]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/marvell/mvpp2.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / marvell / mvpp2.c
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2. This program is licensed "as is" without any
10 * warranty of any kind, whether express or implied.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 #include <linux/inetdevice.h>
19 #include <linux/mbus.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpumask.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_mdio.h>
26 #include <linux/of_net.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/phy.h>
30 #include <linux/clk.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <uapi/linux/ppp_defs.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36
37 /* RX Fifo Registers */
38 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
39 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
40 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
41 #define MVPP2_RX_FIFO_INIT_REG 0x64
42
43 /* RX DMA Top Registers */
44 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
45 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
46 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
47 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
48 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
49 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
50 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
51 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
52 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
53 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
54 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
55 #define MVPP2_RXQ_POOL_LONG_OFFS 24
56 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
57 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
58 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
59 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
60 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
61
62 /* Parser Registers */
63 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
64 #define MVPP2_PRS_PORT_LU_MAX 0xf
65 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
66 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
67 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
68 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
69 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
70 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
71 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
72 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
73 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
74 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
75 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
76 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
77 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
78 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
79 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
80
81 /* Classifier Registers */
82 #define MVPP2_CLS_MODE_REG 0x1800
83 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
84 #define MVPP2_CLS_PORT_WAY_REG 0x1810
85 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
86 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
87 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
88 #define MVPP2_CLS_LKP_TBL_REG 0x1818
89 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
90 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
91 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
92 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
93 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
94 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
95 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
96 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
97 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
98 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
99 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
100 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
101
102 /* Descriptor Manager Top Registers */
103 #define MVPP2_RXQ_NUM_REG 0x2040
104 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
105 #define MVPP22_DESC_ADDR_OFFS 8
106 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
107 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
108 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
109 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
110 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
111 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
112 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
113 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
114 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
115 #define MVPP2_RXQ_THRESH_REG 0x204c
116 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
117 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
118 #define MVPP2_RXQ_INDEX_REG 0x2050
119 #define MVPP2_TXQ_NUM_REG 0x2080
120 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
121 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
122 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
123 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
124 #define MVPP2_TXQ_INDEX_REG 0x2098
125 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
126 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
127 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
128 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
129 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
130 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
131 #define MVPP2_TXQ_PENDING_REG 0x20a0
132 #define MVPP2_TXQ_PENDING_MASK 0x3fff
133 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
134 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
135 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
136 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
137 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
138 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
139 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
140 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
141 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
142 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
143 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
144 #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
145 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
146 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
147 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
148 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
149 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
150
151 /* MBUS bridge registers */
152 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
153 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
154 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
155 #define MVPP2_BASE_ADDR_ENABLE 0x4060
156
157 /* AXI Bridge Registers */
158 #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
159 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
160 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
161 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
162 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
163 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
164 #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
165 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
166 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
167 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
168 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
169 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
170
171 /* Values for AXI Bridge registers */
172 #define MVPP22_AXI_ATTR_CACHE_OFFS 0
173 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
174
175 #define MVPP22_AXI_CODE_CACHE_OFFS 0
176 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4
177
178 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
179 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
180 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
181
182 #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
183 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
184
185 /* Interrupt Cause and Mask registers */
186 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
187 #define MVPP2_MAX_ISR_RX_THRESHOLD 0xfffff0
188 #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
189
190 #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
191 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
192 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
193 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
194
195 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
196 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
197
198 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
199 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
200 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
201 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
202
203 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
204 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
205 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
206 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
207 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
208 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
209 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
210 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
211 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
212 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
213 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
214 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
215 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
216 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
217 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
218 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
219 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
220 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
221
222 /* Buffer Manager registers */
223 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
224 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
225 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
226 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
227 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
228 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
229 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
230 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
231 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
232 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
233 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
234 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
235 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
236 #define MVPP2_BM_START_MASK BIT(0)
237 #define MVPP2_BM_STOP_MASK BIT(1)
238 #define MVPP2_BM_STATE_MASK BIT(4)
239 #define MVPP2_BM_LOW_THRESH_OFFS 8
240 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
241 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
242 MVPP2_BM_LOW_THRESH_OFFS)
243 #define MVPP2_BM_HIGH_THRESH_OFFS 16
244 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
245 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
246 MVPP2_BM_HIGH_THRESH_OFFS)
247 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
248 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
249 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
250 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
251 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
252 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
253 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
254 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
255 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
256 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
257 #define MVPP22_BM_ADDR_HIGH_ALLOC 0x6444
258 #define MVPP22_BM_ADDR_HIGH_PHYS_MASK 0xff
259 #define MVPP22_BM_ADDR_HIGH_VIRT_MASK 0xff00
260 #define MVPP22_BM_ADDR_HIGH_VIRT_SHIFT 8
261 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
262 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
263 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
264 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
265 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
266 #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
267 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
268 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
269 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
270
271 /* TX Scheduler registers */
272 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
273 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
274 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
275 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
276 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
277 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
278 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
279 #define MVPP2_TXP_MTU_MAX 0x7FFFF
280 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
281 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
282 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
283 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
284 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
285 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
286 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
287 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
288 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
289 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
290 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
291 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
292 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
293 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
294
295 /* TX general registers */
296 #define MVPP2_TX_SNOOP_REG 0x8800
297 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
298 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
299
300 /* LMS registers */
301 #define MVPP2_SRC_ADDR_MIDDLE 0x24
302 #define MVPP2_SRC_ADDR_HIGH 0x28
303 #define MVPP2_PHY_AN_CFG0_REG 0x34
304 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
305 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
306 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
307
308 /* Per-port registers */
309 #define MVPP2_GMAC_CTRL_0_REG 0x0
310 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
311 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
312 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
313 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
314 #define MVPP2_GMAC_CTRL_1_REG 0x4
315 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
316 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
317 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
318 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
319 #define MVPP2_GMAC_SA_LOW_OFFS 7
320 #define MVPP2_GMAC_CTRL_2_REG 0x8
321 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
322 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
323 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
324 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
325 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
326 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
327 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
328 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
329 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
330 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
331 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
332 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
333 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
334 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
335 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
336 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
337 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
338 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
339 #define MVPP22_GMAC_CTRL_4_REG 0x90
340 #define MVPP22_CTRL4_EXT_PIN_GMII_SEL BIT(0)
341 #define MVPP22_CTRL4_DP_CLK_SEL BIT(5)
342 #define MVPP22_CTRL4_SYNC_BYPASS BIT(6)
343 #define MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE BIT(7)
344
345 /* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
346 * relative to port->base.
347 */
348 #define MVPP22_XLG_CTRL3_REG 0x11c
349 #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13)
350 #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13)
351
352 /* SMI registers. PPv2.2 only, relative to priv->iface_base. */
353 #define MVPP22_SMI_MISC_CFG_REG 0x1204
354 #define MVPP22_SMI_POLLING_EN BIT(10)
355
356 #define MVPP22_GMAC_BASE(port) (0x7000 + (port) * 0x1000 + 0xe00)
357
358 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
359
360 /* Descriptor ring Macros */
361 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
362 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
363
364 /* Various constants */
365
366 /* Coalescing */
367 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
368 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
369 #define MVPP2_RX_COAL_PKTS 32
370 #define MVPP2_RX_COAL_USEC 100
371
372 /* The two bytes Marvell header. Either contains a special value used
373 * by Marvell switches when a specific hardware mode is enabled (not
374 * supported by this driver) or is filled automatically by zeroes on
375 * the RX side. Those two bytes being at the front of the Ethernet
376 * header, they allow to have the IP header aligned on a 4 bytes
377 * boundary automatically: the hardware skips those two bytes on its
378 * own.
379 */
380 #define MVPP2_MH_SIZE 2
381 #define MVPP2_ETH_TYPE_LEN 2
382 #define MVPP2_PPPOE_HDR_SIZE 8
383 #define MVPP2_VLAN_TAG_LEN 4
384
385 /* Lbtd 802.3 type */
386 #define MVPP2_IP_LBDT_TYPE 0xfffa
387
388 #define MVPP2_TX_CSUM_MAX_SIZE 9800
389
390 /* Timeout constants */
391 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
392 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
393
394 #define MVPP2_TX_MTU_MAX 0x7ffff
395
396 /* Maximum number of T-CONTs of PON port */
397 #define MVPP2_MAX_TCONT 16
398
399 /* Maximum number of supported ports */
400 #define MVPP2_MAX_PORTS 4
401
402 /* Maximum number of TXQs used by single port */
403 #define MVPP2_MAX_TXQ 8
404
405 /* Dfault number of RXQs in use */
406 #define MVPP2_DEFAULT_RXQ 4
407
408 /* Max number of Rx descriptors */
409 #define MVPP2_MAX_RXD 128
410
411 /* Max number of Tx descriptors */
412 #define MVPP2_MAX_TXD 1024
413
414 /* Amount of Tx descriptors that can be reserved at once by CPU */
415 #define MVPP2_CPU_DESC_CHUNK 64
416
417 /* Max number of Tx descriptors in each aggregated queue */
418 #define MVPP2_AGGR_TXQ_SIZE 256
419
420 /* Descriptor aligned size */
421 #define MVPP2_DESC_ALIGNED_SIZE 32
422
423 /* Descriptor alignment mask */
424 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
425
426 /* RX FIFO constants */
427 #define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
428 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
429 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
430
431 /* RX buffer constants */
432 #define MVPP2_SKB_SHINFO_SIZE \
433 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
434
435 #define MVPP2_RX_PKT_SIZE(mtu) \
436 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
437 ETH_HLEN + ETH_FCS_LEN, cache_line_size())
438
439 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
440 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
441 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
442 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
443
444 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
445
446 /* IPv6 max L3 address size */
447 #define MVPP2_MAX_L3_ADDR_SIZE 16
448
449 /* Port flags */
450 #define MVPP2_F_LOOPBACK BIT(0)
451
452 /* Marvell tag types */
453 enum mvpp2_tag_type {
454 MVPP2_TAG_TYPE_NONE = 0,
455 MVPP2_TAG_TYPE_MH = 1,
456 MVPP2_TAG_TYPE_DSA = 2,
457 MVPP2_TAG_TYPE_EDSA = 3,
458 MVPP2_TAG_TYPE_VLAN = 4,
459 MVPP2_TAG_TYPE_LAST = 5
460 };
461
462 /* Parser constants */
463 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
464 #define MVPP2_PRS_TCAM_WORDS 6
465 #define MVPP2_PRS_SRAM_WORDS 4
466 #define MVPP2_PRS_FLOW_ID_SIZE 64
467 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
468 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
469 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
470 #define MVPP2_PRS_IPV4_HEAD 0x40
471 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
472 #define MVPP2_PRS_IPV4_MC 0xe0
473 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
474 #define MVPP2_PRS_IPV4_BC_MASK 0xff
475 #define MVPP2_PRS_IPV4_IHL 0x5
476 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
477 #define MVPP2_PRS_IPV6_MC 0xff
478 #define MVPP2_PRS_IPV6_MC_MASK 0xff
479 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
480 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
481 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
482 #define MVPP2_PRS_DBL_VLANS_MAX 100
483
484 /* Tcam structure:
485 * - lookup ID - 4 bits
486 * - port ID - 1 byte
487 * - additional information - 1 byte
488 * - header data - 8 bytes
489 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
490 */
491 #define MVPP2_PRS_AI_BITS 8
492 #define MVPP2_PRS_PORT_MASK 0xff
493 #define MVPP2_PRS_LU_MASK 0xf
494 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
495 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
496 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
497 (((offs) * 2) - ((offs) % 2) + 2)
498 #define MVPP2_PRS_TCAM_AI_BYTE 16
499 #define MVPP2_PRS_TCAM_PORT_BYTE 17
500 #define MVPP2_PRS_TCAM_LU_BYTE 20
501 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
502 #define MVPP2_PRS_TCAM_INV_WORD 5
503 /* Tcam entries ID */
504 #define MVPP2_PE_DROP_ALL 0
505 #define MVPP2_PE_FIRST_FREE_TID 1
506 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
507 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
508 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
509 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
510 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
511 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
512 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
513 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
514 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
515 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
516 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
517 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
518 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
519 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
520 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
521 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
522 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
523 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
524 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
525 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
526 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
527 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
528 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
529 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
530 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
531
532 /* Sram structure
533 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
534 */
535 #define MVPP2_PRS_SRAM_RI_OFFS 0
536 #define MVPP2_PRS_SRAM_RI_WORD 0
537 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
538 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
539 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
540 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
541 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
542 #define MVPP2_PRS_SRAM_UDF_OFFS 73
543 #define MVPP2_PRS_SRAM_UDF_BITS 8
544 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
545 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
546 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
547 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
548 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
549 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
550 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
551 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
552 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
553 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
554 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
555 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
556 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
557 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
558 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
559 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
560 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
561 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
562 #define MVPP2_PRS_SRAM_AI_OFFS 90
563 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
564 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
565 #define MVPP2_PRS_SRAM_AI_MASK 0xff
566 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
567 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
568 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
569 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
570
571 /* Sram result info bits assignment */
572 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
573 #define MVPP2_PRS_RI_DSA_MASK 0x2
574 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
575 #define MVPP2_PRS_RI_VLAN_NONE 0x0
576 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
577 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
578 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
579 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
580 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
581 #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
582 #define MVPP2_PRS_RI_L2_UCAST 0x0
583 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
584 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
585 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
586 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
587 #define MVPP2_PRS_RI_L3_UN 0x0
588 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
589 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
590 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
591 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
592 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
593 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
594 #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
595 #define MVPP2_PRS_RI_L3_UCAST 0x0
596 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
597 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
598 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
599 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
600 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
601 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
602 #define MVPP2_PRS_RI_L4_TCP BIT(22)
603 #define MVPP2_PRS_RI_L4_UDP BIT(23)
604 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
605 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
606 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
607 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
608
609 /* Sram additional info bits assignment */
610 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
611 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
612 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
613 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
614 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
615 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
616 #define MVPP2_PRS_SINGLE_VLAN_AI 0
617 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
618
619 /* DSA/EDSA type */
620 #define MVPP2_PRS_TAGGED true
621 #define MVPP2_PRS_UNTAGGED false
622 #define MVPP2_PRS_EDSA true
623 #define MVPP2_PRS_DSA false
624
625 /* MAC entries, shadow udf */
626 enum mvpp2_prs_udf {
627 MVPP2_PRS_UDF_MAC_DEF,
628 MVPP2_PRS_UDF_MAC_RANGE,
629 MVPP2_PRS_UDF_L2_DEF,
630 MVPP2_PRS_UDF_L2_DEF_COPY,
631 MVPP2_PRS_UDF_L2_USER,
632 };
633
634 /* Lookup ID */
635 enum mvpp2_prs_lookup {
636 MVPP2_PRS_LU_MH,
637 MVPP2_PRS_LU_MAC,
638 MVPP2_PRS_LU_DSA,
639 MVPP2_PRS_LU_VLAN,
640 MVPP2_PRS_LU_L2,
641 MVPP2_PRS_LU_PPPOE,
642 MVPP2_PRS_LU_IP4,
643 MVPP2_PRS_LU_IP6,
644 MVPP2_PRS_LU_FLOWS,
645 MVPP2_PRS_LU_LAST,
646 };
647
648 /* L3 cast enum */
649 enum mvpp2_prs_l3_cast {
650 MVPP2_PRS_L3_UNI_CAST,
651 MVPP2_PRS_L3_MULTI_CAST,
652 MVPP2_PRS_L3_BROAD_CAST
653 };
654
655 /* Classifier constants */
656 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
657 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
658 #define MVPP2_CLS_LKP_TBL_SIZE 64
659
660 /* BM constants */
661 #define MVPP2_BM_POOLS_NUM 8
662 #define MVPP2_BM_LONG_BUF_NUM 1024
663 #define MVPP2_BM_SHORT_BUF_NUM 2048
664 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
665 #define MVPP2_BM_POOL_PTR_ALIGN 128
666 #define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
667 #define MVPP2_BM_SWF_SHORT_POOL 3
668
669 /* BM cookie (32 bits) definition */
670 #define MVPP2_BM_COOKIE_POOL_OFFS 8
671 #define MVPP2_BM_COOKIE_CPU_OFFS 24
672
673 /* BM short pool packet size
674 * These value assure that for SWF the total number
675 * of bytes allocated for each buffer will be 512
676 */
677 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
678
679 #define MVPP21_ADDR_SPACE_SZ 0
680 #define MVPP22_ADDR_SPACE_SZ SZ_64K
681
682 #define MVPP2_MAX_CPUS 4
683
684 enum mvpp2_bm_type {
685 MVPP2_BM_FREE,
686 MVPP2_BM_SWF_LONG,
687 MVPP2_BM_SWF_SHORT
688 };
689
690 /* Definitions */
691
692 /* Shared Packet Processor resources */
693 struct mvpp2 {
694 /* Shared registers' base addresses */
695 void __iomem *lms_base;
696 void __iomem *iface_base;
697
698 /* On PPv2.2, each CPU can access the base register through a
699 * separate address space, each 64 KB apart from each
700 * other.
701 */
702 void __iomem *cpu_base[MVPP2_MAX_CPUS];
703
704 /* Common clocks */
705 struct clk *pp_clk;
706 struct clk *gop_clk;
707 struct clk *mg_clk;
708
709 /* List of pointers to port structures */
710 struct mvpp2_port **port_list;
711
712 /* Aggregated TXQs */
713 struct mvpp2_tx_queue *aggr_txqs;
714
715 /* BM pools */
716 struct mvpp2_bm_pool *bm_pools;
717
718 /* PRS shadow table */
719 struct mvpp2_prs_shadow *prs_shadow;
720 /* PRS auxiliary table for double vlan entries control */
721 bool *prs_double_vlans;
722
723 /* Tclk value */
724 u32 tclk;
725
726 /* HW version */
727 enum { MVPP21, MVPP22 } hw_version;
728
729 /* Maximum number of RXQs per port */
730 unsigned int max_port_rxqs;
731 };
732
733 struct mvpp2_pcpu_stats {
734 struct u64_stats_sync syncp;
735 u64 rx_packets;
736 u64 rx_bytes;
737 u64 tx_packets;
738 u64 tx_bytes;
739 };
740
741 /* Per-CPU port control */
742 struct mvpp2_port_pcpu {
743 struct hrtimer tx_done_timer;
744 bool timer_scheduled;
745 /* Tasklet for egress finalization */
746 struct tasklet_struct tx_done_tasklet;
747 };
748
749 struct mvpp2_port {
750 u8 id;
751
752 /* Index of the port from the "group of ports" complex point
753 * of view
754 */
755 int gop_id;
756
757 int irq;
758
759 struct mvpp2 *priv;
760
761 /* Per-port registers' base address */
762 void __iomem *base;
763
764 struct mvpp2_rx_queue **rxqs;
765 struct mvpp2_tx_queue **txqs;
766 struct net_device *dev;
767
768 int pkt_size;
769
770 u32 pending_cause_rx;
771 struct napi_struct napi;
772
773 /* Per-CPU port control */
774 struct mvpp2_port_pcpu __percpu *pcpu;
775
776 /* Flags */
777 unsigned long flags;
778
779 u16 tx_ring_size;
780 u16 rx_ring_size;
781 struct mvpp2_pcpu_stats __percpu *stats;
782
783 phy_interface_t phy_interface;
784 struct device_node *phy_node;
785 unsigned int link;
786 unsigned int duplex;
787 unsigned int speed;
788
789 struct mvpp2_bm_pool *pool_long;
790 struct mvpp2_bm_pool *pool_short;
791
792 /* Index of first port's physical RXQ */
793 u8 first_rxq;
794 };
795
796 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
797 * layout of the transmit and reception DMA descriptors, and their
798 * layout is therefore defined by the hardware design
799 */
800
801 #define MVPP2_TXD_L3_OFF_SHIFT 0
802 #define MVPP2_TXD_IP_HLEN_SHIFT 8
803 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
804 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
805 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
806 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
807 #define MVPP2_TXD_L4_UDP BIT(24)
808 #define MVPP2_TXD_L3_IP6 BIT(26)
809 #define MVPP2_TXD_L_DESC BIT(28)
810 #define MVPP2_TXD_F_DESC BIT(29)
811
812 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
813 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
814 #define MVPP2_RXD_ERR_CRC 0x0
815 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
816 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
817 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
818 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
819 #define MVPP2_RXD_HWF_SYNC BIT(21)
820 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
821 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
822 #define MVPP2_RXD_L4_TCP BIT(25)
823 #define MVPP2_RXD_L4_UDP BIT(26)
824 #define MVPP2_RXD_L3_IP4 BIT(28)
825 #define MVPP2_RXD_L3_IP6 BIT(30)
826 #define MVPP2_RXD_BUF_HDR BIT(31)
827
828 /* HW TX descriptor for PPv2.1 */
829 struct mvpp21_tx_desc {
830 u32 command; /* Options used by HW for packet transmitting.*/
831 u8 packet_offset; /* the offset from the buffer beginning */
832 u8 phys_txq; /* destination queue ID */
833 u16 data_size; /* data size of transmitted packet in bytes */
834 u32 buf_dma_addr; /* physical addr of transmitted buffer */
835 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
836 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
837 u32 reserved2; /* reserved (for future use) */
838 };
839
840 /* HW RX descriptor for PPv2.1 */
841 struct mvpp21_rx_desc {
842 u32 status; /* info about received packet */
843 u16 reserved1; /* parser_info (for future use, PnC) */
844 u16 data_size; /* size of received packet in bytes */
845 u32 buf_dma_addr; /* physical address of the buffer */
846 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
847 u16 reserved2; /* gem_port_id (for future use, PON) */
848 u16 reserved3; /* csum_l4 (for future use, PnC) */
849 u8 reserved4; /* bm_qset (for future use, BM) */
850 u8 reserved5;
851 u16 reserved6; /* classify_info (for future use, PnC) */
852 u32 reserved7; /* flow_id (for future use, PnC) */
853 u32 reserved8;
854 };
855
856 /* HW TX descriptor for PPv2.2 */
857 struct mvpp22_tx_desc {
858 u32 command;
859 u8 packet_offset;
860 u8 phys_txq;
861 u16 data_size;
862 u64 reserved1;
863 u64 buf_dma_addr_ptp;
864 u64 buf_cookie_misc;
865 };
866
867 /* HW RX descriptor for PPv2.2 */
868 struct mvpp22_rx_desc {
869 u32 status;
870 u16 reserved1;
871 u16 data_size;
872 u32 reserved2;
873 u32 reserved3;
874 u64 buf_dma_addr_key_hash;
875 u64 buf_cookie_misc;
876 };
877
878 /* Opaque type used by the driver to manipulate the HW TX and RX
879 * descriptors
880 */
881 struct mvpp2_tx_desc {
882 union {
883 struct mvpp21_tx_desc pp21;
884 struct mvpp22_tx_desc pp22;
885 };
886 };
887
888 struct mvpp2_rx_desc {
889 union {
890 struct mvpp21_rx_desc pp21;
891 struct mvpp22_rx_desc pp22;
892 };
893 };
894
895 struct mvpp2_txq_pcpu_buf {
896 /* Transmitted SKB */
897 struct sk_buff *skb;
898
899 /* Physical address of transmitted buffer */
900 dma_addr_t dma;
901
902 /* Size transmitted */
903 size_t size;
904 };
905
906 /* Per-CPU Tx queue control */
907 struct mvpp2_txq_pcpu {
908 int cpu;
909
910 /* Number of Tx DMA descriptors in the descriptor ring */
911 int size;
912
913 /* Number of currently used Tx DMA descriptor in the
914 * descriptor ring
915 */
916 int count;
917
918 /* Number of Tx DMA descriptors reserved for each CPU */
919 int reserved_num;
920
921 /* Infos about transmitted buffers */
922 struct mvpp2_txq_pcpu_buf *buffs;
923
924 /* Index of last TX DMA descriptor that was inserted */
925 int txq_put_index;
926
927 /* Index of the TX DMA descriptor to be cleaned up */
928 int txq_get_index;
929 };
930
931 struct mvpp2_tx_queue {
932 /* Physical number of this Tx queue */
933 u8 id;
934
935 /* Logical number of this Tx queue */
936 u8 log_id;
937
938 /* Number of Tx DMA descriptors in the descriptor ring */
939 int size;
940
941 /* Number of currently used Tx DMA descriptor in the descriptor ring */
942 int count;
943
944 /* Per-CPU control of physical Tx queues */
945 struct mvpp2_txq_pcpu __percpu *pcpu;
946
947 u32 done_pkts_coal;
948
949 /* Virtual address of thex Tx DMA descriptors array */
950 struct mvpp2_tx_desc *descs;
951
952 /* DMA address of the Tx DMA descriptors array */
953 dma_addr_t descs_dma;
954
955 /* Index of the last Tx DMA descriptor */
956 int last_desc;
957
958 /* Index of the next Tx DMA descriptor to process */
959 int next_desc_to_proc;
960 };
961
962 struct mvpp2_rx_queue {
963 /* RX queue number, in the range 0-31 for physical RXQs */
964 u8 id;
965
966 /* Num of rx descriptors in the rx descriptor ring */
967 int size;
968
969 u32 pkts_coal;
970 u32 time_coal;
971
972 /* Virtual address of the RX DMA descriptors array */
973 struct mvpp2_rx_desc *descs;
974
975 /* DMA address of the RX DMA descriptors array */
976 dma_addr_t descs_dma;
977
978 /* Index of the last RX DMA descriptor */
979 int last_desc;
980
981 /* Index of the next RX DMA descriptor to process */
982 int next_desc_to_proc;
983
984 /* ID of port to which physical RXQ is mapped */
985 int port;
986
987 /* Port's logic RXQ number to which physical RXQ is mapped */
988 int logic_rxq;
989 };
990
991 union mvpp2_prs_tcam_entry {
992 u32 word[MVPP2_PRS_TCAM_WORDS];
993 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
994 };
995
996 union mvpp2_prs_sram_entry {
997 u32 word[MVPP2_PRS_SRAM_WORDS];
998 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
999 };
1000
1001 struct mvpp2_prs_entry {
1002 u32 index;
1003 union mvpp2_prs_tcam_entry tcam;
1004 union mvpp2_prs_sram_entry sram;
1005 };
1006
1007 struct mvpp2_prs_shadow {
1008 bool valid;
1009 bool finish;
1010
1011 /* Lookup ID */
1012 int lu;
1013
1014 /* User defined offset */
1015 int udf;
1016
1017 /* Result info */
1018 u32 ri;
1019 u32 ri_mask;
1020 };
1021
1022 struct mvpp2_cls_flow_entry {
1023 u32 index;
1024 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
1025 };
1026
1027 struct mvpp2_cls_lookup_entry {
1028 u32 lkpid;
1029 u32 way;
1030 u32 data;
1031 };
1032
1033 struct mvpp2_bm_pool {
1034 /* Pool number in the range 0-7 */
1035 int id;
1036 enum mvpp2_bm_type type;
1037
1038 /* Buffer Pointers Pool External (BPPE) size */
1039 int size;
1040 /* BPPE size in bytes */
1041 int size_bytes;
1042 /* Number of buffers for this pool */
1043 int buf_num;
1044 /* Pool buffer size */
1045 int buf_size;
1046 /* Packet size */
1047 int pkt_size;
1048 int frag_size;
1049
1050 /* BPPE virtual base address */
1051 u32 *virt_addr;
1052 /* BPPE DMA base address */
1053 dma_addr_t dma_addr;
1054
1055 /* Ports using BM pool */
1056 u32 port_map;
1057 };
1058
1059 /* Static declaractions */
1060
1061 /* Number of RXQs used by single port */
1062 static int rxq_number = MVPP2_DEFAULT_RXQ;
1063 /* Number of TXQs used by single port */
1064 static int txq_number = MVPP2_MAX_TXQ;
1065
1066 #define MVPP2_DRIVER_NAME "mvpp2"
1067 #define MVPP2_DRIVER_VERSION "1.0"
1068
1069 /* Utility/helper methods */
1070
1071 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
1072 {
1073 writel(data, priv->cpu_base[0] + offset);
1074 }
1075
1076 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
1077 {
1078 return readl(priv->cpu_base[0] + offset);
1079 }
1080
1081 /* These accessors should be used to access:
1082 *
1083 * - per-CPU registers, where each CPU has its own copy of the
1084 * register.
