]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/marvell/mvneta.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
66 #define MVNETA_PORT_RX_RESET 0x1cc0
67 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
68 #define MVNETA_PHY_ADDR 0x2000
69 #define MVNETA_PHY_ADDR_MASK 0x1f
70 #define MVNETA_MBUS_RETRY 0x2010
71 #define MVNETA_UNIT_INTR_CAUSE 0x2080
72 #define MVNETA_UNIT_CONTROL 0x20B0
73 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
79 #define MVNETA_PORT_CONFIG 0x2400
80 #define MVNETA_UNI_PROMISC_MODE BIT(0)
81 #define MVNETA_DEF_RXQ(q) ((q) << 1)
82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
89 MVNETA_DEF_RXQ_ARP(q) | \
90 MVNETA_DEF_RXQ_TCP(q) | \
91 MVNETA_DEF_RXQ_UDP(q) | \
92 MVNETA_DEF_RXQ_BPDU(q) | \
93 MVNETA_TX_UNSET_ERR_SUM | \
94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
96 #define MVNETA_MAC_ADDR_LOW 0x2414
97 #define MVNETA_MAC_ADDR_HIGH 0x2418
98 #define MVNETA_SDMA_CONFIG 0x241c
99 #define MVNETA_SDMA_BRST_SIZE_16 4
100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
101 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
102 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
103 #define MVNETA_DESC_SWAP BIT(6)
104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
105 #define MVNETA_VLAN_PRIO_TO_RXQ 0x2440
106 #define MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3))
107 #define MVNETA_PORT_STATUS 0x2444
108 #define MVNETA_TX_IN_PRGRS BIT(0)
109 #define MVNETA_TX_FIFO_EMPTY BIT(8)
110 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
111 /* Only exists on Armada XP and Armada 370 */
112 #define MVNETA_SERDES_CFG 0x24A0
113 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
114 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
115 #define MVNETA_HSGMII_SERDES_PROTO 0x1107
116 #define MVNETA_TYPE_PRIO 0x24bc
117 #define MVNETA_FORCE_UNI BIT(21)
118 #define MVNETA_TXQ_CMD_1 0x24e4
119 #define MVNETA_TXQ_CMD 0x2448
120 #define MVNETA_TXQ_DISABLE_SHIFT 8
121 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
122 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
123 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
124 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
125 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
126 #define MVNETA_ACC_MODE 0x2500
127 #define MVNETA_BM_ADDRESS 0x2504
128 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
129 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
130 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
131 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
132 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
133 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
134
135 /* Exception Interrupt Port/Queue Cause register
136 *
137 * Their behavior depend of the mapping done using the PCPX2Q
138 * registers. For a given CPU if the bit associated to a queue is not
139 * set, then for the register a read from this CPU will always return
140 * 0 and a write won't do anything
141 */
142
143 #define MVNETA_INTR_NEW_CAUSE 0x25a0
144 #define MVNETA_INTR_NEW_MASK 0x25a4
145
146 /* bits 0..7 = TXQ SENT, one bit per queue.
147 * bits 8..15 = RXQ OCCUP, one bit per queue.
148 * bits 16..23 = RXQ FREE, one bit per queue.
149 * bit 29 = OLD_REG_SUM, see old reg ?
150 * bit 30 = TX_ERR_SUM, one bit for 4 ports
151 * bit 31 = MISC_SUM, one bit for 4 ports
152 */
153 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
154 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
155 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
156 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
157 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
158
159 #define MVNETA_INTR_OLD_CAUSE 0x25a8
160 #define MVNETA_INTR_OLD_MASK 0x25ac
161
162 /* Data Path Port/Queue Cause Register */
163 #define MVNETA_INTR_MISC_CAUSE 0x25b0
164 #define MVNETA_INTR_MISC_MASK 0x25b4
165
166 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
167 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
168 #define MVNETA_CAUSE_PTP BIT(4)
169
170 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
171 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
172 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
173 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
174 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
175 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
176 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
177 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
178
179 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
180 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
181 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
182
183 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
184 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
185 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
186
187 #define MVNETA_INTR_ENABLE 0x25b8
188 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
189 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
190
191 #define MVNETA_RXQ_CMD 0x2680
192 #define MVNETA_RXQ_DISABLE_SHIFT 8
193 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
194 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
195 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
196 #define MVNETA_GMAC_CTRL_0 0x2c00
197 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
198 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
199 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
200 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
201 #define MVNETA_GMAC_CTRL_2 0x2c08
202 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
203 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
204 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
205 #define MVNETA_GMAC2_PORT_RESET BIT(6)
206 #define MVNETA_GMAC_STATUS 0x2c10
207 #define MVNETA_GMAC_LINK_UP BIT(0)
208 #define MVNETA_GMAC_SPEED_1000 BIT(1)
209 #define MVNETA_GMAC_SPEED_100 BIT(2)
210 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
211 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
212 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
213 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
214 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
215 #define MVNETA_GMAC_AN_COMPLETE BIT(11)
216 #define MVNETA_GMAC_SYNC_OK BIT(14)
217 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
218 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
219 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
220 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
221 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
222 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
223 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
224 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
225 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
226 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
227 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
228 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
229 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
230 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
231 #define MVNETA_GMAC_CTRL_4 0x2c90
232 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1)
233 #define MVNETA_MIB_COUNTERS_BASE 0x3000
234 #define MVNETA_MIB_LATE_COLLISION 0x7c
235 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
236 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
237 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
238 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
239 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
240 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
241 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
242 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
243 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
244 #define MVNETA_TXQ_DEC_SENT_MASK 0xff
245 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
246 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
247 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
248 #define MVNETA_PORT_TX_RESET 0x3cf0
249 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
250 #define MVNETA_TX_MTU 0x3e0c
251 #define MVNETA_TX_TOKEN_SIZE 0x3e14
252 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
253 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
254 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
255
256 #define MVNETA_LPI_CTRL_0 0x2cc0
257 #define MVNETA_LPI_CTRL_1 0x2cc4
258 #define MVNETA_LPI_REQUEST_ENABLE BIT(0)
259 #define MVNETA_LPI_CTRL_2 0x2cc8
260 #define MVNETA_LPI_STATUS 0x2ccc
261
262 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
263
264 /* Descriptor ring Macros */
265 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
266 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
267
268 /* Various constants */
269
270 /* Coalescing */
271 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
272 #define MVNETA_RX_COAL_PKTS 32
273 #define MVNETA_RX_COAL_USEC 100
274
275 /* The two bytes Marvell header. Either contains a special value used
276 * by Marvell switches when a specific hardware mode is enabled (not
277 * supported by this driver) or is filled automatically by zeroes on
278 * the RX side. Those two bytes being at the front of the Ethernet
279 * header, they allow to have the IP header aligned on a 4 bytes
280 * boundary automatically: the hardware skips those two bytes on its
281 * own.
282 */
283 #define MVNETA_MH_SIZE 2
284
285 #define MVNETA_VLAN_TAG_LEN 4
286
287 #define MVNETA_TX_CSUM_DEF_SIZE 1600
288 #define MVNETA_TX_CSUM_MAX_SIZE 9800
289 #define MVNETA_ACC_MODE_EXT1 1
290 #define MVNETA_ACC_MODE_EXT2 2
291
292 #define MVNETA_MAX_DECODE_WIN 6
293
294 /* Timeout constants */
295 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
296 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
297 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
298
299 #define MVNETA_TX_MTU_MAX 0x3ffff
300
301 /* The RSS lookup table actually has 256 entries but we do not use
302 * them yet
303 */
304 #define MVNETA_RSS_LU_TABLE_SIZE 1
305
306 /* Max number of Rx descriptors */
307 #define MVNETA_MAX_RXD 512
308
309 /* Max number of Tx descriptors */
310 #define MVNETA_MAX_TXD 1024
311
312 /* Max number of allowed TCP segments for software TSO */
313 #define MVNETA_MAX_TSO_SEGS 100
314
315 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
316
317 /* descriptor aligned size */
318 #define MVNETA_DESC_ALIGNED_SIZE 32
319
320 /* Number of bytes to be taken into account by HW when putting incoming data
321 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
322 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
323 */
324 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64
325
326 #define MVNETA_RX_PKT_SIZE(mtu) \
327 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
328 ETH_HLEN + ETH_FCS_LEN, \
329 cache_line_size())
330
331 /* Driver assumes that the last 3 bits are 0 */
332 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
333 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
334 MVNETA_SKB_HEADROOM))
335 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD)
336
337 #define IS_TSO_HEADER(txq, addr) \
338 ((addr >= txq->tso_hdrs_phys) && \
339 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
340
341 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
342 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
343
344 enum {
345 ETHTOOL_STAT_EEE_WAKEUP,
346 ETHTOOL_STAT_SKB_ALLOC_ERR,
347 ETHTOOL_STAT_REFILL_ERR,
348 ETHTOOL_XDP_REDIRECT,
349 ETHTOOL_XDP_PASS,
350 ETHTOOL_XDP_DROP,
351 ETHTOOL_XDP_TX,
352 ETHTOOL_XDP_TX_ERR,
353 ETHTOOL_XDP_XMIT,
354 ETHTOOL_XDP_XMIT_ERR,
355 ETHTOOL_MAX_STATS,
356 };
357
358 struct mvneta_statistic {
359 unsigned short offset;
360 unsigned short type;
361 const char name[ETH_GSTRING_LEN];
362 };
363
364 #define T_REG_32 32
365 #define T_REG_64 64
366 #define T_SW 1
367
368 #define MVNETA_XDP_PASS 0
369 #define MVNETA_XDP_DROPPED BIT(0)
370 #define MVNETA_XDP_TX BIT(1)
371 #define MVNETA_XDP_REDIR BIT(2)
372
373 static const struct mvneta_statistic mvneta_statistics[] = {
374 { 0x3000, T_REG_64, "good_octets_received", },
375 { 0x3010, T_REG_32, "good_frames_received", },
376 { 0x3008, T_REG_32, "bad_octets_received", },
377 { 0x3014, T_REG_32, "bad_frames_received", },
378 { 0x3018, T_REG_32, "broadcast_frames_received", },
379 { 0x301c, T_REG_32, "multicast_frames_received", },
380 { 0x3050, T_REG_32, "unrec_mac_control_received", },
381 { 0x3058, T_REG_32, "good_fc_received", },
382 { 0x305c, T_REG_32, "bad_fc_received", },
383 { 0x3060, T_REG_32, "undersize_received", },
384 { 0x3064, T_REG_32, "fragments_received", },
385 { 0x3068, T_REG_32, "oversize_received", },
386 { 0x306c, T_REG_32, "jabber_received", },
387 { 0x3070, T_REG_32, "mac_receive_error", },
388 { 0x3074, T_REG_32, "bad_crc_event", },
389 { 0x3078, T_REG_32, "collision", },
390 { 0x307c, T_REG_32, "late_collision", },
391 { 0x2484, T_REG_32, "rx_discard", },
392 { 0x2488, T_REG_32, "rx_overrun", },
393 { 0x3020, T_REG_32, "frames_64_octets", },
394 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
395 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
396 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
397 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
398 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
399 { 0x3038, T_REG_64, "good_octets_sent", },
400 { 0x3040, T_REG_32, "good_frames_sent", },
401 { 0x3044, T_REG_32, "excessive_collision", },
402 { 0x3048, T_REG_32, "multicast_frames_sent", },
403 { 0x304c, T_REG_32, "broadcast_frames_sent", },
404 { 0x3054, T_REG_32, "fc_sent", },
405 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
406 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
407 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
408 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
409 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
410 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
411 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
412 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
413 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
414 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
415 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
416 };
417
418 struct mvneta_stats {
419 u64 rx_packets;
420 u64 rx_bytes;
421 u64 tx_packets;
422 u64 tx_bytes;
423 /* xdp */
424 u64 xdp_redirect;
425 u64 xdp_pass;
426 u64 xdp_drop;
427 u64 xdp_xmit;
428 u64 xdp_xmit_err;
429 u64 xdp_tx;
430 u64 xdp_tx_err;
431 };
432
433 struct mvneta_ethtool_stats {
434 struct mvneta_stats ps;
435 u64 skb_alloc_error;
436 u64 refill_error;
437 };
438
439 struct mvneta_pcpu_stats {
440 struct u64_stats_sync syncp;
441
442 struct mvneta_ethtool_stats es;
443 u64 rx_dropped;
444 u64 rx_errors;
445 };
446
447 struct mvneta_pcpu_port {
448 /* Pointer to the shared port */
449 struct mvneta_port *pp;
450
451 /* Pointer to the CPU-local NAPI struct */
452 struct napi_struct napi;
453
454 /* Cause of the previous interrupt */
455 u32 cause_rx_tx;
456 };
457
458 enum {
459 __MVNETA_DOWN,
460 };
461
462 struct mvneta_port {
463 u8 id;
464 struct mvneta_pcpu_port __percpu *ports;
465 struct mvneta_pcpu_stats __percpu *stats;
466
467 unsigned long state;
468
469 int pkt_size;
470 void __iomem *base;
471 struct mvneta_rx_queue *rxqs;
472 struct mvneta_tx_queue *txqs;
473 struct net_device *dev;
474 struct hlist_node node_online;
475 struct hlist_node node_dead;
476 int rxq_def;
477 /* Protect the access to the percpu interrupt registers,
478 * ensuring that the configuration remains coherent.
479 */
480 spinlock_t lock;
481 bool is_stopped;
482
483 u32 cause_rx_tx;
484 struct napi_struct napi;
485
486 struct bpf_prog *xdp_prog;
487
488 /* Core clock */
489 struct clk *clk;
490 /* AXI clock */
491 struct clk *clk_bus;
492 u8 mcast_count[256];
493 u16 tx_ring_size;
494 u16 rx_ring_size;
495 u8 prio_tc_map[8];
496
497 phy_interface_t phy_interface;
498 struct device_node *dn;
499 unsigned int tx_csum_limit;
500 struct phylink *phylink;
501 struct phylink_config phylink_config;
502 struct phy *comphy;
503
504 struct mvneta_bm *bm_priv;
505 struct mvneta_bm_pool *pool_long;
506 struct mvneta_bm_pool *pool_short;
507 int bm_win_id;
508
509 bool eee_enabled;
510 bool eee_active;
511 bool tx_lpi_enabled;
512
513 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
514
515 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
516
517 /* Flags for special SoC configurations */
518 bool neta_armada3700;
519 u16 rx_offset_correction;
520 const struct mbus_dram_target_info *dram_target_info;
521 };
522
523 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
524 * layout of the transmit and reception DMA descriptors, and their
525 * layout is therefore defined by the hardware design
526 */
527
528 #define MVNETA_TX_L3_OFF_SHIFT 0
529 #define MVNETA_TX_IP_HLEN_SHIFT 8
530 #define MVNETA_TX_L4_UDP BIT(16)
531 #define MVNETA_TX_L3_IP6 BIT(17)
532 #define MVNETA_TXD_IP_CSUM BIT(18)
533 #define MVNETA_TXD_Z_PAD BIT(19)
534 #define MVNETA_TXD_L_DESC BIT(20)
535 #define MVNETA_TXD_F_DESC BIT(21)
536 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
537 MVNETA_TXD_L_DESC | \
538 MVNETA_TXD_F_DESC)
539 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
540 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
541
542 #define MVNETA_RXD_ERR_CRC 0x0
543 #define MVNETA_RXD_BM_POOL_SHIFT 13
544 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
545 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
546 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
547 #define MVNETA_RXD_ERR_LEN BIT(18)
548 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
549 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
550 #define MVNETA_RXD_L3_IP4 BIT(25)
551 #define MVNETA_RXD_LAST_DESC BIT(26)
552 #define MVNETA_RXD_FIRST_DESC BIT(27)
553 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
554 MVNETA_RXD_LAST_DESC)
555 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
556
557 #if defined(__LITTLE_ENDIAN)
558 struct mvneta_tx_desc {
559 u32 command; /* Options used by HW for packet transmitting.*/
560 u16 reserved1; /* csum_l4 (for future use) */
561 u16 data_size; /* Data size of transmitted packet in bytes */
562 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
563 u32 reserved2; /* hw_cmd - (for future use, PMT) */
564 u32 reserved3[4]; /* Reserved - (for future use) */
565 };
566
567 struct mvneta_rx_desc {
568 u32 status; /* Info about received packet */
569 u16 reserved1; /* pnc_info - (for future use, PnC) */
570 u16 data_size; /* Size of received packet in bytes */
571
572 u32 buf_phys_addr; /* Physical address of the buffer */
573 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
574
575 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
576 u16 reserved3; /* prefetch_cmd, for future use */
577 u16 reserved4; /* csum_l4 - (for future use, PnC) */
578
579 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
580 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
581 };
582 #else
583 struct mvneta_tx_desc {
584 u16 data_size; /* Data size of transmitted packet in bytes */
585 u16 reserved1; /* csum_l4 (for future use) */
586 u32 command; /* Options used by HW for packet transmitting.*/
587 u32 reserved2; /* hw_cmd - (for future use, PMT) */
588 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
589 u32 reserved3[4]; /* Reserved - (for future use) */
590 };
591
592 struct mvneta_rx_desc {
593 u16 data_size; /* Size of received packet in bytes */
594 u16 reserved1; /* pnc_info - (for future use, PnC) */
595 u32 status; /* Info about received packet */
596
597 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
598 u32 buf_phys_addr; /* Physical address of the buffer */
599
600 u16 reserved4; /* csum_l4 - (for future use, PnC) */
601 u16 reserved3; /* prefetch_cmd, for future use */
602 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
603
604 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
605 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
606 };
607 #endif
608
609 enum mvneta_tx_buf_type {
610 MVNETA_TYPE_SKB,
611 MVNETA_TYPE_XDP_TX,
612 MVNETA_TYPE_XDP_NDO,
613 };
614
615 struct mvneta_tx_buf {
616 enum mvneta_tx_buf_type type;
617 union {
618 struct xdp_frame *xdpf;
619 struct sk_buff *skb;
620 };
621 };
622
623 struct mvneta_tx_queue {
624 /* Number of this TX queue, in the range 0-7 */
625 u8 id;
626
627 /* Number of TX DMA descriptors in the descriptor ring */
628 int size;
629
630 /* Number of currently used TX DMA descriptor in the
631 * descriptor ring
632 */
633 int count;
634 int pending;
635 int tx_stop_threshold;
636 int tx_wake_threshold;
637
638 /* Array of transmitted buffers */
639 struct mvneta_tx_buf *buf;
640
641 /* Index of last TX DMA descriptor that was inserted */
642 int txq_put_index;
643
644 /* Index of the TX DMA descriptor to be cleaned up */
645 int txq_get_index;
646
647 u32 done_pkts_coal;
648
649 /* Virtual address of the TX DMA descriptors array */
650 struct mvneta_tx_desc *descs;
651
652 /* DMA address of the TX DMA descriptors array */
653 dma_addr_t descs_phys;
654
655 /* Index of the last TX DMA descriptor */
656 int last_desc;
657
658 /* Index of the next TX DMA descriptor to process */
659 int next_desc_to_proc;
660
661 /* DMA buffers for TSO headers */
662 char *tso_hdrs;
663
664 /* DMA address of TSO headers */
665 dma_addr_t tso_hdrs_phys;
666
667 /* Affinity mask for CPUs*/
668 cpumask_t affinity_mask;
669 };
670
671 struct mvneta_rx_queue {
672 /* rx queue number, in the range 0-7 */
673 u8 id;
674
675 /* num of rx descriptors in the rx descriptor ring */
676 int size;
677
678 u32 pkts_coal;
679 u32 time_coal;
680
681 /* page_pool */
682 struct page_pool *page_pool;
683 struct xdp_rxq_info xdp_rxq;
684
685 /* Virtual address of the RX buffer */
686 void **buf_virt_addr;
687
688 /* Virtual address of the RX DMA descriptors array */
689 struct mvneta_rx_desc *descs;
690
691 /* DMA address of the RX DMA descriptors array */
692 dma_addr_t descs_phys;
693
694 /* Index of the last RX DMA descriptor */
695 int last_desc;
696
697 /* Index of the next RX DMA descriptor to process */
698 int next_desc_to_proc;
699
700 /* Index of first RX DMA descriptor to refill */
701 int first_to_refill;
702 u32 refill_num;
703 };
704
705 static enum cpuhp_state online_hpstate;
706 /* The hardware supports eight (8) rx queues, but we are only allowing
707 * the first one to be used. Therefore, let's just allocate one queue.
