]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/marvell/mvpp2.c
Merge remote-tracking branches 'spi/topic/dw', 'spi/topic/dw-mid', 'spi/topic/fsl...
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / marvell / mvpp2.c
1 /*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2. This program is licensed "as is" without any
10 * warranty of any kind, whether express or implied.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 #include <linux/inetdevice.h>
19 #include <linux/mbus.h>
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpumask.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_mdio.h>
26 #include <linux/of_net.h>
27 #include <linux/of_address.h>
28 #include <linux/phy.h>
29 #include <linux/clk.h>
30 #include <linux/hrtimer.h>
31 #include <linux/ktime.h>
32 #include <uapi/linux/ppp_defs.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35
36 /* RX Fifo Registers */
37 #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
38 #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
39 #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
40 #define MVPP2_RX_FIFO_INIT_REG 0x64
41
42 /* RX DMA Top Registers */
43 #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
44 #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
45 #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
46 #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
47 #define MVPP2_POOL_BUF_SIZE_OFFSET 5
48 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
49 #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
50 #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
51 #define MVPP2_RXQ_POOL_SHORT_OFFS 20
52 #define MVPP2_RXQ_POOL_SHORT_MASK 0x700000
53 #define MVPP2_RXQ_POOL_LONG_OFFS 24
54 #define MVPP2_RXQ_POOL_LONG_MASK 0x7000000
55 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
56 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
57 #define MVPP2_RXQ_DISABLE_MASK BIT(31)
58
59 /* Parser Registers */
60 #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
61 #define MVPP2_PRS_PORT_LU_MAX 0xf
62 #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
63 #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
64 #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
65 #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
66 #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
67 #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
68 #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
69 #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
70 #define MVPP2_PRS_TCAM_IDX_REG 0x1100
71 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
72 #define MVPP2_PRS_TCAM_INV_MASK BIT(31)
73 #define MVPP2_PRS_SRAM_IDX_REG 0x1200
74 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
75 #define MVPP2_PRS_TCAM_CTRL_REG 0x1230
76 #define MVPP2_PRS_TCAM_EN_MASK BIT(0)
77
78 /* Classifier Registers */
79 #define MVPP2_CLS_MODE_REG 0x1800
80 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
81 #define MVPP2_CLS_PORT_WAY_REG 0x1810
82 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
83 #define MVPP2_CLS_LKP_INDEX_REG 0x1814
84 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
85 #define MVPP2_CLS_LKP_TBL_REG 0x1818
86 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
87 #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
88 #define MVPP2_CLS_FLOW_INDEX_REG 0x1820
89 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824
90 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828
91 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c
92 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
93 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
94 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
95 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
96 #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
97 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
98
99 /* Descriptor Manager Top Registers */
100 #define MVPP2_RXQ_NUM_REG 0x2040
101 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044
102 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048
103 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
104 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
105 #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
106 #define MVPP2_RXQ_NUM_NEW_OFFSET 16
107 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
108 #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
109 #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
110 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
111 #define MVPP2_RXQ_THRESH_REG 0x204c
112 #define MVPP2_OCCUPIED_THRESH_OFFSET 0
113 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
114 #define MVPP2_RXQ_INDEX_REG 0x2050
115 #define MVPP2_TXQ_NUM_REG 0x2080
116 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084
117 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088
118 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
119 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
120 #define MVPP2_TXQ_THRESH_REG 0x2094
121 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16
122 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
123 #define MVPP2_TXQ_INDEX_REG 0x2098
124 #define MVPP2_TXQ_PREF_BUF_REG 0x209c
125 #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
126 #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
127 #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
128 #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
129 #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
130 #define MVPP2_TXQ_PENDING_REG 0x20a0
131 #define MVPP2_TXQ_PENDING_MASK 0x3fff
132 #define MVPP2_TXQ_INT_STATUS_REG 0x20a4
133 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
134 #define MVPP2_TRANSMITTED_COUNT_OFFSET 16
135 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
136 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
137 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
138 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
139 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
140 #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
141 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16
142 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
143 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
144 #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
145 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
146 #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
147 #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
148
149 /* MBUS bridge registers */
150 #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
151 #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
152 #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
153 #define MVPP2_BASE_ADDR_ENABLE 0x4060
154
155 /* Interrupt Cause and Mask registers */
156 #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
157 #define MVPP2_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
158 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
159 #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
160 #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
161 #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
162 #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
163 #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
164 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