1085 *
1086 * MVPP2_BM_VIRT_ALLOC_REG
1087 * MVPP2_BM_ADDR_HIGH_ALLOC
1088 * MVPP22_BM_ADDR_HIGH_RLS_REG
1089 * MVPP2_BM_VIRT_RLS_REG
1090 * MVPP2_ISR_RX_TX_CAUSE_REG
1091 * MVPP2_ISR_RX_TX_MASK_REG
1092 * MVPP2_TXQ_NUM_REG
1093 * MVPP2_AGGR_TXQ_UPDATE_REG
1094 * MVPP2_TXQ_RSVD_REQ_REG
1095 * MVPP2_TXQ_RSVD_RSLT_REG
1096 * MVPP2_TXQ_SENT_REG
1097 * MVPP2_RXQ_NUM_REG
1098 *
1099 * - global registers that must be accessed through a specific CPU
1100 * window, because they are related to an access to a per-CPU
1101 * register
1102 *
1103 * MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG)
1104 * MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG)
1105 * MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG)
1106 * MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG)
1107 * MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG)
1108 * MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG)
1109 * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
1110 * MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG)
1111 * MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG)
1112 * MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG)
1113 * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
1114 * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
1115 * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
1116 */
1117 static void mvpp2_percpu_write(struct mvpp2 *priv, int cpu,
1118 u32 offset, u32 data)
1119 {
1120 writel(data, priv->cpu_base[cpu] + offset);
1121 }
1122
1123 static u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu,
1124 u32 offset)
1125 {
1126 return readl(priv->cpu_base[cpu] + offset);
1127 }
1128
1129 static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
1130 struct mvpp2_tx_desc *tx_desc)
1131 {
1132 if (port->priv->hw_version == MVPP21)
1133 return tx_desc->pp21.buf_dma_addr;
1134 else
1135 return tx_desc->pp22.buf_dma_addr_ptp & GENMASK_ULL(40, 0);
1136 }
1137
1138 static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
1139 struct mvpp2_tx_desc *tx_desc,
1140 dma_addr_t dma_addr)
1141 {
1142 if (port->priv->hw_version == MVPP21) {
1143 tx_desc->pp21.buf_dma_addr = dma_addr;
1144 } else {
1145 u64 val = (u64)dma_addr;
1146
1147 tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
1148 tx_desc->pp22.buf_dma_addr_ptp |= val;
1149 }
1150 }
1151
1152 static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
1153 struct mvpp2_tx_desc *tx_desc)
1154 {
1155 if (port->priv->hw_version == MVPP21)
1156 return tx_desc->pp21.data_size;
1157 else
1158 return tx_desc->pp22.data_size;
1159 }
1160
1161 static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
1162 struct mvpp2_tx_desc *tx_desc,
1163 size_t size)
1164 {
1165 if (port->priv->hw_version == MVPP21)
1166 tx_desc->pp21.data_size = size;
1167 else
1168 tx_desc->pp22.data_size = size;
1169 }
1170
1171 static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
1172 struct mvpp2_tx_desc *tx_desc,
1173 unsigned int txq)
1174 {
1175 if (port->priv->hw_version == MVPP21)
1176 tx_desc->pp21.phys_txq = txq;
1177 else
1178 tx_desc->pp22.phys_txq = txq;
1179 }
1180
1181 static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
1182 struct mvpp2_tx_desc *tx_desc,
1183 unsigned int command)
1184 {
1185 if (port->priv->hw_version == MVPP21)
1186 tx_desc->pp21.command = command;
1187 else
1188 tx_desc->pp22.command = command;
1189 }
1190
1191 static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
1192 struct mvpp2_tx_desc *tx_desc,
1193 unsigned int offset)
1194 {
1195 if (port->priv->hw_version == MVPP21)
1196 tx_desc->pp21.packet_offset = offset;
1197 else
1198 tx_desc->pp22.packet_offset = offset;
1199 }
1200
1201 static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
1202 struct mvpp2_tx_desc *tx_desc)
1203 {
1204 if (port->priv->hw_version == MVPP21)
1205 return tx_desc->pp21.packet_offset;
1206 else
1207 return tx_desc->pp22.packet_offset;
1208 }
1209
1210 static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
1211 struct mvpp2_rx_desc *rx_desc)
1212 {
1213 if (port->priv->hw_version == MVPP21)
1214 return rx_desc->pp21.buf_dma_addr;
1215 else
1216 return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
1217 }
1218
1219 static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
1220 struct mvpp2_rx_desc *rx_desc)
1221 {
1222 if (port->priv->hw_version == MVPP21)
1223 return rx_desc->pp21.buf_cookie;
1224 else
1225 return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
1226 }
1227
1228 static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
1229 struct mvpp2_rx_desc *rx_desc)
1230 {
1231 if (port->priv->hw_version == MVPP21)
1232 return rx_desc->pp21.data_size;
1233 else
1234 return rx_desc->pp22.data_size;
1235 }
1236
1237 static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
1238 struct mvpp2_rx_desc *rx_desc)
1239 {
1240 if (port->priv->hw_version == MVPP21)
1241 return rx_desc->pp21.status;
1242 else
1243 return rx_desc->pp22.status;
1244 }
1245
1246 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
1247 {
1248 txq_pcpu->txq_get_index++;
1249 if (txq_pcpu->txq_get_index == txq_pcpu->size)
1250 txq_pcpu->txq_get_index = 0;
1251 }
1252
1253 static void mvpp2_txq_inc_put(struct mvpp2_port *port,
1254 struct mvpp2_txq_pcpu *txq_pcpu,
1255 struct sk_buff *skb,
1256 struct mvpp2_tx_desc *tx_desc)
1257 {
1258 struct mvpp2_txq_pcpu_buf *tx_buf =
1259 txq_pcpu->buffs + txq_pcpu->txq_put_index;
1260 tx_buf->skb = skb;
1261 tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
1262 tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
1263 mvpp2_txdesc_offset_get(port, tx_desc);
1264 txq_pcpu->txq_put_index++;
1265 if (txq_pcpu->txq_put_index == txq_pcpu->size)
1266 txq_pcpu->txq_put_index = 0;
1267 }
1268
1269 /* Get number of physical egress port */
1270 static inline int mvpp2_egress_port(struct mvpp2_port *port)
1271 {
1272 return MVPP2_MAX_TCONT + port->id;
1273 }
1274
1275 /* Get number of physical TXQ */
1276 static inline int mvpp2_txq_phys(int port, int txq)
1277 {
1278 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1279 }
1280
1281 /* Parser configuration routines */
1282
1283 /* Update parser tcam and sram hw entries */
1284 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1285 {
1286 int i;
1287
1288 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1289 return -EINVAL;
1290
1291 /* Clear entry invalidation bit */
1292 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1293
1294 /* Write tcam index - indirect access */
1295 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1296 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1297 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1298
1299 /* Write sram index - indirect access */
1300 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1301 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1302 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1303
1304 return 0;
1305 }
1306
1307 /* Read tcam entry from hw */
1308 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1309 {
1310 int i;
1311
1312 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1313 return -EINVAL;
1314
1315 /* Write tcam index - indirect access */
1316 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1317
1318 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1319 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1320 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1321 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1322
1323 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1324 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1325
1326 /* Write sram index - indirect access */
1327 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1328 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1329 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1330
1331 return 0;
1332 }
1333
1334 /* Invalidate tcam hw entry */
1335 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1336 {
1337 /* Write index - indirect access */
1338 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1339 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1340 MVPP2_PRS_TCAM_INV_MASK);
1341 }
1342
1343 /* Enable shadow table entry and set its lookup ID */
1344 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1345 {
1346 priv->prs_shadow[index].valid = true;
1347 priv->prs_shadow[index].lu = lu;
1348 }
1349
1350 /* Update ri fields in shadow table entry */
1351 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1352 unsigned int ri, unsigned int ri_mask)
1353 {
1354 priv->prs_shadow[index].ri_mask = ri_mask;
1355 priv->prs_shadow[index].ri = ri;
1356 }
1357
1358 /* Update lookup field in tcam sw entry */
1359 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1360 {
1361 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1362
1363 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1364 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1365 }
1366
1367 /* Update mask for single port in tcam sw entry */
1368 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1369 unsigned int port, bool add)
1370 {
1371 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1372
1373 if (add)
1374 pe->tcam.byte[enable_off] &= ~(1 << port);
1375 else
1376 pe->tcam.byte[enable_off] |= 1 << port;
1377 }
1378
1379 /* Update port map in tcam sw entry */
1380 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1381 unsigned int ports)
1382 {
1383 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1384 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1385
1386 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1387 pe->tcam.byte[enable_off] &= ~port_mask;
1388 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1389 }
1390
1391 /* Obtain port map from tcam sw entry */
1392 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1393 {
1394 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1395
1396 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1397 }
1398
1399 /* Set byte of data and its enable bits in tcam sw entry */
1400 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1401 unsigned int offs, unsigned char byte,
1402 unsigned char enable)
1403 {
1404 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1405 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1406 }
1407
1408 /* Get byte of data and its enable bits from tcam sw entry */
1409 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1410 unsigned int offs, unsigned char *byte,
1411 unsigned char *enable)
1412 {
1413 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1414 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1415 }
1416
1417 /* Compare tcam data bytes with a pattern */
1418 static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1419 u16 data)
1420 {
1421 int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1422 u16 tcam_data;
1423
1424 tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1425 if (tcam_data != data)
1426 return false;
1427 return true;
1428 }
1429
1430 /* Update ai bits in tcam sw entry */
1431 static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1432 unsigned int bits, unsigned int enable)
1433 {
1434 int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1435
1436 for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1437
1438 if (!(enable & BIT(i)))
1439 continue;
1440
1441 if (bits & BIT(i))
1442 pe->tcam.byte[ai_idx] |= 1 << i;
1443 else
1444 pe->tcam.byte[ai_idx] &= ~(1 << i);
1445 }
1446
1447 pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1448 }
1449
1450 /* Get ai bits from tcam sw entry */
1451 static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1452 {
1453 return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1454 }
1455
1456 /* Set ethertype in tcam sw entry */
1457 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1458 unsigned short ethertype)
1459 {
1460 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1461 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1462 }
1463
1464 /* Set bits in sram sw entry */
1465 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1466 int val)
1467 {
1468 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1469 }
1470
1471 /* Clear bits in sram sw entry */
1472 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1473 int val)
1474 {
1475 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1476 }
1477
1478 /* Update ri bits in sram sw entry */
1479 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1480 unsigned int bits, unsigned int mask)
1481 {
1482 unsigned int i;
1483
1484 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1485 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1486
1487 if (!(mask & BIT(i)))
1488 continue;
1489
1490 if (bits & BIT(i))
1491 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1492 else
1493 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1494
1495 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1496 }
1497 }
1498
1499 /* Obtain ri bits from sram sw entry */
1500 static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1501 {
1502 return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1503 }
1504
1505 /* Update ai bits in sram sw entry */
1506 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1507 unsigned int bits, unsigned int mask)
1508 {
1509 unsigned int i;
1510 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1511
1512 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1513
1514 if (!(mask & BIT(i)))
1515 continue;
1516
1517 if (bits & BIT(i))
1518 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1519 else
1520 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1521
1522 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1523 }
1524 }
1525
1526 /* Read ai bits from sram sw entry */
1527 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1528 {
1529 u8 bits;
1530 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1531 int ai_en_off = ai_off + 1;
1532 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1533
1534 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1535 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1536
1537 return bits;
1538 }
1539
1540 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1541 * lookup interation
1542 */
1543 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1544 unsigned int lu)
1545 {
1546 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1547
1548 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1549 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1550 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1551 }
1552
1553 /* In the sram sw entry set sign and value of the next lookup offset
1554 * and the offset value generated to the classifier
1555 */
1556 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1557 unsigned int op)
1558 {
1559 /* Set sign */
1560 if (shift < 0) {
1561 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1562 shift = 0 - shift;
1563 } else {
1564 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1565 }
1566
1567 /* Set value */
1568 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1569 (unsigned char)shift;
1570
1571 /* Reset and set operation */
1572 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1573 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1574 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1575
1576 /* Set base offset as current */
1577 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1578 }
1579
1580 /* In the sram sw entry set sign and value of the user defined offset
1581 * generated to the classifier
1582 */
1583 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1584 unsigned int type, int offset,
1585 unsigned int op)
1586 {
1587 /* Set sign */
1588 if (offset < 0) {
1589 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1590 offset = 0 - offset;
1591 } else {
1592 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1593 }
1594
1595 /* Set value */
1596 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1597 MVPP2_PRS_SRAM_UDF_MASK);
1598 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1599 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1600 MVPP2_PRS_SRAM_UDF_BITS)] &=
1601 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1602 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1603 MVPP2_PRS_SRAM_UDF_BITS)] |=
1604 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1605
1606 /* Set offset type */
1607 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1608 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1609 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1610
1611 /* Set offset operation */
1612 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1613 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1614 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1615
1616 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1617 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1618 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1619 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1620
1621 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1622 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1623 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1624
1625 /* Set base offset as current */
1626 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1627 }
1628
1629 /* Find parser flow entry */
1630 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1631 {
1632 struct mvpp2_prs_entry *pe;
1633 int tid;
1634
1635 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1636 if (!pe)
1637 return NULL;
1638 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1639
1640 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1641 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1642 u8 bits;
1643
1644 if (!priv->prs_shadow[tid].valid ||
1645 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1646 continue;
1647
1648 pe->index = tid;
1649 mvpp2_prs_hw_read(priv, pe);
1650 bits = mvpp2_prs_sram_ai_get(pe);
1651
1652 /* Sram store classification lookup ID in AI bits [5:0] */
1653 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1654 return pe;
1655 }
1656 kfree(pe);
1657
1658 return NULL;
1659 }
1660
1661 /* Return first free tcam index, seeking from start to end */
1662 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1663 unsigned char end)
1664 {
1665 int tid;
1666
1667 if (start > end)
1668 swap(start, end);
1669
1670 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1671 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1672
1673 for (tid = start; tid <= end; tid++) {
1674 if (!priv->prs_shadow[tid].valid)
1675 return tid;
1676 }
1677
1678 return -EINVAL;
1679 }
1680
1681 /* Enable/disable dropping all mac da's */
1682 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1683 {
1684 struct mvpp2_prs_entry pe;
1685
1686 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1687 /* Entry exist - update port only */
1688 pe.index = MVPP2_PE_DROP_ALL;
1689 mvpp2_prs_hw_read(priv, &pe);
1690 } else {
1691 /* Entry doesn't exist - create new */
1692 memset(&pe, 0, sizeof(pe));
1693 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1694 pe.index = MVPP2_PE_DROP_ALL;
1695
1696 /* Non-promiscuous mode for all ports - DROP unknown packets */
1697 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1698 MVPP2_PRS_RI_DROP_MASK);
1699
1700 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1701 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1702
1703 /* Update shadow table */
1704 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1705
1706 /* Mask all ports */
1707 mvpp2_prs_tcam_port_map_set(&pe, 0);
1708 }
1709
1710 /* Update port mask */
1711 mvpp2_prs_tcam_port_set(&pe, port, add);
1712
1713 mvpp2_prs_hw_write(priv, &pe);
1714 }
1715
1716 /* Set port to promiscuous mode */
1717 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1718 {
1719 struct mvpp2_prs_entry pe;
1720
1721 /* Promiscuous mode - Accept unknown packets */
1722
1723 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1724 /* Entry exist - update port only */
1725 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1726 mvpp2_prs_hw_read(priv, &pe);
1727 } else {
1728 /* Entry doesn't exist - create new */
1729 memset(&pe, 0, sizeof(pe));
1730 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1731 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1732
1733 /* Continue - set next lookup */
1734 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1735
1736 /* Set result info bits */
1737 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1738 MVPP2_PRS_RI_L2_CAST_MASK);
1739
1740 /* Shift to ethertype */
1741 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1742 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1743
1744 /* Mask all ports */
1745 mvpp2_prs_tcam_port_map_set(&pe, 0);
1746
1747 /* Update shadow table */
1748 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1749 }
1750
1751 /* Update port mask */
1752 mvpp2_prs_tcam_port_set(&pe, port, add);
1753
1754 mvpp2_prs_hw_write(priv, &pe);
1755 }
1756
1757 /* Accept multicast */
1758 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1759 bool add)
1760 {
1761 struct mvpp2_prs_entry pe;
1762 unsigned char da_mc;
1763
1764 /* Ethernet multicast address first byte is
1765 * 0x01 for IPv4 and 0x33 for IPv6
1766 */
1767 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1768
1769 if (priv->prs_shadow[index].valid) {
1770 /* Entry exist - update port only */
1771 pe.index = index;
1772 mvpp2_prs_hw_read(priv, &pe);
1773 } else {
1774 /* Entry doesn't exist - create new */
1775 memset(&pe, 0, sizeof(pe));
1776 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1777 pe.index = index;
1778
1779 /* Continue - set next lookup */
1780 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1781
1782 /* Set result info bits */
1783 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1784 MVPP2_PRS_RI_L2_CAST_MASK);
1785
1786 /* Update tcam entry data first byte */
1787 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1788
1789 /* Shift to ethertype */
1790 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1791 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1792
1793 /* Mask all ports */
1794 mvpp2_prs_tcam_port_map_set(&pe, 0);
1795
1796 /* Update shadow table */
1797 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1798 }
1799
1800 /* Update port mask */
1801 mvpp2_prs_tcam_port_set(&pe, port, add);
1802
1803 mvpp2_prs_hw_write(priv, &pe);
1804 }
1805
1806 /* Set entry for dsa packets */
1807 static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1808 bool tagged, bool extend)
1809 {
1810 struct mvpp2_prs_entry pe;
1811 int tid, shift;
1812
1813 if (extend) {
1814 tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1815 shift = 8;
1816 } else {
1817 tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1818 shift = 4;
1819 }
1820
1821 if (priv->prs_shadow[tid].valid) {
1822 /* Entry exist - update port only */
1823 pe.index = tid;
1824 mvpp2_prs_hw_read(priv, &pe);
1825 } else {
1826 /* Entry doesn't exist - create new */
1827 memset(&pe, 0, sizeof(pe));
1828 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1829 pe.index = tid;
1830
1831 /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1832 mvpp2_prs_sram_shift_set(&pe, shift,
1833 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1834
1835 /* Update shadow table */
1836 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1837
1838 if (tagged) {
1839 /* Set tagged bit in DSA tag */
1840 mvpp2_prs_tcam_data_byte_set(&pe, 0,
1841 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1842 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1843 /* Clear all ai bits for next iteration */
1844 mvpp2_prs_sram_ai_update(&pe, 0,
1845 MVPP2_PRS_SRAM_AI_MASK);
1846 /* If packet is tagged continue check vlans */
1847 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1848 } else {
1849 /* Set result info bits to 'no vlans' */
1850 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1851 MVPP2_PRS_RI_VLAN_MASK);
1852 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1853 }
1854
1855 /* Mask all ports */
1856 mvpp2_prs_tcam_port_map_set(&pe, 0);
1857 }
1858
1859 /* Update port mask */
1860 mvpp2_prs_tcam_port_set(&pe, port, add);
1861
1862 mvpp2_prs_hw_write(priv, &pe);
1863 }
1864
1865 /* Set entry for dsa ethertype */
1866 static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1867 bool add, bool tagged, bool extend)
1868 {
1869 struct mvpp2_prs_entry pe;
1870 int tid, shift, port_mask;
1871
1872 if (extend) {
1873 tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1874 MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1875 port_mask = 0;
1876 shift = 8;
1877 } else {
1878 tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1879 MVPP2_PE_ETYPE_DSA_UNTAGGED;
1880 port_mask = MVPP2_PRS_PORT_MASK;
1881 shift = 4;
1882 }
1883
1884 if (priv->prs_shadow[tid].valid) {
1885 /* Entry exist - update port only */
1886 pe.index = tid;
1887 mvpp2_prs_hw_read(priv, &pe);
1888 } else {
1889 /* Entry doesn't exist - create new */
1890 memset(&pe, 0, sizeof(pe));
1891 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1892 pe.index = tid;
1893
1894 /* Set ethertype */
1895 mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1896 mvpp2_prs_match_etype(&pe, 2, 0);
1897
1898 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1899 MVPP2_PRS_RI_DSA_MASK);
1900 /* Shift ethertype + 2 byte reserved + tag*/
1901 mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1902 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1903
1904 /* Update shadow table */
1905 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1906
1907 if (tagged) {
1908 /* Set tagged bit in DSA tag */
1909 mvpp2_prs_tcam_data_byte_set(&pe,
1910 MVPP2_ETH_TYPE_LEN + 2 + 3,
1911 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1912 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1913 /* Clear all ai bits for next iteration */
1914 mvpp2_prs_sram_ai_update(&pe, 0,
1915 MVPP2_PRS_SRAM_AI_MASK);
1916 /* If packet is tagged continue check vlans */
1917 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1918 } else {
1919 /* Set result info bits to 'no vlans' */
1920 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1921 MVPP2_PRS_RI_VLAN_MASK);
1922 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1923 }
1924 /* Mask/unmask all ports, depending on dsa type */
1925 mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1926 }
1927
1928 /* Update port mask */
1929 mvpp2_prs_tcam_port_set(&pe, port, add);
1930
1931 mvpp2_prs_hw_write(priv, &pe);
1932 }
1933
1934 /* Search for existing single/triple vlan entry */
1935 static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1936 unsigned short tpid, int ai)
1937 {
1938 struct mvpp2_prs_entry *pe;
1939 int tid;
1940
1941 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1942 if (!pe)
1943 return NULL;
1944 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1945
1946 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1947 for (tid = MVPP2_PE_FIRST_FREE_TID;
1948 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1949 unsigned int ri_bits, ai_bits;
1950 bool match;
1951
1952 if (!priv->prs_shadow[tid].valid ||
1953 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1954 continue;