708 */
709 static int rxq_number = 8;
710 static int txq_number = 8;
711
712 static int rxq_def;
713
714 static int rx_copybreak __read_mostly = 256;
715
716 /* HW BM need that each port be identify by a unique ID */
717 static int global_port_id;
718
719 #define MVNETA_DRIVER_NAME "mvneta"
720 #define MVNETA_DRIVER_VERSION "1.0"
721
722 /* Utility/helper methods */
723
724 /* Write helper method */
725 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
726 {
727 writel(data, pp->base + offset);
728 }
729
730 /* Read helper method */
731 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
732 {
733 return readl(pp->base + offset);
734 }
735
736 /* Increment txq get counter */
737 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
738 {
739 txq->txq_get_index++;
740 if (txq->txq_get_index == txq->size)
741 txq->txq_get_index = 0;
742 }
743
744 /* Increment txq put counter */
745 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
746 {
747 txq->txq_put_index++;
748 if (txq->txq_put_index == txq->size)
749 txq->txq_put_index = 0;
750 }
751
752
753 /* Clear all MIB counters */
754 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
755 {
756 int i;
757
758 /* Perform dummy reads from MIB counters */
759 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
760 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
761 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
762 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
763 }
764
765 /* Get System Network Statistics */
766 static void
767 mvneta_get_stats64(struct net_device *dev,
768 struct rtnl_link_stats64 *stats)
769 {
770 struct mvneta_port *pp = netdev_priv(dev);
771 unsigned int start;
772 int cpu;
773
774 for_each_possible_cpu(cpu) {
775 struct mvneta_pcpu_stats *cpu_stats;
776 u64 rx_packets;
777 u64 rx_bytes;
778 u64 rx_dropped;
779 u64 rx_errors;
780 u64 tx_packets;
781 u64 tx_bytes;
782
783 cpu_stats = per_cpu_ptr(pp->stats, cpu);
784 do {
785 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
786 rx_packets = cpu_stats->es.ps.rx_packets;
787 rx_bytes = cpu_stats->es.ps.rx_bytes;
788 rx_dropped = cpu_stats->rx_dropped;
789 rx_errors = cpu_stats->rx_errors;
790 tx_packets = cpu_stats->es.ps.tx_packets;
791 tx_bytes = cpu_stats->es.ps.tx_bytes;
792 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
793
794 stats->rx_packets += rx_packets;
795 stats->rx_bytes += rx_bytes;
796 stats->rx_dropped += rx_dropped;
797 stats->rx_errors += rx_errors;
798 stats->tx_packets += tx_packets;
799 stats->tx_bytes += tx_bytes;
800 }
801
802 stats->tx_dropped = dev->stats.tx_dropped;
803 }
804
805 /* Rx descriptors helper methods */
806
807 /* Checks whether the RX descriptor having this status is both the first
808 * and the last descriptor for the RX packet. Each RX packet is currently
809 * received through a single RX descriptor, so not having each RX
810 * descriptor with its first and last bits set is an error
811 */
812 static int mvneta_rxq_desc_is_first_last(u32 status)
813 {
814 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
815 MVNETA_RXD_FIRST_LAST_DESC;
816 }
817
818 /* Add number of descriptors ready to receive new packets */
819 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
820 struct mvneta_rx_queue *rxq,
821 int ndescs)
822 {
823 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
824 * be added at once
825 */
826 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
827 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
828 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
829 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
830 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
831 }
832
833 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
834 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
835 }
836
837 /* Get number of RX descriptors occupied by received packets */
838 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
839 struct mvneta_rx_queue *rxq)
840 {
841 u32 val;
842
843 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
844 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
845 }
846
847 /* Update num of rx desc called upon return from rx path or
848 * from mvneta_rxq_drop_pkts().
849 */
850 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
851 struct mvneta_rx_queue *rxq,
852 int rx_done, int rx_filled)
853 {
854 u32 val;
855
856 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
857 val = rx_done |
858 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
859 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
860 return;
861 }
862
863 /* Only 255 descriptors can be added at once */
864 while ((rx_done > 0) || (rx_filled > 0)) {
865 if (rx_done <= 0xff) {
866 val = rx_done;
867 rx_done = 0;
868 } else {
869 val = 0xff;
870 rx_done -= 0xff;
871 }
872 if (rx_filled <= 0xff) {
873 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
874 rx_filled = 0;
875 } else {
876 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
877 rx_filled -= 0xff;
878 }
879 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
880 }
881 }
882
883 /* Get pointer to next RX descriptor to be processed by SW */
884 static struct mvneta_rx_desc *
885 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
886 {
887 int rx_desc = rxq->next_desc_to_proc;
888
889 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
890 prefetch(rxq->descs + rxq->next_desc_to_proc);
891 return rxq->descs + rx_desc;
892 }
893
894 /* Change maximum receive size of the port. */
895 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
896 {
897 u32 val;
898
899 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
900 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
901 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
902 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
903 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
904 }
905
906
907 /* Set rx queue offset */
908 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
909 struct mvneta_rx_queue *rxq,
910 int offset)
911 {
912 u32 val;
913
914 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
915 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
916
917 /* Offset is in */
918 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
919 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
920 }
921
922
923 /* Tx descriptors helper methods */
924
925 /* Update HW with number of TX descriptors to be sent */
926 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
927 struct mvneta_tx_queue *txq,
928 int pend_desc)
929 {
930 u32 val;
931
932 pend_desc += txq->pending;
933
934 /* Only 255 Tx descriptors can be added at once */
935 do {
936 val = min(pend_desc, 255);
937 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
938 pend_desc -= val;
939 } while (pend_desc > 0);
940 txq->pending = 0;
941 }
942
943 /* Get pointer to next TX descriptor to be processed (send) by HW */
944 static struct mvneta_tx_desc *
945 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
946 {
947 int tx_desc = txq->next_desc_to_proc;
948
949 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
950 return txq->descs + tx_desc;
951 }
952
953 /* Release the last allocated TX descriptor. Useful to handle DMA
954 * mapping failures in the TX path.
955 */
956 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
957 {
958 if (txq->next_desc_to_proc == 0)
959 txq->next_desc_to_proc = txq->last_desc - 1;
960 else
961 txq->next_desc_to_proc--;
962 }
963
964 /* Set rxq buf size */
965 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
966 struct mvneta_rx_queue *rxq,
967 int buf_size)
968 {
969 u32 val;
970
971 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
972
973 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
974 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
975
976 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
977 }
978
979 /* Disable buffer management (BM) */
980 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
981 struct mvneta_rx_queue *rxq)
982 {
983 u32 val;
984
985 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
986 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
987 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
988 }
989
990 /* Enable buffer management (BM) */
991 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
992 struct mvneta_rx_queue *rxq)
993 {
994 u32 val;
995
996 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
997 val |= MVNETA_RXQ_HW_BUF_ALLOC;
998 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
999 }
1000
1001 /* Notify HW about port's assignment of pool for bigger packets */
1002 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1003 struct mvneta_rx_queue *rxq)
1004 {
1005 u32 val;
1006
1007 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1008 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1009 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1010
1011 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1012 }
1013
1014 /* Notify HW about port's assignment of pool for smaller packets */
1015 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1016 struct mvneta_rx_queue *rxq)
1017 {
1018 u32 val;
1019
1020 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1021 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1022 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1023
1024 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1025 }
1026
1027 /* Set port's receive buffer size for assigned BM pool */
1028 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1029 int buf_size,
1030 u8 pool_id)
1031 {
1032 u32 val;
1033
1034 if (!IS_ALIGNED(buf_size, 8)) {
1035 dev_warn(pp->dev->dev.parent,
1036 "illegal buf_size value %d, round to %d\n",
1037 buf_size, ALIGN(buf_size, 8));
1038 buf_size = ALIGN(buf_size, 8);
1039 }
1040
1041 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1042 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1043 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1044 }
1045
1046 /* Configure MBUS window in order to enable access BM internal SRAM */
1047 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1048 u8 target, u8 attr)
1049 {
1050 u32 win_enable, win_protect;
1051 int i;
1052
1053 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1054
1055 if (pp->bm_win_id < 0) {
1056 /* Find first not occupied window */
1057 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1058 if (win_enable & (1 << i)) {
1059 pp->bm_win_id = i;
1060 break;
1061 }
1062 }
1063 if (i == MVNETA_MAX_DECODE_WIN)
1064 return -ENOMEM;
1065 } else {
1066 i = pp->bm_win_id;
1067 }
1068
1069 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1070 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1071
1072 if (i < 4)
1073 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1074
1075 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1076 (attr << 8) | target);
1077
1078 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1079
1080 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1081 win_protect |= 3 << (2 * i);
1082 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1083
1084 win_enable &= ~(1 << i);
1085 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1086
1087 return 0;
1088 }
1089
1090 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1091 {
1092 u32 wsize;
1093 u8 target, attr;
1094 int err;
1095
1096 /* Get BM window information */
1097 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1098 &target, &attr);
1099 if (err < 0)
1100 return err;
1101
1102 pp->bm_win_id = -1;
1103
1104 /* Open NETA -> BM window */
1105 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1106 target, attr);
1107 if (err < 0) {
1108 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1109 return err;
1110 }
1111 return 0;
1112 }
1113
1114 /* Assign and initialize pools for port. In case of fail
1115 * buffer manager will remain disabled for current port.
1116 */
1117 static int mvneta_bm_port_init(struct platform_device *pdev,
1118 struct mvneta_port *pp)
1119 {
1120 struct device_node *dn = pdev->dev.of_node;
1121 u32 long_pool_id, short_pool_id;
1122
1123 if (!pp->neta_armada3700) {
1124 int ret;
1125
1126 ret = mvneta_bm_port_mbus_init(pp);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1132 netdev_info(pp->dev, "missing long pool id\n");
1133 return -EINVAL;
1134 }
1135
1136 /* Create port's long pool depending on mtu */
1137 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1138 MVNETA_BM_LONG, pp->id,
1139 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1140 if (!pp->pool_long) {
1141 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1142 return -ENOMEM;
1143 }
1144
1145 pp->pool_long->port_map |= 1 << pp->id;
1146
1147 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1148 pp->pool_long->id);
1149
1150 /* If short pool id is not defined, assume using single pool */
1151 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1152 short_pool_id = long_pool_id;
1153
1154 /* Create port's short pool */
1155 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1156 MVNETA_BM_SHORT, pp->id,
1157 MVNETA_BM_SHORT_PKT_SIZE);
1158 if (!pp->pool_short) {
1159 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1160 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1161 return -ENOMEM;
1162 }
1163
1164 if (short_pool_id != long_pool_id) {
1165 pp->pool_short->port_map |= 1 << pp->id;
1166 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1167 pp->pool_short->id);
1168 }
1169
1170 return 0;
1171 }
1172
1173 /* Update settings of a pool for bigger packets */
1174 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1175 {
1176 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1177 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1178 int num;
1179
1180 /* Release all buffers from long pool */
1181 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1182 if (hwbm_pool->buf_num) {
1183 WARN(1, "cannot free all buffers in pool %d\n",
1184 bm_pool->id);
1185 goto bm_mtu_err;
1186 }
1187
1188 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1189 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1190 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1191 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1192
1193 /* Fill entire long pool */
1194 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1195 if (num != hwbm_pool->size) {
1196 WARN(1, "pool %d: %d of %d allocated\n",
1197 bm_pool->id, num, hwbm_pool->size);
1198 goto bm_mtu_err;
1199 }
1200 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1201
1202 return;
1203
1204 bm_mtu_err:
1205 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1206 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1207
1208 pp->bm_priv = NULL;
1209 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1210 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1211 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1212 }
1213
1214 /* Start the Ethernet port RX and TX activity */
1215 static void mvneta_port_up(struct mvneta_port *pp)
1216 {
1217 int queue;
1218 u32 q_map;
1219
1220 /* Enable all initialized TXs. */
1221 q_map = 0;
1222 for (queue = 0; queue < txq_number; queue++) {
1223 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1224 if (txq->descs)
1225 q_map |= (1 << queue);
1226 }
1227 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1228
1229 q_map = 0;
1230 /* Enable all initialized RXQs. */
1231 for (queue = 0; queue < rxq_number; queue++) {
1232 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1233
1234 if (rxq->descs)
1235 q_map |= (1 << queue);
1236 }
1237 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1238 }
1239
1240 /* Stop the Ethernet port activity */
1241 static void mvneta_port_down(struct mvneta_port *pp)
1242 {
1243 u32 val;
1244 int count;
1245
1246 /* Stop Rx port activity. Check port Rx activity. */
1247 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1248
1249 /* Issue stop command for active channels only */
1250 if (val != 0)
1251 mvreg_write(pp, MVNETA_RXQ_CMD,
1252 val << MVNETA_RXQ_DISABLE_SHIFT);
1253
1254 /* Wait for all Rx activity to terminate. */
1255 count = 0;
1256 do {
1257 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1258 netdev_warn(pp->dev,
1259 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1260 val);
1261 break;
1262 }
1263 mdelay(1);
1264
1265 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1266 } while (val & MVNETA_RXQ_ENABLE_MASK);
1267
1268 /* Stop Tx port activity. Check port Tx activity. Issue stop
1269 * command for active channels only
1270 */
1271 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1272
1273 if (val != 0)
1274 mvreg_write(pp, MVNETA_TXQ_CMD,
1275 (val << MVNETA_TXQ_DISABLE_SHIFT));
1276
1277 /* Wait for all Tx activity to terminate. */
1278 count = 0;
1279 do {
1280 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1281 netdev_warn(pp->dev,
1282 "TIMEOUT for TX stopped status=0x%08x\n",
1283 val);
1284 break;
1285 }
1286 mdelay(1);
1287
1288 /* Check TX Command reg that all Txqs are stopped */
1289 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1290
1291 } while (val & MVNETA_TXQ_ENABLE_MASK);
1292
1293 /* Double check to verify that TX FIFO is empty */
1294 count = 0;
1295 do {
1296 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1297 netdev_warn(pp->dev,
1298 "TX FIFO empty timeout status=0x%08x\n",
1299 val);
1300 break;
1301 }
1302 mdelay(1);
1303
1304 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1305 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1306 (val & MVNETA_TX_IN_PRGRS));
1307
1308 udelay(200);
1309 }
1310
1311 /* Enable the port by setting the port enable bit of the MAC control register */
1312 static void mvneta_port_enable(struct mvneta_port *pp)
1313 {
1314 u32 val;
1315
1316 /* Enable port */
1317 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1318 val |= MVNETA_GMAC0_PORT_ENABLE;
1319 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1320 }
1321
1322 /* Disable the port and wait for about 200 usec before retuning */
1323 static void mvneta_port_disable(struct mvneta_port *pp)
1324 {
1325 u32 val;
1326
1327 /* Reset the Enable bit in the Serial Control Register */
1328 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1329 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1330 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1331
1332 udelay(200);
1333 }
1334
1335 /* Multicast tables methods */
1336
1337 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1338 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1339 {
1340 int offset;
1341 u32 val;
1342
1343 if (queue == -1) {
1344 val = 0;
1345 } else {
1346 val = 0x1 | (queue << 1);
1347 val |= (val << 24) | (val << 16) | (val << 8);
1348 }
1349
1350 for (offset = 0; offset <= 0xc; offset += 4)
1351 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1352 }
1353
1354 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1355 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1356 {
1357 int offset;
1358 u32 val;
1359
1360 if (queue == -1) {
1361 val = 0;
1362 } else {
1363 val = 0x1 | (queue << 1);
1364 val |= (val << 24) | (val << 16) | (val << 8);
1365 }
1366
1367 for (offset = 0; offset <= 0xfc; offset += 4)
1368 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1369
1370 }
1371
1372 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1373 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1374 {
1375 int offset;
1376 u32 val;
1377
1378 if (queue == -1) {
1379 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1380 val = 0;
1381 } else {
1382 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1383 val = 0x1 | (queue << 1);
1384 val |= (val << 24) | (val << 16) | (val << 8);
1385 }
1386
1387 for (offset = 0; offset <= 0xfc; offset += 4)
1388 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1389 }
1390
1391 static void mvneta_percpu_unmask_interrupt(void *arg)
1392 {
1393 struct mvneta_port *pp = arg;
1394
1395 /* All the queue are unmasked, but actually only the ones
1396 * mapped to this CPU will be unmasked
1397 */
1398 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1399 MVNETA_RX_INTR_MASK_ALL |
1400 MVNETA_TX_INTR_MASK_ALL |
1401 MVNETA_MISCINTR_INTR_MASK);
1402 }
1403
1404 static void mvneta_percpu_mask_interrupt(void *arg)
1405 {
1406 struct mvneta_port *pp = arg;
1407
1408 /* All the queue are masked, but actually only the ones
1409 * mapped to this CPU will be masked
1410 */
1411 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1412 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1413 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1414 }
1415
1416 static void mvneta_percpu_clear_intr_cause(void *arg)
1417 {
1418 struct mvneta_port *pp = arg;
1419
1420 /* All the queue are cleared, but actually only the ones
1421 * mapped to this CPU will be cleared
1422 */
1423 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1424 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1425 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1426 }
1427
1428 /* This method sets defaults to the NETA port:
1429 * Clears interrupt Cause and Mask registers.
1430 * Clears all MAC tables.
1431 * Sets defaults to all registers.
1432 * Resets RX and TX descriptor rings.
1433 * Resets PHY.
1434 * This method can be called after mvneta_port_down() to return the port
1435 * settings to defaults.
1436 */
1437 static void mvneta_defaults_set(struct mvneta_port *pp)
1438 {
1439 int cpu;
1440 int queue;
1441 u32 val;
1442 int max_cpu = num_present_cpus();
1443
1444 /* Clear all Cause registers */
1445 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1446
1447 /* Mask all interrupts */
1448 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1449 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1450
1451 /* Enable MBUS Retry bit16 */
1452 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1453
1454 /* Set CPU queue access map. CPUs are assigned to the RX and
1455 * TX queues modulo their number. If there is only one TX
1456 * queue then it is assigned to the CPU associated to the
1457 * default RX queue.
1458 */
1459 for_each_present_cpu(cpu) {
1460 int rxq_map = 0, txq_map = 0;
1461 int rxq, txq;
1462 if (!pp->neta_armada3700) {
1463 for (rxq = 0; rxq < rxq_number; rxq++)
1464 if ((rxq % max_cpu) == cpu)
1465 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1466
1467 for (txq = 0; txq < txq_number; txq++)
1468 if ((txq % max_cpu) == cpu)
1469 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1470
1471 /* With only one TX queue we configure a special case
1472 * which will allow to get all the irq on a single
1473 * CPU
1474 */
1475 if (txq_number == 1)
1476 txq_map = (cpu == pp->rxq_def) ?
1477 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1478
1479 } else {
1480 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1481 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1482 }
1483
1484 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1485 }
1486
1487 /* Reset RX and TX DMAs */
1488 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1489 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1490
1491 /* Disable Legacy WRR, Disable EJP, Release from reset */
1492 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1493 for (queue = 0; queue < txq_number; queue++) {
1494 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1495 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1496 }
1497
1498 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1499 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1500
1501 /* Set Port Acceleration Mode */
1502 if (pp->bm_priv)
1503 /* HW buffer management + legacy parser */
1504 val = MVNETA_ACC_MODE_EXT2;
1505 else
1506 /* SW buffer management + legacy parser */
1507 val = MVNETA_ACC_MODE_EXT1;
1508 mvreg_write(pp, MVNETA_ACC_MODE, val);
1509
1510 if (pp->bm_priv)
1511 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1512
1513 /* Update val of portCfg register accordingly with all RxQueue types */
1514 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1515 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1516
1517 val = 0;
1518 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1519 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1520
1521 /* Build PORT_SDMA_CONFIG_REG */
1522 val = 0;
1523
1524 /* Default burst size */
1525 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1526 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1527 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1528
1529 #if defined(__BIG_ENDIAN)
1530 val |= MVNETA_DESC_SWAP;
1531 #endif
1532
1533 /* Assign port SDMA configuration */
1534 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1535
1536 /* Disable PHY polling in hardware, since we're using the
1537 * kernel phylib to do this.