165 #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
166 #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
167 #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
168 #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
169 #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
170 #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
171 #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
172 #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
173 #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
174 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
175 #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
176
177 /* Buffer Manager registers */
178 #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
179 #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
180 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
181 #define MVPP2_BM_POOL_SIZE_MASK 0xfff0
182 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
183 #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
184 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
185 #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
186 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
187 #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
188 #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
189 #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
190 #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
191 #define MVPP2_BM_START_MASK BIT(0)
192 #define MVPP2_BM_STOP_MASK BIT(1)
193 #define MVPP2_BM_STATE_MASK BIT(4)
194 #define MVPP2_BM_LOW_THRESH_OFFS 8
195 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00
196 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
197 MVPP2_BM_LOW_THRESH_OFFS)
198 #define MVPP2_BM_HIGH_THRESH_OFFS 16
199 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
200 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
201 MVPP2_BM_HIGH_THRESH_OFFS)
202 #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
203 #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
204 #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
205 #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
206 #define MVPP2_BM_BPPE_FULL_MASK BIT(3)
207 #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
208 #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
209 #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
210 #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
211 #define MVPP2_BM_VIRT_ALLOC_REG 0x6440
212 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
213 #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
214 #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
215 #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
216 #define MVPP2_BM_VIRT_RLS_REG 0x64c0
217 #define MVPP2_BM_MC_RLS_REG 0x64c4
218 #define MVPP2_BM_MC_ID_MASK 0xfff
219 #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
220
221 /* TX Scheduler registers */
222 #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
223 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
224 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff
225 #define MVPP2_TXP_SCHED_DISQ_OFFSET 8
226 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
227 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
228 #define MVPP2_TXP_SCHED_MTU_REG 0x801c
229 #define MVPP2_TXP_MTU_MAX 0x7FFFF
230 #define MVPP2_TXP_SCHED_REFILL_REG 0x8020
231 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
232 #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
233 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
234 #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
235 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
236 #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
237 #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
238 #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
239 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
240 #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
241 #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
242 #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
243 #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
244
245 /* TX general registers */
246 #define MVPP2_TX_SNOOP_REG 0x8800
247 #define MVPP2_TX_PORT_FLUSH_REG 0x8810
248 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
249
250 /* LMS registers */
251 #define MVPP2_SRC_ADDR_MIDDLE 0x24
252 #define MVPP2_SRC_ADDR_HIGH 0x28
253 #define MVPP2_PHY_AN_CFG0_REG 0x34
254 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
255 #define MVPP2_MIB_COUNTERS_BASE(port) (0x1000 + ((port) >> 1) * \
256 0x400 + (port) * 0x400)
257 #define MVPP2_MIB_LATE_COLLISION 0x7c
258 #define MVPP2_ISR_SUM_MASK_REG 0x220c
259 #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
260 #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
261
262 /* Per-port registers */
263 #define MVPP2_GMAC_CTRL_0_REG 0x0
264 #define MVPP2_GMAC_PORT_EN_MASK BIT(0)
265 #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
266 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
267 #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
268 #define MVPP2_GMAC_CTRL_1_REG 0x4
269 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
270 #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
271 #define MVPP2_GMAC_PCS_LB_EN_BIT 6
272 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
273 #define MVPP2_GMAC_SA_LOW_OFFS 7
274 #define MVPP2_GMAC_CTRL_2_REG 0x8
275 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
276 #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
277 #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
278 #define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
279 #define MVPP2_GMAC_AUTONEG_CONFIG 0xc
280 #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
281 #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
282 #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
283 #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
284 #define MVPP2_GMAC_AN_SPEED_EN BIT(7)
285 #define MVPP2_GMAC_FC_ADV_EN BIT(9)
286 #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
287 #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
288 #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
289 #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
290 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
291 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
292 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
293
294 #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
295
296 /* Descriptor ring Macros */
297 #define MVPP2_QUEUE_NEXT_DESC(q, index) \
298 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
299
300 /* Various constants */
301
302 /* Coalescing */
303 #define MVPP2_TXDONE_COAL_PKTS_THRESH 15
304 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
305 #define MVPP2_RX_COAL_PKTS 32
306 #define MVPP2_RX_COAL_USEC 100
307
308 /* The two bytes Marvell header. Either contains a special value used
309 * by Marvell switches when a specific hardware mode is enabled (not
310 * supported by this driver) or is filled automatically by zeroes on
311 * the RX side. Those two bytes being at the front of the Ethernet
312 * header, they allow to have the IP header aligned on a 4 bytes
313 * boundary automatically: the hardware skips those two bytes on its
314 * own.
315 */
316 #define MVPP2_MH_SIZE 2