1955
1956 pe->index = tid;
1957
1958 mvpp2_prs_hw_read(priv, pe);
1959 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1960 if (!match)
1961 continue;
1962
1963 /* Get vlan type */
1964 ri_bits = mvpp2_prs_sram_ri_get(pe);
1965 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1966
1967 /* Get current ai value from tcam */
1968 ai_bits = mvpp2_prs_tcam_ai_get(pe);
1969 /* Clear double vlan bit */
1970 ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1971
1972 if (ai != ai_bits)
1973 continue;
1974
1975 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1976 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1977 return pe;
1978 }
1979 kfree(pe);
1980
1981 return NULL;
1982 }
1983
1984 /* Add/update single/triple vlan entry */
1985 static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1986 unsigned int port_map)
1987 {
1988 struct mvpp2_prs_entry *pe;
1989 int tid_aux, tid;
1990 int ret = 0;
1991
1992 pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1993
1994 if (!pe) {
1995 /* Create new tcam entry */
1996 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1997 MVPP2_PE_FIRST_FREE_TID);
1998 if (tid < 0)
1999 return tid;
2000
2001 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2002 if (!pe)
2003 return -ENOMEM;
2004
2005 /* Get last double vlan tid */
2006 for (tid_aux = MVPP2_PE_LAST_FREE_TID;
2007 tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
2008 unsigned int ri_bits;
2009
2010 if (!priv->prs_shadow[tid_aux].valid ||
2011 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
2012 continue;
2013
2014 pe->index = tid_aux;
2015 mvpp2_prs_hw_read(priv, pe);
2016 ri_bits = mvpp2_prs_sram_ri_get(pe);
2017 if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
2018 MVPP2_PRS_RI_VLAN_DOUBLE)
2019 break;
2020 }
2021
2022 if (tid <= tid_aux) {
2023 ret = -EINVAL;
2024 goto free_pe;
2025 }
2026
2027 memset(pe, 0, sizeof(*pe));
2028 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
2029 pe->index = tid;
2030
2031 mvpp2_prs_match_etype(pe, 0, tpid);
2032
2033 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
2034 /* Shift 4 bytes - skip 1 vlan tag */
2035 mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
2036 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2037 /* Clear all ai bits for next iteration */
2038 mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2039
2040 if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
2041 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
2042 MVPP2_PRS_RI_VLAN_MASK);
2043 } else {
2044 ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
2045 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
2046 MVPP2_PRS_RI_VLAN_MASK);
2047 }
2048 mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
2049
2050 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
2051 }
2052 /* Update ports' mask */
2053 mvpp2_prs_tcam_port_map_set(pe, port_map);
2054
2055 mvpp2_prs_hw_write(priv, pe);
2056 free_pe:
2057 kfree(pe);
2058
2059 return ret;
2060 }
2061
2062 /* Get first free double vlan ai number */
2063 static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
2064 {
2065 int i;
2066
2067 for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
2068 if (!priv->prs_double_vlans[i])
2069 return i;
2070 }
2071
2072 return -EINVAL;
2073 }
2074
2075 /* Search for existing double vlan entry */
2076 static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
2077 unsigned short tpid1,
2078 unsigned short tpid2)
2079 {
2080 struct mvpp2_prs_entry *pe;
2081 int tid;
2082
2083 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2084 if (!pe)
2085 return NULL;
2086 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
2087
2088 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
2089 for (tid = MVPP2_PE_FIRST_FREE_TID;
2090 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2091 unsigned int ri_mask;
2092 bool match;
2093
2094 if (!priv->prs_shadow[tid].valid ||
2095 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
2096 continue;
2097
2098 pe->index = tid;
2099 mvpp2_prs_hw_read(priv, pe);
2100
2101 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
2102 && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
2103
2104 if (!match)
2105 continue;
2106
2107 ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
2108 if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
2109 return pe;
2110 }
2111 kfree(pe);
2112
2113 return NULL;
2114 }
2115
2116 /* Add or update double vlan entry */
2117 static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
2118 unsigned short tpid2,
2119 unsigned int port_map)
2120 {
2121 struct mvpp2_prs_entry *pe;
2122 int tid_aux, tid, ai, ret = 0;
2123
2124 pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
2125
2126 if (!pe) {
2127 /* Create new tcam entry */
2128 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2129 MVPP2_PE_LAST_FREE_TID);
2130 if (tid < 0)
2131 return tid;
2132
2133 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2134 if (!pe)
2135 return -ENOMEM;
2136
2137 /* Set ai value for new double vlan entry */
2138 ai = mvpp2_prs_double_vlan_ai_free_get(priv);
2139 if (ai < 0) {
2140 ret = ai;
2141 goto free_pe;
2142 }
2143
2144 /* Get first single/triple vlan tid */
2145 for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
2146 tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
2147 unsigned int ri_bits;
2148
2149 if (!priv->prs_shadow[tid_aux].valid ||
2150 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
2151 continue;
2152
2153 pe->index = tid_aux;
2154 mvpp2_prs_hw_read(priv, pe);
2155 ri_bits = mvpp2_prs_sram_ri_get(pe);
2156 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
2157 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
2158 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
2159 break;
2160 }
2161
2162 if (tid >= tid_aux) {
2163 ret = -ERANGE;
2164 goto free_pe;
2165 }
2166
2167 memset(pe, 0, sizeof(*pe));
2168 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
2169 pe->index = tid;
2170
2171 priv->prs_double_vlans[ai] = true;
2172
2173 mvpp2_prs_match_etype(pe, 0, tpid1);
2174 mvpp2_prs_match_etype(pe, 4, tpid2);
2175
2176 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
2177 /* Shift 8 bytes - skip 2 vlan tags */
2178 mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
2179 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2180 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2181 MVPP2_PRS_RI_VLAN_MASK);
2182 mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
2183 MVPP2_PRS_SRAM_AI_MASK);
2184
2185 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
2186 }
2187
2188 /* Update ports' mask */
2189 mvpp2_prs_tcam_port_map_set(pe, port_map);
2190 mvpp2_prs_hw_write(priv, pe);
2191 free_pe:
2192 kfree(pe);
2193 return ret;
2194 }
2195
2196 /* IPv4 header parsing for fragmentation and L4 offset */
2197 static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
2198 unsigned int ri, unsigned int ri_mask)
2199 {
2200 struct mvpp2_prs_entry pe;
2201 int tid;
2202
2203 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2204 (proto != IPPROTO_IGMP))
2205 return -EINVAL;
2206
2207 /* Fragmented packet */
2208 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2209 MVPP2_PE_LAST_FREE_TID);
2210 if (tid < 0)
2211 return tid;
2212
2213 memset(&pe, 0, sizeof(pe));
2214 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2215 pe.index = tid;
2216
2217 /* Set next lu to IPv4 */
2218 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2219 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2220 /* Set L4 offset */
2221 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2222 sizeof(struct iphdr) - 4,
2223 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2224 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2225 MVPP2_PRS_IPV4_DIP_AI_BIT);
2226 mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
2227 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
2228
2229 mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2230 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2231 /* Unmask all ports */
2232 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2233
2234 /* Update shadow table and hw entry */
2235 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2236 mvpp2_prs_hw_write(priv, &pe);
2237
2238 /* Not fragmented packet */
2239 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2240 MVPP2_PE_LAST_FREE_TID);
2241 if (tid < 0)
2242 return tid;
2243
2244 pe.index = tid;
2245 /* Clear ri before updating */
2246 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2247 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2248 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2249
2250 mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
2251 mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
2252
2253 /* Update shadow table and hw entry */
2254 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2255 mvpp2_prs_hw_write(priv, &pe);
2256
2257 return 0;
2258 }
2259
2260 /* IPv4 L3 multicast or broadcast */
2261 static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
2262 {
2263 struct mvpp2_prs_entry pe;
2264 int mask, tid;
2265
2266 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2267 MVPP2_PE_LAST_FREE_TID);
2268 if (tid < 0)
2269 return tid;
2270
2271 memset(&pe, 0, sizeof(pe));
2272 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2273 pe.index = tid;
2274
2275 switch (l3_cast) {
2276 case MVPP2_PRS_L3_MULTI_CAST:
2277 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
2278 MVPP2_PRS_IPV4_MC_MASK);
2279 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2280 MVPP2_PRS_RI_L3_ADDR_MASK);
2281 break;
2282 case MVPP2_PRS_L3_BROAD_CAST:
2283 mask = MVPP2_PRS_IPV4_BC_MASK;
2284 mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
2285 mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
2286 mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
2287 mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
2288 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
2289 MVPP2_PRS_RI_L3_ADDR_MASK);
2290 break;
2291 default:
2292 return -EINVAL;
2293 }
2294
2295 /* Finished: go to flowid generation */
2296 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2297 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2298
2299 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2300 MVPP2_PRS_IPV4_DIP_AI_BIT);
2301 /* Unmask all ports */
2302 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2303
2304 /* Update shadow table and hw entry */
2305 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2306 mvpp2_prs_hw_write(priv, &pe);
2307
2308 return 0;
2309 }
2310
2311 /* Set entries for protocols over IPv6 */
2312 static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2313 unsigned int ri, unsigned int ri_mask)
2314 {
2315 struct mvpp2_prs_entry pe;
2316 int tid;
2317
2318 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2319 (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2320 return -EINVAL;
2321
2322 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2323 MVPP2_PE_LAST_FREE_TID);
2324 if (tid < 0)
2325 return tid;
2326
2327 memset(&pe, 0, sizeof(pe));
2328 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2329 pe.index = tid;
2330
2331 /* Finished: go to flowid generation */
2332 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2333 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2334 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2335 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2336 sizeof(struct ipv6hdr) - 6,
2337 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2338
2339 mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2340 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2341 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2342 /* Unmask all ports */
2343 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2344
2345 /* Write HW */
2346 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2347 mvpp2_prs_hw_write(priv, &pe);
2348
2349 return 0;
2350 }
2351
2352 /* IPv6 L3 multicast entry */
2353 static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2354 {
2355 struct mvpp2_prs_entry pe;
2356 int tid;
2357
2358 if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2359 return -EINVAL;
2360
2361 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2362 MVPP2_PE_LAST_FREE_TID);
2363 if (tid < 0)
2364 return tid;
2365
2366 memset(&pe, 0, sizeof(pe));
2367 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2368 pe.index = tid;
2369
2370 /* Finished: go to flowid generation */
2371 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2372 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2373 MVPP2_PRS_RI_L3_ADDR_MASK);
2374 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2375 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2376 /* Shift back to IPv6 NH */
2377 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2378
2379 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2380 MVPP2_PRS_IPV6_MC_MASK);
2381 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2382 /* Unmask all ports */
2383 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2384
2385 /* Update shadow table and hw entry */
2386 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2387 mvpp2_prs_hw_write(priv, &pe);
2388
2389 return 0;
2390 }
2391
2392 /* Parser per-port initialization */
2393 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2394 int lu_max, int offset)
2395 {
2396 u32 val;
2397
2398 /* Set lookup ID */
2399 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2400 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2401 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2402 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2403
2404 /* Set maximum number of loops for packet received from port */
2405 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2406 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2407 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2408 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2409
2410 /* Set initial offset for packet header extraction for the first
2411 * searching loop
2412 */
2413 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2414 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2415 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2416 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2417 }
2418
2419 /* Default flow entries initialization for all ports */
2420 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2421 {
2422 struct mvpp2_prs_entry pe;
2423 int port;
2424
2425 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2426 memset(&pe, 0, sizeof(pe));
2427 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2428 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2429
2430 /* Mask all ports */
2431 mvpp2_prs_tcam_port_map_set(&pe, 0);
2432
2433 /* Set flow ID*/
2434 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2435 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2436
2437 /* Update shadow table and hw entry */
2438 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2439 mvpp2_prs_hw_write(priv, &pe);
2440 }
2441 }
2442
2443 /* Set default entry for Marvell Header field */
2444 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2445 {
2446 struct mvpp2_prs_entry pe;
2447
2448 memset(&pe, 0, sizeof(pe));
2449
2450 pe.index = MVPP2_PE_MH_DEFAULT;
2451 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2452 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2453 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2454 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2455
2456 /* Unmask all ports */
2457 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2458
2459 /* Update shadow table and hw entry */
2460 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2461 mvpp2_prs_hw_write(priv, &pe);
2462 }
2463
2464 /* Set default entires (place holder) for promiscuous, non-promiscuous and
2465 * multicast MAC addresses
2466 */
2467 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2468 {
2469 struct mvpp2_prs_entry pe;
2470
2471 memset(&pe, 0, sizeof(pe));
2472
2473 /* Non-promiscuous mode for all ports - DROP unknown packets */
2474 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2475 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2476
2477 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2478 MVPP2_PRS_RI_DROP_MASK);
2479 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2480 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2481
2482 /* Unmask all ports */
2483 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2484
2485 /* Update shadow table and hw entry */
2486 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2487 mvpp2_prs_hw_write(priv, &pe);
2488
2489 /* place holders only - no ports */
2490 mvpp2_prs_mac_drop_all_set(priv, 0, false);
2491 mvpp2_prs_mac_promisc_set(priv, 0, false);
2492 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2493 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2494 }
2495
2496 /* Set default entries for various types of dsa packets */
2497 static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2498 {
2499 struct mvpp2_prs_entry pe;
2500
2501 /* None tagged EDSA entry - place holder */
2502 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2503 MVPP2_PRS_EDSA);
2504
2505 /* Tagged EDSA entry - place holder */
2506 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2507
2508 /* None tagged DSA entry - place holder */
2509 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2510 MVPP2_PRS_DSA);
2511
2512 /* Tagged DSA entry - place holder */
2513 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2514
2515 /* None tagged EDSA ethertype entry - place holder*/
2516 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2517 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2518
2519 /* Tagged EDSA ethertype entry - place holder*/
2520 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2521 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2522
2523 /* None tagged DSA ethertype entry */
2524 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2525 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2526
2527 /* Tagged DSA ethertype entry */
2528 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2529 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2530
2531 /* Set default entry, in case DSA or EDSA tag not found */
2532 memset(&pe, 0, sizeof(pe));
2533 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2534 pe.index = MVPP2_PE_DSA_DEFAULT;
2535 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2536
2537 /* Shift 0 bytes */
2538 mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2539 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2540
2541 /* Clear all sram ai bits for next iteration */
2542 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2543
2544 /* Unmask all ports */
2545 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2546
2547 mvpp2_prs_hw_write(priv, &pe);
2548 }
2549
2550 /* Match basic ethertypes */
2551 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2552 {
2553 struct mvpp2_prs_entry pe;
2554 int tid;
2555
2556 /* Ethertype: PPPoE */
2557 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2558 MVPP2_PE_LAST_FREE_TID);
2559 if (tid < 0)
2560 return tid;
2561
2562 memset(&pe, 0, sizeof(pe));
2563 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2564 pe.index = tid;
2565
2566 mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2567
2568 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2569 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2570 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2571 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2572 MVPP2_PRS_RI_PPPOE_MASK);
2573
2574 /* Update shadow table and hw entry */
2575 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2576 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2577 priv->prs_shadow[pe.index].finish = false;
2578 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2579 MVPP2_PRS_RI_PPPOE_MASK);
2580 mvpp2_prs_hw_write(priv, &pe);
2581
2582 /* Ethertype: ARP */
2583 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2584 MVPP2_PE_LAST_FREE_TID);
2585 if (tid < 0)
2586 return tid;
2587
2588 memset(&pe, 0, sizeof(pe));
2589 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2590 pe.index = tid;
2591
2592 mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2593
2594 /* Generate flow in the next iteration*/
2595 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2596 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2597 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2598 MVPP2_PRS_RI_L3_PROTO_MASK);
2599 /* Set L3 offset */
2600 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2601 MVPP2_ETH_TYPE_LEN,
2602 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2603
2604 /* Update shadow table and hw entry */
2605 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2606 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2607 priv->prs_shadow[pe.index].finish = true;
2608 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2609 MVPP2_PRS_RI_L3_PROTO_MASK);
2610 mvpp2_prs_hw_write(priv, &pe);
2611
2612 /* Ethertype: LBTD */
2613 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2614 MVPP2_PE_LAST_FREE_TID);
2615 if (tid < 0)
2616 return tid;
2617
2618 memset(&pe, 0, sizeof(pe));
2619 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2620 pe.index = tid;
2621
2622 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2623
2624 /* Generate flow in the next iteration*/
2625 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2626 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2627 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2628 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2629 MVPP2_PRS_RI_CPU_CODE_MASK |
2630 MVPP2_PRS_RI_UDF3_MASK);
2631 /* Set L3 offset */
2632 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2633 MVPP2_ETH_TYPE_LEN,
2634 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2635
2636 /* Update shadow table and hw entry */
2637 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2638 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2639 priv->prs_shadow[pe.index].finish = true;
2640 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2641 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2642 MVPP2_PRS_RI_CPU_CODE_MASK |
2643 MVPP2_PRS_RI_UDF3_MASK);
2644 mvpp2_prs_hw_write(priv, &pe);
2645
2646 /* Ethertype: IPv4 without options */
2647 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2648 MVPP2_PE_LAST_FREE_TID);
2649 if (tid < 0)
2650 return tid;
2651
2652 memset(&pe, 0, sizeof(pe));
2653 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2654 pe.index = tid;
2655
2656 mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2657 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2658 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2659 MVPP2_PRS_IPV4_HEAD_MASK |
2660 MVPP2_PRS_IPV4_IHL_MASK);
2661
2662 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2663 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2664 MVPP2_PRS_RI_L3_PROTO_MASK);
2665 /* Skip eth_type + 4 bytes of IP header */
2666 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2667 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2668 /* Set L3 offset */
2669 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2670 MVPP2_ETH_TYPE_LEN,
2671 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2672
2673 /* Update shadow table and hw entry */
2674 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2675 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2676 priv->prs_shadow[pe.index].finish = false;
2677 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2678 MVPP2_PRS_RI_L3_PROTO_MASK);
2679 mvpp2_prs_hw_write(priv, &pe);
2680
2681 /* Ethertype: IPv4 with options */
2682 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2683 MVPP2_PE_LAST_FREE_TID);
2684 if (tid < 0)
2685 return tid;
2686
2687 pe.index = tid;
2688
2689 /* Clear tcam data before updating */
2690 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2691 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2692
2693 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2694 MVPP2_PRS_IPV4_HEAD,
2695 MVPP2_PRS_IPV4_HEAD_MASK);
2696
2697 /* Clear ri before updating */
2698 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2699 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2700 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2701 MVPP2_PRS_RI_L3_PROTO_MASK);
2702
2703 /* Update shadow table and hw entry */
2704 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2705 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2706 priv->prs_shadow[pe.index].finish = false;
2707 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2708 MVPP2_PRS_RI_L3_PROTO_MASK);
2709 mvpp2_prs_hw_write(priv, &pe);
2710
2711 /* Ethertype: IPv6 without options */
2712 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2713 MVPP2_PE_LAST_FREE_TID);
2714 if (tid < 0)
2715 return tid;
2716
2717 memset(&pe, 0, sizeof(pe));
2718 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2719 pe.index = tid;
2720
2721 mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2722
2723 /* Skip DIP of IPV6 header */
2724 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2725 MVPP2_MAX_L3_ADDR_SIZE,
2726 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2727 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2728 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2729 MVPP2_PRS_RI_L3_PROTO_MASK);
2730 /* Set L3 offset */
2731 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2732 MVPP2_ETH_TYPE_LEN,
2733 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2734
2735 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2736 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2737 priv->prs_shadow[pe.index].finish = false;
2738 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2739 MVPP2_PRS_RI_L3_PROTO_MASK);
2740 mvpp2_prs_hw_write(priv, &pe);
2741
2742 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2743 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2744 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2745 pe.index = MVPP2_PE_ETH_TYPE_UN;
2746
2747 /* Unmask all ports */
2748 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2749
2750 /* Generate flow in the next iteration*/
2751 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2752 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2753 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2754 MVPP2_PRS_RI_L3_PROTO_MASK);
2755 /* Set L3 offset even it's unknown L3 */
2756 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2757 MVPP2_ETH_TYPE_LEN,
2758 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2759
2760 /* Update shadow table and hw entry */
2761 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2762 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2763 priv->prs_shadow[pe.index].finish = true;
2764 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2765 MVPP2_PRS_RI_L3_PROTO_MASK);
2766 mvpp2_prs_hw_write(priv, &pe);
2767
2768 return 0;
2769 }
2770
2771 /* Configure vlan entries and detect up to 2 successive VLAN tags.