1538 */
1539 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1540 val &= ~MVNETA_PHY_POLLING_ENABLE;
1541 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1542
1543 mvneta_set_ucast_table(pp, -1);
1544 mvneta_set_special_mcast_table(pp, -1);
1545 mvneta_set_other_mcast_table(pp, -1);
1546
1547 /* Set port interrupt enable register - default enable all */
1548 mvreg_write(pp, MVNETA_INTR_ENABLE,
1549 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1550 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1551
1552 mvneta_mib_counters_clear(pp);
1553 }
1554
1555 /* Set max sizes for tx queues */
1556 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1557
1558 {
1559 u32 val, size, mtu;
1560 int queue;
1561
1562 mtu = max_tx_size * 8;
1563 if (mtu > MVNETA_TX_MTU_MAX)
1564 mtu = MVNETA_TX_MTU_MAX;
1565
1566 /* Set MTU */
1567 val = mvreg_read(pp, MVNETA_TX_MTU);
1568 val &= ~MVNETA_TX_MTU_MAX;
1569 val |= mtu;
1570 mvreg_write(pp, MVNETA_TX_MTU, val);
1571
1572 /* TX token size and all TXQs token size must be larger that MTU */
1573 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1574
1575 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1576 if (size < mtu) {
1577 size = mtu;
1578 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1579 val |= size;
1580 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1581 }
1582 for (queue = 0; queue < txq_number; queue++) {
1583 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1584
1585 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1586 if (size < mtu) {
1587 size = mtu;
1588 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1589 val |= size;
1590 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1591 }
1592 }
1593 }
1594
1595 /* Set unicast address */
1596 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1597 int queue)
1598 {
1599 unsigned int unicast_reg;
1600 unsigned int tbl_offset;
1601 unsigned int reg_offset;
1602
1603 /* Locate the Unicast table entry */
1604 last_nibble = (0xf & last_nibble);
1605
1606 /* offset from unicast tbl base */
1607 tbl_offset = (last_nibble / 4) * 4;
1608
1609 /* offset within the above reg */
1610 reg_offset = last_nibble % 4;
1611
1612 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1613
1614 if (queue == -1) {
1615 /* Clear accepts frame bit at specified unicast DA tbl entry */
1616 unicast_reg &= ~(0xff << (8 * reg_offset));
1617 } else {
1618 unicast_reg &= ~(0xff << (8 * reg_offset));
1619 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1620 }
1621
1622 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1623 }
1624
1625 /* Set mac address */
1626 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1627 int queue)
1628 {
1629 unsigned int mac_h;
1630 unsigned int mac_l;
1631
1632 if (queue != -1) {
1633 mac_l = (addr[4] << 8) | (addr[5]);
1634 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1635 (addr[2] << 8) | (addr[3] << 0);
1636
1637 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1638 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1639 }
1640
1641 /* Accept frames of this address */
1642 mvneta_set_ucast_addr(pp, addr[5], queue);
1643 }
1644
1645 /* Set the number of packets that will be received before RX interrupt
1646 * will be generated by HW.
1647 */
1648 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1649 struct mvneta_rx_queue *rxq, u32 value)
1650 {
1651 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1652 value | MVNETA_RXQ_NON_OCCUPIED(0));
1653 }
1654
1655 /* Set the time delay in usec before RX interrupt will be generated by
1656 * HW.
1657 */
1658 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1659 struct mvneta_rx_queue *rxq, u32 value)
1660 {
1661 u32 val;
1662 unsigned long clk_rate;
1663
1664 clk_rate = clk_get_rate(pp->clk);
1665 val = (clk_rate / 1000000) * value;
1666
1667 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1668 }
1669
1670 /* Set threshold for TX_DONE pkts coalescing */
1671 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1672 struct mvneta_tx_queue *txq, u32 value)
1673 {
1674 u32 val;
1675
1676 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1677
1678 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1679 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1680
1681 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1682 }
1683
1684 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1685 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1686 u32 phys_addr, void *virt_addr,
1687 struct mvneta_rx_queue *rxq)
1688 {
1689 int i;
1690
1691 rx_desc->buf_phys_addr = phys_addr;
1692 i = rx_desc - rxq->descs;
1693 rxq->buf_virt_addr[i] = virt_addr;
1694 }
1695
1696 /* Decrement sent descriptors counter */
1697 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1698 struct mvneta_tx_queue *txq,
1699 int sent_desc)
1700 {
1701 u32 val;
1702
1703 /* Only 255 TX descriptors can be updated at once */
1704 while (sent_desc > 0xff) {
1705 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1706 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1707 sent_desc = sent_desc - 0xff;
1708 }
1709
1710 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1711 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1712 }
1713
1714 /* Get number of TX descriptors already sent by HW */
1715 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1716 struct mvneta_tx_queue *txq)
1717 {
1718 u32 val;
1719 int sent_desc;
1720
1721 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1722 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1723 MVNETA_TXQ_SENT_DESC_SHIFT;
1724
1725 return sent_desc;
1726 }
1727
1728 /* Get number of sent descriptors and decrement counter.
1729 * The number of sent descriptors is returned.
1730 */
1731 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1732 struct mvneta_tx_queue *txq)
1733 {
1734 int sent_desc;
1735
1736 /* Get number of sent descriptors */
1737 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1738
1739 /* Decrement sent descriptors counter */
1740 if (sent_desc)
1741 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1742
1743 return sent_desc;
1744 }
1745
1746 /* Set TXQ descriptors fields relevant for CSUM calculation */
1747 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1748 int ip_hdr_len, int l4_proto)
1749 {
1750 u32 command;
1751
1752 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1753 * G_L4_chk, L4_type; required only for checksum
1754 * calculation
1755 */
1756 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1757 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1758
1759 if (l3_proto == htons(ETH_P_IP))
1760 command |= MVNETA_TXD_IP_CSUM;
1761 else
1762 command |= MVNETA_TX_L3_IP6;
1763
1764 if (l4_proto == IPPROTO_TCP)
1765 command |= MVNETA_TX_L4_CSUM_FULL;
1766 else if (l4_proto == IPPROTO_UDP)
1767 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1768 else
1769 command |= MVNETA_TX_L4_CSUM_NOT;
1770
1771 return command;
1772 }
1773
1774
1775 /* Display more error info */
1776 static void mvneta_rx_error(struct mvneta_port *pp,
1777 struct mvneta_rx_desc *rx_desc)
1778 {
1779 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1780 u32 status = rx_desc->status;
1781
1782 /* update per-cpu counter */
1783 u64_stats_update_begin(&stats->syncp);
1784 stats->rx_errors++;
1785 u64_stats_update_end(&stats->syncp);
1786
1787 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1788 case MVNETA_RXD_ERR_CRC:
1789 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1790 status, rx_desc->data_size);
1791 break;
1792 case MVNETA_RXD_ERR_OVERRUN:
1793 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1794 status, rx_desc->data_size);
1795 break;
1796 case MVNETA_RXD_ERR_LEN:
1797 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1798 status, rx_desc->data_size);
1799 break;
1800 case MVNETA_RXD_ERR_RESOURCE:
1801 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1802 status, rx_desc->data_size);
1803 break;
1804 }
1805 }
1806
1807 /* Handle RX checksum offload based on the descriptor's status */
1808 static int mvneta_rx_csum(struct mvneta_port *pp, u32 status)
1809 {
1810 if ((pp->dev->features & NETIF_F_RXCSUM) &&
1811 (status & MVNETA_RXD_L3_IP4) &&
1812 (status & MVNETA_RXD_L4_CSUM_OK))
1813 return CHECKSUM_UNNECESSARY;
1814
1815 return CHECKSUM_NONE;
1816 }
1817
1818 /* Return tx queue pointer (find last set bit) according to <cause> returned
1819 * form tx_done reg. <cause> must not be null. The return value is always a
1820 * valid queue for matching the first one found in <cause>.
1821 */
1822 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1823 u32 cause)
1824 {
1825 int queue = fls(cause) - 1;
1826
1827 return &pp->txqs[queue];
1828 }
1829
1830 /* Free tx queue skbuffs */
1831 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1832 struct mvneta_tx_queue *txq, int num,
1833 struct netdev_queue *nq, bool napi)
1834 {
1835 unsigned int bytes_compl = 0, pkts_compl = 0;
1836 struct xdp_frame_bulk bq;
1837 int i;
1838
1839 xdp_frame_bulk_init(&bq);
1840
1841 rcu_read_lock(); /* need for xdp_return_frame_bulk */
1842
1843 for (i = 0; i < num; i++) {
1844 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1845 struct mvneta_tx_desc *tx_desc = txq->descs +
1846 txq->txq_get_index;
1847
1848 mvneta_txq_inc_get(txq);
1849
1850 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1851 buf->type != MVNETA_TYPE_XDP_TX)
1852 dma_unmap_single(pp->dev->dev.parent,
1853 tx_desc->buf_phys_addr,
1854 tx_desc->data_size, DMA_TO_DEVICE);
1855 if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1856 bytes_compl += buf->skb->len;
1857 pkts_compl++;
1858 dev_kfree_skb_any(buf->skb);
1859 } else if (buf->type == MVNETA_TYPE_XDP_TX ||
1860 buf->type == MVNETA_TYPE_XDP_NDO) {
1861 if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1862 xdp_return_frame_rx_napi(buf->xdpf);
1863 else
1864 xdp_return_frame_bulk(buf->xdpf, &bq);
1865 }
1866 }
1867 xdp_flush_frame_bulk(&bq);
1868
1869 rcu_read_unlock();
1870
1871 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1872 }
1873
1874 /* Handle end of transmission */
1875 static void mvneta_txq_done(struct mvneta_port *pp,
1876 struct mvneta_tx_queue *txq)
1877 {
1878 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1879 int tx_done;
1880
1881 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1882 if (!tx_done)
1883 return;
1884
1885 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1886
1887 txq->count -= tx_done;
1888
1889 if (netif_tx_queue_stopped(nq)) {
1890 if (txq->count <= txq->tx_wake_threshold)
1891 netif_tx_wake_queue(nq);
1892 }
1893 }
1894
1895 /* Refill processing for SW buffer management */
1896 /* Allocate page per descriptor */
1897 static int mvneta_rx_refill(struct mvneta_port *pp,
1898 struct mvneta_rx_desc *rx_desc,
1899 struct mvneta_rx_queue *rxq,
1900 gfp_t gfp_mask)
1901 {
1902 dma_addr_t phys_addr;
1903 struct page *page;
1904
1905 page = page_pool_alloc_pages(rxq->page_pool,
1906 gfp_mask | __GFP_NOWARN);
1907 if (!page)
1908 return -ENOMEM;
1909
1910 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1911 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1912
1913 return 0;
1914 }
1915
1916 /* Handle tx checksum */
1917 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1918 {
1919 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1920 int ip_hdr_len = 0;
1921 __be16 l3_proto = vlan_get_protocol(skb);
1922 u8 l4_proto;
1923
1924 if (l3_proto == htons(ETH_P_IP)) {
1925 struct iphdr *ip4h = ip_hdr(skb);
1926
1927 /* Calculate IPv4 checksum and L4 checksum */
1928 ip_hdr_len = ip4h->ihl;
1929 l4_proto = ip4h->protocol;
1930 } else if (l3_proto == htons(ETH_P_IPV6)) {
1931 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1932
1933 /* Read l4_protocol from one of IPv6 extra headers */
1934 if (skb_network_header_len(skb) > 0)
1935 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1936 l4_proto = ip6h->nexthdr;
1937 } else
1938 return MVNETA_TX_L4_CSUM_NOT;
1939
1940 return mvneta_txq_desc_csum(skb_network_offset(skb),
1941 l3_proto, ip_hdr_len, l4_proto);
1942 }
1943
1944 return MVNETA_TX_L4_CSUM_NOT;
1945 }
1946
1947 /* Drop packets received by the RXQ and free buffers */
1948 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1949 struct mvneta_rx_queue *rxq)
1950 {
1951 int rx_done, i;
1952
1953 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1954 if (rx_done)
1955 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1956
1957 if (pp->bm_priv) {
1958 for (i = 0; i < rx_done; i++) {
1959 struct mvneta_rx_desc *rx_desc =
1960 mvneta_rxq_next_desc_get(rxq);
1961 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1962 struct mvneta_bm_pool *bm_pool;
1963
1964 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1965 /* Return dropped buffer to the pool */
1966 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1967 rx_desc->buf_phys_addr);
1968 }
1969 return;
1970 }
1971
1972 for (i = 0; i < rxq->size; i++) {
1973 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1974 void *data = rxq->buf_virt_addr[i];
1975 if (!data || !(rx_desc->buf_phys_addr))
1976 continue;
1977
1978 page_pool_put_full_page(rxq->page_pool, data, false);
1979 }
1980 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1981 xdp_rxq_info_unreg(&rxq->xdp_rxq);
1982 page_pool_destroy(rxq->page_pool);
1983 rxq->page_pool = NULL;
1984 }
1985
1986 static void
1987 mvneta_update_stats(struct mvneta_port *pp,
1988 struct mvneta_stats *ps)
1989 {
1990 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1991
1992 u64_stats_update_begin(&stats->syncp);
1993 stats->es.ps.rx_packets += ps->rx_packets;
1994 stats->es.ps.rx_bytes += ps->rx_bytes;
1995 /* xdp */
1996 stats->es.ps.xdp_redirect += ps->xdp_redirect;
1997 stats->es.ps.xdp_pass += ps->xdp_pass;
1998 stats->es.ps.xdp_drop += ps->xdp_drop;
1999 u64_stats_update_end(&stats->syncp);
2000 }
2001
2002 static inline
2003 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2004 {
2005 struct mvneta_rx_desc *rx_desc;
2006 int curr_desc = rxq->first_to_refill;
2007 int i;
2008
2009 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2010 rx_desc = rxq->descs + curr_desc;
2011 if (!(rx_desc->buf_phys_addr)) {
2012 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2013 struct mvneta_pcpu_stats *stats;
2014
2015 pr_err("Can't refill queue %d. Done %d from %d\n",
2016 rxq->id, i, rxq->refill_num);
2017
2018 stats = this_cpu_ptr(pp->stats);
2019 u64_stats_update_begin(&stats->syncp);
2020 stats->es.refill_error++;
2021 u64_stats_update_end(&stats->syncp);
2022 break;
2023 }
2024 }
2025 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2026 }
2027 rxq->refill_num -= i;
2028 rxq->first_to_refill = curr_desc;
2029
2030 return i;
2031 }
2032
2033 static void
2034 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2035 struct xdp_buff *xdp, struct skb_shared_info *sinfo,
2036 int sync_len)
2037 {
2038 int i;
2039
2040 for (i = 0; i < sinfo->nr_frags; i++)
2041 page_pool_put_full_page(rxq->page_pool,
2042 skb_frag_page(&sinfo->frags[i]), true);
2043 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2044 sync_len, true);
2045 }
2046
2047 static int
2048 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2049 struct xdp_frame *xdpf, bool dma_map)
2050 {
2051 struct mvneta_tx_desc *tx_desc;
2052 struct mvneta_tx_buf *buf;
2053 dma_addr_t dma_addr;
2054
2055 if (txq->count >= txq->tx_stop_threshold)
2056 return MVNETA_XDP_DROPPED;
2057
2058 tx_desc = mvneta_txq_next_desc_get(txq);
2059
2060 buf = &txq->buf[txq->txq_put_index];
2061 if (dma_map) {
2062 /* ndo_xdp_xmit */
2063 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2064 xdpf->len, DMA_TO_DEVICE);
2065 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2066 mvneta_txq_desc_put(txq);
2067 return MVNETA_XDP_DROPPED;
2068 }
2069 buf->type = MVNETA_TYPE_XDP_NDO;
2070 } else {
2071 struct page *page = virt_to_page(xdpf->data);
2072
2073 dma_addr = page_pool_get_dma_addr(page) +
2074 sizeof(*xdpf) + xdpf->headroom;
2075 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2076 xdpf->len, DMA_BIDIRECTIONAL);
2077 buf->type = MVNETA_TYPE_XDP_TX;
2078 }
2079 buf->xdpf = xdpf;
2080
2081 tx_desc->command = MVNETA_TXD_FLZ_DESC;
2082 tx_desc->buf_phys_addr = dma_addr;
2083 tx_desc->data_size = xdpf->len;
2084
2085 mvneta_txq_inc_put(txq);
2086 txq->pending++;
2087 txq->count++;
2088
2089 return MVNETA_XDP_TX;
2090 }
2091
2092 static int
2093 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2094 {
2095 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2096 struct mvneta_tx_queue *txq;
2097 struct netdev_queue *nq;
2098 struct xdp_frame *xdpf;
2099 int cpu;
2100 u32 ret;
2101
2102 xdpf = xdp_convert_buff_to_frame(xdp);
2103 if (unlikely(!xdpf))
2104 return MVNETA_XDP_DROPPED;
2105
2106 cpu = smp_processor_id();
2107 txq = &pp->txqs[cpu % txq_number];
2108 nq = netdev_get_tx_queue(pp->dev, txq->id);
2109
2110 __netif_tx_lock(nq, cpu);
2111 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2112 if (ret == MVNETA_XDP_TX) {
2113 u64_stats_update_begin(&stats->syncp);
2114 stats->es.ps.tx_bytes += xdpf->len;
2115 stats->es.ps.tx_packets++;
2116 stats->es.ps.xdp_tx++;
2117 u64_stats_update_end(&stats->syncp);
2118
2119 mvneta_txq_pend_desc_add(pp, txq, 0);
2120 } else {
2121 u64_stats_update_begin(&stats->syncp);
2122 stats->es.ps.xdp_tx_err++;
2123 u64_stats_update_end(&stats->syncp);
2124 }
2125 __netif_tx_unlock(nq);
2126
2127 return ret;
2128 }
2129
2130 static int
2131 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2132 struct xdp_frame **frames, u32 flags)
2133 {
2134 struct mvneta_port *pp = netdev_priv(dev);
2135 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2136 int i, nxmit_byte = 0, nxmit = 0;
2137 int cpu = smp_processor_id();
2138 struct mvneta_tx_queue *txq;
2139 struct netdev_queue *nq;
2140 u32 ret;
2141
2142 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2143 return -ENETDOWN;
2144
2145 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2146 return -EINVAL;
2147
2148 txq = &pp->txqs[cpu % txq_number];
2149 nq = netdev_get_tx_queue(pp->dev, txq->id);
2150
2151 __netif_tx_lock(nq, cpu);
2152 for (i = 0; i < num_frame; i++) {
2153 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2154 if (ret != MVNETA_XDP_TX)
2155 break;
2156
2157 nxmit_byte += frames[i]->len;
2158 nxmit++;
2159 }
2160
2161 if (unlikely(flags & XDP_XMIT_FLUSH))
2162 mvneta_txq_pend_desc_add(pp, txq, 0);
2163 __netif_tx_unlock(nq);
2164
2165 u64_stats_update_begin(&stats->syncp);
2166 stats->es.ps.tx_bytes += nxmit_byte;
2167 stats->es.ps.tx_packets += nxmit;
2168 stats->es.ps.xdp_xmit += nxmit;
2169 stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2170 u64_stats_update_end(&stats->syncp);
2171
2172 return nxmit;
2173 }
2174
2175 static int
2176 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2177 struct bpf_prog *prog, struct xdp_buff *xdp,
2178 u32 frame_sz, struct mvneta_stats *stats)
2179 {
2180 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2181 unsigned int len, data_len, sync;
2182 u32 ret, act;
2183
2184 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2185 data_len = xdp->data_end - xdp->data;
2186 act = bpf_prog_run_xdp(prog, xdp);
2187
2188 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2189 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2190 sync = max(sync, len);
2191
2192 switch (act) {
2193 case XDP_PASS:
2194 stats->xdp_pass++;
2195 return MVNETA_XDP_PASS;
2196 case XDP_REDIRECT: {
2197 int err;
2198
2199 err = xdp_do_redirect(pp->dev, xdp, prog);
2200 if (unlikely(err)) {
2201 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2202 ret = MVNETA_XDP_DROPPED;
2203 } else {
2204 ret = MVNETA_XDP_REDIR;
2205 stats->xdp_redirect++;
2206 }
2207 break;
2208 }
2209 case XDP_TX:
2210 ret = mvneta_xdp_xmit_back(pp, xdp);
2211 if (ret != MVNETA_XDP_TX)
2212 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2213 break;
2214 default:
2215 bpf_warn_invalid_xdp_action(act);
2216 fallthrough;
2217 case XDP_ABORTED:
2218 trace_xdp_exception(pp->dev, prog, act);
