3146 goto err_free_stats;
3147 }
3148
3149 dram_target_info = mv_mbus_dram_info();
3150 if (dram_target_info)
3151 mvneta_conf_mbus_windows(pp, dram_target_info);
3152
3153 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3154
3155 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3156 dev->hw_features |= dev->features;
3157 dev->vlan_features |= dev->features;
3158 dev->priv_flags |= IFF_UNICAST_FLT;
3159 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3160
3161 err = register_netdev(dev);
3162 if (err < 0) {
3163 dev_err(&pdev->dev, "failed to register\n");
3164 goto err_free_stats;
3165 }
3166
3167 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3168 dev->dev_addr);
3169
3170 platform_set_drvdata(pdev, pp->dev);
3171
3172 if (pp->use_inband_status) {
3173 struct phy_device *phy = of_phy_find_device(dn);
3174
3175 mvneta_fixed_link_update(pp, phy);
3176 }
3177
3178 return 0;
3179
3180 err_free_stats:
3181 free_percpu(pp->stats);
3182 err_clk:
3183 clk_disable_unprepare(pp->clk);
3184 err_put_phy_node:
3185 of_node_put(phy_node);
3186 err_free_irq:
3187 irq_dispose_mapping(dev->irq);
3188 err_free_netdev:
3189 free_netdev(dev);
3190 return err;
3191 }
3192
3193 /* Device removal routine */
3194 static int mvneta_remove(struct platform_device *pdev)
3195 {
3196 struct net_device *dev = platform_get_drvdata(pdev);
3197 struct mvneta_port *pp = netdev_priv(dev);
3198
3199 unregister_netdev(dev);
3200 clk_disable_unprepare(pp->clk);
3201 free_percpu(pp->stats);
3202 irq_dispose_mapping(dev->irq);
3203 of_node_put(pp->phy_node);
3204 free_netdev(dev);
3205
3206 return 0;
3207 }
3208
3209 static const struct of_device_id mvneta_match[] = {
3210 { .compatible = "marvell,armada-370-neta" },
3211 { .compatible = "marvell,armada-xp-neta" },
3212 { }
3213 };
3214 MODULE_DEVICE_TABLE(of, mvneta_match);
3215
3216 static struct platform_driver mvneta_driver = {
3217 .probe = mvneta_probe,
3218 .remove = mvneta_remove,
3219 .driver = {
3220 .name = MVNETA_DRIVER_NAME,
3221 .of_match_table = mvneta_match,
3222 },
3223 };
3224
3225 module_platform_driver(mvneta_driver);
3226
3227 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3228 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3229 MODULE_LICENSE("GPL");
3230
3231 module_param(rxq_number, int, S_IRUGO);
3232 module_param(txq_number, int, S_IRUGO);
3233
3234 module_param(rxq_def, int, S_IRUGO);
3235 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);