2772 * Possible options:
2773 * 0x8100, 0x88A8
2774 * 0x8100, 0x8100
2775 * 0x8100
2776 * 0x88A8
2777 */
2778 static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2779 {
2780 struct mvpp2_prs_entry pe;
2781 int err;
2782
2783 priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2784 MVPP2_PRS_DBL_VLANS_MAX,
2785 GFP_KERNEL);
2786 if (!priv->prs_double_vlans)
2787 return -ENOMEM;
2788
2789 /* Double VLAN: 0x8100, 0x88A8 */
2790 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2791 MVPP2_PRS_PORT_MASK);
2792 if (err)
2793 return err;
2794
2795 /* Double VLAN: 0x8100, 0x8100 */
2796 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2797 MVPP2_PRS_PORT_MASK);
2798 if (err)
2799 return err;
2800
2801 /* Single VLAN: 0x88a8 */
2802 err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2803 MVPP2_PRS_PORT_MASK);
2804 if (err)
2805 return err;
2806
2807 /* Single VLAN: 0x8100 */
2808 err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2809 MVPP2_PRS_PORT_MASK);
2810 if (err)
2811 return err;
2812
2813 /* Set default double vlan entry */
2814 memset(&pe, 0, sizeof(pe));
2815 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2816 pe.index = MVPP2_PE_VLAN_DBL;
2817
2818 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2819 /* Clear ai for next iterations */
2820 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2821 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2822 MVPP2_PRS_RI_VLAN_MASK);
2823
2824 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2825 MVPP2_PRS_DBL_VLAN_AI_BIT);
2826 /* Unmask all ports */
2827 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2828
2829 /* Update shadow table and hw entry */
2830 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2831 mvpp2_prs_hw_write(priv, &pe);
2832
2833 /* Set default vlan none entry */
2834 memset(&pe, 0, sizeof(pe));
2835 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2836 pe.index = MVPP2_PE_VLAN_NONE;
2837
2838 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2839 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2840 MVPP2_PRS_RI_VLAN_MASK);
2841
2842 /* Unmask all ports */
2843 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2844
2845 /* Update shadow table and hw entry */
2846 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2847 mvpp2_prs_hw_write(priv, &pe);
2848
2849 return 0;
2850 }
2851
2852 /* Set entries for PPPoE ethertype */
2853 static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2854 {
2855 struct mvpp2_prs_entry pe;
2856 int tid;
2857
2858 /* IPv4 over PPPoE with options */
2859 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2860 MVPP2_PE_LAST_FREE_TID);
2861 if (tid < 0)
2862 return tid;
2863
2864 memset(&pe, 0, sizeof(pe));
2865 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2866 pe.index = tid;
2867
2868 mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2869
2870 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2871 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2872 MVPP2_PRS_RI_L3_PROTO_MASK);
2873 /* Skip eth_type + 4 bytes of IP header */
2874 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2875 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2876 /* Set L3 offset */
2877 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2878 MVPP2_ETH_TYPE_LEN,
2879 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2880
2881 /* Update shadow table and hw entry */
2882 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2883 mvpp2_prs_hw_write(priv, &pe);
2884
2885 /* IPv4 over PPPoE without options */
2886 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2887 MVPP2_PE_LAST_FREE_TID);
2888 if (tid < 0)
2889 return tid;
2890
2891 pe.index = tid;
2892
2893 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2894 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2895 MVPP2_PRS_IPV4_HEAD_MASK |
2896 MVPP2_PRS_IPV4_IHL_MASK);
2897
2898 /* Clear ri before updating */
2899 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2900 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2901 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2902 MVPP2_PRS_RI_L3_PROTO_MASK);
2903
2904 /* Update shadow table and hw entry */
2905 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2906 mvpp2_prs_hw_write(priv, &pe);
2907
2908 /* IPv6 over PPPoE */
2909 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2910 MVPP2_PE_LAST_FREE_TID);
2911 if (tid < 0)
2912 return tid;
2913
2914 memset(&pe, 0, sizeof(pe));
2915 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2916 pe.index = tid;
2917
2918 mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2919
2920 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2921 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2922 MVPP2_PRS_RI_L3_PROTO_MASK);
2923 /* Skip eth_type + 4 bytes of IPv6 header */
2924 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2925 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2926 /* Set L3 offset */
2927 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2928 MVPP2_ETH_TYPE_LEN,
2929 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2930
2931 /* Update shadow table and hw entry */
2932 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2933 mvpp2_prs_hw_write(priv, &pe);
2934
2935 /* Non-IP over PPPoE */
2936 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2937 MVPP2_PE_LAST_FREE_TID);
2938 if (tid < 0)
2939 return tid;
2940
2941 memset(&pe, 0, sizeof(pe));
2942 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2943 pe.index = tid;
2944
2945 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2946 MVPP2_PRS_RI_L3_PROTO_MASK);
2947
2948 /* Finished: go to flowid generation */
2949 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2950 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2951 /* Set L3 offset even if it's unknown L3 */
2952 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2953 MVPP2_ETH_TYPE_LEN,
2954 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2955
2956 /* Update shadow table and hw entry */
2957 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2958 mvpp2_prs_hw_write(priv, &pe);
2959
2960 return 0;
2961 }
2962
2963 /* Initialize entries for IPv4 */
2964 static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2965 {
2966 struct mvpp2_prs_entry pe;
2967 int err;
2968
2969 /* Set entries for TCP, UDP and IGMP over IPv4 */
2970 err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2971 MVPP2_PRS_RI_L4_PROTO_MASK);
2972 if (err)
2973 return err;
2974
2975 err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2976 MVPP2_PRS_RI_L4_PROTO_MASK);
2977 if (err)
2978 return err;
2979
2980 err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2981 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2982 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2983 MVPP2_PRS_RI_CPU_CODE_MASK |
2984 MVPP2_PRS_RI_UDF3_MASK);
2985 if (err)
2986 return err;
2987
2988 /* IPv4 Broadcast */
2989 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2990 if (err)
2991 return err;
2992
2993 /* IPv4 Multicast */
2994 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2995 if (err)
2996 return err;
2997
2998 /* Default IPv4 entry for unknown protocols */
2999 memset(&pe, 0, sizeof(pe));
3000 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
3001 pe.index = MVPP2_PE_IP4_PROTO_UN;
3002
3003 /* Set next lu to IPv4 */
3004 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
3005 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3006 /* Set L4 offset */
3007 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
3008 sizeof(struct iphdr) - 4,
3009 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
3010 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
3011 MVPP2_PRS_IPV4_DIP_AI_BIT);
3012 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
3013 MVPP2_PRS_RI_L4_PROTO_MASK);
3014
3015 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
3016 /* Unmask all ports */
3017 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3018
3019 /* Update shadow table and hw entry */
3020 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3021 mvpp2_prs_hw_write(priv, &pe);
3022
3023 /* Default IPv4 entry for unicast address */
3024 memset(&pe, 0, sizeof(pe));
3025 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
3026 pe.index = MVPP2_PE_IP4_ADDR_UN;
3027
3028 /* Finished: go to flowid generation */
3029 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
3030 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
3031 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
3032 MVPP2_PRS_RI_L3_ADDR_MASK);
3033
3034 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
3035 MVPP2_PRS_IPV4_DIP_AI_BIT);
3036 /* Unmask all ports */
3037 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3038
3039 /* Update shadow table and hw entry */
3040 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3041 mvpp2_prs_hw_write(priv, &pe);
3042
3043 return 0;
3044 }
3045
3046 /* Initialize entries for IPv6 */
3047 static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
3048 {
3049 struct mvpp2_prs_entry pe;
3050 int tid, err;
3051
3052 /* Set entries for TCP, UDP and ICMP over IPv6 */
3053 err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
3054 MVPP2_PRS_RI_L4_TCP,
3055 MVPP2_PRS_RI_L4_PROTO_MASK);
3056 if (err)
3057 return err;
3058
3059 err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
3060 MVPP2_PRS_RI_L4_UDP,
3061 MVPP2_PRS_RI_L4_PROTO_MASK);
3062 if (err)
3063 return err;
3064
3065 err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
3066 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
3067 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
3068 MVPP2_PRS_RI_CPU_CODE_MASK |
3069 MVPP2_PRS_RI_UDF3_MASK);
3070 if (err)
3071 return err;
3072
3073 /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
3074 /* Result Info: UDF7=1, DS lite */
3075 err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
3076 MVPP2_PRS_RI_UDF7_IP6_LITE,
3077 MVPP2_PRS_RI_UDF7_MASK);
3078 if (err)
3079 return err;
3080
3081 /* IPv6 multicast */
3082 err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
3083 if (err)
3084 return err;
3085
3086 /* Entry for checking hop limit */
3087 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3088 MVPP2_PE_LAST_FREE_TID);
3089 if (tid < 0)
3090 return tid;
3091
3092 memset(&pe, 0, sizeof(pe));
3093 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
3094 pe.index = tid;
3095
3096 /* Finished: go to flowid generation */
3097 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
3098 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
3099 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
3100 MVPP2_PRS_RI_DROP_MASK,
3101 MVPP2_PRS_RI_L3_PROTO_MASK |
3102 MVPP2_PRS_RI_DROP_MASK);
3103
3104 mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
3105 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
3106 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
3107
3108 /* Update shadow table and hw entry */
3109 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3110 mvpp2_prs_hw_write(priv, &pe);
3111
3112 /* Default IPv6 entry for unknown protocols */
3113 memset(&pe, 0, sizeof(pe));
3114 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
3115 pe.index = MVPP2_PE_IP6_PROTO_UN;
3116
3117 /* Finished: go to flowid generation */
3118 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
3119 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
3120 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
3121 MVPP2_PRS_RI_L4_PROTO_MASK);
3122 /* Set L4 offset relatively to our current place */
3123 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
3124 sizeof(struct ipv6hdr) - 4,
3125 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
3126
3127 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
3128 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
3129 /* Unmask all ports */
3130 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3131
3132 /* Update shadow table and hw entry */
3133 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3134 mvpp2_prs_hw_write(priv, &pe);
3135
3136 /* Default IPv6 entry for unknown ext protocols */
3137 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
3138 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
3139 pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
3140
3141 /* Finished: go to flowid generation */
3142 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
3143 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
3144 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
3145 MVPP2_PRS_RI_L4_PROTO_MASK);
3146
3147 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
3148 MVPP2_PRS_IPV6_EXT_AI_BIT);
3149 /* Unmask all ports */
3150 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3151
3152 /* Update shadow table and hw entry */
3153 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
3154 mvpp2_prs_hw_write(priv, &pe);
3155
3156 /* Default IPv6 entry for unicast address */
3157 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
3158 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
3159 pe.index = MVPP2_PE_IP6_ADDR_UN;
3160
3161 /* Finished: go to IPv6 again */
3162 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
3163 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
3164 MVPP2_PRS_RI_L3_ADDR_MASK);
3165 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
3166 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
3167 /* Shift back to IPV6 NH */
3168 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3169
3170 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
3171 /* Unmask all ports */
3172 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
3173
3174 /* Update shadow table and hw entry */
3175 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
3176 mvpp2_prs_hw_write(priv, &pe);
3177
3178 return 0;
3179 }
3180
3181 /* Parser default initialization */
3182 static int mvpp2_prs_default_init(struct platform_device *pdev,
3183 struct mvpp2 *priv)
3184 {
3185 int err, index, i;
3186
3187 /* Enable tcam table */
3188 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
3189
3190 /* Clear all tcam and sram entries */
3191 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
3192 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
3193 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
3194 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
3195
3196 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
3197 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
3198 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
3199 }
3200
3201 /* Invalidate all tcam entries */
3202 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
3203 mvpp2_prs_hw_inv(priv, index);
3204
3205 priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
3206 sizeof(*priv->prs_shadow),
3207 GFP_KERNEL);
3208 if (!priv->prs_shadow)
3209 return -ENOMEM;
3210
3211 /* Always start from lookup = 0 */
3212 for (index = 0; index < MVPP2_MAX_PORTS; index++)
3213 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
3214 MVPP2_PRS_PORT_LU_MAX, 0);
3215
3216 mvpp2_prs_def_flow_init(priv);
3217
3218 mvpp2_prs_mh_init(priv);
3219
3220 mvpp2_prs_mac_init(priv);
3221
3222 mvpp2_prs_dsa_init(priv);
3223
3224 err = mvpp2_prs_etype_init(priv);
3225 if (err)
3226 return err;
3227
3228 err = mvpp2_prs_vlan_init(pdev, priv);
3229 if (err)
3230 return err;
3231
3232 err = mvpp2_prs_pppoe_init(priv);
3233 if (err)
3234 return err;
3235
3236 err = mvpp2_prs_ip6_init(priv);
3237 if (err)
3238 return err;
3239
3240 err = mvpp2_prs_ip4_init(priv);
3241 if (err)
3242 return err;
3243
3244 return 0;
3245 }
3246
3247 /* Compare MAC DA with tcam entry data */
3248 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
3249 const u8 *da, unsigned char *mask)
3250 {
3251 unsigned char tcam_byte, tcam_mask;
3252 int index;
3253
3254 for (index = 0; index < ETH_ALEN; index++) {
3255 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
3256 if (tcam_mask != mask[index])
3257 return false;
3258
3259 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
3260 return false;
3261 }
3262
3263 return true;
3264 }
3265
3266 /* Find tcam entry with matched pair <MAC DA, port> */
3267 static struct mvpp2_prs_entry *
3268 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
3269 unsigned char *mask, int udf_type)
3270 {
3271 struct mvpp2_prs_entry *pe;
3272 int tid;
3273
3274 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3275 if (!pe)
3276 return NULL;
3277 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3278
3279 /* Go through the all entires with MVPP2_PRS_LU_MAC */
3280 for (tid = MVPP2_PE_FIRST_FREE_TID;
3281 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3282 unsigned int entry_pmap;
3283
3284 if (!priv->prs_shadow[tid].valid ||
3285 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3286 (priv->prs_shadow[tid].udf != udf_type))
3287 continue;
3288
3289 pe->index = tid;
3290 mvpp2_prs_hw_read(priv, pe);
3291 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
3292
3293 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3294 entry_pmap == pmap)
3295 return pe;
3296 }
3297 kfree(pe);
3298
3299 return NULL;
3300 }
3301
3302 /* Update parser's mac da entry */
3303 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3304 const u8 *da, bool add)
3305 {
3306 struct mvpp2_prs_entry *pe;
3307 unsigned int pmap, len, ri;
3308 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3309 int tid;
3310
3311 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3312 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3313 MVPP2_PRS_UDF_MAC_DEF);
3314
3315 /* No such entry */
3316 if (!pe) {
3317 if (!add)
3318 return 0;
3319
3320 /* Create new TCAM entry */
3321 /* Find first range mac entry*/
3322 for (tid = MVPP2_PE_FIRST_FREE_TID;
3323 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3324 if (priv->prs_shadow[tid].valid &&
3325 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3326 (priv->prs_shadow[tid].udf ==
3327 MVPP2_PRS_UDF_MAC_RANGE))
3328 break;
3329
3330 /* Go through the all entries from first to last */
3331 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3332 tid - 1);
3333 if (tid < 0)
3334 return tid;
3335
3336 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3337 if (!pe)
3338 return -ENOMEM;
3339 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3340 pe->index = tid;
3341
3342 /* Mask all ports */
3343 mvpp2_prs_tcam_port_map_set(pe, 0);
3344 }
3345
3346 /* Update port mask */
3347 mvpp2_prs_tcam_port_set(pe, port, add);
3348
3349 /* Invalidate the entry if no ports are left enabled */
3350 pmap = mvpp2_prs_tcam_port_map_get(pe);
3351 if (pmap == 0) {
3352 if (add) {
3353 kfree(pe);
3354 return -EINVAL;
3355 }
3356 mvpp2_prs_hw_inv(priv, pe->index);
3357 priv->prs_shadow[pe->index].valid = false;
3358 kfree(pe);
3359 return 0;
3360 }
3361
3362 /* Continue - set next lookup */
3363 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3364
3365 /* Set match on DA */
3366 len = ETH_ALEN;
3367 while (len--)
3368 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3369
3370 /* Set result info bits */
3371 if (is_broadcast_ether_addr(da))
3372 ri = MVPP2_PRS_RI_L2_BCAST;
3373 else if (is_multicast_ether_addr(da))
3374 ri = MVPP2_PRS_RI_L2_MCAST;
3375 else
3376 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3377
3378 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3379 MVPP2_PRS_RI_MAC_ME_MASK);
3380 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3381 MVPP2_PRS_RI_MAC_ME_MASK);
3382
3383 /* Shift to ethertype */
3384 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3385 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3386
3387 /* Update shadow table and hw entry */
3388 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3389 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3390 mvpp2_prs_hw_write(priv, pe);
3391
3392 kfree(pe);
3393
3394 return 0;
3395 }
3396
3397 static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3398 {
3399 struct mvpp2_port *port = netdev_priv(dev);
3400 int err;
3401
3402 /* Remove old parser entry */
3403 err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3404 false);
3405 if (err)
3406 return err;
3407
3408 /* Add new parser entry */
3409 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3410 if (err)
3411 return err;
3412
3413 /* Set addr in the device */
3414 ether_addr_copy(dev->dev_addr, da);
3415
3416 return 0;
3417 }
3418
3419 /* Delete all port's multicast simple (not range) entries */
3420 static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3421 {
3422 struct mvpp2_prs_entry pe;
3423 int index, tid;
3424
3425 for (tid = MVPP2_PE_FIRST_FREE_TID;
3426 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3427 unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3428
3429 if (!priv->prs_shadow[tid].valid ||
3430 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3431 (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3432 continue;
3433
3434 /* Only simple mac entries */
3435 pe.index = tid;
3436 mvpp2_prs_hw_read(priv, &pe);
3437
3438 /* Read mac addr from entry */
3439 for (index = 0; index < ETH_ALEN; index++)
3440 mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3441 &da_mask[index]);
3442
3443 if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3444 /* Delete this entry */
3445 mvpp2_prs_mac_da_accept(priv, port, da, false);
3446 }
3447 }
3448
3449 static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3450 {
3451 switch (type) {
3452 case MVPP2_TAG_TYPE_EDSA:
3453 /* Add port to EDSA entries */
3454 mvpp2_prs_dsa_tag_set(priv, port, true,
3455 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3456 mvpp2_prs_dsa_tag_set(priv, port, true,
3457 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3458 /* Remove port from DSA entries */
3459 mvpp2_prs_dsa_tag_set(priv, port, false,
3460 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3461 mvpp2_prs_dsa_tag_set(priv, port, false,
3462 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3463 break;
3464
3465 case MVPP2_TAG_TYPE_DSA:
3466 /* Add port to DSA entries */
3467 mvpp2_prs_dsa_tag_set(priv, port, true,
3468 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3469 mvpp2_prs_dsa_tag_set(priv, port, true,
3470 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3471 /* Remove port from EDSA entries */
3472 mvpp2_prs_dsa_tag_set(priv, port, false,
3473 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3474 mvpp2_prs_dsa_tag_set(priv, port, false,
3475 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3476 break;
3477
3478 case MVPP2_TAG_TYPE_MH:
3479 case MVPP2_TAG_TYPE_NONE:
3480 /* Remove port form EDSA and DSA entries */
3481 mvpp2_prs_dsa_tag_set(priv, port, false,
3482 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3483 mvpp2_prs_dsa_tag_set(priv, port, false,
3484 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3485 mvpp2_prs_dsa_tag_set(priv, port, false,
3486 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3487 mvpp2_prs_dsa_tag_set(priv, port, false,
3488 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3489 break;
3490
3491 default:
3492 if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3493 return -EINVAL;
3494 }
3495
3496 return 0;
3497 }
3498
3499 /* Set prs flow for the port */
3500 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3501 {
3502 struct mvpp2_prs_entry *pe;
3503 int tid;
3504
3505 pe = mvpp2_prs_flow_find(port->priv, port->id);
3506
3507 /* Such entry not exist */
3508 if (!pe) {
3509 /* Go through the all entires from last to first */
3510 tid = mvpp2_prs_tcam_first_free(port->priv,
3511 MVPP2_PE_LAST_FREE_TID,
3512 MVPP2_PE_FIRST_FREE_TID);
3513 if (tid < 0)
3514 return tid;
3515
3516 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3517 if (!pe)
3518 return -ENOMEM;
3519
3520 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3521 pe->index = tid;
3522
3523 /* Set flow ID*/
3524 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3525 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3526
3527 /* Update shadow table */
3528 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3529 }
3530
3531 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3532 mvpp2_prs_hw_write(port->priv, pe);
3533 kfree(pe);
3534
3535 return 0;
3536 }
3537
3538 /* Classifier configuration routines */
3539
3540 /* Update classification flow table registers */
3541 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3542 struct mvpp2_cls_flow_entry *fe)
3543 {
3544 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3545 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
3546 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
3547 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
3548 }
3549
3550 /* Update classification lookup table register */
3551 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3552 struct mvpp2_cls_lookup_entry *le)
3553 {
3554 u32 val;
3555
3556 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3557 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3558 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3559 }
3560
3561 /* Classifier default initialization */
3562 static void mvpp2_cls_init(struct mvpp2 *priv)
3563 {
3564 struct mvpp2_cls_lookup_entry le;
3565 struct mvpp2_cls_flow_entry fe;
3566 int index;
3567
3568 /* Enable classifier */
3569 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3570
3571 /* Clear classifier flow table */
3572 memset(&fe.data, 0, sizeof(fe.data));
3573 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3574 fe.index = index;
3575 mvpp2_cls_flow_write(priv, &fe);
3576 }
3577
3578 /* Clear classifier lookup table */
3579 le.data = 0;
3580 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3581 le.lkpid = index;
3582 le.way = 0;
3583 mvpp2_cls_lookup_write(priv, &le);
3584
3585 le.way = 1;
3586 mvpp2_cls_lookup_write(priv, &le);
3587 }
3588 }
3589
3590 static void mvpp2_cls_port_config(struct mvpp2_port *port)
3591 {
3592 struct mvpp2_cls_lookup_entry le;
3593 u32 val;
3594
3595 /* Set way for the port */
3596 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3597 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3598 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3599
3600 /* Pick the entry to be accessed in lookup ID decoding table
3601 * according to the way and lkpid.