2219 fallthrough;
2220 case XDP_DROP:
2221 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2222 ret = MVNETA_XDP_DROPPED;
2223 stats->xdp_drop++;
2224 break;
2225 }
2226
2227 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2228 stats->rx_packets++;
2229
2230 return ret;
2231 }
2232
2233 static void
2234 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2235 struct mvneta_rx_desc *rx_desc,
2236 struct mvneta_rx_queue *rxq,
2237 struct xdp_buff *xdp, int *size,
2238 struct page *page)
2239 {
2240 unsigned char *data = page_address(page);
2241 int data_len = -MVNETA_MH_SIZE, len;
2242 struct net_device *dev = pp->dev;
2243 enum dma_data_direction dma_dir;
2244 struct skb_shared_info *sinfo;
2245
2246 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2247 len = MVNETA_MAX_RX_BUF_SIZE;
2248 data_len += len;
2249 } else {
2250 len = *size;
2251 data_len += len - ETH_FCS_LEN;
2252 }
2253 *size = *size - len;
2254
2255 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2256 dma_sync_single_for_cpu(dev->dev.parent,
2257 rx_desc->buf_phys_addr,
2258 len, dma_dir);
2259
2260 rx_desc->buf_phys_addr = 0;
2261
2262 /* Prefetch header */
2263 prefetch(data);
2264 xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE,
2265 data_len, false);
2266
2267 sinfo = xdp_get_shared_info_from_buff(xdp);
2268 sinfo->nr_frags = 0;
2269 }
2270
2271 static void
2272 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2273 struct mvneta_rx_desc *rx_desc,
2274 struct mvneta_rx_queue *rxq,
2275 struct xdp_buff *xdp, int *size,
2276 struct skb_shared_info *xdp_sinfo,
2277 struct page *page)
2278 {
2279 struct net_device *dev = pp->dev;
2280 enum dma_data_direction dma_dir;
2281 int data_len, len;
2282
2283 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2284 len = MVNETA_MAX_RX_BUF_SIZE;
2285 data_len = len;
2286 } else {
2287 len = *size;
2288 data_len = len - ETH_FCS_LEN;
2289 }
2290 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2291 dma_sync_single_for_cpu(dev->dev.parent,
2292 rx_desc->buf_phys_addr,
2293 len, dma_dir);
2294 rx_desc->buf_phys_addr = 0;
2295
2296 if (data_len > 0 && xdp_sinfo->nr_frags < MAX_SKB_FRAGS) {
2297 skb_frag_t *frag = &xdp_sinfo->frags[xdp_sinfo->nr_frags++];
2298
2299 skb_frag_off_set(frag, pp->rx_offset_correction);
2300 skb_frag_size_set(frag, data_len);
2301 __skb_frag_set_page(frag, page);
2302 } else {
2303 page_pool_put_full_page(rxq->page_pool, page, true);
2304 }
2305
2306 /* last fragment */
2307 if (len == *size) {
2308 struct skb_shared_info *sinfo;
2309
2310 sinfo = xdp_get_shared_info_from_buff(xdp);
2311 sinfo->nr_frags = xdp_sinfo->nr_frags;
2312 memcpy(sinfo->frags, xdp_sinfo->frags,
2313 sinfo->nr_frags * sizeof(skb_frag_t));
2314 }
2315 *size -= len;
2316 }
2317
2318 static struct sk_buff *
2319 mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool,
2320 struct xdp_buff *xdp, u32 desc_status)
2321 {
2322 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2323 int i, num_frags = sinfo->nr_frags;
2324 struct sk_buff *skb;
2325
2326 skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2327 if (!skb)
2328 return ERR_PTR(-ENOMEM);
2329
2330 skb_mark_for_recycle(skb);
2331
2332 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2333 skb_put(skb, xdp->data_end - xdp->data);
2334 skb->ip_summed = mvneta_rx_csum(pp, desc_status);
2335
2336 for (i = 0; i < num_frags; i++) {
2337 skb_frag_t *frag = &sinfo->frags[i];
2338
2339 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2340 skb_frag_page(frag), skb_frag_off(frag),
2341 skb_frag_size(frag), PAGE_SIZE);
2342 }
2343
2344 return skb;
2345 }
2346
2347 /* Main rx processing when using software buffer management */
2348 static int mvneta_rx_swbm(struct napi_struct *napi,
2349 struct mvneta_port *pp, int budget,
2350 struct mvneta_rx_queue *rxq)
2351 {
2352 int rx_proc = 0, rx_todo, refill, size = 0;
2353 struct net_device *dev = pp->dev;
2354 struct skb_shared_info sinfo;
2355 struct mvneta_stats ps = {};
2356 struct bpf_prog *xdp_prog;
2357 u32 desc_status, frame_sz;
2358 struct xdp_buff xdp_buf;
2359
2360 xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq);
2361 xdp_buf.data_hard_start = NULL;
2362
2363 sinfo.nr_frags = 0;
2364
2365 /* Get number of received packets */
2366 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2367
2368 xdp_prog = READ_ONCE(pp->xdp_prog);
2369
2370 /* Fairness NAPI loop */
2371 while (rx_proc < budget && rx_proc < rx_todo) {
2372 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2373 u32 rx_status, index;
2374 struct sk_buff *skb;
2375 struct page *page;
2376
2377 index = rx_desc - rxq->descs;
2378 page = (struct page *)rxq->buf_virt_addr[index];
2379
2380 rx_status = rx_desc->status;
2381 rx_proc++;
2382 rxq->refill_num++;
2383
2384 if (rx_status & MVNETA_RXD_FIRST_DESC) {
2385 /* Check errors only for FIRST descriptor */
2386 if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2387 mvneta_rx_error(pp, rx_desc);
2388 goto next;
2389 }
2390
2391 size = rx_desc->data_size;
2392 frame_sz = size - ETH_FCS_LEN;
2393 desc_status = rx_status;
2394
2395 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2396 &size, page);
2397 } else {
2398 if (unlikely(!xdp_buf.data_hard_start)) {
2399 rx_desc->buf_phys_addr = 0;
2400 page_pool_put_full_page(rxq->page_pool, page,
2401 true);
2402 goto next;
2403 }
2404
2405 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2406 &size, &sinfo, page);
2407 } /* Middle or Last descriptor */
2408
2409 if (!(rx_status & MVNETA_RXD_LAST_DESC))
2410 /* no last descriptor this time */
2411 continue;
2412
2413 if (size) {
2414 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2415 goto next;
2416 }
2417
2418 if (xdp_prog &&
2419 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2420 goto next;
2421
2422 skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status);
2423 if (IS_ERR(skb)) {
2424 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2425
2426 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2427
2428 u64_stats_update_begin(&stats->syncp);
2429 stats->es.skb_alloc_error++;
2430 stats->rx_dropped++;
2431 u64_stats_update_end(&stats->syncp);
2432
2433 goto next;
2434 }
2435
2436 ps.rx_bytes += skb->len;
2437 ps.rx_packets++;
2438
2439 skb->protocol = eth_type_trans(skb, dev);
2440 napi_gro_receive(napi, skb);
2441 next:
2442 xdp_buf.data_hard_start = NULL;
2443 sinfo.nr_frags = 0;
2444 }
2445
2446 if (xdp_buf.data_hard_start)
2447 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2448
2449 if (ps.xdp_redirect)
2450 xdp_do_flush_map();
2451
2452 if (ps.rx_packets)
2453 mvneta_update_stats(pp, &ps);
2454
2455 /* return some buffers to hardware queue, one at a time is too slow */
2456 refill = mvneta_rx_refill_queue(pp, rxq);
2457
2458 /* Update rxq management counters */
2459 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2460
2461 return ps.rx_packets;
2462 }
2463
2464 /* Main rx processing when using hardware buffer management */
2465 static int mvneta_rx_hwbm(struct napi_struct *napi,
2466 struct mvneta_port *pp, int rx_todo,
2467 struct mvneta_rx_queue *rxq)
2468 {
2469 struct net_device *dev = pp->dev;
2470 int rx_done;
2471 u32 rcvd_pkts = 0;
2472 u32 rcvd_bytes = 0;
2473
2474 /* Get number of received packets */
2475 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2476
2477 if (rx_todo > rx_done)
2478 rx_todo = rx_done;
2479
2480 rx_done = 0;
2481
2482 /* Fairness NAPI loop */
2483 while (rx_done < rx_todo) {
2484 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2485 struct mvneta_bm_pool *bm_pool = NULL;
2486 struct sk_buff *skb;
2487 unsigned char *data;
2488 dma_addr_t phys_addr;
2489 u32 rx_status, frag_size;
2490 int rx_bytes, err;
2491 u8 pool_id;
2492
2493 rx_done++;
2494 rx_status = rx_desc->status;
2495 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2496 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2497 phys_addr = rx_desc->buf_phys_addr;
2498 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2499 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2500
2501 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2502 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2503 err_drop_frame_ret_pool:
2504 /* Return the buffer to the pool */
2505 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2506 rx_desc->buf_phys_addr);
2507 err_drop_frame:
2508 mvneta_rx_error(pp, rx_desc);
2509 /* leave the descriptor untouched */
2510 continue;
2511 }
2512
2513 if (rx_bytes <= rx_copybreak) {
2514 /* better copy a small frame and not unmap the DMA region */
2515 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2516 if (unlikely(!skb))
2517 goto err_drop_frame_ret_pool;
2518
2519 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2520 rx_desc->buf_phys_addr,
2521 MVNETA_MH_SIZE + NET_SKB_PAD,
2522 rx_bytes,
2523 DMA_FROM_DEVICE);
2524 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2525 rx_bytes);
2526
2527 skb->protocol = eth_type_trans(skb, dev);
2528 skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2529 napi_gro_receive(napi, skb);
2530
2531 rcvd_pkts++;
2532 rcvd_bytes += rx_bytes;
2533
2534 /* Return the buffer to the pool */
2535 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2536 rx_desc->buf_phys_addr);
2537
2538 /* leave the descriptor and buffer untouched */
2539 continue;
2540 }
2541
2542 /* Refill processing */
2543 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2544 if (err) {
2545 struct mvneta_pcpu_stats *stats;
2546
2547 netdev_err(dev, "Linux processing - Can't refill\n");
2548
2549 stats = this_cpu_ptr(pp->stats);
2550 u64_stats_update_begin(&stats->syncp);
2551 stats->es.refill_error++;
2552 u64_stats_update_end(&stats->syncp);
2553
2554 goto err_drop_frame_ret_pool;
2555 }
2556
2557 frag_size = bm_pool->hwbm_pool.frag_size;
2558
2559 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2560
2561 /* After refill old buffer has to be unmapped regardless
2562 * the skb is successfully built or not.
2563 */
2564 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2565 bm_pool->buf_size, DMA_FROM_DEVICE);
2566 if (!skb)
2567 goto err_drop_frame;
2568
2569 rcvd_pkts++;
2570 rcvd_bytes += rx_bytes;
2571
2572 /* Linux processing */
2573 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2574 skb_put(skb, rx_bytes);
2575
2576 skb->protocol = eth_type_trans(skb, dev);
2577 skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2578
2579 napi_gro_receive(napi, skb);
2580 }
2581
2582 if (rcvd_pkts) {
2583 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2584
2585 u64_stats_update_begin(&stats->syncp);
2586 stats->es.ps.rx_packets += rcvd_pkts;
2587 stats->es.ps.rx_bytes += rcvd_bytes;
2588 u64_stats_update_end(&stats->syncp);
2589 }
2590
2591 /* Update rxq management counters */
2592 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2593
2594 return rx_done;
2595 }
2596
2597 static inline void
2598 mvneta_tso_put_hdr(struct sk_buff *skb,
2599 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2600 {
2601 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2602 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2603 struct mvneta_tx_desc *tx_desc;
2604
2605 tx_desc = mvneta_txq_next_desc_get(txq);
2606 tx_desc->data_size = hdr_len;
2607 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2608 tx_desc->command |= MVNETA_TXD_F_DESC;
2609 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2610 txq->txq_put_index * TSO_HEADER_SIZE;
2611 buf->type = MVNETA_TYPE_SKB;
2612 buf->skb = NULL;
2613
2614 mvneta_txq_inc_put(txq);
2615 }
2616
2617 static inline int
2618 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2619 struct sk_buff *skb, char *data, int size,
2620 bool last_tcp, bool is_last)
2621 {
2622 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2623 struct mvneta_tx_desc *tx_desc;
2624
2625 tx_desc = mvneta_txq_next_desc_get(txq);
2626 tx_desc->data_size = size;
2627 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2628 size, DMA_TO_DEVICE);
2629 if (unlikely(dma_mapping_error(dev->dev.parent,
2630 tx_desc->buf_phys_addr))) {
2631 mvneta_txq_desc_put(txq);
2632 return -ENOMEM;
2633 }
2634
2635 tx_desc->command = 0;
2636 buf->type = MVNETA_TYPE_SKB;
2637 buf->skb = NULL;
2638
2639 if (last_tcp) {
2640 /* last descriptor in the TCP packet */
2641 tx_desc->command = MVNETA_TXD_L_DESC;
2642
2643 /* last descriptor in SKB */
2644 if (is_last)
2645 buf->skb = skb;
2646 }
2647 mvneta_txq_inc_put(txq);
2648 return 0;
2649 }
2650
2651 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2652 struct mvneta_tx_queue *txq)
2653 {
2654 int hdr_len, total_len, data_left;
2655 int desc_count = 0;
2656 struct mvneta_port *pp = netdev_priv(dev);
2657 struct tso_t tso;
2658 int i;
2659
2660 /* Count needed descriptors */
2661 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2662 return 0;
2663
2664 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2665 pr_info("*** Is this even possible?\n");
2666 return 0;
2667 }
2668
2669 /* Initialize the TSO handler, and prepare the first payload */
2670 hdr_len = tso_start(skb, &tso);
2671
2672 total_len = skb->len - hdr_len;
2673 while (total_len > 0) {
2674 char *hdr;
2675
2676 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2677 total_len -= data_left;
2678 desc_count++;
2679
2680 /* prepare packet headers: MAC + IP + TCP */
2681 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2682 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2683
2684 mvneta_tso_put_hdr(skb, pp, txq);
2685
2686 while (data_left > 0) {
2687 int size;
2688 desc_count++;
2689
2690 size = min_t(int, tso.size, data_left);
2691
2692 if (mvneta_tso_put_data(dev, txq, skb,
2693 tso.data, size,
2694 size == data_left,
2695 total_len == 0))
2696 goto err_release;
2697 data_left -= size;
2698
2699 tso_build_data(skb, &tso, size);
2700 }
2701 }
2702
2703 return desc_count;
2704
2705 err_release:
2706 /* Release all used data descriptors; header descriptors must not
2707 * be DMA-unmapped.
2708 */
2709 for (i = desc_count - 1; i >= 0; i--) {
2710 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2711 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2712 dma_unmap_single(pp->dev->dev.parent,
2713 tx_desc->buf_phys_addr,
2714 tx_desc->data_size,
2715 DMA_TO_DEVICE);
2716 mvneta_txq_desc_put(txq);
2717 }
2718 return 0;
2719 }
2720
2721 /* Handle tx fragmentation processing */
2722 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2723 struct mvneta_tx_queue *txq)
2724 {
2725 struct mvneta_tx_desc *tx_desc;
2726 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2727
2728 for (i = 0; i < nr_frags; i++) {
2729 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2730 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2731 void *addr = skb_frag_address(frag);
2732
2733 tx_desc = mvneta_txq_next_desc_get(txq);
2734 tx_desc->data_size = skb_frag_size(frag);
2735
2736 tx_desc->buf_phys_addr =
2737 dma_map_single(pp->dev->dev.parent, addr,
2738 tx_desc->data_size, DMA_TO_DEVICE);
2739
2740 if (dma_mapping_error(pp->dev->dev.parent,
2741 tx_desc->buf_phys_addr)) {
2742 mvneta_txq_desc_put(txq);
2743 goto error;
2744 }
2745
2746 if (i == nr_frags - 1) {
2747 /* Last descriptor */
2748 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2749 buf->skb = skb;
2750 } else {
2751 /* Descriptor in the middle: Not First, Not Last */
2752 tx_desc->command = 0;
2753 buf->skb = NULL;
2754 }
2755 buf->type = MVNETA_TYPE_SKB;
2756 mvneta_txq_inc_put(txq);
2757 }
2758
2759 return 0;
2760
2761 error:
2762 /* Release all descriptors that were used to map fragments of
2763 * this packet, as well as the corresponding DMA mappings
2764 */
2765 for (i = i - 1; i >= 0; i--) {
2766 tx_desc = txq->descs + i;
2767 dma_unmap_single(pp->dev->dev.parent,
2768 tx_desc->buf_phys_addr,
2769 tx_desc->data_size,
2770 DMA_TO_DEVICE);
2771 mvneta_txq_desc_put(txq);
2772 }
2773
2774 return -ENOMEM;
2775 }
2776
2777 /* Main tx processing */
2778 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2779 {
2780 struct mvneta_port *pp = netdev_priv(dev);
2781 u16 txq_id = skb_get_queue_mapping(skb);
2782 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2783 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2784 struct mvneta_tx_desc *tx_desc;
2785 int len = skb->len;
2786 int frags = 0;
2787 u32 tx_cmd;
2788
2789 if (!netif_running(dev))
2790 goto out;
2791
2792 if (skb_is_gso(skb)) {
2793 frags = mvneta_tx_tso(skb, dev, txq);
2794 goto out;
2795 }
2796
2797 frags = skb_shinfo(skb)->nr_frags + 1;
2798
2799 /* Get a descriptor for the first part of the packet */
2800 tx_desc = mvneta_txq_next_desc_get(txq);
2801
2802 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2803
2804 tx_desc->data_size = skb_headlen(skb);
2805
2806 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2807 tx_desc->data_size,
2808 DMA_TO_DEVICE);
2809 if (unlikely(dma_mapping_error(dev->dev.parent,
2810 tx_desc->buf_phys_addr))) {
2811 mvneta_txq_desc_put(txq);
2812 frags = 0;
2813 goto out;
2814 }
2815
2816 buf->type = MVNETA_TYPE_SKB;
2817 if (frags == 1) {
2818 /* First and Last descriptor */
2819 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2820 tx_desc->command = tx_cmd;
2821 buf->skb = skb;
2822 mvneta_txq_inc_put(txq);
2823 } else {
2824 /* First but not Last */
2825 tx_cmd |= MVNETA_TXD_F_DESC;
2826 buf->skb = NULL;
2827 mvneta_txq_inc_put(txq);
2828 tx_desc->command = tx_cmd;
2829 /* Continue with other skb fragments */
2830 if (mvneta_tx_frag_process(pp, skb, txq)) {
2831 dma_unmap_single(dev->dev.parent,
2832 tx_desc->buf_phys_addr,
2833 tx_desc->data_size,
2834 DMA_TO_DEVICE);
2835 mvneta_txq_desc_put(txq);
2836 frags = 0;
2837 goto out;
2838 }
2839 }
2840
2841 out:
2842 if (frags > 0) {
2843 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2844 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2845
2846 netdev_tx_sent_queue(nq, len);
2847
2848 txq->count += frags;
2849 if (txq->count >= txq->tx_stop_threshold)
2850 netif_tx_stop_queue(nq);
2851
2852 if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2853 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2854 mvneta_txq_pend_desc_add(pp, txq, frags);
2855 else
2856 txq->pending += frags;
2857
2858 u64_stats_update_begin(&stats->syncp);
2859 stats->es.ps.tx_bytes += len;
2860 stats->es.ps.tx_packets++;
2861 u64_stats_update_end(&stats->syncp);
2862 } else {
2863 dev->stats.tx_dropped++;
2864 dev_kfree_skb_any(skb);
2865 }
2866
2867 return NETDEV_TX_OK;
2868 }
2869
2870
2871 /* Free tx resources, when resetting a port */
2872 static void mvneta_txq_done_force(struct mvneta_port *pp,
2873 struct mvneta_tx_queue *txq)
2874
2875 {
2876 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2877 int tx_done = txq->count;
2878
2879 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2880
2881 /* reset txq */
2882 txq->count = 0;
2883 txq->txq_put_index = 0;
2884 txq->txq_get_index = 0;
2885 }
2886
2887 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2888 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2889 */
2890 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2891 {
2892 struct mvneta_tx_queue *txq;
2893 struct netdev_queue *nq;
2894 int cpu = smp_processor_id();
2895
2896 while (cause_tx_done) {
2897 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2898
2899 nq = netdev_get_tx_queue(pp->dev, txq->id);
2900 __netif_tx_lock(nq, cpu);
2901
2902 if (txq->count)
2903 mvneta_txq_done(pp, txq);
2904
2905 __netif_tx_unlock(nq);
2906 cause_tx_done &= ~((1 << txq->id));
2907 }
2908 }
2909
2910 /* Compute crc8 of the specified address, using a unique algorithm ,
2911 * according to hw spec, different than generic crc8 algorithm
2912 */
2913 static int mvneta_addr_crc(unsigned char *addr)
2914 {
2915 int crc = 0;
2916 int i;
2917
2918 for (i = 0; i < ETH_ALEN; i++) {
2919 int j;
2920
2921 crc = (crc ^ addr[i]) << 8;
2922 for (j = 7; j >= 0; j--) {
2923 if (crc & (0x100 << j))
2924 crc ^= 0x107 << j;
2925 }
2926 }
2927
2928 return crc;
2929 }
2930
2931 /* This method controls the net device special MAC multicast support.