317 #define MVPP2_ETH_TYPE_LEN 2
318 #define MVPP2_PPPOE_HDR_SIZE 8
319 #define MVPP2_VLAN_TAG_LEN 4
320
321 /* Lbtd 802.3 type */
322 #define MVPP2_IP_LBDT_TYPE 0xfffa
323
324 #define MVPP2_CPU_D_CACHE_LINE_SIZE 32
325 #define MVPP2_TX_CSUM_MAX_SIZE 9800
326
327 /* Timeout constants */
328 #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
329 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
330
331 #define MVPP2_TX_MTU_MAX 0x7ffff
332
333 /* Maximum number of T-CONTs of PON port */
334 #define MVPP2_MAX_TCONT 16
335
336 /* Maximum number of supported ports */
337 #define MVPP2_MAX_PORTS 4
338
339 /* Maximum number of TXQs used by single port */
340 #define MVPP2_MAX_TXQ 8
341
342 /* Maximum number of RXQs used by single port */
343 #define MVPP2_MAX_RXQ 8
344
345 /* Dfault number of RXQs in use */
346 #define MVPP2_DEFAULT_RXQ 4
347
348 /* Total number of RXQs available to all ports */
349 #define MVPP2_RXQ_TOTAL_NUM (MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
350
351 /* Max number of Rx descriptors */
352 #define MVPP2_MAX_RXD 128
353
354 /* Max number of Tx descriptors */
355 #define MVPP2_MAX_TXD 1024
356
357 /* Amount of Tx descriptors that can be reserved at once by CPU */
358 #define MVPP2_CPU_DESC_CHUNK 64
359
360 /* Max number of Tx descriptors in each aggregated queue */
361 #define MVPP2_AGGR_TXQ_SIZE 256
362
363 /* Descriptor aligned size */
364 #define MVPP2_DESC_ALIGNED_SIZE 32
365
366 /* Descriptor alignment mask */
367 #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
368
369 /* RX FIFO constants */
370 #define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
371 #define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
372 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
373
374 /* RX buffer constants */
375 #define MVPP2_SKB_SHINFO_SIZE \
376 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
377
378 #define MVPP2_RX_PKT_SIZE(mtu) \
379 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
380 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
381
382 #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
383 #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
384 #define MVPP2_RX_MAX_PKT_SIZE(total_size) \
385 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
386
387 #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
388
389 /* IPv6 max L3 address size */
390 #define MVPP2_MAX_L3_ADDR_SIZE 16
391
392 /* Port flags */
393 #define MVPP2_F_LOOPBACK BIT(0)
394
395 /* Marvell tag types */
396 enum mvpp2_tag_type {
397 MVPP2_TAG_TYPE_NONE = 0,
398 MVPP2_TAG_TYPE_MH = 1,
399 MVPP2_TAG_TYPE_DSA = 2,
400 MVPP2_TAG_TYPE_EDSA = 3,
401 MVPP2_TAG_TYPE_VLAN = 4,
402 MVPP2_TAG_TYPE_LAST = 5
403 };
404
405 /* Parser constants */
406 #define MVPP2_PRS_TCAM_SRAM_SIZE 256
407 #define MVPP2_PRS_TCAM_WORDS 6
408 #define MVPP2_PRS_SRAM_WORDS 4
409 #define MVPP2_PRS_FLOW_ID_SIZE 64
410 #define MVPP2_PRS_FLOW_ID_MASK 0x3f
411 #define MVPP2_PRS_TCAM_ENTRY_INVALID 1
412 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
413 #define MVPP2_PRS_IPV4_HEAD 0x40
414 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
415 #define MVPP2_PRS_IPV4_MC 0xe0
416 #define MVPP2_PRS_IPV4_MC_MASK 0xf0
417 #define MVPP2_PRS_IPV4_BC_MASK 0xff
418 #define MVPP2_PRS_IPV4_IHL 0x5
419 #define MVPP2_PRS_IPV4_IHL_MASK 0xf
420 #define MVPP2_PRS_IPV6_MC 0xff
421 #define MVPP2_PRS_IPV6_MC_MASK 0xff
422 #define MVPP2_PRS_IPV6_HOP_MASK 0xff
423 #define MVPP2_PRS_TCAM_PROTO_MASK 0xff
424 #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
425 #define MVPP2_PRS_DBL_VLANS_MAX 100
426
427 /* Tcam structure:
428 * - lookup ID - 4 bits
429 * - port ID - 1 byte
430 * - additional information - 1 byte
431 * - header data - 8 bytes
432 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
433 */
434 #define MVPP2_PRS_AI_BITS 8
435 #define MVPP2_PRS_PORT_MASK 0xff
436 #define MVPP2_PRS_LU_MASK 0xf
437 #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
438 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
439 #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
440 (((offs) * 2) - ((offs) % 2) + 2)
441 #define MVPP2_PRS_TCAM_AI_BYTE 16
442 #define MVPP2_PRS_TCAM_PORT_BYTE 17
443 #define MVPP2_PRS_TCAM_LU_BYTE 20
444 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
445 #define MVPP2_PRS_TCAM_INV_WORD 5
446 /* Tcam entries ID */
447 #define MVPP2_PE_DROP_ALL 0
448 #define MVPP2_PE_FIRST_FREE_TID 1
449 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
450 #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
451 #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
452 #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
453 #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
454 #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
455 #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
456 #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
457 #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
458 #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
459 #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
460 #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
461 #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
462 #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
463 #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
464 #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
465 #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
466 #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
467 #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
468 #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
469 #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
470 #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
471 #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
472 #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
473 #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
474
475 /* Sram structure
476 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
477 */
478 #define MVPP2_PRS_SRAM_RI_OFFS 0
479 #define MVPP2_PRS_SRAM_RI_WORD 0
480 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
481 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
482 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
483 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64
484 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
485 #define MVPP2_PRS_SRAM_UDF_OFFS 73
486 #define MVPP2_PRS_SRAM_UDF_BITS 8
487 #define MVPP2_PRS_SRAM_UDF_MASK 0xff
488 #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
489 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
490 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
491 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
492 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
493 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
494 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
495 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
496 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
497 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
498 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
499 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
500 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
501 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
502 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
503 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