3602 */
3603 le.lkpid = port->id;
3604 le.way = 0;
3605 le.data = 0;
3606
3607 /* Set initial CPU queue for receiving packets */
3608 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3609 le.data |= port->first_rxq;
3610
3611 /* Disable classification engines */
3612 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3613
3614 /* Update lookup ID table entry */
3615 mvpp2_cls_lookup_write(port->priv, &le);
3616 }
3617
3618 /* Set CPU queue number for oversize packets */
3619 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3620 {
3621 u32 val;
3622
3623 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3624 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3625
3626 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3627 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3628
3629 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3630 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3631 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3632 }
3633
3634 static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool)
3635 {
3636 if (likely(pool->frag_size <= PAGE_SIZE))
3637 return netdev_alloc_frag(pool->frag_size);
3638 else
3639 return kmalloc(pool->frag_size, GFP_ATOMIC);
3640 }
3641
3642 static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data)
3643 {
3644 if (likely(pool->frag_size <= PAGE_SIZE))
3645 skb_free_frag(data);
3646 else
3647 kfree(data);
3648 }
3649
3650 /* Buffer Manager configuration routines */
3651
3652 /* Create pool */
3653 static int mvpp2_bm_pool_create(struct platform_device *pdev,
3654 struct mvpp2 *priv,
3655 struct mvpp2_bm_pool *bm_pool, int size)
3656 {
3657 u32 val;
3658
3659 /* Number of buffer pointers must be a multiple of 16, as per
3660 * hardware constraints
3661 */
3662 if (!IS_ALIGNED(size, 16))
3663 return -EINVAL;
3664
3665 /* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
3666 * bytes per buffer pointer
3667 */
3668 if (priv->hw_version == MVPP21)
3669 bm_pool->size_bytes = 2 * sizeof(u32) * size;
3670 else
3671 bm_pool->size_bytes = 2 * sizeof(u64) * size;
3672
3673 bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes,
3674 &bm_pool->dma_addr,
3675 GFP_KERNEL);
3676 if (!bm_pool->virt_addr)
3677 return -ENOMEM;
3678
3679 if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
3680 MVPP2_BM_POOL_PTR_ALIGN)) {
3681 dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
3682 bm_pool->virt_addr, bm_pool->dma_addr);
3683 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3684 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3685 return -ENOMEM;
3686 }
3687
3688 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3689 lower_32_bits(bm_pool->dma_addr));
3690 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3691
3692 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3693 val |= MVPP2_BM_START_MASK;
3694 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3695
3696 bm_pool->type = MVPP2_BM_FREE;
3697 bm_pool->size = size;
3698 bm_pool->pkt_size = 0;
3699 bm_pool->buf_num = 0;
3700
3701 return 0;
3702 }
3703
3704 /* Set pool buffer size */
3705 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3706 struct mvpp2_bm_pool *bm_pool,
3707 int buf_size)
3708 {
3709 u32 val;
3710
3711 bm_pool->buf_size = buf_size;
3712
3713 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3714 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3715 }
3716
3717 static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
3718 struct mvpp2_bm_pool *bm_pool,
3719 dma_addr_t *dma_addr,
3720 phys_addr_t *phys_addr)
3721 {
3722 int cpu = get_cpu();
3723
3724 *dma_addr = mvpp2_percpu_read(priv, cpu,
3725 MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3726 *phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG);
3727
3728 if (priv->hw_version == MVPP22) {
3729 u32 val;
3730 u32 dma_addr_highbits, phys_addr_highbits;
3731
3732 val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC);
3733 dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
3734 phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
3735 MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;
3736
3737 if (sizeof(dma_addr_t) == 8)
3738 *dma_addr |= (u64)dma_addr_highbits << 32;
3739
3740 if (sizeof(phys_addr_t) == 8)
3741 *phys_addr |= (u64)phys_addr_highbits << 32;
3742 }
3743
3744 put_cpu();
3745 }
3746
3747 /* Free all buffers from the pool */
3748 static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
3749 struct mvpp2_bm_pool *bm_pool)
3750 {
3751 int i;
3752
3753 for (i = 0; i < bm_pool->buf_num; i++) {
3754 dma_addr_t buf_dma_addr;
3755 phys_addr_t buf_phys_addr;
3756 void *data;
3757
3758 mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
3759 &buf_dma_addr, &buf_phys_addr);
3760
3761 dma_unmap_single(dev, buf_dma_addr,
3762 bm_pool->buf_size, DMA_FROM_DEVICE);
3763
3764 data = (void *)phys_to_virt(buf_phys_addr);
3765 if (!data)
3766 break;
3767
3768 mvpp2_frag_free(bm_pool, data);
3769 }
3770
3771 /* Update BM driver with number of buffers removed from pool */
3772 bm_pool->buf_num -= i;
3773 }
3774
3775 /* Cleanup pool */
3776 static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3777 struct mvpp2 *priv,
3778 struct mvpp2_bm_pool *bm_pool)
3779 {
3780 u32 val;
3781
3782 mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3783 if (bm_pool->buf_num) {
3784 WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3785 return 0;
3786 }
3787
3788 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3789 val |= MVPP2_BM_STOP_MASK;
3790 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3791
3792 dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
3793 bm_pool->virt_addr,
3794 bm_pool->dma_addr);
3795 return 0;
3796 }
3797
3798 static int mvpp2_bm_pools_init(struct platform_device *pdev,
3799 struct mvpp2 *priv)
3800 {
3801 int i, err, size;
3802 struct mvpp2_bm_pool *bm_pool;
3803
3804 /* Create all pools with maximum size */
3805 size = MVPP2_BM_POOL_SIZE_MAX;
3806 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3807 bm_pool = &priv->bm_pools[i];
3808 bm_pool->id = i;
3809 err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3810 if (err)
3811 goto err_unroll_pools;
3812 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3813 }
3814 return 0;
3815
3816 err_unroll_pools:
3817 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3818 for (i = i - 1; i >= 0; i--)
3819 mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3820 return err;
3821 }
3822
3823 static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3824 {
3825 int i, err;
3826
3827 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3828 /* Mask BM all interrupts */
3829 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3830 /* Clear BM cause register */
3831 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3832 }
3833
3834 /* Allocate and initialize BM pools */
3835 priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3836 sizeof(*priv->bm_pools), GFP_KERNEL);
3837 if (!priv->bm_pools)
3838 return -ENOMEM;
3839
3840 err = mvpp2_bm_pools_init(pdev, priv);
3841 if (err < 0)
3842 return err;
3843 return 0;
3844 }
3845
3846 /* Attach long pool to rxq */
3847 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3848 int lrxq, int long_pool)
3849 {
3850 u32 val, mask;
3851 int prxq;
3852
3853 /* Get queue physical ID */
3854 prxq = port->rxqs[lrxq]->id;
3855
3856 if (port->priv->hw_version == MVPP21)
3857 mask = MVPP21_RXQ_POOL_LONG_MASK;
3858 else
3859 mask = MVPP22_RXQ_POOL_LONG_MASK;
3860
3861 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3862 val &= ~mask;
3863 val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
3864 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3865 }
3866
3867 /* Attach short pool to rxq */
3868 static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3869 int lrxq, int short_pool)
3870 {
3871 u32 val, mask;
3872 int prxq;
3873
3874 /* Get queue physical ID */
3875 prxq = port->rxqs[lrxq]->id;
3876
3877 if (port->priv->hw_version == MVPP21)
3878 mask = MVPP21_RXQ_POOL_SHORT_MASK;
3879 else
3880 mask = MVPP22_RXQ_POOL_SHORT_MASK;
3881
3882 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3883 val &= ~mask;
3884 val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
3885 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3886 }
3887
3888 static void *mvpp2_buf_alloc(struct mvpp2_port *port,
3889 struct mvpp2_bm_pool *bm_pool,
3890 dma_addr_t *buf_dma_addr,
3891 phys_addr_t *buf_phys_addr,
3892 gfp_t gfp_mask)
3893 {
3894 dma_addr_t dma_addr;
3895 void *data;
3896
3897 data = mvpp2_frag_alloc(bm_pool);
3898 if (!data)
3899 return NULL;
3900
3901 dma_addr = dma_map_single(port->dev->dev.parent, data,
3902 MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3903 DMA_FROM_DEVICE);
3904 if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
3905 mvpp2_frag_free(bm_pool, data);
3906 return NULL;
3907 }
3908 *buf_dma_addr = dma_addr;
3909 *buf_phys_addr = virt_to_phys(data);
3910
3911 return data;
3912 }
3913
3914 /* Set pool number in a BM cookie */
3915 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3916 {
3917 u32 bm;
3918
3919 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3920 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3921
3922 return bm;
3923 }
3924
3925 /* Release buffer to BM */
3926 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3927 dma_addr_t buf_dma_addr,
3928 phys_addr_t buf_phys_addr)
3929 {
3930 int cpu = get_cpu();
3931
3932 if (port->priv->hw_version == MVPP22) {
3933 u32 val = 0;
3934
3935 if (sizeof(dma_addr_t) == 8)
3936 val |= upper_32_bits(buf_dma_addr) &
3937 MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
3938
3939 if (sizeof(phys_addr_t) == 8)
3940 val |= (upper_32_bits(buf_phys_addr)
3941 << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
3942 MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
3943
3944 mvpp2_percpu_write(port->priv, cpu,
3945 MVPP22_BM_ADDR_HIGH_RLS_REG, val);
3946 }
3947
3948 /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
3949 * returned in the "cookie" field of the RX
3950 * descriptor. Instead of storing the virtual address, we
3951 * store the physical address
3952 */
3953 mvpp2_percpu_write(port->priv, cpu,
3954 MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
3955 mvpp2_percpu_write(port->priv, cpu,
3956 MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
3957
3958 put_cpu();
3959 }
3960
3961 /* Refill BM pool */
3962 static void mvpp2_pool_refill(struct mvpp2_port *port, int pool,
3963 dma_addr_t dma_addr,
3964 phys_addr_t phys_addr)
3965 {
3966 mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
3967 }
3968
3969 /* Allocate buffers for the pool */
3970 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3971 struct mvpp2_bm_pool *bm_pool, int buf_num)
3972 {
3973 int i, buf_size, total_size;
3974 dma_addr_t dma_addr;
3975 phys_addr_t phys_addr;
3976 void *buf;
3977
3978 buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3979 total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3980
3981 if (buf_num < 0 ||
3982 (buf_num + bm_pool->buf_num > bm_pool->size)) {
3983 netdev_err(port->dev,
3984 "cannot allocate %d buffers for pool %d\n",
3985 buf_num, bm_pool->id);
3986 return 0;
3987 }
3988
3989 for (i = 0; i < buf_num; i++) {
3990 buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr,
3991 &phys_addr, GFP_KERNEL);
3992 if (!buf)
3993 break;
3994
3995 mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
3996 phys_addr);
3997 }
3998
3999 /* Update BM driver with number of buffers added to pool */
4000 bm_pool->buf_num += i;
4001
4002 netdev_dbg(port->dev,
4003 "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
4004 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
4005 bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
4006
4007 netdev_dbg(port->dev,
4008 "%s pool %d: %d of %d buffers added\n",
4009 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
4010 bm_pool->id, i, buf_num);
4011 return i;
4012 }
4013
4014 /* Notify the driver that BM pool is being used as specific type and return the
4015 * pool pointer on success
4016 */
4017 static struct mvpp2_bm_pool *
4018 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
4019 int pkt_size)
4020 {
4021 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
4022 int num;
4023
4024 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
4025 netdev_err(port->dev, "mixing pool types is forbidden\n");
4026 return NULL;
4027 }
4028
4029 if (new_pool->type == MVPP2_BM_FREE)
4030 new_pool->type = type;
4031
4032 /* Allocate buffers in case BM pool is used as long pool, but packet
4033 * size doesn't match MTU or BM pool hasn't being used yet
4034 */
4035 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
4036 (new_pool->pkt_size == 0)) {
4037 int pkts_num;
4038
4039 /* Set default buffer number or free all the buffers in case
4040 * the pool is not empty
4041 */
4042 pkts_num = new_pool->buf_num;
4043 if (pkts_num == 0)
4044 pkts_num = type == MVPP2_BM_SWF_LONG ?
4045 MVPP2_BM_LONG_BUF_NUM :
4046 MVPP2_BM_SHORT_BUF_NUM;
4047 else
4048 mvpp2_bm_bufs_free(port->dev->dev.parent,
4049 port->priv, new_pool);
4050
4051 new_pool->pkt_size = pkt_size;
4052 new_pool->frag_size =
4053 SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
4054 MVPP2_SKB_SHINFO_SIZE;
4055
4056 /* Allocate buffers for this pool */
4057 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
4058 if (num != pkts_num) {
4059 WARN(1, "pool %d: %d of %d allocated\n",
4060 new_pool->id, num, pkts_num);
4061 return NULL;
4062 }
4063 }
4064
4065 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
4066 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
4067
4068 return new_pool;
4069 }
4070
4071 /* Initialize pools for swf */
4072 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
4073 {
4074 int rxq;
4075
4076 if (!port->pool_long) {
4077 port->pool_long =
4078 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
4079 MVPP2_BM_SWF_LONG,
4080 port->pkt_size);
4081 if (!port->pool_long)
4082 return -ENOMEM;
4083
4084 port->pool_long->port_map |= (1 << port->id);
4085
4086 for (rxq = 0; rxq < rxq_number; rxq++)
4087 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
4088 }
4089
4090 if (!port->pool_short) {
4091 port->pool_short =
4092 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
4093 MVPP2_BM_SWF_SHORT,
4094 MVPP2_BM_SHORT_PKT_SIZE);
4095 if (!port->pool_short)
4096 return -ENOMEM;
4097
4098 port->pool_short->port_map |= (1 << port->id);
4099
4100 for (rxq = 0; rxq < rxq_number; rxq++)
4101 mvpp2_rxq_short_pool_set(port, rxq,
4102 port->pool_short->id);
4103 }
4104
4105 return 0;
4106 }
4107
4108 static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
4109 {
4110 struct mvpp2_port *port = netdev_priv(dev);
4111 struct mvpp2_bm_pool *port_pool = port->pool_long;
4112 int num, pkts_num = port_pool->buf_num;
4113 int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
4114
4115 /* Update BM pool with new buffer size */
4116 mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
4117 if (port_pool->buf_num) {
4118 WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
4119 return -EIO;
4120 }
4121
4122 port_pool->pkt_size = pkt_size;
4123 port_pool->frag_size = SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
4124 MVPP2_SKB_SHINFO_SIZE;
4125 num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
4126 if (num != pkts_num) {
4127 WARN(1, "pool %d: %d of %d allocated\n",
4128 port_pool->id, num, pkts_num);
4129 return -EIO;
4130 }
4131
4132 mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
4133 MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
4134 dev->mtu = mtu;
4135 netdev_update_features(dev);
4136 return 0;
4137 }
4138
4139 static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
4140 {
4141 int cpu, cpu_mask = 0;
4142
4143 for_each_present_cpu(cpu)
4144 cpu_mask |= 1 << cpu;
4145 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
4146 MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
4147 }
4148
4149 static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
4150 {
4151 int cpu, cpu_mask = 0;
4152
4153 for_each_present_cpu(cpu)
4154 cpu_mask |= 1 << cpu;
4155 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
4156 MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
4157 }
4158
4159 /* Mask the current CPU's Rx/Tx interrupts */
4160 static void mvpp2_interrupts_mask(void *arg)
4161 {
4162 struct mvpp2_port *port = arg;
4163
4164 mvpp2_percpu_write(port->priv, smp_processor_id(),
4165 MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
4166 }
4167
4168 /* Unmask the current CPU's Rx/Tx interrupts */
4169 static void mvpp2_interrupts_unmask(void *arg)
4170 {
4171 struct mvpp2_port *port = arg;
4172
4173 mvpp2_percpu_write(port->priv, smp_processor_id(),
4174 MVPP2_ISR_RX_TX_MASK_REG(port->id),
4175 (MVPP2_CAUSE_MISC_SUM_MASK |
4176 MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
4177 }
4178
4179 /* Port configuration routines */
4180
4181 static void mvpp22_port_mii_set(struct mvpp2_port *port)
4182 {
4183 u32 val;
4184
4185 /* Only GOP port 0 has an XLG MAC */
4186 if (port->gop_id == 0) {
4187 val = readl(port->base + MVPP22_XLG_CTRL3_REG);
4188 val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
4189 val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
4190 writel(val, port->base + MVPP22_XLG_CTRL3_REG);
4191 }
4192
4193 val = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
4194 if (port->phy_interface == PHY_INTERFACE_MODE_RGMII)
4195 val |= MVPP22_CTRL4_EXT_PIN_GMII_SEL;
4196 else
4197 val &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL;
4198 val &= ~MVPP22_CTRL4_DP_CLK_SEL;
4199 val |= MVPP22_CTRL4_SYNC_BYPASS;
4200 val |= MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
4201 writel(val, port->base + MVPP22_GMAC_CTRL_4_REG);
4202 }
4203
4204 static void mvpp2_port_mii_set(struct mvpp2_port *port)
4205 {
4206 u32 val;
4207
4208 if (port->priv->hw_version == MVPP22)
4209 mvpp22_port_mii_set(port);
4210
4211 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
4212
4213 switch (port->phy_interface) {
4214 case PHY_INTERFACE_MODE_SGMII:
4215 val |= MVPP2_GMAC_INBAND_AN_MASK;
4216 break;
4217 case PHY_INTERFACE_MODE_RGMII:
4218 val |= MVPP2_GMAC_PORT_RGMII_MASK;
4219 default:
4220 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
4221 }
4222
4223 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
4224 }
4225
4226 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
4227 {
4228 u32 val;
4229
4230 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4231 val |= MVPP2_GMAC_FC_ADV_EN;
4232 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4233 }
4234
4235 static void mvpp2_port_enable(struct mvpp2_port *port)
4236 {
4237 u32 val;
4238
4239 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
4240 val |= MVPP2_GMAC_PORT_EN_MASK;
4241 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
4242 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
4243 }
4244
4245 static void mvpp2_port_disable(struct mvpp2_port *port)
4246 {
4247 u32 val;
4248
4249 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
4250 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
4251 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
4252 }
4253
4254 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
4255 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
4256 {
4257 u32 val;
4258
4259 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
4260 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
4261 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
4262 }
4263
4264 /* Configure loopback port */
4265 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
4266 {
4267 u32 val;
4268
4269 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
4270
4271 if (port->speed == 1000)
4272 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
4273 else
4274 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
4275
4276 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
4277 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
4278 else
4279 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
4280
4281 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
4282 }
4283
4284 static void mvpp2_port_reset(struct mvpp2_port *port)
4285 {
4286 u32 val;
4287
4288 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
4289 ~MVPP2_GMAC_PORT_RESET_MASK;
4290 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
4291
4292 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
4293 MVPP2_GMAC_PORT_RESET_MASK)
4294 continue;
4295 }
4296
4297 /* Change maximum receive size of the port */
4298 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
4299 {
4300 u32 val;
4301
4302 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
4303 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
4304 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
4305 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
4306 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
4307 }
4308
4309 /* Set defaults to the MVPP2 port */
4310 static void mvpp2_defaults_set(struct mvpp2_port *port)
4311 {
4312 int tx_port_num, val, queue, ptxq, lrxq;
4313
4314 if (port->priv->hw_version == MVPP21) {
4315 /* Configure port to loopback if needed */
4316 if (port->flags & MVPP2_F_LOOPBACK)
4317 mvpp2_port_loopback_set(port);
4318
4319 /* Update TX FIFO MIN Threshold */
4320 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
4321 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
4322 /* Min. TX threshold must be less than minimal packet length */
4323 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
4324 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
4325 }
4326
4327 /* Disable Legacy WRR, Disable EJP, Release from reset */
4328 tx_port_num = mvpp2_egress_port(port);
4329 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
4330 tx_port_num);
4331 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
4332
4333 /* Close bandwidth for all queues */
4334 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
4335 ptxq = mvpp2_txq_phys(port->id, queue);
4336 mvpp2_write(port->priv,
4337 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
4338 }
4339
4340 /* Set refill period to 1 usec, refill tokens
4341 * and bucket size to maximum
4342 */
4343 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
4344 port->priv->tclk / USEC_PER_SEC);
4345 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
4346 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
4347 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
4348 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
4349 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
4350 val = MVPP2_TXP_TOKEN_SIZE_MAX;
4351 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4352
4353 /* Set MaximumLowLatencyPacketSize value to 256 */
4354 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
4355 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
4356 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
4357
4358 /* Enable Rx cache snoop */
4359 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4360 queue = port->rxqs[lrxq]->id;
4361 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4362 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
4363 MVPP2_SNOOP_BUF_HDR_MASK;
4364 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4365 }
4366
4367 /* At default, mask all interrupts to all present cpus */
4368 mvpp2_interrupts_disable(port);
4369 }
4370
4371 /* Enable/disable receiving packets */
4372 static void mvpp2_ingress_enable(struct mvpp2_port *port)
4373 {
4374 u32 val;
4375 int lrxq, queue;
4376
4377 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4378 queue = port->rxqs[lrxq]->id;
4379 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4380 val &= ~MVPP2_RXQ_DISABLE_MASK;
4381 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4382 }
4383 }
4384
4385 static void mvpp2_ingress_disable(struct mvpp2_port *port)
4386 {
4387 u32 val;
4388 int lrxq, queue;
4389
4390 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4391 queue = port->rxqs[lrxq]->id;
4392 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4393 val |= MVPP2_RXQ_DISABLE_MASK;
4394 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4395 }
4396 }
4397
4398 /* Enable transmit via physical egress queue
4399 * - HW starts take descriptors from DRAM
4400 */
4401 static void mvpp2_egress_enable(struct mvpp2_port *port)
4402 {
4403 u32 qmap;
4404 int queue;
4405 int tx_port_num = mvpp2_egress_port(port);
4406
4407 /* Enable all initialized TXs. */
4408 qmap = 0;
4409 for (queue = 0; queue < txq_number; queue++) {
4410 struct mvpp2_tx_queue *txq = port->txqs[queue];
4411
4412 if (txq->descs)
4413 qmap |= (1 << queue);
4414 }
4415
4416 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4417 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4418 }
4419
4420 /* Disable transmit via physical egress queue
4421 * - HW doesn't take descriptors from DRAM
4422 */
4423 static void mvpp2_egress_disable(struct mvpp2_port *port)
4424 {
4425 u32 reg_data;
4426 int delay;
4427 int tx_port_num = mvpp2_egress_port(port);
4428
4429 /* Issue stop command for active channels only */
4430 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4431 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4432 MVPP2_TXP_SCHED_ENQ_MASK;
4433 if (reg_data != 0)
4434 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4435 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4436
4437 /* Wait for all Tx activity to terminate. */
4438 delay = 0;
4439 do {
4440 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4441 netdev_warn(port->dev,
4442 "Tx stop timed out, status=0x%08x\n",
4443 reg_data);
4444 break;
4445 }
4446 mdelay(1);
4447 delay++;
4448
4449 /* Check port TX Command register that all
4450 * Tx queues are stopped
4451 */
4452 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4453 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4454 }
4455
4456 /* Rx descriptors helper methods */
4457
4458 /* Get number of Rx descriptors occupied by received packets */
4459 static inline int
4460 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4461 {
4462 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4463
4464 return val & MVPP2_RXQ_OCCUPIED_MASK;
4465 }
4466
4467 /* Update Rx queue status with the number of occupied and available
4468 * Rx descriptor slots.
4469 */
4470 static inline void
4471 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4472 int used_count, int free_count)
4473 {
4474 /* Decrement the number of used descriptors and increment count
4475 * increment the number of free descriptors.
4476 */
4477 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4478
4479 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4480 }
4481
4482 /* Get pointer to next RX descriptor to be processed by SW */
4483 static inline struct mvpp2_rx_desc *
4484 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4485 {
4486 int rx_desc = rxq->next_desc_to_proc;
4487
4488 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4489 prefetch(rxq->descs + rxq->next_desc_to_proc);
4490 return rxq->descs + rx_desc;
4491 }
4492
4493 /* Set rx queue offset */
4494 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4495 int prxq, int offset)
4496 {
4497 u32 val;
4498
4499 /* Convert offset from bytes to units of 32 bytes */
4500 offset = offset >> 5;
4501
4502 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4503 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4504
4505 /* Offset is in */
4506 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4507 MVPP2_RXQ_PACKET_OFFSET_MASK);
4508
4509 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4510 }
4511
4512 /* Tx descriptors helper methods */
4513
4514 /* Get pointer to next Tx descriptor to be processed (send) by HW */
4515 static struct mvpp2_tx_desc *
4516 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4517 {
4518 int tx_desc = txq->next_desc_to_proc;
4519
4520 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4521 return txq->descs + tx_desc;
4522 }
4523
4524 /* Update HW with number of aggregated Tx descriptors to be sent */
4525 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4526 {
4527 /* aggregated access - relevant TXQ number is written in TX desc */
4528 mvpp2_percpu_write(port->priv, smp_processor_id(),
4529 MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4530 }
4531
4532
4533 /* Check if there are enough free descriptors in aggregated txq.
4534 * If not, update the number of occupied descriptors and repeat the check.
4535 */
4536 static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4537 struct mvpp2_tx_queue *aggr_txq, int num)
4538 {
4539 if ((aggr_txq->count + num) > aggr_txq->size) {
4540 /* Update number of occupied aggregated Tx descriptors */
4541 int cpu = smp_processor_id();
4542 u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4543
4544 aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4545 }
4546
4547 if ((aggr_txq->count + num) > aggr_txq->size)
4548 return -ENOMEM;
4549
4550 return 0;
4551 }
4552
4553 /* Reserved Tx descriptors allocation request */
4554 static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4555 struct mvpp2_tx_queue *txq, int num)
4556 {
4557 u32 val;
4558 int cpu = smp_processor_id();
4559
4560 val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4561 mvpp2_percpu_write(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val);
4562
4563 val = mvpp2_percpu_read(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG);
4564
4565 return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4566 }
4567
4568 /* Check if there are enough reserved descriptors for transmission.
4569 * If not, request chunk of reserved descriptors and check again.
4570 */
4571 static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4572 struct mvpp2_tx_queue *txq,
4573 struct mvpp2_txq_pcpu *txq_pcpu,
4574 int num)
4575 {
4576 int req, cpu, desc_count;
4577
4578 if (txq_pcpu->reserved_num >= num)
4579 return 0;
4580
4581 /* Not enough descriptors reserved! Update the reserved descriptor
4582 * count and check again.
4583 */
4584
4585 desc_count = 0;
4586 /* Compute total of used descriptors */
4587 for_each_present_cpu(cpu) {
4588 struct mvpp2_txq_pcpu *txq_pcpu_aux;
4589
4590 txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4591 desc_count += txq_pcpu_aux->count;
4592 desc_count += txq_pcpu_aux->reserved_num;
4593 }
4594
4595 req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4596 desc_count += req;
4597
4598 if (desc_count >
4599 (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4600 return -ENOMEM;
4601
4602 txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4603
4604 /* OK, the descriptor cound has been updated: check again. */
4605 if (txq_pcpu->reserved_num < num)
4606 return -ENOMEM;
4607 return 0;
4608 }
4609
4610 /* Release the last allocated Tx descriptor. Useful to handle DMA
4611 * mapping failures in the Tx path.
4612 */
4613 static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4614 {
4615 if (txq->next_desc_to_proc == 0)
4616 txq->next_desc_to_proc = txq->last_desc - 1;
4617 else
4618 txq->next_desc_to_proc--;
4619 }
4620
4621 /* Set Tx descriptors fields relevant for CSUM calculation */
4622 static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4623 int ip_hdr_len, int l4_proto)
4624 {
4625 u32 command;
4626
4627 /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4628 * G_L4_chk, L4_type required only for checksum calculation
4629 */
4630 command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4631 command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4632 command |= MVPP2_TXD_IP_CSUM_DISABLE;
4633
4634 if (l3_proto == swab16(ETH_P_IP)) {
4635 command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
4636 command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
4637 } else {
4638 command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
4639 }
4640
4641 if (l4_proto == IPPROTO_TCP) {
4642 command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
4643 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4644 } else if (l4_proto == IPPROTO_UDP) {
4645 command |= MVPP2_TXD_L4_UDP; /* enable UDP */
4646 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4647 } else {
4648 command |= MVPP2_TXD_L4_CSUM_NOT;
4649 }
4650
4651 return command;
4652 }
4653
4654 /* Get number of sent descriptors and decrement counter.