2932 * The Special Multicast Table for MAC addresses supports MAC of the form
2933 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2934 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2935 * Table entries in the DA-Filter table. This method set the Special
2936 * Multicast Table appropriate entry.
2937 */
2938 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2939 unsigned char last_byte,
2940 int queue)
2941 {
2942 unsigned int smc_table_reg;
2943 unsigned int tbl_offset;
2944 unsigned int reg_offset;
2945
2946 /* Register offset from SMC table base */
2947 tbl_offset = (last_byte / 4);
2948 /* Entry offset within the above reg */
2949 reg_offset = last_byte % 4;
2950
2951 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2952 + tbl_offset * 4));
2953
2954 if (queue == -1)
2955 smc_table_reg &= ~(0xff << (8 * reg_offset));
2956 else {
2957 smc_table_reg &= ~(0xff << (8 * reg_offset));
2958 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2959 }
2960
2961 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2962 smc_table_reg);
2963 }
2964
2965 /* This method controls the network device Other MAC multicast support.
2966 * The Other Multicast Table is used for multicast of another type.
2967 * A CRC-8 is used as an index to the Other Multicast Table entries
2968 * in the DA-Filter table.
2969 * The method gets the CRC-8 value from the calling routine and
2970 * sets the Other Multicast Table appropriate entry according to the
2971 * specified CRC-8 .
2972 */
2973 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2974 unsigned char crc8,
2975 int queue)
2976 {
2977 unsigned int omc_table_reg;
2978 unsigned int tbl_offset;
2979 unsigned int reg_offset;
2980
2981 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2982 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2983
2984 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2985
2986 if (queue == -1) {
2987 /* Clear accepts frame bit at specified Other DA table entry */
2988 omc_table_reg &= ~(0xff << (8 * reg_offset));
2989 } else {
2990 omc_table_reg &= ~(0xff << (8 * reg_offset));
2991 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2992 }
2993
2994 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2995 }
2996
2997 /* The network device supports multicast using two tables:
2998 * 1) Special Multicast Table for MAC addresses of the form
2999 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3000 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3001 * Table entries in the DA-Filter table.
3002 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
3003 * is used as an index to the Other Multicast Table entries in the
3004 * DA-Filter table.
3005 */
3006 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3007 int queue)
3008 {
3009 unsigned char crc_result = 0;
3010
3011 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3012 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3013 return 0;
3014 }
3015
3016 crc_result = mvneta_addr_crc(p_addr);
3017 if (queue == -1) {
3018 if (pp->mcast_count[crc_result] == 0) {
3019 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3020 crc_result);
3021 return -EINVAL;
3022 }
3023
3024 pp->mcast_count[crc_result]--;
3025 if (pp->mcast_count[crc_result] != 0) {
3026 netdev_info(pp->dev,
3027 "After delete there are %d valid Mcast for crc8=0x%02x\n",
3028 pp->mcast_count[crc_result], crc_result);
3029 return -EINVAL;
3030 }
3031 } else
3032 pp->mcast_count[crc_result]++;
3033
3034 mvneta_set_other_mcast_addr(pp, crc_result, queue);
3035
3036 return 0;
3037 }
3038
3039 /* Configure Fitering mode of Ethernet port */
3040 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3041 int is_promisc)
3042 {
3043 u32 port_cfg_reg, val;
3044
3045 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3046
3047 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3048
3049 /* Set / Clear UPM bit in port configuration register */
3050 if (is_promisc) {
3051 /* Accept all Unicast addresses */
3052 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3053 val |= MVNETA_FORCE_UNI;
3054 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3055 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3056 } else {
3057 /* Reject all Unicast addresses */
3058 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3059 val &= ~MVNETA_FORCE_UNI;
3060 }
3061
3062 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3063 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3064 }
3065
3066 /* register unicast and multicast addresses */
3067 static void mvneta_set_rx_mode(struct net_device *dev)
3068 {
3069 struct mvneta_port *pp = netdev_priv(dev);
3070 struct netdev_hw_addr *ha;
3071
3072 if (dev->flags & IFF_PROMISC) {
3073 /* Accept all: Multicast + Unicast */
3074 mvneta_rx_unicast_promisc_set(pp, 1);
3075 mvneta_set_ucast_table(pp, pp->rxq_def);
3076 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3077 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3078 } else {
3079 /* Accept single Unicast */
3080 mvneta_rx_unicast_promisc_set(pp, 0);
3081 mvneta_set_ucast_table(pp, -1);
3082 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3083
3084 if (dev->flags & IFF_ALLMULTI) {
3085 /* Accept all multicast */
3086 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3087 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3088 } else {
3089 /* Accept only initialized multicast */
3090 mvneta_set_special_mcast_table(pp, -1);
3091 mvneta_set_other_mcast_table(pp, -1);
3092
3093 if (!netdev_mc_empty(dev)) {
3094 netdev_for_each_mc_addr(ha, dev) {
3095 mvneta_mcast_addr_set(pp, ha->addr,
3096 pp->rxq_def);
3097 }
3098 }
3099 }
3100 }
3101 }
3102
3103 /* Interrupt handling - the callback for request_irq() */
3104 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3105 {
3106 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3107
3108 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3109 napi_schedule(&pp->napi);
3110
3111 return IRQ_HANDLED;
3112 }
3113
3114 /* Interrupt handling - the callback for request_percpu_irq() */
3115 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3116 {
3117 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3118
3119 disable_percpu_irq(port->pp->dev->irq);
3120 napi_schedule(&port->napi);
3121
3122 return IRQ_HANDLED;
3123 }
3124
3125 static void mvneta_link_change(struct mvneta_port *pp)
3126 {
3127 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3128
3129 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3130 }
3131
3132 /* NAPI handler
3133 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3134 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3135 * Bits 8 -15 of the cause Rx Tx register indicate that are received
3136 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3137 * Each CPU has its own causeRxTx register
3138 */
3139 static int mvneta_poll(struct napi_struct *napi, int budget)
3140 {
3141 int rx_done = 0;
3142 u32 cause_rx_tx;
3143 int rx_queue;
3144 struct mvneta_port *pp = netdev_priv(napi->dev);
3145 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3146
3147 if (!netif_running(pp->dev)) {
3148 napi_complete(napi);
3149 return rx_done;
3150 }
3151
3152 /* Read cause register */
3153 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3154 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3155 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3156
3157 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3158
3159 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3160 MVNETA_CAUSE_LINK_CHANGE))
3161 mvneta_link_change(pp);
3162 }
3163
3164 /* Release Tx descriptors */
3165 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3166 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3167 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3168 }
3169
3170 /* For the case where the last mvneta_poll did not process all
3171 * RX packets
3172 */
3173 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3174 port->cause_rx_tx;
3175
3176 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3177 if (rx_queue) {
3178 rx_queue = rx_queue - 1;
3179 if (pp->bm_priv)
3180 rx_done = mvneta_rx_hwbm(napi, pp, budget,
3181 &pp->rxqs[rx_queue]);
3182 else
3183 rx_done = mvneta_rx_swbm(napi, pp, budget,
3184 &pp->rxqs[rx_queue]);
3185 }
3186
3187 if (rx_done < budget) {
3188 cause_rx_tx = 0;
3189 napi_complete_done(napi, rx_done);
3190
3191 if (pp->neta_armada3700) {
3192 unsigned long flags;
3193
3194 local_irq_save(flags);
3195 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3196 MVNETA_RX_INTR_MASK(rxq_number) |
3197 MVNETA_TX_INTR_MASK(txq_number) |
3198 MVNETA_MISCINTR_INTR_MASK);
3199 local_irq_restore(flags);
3200 } else {
3201 enable_percpu_irq(pp->dev->irq, 0);
3202 }
3203 }
3204
3205 if (pp->neta_armada3700)
3206 pp->cause_rx_tx = cause_rx_tx;
3207 else
3208 port->cause_rx_tx = cause_rx_tx;
3209
3210 return rx_done;
3211 }
3212
3213 static int mvneta_create_page_pool(struct mvneta_port *pp,
3214 struct mvneta_rx_queue *rxq, int size)
3215 {
3216 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3217 struct page_pool_params pp_params = {
3218 .order = 0,
3219 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3220 .pool_size = size,
3221 .nid = NUMA_NO_NODE,
3222 .dev = pp->dev->dev.parent,
3223 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3224 .offset = pp->rx_offset_correction,
3225 .max_len = MVNETA_MAX_RX_BUF_SIZE,
3226 };
3227 int err;
3228
3229 rxq->page_pool = page_pool_create(&pp_params);
3230 if (IS_ERR(rxq->page_pool)) {
3231 err = PTR_ERR(rxq->page_pool);
3232 rxq->page_pool = NULL;
3233 return err;
3234 }
3235
3236 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0);
3237 if (err < 0)
3238 goto err_free_pp;
3239
3240 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3241 rxq->page_pool);
3242 if (err)
3243 goto err_unregister_rxq;
3244
3245 return 0;
3246
3247 err_unregister_rxq:
3248 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3249 err_free_pp:
3250 page_pool_destroy(rxq->page_pool);
3251 rxq->page_pool = NULL;
3252 return err;
3253 }
3254
3255 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3256 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3257 int num)
3258 {
3259 int i, err;
3260
3261 err = mvneta_create_page_pool(pp, rxq, num);
3262 if (err < 0)
3263 return err;
3264
3265 for (i = 0; i < num; i++) {
3266 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3267 if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3268 GFP_KERNEL) != 0) {
3269 netdev_err(pp->dev,
3270 "%s:rxq %d, %d of %d buffs filled\n",
3271 __func__, rxq->id, i, num);
3272 break;
3273 }
3274 }
3275
3276 /* Add this number of RX descriptors as non occupied (ready to
3277 * get packets)
3278 */
3279 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3280
3281 return i;
3282 }
3283
3284 /* Free all packets pending transmit from all TXQs and reset TX port */
3285 static void mvneta_tx_reset(struct mvneta_port *pp)
3286 {
3287 int queue;
3288
3289 /* free the skb's in the tx ring */
3290 for (queue = 0; queue < txq_number; queue++)
3291 mvneta_txq_done_force(pp, &pp->txqs[queue]);
3292
3293 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3294 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3295 }
3296
3297 static void mvneta_rx_reset(struct mvneta_port *pp)
3298 {
3299 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3300 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3301 }
3302
3303 /* Rx/Tx queue initialization/cleanup methods */
3304
3305 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3306 struct mvneta_rx_queue *rxq)
3307 {
3308 rxq->size = pp->rx_ring_size;
3309
3310 /* Allocate memory for RX descriptors */
3311 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3312 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3313 &rxq->descs_phys, GFP_KERNEL);
3314 if (!rxq->descs)
3315 return -ENOMEM;
3316
3317 rxq->last_desc = rxq->size - 1;
3318
3319 return 0;
3320 }
3321
3322 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3323 struct mvneta_rx_queue *rxq)
3324 {
3325 /* Set Rx descriptors queue starting address */
3326 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3327 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3328
3329 /* Set coalescing pkts and time */
3330 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3331 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3332
3333 if (!pp->bm_priv) {
3334 /* Set Offset */
3335 mvneta_rxq_offset_set(pp, rxq, 0);
3336 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3337 MVNETA_MAX_RX_BUF_SIZE :
3338 MVNETA_RX_BUF_SIZE(pp->pkt_size));
3339 mvneta_rxq_bm_disable(pp, rxq);
3340 mvneta_rxq_fill(pp, rxq, rxq->size);
3341 } else {
3342 /* Set Offset */
3343 mvneta_rxq_offset_set(pp, rxq,
3344 NET_SKB_PAD - pp->rx_offset_correction);
3345
3346 mvneta_rxq_bm_enable(pp, rxq);
3347 /* Fill RXQ with buffers from RX pool */
3348 mvneta_rxq_long_pool_set(pp, rxq);
3349 mvneta_rxq_short_pool_set(pp, rxq);
3350 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3351 }
3352 }
3353
3354 /* Create a specified RX queue */
3355 static int mvneta_rxq_init(struct mvneta_port *pp,
3356 struct mvneta_rx_queue *rxq)
3357
3358 {
3359 int ret;
3360
3361 ret = mvneta_rxq_sw_init(pp, rxq);
3362 if (ret < 0)
3363 return ret;
3364
3365 mvneta_rxq_hw_init(pp, rxq);
3366
3367 return 0;
3368 }
3369
3370 /* Cleanup Rx queue */
3371 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3372 struct mvneta_rx_queue *rxq)
3373 {
3374 mvneta_rxq_drop_pkts(pp, rxq);
3375
3376 if (rxq->descs)
3377 dma_free_coherent(pp->dev->dev.parent,
3378 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3379 rxq->descs,
3380 rxq->descs_phys);
3381
3382 rxq->descs = NULL;
3383 rxq->last_desc = 0;
3384 rxq->next_desc_to_proc = 0;
3385 rxq->descs_phys = 0;
3386 rxq->first_to_refill = 0;
3387 rxq->refill_num = 0;
3388 }
3389
3390 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3391 struct mvneta_tx_queue *txq)
3392 {
3393 int cpu;
3394
3395 txq->size = pp->tx_ring_size;
3396
3397 /* A queue must always have room for at least one skb.
3398 * Therefore, stop the queue when the free entries reaches
3399 * the maximum number of descriptors per skb.