504 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
505 #define MVPP2_PRS_SRAM_AI_OFFS 90
506 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
507 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
508 #define MVPP2_PRS_SRAM_AI_MASK 0xff
509 #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
510 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
511 #define MVPP2_PRS_SRAM_LU_DONE_BIT 110
512 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111
513
514 /* Sram result info bits assignment */
515 #define MVPP2_PRS_RI_MAC_ME_MASK 0x1
516 #define MVPP2_PRS_RI_DSA_MASK 0x2
517 #define MVPP2_PRS_RI_VLAN_MASK 0xc
518 #define MVPP2_PRS_RI_VLAN_NONE ~(BIT(2) | BIT(3))
519 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
520 #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
521 #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
522 #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
523 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
524 #define MVPP2_PRS_RI_L2_CAST_MASK 0x600
525 #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10))
526 #define MVPP2_PRS_RI_L2_MCAST BIT(9)
527 #define MVPP2_PRS_RI_L2_BCAST BIT(10)
528 #define MVPP2_PRS_RI_PPPOE_MASK 0x800
529 #define MVPP2_PRS_RI_L3_PROTO_MASK 0x7000
530 #define MVPP2_PRS_RI_L3_UN ~(BIT(12) | BIT(13) | BIT(14))
531 #define MVPP2_PRS_RI_L3_IP4 BIT(12)
532 #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
533 #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
534 #define MVPP2_PRS_RI_L3_IP6 BIT(14)
535 #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
536 #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
537 #define MVPP2_PRS_RI_L3_ADDR_MASK 0x18000
538 #define MVPP2_PRS_RI_L3_UCAST ~(BIT(15) | BIT(16))
539 #define MVPP2_PRS_RI_L3_MCAST BIT(15)
540 #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
541 #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
542 #define MVPP2_PRS_RI_UDF3_MASK 0x300000
543 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
544 #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
545 #define MVPP2_PRS_RI_L4_TCP BIT(22)
546 #define MVPP2_PRS_RI_L4_UDP BIT(23)
547 #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
548 #define MVPP2_PRS_RI_UDF7_MASK 0x60000000
549 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
550 #define MVPP2_PRS_RI_DROP_MASK 0x80000000
551
552 /* Sram additional info bits assignment */
553 #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
554 #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
555 #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
556 #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
557 #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
558 #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
559 #define MVPP2_PRS_SINGLE_VLAN_AI 0
560 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
561
562 /* DSA/EDSA type */
563 #define MVPP2_PRS_TAGGED true
564 #define MVPP2_PRS_UNTAGGED false
565 #define MVPP2_PRS_EDSA true
566 #define MVPP2_PRS_DSA false
567
568 /* MAC entries, shadow udf */
569 enum mvpp2_prs_udf {
570 MVPP2_PRS_UDF_MAC_DEF,
571 MVPP2_PRS_UDF_MAC_RANGE,
572 MVPP2_PRS_UDF_L2_DEF,
573 MVPP2_PRS_UDF_L2_DEF_COPY,
574 MVPP2_PRS_UDF_L2_USER,
575 };
576
577 /* Lookup ID */
578 enum mvpp2_prs_lookup {
579 MVPP2_PRS_LU_MH,
580 MVPP2_PRS_LU_MAC,
581 MVPP2_PRS_LU_DSA,
582 MVPP2_PRS_LU_VLAN,
583 MVPP2_PRS_LU_L2,
584 MVPP2_PRS_LU_PPPOE,
585 MVPP2_PRS_LU_IP4,
586 MVPP2_PRS_LU_IP6,
587 MVPP2_PRS_LU_FLOWS,
588 MVPP2_PRS_LU_LAST,
589 };
590
591 /* L3 cast enum */
592 enum mvpp2_prs_l3_cast {
593 MVPP2_PRS_L3_UNI_CAST,
594 MVPP2_PRS_L3_MULTI_CAST,
595 MVPP2_PRS_L3_BROAD_CAST
596 };
597
598 /* Classifier constants */
599 #define MVPP2_CLS_FLOWS_TBL_SIZE 512
600 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
601 #define MVPP2_CLS_LKP_TBL_SIZE 64
602
603 /* BM constants */
604 #define MVPP2_BM_POOLS_NUM 8
605 #define MVPP2_BM_LONG_BUF_NUM 1024
606 #define MVPP2_BM_SHORT_BUF_NUM 2048
607 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
608 #define MVPP2_BM_POOL_PTR_ALIGN 128
609 #define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
610 #define MVPP2_BM_SWF_SHORT_POOL 3
611
612 /* BM cookie (32 bits) definition */
613 #define MVPP2_BM_COOKIE_POOL_OFFS 8
614 #define MVPP2_BM_COOKIE_CPU_OFFS 24
615
616 /* BM short pool packet size
617 * These value assure that for SWF the total number
618 * of bytes allocated for each buffer will be 512
619 */
620 #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
621
622 enum mvpp2_bm_type {
623 MVPP2_BM_FREE,
624 MVPP2_BM_SWF_LONG,
625 MVPP2_BM_SWF_SHORT
626 };
627
628 /* Definitions */
629
630 /* Shared Packet Processor resources */
631 struct mvpp2 {
632 /* Shared registers' base addresses */
633 void __iomem *base;
634 void __iomem *lms_base;
635
636 /* Common clocks */
637 struct clk *pp_clk;
638 struct clk *gop_clk;
639
640 /* List of pointers to port structures */
641 struct mvpp2_port **port_list;
642
643 /* Aggregated TXQs */
644 struct mvpp2_tx_queue *aggr_txqs;
645
646 /* BM pools */
647 struct mvpp2_bm_pool *bm_pools;
648
649 /* PRS shadow table */
650 struct mvpp2_prs_shadow *prs_shadow;
651 /* PRS auxiliary table for double vlan entries control */
652 bool *prs_double_vlans;
653
654 /* Tclk value */
655 u32 tclk;
656 };
657
658 struct mvpp2_pcpu_stats {
659 struct u64_stats_sync syncp;
660 u64 rx_packets;
661 u64 rx_bytes;
662 u64 tx_packets;
663 u64 tx_bytes;
664 };
665
666 /* Per-CPU port control */
667 struct mvpp2_port_pcpu {
668 struct hrtimer tx_done_timer;
669 bool timer_scheduled;
670 /* Tasklet for egress finalization */
671 struct tasklet_struct tx_done_tasklet;
672 };
673
674 struct mvpp2_port {
675 u8 id;
676
677 int irq;
678
679 struct mvpp2 *priv;
680
681 /* Per-port registers' base address */
682 void __iomem *base;
683
684 struct mvpp2_rx_queue **rxqs;
685 struct mvpp2_tx_queue **txqs;
686 struct net_device *dev;
687
688 int pkt_size;
689
690 u32 pending_cause_rx;
691 struct napi_struct napi;
692
693 /* Per-CPU port control */
694 struct mvpp2_port_pcpu __percpu *pcpu;
695
696 /* Flags */
697 unsigned long flags;
698
699 u16 tx_ring_size;
700 u16 rx_ring_size;
701 struct mvpp2_pcpu_stats __percpu *stats;
702
703 struct phy_device *phy_dev;
704 phy_interface_t phy_interface;
705 struct device_node *phy_node;
706 unsigned int link;
707 unsigned int duplex;
708 unsigned int speed;
709
710 struct mvpp2_bm_pool *pool_long;
711 struct mvpp2_bm_pool *pool_short;
712
713 /* Index of first port's physical RXQ */
714 u8 first_rxq;
715 };
716
717 /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
718 * layout of the transmit and reception DMA descriptors, and their
719 * layout is therefore defined by the hardware design
720 */
721
722 #define MVPP2_TXD_L3_OFF_SHIFT 0
723 #define MVPP2_TXD_IP_HLEN_SHIFT 8
724 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
725 #define MVPP2_TXD_L4_CSUM_NOT BIT(14)
726 #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
727 #define MVPP2_TXD_PADDING_DISABLE BIT(23)
728 #define MVPP2_TXD_L4_UDP BIT(24)
729 #define MVPP2_TXD_L3_IP6 BIT(26)
730 #define MVPP2_TXD_L_DESC BIT(28)
731 #define MVPP2_TXD_F_DESC BIT(29)
732
733 #define MVPP2_RXD_ERR_SUMMARY BIT(15)
734 #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
735 #define MVPP2_RXD_ERR_CRC 0x0
736 #define MVPP2_RXD_ERR_OVERRUN BIT(13)