4655 * The number of sent descriptors is returned.
4656 * Per-CPU access
4657 */
4658 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4659 struct mvpp2_tx_queue *txq)
4660 {
4661 u32 val;
4662
4663 /* Reading status reg resets transmitted descriptor counter */
4664 val = mvpp2_percpu_read(port->priv, smp_processor_id(),
4665 MVPP2_TXQ_SENT_REG(txq->id));
4666
4667 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4668 MVPP2_TRANSMITTED_COUNT_OFFSET;
4669 }
4670
4671 static void mvpp2_txq_sent_counter_clear(void *arg)
4672 {
4673 struct mvpp2_port *port = arg;
4674 int queue;
4675
4676 for (queue = 0; queue < txq_number; queue++) {
4677 int id = port->txqs[queue]->id;
4678
4679 mvpp2_percpu_read(port->priv, smp_processor_id(),
4680 MVPP2_TXQ_SENT_REG(id));
4681 }
4682 }
4683
4684 /* Set max sizes for Tx queues */
4685 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4686 {
4687 u32 val, size, mtu;
4688 int txq, tx_port_num;
4689
4690 mtu = port->pkt_size * 8;
4691 if (mtu > MVPP2_TXP_MTU_MAX)
4692 mtu = MVPP2_TXP_MTU_MAX;
4693
4694 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4695 mtu = 3 * mtu;
4696
4697 /* Indirect access to registers */
4698 tx_port_num = mvpp2_egress_port(port);
4699 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4700
4701 /* Set MTU */
4702 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4703 val &= ~MVPP2_TXP_MTU_MAX;
4704 val |= mtu;
4705 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4706
4707 /* TXP token size and all TXQs token size must be larger that MTU */
4708 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4709 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4710 if (size < mtu) {
4711 size = mtu;
4712 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4713 val |= size;
4714 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4715 }
4716
4717 for (txq = 0; txq < txq_number; txq++) {
4718 val = mvpp2_read(port->priv,
4719 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4720 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4721
4722 if (size < mtu) {
4723 size = mtu;
4724 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4725 val |= size;
4726 mvpp2_write(port->priv,
4727 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4728 val);
4729 }
4730 }
4731 }
4732
4733 /* Set the number of packets that will be received before Rx interrupt
4734 * will be generated by HW.
4735 */
4736 static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4737 struct mvpp2_rx_queue *rxq)
4738 {
4739 int cpu = get_cpu();
4740
4741 if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
4742 rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
4743
4744 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
4745 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG,
4746 rxq->pkts_coal);
4747
4748 put_cpu();
4749 }
4750
4751 static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
4752 {
4753 u64 tmp = (u64)clk_hz * usec;
4754
4755 do_div(tmp, USEC_PER_SEC);
4756
4757 return tmp > U32_MAX ? U32_MAX : tmp;
4758 }
4759
4760 static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
4761 {
4762 u64 tmp = (u64)cycles * USEC_PER_SEC;
4763
4764 do_div(tmp, clk_hz);
4765
4766 return tmp > U32_MAX ? U32_MAX : tmp;
4767 }
4768
4769 /* Set the time delay in usec before Rx interrupt */
4770 static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4771 struct mvpp2_rx_queue *rxq)
4772 {
4773 unsigned long freq = port->priv->tclk;
4774 u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
4775
4776 if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
4777 rxq->time_coal =
4778 mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);
4779
4780 /* re-evaluate to get actual register value */
4781 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
4782 }
4783
4784 mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4785 }
4786
4787 /* Free Tx queue skbuffs */
4788 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4789 struct mvpp2_tx_queue *txq,
4790 struct mvpp2_txq_pcpu *txq_pcpu, int num)
4791 {
4792 int i;
4793
4794 for (i = 0; i < num; i++) {
4795 struct mvpp2_txq_pcpu_buf *tx_buf =
4796 txq_pcpu->buffs + txq_pcpu->txq_get_index;
4797
4798 dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
4799 tx_buf->size, DMA_TO_DEVICE);
4800 if (tx_buf->skb)
4801 dev_kfree_skb_any(tx_buf->skb);
4802
4803 mvpp2_txq_inc_get(txq_pcpu);
4804 }
4805 }
4806
4807 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4808 u32 cause)
4809 {
4810 int queue = fls(cause) - 1;
4811
4812 return port->rxqs[queue];
4813 }
4814
4815 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4816 u32 cause)
4817 {
4818 int queue = fls(cause) - 1;
4819
4820 return port->txqs[queue];
4821 }
4822
4823 /* Handle end of transmission */
4824 static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4825 struct mvpp2_txq_pcpu *txq_pcpu)
4826 {
4827 struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4828 int tx_done;
4829
4830 if (txq_pcpu->cpu != smp_processor_id())
4831 netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4832
4833 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4834 if (!tx_done)
4835 return;
4836 mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4837
4838 txq_pcpu->count -= tx_done;
4839
4840 if (netif_tx_queue_stopped(nq))
4841 if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4842 netif_tx_wake_queue(nq);
4843 }
4844
4845 static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
4846 {
4847 struct mvpp2_tx_queue *txq;
4848 struct mvpp2_txq_pcpu *txq_pcpu;
4849 unsigned int tx_todo = 0;
4850
4851 while (cause) {
4852 txq = mvpp2_get_tx_queue(port, cause);
4853 if (!txq)
4854 break;
4855
4856 txq_pcpu = this_cpu_ptr(txq->pcpu);
4857
4858 if (txq_pcpu->count) {
4859 mvpp2_txq_done(port, txq, txq_pcpu);
4860 tx_todo += txq_pcpu->count;
4861 }
4862
4863 cause &= ~(1 << txq->log_id);
4864 }
4865 return tx_todo;
4866 }
4867
4868 /* Rx/Tx queue initialization/cleanup methods */
4869
4870 /* Allocate and initialize descriptors for aggr TXQ */
4871 static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4872 struct mvpp2_tx_queue *aggr_txq,
4873 int desc_num, int cpu,
4874 struct mvpp2 *priv)
4875 {
4876 u32 txq_dma;
4877
4878 /* Allocate memory for TX descriptors */
4879 aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4880 desc_num * MVPP2_DESC_ALIGNED_SIZE,
4881 &aggr_txq->descs_dma, GFP_KERNEL);
4882 if (!aggr_txq->descs)
4883 return -ENOMEM;
4884
4885 aggr_txq->last_desc = aggr_txq->size - 1;
4886
4887 /* Aggr TXQ no reset WA */
4888 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4889 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4890
4891 /* Set Tx descriptors queue starting address indirect
4892 * access
4893 */
4894 if (priv->hw_version == MVPP21)
4895 txq_dma = aggr_txq->descs_dma;
4896 else
4897 txq_dma = aggr_txq->descs_dma >>
4898 MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
4899
4900 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
4901 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4902
4903 return 0;
4904 }
4905
4906 /* Create a specified Rx queue */
4907 static int mvpp2_rxq_init(struct mvpp2_port *port,
4908 struct mvpp2_rx_queue *rxq)
4909
4910 {
4911 u32 rxq_dma;
4912 int cpu;
4913
4914 rxq->size = port->rx_ring_size;
4915
4916 /* Allocate memory for RX descriptors */
4917 rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4918 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4919 &rxq->descs_dma, GFP_KERNEL);
4920 if (!rxq->descs)
4921 return -ENOMEM;
4922
4923 rxq->last_desc = rxq->size - 1;
4924
4925 /* Zero occupied and non-occupied counters - direct access */
4926 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4927
4928 /* Set Rx descriptors queue starting address - indirect access */
4929 cpu = get_cpu();
4930 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
4931 if (port->priv->hw_version == MVPP21)
4932 rxq_dma = rxq->descs_dma;
4933 else
4934 rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
4935 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
4936 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4937 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0);
4938 put_cpu();
4939
4940 /* Set Offset */
4941 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4942
4943 /* Set coalescing pkts and time */
4944 mvpp2_rx_pkts_coal_set(port, rxq);
4945 mvpp2_rx_time_coal_set(port, rxq);
4946
4947 /* Add number of descriptors ready for receiving packets */
4948 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4949
4950 return 0;
4951 }
4952
4953 /* Push packets received by the RXQ to BM pool */
4954 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4955 struct mvpp2_rx_queue *rxq)
4956 {
4957 int rx_received, i;
4958
4959 rx_received = mvpp2_rxq_received(port, rxq->id);
4960 if (!rx_received)
4961 return;
4962
4963 for (i = 0; i < rx_received; i++) {
4964 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4965 u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
4966 int pool;
4967
4968 pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4969 MVPP2_RXD_BM_POOL_ID_OFFS;
4970
4971 mvpp2_pool_refill(port, pool,
4972 mvpp2_rxdesc_dma_addr_get(port, rx_desc),
4973 mvpp2_rxdesc_cookie_get(port, rx_desc));
4974 }
4975 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4976 }
4977
4978 /* Cleanup Rx queue */
4979 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4980 struct mvpp2_rx_queue *rxq)
4981 {
4982 int cpu;
4983
4984 mvpp2_rxq_drop_pkts(port, rxq);
4985
4986 if (rxq->descs)
4987 dma_free_coherent(port->dev->dev.parent,
4988 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4989 rxq->descs,
4990 rxq->descs_dma);
4991
4992 rxq->descs = NULL;
4993 rxq->last_desc = 0;
4994 rxq->next_desc_to_proc = 0;
4995 rxq->descs_dma = 0;
4996
4997 /* Clear Rx descriptors queue starting address and size;
4998 * free descriptor number
4999 */
5000 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
5001 cpu = get_cpu();
5002 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
5003 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0);
5004 mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0);
5005 put_cpu();
5006 }
5007
5008 /* Create and initialize a Tx queue */
5009 static int mvpp2_txq_init(struct mvpp2_port *port,
5010 struct mvpp2_tx_queue *txq)
5011 {
5012 u32 val;
5013 int cpu, desc, desc_per_txq, tx_port_num;
5014 struct mvpp2_txq_pcpu *txq_pcpu;
5015
5016 txq->size = port->tx_ring_size;
5017
5018 /* Allocate memory for Tx descriptors */
5019 txq->descs = dma_alloc_coherent(port->dev->dev.parent,
5020 txq->size * MVPP2_DESC_ALIGNED_SIZE,
5021 &txq->descs_dma, GFP_KERNEL);
5022 if (!txq->descs)
5023 return -ENOMEM;
5024
5025 txq->last_desc = txq->size - 1;
5026
5027 /* Set Tx descriptors queue starting address - indirect access */
5028 cpu = get_cpu();
5029 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
5030 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG,
5031 txq->descs_dma);
5032 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG,
5033 txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
5034 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0);
5035 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG,
5036 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
5037 val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG);
5038 val &= ~MVPP2_TXQ_PENDING_MASK;
5039 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val);
5040
5041 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
5042 * for each existing TXQ.
5043 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
5044 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
5045 */
5046 desc_per_txq = 16;
5047 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
5048 (txq->log_id * desc_per_txq);
5049
5050 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG,
5051 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
5052 MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
5053 put_cpu();
5054
5055 /* WRR / EJP configuration - indirect access */
5056 tx_port_num = mvpp2_egress_port(port);
5057 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
5058
5059 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
5060 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
5061 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
5062 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
5063 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
5064
5065 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
5066 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
5067 val);
5068
5069 for_each_present_cpu(cpu) {
5070 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5071 txq_pcpu->size = txq->size;
5072 txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
5073 sizeof(*txq_pcpu->buffs),
5074 GFP_KERNEL);
5075 if (!txq_pcpu->buffs)
5076 goto cleanup;
5077
5078 txq_pcpu->count = 0;
5079 txq_pcpu->reserved_num = 0;
5080 txq_pcpu->txq_put_index = 0;
5081 txq_pcpu->txq_get_index = 0;
5082 }
5083
5084 return 0;
5085 cleanup:
5086 for_each_present_cpu(cpu) {
5087 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5088 kfree(txq_pcpu->buffs);
5089 }
5090
5091 dma_free_coherent(port->dev->dev.parent,
5092 txq->size * MVPP2_DESC_ALIGNED_SIZE,
5093 txq->descs, txq->descs_dma);
5094
5095 return -ENOMEM;
5096 }
5097
5098 /* Free allocated TXQ resources */
5099 static void mvpp2_txq_deinit(struct mvpp2_port *port,
5100 struct mvpp2_tx_queue *txq)
5101 {
5102 struct mvpp2_txq_pcpu *txq_pcpu;
5103 int cpu;
5104
5105 for_each_present_cpu(cpu) {
5106 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5107 kfree(txq_pcpu->buffs);
5108 }
5109
5110 if (txq->descs)
5111 dma_free_coherent(port->dev->dev.parent,
5112 txq->size * MVPP2_DESC_ALIGNED_SIZE,
5113 txq->descs, txq->descs_dma);
5114
5115 txq->descs = NULL;
5116 txq->last_desc = 0;
5117 txq->next_desc_to_proc = 0;
5118 txq->descs_dma = 0;
5119
5120 /* Set minimum bandwidth for disabled TXQs */
5121 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
5122
5123 /* Set Tx descriptors queue starting address and size */
5124 cpu = get_cpu();
5125 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
5126 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0);
5127 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0);
5128 put_cpu();
5129 }
5130
5131 /* Cleanup Tx ports */
5132 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
5133 {
5134 struct mvpp2_txq_pcpu *txq_pcpu;
5135 int delay, pending, cpu;
5136 u32 val;
5137
5138 cpu = get_cpu();
5139 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
5140 val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG);
5141 val |= MVPP2_TXQ_DRAIN_EN_MASK;
5142 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
5143
5144 /* The napi queue has been stopped so wait for all packets
5145 * to be transmitted.
5146 */
5147 delay = 0;
5148 do {
5149 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
5150 netdev_warn(port->dev,
5151 "port %d: cleaning queue %d timed out\n",
5152 port->id, txq->log_id);
5153 break;
5154 }
5155 mdelay(1);
5156 delay++;
5157
5158 pending = mvpp2_percpu_read(port->priv, cpu,
5159 MVPP2_TXQ_PENDING_REG);
5160 pending &= MVPP2_TXQ_PENDING_MASK;
5161 } while (pending);
5162
5163 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
5164 mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
5165 put_cpu();
5166
5167 for_each_present_cpu(cpu) {
5168 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5169
5170 /* Release all packets */
5171 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
5172
5173 /* Reset queue */
5174 txq_pcpu->count = 0;
5175 txq_pcpu->txq_put_index = 0;
5176 txq_pcpu->txq_get_index = 0;
5177 }
5178 }
5179
5180 /* Cleanup all Tx queues */
5181 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
5182 {
5183 struct mvpp2_tx_queue *txq;
5184 int queue;
5185 u32 val;
5186
5187 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
5188
5189 /* Reset Tx ports and delete Tx queues */
5190 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
5191 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
5192
5193 for (queue = 0; queue < txq_number; queue++) {
5194 txq = port->txqs[queue];
5195 mvpp2_txq_clean(port, txq);
5196 mvpp2_txq_deinit(port, txq);
5197 }
5198
5199 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
5200
5201 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
5202 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
5203 }
5204
5205 /* Cleanup all Rx queues */
5206 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
5207 {
5208 int queue;
5209
5210 for (queue = 0; queue < rxq_number; queue++)
5211 mvpp2_rxq_deinit(port, port->rxqs[queue]);
5212 }
5213
5214 /* Init all Rx queues for port */
5215 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
5216 {
5217 int queue, err;
5218
5219 for (queue = 0; queue < rxq_number; queue++) {
5220 err = mvpp2_rxq_init(port, port->rxqs[queue]);
5221 if (err)
5222 goto err_cleanup;
5223 }
5224 return 0;
5225
5226 err_cleanup:
5227 mvpp2_cleanup_rxqs(port);
5228 return err;
5229 }
5230
5231 /* Init all tx queues for port */
5232 static int mvpp2_setup_txqs(struct mvpp2_port *port)
5233 {
5234 struct mvpp2_tx_queue *txq;
5235 int queue, err;
5236
5237 for (queue = 0; queue < txq_number; queue++) {
5238 txq = port->txqs[queue];
5239 err = mvpp2_txq_init(port, txq);
5240 if (err)
5241 goto err_cleanup;
5242 }
5243
5244 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
5245 return 0;
5246
5247 err_cleanup:
5248 mvpp2_cleanup_txqs(port);
5249 return err;
5250 }
5251
5252 /* The callback for per-port interrupt */
5253 static irqreturn_t mvpp2_isr(int irq, void *dev_id)
5254 {
5255 struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
5256
5257 mvpp2_interrupts_disable(port);
5258
5259 napi_schedule(&port->napi);
5260
5261 return IRQ_HANDLED;
5262 }
5263
5264 /* Adjust link */
5265 static void mvpp2_link_event(struct net_device *dev)
5266 {
5267 struct mvpp2_port *port = netdev_priv(dev);
5268 struct phy_device *phydev = dev->phydev;
5269 int status_change = 0;
5270 u32 val;
5271
5272 if (phydev->link) {
5273 if ((port->speed != phydev->speed) ||
5274 (port->duplex != phydev->duplex)) {
5275 u32 val;
5276
5277 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
5278 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
5279 MVPP2_GMAC_CONFIG_GMII_SPEED |
5280 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
5281 MVPP2_GMAC_AN_SPEED_EN |
5282 MVPP2_GMAC_AN_DUPLEX_EN);
5283
5284 if (phydev->duplex)
5285 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
5286
5287 if (phydev->speed == SPEED_1000)
5288 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
5289 else if (phydev->speed == SPEED_100)
5290 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
5291
5292 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
5293
5294 port->duplex = phydev->duplex;
5295 port->speed = phydev->speed;
5296 }
5297 }
5298
5299 if (phydev->link != port->link) {
5300 if (!phydev->link) {
5301 port->duplex = -1;
5302 port->speed = 0;
5303 }
5304
5305 port->link = phydev->link;
5306 status_change = 1;
5307 }
5308
5309 if (status_change) {
5310 if (phydev->link) {
5311 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
5312 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
5313 MVPP2_GMAC_FORCE_LINK_DOWN);
5314 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
5315 mvpp2_egress_enable(port);
5316 mvpp2_ingress_enable(port);
5317 } else {
5318 mvpp2_ingress_disable(port);
5319 mvpp2_egress_disable(port);
5320 }
5321 phy_print_status(phydev);
5322 }
5323 }
5324
5325 static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
5326 {
5327 ktime_t interval;
5328
5329 if (!port_pcpu->timer_scheduled) {
5330 port_pcpu->timer_scheduled = true;
5331 interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
5332 hrtimer_start(&port_pcpu->tx_done_timer, interval,
5333 HRTIMER_MODE_REL_PINNED);
5334 }
5335 }
5336
5337 static void mvpp2_tx_proc_cb(unsigned long data)
5338 {
5339 struct net_device *dev = (struct net_device *)data;
5340 struct mvpp2_port *port = netdev_priv(dev);
5341 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
5342 unsigned int tx_todo, cause;
5343
5344 if (!netif_running(dev))
5345 return;
5346 port_pcpu->timer_scheduled = false;
5347
5348 /* Process all the Tx queues */
5349 cause = (1 << txq_number) - 1;
5350 tx_todo = mvpp2_tx_done(port, cause);
5351
5352 /* Set the timer in case not all the packets were processed */
5353 if (tx_todo)
5354 mvpp2_timer_set(port_pcpu);
5355 }
5356
5357 static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
5358 {
5359 struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
5360 struct mvpp2_port_pcpu,
5361 tx_done_timer);
5362
5363 tasklet_schedule(&port_pcpu->tx_done_tasklet);
5364
5365 return HRTIMER_NORESTART;
5366 }
5367
5368 /* Main RX/TX processing routines */
5369
5370 /* Display more error info */
5371 static void mvpp2_rx_error(struct mvpp2_port *port,
5372 struct mvpp2_rx_desc *rx_desc)
5373 {
5374 u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
5375 size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
5376
5377 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
5378 case MVPP2_RXD_ERR_CRC:
5379 netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n",
5380 status, sz);
5381 break;
5382 case MVPP2_RXD_ERR_OVERRUN:
5383 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n",
5384 status, sz);
5385 break;
5386 case MVPP2_RXD_ERR_RESOURCE:
5387 netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n",
5388 status, sz);
5389 break;
5390 }
5391 }
5392
5393 /* Handle RX checksum offload */
5394 static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
5395 struct sk_buff *skb)
5396 {
5397 if (((status & MVPP2_RXD_L3_IP4) &&
5398 !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
5399 (status & MVPP2_RXD_L3_IP6))
5400 if (((status & MVPP2_RXD_L4_UDP) ||
5401 (status & MVPP2_RXD_L4_TCP)) &&
5402 (status & MVPP2_RXD_L4_CSUM_OK)) {
5403 skb->csum = 0;
5404 skb->ip_summed = CHECKSUM_UNNECESSARY;
5405 return;
5406 }
5407
5408 skb->ip_summed = CHECKSUM_NONE;
5409 }
5410
5411 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
5412 static int mvpp2_rx_refill(struct mvpp2_port *port,
5413 struct mvpp2_bm_pool *bm_pool, int pool)
5414 {
5415 dma_addr_t dma_addr;
5416 phys_addr_t phys_addr;
5417 void *buf;
5418
5419 /* No recycle or too many buffers are in use, so allocate a new skb */
5420 buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr,
5421 GFP_ATOMIC);
5422 if (!buf)
5423 return -ENOMEM;
5424
5425 mvpp2_pool_refill(port, pool, dma_addr, phys_addr);
5426
5427 return 0;
5428 }
5429
5430 /* Handle tx checksum */
5431 static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
5432 {
5433 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5434 int ip_hdr_len = 0;
5435 u8 l4_proto;
5436
5437 if (skb->protocol == htons(ETH_P_IP)) {
5438 struct iphdr *ip4h = ip_hdr(skb);
5439
5440 /* Calculate IPv4 checksum and L4 checksum */
5441 ip_hdr_len = ip4h->ihl;
5442 l4_proto = ip4h->protocol;
5443 } else if (skb->protocol == htons(ETH_P_IPV6)) {
5444 struct ipv6hdr *ip6h = ipv6_hdr(skb);
5445
5446 /* Read l4_protocol from one of IPv6 extra headers */
5447 if (skb_network_header_len(skb) > 0)
5448 ip_hdr_len = (skb_network_header_len(skb) >> 2);
5449 l4_proto = ip6h->nexthdr;
5450 } else {
5451 return MVPP2_TXD_L4_CSUM_NOT;
5452 }
5453
5454 return mvpp2_txq_desc_csum(skb_network_offset(skb),
5455 skb->protocol, ip_hdr_len, l4_proto);
5456 }
5457
5458 return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
5459 }
5460
5461 /* Main rx processing */
5462 static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5463 struct mvpp2_rx_queue *rxq)
5464 {
5465 struct net_device *dev = port->dev;
5466 int rx_received;
5467 int rx_done = 0;
5468 u32 rcvd_pkts = 0;
5469 u32 rcvd_bytes = 0;
5470
5471 /* Get number of received packets and clamp the to-do */
5472 rx_received = mvpp2_rxq_received(port, rxq->id);
5473 if (rx_todo > rx_received)
5474 rx_todo = rx_received;
5475
5476 while (rx_done < rx_todo) {
5477 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5478 struct mvpp2_bm_pool *bm_pool;
5479 struct sk_buff *skb;
5480 unsigned int frag_size;
5481 dma_addr_t dma_addr;
5482 phys_addr_t phys_addr;
5483 u32 rx_status;
5484 int pool, rx_bytes, err;
5485 void *data;
5486
5487 rx_done++;
5488 rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
5489 rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
5490 rx_bytes -= MVPP2_MH_SIZE;
5491 dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
5492 phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
5493 data = (void *)phys_to_virt(phys_addr);
5494
5495 pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
5496 MVPP2_RXD_BM_POOL_ID_OFFS;
5497 bm_pool = &port->priv->bm_pools[pool];
5498
5499 /* In case of an error, release the requested buffer pointer
5500 * to the Buffer Manager. This request process is controlled
5501 * by the hardware, and the information about the buffer is
5502 * comprised by the RX descriptor.