3400 */
3401 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3402 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3403
3404 /* Allocate memory for TX descriptors */
3405 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3406 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3407 &txq->descs_phys, GFP_KERNEL);
3408 if (!txq->descs)
3409 return -ENOMEM;
3410
3411 txq->last_desc = txq->size - 1;
3412
3413 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3414 if (!txq->buf)
3415 return -ENOMEM;
3416
3417 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3418 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3419 txq->size * TSO_HEADER_SIZE,
3420 &txq->tso_hdrs_phys, GFP_KERNEL);
3421 if (!txq->tso_hdrs)
3422 return -ENOMEM;
3423
3424 /* Setup XPS mapping */
3425 if (pp->neta_armada3700)
3426 cpu = 0;
3427 else if (txq_number > 1)
3428 cpu = txq->id % num_present_cpus();
3429 else
3430 cpu = pp->rxq_def % num_present_cpus();
3431 cpumask_set_cpu(cpu, &txq->affinity_mask);
3432 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3433
3434 return 0;
3435 }
3436
3437 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3438 struct mvneta_tx_queue *txq)
3439 {
3440 /* Set maximum bandwidth for enabled TXQs */
3441 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3442 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3443
3444 /* Set Tx descriptors queue starting address */
3445 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3446 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3447
3448 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3449 }
3450
3451 /* Create and initialize a tx queue */
3452 static int mvneta_txq_init(struct mvneta_port *pp,
3453 struct mvneta_tx_queue *txq)
3454 {
3455 int ret;
3456
3457 ret = mvneta_txq_sw_init(pp, txq);
3458 if (ret < 0)
3459 return ret;
3460
3461 mvneta_txq_hw_init(pp, txq);
3462
3463 return 0;
3464 }
3465
3466 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3467 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3468 struct mvneta_tx_queue *txq)
3469 {
3470 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3471
3472 kfree(txq->buf);
3473
3474 if (txq->tso_hdrs)
3475 dma_free_coherent(pp->dev->dev.parent,
3476 txq->size * TSO_HEADER_SIZE,
3477 txq->tso_hdrs, txq->tso_hdrs_phys);
3478 if (txq->descs)
3479 dma_free_coherent(pp->dev->dev.parent,
3480 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3481 txq->descs, txq->descs_phys);
3482
3483 netdev_tx_reset_queue(nq);
3484
3485 txq->descs = NULL;
3486 txq->last_desc = 0;
3487 txq->next_desc_to_proc = 0;
3488 txq->descs_phys = 0;
3489 }
3490
3491 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3492 struct mvneta_tx_queue *txq)
3493 {
3494 /* Set minimum bandwidth for disabled TXQs */
3495 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3496 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3497
3498 /* Set Tx descriptors queue starting address and size */
3499 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3500 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3501 }
3502
3503 static void mvneta_txq_deinit(struct mvneta_port *pp,
3504 struct mvneta_tx_queue *txq)
3505 {
3506 mvneta_txq_sw_deinit(pp, txq);
3507 mvneta_txq_hw_deinit(pp, txq);
3508 }
3509
3510 /* Cleanup all Tx queues */
3511 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3512 {
3513 int queue;
3514
3515 for (queue = 0; queue < txq_number; queue++)
3516 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3517 }
3518
3519 /* Cleanup all Rx queues */
3520 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3521 {
3522 int queue;
3523
3524 for (queue = 0; queue < rxq_number; queue++)
3525 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3526 }
3527
3528
3529 /* Init all Rx queues */
3530 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3531 {
3532 int queue;
3533
3534 for (queue = 0; queue < rxq_number; queue++) {
3535 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3536
3537 if (err) {
3538 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3539 __func__, queue);
3540 mvneta_cleanup_rxqs(pp);
3541 return err;
3542 }
3543 }
3544
3545 return 0;
3546 }
3547
3548 /* Init all tx queues */
3549 static int mvneta_setup_txqs(struct mvneta_port *pp)
3550 {
3551 int queue;
3552
3553 for (queue = 0; queue < txq_number; queue++) {
3554 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3555 if (err) {
3556 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3557 __func__, queue);
3558 mvneta_cleanup_txqs(pp);
3559 return err;
3560 }
3561 }
3562
3563 return 0;
3564 }
3565
3566 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3567 {
3568 int ret;
3569
3570 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3571 if (ret)
3572 return ret;
3573
3574 return phy_power_on(pp->comphy);
3575 }
3576
3577 static int mvneta_config_interface(struct mvneta_port *pp,
3578 phy_interface_t interface)
3579 {
3580 int ret = 0;
3581
3582 if (pp->comphy) {
3583 if (interface == PHY_INTERFACE_MODE_SGMII ||
3584 interface == PHY_INTERFACE_MODE_1000BASEX ||
3585 interface == PHY_INTERFACE_MODE_2500BASEX) {
3586 ret = mvneta_comphy_init(pp, interface);
3587 }
3588 } else {
3589 switch (interface) {
3590 case PHY_INTERFACE_MODE_QSGMII:
3591 mvreg_write(pp, MVNETA_SERDES_CFG,
3592 MVNETA_QSGMII_SERDES_PROTO);
3593 break;
3594
3595 case PHY_INTERFACE_MODE_SGMII:
3596 case PHY_INTERFACE_MODE_1000BASEX:
3597 mvreg_write(pp, MVNETA_SERDES_CFG,
3598 MVNETA_SGMII_SERDES_PROTO);
3599 break;
3600
3601 case PHY_INTERFACE_MODE_2500BASEX:
3602 mvreg_write(pp, MVNETA_SERDES_CFG,
3603 MVNETA_HSGMII_SERDES_PROTO);
3604 break;
3605 default:
3606 break;
3607 }
3608 }
3609
3610 pp->phy_interface = interface;
3611
3612 return ret;
3613 }
3614
3615 static void mvneta_start_dev(struct mvneta_port *pp)
3616 {
3617 int cpu;
3618
3619 WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3620
3621 mvneta_max_rx_size_set(pp, pp->pkt_size);
3622 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3623
3624 /* start the Rx/Tx activity */
3625 mvneta_port_enable(pp);
3626
3627 if (!pp->neta_armada3700) {
3628 /* Enable polling on the port */
3629 for_each_online_cpu(cpu) {
3630 struct mvneta_pcpu_port *port =
3631 per_cpu_ptr(pp->ports, cpu);
3632
3633 napi_enable(&port->napi);
3634 }
3635 } else {
3636 napi_enable(&pp->napi);
3637 }
3638
3639 /* Unmask interrupts. It has to be done from each CPU */
3640 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3641
3642 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3643 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3644 MVNETA_CAUSE_LINK_CHANGE);
3645
3646 phylink_start(pp->phylink);
3647
3648 /* We may have called phylink_speed_down before */
3649 phylink_speed_up(pp->phylink);
3650
3651 netif_tx_start_all_queues(pp->dev);
3652
3653 clear_bit(__MVNETA_DOWN, &pp->state);
3654 }
3655
3656 static void mvneta_stop_dev(struct mvneta_port *pp)
3657 {
3658 unsigned int cpu;
3659
3660 set_bit(__MVNETA_DOWN, &pp->state);
3661
3662 if (device_may_wakeup(&pp->dev->dev))
3663 phylink_speed_down(pp->phylink, false);
3664
3665 phylink_stop(pp->phylink);
3666
3667 if (!pp->neta_armada3700) {
3668 for_each_online_cpu(cpu) {
3669 struct mvneta_pcpu_port *port =
3670 per_cpu_ptr(pp->ports, cpu);
3671
3672 napi_disable(&port->napi);
3673 }
3674 } else {
3675 napi_disable(&pp->napi);
3676 }
3677
3678 netif_carrier_off(pp->dev);
3679
3680 mvneta_port_down(pp);
3681 netif_tx_stop_all_queues(pp->dev);
3682
3683 /* Stop the port activity */
3684 mvneta_port_disable(pp);
3685
3686 /* Clear all ethernet port interrupts */
3687 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3688
3689 /* Mask all ethernet port interrupts */
3690 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3691
3692 mvneta_tx_reset(pp);
3693 mvneta_rx_reset(pp);
3694
3695 WARN_ON(phy_power_off(pp->comphy));
3696 }
3697
3698 static void mvneta_percpu_enable(void *arg)
3699 {
3700 struct mvneta_port *pp = arg;
3701
3702 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3703 }
3704
3705 static void mvneta_percpu_disable(void *arg)
3706 {
3707 struct mvneta_port *pp = arg;
3708
3709 disable_percpu_irq(pp->dev->irq);
3710 }
3711
3712 /* Change the device mtu */
3713 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3714 {
3715 struct mvneta_port *pp = netdev_priv(dev);
3716 int ret;
3717
3718 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3719 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3720 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3721 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3722 }
3723
3724 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3725 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3726 return -EINVAL;
3727 }
3728
3729 dev->mtu = mtu;
3730
3731 if (!netif_running(dev)) {
3732 if (pp->bm_priv)
3733 mvneta_bm_update_mtu(pp, mtu);
3734
3735 netdev_update_features(dev);
3736 return 0;
3737 }
3738
3739 /* The interface is running, so we have to force a
3740 * reallocation of the queues
3741 */
3742 mvneta_stop_dev(pp);
3743 on_each_cpu(mvneta_percpu_disable, pp, true);
3744
3745 mvneta_cleanup_txqs(pp);
3746 mvneta_cleanup_rxqs(pp);
3747
3748 if (pp->bm_priv)
3749 mvneta_bm_update_mtu(pp, mtu);
3750
3751 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3752
3753 ret = mvneta_setup_rxqs(pp);
3754 if (ret) {
3755 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3756 return ret;
3757 }
3758
3759 ret = mvneta_setup_txqs(pp);
3760 if (ret) {
3761 netdev_err(dev, "unable to setup txqs after MTU change\n");
3762 return ret;
3763 }
3764
3765 on_each_cpu(mvneta_percpu_enable, pp, true);
3766 mvneta_start_dev(pp);
3767
3768 netdev_update_features(dev);
3769
3770 return 0;
3771 }
3772
3773 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3774 netdev_features_t features)
3775 {
3776 struct mvneta_port *pp = netdev_priv(dev);
3777
3778 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3779 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3780 netdev_info(dev,
3781 "Disable IP checksum for MTU greater than %dB\n",
3782 pp->tx_csum_limit);
3783 }
3784
3785 return features;
3786 }
3787
3788 /* Get mac address */
3789 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3790 {
3791 u32 mac_addr_l, mac_addr_h;
3792
3793 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3794 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3795 addr[0] = (mac_addr_h >> 24) & 0xFF;
3796 addr[1] = (mac_addr_h >> 16) & 0xFF;
3797 addr[2] = (mac_addr_h >> 8) & 0xFF;
3798 addr[3] = mac_addr_h & 0xFF;
3799 addr[4] = (mac_addr_l >> 8) & 0xFF;
3800 addr[5] = mac_addr_l & 0xFF;
3801 }
3802
3803 /* Handle setting mac address */
3804 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3805 {
3806 struct mvneta_port *pp = netdev_priv(dev);
3807 struct sockaddr *sockaddr = addr;
3808 int ret;
3809
3810 ret = eth_prepare_mac_addr_change(dev, addr);
3811 if (ret < 0)
3812 return ret;
3813 /* Remove previous address table entry */
3814 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3815
3816 /* Set new addr in hw */
3817 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3818
3819 eth_commit_mac_addr_change(dev, addr);
3820 return 0;
3821 }
3822
3823 static void mvneta_validate(struct phylink_config *config,
3824 unsigned long *supported,
3825 struct phylink_link_state *state)
3826 {
3827 struct net_device *ndev = to_net_dev(config->dev);
3828 struct mvneta_port *pp = netdev_priv(ndev);
3829 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3830
3831 /* We only support QSGMII, SGMII, 802.3z and RGMII modes.
3832 * When in 802.3z mode, we must have AN enabled:
3833 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ...
3834 * When <PortType> = 1 (1000BASE-X) this field must be set to 1."
3835 */
3836 if (phy_interface_mode_is_8023z(state->interface)) {
3837 if (!phylink_test(state->advertising, Autoneg)) {
3838 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3839 return;
3840 }
3841 } else if (state->interface != PHY_INTERFACE_MODE_NA &&
3842 state->interface != PHY_INTERFACE_MODE_QSGMII &&
3843 state->interface != PHY_INTERFACE_MODE_SGMII &&
3844 !phy_interface_mode_is_rgmii(state->interface)) {
3845 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3846 return;
3847 }
3848
3849 /* Allow all the expected bits */
3850 phylink_set(mask, Autoneg);
3851 phylink_set_port_modes(mask);
3852
3853 /* Asymmetric pause is unsupported */
3854 phylink_set(mask, Pause);
3855
3856 /* Half-duplex at speeds higher than 100Mbit is unsupported */
3857 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3858 phylink_set(mask, 1000baseT_Full);
3859 phylink_set(mask, 1000baseX_Full);
3860 }
3861 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3862 phylink_set(mask, 2500baseT_Full);
3863 phylink_set(mask, 2500baseX_Full);
3864 }
3865
3866 if (!phy_interface_mode_is_8023z(state->interface)) {
3867 /* 10M and 100M are only supported in non-802.3z mode */
3868 phylink_set(mask, 10baseT_Half);
3869 phylink_set(mask, 10baseT_Full);
3870 phylink_set(mask, 100baseT_Half);
3871 phylink_set(mask, 100baseT_Full);
3872 }
3873
3874 bitmap_and(supported, supported, mask,
3875 __ETHTOOL_LINK_MODE_MASK_NBITS);
3876 bitmap_and(state->advertising, state->advertising, mask,
3877 __ETHTOOL_LINK_MODE_MASK_NBITS);
3878
3879 /* We can only operate at 2500BaseX or 1000BaseX. If requested
3880 * to advertise both, only report advertising at 2500BaseX.
3881 */
3882 phylink_helper_basex_speed(state);
3883 }
3884
3885 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3886 struct phylink_link_state *state)
3887 {
3888 struct net_device *ndev = to_net_dev(config->dev);
3889 struct mvneta_port *pp = netdev_priv(ndev);
3890 u32 gmac_stat;
3891
3892 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3893
3894 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3895 state->speed =
3896 state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3897 SPEED_2500 : SPEED_1000;
3898 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3899 state->speed = SPEED_100;
3900 else
3901 state->speed = SPEED_10;
3902
3903 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3904 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3905 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3906
3907 state->pause = 0;
3908 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3909 state->pause |= MLO_PAUSE_RX;
3910 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3911 state->pause |= MLO_PAUSE_TX;
3912 }
3913
3914 static void mvneta_mac_an_restart(struct phylink_config *config)
3915 {
3916 struct net_device *ndev = to_net_dev(config->dev);
3917 struct mvneta_port *pp = netdev_priv(ndev);
3918 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3919
3920 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3921 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3922 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3923 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3924 }
3925
3926 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3927 const struct phylink_link_state *state)
3928 {
3929 struct net_device *ndev = to_net_dev(config->dev);
3930 struct mvneta_port *pp = netdev_priv(ndev);
3931 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3932 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3933 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3934 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3935 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3936
3937 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3938 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3939 MVNETA_GMAC2_PORT_RESET);
3940 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3941 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3942 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3943 MVNETA_GMAC_INBAND_RESTART_AN |
3944 MVNETA_GMAC_AN_SPEED_EN |
3945 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3946 MVNETA_GMAC_AN_FLOW_CTRL_EN |
3947 MVNETA_GMAC_AN_DUPLEX_EN);
3948
3949 /* Even though it might look weird, when we're configured in
3950 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3951 */
3952 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3953
3954 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3955 state->interface == PHY_INTERFACE_MODE_SGMII ||
3956 phy_interface_mode_is_8023z(state->interface))
3957 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3958
3959 if (phylink_test(state->advertising, Pause))
3960 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3961
3962 if (!phylink_autoneg_inband(mode)) {
3963 /* Phy or fixed speed - nothing to do, leave the
3964 * configured speed, duplex and flow control as-is.
3965 */
3966 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3967 /* SGMII mode receives the state from the PHY */
3968 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3969 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3970 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3971 MVNETA_GMAC_FORCE_LINK_PASS |
3972 MVNETA_GMAC_CONFIG_MII_SPEED |
3973 MVNETA_GMAC_CONFIG_GMII_SPEED |
3974 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3975 MVNETA_GMAC_INBAND_AN_ENABLE |
3976 MVNETA_GMAC_AN_SPEED_EN |
3977 MVNETA_GMAC_AN_DUPLEX_EN;
3978 } else {
3979 /* 802.3z negotiation - only 1000base-X */
3980 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3981 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3982 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3983 MVNETA_GMAC_FORCE_LINK_PASS |
3984 MVNETA_GMAC_CONFIG_MII_SPEED)) |
3985 MVNETA_GMAC_INBAND_AN_ENABLE |
3986 MVNETA_GMAC_CONFIG_GMII_SPEED |
3987 /* The MAC only supports FD mode */
3988 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3989
3990 if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3991 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3992 }
3993
3994 /* Armada 370 documentation says we can only change the port mode
3995 * and in-band enable when the link is down, so force it down
3996 * while making these changes. We also do this for GMAC_CTRL2
3997 */
3998 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3999 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
4000 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
4001 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4002 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
4003 MVNETA_GMAC_FORCE_LINK_DOWN);
4004 }
4005
4006
4007 /* When at 2.5G, the link partner can send frames with shortened
4008 * preambles.
4009 */
4010 if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4011 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4012
4013 if (pp->phy_interface != state->interface) {
4014 if (pp->comphy)
4015 WARN_ON(phy_power_off(pp->comphy));
4016 WARN_ON(mvneta_config_interface(pp, state->interface));
4017 }
4018
4019 if (new_ctrl0 != gmac_ctrl0)
4020 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4021 if (new_ctrl2 != gmac_ctrl2)
4022 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4023 if (new_ctrl4 != gmac_ctrl4)
4024 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4025 if (new_clk != gmac_clk)
4026 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4027 if (new_an != gmac_an)
4028 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4029
4030 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4031 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4032 MVNETA_GMAC2_PORT_RESET) != 0)
4033 continue;
4034 }
4035 }
4036
4037 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4038 {
4039 u32 lpi_ctl1;
4040
4041 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4042 if (enable)
4043 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4044 else
4045 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4046 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4047 }
4048
4049 static void mvneta_mac_link_down(struct phylink_config *config,
4050 unsigned int mode, phy_interface_t interface)
4051 {
4052 struct net_device *ndev = to_net_dev(config->dev);
4053 struct mvneta_port *pp = netdev_priv(ndev);
4054 u32 val;
4055
4056 mvneta_port_down(pp);
4057
4058 if (!phylink_autoneg_inband(mode)) {
4059 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4060 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4061 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4062 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4063 }
4064
4065 pp->eee_active = false;
4066 mvneta_set_eee(pp, false);
4067 }
4068
4069 static void mvneta_mac_link_up(struct phylink_config *config,
4070 struct phy_device *phy,
4071 unsigned int mode, phy_interface_t interface,
4072 int speed, int duplex,
4073 bool tx_pause, bool rx_pause)
4074 {
4075 struct net_device *ndev = to_net_dev(config->dev);
4076 struct mvneta_port *pp = netdev_priv(ndev);
4077 u32 val;
4078
4079 if (!phylink_autoneg_inband(mode)) {
4080 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4081 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4082 MVNETA_GMAC_CONFIG_MII_SPEED |
4083 MVNETA_GMAC_CONFIG_GMII_SPEED |
4084 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4085 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4086 val |= MVNETA_GMAC_FORCE_LINK_PASS;
4087
4088 if (speed == SPEED_1000 || speed == SPEED_2500)
4089 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4090 else if (speed == SPEED_100)
4091 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4092
4093 if (duplex == DUPLEX_FULL)
4094 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4095
4096 if (tx_pause || rx_pause)
4097 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4098
4099 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4100 } else {
4101 /* When inband doesn't cover flow control or flow control is
4102 * disabled, we need to manually configure it. This bit will
4103 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4104 */
4105 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4106 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4107
4108 if (tx_pause || rx_pause)
4109 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4110
4111 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4112 }
4113
4114 mvneta_port_up(pp);
4115
4116 if (phy && pp->eee_enabled) {
4117 pp->eee_active = phy_init_eee(phy, 0) >= 0;
4118 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4119 }
4120 }
4121
4122 static const struct phylink_mac_ops mvneta_phylink_ops = {
4123 .validate = mvneta_validate,
4124 .mac_pcs_get_state = mvneta_mac_pcs_get_state,
4125 .mac_an_restart = mvneta_mac_an_restart,
4126 .mac_config = mvneta_mac_config,
4127 .mac_link_down = mvneta_mac_link_down,
4128 .mac_link_up = mvneta_mac_link_up,
4129 };
4130
4131 static int mvneta_mdio_probe(struct mvneta_port *pp)
4132 {
4133 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4134 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4135
4136 if (err)
4137 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4138
4139 phylink_ethtool_get_wol(pp->phylink, &wol);
4140 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4141
4142 /* PHY WoL may be enabled but device wakeup disabled */
4143 if (wol.supported)
4144 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4145
4146 return err;
4147 }
4148
4149 static void mvneta_mdio_remove(struct mvneta_port *pp)
4150 {
4151 phylink_disconnect_phy(pp->phylink);
4152 }
4153
4154 /* Electing a CPU must be done in an atomic way: it should be done
4155 * after or before the removal/insertion of a CPU and this function is
4156 * not reentrant.
4157 */
4158 static void mvneta_percpu_elect(struct mvneta_port *pp)
4159 {
4160 int elected_cpu = 0, max_cpu, cpu, i = 0;
4161
4162 /* Use the cpu associated to the rxq when it is online, in all
4163 * the other cases, use the cpu 0 which can't be offline.
4164 */
4165 if (cpu_online(pp->rxq_def))
4166 elected_cpu = pp->rxq_def;
4167
4168 max_cpu = num_present_cpus();
4169
4170 for_each_online_cpu(cpu) {
4171 int rxq_map = 0, txq_map = 0;
4172 int rxq;
4173
4174 for (rxq = 0; rxq < rxq_number; rxq++)
4175 if ((rxq % max_cpu) == cpu)
4176 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4177
4178 if (cpu == elected_cpu)
4179 /* Map the default receive queue to the elected CPU */
4180 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4181
4182 /* We update the TX queue map only if we have one
4183 * queue. In this case we associate the TX queue to
4184 * the CPU bound to the default RX queue
4185 */
4186 if (txq_number == 1)
4187 txq_map = (cpu == elected_cpu) ?
4188 MVNETA_CPU_TXQ_ACCESS(1) : 0;
4189 else
4190 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4191 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4192
4193 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4194
4195 /* Update the interrupt mask on each CPU according the
4196 * new mapping
4197 */
4198 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4199 pp, true);
4200 i++;
4201
4202 }
4203 };
4204
4205 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4206 {
4207 int other_cpu;
4208 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4209 node_online);
4210 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4211
4212 /* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
4213 * are routed to CPU 0, so we don't need all the cpu-hotplug support
4214 */
4215 if (pp->neta_armada3700)
4216 return 0;
4217
4218 spin_lock(&pp->lock);
4219 /*
4220 * Configuring the driver for a new CPU while the driver is
4221 * stopping is racy, so just avoid it.
4222 */
4223 if (pp->is_stopped) {
4224 spin_unlock(&pp->lock);
4225 return 0;
4226 }
4227 netif_tx_stop_all_queues(pp->dev);
4228
4229 /*
4230 * We have to synchronise on tha napi of each CPU except the one
4231 * just being woken up
4232 */
4233 for_each_online_cpu(other_cpu) {
4234 if (other_cpu != cpu) {
4235 struct mvneta_pcpu_port *other_port =
4236 per_cpu_ptr(pp->ports, other_cpu);
4237
4238 napi_synchronize(&other_port->napi);
4239 }
4240 }
4241
4242 /* Mask all ethernet port interrupts */
4243 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4244 napi_enable(&port->napi);
4245
4246 /*
4247 * Enable per-CPU interrupts on the CPU that is
4248 * brought up.
4249 */
4250 mvneta_percpu_enable(pp);
4251
4252 /*
4253 * Enable per-CPU interrupt on the one CPU we care
4254 * about.
4255 */
4256 mvneta_percpu_elect(pp);
4257
4258 /* Unmask all ethernet port interrupts */
4259 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4260 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4261 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4262 MVNETA_CAUSE_LINK_CHANGE);
4263 netif_tx_start_all_queues(pp->dev);
4264 spin_unlock(&pp->lock);
4265 return 0;
4266 }
4267
4268 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4269 {
4270 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4271 node_online);
4272 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4273
4274 /*
4275 * Thanks to this lock we are sure that any pending cpu election is
4276 * done.