737 #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
738 #define MVPP2_RXD_BM_POOL_ID_OFFS 16
739 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
740 #define MVPP2_RXD_HWF_SYNC BIT(21)
741 #define MVPP2_RXD_L4_CSUM_OK BIT(22)
742 #define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
743 #define MVPP2_RXD_L4_TCP BIT(25)
744 #define MVPP2_RXD_L4_UDP BIT(26)
745 #define MVPP2_RXD_L3_IP4 BIT(28)
746 #define MVPP2_RXD_L3_IP6 BIT(30)
747 #define MVPP2_RXD_BUF_HDR BIT(31)
748
749 struct mvpp2_tx_desc {
750 u32 command; /* Options used by HW for packet transmitting.*/
751 u8 packet_offset; /* the offset from the buffer beginning */
752 u8 phys_txq; /* destination queue ID */
753 u16 data_size; /* data size of transmitted packet in bytes */
754 u32 buf_phys_addr; /* physical addr of transmitted buffer */
755 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
756 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
757 u32 reserved2; /* reserved (for future use) */
758 };
759
760 struct mvpp2_rx_desc {
761 u32 status; /* info about received packet */
762 u16 reserved1; /* parser_info (for future use, PnC) */
763 u16 data_size; /* size of received packet in bytes */
764 u32 buf_phys_addr; /* physical address of the buffer */
765 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
766 u16 reserved2; /* gem_port_id (for future use, PON) */
767 u16 reserved3; /* csum_l4 (for future use, PnC) */
768 u8 reserved4; /* bm_qset (for future use, BM) */
769 u8 reserved5;
770 u16 reserved6; /* classify_info (for future use, PnC) */
771 u32 reserved7; /* flow_id (for future use, PnC) */
772 u32 reserved8;
773 };
774
775 /* Per-CPU Tx queue control */
776 struct mvpp2_txq_pcpu {
777 int cpu;
778
779 /* Number of Tx DMA descriptors in the descriptor ring */
780 int size;
781
782 /* Number of currently used Tx DMA descriptor in the
783 * descriptor ring
784 */
785 int count;
786
787 /* Number of Tx DMA descriptors reserved for each CPU */
788 int reserved_num;
789
790 /* Array of transmitted skb */
791 struct sk_buff **tx_skb;
792
793 /* Array of transmitted buffers' physical addresses */
794 dma_addr_t *tx_buffs;
795
796 /* Index of last TX DMA descriptor that was inserted */
797 int txq_put_index;
798
799 /* Index of the TX DMA descriptor to be cleaned up */
800 int txq_get_index;
801 };
802
803 struct mvpp2_tx_queue {
804 /* Physical number of this Tx queue */
805 u8 id;
806
807 /* Logical number of this Tx queue */
808 u8 log_id;
809
810 /* Number of Tx DMA descriptors in the descriptor ring */
811 int size;
812
813 /* Number of currently used Tx DMA descriptor in the descriptor ring */
814 int count;
815
816 /* Per-CPU control of physical Tx queues */
817 struct mvpp2_txq_pcpu __percpu *pcpu;
818
819 /* Array of transmitted skb */
820 struct sk_buff **tx_skb;
821
822 u32 done_pkts_coal;
823
824 /* Virtual address of thex Tx DMA descriptors array */
825 struct mvpp2_tx_desc *descs;
826
827 /* DMA address of the Tx DMA descriptors array */
828 dma_addr_t descs_phys;
829
830 /* Index of the last Tx DMA descriptor */
831 int last_desc;
832
833 /* Index of the next Tx DMA descriptor to process */
834 int next_desc_to_proc;
835 };
836
837 struct mvpp2_rx_queue {
838 /* RX queue number, in the range 0-31 for physical RXQs */
839 u8 id;
840
841 /* Num of rx descriptors in the rx descriptor ring */
842 int size;
843
844 u32 pkts_coal;
845 u32 time_coal;
846
847 /* Virtual address of the RX DMA descriptors array */
848 struct mvpp2_rx_desc *descs;
849
850 /* DMA address of the RX DMA descriptors array */
851 dma_addr_t descs_phys;
852
853 /* Index of the last RX DMA descriptor */
854 int last_desc;
855
856 /* Index of the next RX DMA descriptor to process */
857 int next_desc_to_proc;
858
859 /* ID of port to which physical RXQ is mapped */
860 int port;
861
862 /* Port's logic RXQ number to which physical RXQ is mapped */
863 int logic_rxq;
864 };
865
866 union mvpp2_prs_tcam_entry {
867 u32 word[MVPP2_PRS_TCAM_WORDS];
868 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
869 };
870
871 union mvpp2_prs_sram_entry {
872 u32 word[MVPP2_PRS_SRAM_WORDS];
873 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
874 };
875
876 struct mvpp2_prs_entry {
877 u32 index;
878 union mvpp2_prs_tcam_entry tcam;
879 union mvpp2_prs_sram_entry sram;
880 };
881
882 struct mvpp2_prs_shadow {
883 bool valid;
884 bool finish;
885
886 /* Lookup ID */
887 int lu;
888
889 /* User defined offset */
890 int udf;
891
892 /* Result info */
893 u32 ri;
894 u32 ri_mask;
895 };
896
897 struct mvpp2_cls_flow_entry {
898 u32 index;
899 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
900 };
901
902 struct mvpp2_cls_lookup_entry {
903 u32 lkpid;
904 u32 way;
905 u32 data;
906 };
907
908 struct mvpp2_bm_pool {
909 /* Pool number in the range 0-7 */
910 int id;
911 enum mvpp2_bm_type type;
912
913 /* Buffer Pointers Pool External (BPPE) size */
914 int size;
915 /* Number of buffers for this pool */
916 int buf_num;
917 /* Pool buffer size */
918 int buf_size;
919 /* Packet size */
920 int pkt_size;
921
922 /* BPPE virtual base address */
923 u32 *virt_addr;
924 /* BPPE physical base address */
925 dma_addr_t phys_addr;
926
927 /* Ports using BM pool */
928 u32 port_map;
929
930 /* Occupied buffers indicator */
931 atomic_t in_use;
932 int in_use_thresh;
933 };
934
935 struct mvpp2_buff_hdr {
936 u32 next_buff_phys_addr;
937 u32 next_buff_virt_addr;
938 u16 byte_count;
939 u16 info;
940 u8 reserved1; /* bm_qset (for future use, BM) */
941 };
942
943 /* Buffer header info bits */
944 #define MVPP2_B_HDR_INFO_MC_ID_MASK 0xfff
945 #define MVPP2_B_HDR_INFO_MC_ID(info) ((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
946 #define MVPP2_B_HDR_INFO_LAST_OFFS 12
947 #define MVPP2_B_HDR_INFO_LAST_MASK BIT(12)
948 #define MVPP2_B_HDR_INFO_IS_LAST(info) \
949 ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
950
951 /* Static declaractions */
952
953 /* Number of RXQs used by single port */
954 static int rxq_number = MVPP2_DEFAULT_RXQ;
955 /* Number of TXQs used by single port */
956 static int txq_number = MVPP2_MAX_TXQ;
957
958 #define MVPP2_DRIVER_NAME "mvpp2"
959 #define MVPP2_DRIVER_VERSION "1.0"
960
961 /* Utility/helper methods */
962
963 static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
964 {
965 writel(data, priv->base + offset);
966 }
967
968 static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
969 {
970 return readl(priv->base + offset);
971 }
972
973 static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
974 {
975 txq_pcpu->txq_get_index++;
976 if (txq_pcpu->txq_get_index == txq_pcpu->size)
977 txq_pcpu->txq_get_index = 0;
978 }
979
980 static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
981 struct sk_buff *skb,
982 struct mvpp2_tx_desc *tx_desc)
983 {
984 txq_pcpu->tx_skb[txq_pcpu->txq_put_index] = skb;
985 if (skb)
986 txq_pcpu->tx_buffs[txq_pcpu->txq_put_index] =
987 tx_desc->buf_phys_addr;
988 txq_pcpu->txq_put_index++;
989 if (txq_pcpu->txq_put_index == txq_pcpu->size)
990 txq_pcpu->txq_put_index = 0;
991 }
992
993 /* Get number of physical egress port */
994 static inline int mvpp2_egress_port(struct mvpp2_port *port)
995 {
996 return MVPP2_MAX_TCONT + port->id;
997 }
998
999 /* Get number of physical TXQ */
1000 static inline int mvpp2_txq_phys(int port, int txq)
1001 {
1002 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1003 }