5503 */
5504 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5505 err_drop_frame:
5506 dev->stats.rx_errors++;
5507 mvpp2_rx_error(port, rx_desc);
5508 /* Return the buffer to the pool */
5509 mvpp2_pool_refill(port, pool, dma_addr, phys_addr);
5510 continue;
5511 }
5512
5513 if (bm_pool->frag_size > PAGE_SIZE)
5514 frag_size = 0;
5515 else
5516 frag_size = bm_pool->frag_size;
5517
5518 skb = build_skb(data, frag_size);
5519 if (!skb) {
5520 netdev_warn(port->dev, "skb build failed\n");
5521 goto err_drop_frame;
5522 }
5523
5524 err = mvpp2_rx_refill(port, bm_pool, pool);
5525 if (err) {
5526 netdev_err(port->dev, "failed to refill BM pools\n");
5527 goto err_drop_frame;
5528 }
5529
5530 dma_unmap_single(dev->dev.parent, dma_addr,
5531 bm_pool->buf_size, DMA_FROM_DEVICE);
5532
5533 rcvd_pkts++;
5534 rcvd_bytes += rx_bytes;
5535
5536 skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD);
5537 skb_put(skb, rx_bytes);
5538 skb->protocol = eth_type_trans(skb, dev);
5539 mvpp2_rx_csum(port, rx_status, skb);
5540
5541 napi_gro_receive(&port->napi, skb);
5542 }
5543
5544 if (rcvd_pkts) {
5545 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5546
5547 u64_stats_update_begin(&stats->syncp);
5548 stats->rx_packets += rcvd_pkts;
5549 stats->rx_bytes += rcvd_bytes;
5550 u64_stats_update_end(&stats->syncp);
5551 }
5552
5553 /* Update Rx queue management counters */
5554 wmb();
5555 mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
5556
5557 return rx_todo;
5558 }
5559
5560 static inline void
5561 tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
5562 struct mvpp2_tx_desc *desc)
5563 {
5564 dma_addr_t buf_dma_addr =
5565 mvpp2_txdesc_dma_addr_get(port, desc);
5566 size_t buf_sz =
5567 mvpp2_txdesc_size_get(port, desc);
5568 dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
5569 buf_sz, DMA_TO_DEVICE);
5570 mvpp2_txq_desc_put(txq);
5571 }
5572
5573 /* Handle tx fragmentation processing */
5574 static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5575 struct mvpp2_tx_queue *aggr_txq,
5576 struct mvpp2_tx_queue *txq)
5577 {
5578 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5579 struct mvpp2_tx_desc *tx_desc;
5580 int i;
5581 dma_addr_t buf_dma_addr;
5582
5583 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5584 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5585 void *addr = page_address(frag->page.p) + frag->page_offset;
5586
5587 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5588 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5589 mvpp2_txdesc_size_set(port, tx_desc, frag->size);
5590
5591 buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
5592 frag->size,
5593 DMA_TO_DEVICE);
5594 if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
5595 mvpp2_txq_desc_put(txq);
5596 goto cleanup;
5597 }
5598
5599 mvpp2_txdesc_offset_set(port, tx_desc,
5600 buf_dma_addr & MVPP2_TX_DESC_ALIGN);
5601 mvpp2_txdesc_dma_addr_set(port, tx_desc,
5602 buf_dma_addr & ~MVPP2_TX_DESC_ALIGN);
5603
5604 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5605 /* Last descriptor */
5606 mvpp2_txdesc_cmd_set(port, tx_desc,
5607 MVPP2_TXD_L_DESC);
5608 mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
5609 } else {
5610 /* Descriptor in the middle: Not First, Not Last */
5611 mvpp2_txdesc_cmd_set(port, tx_desc, 0);
5612 mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
5613 }
5614 }
5615
5616 return 0;
5617 cleanup:
5618 /* Release all descriptors that were used to map fragments of
5619 * this packet, as well as the corresponding DMA mappings
5620 */
5621 for (i = i - 1; i >= 0; i--) {
5622 tx_desc = txq->descs + i;
5623 tx_desc_unmap_put(port, txq, tx_desc);
5624 }
5625
5626 return -ENOMEM;
5627 }
5628
5629 /* Main tx processing */
5630 static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5631 {
5632 struct mvpp2_port *port = netdev_priv(dev);
5633 struct mvpp2_tx_queue *txq, *aggr_txq;
5634 struct mvpp2_txq_pcpu *txq_pcpu;
5635 struct mvpp2_tx_desc *tx_desc;
5636 dma_addr_t buf_dma_addr;
5637 int frags = 0;
5638 u16 txq_id;
5639 u32 tx_cmd;
5640
5641 txq_id = skb_get_queue_mapping(skb);
5642 txq = port->txqs[txq_id];
5643 txq_pcpu = this_cpu_ptr(txq->pcpu);
5644 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5645
5646 frags = skb_shinfo(skb)->nr_frags + 1;
5647
5648 /* Check number of available descriptors */
5649 if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5650 mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5651 txq_pcpu, frags)) {
5652 frags = 0;
5653 goto out;
5654 }
5655
5656 /* Get a descriptor for the first part of the packet */
5657 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5658 mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
5659 mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
5660
5661 buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
5662 skb_headlen(skb), DMA_TO_DEVICE);
5663 if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
5664 mvpp2_txq_desc_put(txq);
5665 frags = 0;
5666 goto out;
5667 }
5668
5669 mvpp2_txdesc_offset_set(port, tx_desc,
5670 buf_dma_addr & MVPP2_TX_DESC_ALIGN);
5671 mvpp2_txdesc_dma_addr_set(port, tx_desc,
5672 buf_dma_addr & ~MVPP2_TX_DESC_ALIGN);
5673
5674 tx_cmd = mvpp2_skb_tx_csum(port, skb);
5675
5676 if (frags == 1) {
5677 /* First and Last descriptor */
5678 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5679 mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
5680 mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
5681 } else {
5682 /* First but not Last */
5683 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5684 mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
5685 mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
5686
5687 /* Continue with other skb fragments */
5688 if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5689 tx_desc_unmap_put(port, txq, tx_desc);
5690 frags = 0;
5691 goto out;
5692 }
5693 }
5694
5695 txq_pcpu->reserved_num -= frags;
5696 txq_pcpu->count += frags;
5697 aggr_txq->count += frags;
5698
5699 /* Enable transmit */
5700 wmb();
5701 mvpp2_aggr_txq_pend_desc_add(port, frags);
5702
5703 if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5704 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5705
5706 netif_tx_stop_queue(nq);
5707 }
5708 out:
5709 if (frags > 0) {
5710 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5711
5712 u64_stats_update_begin(&stats->syncp);
5713 stats->tx_packets++;
5714 stats->tx_bytes += skb->len;
5715 u64_stats_update_end(&stats->syncp);
5716 } else {
5717 dev->stats.tx_dropped++;
5718 dev_kfree_skb_any(skb);
5719 }
5720
5721 /* Finalize TX processing */
5722 if (txq_pcpu->count >= txq->done_pkts_coal)
5723 mvpp2_txq_done(port, txq, txq_pcpu);
5724
5725 /* Set the timer in case not all frags were processed */
5726 if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
5727 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
5728
5729 mvpp2_timer_set(port_pcpu);
5730 }
5731
5732 return NETDEV_TX_OK;
5733 }
5734
5735 static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5736 {
5737 if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5738 netdev_err(dev, "FCS error\n");
5739 if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5740 netdev_err(dev, "rx fifo overrun error\n");
5741 if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5742 netdev_err(dev, "tx fifo underrun error\n");
5743 }
5744
5745 static int mvpp2_poll(struct napi_struct *napi, int budget)
5746 {
5747 u32 cause_rx_tx, cause_rx, cause_misc;
5748 int rx_done = 0;
5749 struct mvpp2_port *port = netdev_priv(napi->dev);
5750 int cpu = smp_processor_id();
5751
5752 /* Rx/Tx cause register
5753 *
5754 * Bits 0-15: each bit indicates received packets on the Rx queue
5755 * (bit 0 is for Rx queue 0).
5756 *
5757 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5758 * (bit 16 is for Tx queue 0).
5759 *
5760 * Each CPU has its own Rx/Tx cause register
5761 */
5762 cause_rx_tx = mvpp2_percpu_read(port->priv, cpu,
5763 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5764 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5765 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5766
5767 if (cause_misc) {
5768 mvpp2_cause_error(port->dev, cause_misc);
5769
5770 /* Clear the cause register */
5771 mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5772 mvpp2_percpu_write(port->priv, cpu,
5773 MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5774 cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5775 }
5776
5777 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5778
5779 /* Process RX packets */
5780 cause_rx |= port->pending_cause_rx;
5781 while (cause_rx && budget > 0) {
5782 int count;
5783 struct mvpp2_rx_queue *rxq;
5784
5785 rxq = mvpp2_get_rx_queue(port, cause_rx);
5786 if (!rxq)
5787 break;
5788
5789 count = mvpp2_rx(port, budget, rxq);
5790 rx_done += count;
5791 budget -= count;
5792 if (budget > 0) {
5793 /* Clear the bit associated to this Rx queue
5794 * so that next iteration will continue from
5795 * the next Rx queue.
5796 */
5797 cause_rx &= ~(1 << rxq->logic_rxq);
5798 }
5799 }
5800
5801 if (budget > 0) {
5802 cause_rx = 0;
5803 napi_complete_done(napi, rx_done);
5804
5805 mvpp2_interrupts_enable(port);
5806 }
5807 port->pending_cause_rx = cause_rx;
5808 return rx_done;
5809 }
5810
5811 /* Set hw internals when starting port */
5812 static void mvpp2_start_dev(struct mvpp2_port *port)
5813 {
5814 struct net_device *ndev = port->dev;
5815
5816 mvpp2_gmac_max_rx_size_set(port);
5817 mvpp2_txp_max_tx_size_set(port);
5818
5819 napi_enable(&port->napi);
5820
5821 /* Enable interrupts on all CPUs */
5822 mvpp2_interrupts_enable(port);
5823
5824 mvpp2_port_enable(port);
5825 phy_start(ndev->phydev);
5826 netif_tx_start_all_queues(port->dev);
5827 }
5828
5829 /* Set hw internals when stopping port */
5830 static void mvpp2_stop_dev(struct mvpp2_port *port)
5831 {
5832 struct net_device *ndev = port->dev;
5833
5834 /* Stop new packets from arriving to RXQs */
5835 mvpp2_ingress_disable(port);
5836
5837 mdelay(10);
5838
5839 /* Disable interrupts on all CPUs */
5840 mvpp2_interrupts_disable(port);
5841
5842 napi_disable(&port->napi);
5843
5844 netif_carrier_off(port->dev);
5845 netif_tx_stop_all_queues(port->dev);
5846
5847 mvpp2_egress_disable(port);
5848 mvpp2_port_disable(port);
5849 phy_stop(ndev->phydev);
5850 }
5851
5852 static int mvpp2_check_ringparam_valid(struct net_device *dev,
5853 struct ethtool_ringparam *ring)
5854 {
5855 u16 new_rx_pending = ring->rx_pending;
5856 u16 new_tx_pending = ring->tx_pending;
5857
5858 if (ring->rx_pending == 0 || ring->tx_pending == 0)
5859 return -EINVAL;
5860
5861 if (ring->rx_pending > MVPP2_MAX_RXD)
5862 new_rx_pending = MVPP2_MAX_RXD;
5863 else if (!IS_ALIGNED(ring->rx_pending, 16))
5864 new_rx_pending = ALIGN(ring->rx_pending, 16);
5865
5866 if (ring->tx_pending > MVPP2_MAX_TXD)
5867 new_tx_pending = MVPP2_MAX_TXD;
5868 else if (!IS_ALIGNED(ring->tx_pending, 32))
5869 new_tx_pending = ALIGN(ring->tx_pending, 32);
5870
5871 if (ring->rx_pending != new_rx_pending) {
5872 netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5873 ring->rx_pending, new_rx_pending);
5874 ring->rx_pending = new_rx_pending;
5875 }
5876
5877 if (ring->tx_pending != new_tx_pending) {
5878 netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5879 ring->tx_pending, new_tx_pending);
5880 ring->tx_pending = new_tx_pending;
5881 }
5882
5883 return 0;
5884 }
5885
5886 static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5887 {
5888 u32 mac_addr_l, mac_addr_m, mac_addr_h;
5889
5890 mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5891 mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5892 mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5893 addr[0] = (mac_addr_h >> 24) & 0xFF;
5894 addr[1] = (mac_addr_h >> 16) & 0xFF;
5895 addr[2] = (mac_addr_h >> 8) & 0xFF;
5896 addr[3] = mac_addr_h & 0xFF;
5897 addr[4] = mac_addr_m & 0xFF;
5898 addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5899 }
5900
5901 static int mvpp2_phy_connect(struct mvpp2_port *port)
5902 {
5903 struct phy_device *phy_dev;
5904
5905 phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5906 port->phy_interface);
5907 if (!phy_dev) {
5908 netdev_err(port->dev, "cannot connect to phy\n");
5909 return -ENODEV;
5910 }
5911 phy_dev->supported &= PHY_GBIT_FEATURES;
5912 phy_dev->advertising = phy_dev->supported;
5913
5914 port->link = 0;
5915 port->duplex = 0;
5916 port->speed = 0;
5917
5918 return 0;
5919 }
5920
5921 static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5922 {
5923 struct net_device *ndev = port->dev;
5924
5925 phy_disconnect(ndev->phydev);
5926 }
5927
5928 static int mvpp2_open(struct net_device *dev)
5929 {
5930 struct mvpp2_port *port = netdev_priv(dev);
5931 unsigned char mac_bcast[ETH_ALEN] = {
5932 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5933 int err;
5934
5935 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5936 if (err) {
5937 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5938 return err;
5939 }
5940 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5941 dev->dev_addr, true);
5942 if (err) {
5943 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5944 return err;
5945 }
5946 err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5947 if (err) {
5948 netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5949 return err;
5950 }
5951 err = mvpp2_prs_def_flow(port);
5952 if (err) {
5953 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5954 return err;
5955 }
5956
5957 /* Allocate the Rx/Tx queues */
5958 err = mvpp2_setup_rxqs(port);
5959 if (err) {
5960 netdev_err(port->dev, "cannot allocate Rx queues\n");
5961 return err;
5962 }
5963
5964 err = mvpp2_setup_txqs(port);
5965 if (err) {
5966 netdev_err(port->dev, "cannot allocate Tx queues\n");
5967 goto err_cleanup_rxqs;
5968 }
5969
5970 err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5971 if (err) {
5972 netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5973 goto err_cleanup_txqs;
5974 }
5975
5976 /* In default link is down */
5977 netif_carrier_off(port->dev);
5978
5979 err = mvpp2_phy_connect(port);
5980 if (err < 0)
5981 goto err_free_irq;
5982
5983 /* Unmask interrupts on all CPUs */
5984 on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5985
5986 mvpp2_start_dev(port);
5987
5988 return 0;
5989
5990 err_free_irq:
5991 free_irq(port->irq, port);
5992 err_cleanup_txqs:
5993 mvpp2_cleanup_txqs(port);
5994 err_cleanup_rxqs:
5995 mvpp2_cleanup_rxqs(port);
5996 return err;
5997 }
5998
5999 static int mvpp2_stop(struct net_device *dev)
6000 {
6001 struct mvpp2_port *port = netdev_priv(dev);
6002 struct mvpp2_port_pcpu *port_pcpu;
6003 int cpu;
6004
6005 mvpp2_stop_dev(port);
6006 mvpp2_phy_disconnect(port);
6007
6008 /* Mask interrupts on all CPUs */
6009 on_each_cpu(mvpp2_interrupts_mask, port, 1);
6010
6011 free_irq(port->irq, port);
6012 for_each_present_cpu(cpu) {
6013 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6014
6015 hrtimer_cancel(&port_pcpu->tx_done_timer);
6016 port_pcpu->timer_scheduled = false;
6017 tasklet_kill(&port_pcpu->tx_done_tasklet);
6018 }
6019 mvpp2_cleanup_rxqs(port);
6020 mvpp2_cleanup_txqs(port);
6021
6022 return 0;
6023 }
6024
6025 static void mvpp2_set_rx_mode(struct net_device *dev)
6026 {
6027 struct mvpp2_port *port = netdev_priv(dev);
6028 struct mvpp2 *priv = port->priv;
6029 struct netdev_hw_addr *ha;
6030 int id = port->id;
6031 bool allmulti = dev->flags & IFF_ALLMULTI;
6032
6033 mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
6034 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
6035 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
6036
6037 /* Remove all port->id's mcast enries */
6038 mvpp2_prs_mcast_del_all(priv, id);
6039
6040 if (allmulti && !netdev_mc_empty(dev)) {
6041 netdev_for_each_mc_addr(ha, dev)
6042 mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
6043 }
6044 }
6045
6046 static int mvpp2_set_mac_address(struct net_device *dev, void *p)
6047 {
6048 struct mvpp2_port *port = netdev_priv(dev);
6049 const struct sockaddr *addr = p;
6050 int err;
6051
6052 if (!is_valid_ether_addr(addr->sa_data)) {
6053 err = -EADDRNOTAVAIL;
6054 goto log_error;
6055 }
6056
6057 if (!netif_running(dev)) {
6058 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
6059 if (!err)
6060 return 0;
6061 /* Reconfigure parser to accept the original MAC address */
6062 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
6063 if (err)
6064 goto log_error;
6065 }
6066
6067 mvpp2_stop_dev(port);
6068
6069 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
6070 if (!err)
6071 goto out_start;
6072
6073 /* Reconfigure parser accept the original MAC address */
6074 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
6075 if (err)
6076 goto log_error;
6077 out_start:
6078 mvpp2_start_dev(port);
6079 mvpp2_egress_enable(port);
6080 mvpp2_ingress_enable(port);
6081 return 0;
6082 log_error:
6083 netdev_err(dev, "failed to change MAC address\n");
6084 return err;
6085 }
6086
6087 static int mvpp2_change_mtu(struct net_device *dev, int mtu)
6088 {
6089 struct mvpp2_port *port = netdev_priv(dev);
6090 int err;
6091
6092 if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
6093 netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
6094 ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
6095 mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
6096 }
6097
6098 if (!netif_running(dev)) {
6099 err = mvpp2_bm_update_mtu(dev, mtu);
6100 if (!err) {
6101 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
6102 return 0;
6103 }
6104
6105 /* Reconfigure BM to the original MTU */
6106 err = mvpp2_bm_update_mtu(dev, dev->mtu);
6107 if (err)
6108 goto log_error;
6109 }
6110
6111 mvpp2_stop_dev(port);
6112
6113 err = mvpp2_bm_update_mtu(dev, mtu);
6114 if (!err) {
6115 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
6116 goto out_start;
6117 }
6118
6119 /* Reconfigure BM to the original MTU */
6120 err = mvpp2_bm_update_mtu(dev, dev->mtu);
6121 if (err)
6122 goto log_error;
6123
6124 out_start:
6125 mvpp2_start_dev(port);
6126 mvpp2_egress_enable(port);
6127 mvpp2_ingress_enable(port);
6128
6129 return 0;
6130 log_error:
6131 netdev_err(dev, "failed to change MTU\n");
6132 return err;
6133 }
6134
6135 static void
6136 mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6137 {
6138 struct mvpp2_port *port = netdev_priv(dev);
6139 unsigned int start;
6140 int cpu;
6141
6142 for_each_possible_cpu(cpu) {
6143 struct mvpp2_pcpu_stats *cpu_stats;
6144 u64 rx_packets;
6145 u64 rx_bytes;
6146 u64 tx_packets;
6147 u64 tx_bytes;
6148
6149 cpu_stats = per_cpu_ptr(port->stats, cpu);
6150 do {
6151 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
6152 rx_packets = cpu_stats->rx_packets;
6153 rx_bytes = cpu_stats->rx_bytes;
6154 tx_packets = cpu_stats->tx_packets;
6155 tx_bytes = cpu_stats->tx_bytes;
6156 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
6157
6158 stats->rx_packets += rx_packets;
6159 stats->rx_bytes += rx_bytes;
6160 stats->tx_packets += tx_packets;
6161 stats->tx_bytes += tx_bytes;
6162 }
6163
6164 stats->rx_errors = dev->stats.rx_errors;
6165 stats->rx_dropped = dev->stats.rx_dropped;
6166 stats->tx_dropped = dev->stats.tx_dropped;
6167 }
6168
6169 static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
6170 {
6171 int ret;
6172
6173 if (!dev->phydev)
6174 return -ENOTSUPP;
6175
6176 ret = phy_mii_ioctl(dev->phydev, ifr, cmd);
6177 if (!ret)
6178 mvpp2_link_event(dev);
6179
6180 return ret;
6181 }
6182
6183 /* Ethtool methods */
6184
6185 /* Set interrupt coalescing for ethtools */
6186 static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
6187 struct ethtool_coalesce *c)
6188 {
6189 struct mvpp2_port *port = netdev_priv(dev);
6190 int queue;
6191
6192 for (queue = 0; queue < rxq_number; queue++) {
6193 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
6194
6195 rxq->time_coal = c->rx_coalesce_usecs;
6196 rxq->pkts_coal = c->rx_max_coalesced_frames;
6197 mvpp2_rx_pkts_coal_set(port, rxq);
6198 mvpp2_rx_time_coal_set(port, rxq);
6199 }
6200
6201 for (queue = 0; queue < txq_number; queue++) {
6202 struct mvpp2_tx_queue *txq = port->txqs[queue];
6203
6204 txq->done_pkts_coal = c->tx_max_coalesced_frames;
6205 }
6206
6207 return 0;
6208 }
6209
6210 /* get coalescing for ethtools */
6211 static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
6212 struct ethtool_coalesce *c)
6213 {
6214 struct mvpp2_port *port = netdev_priv(dev);
6215
6216 c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
6217 c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
6218 c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
6219 return 0;
6220 }
6221
6222 static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
6223 struct ethtool_drvinfo *drvinfo)
6224 {
6225 strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
6226 sizeof(drvinfo->driver));
6227 strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
6228 sizeof(drvinfo->version));
6229 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
6230 sizeof(drvinfo->bus_info));
6231 }
6232
6233 static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
6234 struct ethtool_ringparam *ring)
6235 {
6236 struct mvpp2_port *port = netdev_priv(dev);
6237
6238 ring->rx_max_pending = MVPP2_MAX_RXD;
6239 ring->tx_max_pending = MVPP2_MAX_TXD;
6240 ring->rx_pending = port->rx_ring_size;
6241 ring->tx_pending = port->tx_ring_size;
6242 }
6243
6244 static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
6245 struct ethtool_ringparam *ring)
6246 {
6247 struct mvpp2_port *port = netdev_priv(dev);
6248 u16 prev_rx_ring_size = port->rx_ring_size;
6249 u16 prev_tx_ring_size = port->tx_ring_size;
6250 int err;
6251
6252 err = mvpp2_check_ringparam_valid(dev, ring);
6253 if (err)
6254 return err;
6255
6256 if (!netif_running(dev)) {
6257 port->rx_ring_size = ring->rx_pending;
6258 port->tx_ring_size = ring->tx_pending;
6259 return 0;
6260 }
6261
6262 /* The interface is running, so we have to force a
6263 * reallocation of the queues
6264 */
6265 mvpp2_stop_dev(port);
6266 mvpp2_cleanup_rxqs(port);
6267 mvpp2_cleanup_txqs(port);
6268
6269 port->rx_ring_size = ring->rx_pending;
6270 port->tx_ring_size = ring->tx_pending;
6271
6272 err = mvpp2_setup_rxqs(port);
6273 if (err) {
6274 /* Reallocate Rx queues with the original ring size */
6275 port->rx_ring_size = prev_rx_ring_size;
6276 ring->rx_pending = prev_rx_ring_size;
6277 err = mvpp2_setup_rxqs(port);
6278 if (err)
6279 goto err_out;
6280 }
6281 err = mvpp2_setup_txqs(port);
6282 if (err) {
6283 /* Reallocate Tx queues with the original ring size */
6284 port->tx_ring_size = prev_tx_ring_size;
6285 ring->tx_pending = prev_tx_ring_size;
6286 err = mvpp2_setup_txqs(port);
6287 if (err)
6288 goto err_clean_rxqs;
6289 }
6290
6291 mvpp2_start_dev(port);
6292 mvpp2_egress_enable(port);
6293 mvpp2_ingress_enable(port);
6294
6295 return 0;
6296
6297 err_clean_rxqs:
6298 mvpp2_cleanup_rxqs(port);
6299 err_out:
6300 netdev_err(dev, "failed to change ring parameters");
6301 return err;
6302 }
6303
6304 /* Device ops */
6305
6306 static const struct net_device_ops mvpp2_netdev_ops = {
6307 .ndo_open = mvpp2_open,
6308 .ndo_stop = mvpp2_stop,
6309 .ndo_start_xmit = mvpp2_tx,
6310 .ndo_set_rx_mode = mvpp2_set_rx_mode,
6311 .ndo_set_mac_address = mvpp2_set_mac_address,
6312 .ndo_change_mtu = mvpp2_change_mtu,
6313 .ndo_get_stats64 = mvpp2_get_stats64,
6314 .ndo_do_ioctl = mvpp2_ioctl,
6315 };
6316
6317 static const struct ethtool_ops mvpp2_eth_tool_ops = {
6318 .nway_reset = phy_ethtool_nway_reset,
6319 .get_link = ethtool_op_get_link,
6320 .set_coalesce = mvpp2_ethtool_set_coalesce,
6321 .get_coalesce = mvpp2_ethtool_get_coalesce,
6322 .get_drvinfo = mvpp2_ethtool_get_drvinfo,
6323 .get_ringparam = mvpp2_ethtool_get_ringparam,
6324 .set_ringparam = mvpp2_ethtool_set_ringparam,
6325 .get_link_ksettings = phy_ethtool_get_link_ksettings,
6326 .set_link_ksettings = phy_ethtool_set_link_ksettings,
6327 };
6328
6329 /* Initialize port HW */
6330 static int mvpp2_port_init(struct mvpp2_port *port)
6331 {
6332 struct device *dev = port->dev->dev.parent;
6333 struct mvpp2 *priv = port->priv;
6334 struct mvpp2_txq_pcpu *txq_pcpu;
6335 int queue, cpu, err;
6336
6337 if (port->first_rxq + rxq_number >
6338 MVPP2_MAX_PORTS * priv->max_port_rxqs)
6339 return -EINVAL;
6340
6341 /* Disable port */
6342 mvpp2_egress_disable(port);
6343 mvpp2_port_disable(port);
6344
6345 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
6346 GFP_KERNEL);
6347 if (!port->txqs)
6348 return -ENOMEM;
6349
6350 /* Associate physical Tx queues to this port and initialize.