4277 */
4278 spin_lock(&pp->lock);
4279 /* Mask all ethernet port interrupts */
4280 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4281 spin_unlock(&pp->lock);
4282
4283 napi_synchronize(&port->napi);
4284 napi_disable(&port->napi);
4285 /* Disable per-CPU interrupts on the CPU that is brought down. */
4286 mvneta_percpu_disable(pp);
4287 return 0;
4288 }
4289
4290 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4291 {
4292 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4293 node_dead);
4294
4295 /* Check if a new CPU must be elected now this on is down */
4296 spin_lock(&pp->lock);
4297 mvneta_percpu_elect(pp);
4298 spin_unlock(&pp->lock);
4299 /* Unmask all ethernet port interrupts */
4300 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4301 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4302 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4303 MVNETA_CAUSE_LINK_CHANGE);
4304 netif_tx_start_all_queues(pp->dev);
4305 return 0;
4306 }
4307
4308 static int mvneta_open(struct net_device *dev)
4309 {
4310 struct mvneta_port *pp = netdev_priv(dev);
4311 int ret;
4312
4313 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4314
4315 ret = mvneta_setup_rxqs(pp);
4316 if (ret)
4317 return ret;
4318
4319 ret = mvneta_setup_txqs(pp);
4320 if (ret)
4321 goto err_cleanup_rxqs;
4322
4323 /* Connect to port interrupt line */
4324 if (pp->neta_armada3700)
4325 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4326 dev->name, pp);
4327 else
4328 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4329 dev->name, pp->ports);
4330 if (ret) {
4331 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4332 goto err_cleanup_txqs;
4333 }
4334
4335 if (!pp->neta_armada3700) {
4336 /* Enable per-CPU interrupt on all the CPU to handle our RX
4337 * queue interrupts
4338 */
4339 on_each_cpu(mvneta_percpu_enable, pp, true);
4340
4341 pp->is_stopped = false;
4342 /* Register a CPU notifier to handle the case where our CPU
4343 * might be taken offline.
4344 */
4345 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4346 &pp->node_online);
4347 if (ret)
4348 goto err_free_irq;
4349
4350 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4351 &pp->node_dead);
4352 if (ret)
4353 goto err_free_online_hp;
4354 }
4355
4356 ret = mvneta_mdio_probe(pp);
4357 if (ret < 0) {
4358 netdev_err(dev, "cannot probe MDIO bus\n");
4359 goto err_free_dead_hp;
4360 }
4361
4362 mvneta_start_dev(pp);
4363
4364 return 0;
4365
4366 err_free_dead_hp:
4367 if (!pp->neta_armada3700)
4368 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4369 &pp->node_dead);
4370 err_free_online_hp:
4371 if (!pp->neta_armada3700)
4372 cpuhp_state_remove_instance_nocalls(online_hpstate,
4373 &pp->node_online);
4374 err_free_irq:
4375 if (pp->neta_armada3700) {
4376 free_irq(pp->dev->irq, pp);
4377 } else {
4378 on_each_cpu(mvneta_percpu_disable, pp, true);
4379 free_percpu_irq(pp->dev->irq, pp->ports);
4380 }
4381 err_cleanup_txqs:
4382 mvneta_cleanup_txqs(pp);
4383 err_cleanup_rxqs:
4384 mvneta_cleanup_rxqs(pp);
4385 return ret;
4386 }
4387
4388 /* Stop the port, free port interrupt line */
4389 static int mvneta_stop(struct net_device *dev)
4390 {
4391 struct mvneta_port *pp = netdev_priv(dev);
4392
4393 if (!pp->neta_armada3700) {
4394 /* Inform that we are stopping so we don't want to setup the
4395 * driver for new CPUs in the notifiers. The code of the
4396 * notifier for CPU online is protected by the same spinlock,
4397 * so when we get the lock, the notifer work is done.
4398 */
4399 spin_lock(&pp->lock);
4400 pp->is_stopped = true;
4401 spin_unlock(&pp->lock);
4402
4403 mvneta_stop_dev(pp);
4404 mvneta_mdio_remove(pp);
4405
4406 cpuhp_state_remove_instance_nocalls(online_hpstate,
4407 &pp->node_online);
4408 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4409 &pp->node_dead);
4410 on_each_cpu(mvneta_percpu_disable, pp, true);
4411 free_percpu_irq(dev->irq, pp->ports);
4412 } else {
4413 mvneta_stop_dev(pp);
4414 mvneta_mdio_remove(pp);
4415 free_irq(dev->irq, pp);
4416 }
4417
4418 mvneta_cleanup_rxqs(pp);
4419 mvneta_cleanup_txqs(pp);
4420
4421 return 0;
4422 }
4423
4424 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4425 {
4426 struct mvneta_port *pp = netdev_priv(dev);
4427
4428 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4429 }
4430
4431 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4432 struct netlink_ext_ack *extack)
4433 {
4434 bool need_update, running = netif_running(dev);
4435 struct mvneta_port *pp = netdev_priv(dev);
4436 struct bpf_prog *old_prog;
4437
4438 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4439 NL_SET_ERR_MSG_MOD(extack, "MTU too large for XDP");
4440 return -EOPNOTSUPP;
4441 }
4442
4443 if (pp->bm_priv) {
4444 NL_SET_ERR_MSG_MOD(extack,
4445 "Hardware Buffer Management not supported on XDP");
4446 return -EOPNOTSUPP;
4447 }
4448
4449 need_update = !!pp->xdp_prog != !!prog;
4450 if (running && need_update)
4451 mvneta_stop(dev);
4452
4453 old_prog = xchg(&pp->xdp_prog, prog);
4454 if (old_prog)
4455 bpf_prog_put(old_prog);
4456
4457 if (running && need_update)
4458 return mvneta_open(dev);
4459
4460 return 0;
4461 }
4462
4463 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4464 {
4465 switch (xdp->command) {
4466 case XDP_SETUP_PROG:
4467 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4468 default:
4469 return -EINVAL;
4470 }
4471 }
4472
4473 /* Ethtool methods */
4474
4475 /* Set link ksettings (phy address, speed) for ethtools */
4476 static int
4477 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4478 const struct ethtool_link_ksettings *cmd)
4479 {
4480 struct mvneta_port *pp = netdev_priv(ndev);
4481
4482 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4483 }
4484
4485 /* Get link ksettings for ethtools */
4486 static int
4487 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4488 struct ethtool_link_ksettings *cmd)
4489 {
4490 struct mvneta_port *pp = netdev_priv(ndev);
4491
4492 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4493 }
4494
4495 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4496 {
4497 struct mvneta_port *pp = netdev_priv(dev);
4498
4499 return phylink_ethtool_nway_reset(pp->phylink);
4500 }
4501
4502 /* Set interrupt coalescing for ethtools */
4503 static int
4504 mvneta_ethtool_set_coalesce(struct net_device *dev,
4505 struct ethtool_coalesce *c,
4506 struct kernel_ethtool_coalesce *kernel_coal,
4507 struct netlink_ext_ack *extack)
4508 {
4509 struct mvneta_port *pp = netdev_priv(dev);
4510 int queue;
4511
4512 for (queue = 0; queue < rxq_number; queue++) {
4513 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4514 rxq->time_coal = c->rx_coalesce_usecs;
4515 rxq->pkts_coal = c->rx_max_coalesced_frames;
4516 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4517 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4518 }
4519
4520 for (queue = 0; queue < txq_number; queue++) {
4521 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4522 txq->done_pkts_coal = c->tx_max_coalesced_frames;
4523 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4524 }
4525
4526 return 0;
4527 }
4528
4529 /* get coalescing for ethtools */
4530 static int
4531 mvneta_ethtool_get_coalesce(struct net_device *dev,
4532 struct ethtool_coalesce *c,
4533 struct kernel_ethtool_coalesce *kernel_coal,
4534 struct netlink_ext_ack *extack)
4535 {
4536 struct mvneta_port *pp = netdev_priv(dev);
4537
4538 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
4539 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
4540
4541 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
4542 return 0;
4543 }
4544
4545
4546 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4547 struct ethtool_drvinfo *drvinfo)
4548 {
4549 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4550 sizeof(drvinfo->driver));
4551 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4552 sizeof(drvinfo->version));
4553 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4554 sizeof(drvinfo->bus_info));
4555 }
4556
4557
4558 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4559 struct ethtool_ringparam *ring)
4560 {
4561 struct mvneta_port *pp = netdev_priv(netdev);
4562
4563 ring->rx_max_pending = MVNETA_MAX_RXD;
4564 ring->tx_max_pending = MVNETA_MAX_TXD;
4565 ring->rx_pending = pp->rx_ring_size;
4566 ring->tx_pending = pp->tx_ring_size;
4567 }
4568
4569 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4570 struct ethtool_ringparam *ring)
4571 {
4572 struct mvneta_port *pp = netdev_priv(dev);
4573
4574 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4575 return -EINVAL;
4576 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4577 ring->rx_pending : MVNETA_MAX_RXD;
4578
4579 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4580 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4581 if (pp->tx_ring_size != ring->tx_pending)
4582 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4583 pp->tx_ring_size, ring->tx_pending);
4584
4585 if (netif_running(dev)) {
4586 mvneta_stop(dev);
4587 if (mvneta_open(dev)) {
4588 netdev_err(dev,
4589 "error on opening device after ring param change\n");
4590 return -ENOMEM;
4591 }
4592 }
4593
4594 return 0;
4595 }
4596
4597 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4598 struct ethtool_pauseparam *pause)
4599 {
4600 struct mvneta_port *pp = netdev_priv(dev);
4601
4602 phylink_ethtool_get_pauseparam(pp->phylink, pause);
4603 }
4604
4605 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4606 struct ethtool_pauseparam *pause)
4607 {
4608 struct mvneta_port *pp = netdev_priv(dev);
4609
4610 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4611 }
4612
4613 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4614 u8 *data)
4615 {
4616 if (sset == ETH_SS_STATS) {
4617 int i;
4618
4619 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4620 memcpy(data + i * ETH_GSTRING_LEN,
4621 mvneta_statistics[i].name, ETH_GSTRING_LEN);
4622 }
4623 }
4624
4625 static void
4626 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4627 struct mvneta_ethtool_stats *es)
4628 {
4629 unsigned int start;
4630 int cpu;
4631
4632 for_each_possible_cpu(cpu) {
4633 struct mvneta_pcpu_stats *stats;
4634 u64 skb_alloc_error;
4635 u64 refill_error;
4636 u64 xdp_redirect;
4637 u64 xdp_xmit_err;
4638 u64 xdp_tx_err;
4639 u64 xdp_pass;
4640 u64 xdp_drop;
4641 u64 xdp_xmit;
4642 u64 xdp_tx;
4643
4644 stats = per_cpu_ptr(pp->stats, cpu);
4645 do {
4646 start = u64_stats_fetch_begin_irq(&stats->syncp);
4647 skb_alloc_error = stats->es.skb_alloc_error;
4648 refill_error = stats->es.refill_error;
4649 xdp_redirect = stats->es.ps.xdp_redirect;
4650 xdp_pass = stats->es.ps.xdp_pass;
4651 xdp_drop = stats->es.ps.xdp_drop;
4652 xdp_xmit = stats->es.ps.xdp_xmit;
4653 xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4654 xdp_tx = stats->es.ps.xdp_tx;
4655 xdp_tx_err = stats->es.ps.xdp_tx_err;
4656 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4657
4658 es->skb_alloc_error += skb_alloc_error;
4659 es->refill_error += refill_error;
4660 es->ps.xdp_redirect += xdp_redirect;
4661 es->ps.xdp_pass += xdp_pass;
4662 es->ps.xdp_drop += xdp_drop;
4663 es->ps.xdp_xmit += xdp_xmit;
4664 es->ps.xdp_xmit_err += xdp_xmit_err;
4665 es->ps.xdp_tx += xdp_tx;
4666 es->ps.xdp_tx_err += xdp_tx_err;
4667 }
4668 }
4669
4670 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4671 {
4672 struct mvneta_ethtool_stats stats = {};
4673 const struct mvneta_statistic *s;
4674 void __iomem *base = pp->base;
4675 u32 high, low;
4676 u64 val;
4677 int i;
4678
4679 mvneta_ethtool_update_pcpu_stats(pp, &stats);
4680 for (i = 0, s = mvneta_statistics;
4681 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4682 s++, i++) {
4683 switch (s->type) {
4684 case T_REG_32:
4685 val = readl_relaxed(base + s->offset);
4686 pp->ethtool_stats[i] += val;
4687 break;
4688 case T_REG_64:
4689 /* Docs say to read low 32-bit then high */
4690 low = readl_relaxed(base + s->offset);
4691 high = readl_relaxed(base + s->offset + 4);
4692 val = (u64)high << 32 | low;
4693 pp->ethtool_stats[i] += val;
4694 break;
4695 case T_SW:
4696 switch (s->offset) {
4697 case ETHTOOL_STAT_EEE_WAKEUP:
4698 val = phylink_get_eee_err(pp->phylink);
4699 pp->ethtool_stats[i] += val;
4700 break;
4701 case ETHTOOL_STAT_SKB_ALLOC_ERR:
4702 pp->ethtool_stats[i] = stats.skb_alloc_error;
4703 break;
4704 case ETHTOOL_STAT_REFILL_ERR:
4705 pp->ethtool_stats[i] = stats.refill_error;
4706 break;
4707 case ETHTOOL_XDP_REDIRECT:
4708 pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4709 break;
4710 case ETHTOOL_XDP_PASS:
4711 pp->ethtool_stats[i] = stats.ps.xdp_pass;
4712 break;
4713 case ETHTOOL_XDP_DROP:
4714 pp->ethtool_stats[i] = stats.ps.xdp_drop;
4715 break;
4716 case ETHTOOL_XDP_TX:
4717 pp->ethtool_stats[i] = stats.ps.xdp_tx;
4718 break;
4719 case ETHTOOL_XDP_TX_ERR:
4720 pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4721 break;
4722 case ETHTOOL_XDP_XMIT:
4723 pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4724 break;
4725 case ETHTOOL_XDP_XMIT_ERR:
4726 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4727 break;
4728 }
4729 break;
4730 }
4731 }
4732 }
4733
4734 static void mvneta_ethtool_get_stats(struct net_device *dev,
4735 struct ethtool_stats *stats, u64 *data)
4736 {
4737 struct mvneta_port *pp = netdev_priv(dev);
4738 int i;
4739
4740 mvneta_ethtool_update_stats(pp);
4741
4742 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4743 *data++ = pp->ethtool_stats[i];
4744 }
4745
4746 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4747 {
4748 if (sset == ETH_SS_STATS)
4749 return ARRAY_SIZE(mvneta_statistics);
4750 return -EOPNOTSUPP;
4751 }
4752
4753 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4754 {
4755 return MVNETA_RSS_LU_TABLE_SIZE;
4756 }
4757
4758 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4759 struct ethtool_rxnfc *info,
4760 u32 *rules __always_unused)
4761 {
4762 switch (info->cmd) {
4763 case ETHTOOL_GRXRINGS:
4764 info->data = rxq_number;
4765 return 0;
4766 case ETHTOOL_GRXFH:
4767 return -EOPNOTSUPP;
4768 default:
4769 return -EOPNOTSUPP;
4770 }
4771 }
4772
4773 static int mvneta_config_rss(struct mvneta_port *pp)
4774 {
4775 int cpu;
4776 u32 val;
4777
4778 netif_tx_stop_all_queues(pp->dev);
4779
4780 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4781
4782 if (!pp->neta_armada3700) {
4783 /* We have to synchronise on the napi of each CPU */
4784 for_each_online_cpu(cpu) {
4785 struct mvneta_pcpu_port *pcpu_port =
4786 per_cpu_ptr(pp->ports, cpu);
4787
4788 napi_synchronize(&pcpu_port->napi);
4789 napi_disable(&pcpu_port->napi);
4790 }
4791 } else {
4792 napi_synchronize(&pp->napi);
4793 napi_disable(&pp->napi);
4794 }
4795
4796 pp->rxq_def = pp->indir[0];
4797
4798 /* Update unicast mapping */
4799 mvneta_set_rx_mode(pp->dev);
4800
4801 /* Update val of portCfg register accordingly with all RxQueue types */
4802 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4803 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4804
4805 /* Update the elected CPU matching the new rxq_def */
4806 spin_lock(&pp->lock);
4807 mvneta_percpu_elect(pp);
4808 spin_unlock(&pp->lock);
4809
4810 if (!pp->neta_armada3700) {
4811 /* We have to synchronise on the napi of each CPU */
4812 for_each_online_cpu(cpu) {
4813 struct mvneta_pcpu_port *pcpu_port =
4814 per_cpu_ptr(pp->ports, cpu);
4815
4816 napi_enable(&pcpu_port->napi);
4817 }
4818 } else {
4819 napi_enable(&pp->napi);
4820 }
4821
4822 netif_tx_start_all_queues(pp->dev);
4823
4824 return 0;
4825 }
4826
4827 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4828 const u8 *key, const u8 hfunc)
4829 {
4830 struct mvneta_port *pp = netdev_priv(dev);
4831
4832 /* Current code for Armada 3700 doesn't support RSS features yet */
4833 if (pp->neta_armada3700)
4834 return -EOPNOTSUPP;
4835
4836 /* We require at least one supported parameter to be changed
4837 * and no change in any of the unsupported parameters
4838 */
4839 if (key ||
4840 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4841 return -EOPNOTSUPP;
4842
4843 if (!indir)
4844 return 0;
4845
4846 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4847
4848 return mvneta_config_rss(pp);
4849 }
4850
4851 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4852 u8 *hfunc)
4853 {
4854 struct mvneta_port *pp = netdev_priv(dev);
4855
4856 /* Current code for Armada 3700 doesn't support RSS features yet */
4857 if (pp->neta_armada3700)
4858 return -EOPNOTSUPP;
4859
4860 if (hfunc)
4861 *hfunc = ETH_RSS_HASH_TOP;
4862
4863 if (!indir)
4864 return 0;
4865
4866 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4867
4868 return 0;
4869 }
4870
4871 static void mvneta_ethtool_get_wol(struct net_device *dev,
4872 struct ethtool_wolinfo *wol)
4873 {
4874 struct mvneta_port *pp = netdev_priv(dev);
4875
4876 phylink_ethtool_get_wol(pp->phylink, wol);
4877 }
4878
4879 static int mvneta_ethtool_set_wol(struct net_device *dev,
4880 struct ethtool_wolinfo *wol)
4881 {
4882 struct mvneta_port *pp = netdev_priv(dev);
4883 int ret;
4884
4885 ret = phylink_ethtool_set_wol(pp->phylink, wol);
4886 if (!ret)
4887 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4888
4889 return ret;
4890 }
4891
4892 static int mvneta_ethtool_get_eee(struct net_device *dev,
4893 struct ethtool_eee *eee)
4894 {
4895 struct mvneta_port *pp = netdev_priv(dev);
4896 u32 lpi_ctl0;
4897
4898 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4899
4900 eee->eee_enabled = pp->eee_enabled;
4901 eee->eee_active = pp->eee_active;
4902 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4903 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4904
4905 return phylink_ethtool_get_eee(pp->phylink, eee);
4906 }
4907
4908 static int mvneta_ethtool_set_eee(struct net_device *dev,
4909 struct ethtool_eee *eee)
4910 {
4911 struct mvneta_port *pp = netdev_priv(dev);
4912 u32 lpi_ctl0;
4913
4914 /* The Armada 37x documents do not give limits for this other than
4915 * it being an 8-bit register.