1004
1005 /* Parser configuration routines */
1006
1007 /* Update parser tcam and sram hw entries */
1008 static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1009 {
1010 int i;
1011
1012 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1013 return -EINVAL;
1014
1015 /* Clear entry invalidation bit */
1016 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1017
1018 /* Write tcam index - indirect access */
1019 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1020 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1021 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1022
1023 /* Write sram index - indirect access */
1024 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1025 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1026 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1027
1028 return 0;
1029 }
1030
1031 /* Read tcam entry from hw */
1032 static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1033 {
1034 int i;
1035
1036 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1037 return -EINVAL;
1038
1039 /* Write tcam index - indirect access */
1040 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1041
1042 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1043 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1044 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1045 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1046
1047 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1048 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1049
1050 /* Write sram index - indirect access */
1051 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1052 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1053 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1054
1055 return 0;
1056 }
1057
1058 /* Invalidate tcam hw entry */
1059 static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1060 {
1061 /* Write index - indirect access */
1062 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1063 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1064 MVPP2_PRS_TCAM_INV_MASK);
1065 }
1066
1067 /* Enable shadow table entry and set its lookup ID */
1068 static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1069 {
1070 priv->prs_shadow[index].valid = true;
1071 priv->prs_shadow[index].lu = lu;
1072 }
1073
1074 /* Update ri fields in shadow table entry */
1075 static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1076 unsigned int ri, unsigned int ri_mask)
1077 {
1078 priv->prs_shadow[index].ri_mask = ri_mask;
1079 priv->prs_shadow[index].ri = ri;
1080 }
1081
1082 /* Update lookup field in tcam sw entry */
1083 static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1084 {
1085 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1086
1087 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1088 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1089 }
1090
1091 /* Update mask for single port in tcam sw entry */
1092 static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1093 unsigned int port, bool add)
1094 {
1095 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1096
1097 if (add)
1098 pe->tcam.byte[enable_off] &= ~(1 << port);
1099 else
1100 pe->tcam.byte[enable_off] |= 1 << port;
1101 }
1102
1103 /* Update port map in tcam sw entry */
1104 static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1105 unsigned int ports)
1106 {
1107 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1108 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1109
1110 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1111 pe->tcam.byte[enable_off] &= ~port_mask;
1112 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1113 }
1114
1115 /* Obtain port map from tcam sw entry */
1116 static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1117 {
1118 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1119
1120 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1121 }
1122
1123 /* Set byte of data and its enable bits in tcam sw entry */
1124 static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1125 unsigned int offs, unsigned char byte,
1126 unsigned char enable)
1127 {
1128 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1129 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1130 }
1131
1132 /* Get byte of data and its enable bits from tcam sw entry */
1133 static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1134 unsigned int offs, unsigned char *byte,
1135 unsigned char *enable)
1136 {
1137 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1138 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1139 }
1140
1141 /* Compare tcam data bytes with a pattern */
1142 static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1143 u16 data)
1144 {
1145 int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1146 u16 tcam_data;
1147
1148 tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1149 if (tcam_data != data)
1150 return false;
1151 return true;
1152 }
1153
1154 /* Update ai bits in tcam sw entry */
1155 static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1156 unsigned int bits, unsigned int enable)
1157 {
1158 int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1159
1160 for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1161
1162 if (!(enable & BIT(i)))
1163 continue;
1164
1165 if (bits & BIT(i))
1166 pe->tcam.byte[ai_idx] |= 1 << i;
1167 else
1168 pe->tcam.byte[ai_idx] &= ~(1 << i);
1169 }
1170
1171 pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1172 }
1173
1174 /* Get ai bits from tcam sw entry */
1175 static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1176 {
1177 return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1178 }
1179
1180 /* Set ethertype in tcam sw entry */
1181 static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1182 unsigned short ethertype)
1183 {
1184 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1185 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1186 }
1187
1188 /* Set bits in sram sw entry */
1189 static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1190 int val)
1191 {
1192 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1193 }
1194
1195 /* Clear bits in sram sw entry */
1196 static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1197 int val)
1198 {
1199 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1200 }
1201
1202 /* Update ri bits in sram sw entry */
1203 static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1204 unsigned int bits, unsigned int mask)
1205 {
1206 unsigned int i;
1207
1208 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1209 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1210
1211 if (!(mask & BIT(i)))
1212 continue;
1213
1214 if (bits & BIT(i))
1215 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1216 else
1217 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1218
1219 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1220 }
1221 }
1222
1223 /* Obtain ri bits from sram sw entry */
1224 static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1225 {
1226 return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1227 }
1228
1229 /* Update ai bits in sram sw entry */
1230 static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1231 unsigned int bits, unsigned int mask)
1232 {
1233 unsigned int i;
1234 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1235