6351 * The mapping is predefined.
6352 */
6353 for (queue = 0; queue < txq_number; queue++) {
6354 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
6355 struct mvpp2_tx_queue *txq;
6356
6357 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
6358 if (!txq) {
6359 err = -ENOMEM;
6360 goto err_free_percpu;
6361 }
6362
6363 txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
6364 if (!txq->pcpu) {
6365 err = -ENOMEM;
6366 goto err_free_percpu;
6367 }
6368
6369 txq->id = queue_phy_id;
6370 txq->log_id = queue;
6371 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
6372 for_each_present_cpu(cpu) {
6373 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
6374 txq_pcpu->cpu = cpu;
6375 }
6376
6377 port->txqs[queue] = txq;
6378 }
6379
6380 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
6381 GFP_KERNEL);
6382 if (!port->rxqs) {
6383 err = -ENOMEM;
6384 goto err_free_percpu;
6385 }
6386
6387 /* Allocate and initialize Rx queue for this port */
6388 for (queue = 0; queue < rxq_number; queue++) {
6389 struct mvpp2_rx_queue *rxq;
6390
6391 /* Map physical Rx queue to port's logical Rx queue */
6392 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
6393 if (!rxq) {
6394 err = -ENOMEM;
6395 goto err_free_percpu;
6396 }
6397 /* Map this Rx queue to a physical queue */
6398 rxq->id = port->first_rxq + queue;
6399 rxq->port = port->id;
6400 rxq->logic_rxq = queue;
6401
6402 port->rxqs[queue] = rxq;
6403 }
6404
6405 /* Configure Rx queue group interrupt for this port */
6406 if (priv->hw_version == MVPP21) {
6407 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
6408 rxq_number);
6409 } else {
6410 u32 val;
6411
6412 val = (port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
6413 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
6414
6415 val = (rxq_number << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
6416 mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
6417 }
6418
6419 /* Create Rx descriptor rings */
6420 for (queue = 0; queue < rxq_number; queue++) {
6421 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
6422
6423 rxq->size = port->rx_ring_size;
6424 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
6425 rxq->time_coal = MVPP2_RX_COAL_USEC;
6426 }
6427
6428 mvpp2_ingress_disable(port);
6429
6430 /* Port default configuration */
6431 mvpp2_defaults_set(port);
6432
6433 /* Port's classifier configuration */
6434 mvpp2_cls_oversize_rxq_set(port);
6435 mvpp2_cls_port_config(port);
6436
6437 /* Provide an initial Rx packet size */
6438 port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6439
6440 /* Initialize pools for swf */
6441 err = mvpp2_swf_bm_pool_init(port);
6442 if (err)
6443 goto err_free_percpu;
6444
6445 return 0;
6446
6447 err_free_percpu:
6448 for (queue = 0; queue < txq_number; queue++) {
6449 if (!port->txqs[queue])
6450 continue;
6451 free_percpu(port->txqs[queue]->pcpu);
6452 }
6453 return err;
6454 }
6455
6456 /* Ports initialization */
6457 static int mvpp2_port_probe(struct platform_device *pdev,
6458 struct device_node *port_node,
6459 struct mvpp2 *priv)
6460 {
6461 struct device_node *phy_node;
6462 struct mvpp2_port *port;
6463 struct mvpp2_port_pcpu *port_pcpu;
6464 struct net_device *dev;
6465 struct resource *res;
6466 const char *dt_mac_addr;
6467 const char *mac_from;
6468 char hw_mac_addr[ETH_ALEN];
6469 u32 id;
6470 int features;
6471 int phy_mode;
6472 int err, i, cpu;
6473
6474 dev = alloc_etherdev_mqs(sizeof(*port), txq_number, rxq_number);
6475 if (!dev)
6476 return -ENOMEM;
6477
6478 phy_node = of_parse_phandle(port_node, "phy", 0);
6479 if (!phy_node) {
6480 dev_err(&pdev->dev, "missing phy\n");
6481 err = -ENODEV;
6482 goto err_free_netdev;
6483 }
6484
6485 phy_mode = of_get_phy_mode(port_node);
6486 if (phy_mode < 0) {
6487 dev_err(&pdev->dev, "incorrect phy mode\n");
6488 err = phy_mode;
6489 goto err_free_netdev;
6490 }
6491
6492 if (of_property_read_u32(port_node, "port-id", &id)) {
6493 err = -EINVAL;
6494 dev_err(&pdev->dev, "missing port-id value\n");
6495 goto err_free_netdev;
6496 }
6497
6498 dev->tx_queue_len = MVPP2_MAX_TXD;
6499 dev->watchdog_timeo = 5 * HZ;
6500 dev->netdev_ops = &mvpp2_netdev_ops;
6501 dev->ethtool_ops = &mvpp2_eth_tool_ops;
6502
6503 port = netdev_priv(dev);
6504
6505 port->irq = irq_of_parse_and_map(port_node, 0);
6506 if (port->irq <= 0) {
6507 err = -EINVAL;
6508 goto err_free_netdev;
6509 }
6510
6511 if (of_property_read_bool(port_node, "marvell,loopback"))
6512 port->flags |= MVPP2_F_LOOPBACK;
6513
6514 port->priv = priv;
6515 port->id = id;
6516 if (priv->hw_version == MVPP21)
6517 port->first_rxq = port->id * rxq_number;
6518 else
6519 port->first_rxq = port->id * priv->max_port_rxqs;
6520
6521 port->phy_node = phy_node;
6522 port->phy_interface = phy_mode;
6523
6524 if (priv->hw_version == MVPP21) {
6525 res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id);
6526 port->base = devm_ioremap_resource(&pdev->dev, res);
6527 if (IS_ERR(port->base)) {
6528 err = PTR_ERR(port->base);
6529 goto err_free_irq;
6530 }
6531 } else {
6532 if (of_property_read_u32(port_node, "gop-port-id",
6533 &port->gop_id)) {
6534 err = -EINVAL;
6535 dev_err(&pdev->dev, "missing gop-port-id value\n");
6536 goto err_free_irq;
6537 }
6538
6539 port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
6540 }
6541
6542 /* Alloc per-cpu stats */
6543 port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6544 if (!port->stats) {
6545 err = -ENOMEM;
6546 goto err_free_irq;
6547 }
6548
6549 dt_mac_addr = of_get_mac_address(port_node);
6550 if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6551 mac_from = "device tree";
6552 ether_addr_copy(dev->dev_addr, dt_mac_addr);
6553 } else {
6554 if (priv->hw_version == MVPP21)
6555 mvpp21_get_mac_address(port, hw_mac_addr);
6556 if (is_valid_ether_addr(hw_mac_addr)) {
6557 mac_from = "hardware";
6558 ether_addr_copy(dev->dev_addr, hw_mac_addr);
6559 } else {
6560 mac_from = "random";
6561 eth_hw_addr_random(dev);
6562 }
6563 }
6564
6565 port->tx_ring_size = MVPP2_MAX_TXD;
6566 port->rx_ring_size = MVPP2_MAX_RXD;
6567 port->dev = dev;
6568 SET_NETDEV_DEV(dev, &pdev->dev);
6569
6570 err = mvpp2_port_init(port);
6571 if (err < 0) {
6572 dev_err(&pdev->dev, "failed to init port %d\n", id);
6573 goto err_free_stats;
6574 }
6575
6576 mvpp2_port_mii_set(port);
6577 mvpp2_port_periodic_xon_disable(port);
6578
6579 if (priv->hw_version == MVPP21)
6580 mvpp2_port_fc_adv_enable(port);
6581
6582 mvpp2_port_reset(port);
6583
6584 port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
6585 if (!port->pcpu) {
6586 err = -ENOMEM;
6587 goto err_free_txq_pcpu;
6588 }
6589
6590 for_each_present_cpu(cpu) {
6591 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6592
6593 hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
6594 HRTIMER_MODE_REL_PINNED);
6595 port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
6596 port_pcpu->timer_scheduled = false;
6597
6598 tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
6599 (unsigned long)dev);
6600 }
6601
6602 netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6603 features = NETIF_F_SG | NETIF_F_IP_CSUM;
6604 dev->features = features | NETIF_F_RXCSUM;
6605 dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6606 dev->vlan_features |= features;
6607
6608 /* MTU range: 68 - 9676 */
6609 dev->min_mtu = ETH_MIN_MTU;
6610 /* 9676 == 9700 - 20 and rounding to 8 */
6611 dev->max_mtu = 9676;
6612
6613 err = register_netdev(dev);
6614 if (err < 0) {
6615 dev_err(&pdev->dev, "failed to register netdev\n");
6616 goto err_free_port_pcpu;
6617 }
6618 netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6619
6620 priv->port_list[id] = port;
6621 return 0;
6622
6623 err_free_port_pcpu:
6624 free_percpu(port->pcpu);
6625 err_free_txq_pcpu:
6626 for (i = 0; i < txq_number; i++)
6627 free_percpu(port->txqs[i]->pcpu);
6628 err_free_stats:
6629 free_percpu(port->stats);
6630 err_free_irq:
6631 irq_dispose_mapping(port->irq);
6632 err_free_netdev:
6633 of_node_put(phy_node);
6634 free_netdev(dev);
6635 return err;
6636 }
6637
6638 /* Ports removal routine */
6639 static void mvpp2_port_remove(struct mvpp2_port *port)
6640 {
6641 int i;
6642
6643 unregister_netdev(port->dev);
6644 of_node_put(port->phy_node);
6645 free_percpu(port->pcpu);
6646 free_percpu(port->stats);
6647 for (i = 0; i < txq_number; i++)
6648 free_percpu(port->txqs[i]->pcpu);
6649 irq_dispose_mapping(port->irq);
6650 free_netdev(port->dev);
6651 }
6652
6653 /* Initialize decoding windows */
6654 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6655 struct mvpp2 *priv)
6656 {
6657 u32 win_enable;
6658 int i;
6659
6660 for (i = 0; i < 6; i++) {
6661 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6662 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6663
6664 if (i < 4)
6665 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6666 }
6667
6668 win_enable = 0;
6669
6670 for (i = 0; i < dram->num_cs; i++) {
6671 const struct mbus_dram_window *cs = dram->cs + i;
6672
6673 mvpp2_write(priv, MVPP2_WIN_BASE(i),
6674 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6675 dram->mbus_dram_target_id);
6676
6677 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6678 (cs->size - 1) & 0xffff0000);
6679
6680 win_enable |= (1 << i);
6681 }
6682
6683 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6684 }
6685
6686 /* Initialize Rx FIFO's */
6687 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6688 {
6689 int port;
6690
6691 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6692 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6693 MVPP2_RX_FIFO_PORT_DATA_SIZE);
6694 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6695 MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6696 }
6697
6698 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6699 MVPP2_RX_FIFO_PORT_MIN_PKT);
6700 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6701 }
6702
6703 static void mvpp2_axi_init(struct mvpp2 *priv)
6704 {
6705 u32 val, rdval, wrval;
6706
6707 mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
6708
6709 /* AXI Bridge Configuration */
6710
6711 rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
6712 << MVPP22_AXI_ATTR_CACHE_OFFS;
6713 rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
6714 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
6715
6716 wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
6717 << MVPP22_AXI_ATTR_CACHE_OFFS;
6718 wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
6719 << MVPP22_AXI_ATTR_DOMAIN_OFFS;
6720
6721 /* BM */
6722 mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
6723 mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
6724
6725 /* Descriptors */
6726 mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
6727 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
6728 mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
6729 mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
6730
6731 /* Buffer Data */
6732 mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
6733 mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
6734
6735 val = MVPP22_AXI_CODE_CACHE_NON_CACHE
6736 << MVPP22_AXI_CODE_CACHE_OFFS;
6737 val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
6738 << MVPP22_AXI_CODE_DOMAIN_OFFS;
6739 mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
6740 mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
6741
6742 val = MVPP22_AXI_CODE_CACHE_RD_CACHE
6743 << MVPP22_AXI_CODE_CACHE_OFFS;
6744 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
6745 << MVPP22_AXI_CODE_DOMAIN_OFFS;
6746
6747 mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
6748
6749 val = MVPP22_AXI_CODE_CACHE_WR_CACHE
6750 << MVPP22_AXI_CODE_CACHE_OFFS;
6751 val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
6752 << MVPP22_AXI_CODE_DOMAIN_OFFS;
6753
6754 mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
6755 }
6756
6757 /* Initialize network controller common part HW */
6758 static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6759 {
6760 const struct mbus_dram_target_info *dram_target_info;
6761 int err, i;
6762 u32 val;
6763
6764 /* Checks for hardware constraints */
6765 if (rxq_number % 4 || (rxq_number > priv->max_port_rxqs) ||
6766 (txq_number > MVPP2_MAX_TXQ)) {
6767 dev_err(&pdev->dev, "invalid queue size parameter\n");
6768 return -EINVAL;
6769 }
6770
6771 /* MBUS windows configuration */
6772 dram_target_info = mv_mbus_dram_info();
6773 if (dram_target_info)
6774 mvpp2_conf_mbus_windows(dram_target_info, priv);
6775
6776 if (priv->hw_version == MVPP22)
6777 mvpp2_axi_init(priv);
6778
6779 /* Disable HW PHY polling */
6780 if (priv->hw_version == MVPP21) {
6781 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6782 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6783 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6784 } else {
6785 val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
6786 val &= ~MVPP22_SMI_POLLING_EN;
6787 writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
6788 }
6789
6790 /* Allocate and initialize aggregated TXQs */
6791 priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6792 sizeof(*priv->aggr_txqs),
6793 GFP_KERNEL);
6794 if (!priv->aggr_txqs)
6795 return -ENOMEM;
6796
6797 for_each_present_cpu(i) {
6798 priv->aggr_txqs[i].id = i;
6799 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6800 err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6801 MVPP2_AGGR_TXQ_SIZE, i, priv);
6802 if (err < 0)
6803 return err;
6804 }
6805
6806 /* Rx Fifo Init */
6807 mvpp2_rx_fifo_init(priv);
6808
6809 /* Reset Rx queue group interrupt configuration */
6810 for (i = 0; i < MVPP2_MAX_PORTS; i++) {
6811 if (priv->hw_version == MVPP21) {
6812 mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(i),
6813 rxq_number);
6814 continue;
6815 } else {
6816 u32 val;
6817
6818 val = (i << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET);
6819 mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
6820
6821 val = (rxq_number << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET);
6822 mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
6823 }
6824 }
6825
6826 if (priv->hw_version == MVPP21)
6827 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6828 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6829
6830 /* Allow cache snoop when transmiting packets */
6831 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6832
6833 /* Buffer Manager initialization */
6834 err = mvpp2_bm_init(pdev, priv);
6835 if (err < 0)
6836 return err;
6837
6838 /* Parser default initialization */
6839 err = mvpp2_prs_default_init(pdev, priv);
6840 if (err < 0)
6841 return err;
6842
6843 /* Classifier default initialization */
6844 mvpp2_cls_init(priv);
6845
6846 return 0;
6847 }
6848
6849 static int mvpp2_probe(struct platform_device *pdev)
6850 {
6851 struct device_node *dn = pdev->dev.of_node;
6852 struct device_node *port_node;
6853 struct mvpp2 *priv;
6854 struct resource *res;
6855 void __iomem *base;
6856 int port_count, cpu;
6857 int err;
6858
6859 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
6860 if (!priv)
6861 return -ENOMEM;
6862
6863 priv->hw_version =
6864 (unsigned long)of_device_get_match_data(&pdev->dev);
6865
6866 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6867 base = devm_ioremap_resource(&pdev->dev, res);
6868 if (IS_ERR(base))
6869 return PTR_ERR(base);
6870
6871 if (priv->hw_version == MVPP21) {
6872 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6873 priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6874 if (IS_ERR(priv->lms_base))
6875 return PTR_ERR(priv->lms_base);
6876 } else {
6877 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6878 priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
6879 if (IS_ERR(priv->iface_base))
6880 return PTR_ERR(priv->iface_base);
6881 }
6882
6883 for_each_present_cpu(cpu) {
6884 u32 addr_space_sz;
6885
6886 addr_space_sz = (priv->hw_version == MVPP21 ?
6887 MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
6888 priv->cpu_base[cpu] = base + cpu * addr_space_sz;
6889 }
6890
6891 if (priv->hw_version == MVPP21)
6892 priv->max_port_rxqs = 8;
6893 else
6894 priv->max_port_rxqs = 32;
6895
6896 priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6897 if (IS_ERR(priv->pp_clk))
6898 return PTR_ERR(priv->pp_clk);
6899 err = clk_prepare_enable(priv->pp_clk);
6900 if (err < 0)
6901 return err;
6902
6903 priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6904 if (IS_ERR(priv->gop_clk)) {
6905 err = PTR_ERR(priv->gop_clk);
6906 goto err_pp_clk;
6907 }
6908 err = clk_prepare_enable(priv->gop_clk);
6909 if (err < 0)
6910 goto err_pp_clk;
6911
6912 if (priv->hw_version == MVPP22) {
6913 priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
6914 if (IS_ERR(priv->mg_clk)) {
6915 err = PTR_ERR(priv->mg_clk);
6916 goto err_gop_clk;
6917 }
6918
6919 err = clk_prepare_enable(priv->mg_clk);
6920 if (err < 0)
6921 goto err_gop_clk;
6922 }
6923
6924 /* Get system's tclk rate */
6925 priv->tclk = clk_get_rate(priv->pp_clk);
6926
6927 if (priv->hw_version == MVPP22) {
6928 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(40));
6929 if (err)
6930 goto err_mg_clk;
6931 /* Sadly, the BM pools all share the same register to
6932 * store the high 32 bits of their address. So they
6933 * must all have the same high 32 bits, which forces
6934 * us to restrict coherent memory to DMA_BIT_MASK(32).
6935 */
6936 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
6937 if (err)
6938 goto err_mg_clk;
6939 }
6940
6941 /* Initialize network controller */
6942 err = mvpp2_init(pdev, priv);
6943 if (err < 0) {
6944 dev_err(&pdev->dev, "failed to initialize controller\n");
6945 goto err_mg_clk;
6946 }
6947
6948 port_count = of_get_available_child_count(dn);
6949 if (port_count == 0) {
6950 dev_err(&pdev->dev, "no ports enabled\n");
6951 err = -ENODEV;
6952 goto err_mg_clk;
6953 }
6954
6955 priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6956 sizeof(*priv->port_list),
6957 GFP_KERNEL);
6958 if (!priv->port_list) {
6959 err = -ENOMEM;
6960 goto err_mg_clk;
6961 }
6962
6963 /* Initialize ports */
6964 for_each_available_child_of_node(dn, port_node) {
6965 err = mvpp2_port_probe(pdev, port_node, priv);
6966 if (err < 0)
6967 goto err_mg_clk;
6968 }
6969
6970 platform_set_drvdata(pdev, priv);
6971 return 0;
6972
6973 err_mg_clk:
6974 if (priv->hw_version == MVPP22)
6975 clk_disable_unprepare(priv->mg_clk);
6976 err_gop_clk:
6977 clk_disable_unprepare(priv->gop_clk);
6978 err_pp_clk:
6979 clk_disable_unprepare(priv->pp_clk);
6980 return err;
6981 }
6982
6983 static int mvpp2_remove(struct platform_device *pdev)
6984 {
6985 struct mvpp2 *priv = platform_get_drvdata(pdev);
6986 struct device_node *dn = pdev->dev.of_node;
6987 struct device_node *port_node;
6988 int i = 0;
6989
6990 for_each_available_child_of_node(dn, port_node) {
6991 if (priv->port_list[i])
6992 mvpp2_port_remove(priv->port_list[i]);
6993 i++;
6994 }
6995
6996 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6997 struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6998
6999 mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
7000 }
7001
7002 for_each_present_cpu(i) {
7003 struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
7004
7005 dma_free_coherent(&pdev->dev,
7006 MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
7007 aggr_txq->descs,
7008 aggr_txq->descs_dma);
7009 }
7010
7011 clk_disable_unprepare(priv->mg_clk);
7012 clk_disable_unprepare(priv->pp_clk);
7013 clk_disable_unprepare(priv->gop_clk);
7014
7015 return 0;
7016 }
7017
7018 static const struct of_device_id mvpp2_match[] = {
7019 {
7020 .compatible = "marvell,armada-375-pp2",
7021 .data = (void *)MVPP21,
7022 },
7023 {
7024 .compatible = "marvell,armada-7k-pp22",
7025 .data = (void *)MVPP22,
7026 },
7027 { }
7028 };
7029 MODULE_DEVICE_TABLE(of, mvpp2_match);
7030
7031 static struct platform_driver mvpp2_driver = {
7032 .probe = mvpp2_probe,
7033 .remove = mvpp2_remove,
7034 .driver = {
7035 .name = MVPP2_DRIVER_NAME,
7036 .of_match_table = mvpp2_match,
7037 },
7038 };
7039
7040 module_platform_driver(mvpp2_driver);
7041
7042 MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
7043 MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
7044 MODULE_LICENSE("GPL v2");