4916 */
4917 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4918 return -EINVAL;
4919
4920 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4921 lpi_ctl0 &= ~(0xff << 8);
4922 lpi_ctl0 |= eee->tx_lpi_timer << 8;
4923 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4924
4925 pp->eee_enabled = eee->eee_enabled;
4926 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4927
4928 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4929
4930 return phylink_ethtool_set_eee(pp->phylink, eee);
4931 }
4932
4933 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp)
4934 {
4935 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0);
4936 }
4937
4938 static void mvneta_setup_rx_prio_map(struct mvneta_port *pp)
4939 {
4940 u32 val = 0;
4941 int i;
4942
4943 for (i = 0; i < rxq_number; i++)
4944 val |= MVNETA_VLAN_PRIO_RXQ_MAP(i, pp->prio_tc_map[i]);
4945
4946 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val);
4947 }
4948
4949 static int mvneta_setup_mqprio(struct net_device *dev,
4950 struct tc_mqprio_qopt *qopt)
4951 {
4952 struct mvneta_port *pp = netdev_priv(dev);
4953 u8 num_tc;
4954 int i;
4955
4956 qopt->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4957 num_tc = qopt->num_tc;
4958
4959 if (num_tc > rxq_number)
4960 return -EINVAL;
4961
4962 if (!num_tc) {
4963 mvneta_clear_rx_prio_map(pp);
4964 netdev_reset_tc(dev);
4965 return 0;
4966 }
4967
4968 memcpy(pp->prio_tc_map, qopt->prio_tc_map, sizeof(pp->prio_tc_map));
4969
4970 mvneta_setup_rx_prio_map(pp);
4971
4972 netdev_set_num_tc(dev, qopt->num_tc);
4973 for (i = 0; i < qopt->num_tc; i++)
4974 netdev_set_tc_queue(dev, i, qopt->count[i], qopt->offset[i]);
4975
4976 return 0;
4977 }
4978
4979 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type,
4980 void *type_data)
4981 {
4982 switch (type) {
4983 case TC_SETUP_QDISC_MQPRIO:
4984 return mvneta_setup_mqprio(dev, type_data);
4985 default:
4986 return -EOPNOTSUPP;
4987 }
4988 }
4989
4990 static const struct net_device_ops mvneta_netdev_ops = {
4991 .ndo_open = mvneta_open,
4992 .ndo_stop = mvneta_stop,
4993 .ndo_start_xmit = mvneta_tx,
4994 .ndo_set_rx_mode = mvneta_set_rx_mode,
4995 .ndo_set_mac_address = mvneta_set_mac_addr,
4996 .ndo_change_mtu = mvneta_change_mtu,
4997 .ndo_fix_features = mvneta_fix_features,
4998 .ndo_get_stats64 = mvneta_get_stats64,
4999 .ndo_eth_ioctl = mvneta_ioctl,
5000 .ndo_bpf = mvneta_xdp,
5001 .ndo_xdp_xmit = mvneta_xdp_xmit,
5002 .ndo_setup_tc = mvneta_setup_tc,
5003 };
5004
5005 static const struct ethtool_ops mvneta_eth_tool_ops = {
5006 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
5007 ETHTOOL_COALESCE_MAX_FRAMES,
5008 .nway_reset = mvneta_ethtool_nway_reset,
5009 .get_link = ethtool_op_get_link,
5010 .set_coalesce = mvneta_ethtool_set_coalesce,
5011 .get_coalesce = mvneta_ethtool_get_coalesce,
5012 .get_drvinfo = mvneta_ethtool_get_drvinfo,
5013 .get_ringparam = mvneta_ethtool_get_ringparam,
5014 .set_ringparam = mvneta_ethtool_set_ringparam,
5015 .get_pauseparam = mvneta_ethtool_get_pauseparam,
5016 .set_pauseparam = mvneta_ethtool_set_pauseparam,
5017 .get_strings = mvneta_ethtool_get_strings,
5018 .get_ethtool_stats = mvneta_ethtool_get_stats,
5019 .get_sset_count = mvneta_ethtool_get_sset_count,
5020 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
5021 .get_rxnfc = mvneta_ethtool_get_rxnfc,
5022 .get_rxfh = mvneta_ethtool_get_rxfh,
5023 .set_rxfh = mvneta_ethtool_set_rxfh,
5024 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
5025 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
5026 .get_wol = mvneta_ethtool_get_wol,
5027 .set_wol = mvneta_ethtool_set_wol,
5028 .get_eee = mvneta_ethtool_get_eee,
5029 .set_eee = mvneta_ethtool_set_eee,
5030 };
5031
5032 /* Initialize hw */
5033 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
5034 {
5035 int queue;
5036
5037 /* Disable port */
5038 mvneta_port_disable(pp);
5039
5040 /* Set port default values */
5041 mvneta_defaults_set(pp);
5042
5043 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
5044 if (!pp->txqs)
5045 return -ENOMEM;
5046
5047 /* Initialize TX descriptor rings */
5048 for (queue = 0; queue < txq_number; queue++) {
5049 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5050 txq->id = queue;
5051 txq->size = pp->tx_ring_size;
5052 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
5053 }
5054
5055 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
5056 if (!pp->rxqs)
5057 return -ENOMEM;
5058
5059 /* Create Rx descriptor rings */
5060 for (queue = 0; queue < rxq_number; queue++) {
5061 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5062 rxq->id = queue;
5063 rxq->size = pp->rx_ring_size;
5064 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
5065 rxq->time_coal = MVNETA_RX_COAL_USEC;
5066 rxq->buf_virt_addr
5067 = devm_kmalloc_array(pp->dev->dev.parent,
5068 rxq->size,
5069 sizeof(*rxq->buf_virt_addr),
5070 GFP_KERNEL);
5071 if (!rxq->buf_virt_addr)
5072 return -ENOMEM;
5073 }
5074
5075 return 0;
5076 }
5077
5078 /* platform glue : initialize decoding windows */
5079 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5080 const struct mbus_dram_target_info *dram)
5081 {
5082 u32 win_enable;
5083 u32 win_protect;
5084 int i;
5085
5086 for (i = 0; i < 6; i++) {
5087 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5088 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5089
5090 if (i < 4)
5091 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5092 }
5093
5094 win_enable = 0x3f;
5095 win_protect = 0;
5096
5097 if (dram) {
5098 for (i = 0; i < dram->num_cs; i++) {
5099 const struct mbus_dram_window *cs = dram->cs + i;
5100
5101 mvreg_write(pp, MVNETA_WIN_BASE(i),
5102 (cs->base & 0xffff0000) |
5103 (cs->mbus_attr << 8) |
5104 dram->mbus_dram_target_id);
5105
5106 mvreg_write(pp, MVNETA_WIN_SIZE(i),
5107 (cs->size - 1) & 0xffff0000);
5108
5109 win_enable &= ~(1 << i);
5110 win_protect |= 3 << (2 * i);
5111 }
5112 } else {
5113 /* For Armada3700 open default 4GB Mbus window, leaving
5114 * arbitration of target/attribute to a different layer
5115 * of configuration.
5116 */
5117 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5118 win_enable &= ~BIT(0);
5119 win_protect = 3;
5120 }
5121
5122 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5123 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5124 }
5125
5126 /* Power up the port */
5127 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5128 {
5129 /* MAC Cause register should be cleared */
5130 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5131
5132 if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5133 phy_mode != PHY_INTERFACE_MODE_SGMII &&
5134 !phy_interface_mode_is_8023z(phy_mode) &&
5135 !phy_interface_mode_is_rgmii(phy_mode))
5136 return -EINVAL;
5137
5138 return 0;
5139 }
5140
5141 /* Device initialization routine */
5142 static int mvneta_probe(struct platform_device *pdev)
5143 {
5144 struct device_node *dn = pdev->dev.of_node;
5145 struct device_node *bm_node;
5146 struct mvneta_port *pp;
5147 struct net_device *dev;
5148 struct phylink *phylink;
5149 struct phy *comphy;
5150 char hw_mac_addr[ETH_ALEN];
5151 phy_interface_t phy_mode;
5152 const char *mac_from;
5153 int tx_csum_limit;
5154 int err;
5155 int cpu;
5156
5157 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5158 txq_number, rxq_number);
5159 if (!dev)
5160 return -ENOMEM;
5161
5162 dev->irq = irq_of_parse_and_map(dn, 0);
5163 if (dev->irq == 0)
5164 return -EINVAL;
5165
5166 err = of_get_phy_mode(dn, &phy_mode);
5167 if (err) {
5168 dev_err(&pdev->dev, "incorrect phy-mode\n");
5169 goto err_free_irq;
5170 }
5171
5172 comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5173 if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5174 err = -EPROBE_DEFER;
5175 goto err_free_irq;
5176 } else if (IS_ERR(comphy)) {
5177 comphy = NULL;
5178 }
5179
5180 pp = netdev_priv(dev);
5181 spin_lock_init(&pp->lock);
5182
5183 pp->phylink_config.dev = &dev->dev;
5184 pp->phylink_config.type = PHYLINK_NETDEV;
5185
5186 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5187 phy_mode, &mvneta_phylink_ops);
5188 if (IS_ERR(phylink)) {
5189 err = PTR_ERR(phylink);
5190 goto err_free_irq;
5191 }
5192
5193 dev->tx_queue_len = MVNETA_MAX_TXD;
5194 dev->watchdog_timeo = 5 * HZ;
5195 dev->netdev_ops = &mvneta_netdev_ops;
5196
5197 dev->ethtool_ops = &mvneta_eth_tool_ops;
5198
5199 pp->phylink = phylink;
5200 pp->comphy = comphy;
5201 pp->phy_interface = phy_mode;
5202 pp->dn = dn;
5203
5204 pp->rxq_def = rxq_def;
5205 pp->indir[0] = rxq_def;
5206
5207 /* Get special SoC configurations */
5208 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5209 pp->neta_armada3700 = true;
5210
5211 pp->clk = devm_clk_get(&pdev->dev, "core");
5212 if (IS_ERR(pp->clk))
5213 pp->clk = devm_clk_get(&pdev->dev, NULL);
5214 if (IS_ERR(pp->clk)) {
5215 err = PTR_ERR(pp->clk);
5216 goto err_free_phylink;
5217 }
5218
5219 clk_prepare_enable(pp->clk);
5220
5221 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5222 if (!IS_ERR(pp->clk_bus))
5223 clk_prepare_enable(pp->clk_bus);
5224
5225 pp->base = devm_platform_ioremap_resource(pdev, 0);
5226 if (IS_ERR(pp->base)) {
5227 err = PTR_ERR(pp->base);
5228 goto err_clk;
5229 }
5230
5231 /* Alloc per-cpu port structure */
5232 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5233 if (!pp->ports) {
5234 err = -ENOMEM;
5235 goto err_clk;
5236 }
5237
5238 /* Alloc per-cpu stats */
5239 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5240 if (!pp->stats) {
5241 err = -ENOMEM;
5242 goto err_free_ports;
5243 }
5244
5245 err = of_get_mac_address(dn, dev->dev_addr);
5246 if (!err) {
5247 mac_from = "device tree";
5248 } else {
5249 mvneta_get_mac_addr(pp, hw_mac_addr);
5250 if (is_valid_ether_addr(hw_mac_addr)) {
5251 mac_from = "hardware";
5252 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5253 } else {
5254 mac_from = "random";
5255 eth_hw_addr_random(dev);
5256 }
5257 }
5258
5259 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5260 if (tx_csum_limit < 0 ||
5261 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5262 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5263 dev_info(&pdev->dev,
5264 "Wrong TX csum limit in DT, set to %dB\n",
5265 MVNETA_TX_CSUM_DEF_SIZE);
5266 }
5267 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5268 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5269 } else {
5270 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5271 }
5272
5273 pp->tx_csum_limit = tx_csum_limit;
5274
5275 pp->dram_target_info = mv_mbus_dram_info();
5276 /* Armada3700 requires setting default configuration of Mbus
5277 * windows, however without using filled mbus_dram_target_info
5278 * structure.
5279 */
5280 if (pp->dram_target_info || pp->neta_armada3700)
5281 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5282
5283 pp->tx_ring_size = MVNETA_MAX_TXD;
5284 pp->rx_ring_size = MVNETA_MAX_RXD;
5285
5286 pp->dev = dev;
5287 SET_NETDEV_DEV(dev, &pdev->dev);
5288
5289 pp->id = global_port_id++;
5290
5291 /* Obtain access to BM resources if enabled and already initialized */
5292 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5293 if (bm_node) {
5294 pp->bm_priv = mvneta_bm_get(bm_node);
5295 if (pp->bm_priv) {
5296 err = mvneta_bm_port_init(pdev, pp);
5297 if (err < 0) {
5298 dev_info(&pdev->dev,
5299 "use SW buffer management\n");
5300 mvneta_bm_put(pp->bm_priv);
5301 pp->bm_priv = NULL;
5302 }
5303 }
5304 /* Set RX packet offset correction for platforms, whose
5305 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5306 * platforms and 0B for 32-bit ones.
5307 */
5308 pp->rx_offset_correction = max(0,
5309 NET_SKB_PAD -
5310 MVNETA_RX_PKT_OFFSET_CORRECTION);
5311 }
5312 of_node_put(bm_node);
5313
5314 /* sw buffer management */
5315 if (!pp->bm_priv)
5316 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5317
5318 err = mvneta_init(&pdev->dev, pp);
5319 if (err < 0)
5320 goto err_netdev;
5321
5322 err = mvneta_port_power_up(pp, pp->phy_interface);
5323 if (err < 0) {
5324 dev_err(&pdev->dev, "can't power up port\n");
5325 goto err_netdev;
5326 }
5327
5328 /* Armada3700 network controller does not support per-cpu
5329 * operation, so only single NAPI should be initialized.
5330 */
5331 if (pp->neta_armada3700) {
5332 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5333 } else {
5334 for_each_present_cpu(cpu) {
5335 struct mvneta_pcpu_port *port =
5336 per_cpu_ptr(pp->ports, cpu);
5337
5338 netif_napi_add(dev, &port->napi, mvneta_poll,
5339 NAPI_POLL_WEIGHT);
5340 port->pp = pp;
5341 }
5342 }
5343
5344 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5345 NETIF_F_TSO | NETIF_F_RXCSUM;
5346 dev->hw_features |= dev->features;
5347 dev->vlan_features |= dev->features;
5348 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5349 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5350
5351 /* MTU range: 68 - 9676 */
5352 dev->min_mtu = ETH_MIN_MTU;
5353 /* 9676 == 9700 - 20 and rounding to 8 */
5354 dev->max_mtu = 9676;
5355
5356 err = register_netdev(dev);
5357 if (err < 0) {
5358 dev_err(&pdev->dev, "failed to register\n");
5359 goto err_netdev;
5360 }
5361
5362 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5363 dev->dev_addr);
5364
5365 platform_set_drvdata(pdev, pp->dev);
5366
5367 return 0;
5368
5369 err_netdev:
5370 if (pp->bm_priv) {
5371 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5372 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5373 1 << pp->id);
5374 mvneta_bm_put(pp->bm_priv);
5375 }
5376 free_percpu(pp->stats);
5377 err_free_ports:
5378 free_percpu(pp->ports);
5379 err_clk:
5380 clk_disable_unprepare(pp->clk_bus);
5381 clk_disable_unprepare(pp->clk);
5382 err_free_phylink:
5383 if (pp->phylink)
5384 phylink_destroy(pp->phylink);
5385 err_free_irq:
5386 irq_dispose_mapping(dev->irq);
5387 return err;
5388 }
5389
5390 /* Device removal routine */
5391 static int mvneta_remove(struct platform_device *pdev)
5392 {
5393 struct net_device *dev = platform_get_drvdata(pdev);
5394 struct mvneta_port *pp = netdev_priv(dev);
5395
5396 unregister_netdev(dev);
5397 clk_disable_unprepare(pp->clk_bus);
5398 clk_disable_unprepare(pp->clk);
5399 free_percpu(pp->ports);
5400 free_percpu(pp->stats);
5401 irq_dispose_mapping(dev->irq);
5402 phylink_destroy(pp->phylink);
5403
5404 if (pp->bm_priv) {
5405 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5406 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5407 1 << pp->id);
5408 mvneta_bm_put(pp->bm_priv);
5409 }
5410
5411 return 0;
5412 }
5413
5414 #ifdef CONFIG_PM_SLEEP
5415 static int mvneta_suspend(struct device *device)
5416 {
5417 int queue;
5418 struct net_device *dev = dev_get_drvdata(device);
5419 struct mvneta_port *pp = netdev_priv(dev);
5420
5421 if (!netif_running(dev))
5422 goto clean_exit;
5423
5424 if (!pp->neta_armada3700) {
5425 spin_lock(&pp->lock);
5426 pp->is_stopped = true;
5427 spin_unlock(&pp->lock);
5428
5429 cpuhp_state_remove_instance_nocalls(online_hpstate,
5430 &pp->node_online);
5431 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5432 &pp->node_dead);
5433 }
5434
5435 rtnl_lock();
5436 mvneta_stop_dev(pp);
5437 rtnl_unlock();
5438
5439 for (queue = 0; queue < rxq_number; queue++) {
5440 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5441
5442 mvneta_rxq_drop_pkts(pp, rxq);
5443 }
5444
5445 for (queue = 0; queue < txq_number; queue++) {
5446 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5447
5448 mvneta_txq_hw_deinit(pp, txq);
5449 }
5450
5451 clean_exit:
5452 netif_device_detach(dev);
5453 clk_disable_unprepare(pp->clk_bus);
5454 clk_disable_unprepare(pp->clk);
5455
5456 return 0;
5457 }
5458
5459 static int mvneta_resume(struct device *device)
5460 {
5461 struct platform_device *pdev = to_platform_device(device);
5462 struct net_device *dev = dev_get_drvdata(device);
5463 struct mvneta_port *pp = netdev_priv(dev);
5464 int err, queue;
5465
5466 clk_prepare_enable(pp->clk);
5467 if (!IS_ERR(pp->clk_bus))
5468 clk_prepare_enable(pp->clk_bus);
5469 if (pp->dram_target_info || pp->neta_armada3700)
5470 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5471 if (pp->bm_priv) {
5472 err = mvneta_bm_port_init(pdev, pp);
5473 if (err < 0) {
5474 dev_info(&pdev->dev, "use SW buffer management\n");
5475 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5476 pp->bm_priv = NULL;
5477 }
5478 }
5479 mvneta_defaults_set(pp);
5480 err = mvneta_port_power_up(pp, pp->phy_interface);
5481 if (err < 0) {
5482 dev_err(device, "can't power up port\n");
5483 return err;
5484 }
5485
5486 netif_device_attach(dev);
5487
5488 if (!netif_running(dev))
5489 return 0;
5490
5491 for (queue = 0; queue < rxq_number; queue++) {
5492 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5493
5494 rxq->next_desc_to_proc = 0;
5495 mvneta_rxq_hw_init(pp, rxq);
5496 }
5497
5498 for (queue = 0; queue < txq_number; queue++) {
5499 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5500
5501 txq->next_desc_to_proc = 0;
5502 mvneta_txq_hw_init(pp, txq);
5503 }
5504
5505 if (!pp->neta_armada3700) {
5506 spin_lock(&pp->lock);
5507 pp->is_stopped = false;
5508 spin_unlock(&pp->lock);
5509 cpuhp_state_add_instance_nocalls(online_hpstate,
5510 &pp->node_online);
5511 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5512 &pp->node_dead);
5513 }
5514
5515 rtnl_lock();
5516 mvneta_start_dev(pp);
5517 rtnl_unlock();
5518 mvneta_set_rx_mode(dev);
5519
5520 return 0;
5521 }
5522 #endif
5523
5524 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5525
5526 static const struct of_device_id mvneta_match[] = {
5527 { .compatible = "marvell,armada-370-neta" },
5528 { .compatible = "marvell,armada-xp-neta" },
5529 { .compatible = "marvell,armada-3700-neta" },
5530 { }
5531 };
5532 MODULE_DEVICE_TABLE(of, mvneta_match);
5533
5534 static struct platform_driver mvneta_driver = {
5535 .probe = mvneta_probe,
5536 .remove = mvneta_remove,
5537 .driver = {
5538 .name = MVNETA_DRIVER_NAME,
5539 .of_match_table = mvneta_match,
5540 .pm = &mvneta_pm_ops,
5541 },
5542 };
5543
5544 static int __init mvneta_driver_init(void)
5545 {
5546 int ret;
5547
5548 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5549 mvneta_cpu_online,
5550 mvneta_cpu_down_prepare);
5551 if (ret < 0)
5552 goto out;
5553 online_hpstate = ret;
5554 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5555 NULL, mvneta_cpu_dead);
5556 if (ret)
5557 goto err_dead;
5558
5559 ret = platform_driver_register(&mvneta_driver);
5560 if (ret)
5561 goto err;
5562 return 0;
5563
5564 err:
5565 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5566 err_dead:
5567 cpuhp_remove_multi_state(online_hpstate);
5568 out:
5569 return ret;
5570 }
5571 module_init(mvneta_driver_init);
5572
5573 static void __exit mvneta_driver_exit(void)
5574 {
5575 platform_driver_unregister(&mvneta_driver);
5576 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5577 cpuhp_remove_multi_state(online_hpstate);
5578 }
5579 module_exit(mvneta_driver_exit);
5580
5581 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5582 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5583 MODULE_LICENSE("GPL");
5584
5585 module_param(rxq_number, int, 0444);
5586 module_param(txq_number, int, 0444);
5587
5588 module_param(rxq_def, int, 0444);
5589 module_param(rx_copybreak, int, 0644);