1236 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1237
1238 if (!(mask & BIT(i)))
1239 continue;
1240
1241 if (bits & BIT(i))
1242 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1243 else
1244 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1245
1246 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1247 }
1248 }
1249
1250 /* Read ai bits from sram sw entry */
1251 static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1252 {
1253 u8 bits;
1254 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1255 int ai_en_off = ai_off + 1;
1256 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1257
1258 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1259 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1260
1261 return bits;
1262 }
1263
1264 /* In sram sw entry set lookup ID field of the tcam key to be used in the next
1265 * lookup interation
1266 */
1267 static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1268 unsigned int lu)
1269 {
1270 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1271
1272 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1273 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1274 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1275 }
1276
1277 /* In the sram sw entry set sign and value of the next lookup offset
1278 * and the offset value generated to the classifier
1279 */
1280 static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1281 unsigned int op)
1282 {
1283 /* Set sign */
1284 if (shift < 0) {
1285 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1286 shift = 0 - shift;
1287 } else {
1288 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1289 }
1290
1291 /* Set value */
1292 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1293 (unsigned char)shift;
1294
1295 /* Reset and set operation */
1296 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1297 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1298 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1299
1300 /* Set base offset as current */
1301 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1302 }
1303
1304 /* In the sram sw entry set sign and value of the user defined offset
1305 * generated to the classifier
1306 */
1307 static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1308 unsigned int type, int offset,
1309 unsigned int op)
1310 {
1311 /* Set sign */
1312 if (offset < 0) {
1313 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1314 offset = 0 - offset;
1315 } else {
1316 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1317 }
1318
1319 /* Set value */
1320 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1321 MVPP2_PRS_SRAM_UDF_MASK);
1322 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1323 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1324 MVPP2_PRS_SRAM_UDF_BITS)] &=
1325 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1326 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1327 MVPP2_PRS_SRAM_UDF_BITS)] |=
1328 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1329
1330 /* Set offset type */
1331 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1332 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1333 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1334
1335 /* Set offset operation */
1336 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1337 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1338 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1339
1340 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1341 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1342 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1343 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1344
1345 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1346 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1347 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1348
1349 /* Set base offset as current */
1350 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1351 }
1352
1353 /* Find parser flow entry */
1354 static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1355 {
1356 struct mvpp2_prs_entry *pe;
1357 int tid;
1358
1359 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1360 if (!pe)
1361 return NULL;
1362 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1363
1364 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1365 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1366 u8 bits;
1367
1368 if (!priv->prs_shadow[tid].valid ||
1369 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1370 continue;
1371
1372 pe->index = tid;
1373 mvpp2_prs_hw_read(priv, pe);
1374 bits = mvpp2_prs_sram_ai_get(pe);
1375
1376 /* Sram store classification lookup ID in AI bits [5:0] */
1377 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1378 return pe;
1379 }
1380 kfree(pe);
1381
1382 return NULL;
1383 }
1384
1385 /* Return first free tcam index, seeking from start to end */
1386 static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1387 unsigned char end)
1388 {
1389 int tid;
1390
1391 if (start > end)
1392 swap(start, end);
1393
1394 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1395 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1396
1397 for (tid = start; tid <= end; tid++) {
1398 if (!priv->prs_shadow[tid].valid)
1399 return tid;
1400 }
1401
1402 return -EINVAL;
1403 }
1404
1405 /* Enable/disable dropping all mac da's */
1406 static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1407 {
1408 struct mvpp2_prs_entry pe;
1409
1410 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1411 /* Entry exist - update port only */
1412 pe.index = MVPP2_PE_DROP_ALL;
1413 mvpp2_prs_hw_read(priv, &pe);
1414 } else {
1415 /* Entry doesn't exist - create new */
1416 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1417 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1418 pe.index = MVPP2_PE_DROP_ALL;
1419
1420 /* Non-promiscuous mode for all ports - DROP unknown packets */
1421 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1422 MVPP2_PRS_RI_DROP_MASK);
1423
1424 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1425 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1426
1427 /* Update shadow table */
1428 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1429
1430 /* Mask all ports */
1431 mvpp2_prs_tcam_port_map_set(&pe, 0);
1432 }
1433
1434 /* Update port mask */
1435 mvpp2_prs_tcam_port_set(&pe, port, add);
1436
1437 mvpp2_prs_hw_write(priv, &pe);
1438 }
1439
1440 /* Set port to promiscuous mode */
1441 static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1442 {
1443 struct mvpp2_prs_entry pe;
1444
1445 /* Promiscuous mode - Accept unknown packets */
1446
1447 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1448 /* Entry exist - update port only */
1449 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1450 mvpp2_prs_hw_read(priv, &pe);
1451 } else {
1452 /* Entry doesn't exist - create new */
1453 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1454 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1455 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1456
1457 /* Continue - set next lookup */
1458 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1459
1460 /* Set result info bits */
1461 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1462 MVPP2_PRS_RI_L2_CAST_MASK);
1463
1464 /* Shift to ethertype */
1465 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1466 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1467
1468 /* Mask all ports */
1469 mvpp2_prs_tcam_port_map_set(&pe, 0);
1470
1471 /* Update shadow table */
1472 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1473 }
1474
1475 /* Update port mask */
1476 mvpp2_prs_tcam_port_set(&pe, port, add);
1477
1478 mvpp2_prs_hw_write(priv, &pe);
1479 }
1480
1481 /* Accept multicast */
1482 static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1483 bool add)
1484 {
1485 struct mvpp2_prs_entry pe;
1486 unsigned char da_mc;
1487
1488 /* Ethernet multicast address first byte is
1489 * 0x01 for IPv4 and 0x33 for IPv6
1490 */
1491 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1492
1493 if (priv->prs_shadow[index].valid) {
1494 /* Entry exist - update port only */
1495 pe.index = index;
1496 mvpp2_prs_hw_read(priv, &pe);
1497 } else {
1498 /* Entry doesn't exist - create new */
1499 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1500 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1501 pe.index = index;
1502
1503 /* Continue - set next lookup */
1504 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1505
1506 /* Set result info bits */
1507 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1508 MVPP2_PRS_RI_L2_CAST_MASK);
1509
1510 /* Update tcam entry data first byte */
1511 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1512
1513 /* Shift to ethertype */
1514 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1515 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1516
1517 /* Mask all ports */
1518 mvpp2_prs_tcam_port_map_set(&pe, 0);
1519
1520 /* Update shadow table */
1521 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1522 }
1523
1524 /* Update port mask */
1525 mvpp2_prs_tcam_port_set(&pe, port, add);
1526
1527 mvpp2_prs_hw_write(priv, &pe);
1528 }
1529
1530 /* Set entry for dsa packets */
1531 static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1532 bool tagged, bool extend)
1533 {
1534 struct mvpp2_prs_entry pe;
1535 int tid, shift;
1536
1537 if (extend) {
1538 tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1539 shift = 8;
1540 } else {
1541 tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1542 shift = 4;
1543 }
1544
1545 if (priv->prs_shadow[tid].valid) {
1546 /* Entry exist - update port only */
1547 pe.index = tid;
1548 mvpp2_prs_hw_read(priv, &pe);
1549 } else {
1550 /* Entry doesn't exist - create new */
1551 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1552 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1553 pe.index = tid;
1554
1555 /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1556 mvpp2_prs_sram_shift_set(&pe, shift,
1557 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1558
1559 /* Update shadow table */
1560 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1561
1562 if (tagged) {
1563 /* Set tagged bit in DSA tag */
1564 mvpp2_prs_tcam_data_byte_set(&pe, 0,
1565 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1566 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1567 /* Clear all ai bits for next iteration */
1568 mvpp2_prs_sram_ai_update(&pe, 0,
1569 MVPP2_PRS_SRAM_AI_MASK);
1570 /* If packet is tagged continue check vlans */
1571 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1572 } else {
1573 /* Set result info bits to 'no vlans' */
1574 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1575 MVPP2_PRS_RI_VLAN_MASK);
1576 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1577 }
1578
1579 /* Mask all ports */
1580 mvpp2_prs_tcam_port_map_set(&pe, 0);
1581 }
1582
1583 /* Update port mask */
1584 mvpp2_prs_tcam_port_set(&pe, port, add);
1585
1586 mvpp2_prs_hw_write(priv, &pe);
1587 }
1588
1589 /* Set entry for dsa ethertype */
1590 static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1591 bool add, bool tagged, bool extend)
1592 {
1593 struct mvpp2_prs_entry pe;
1594 int tid, shift, port_mask;
1595
1596 if (extend) {
1597 tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1598 MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1599 port_mask = 0;
1600 shift = 8;
1601 } else {
1602 tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1603 MVPP2_PE_ETYPE_DSA_UNTAGGED;
1604 port_mask = MVPP2_PRS_PORT_MASK;
1605 shift = 4;
1606 }
1607
1608 if (priv->prs_shadow[tid].valid) {
1609 /* Entry exist - update port only */
1610 pe.index = tid;
1611 mvpp2_prs_hw_read(priv, &pe);
1612 } else {
1613 /* Entry doesn't exist - create new */
1614 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1615 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1616 pe.index = tid;
1617
1618 /* Set ethertype */
1619 mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1620 mvpp2_prs_match_etype(&pe, 2, 0);
1621
1622 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1623 MVPP2_PRS_RI_DSA_MASK);
1624 /* Shift ethertype + 2 byte reserved + tag*/
1625 mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1626 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1627
1628 /* Update shadow table */
1629 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1630
1631 if (tagged) {
1632 /* Set tagged bit in DSA tag */
1633 mvpp2_prs_tcam_data_byte_set(&pe,
1634 MVPP2_ETH_TYPE_LEN + 2 + 3,
1635 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1636 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1637 /* Clear all ai bits for next iteration */
1638 mvpp2_prs_sram_ai_update(&pe, 0,
1639 MVPP2_PRS_SRAM_AI_MASK);
1640 /* If packet is tagged continue check vlans */
1641 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1642 } else {
1643 /* Set result info bits to 'no vlans' */
1644 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1645 MVPP2_PRS_RI_VLAN_MASK);
1646 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1647 }
1648 /* Mask/unmask all ports, depending on dsa type */
1649 mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1650 }
1651
1652 /* Update port mask */
1653 mvpp2_prs_tcam_port_set(&pe, port, add);
1654
1655 mvpp2_prs_hw_write(priv, &pe);
1656 }
1657
1658 /* Search for existing single/triple vlan entry */
1659 static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1660 unsigned short tpid, int ai)
1661 {
1662 struct mvpp2_prs_entry *pe;
1663 int tid;
1664
1665 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1666 if (!pe)
1667 return NULL;
1668 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1669
1670 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1671 for (tid = MVPP2_PE_FIRST_FREE_TID;
1672 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1673 unsigned int ri_bits, ai_bits;
1674 bool match;
1675
1676 if (!priv->prs_shadow[tid].valid ||
1677 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1678 continue;
1679
1680 pe->index = tid;
1681
1682 mvpp2_prs_hw_read(priv, pe);
1683 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1684 if (!match)
1685 continue;
1686
1687 /* Get vlan type */
1688 ri_bits = mvpp2_prs_sram_ri_get(pe);
1689 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1690
1691 /* Get current ai value from tcam */
1692 ai_bits = mvpp2_prs_tcam_ai_get(pe);
1693 /* Clear double vlan bit */
1694 ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1695
1696 if (ai != ai_bits)
1697 continue;
1698
1699 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1700 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1701 return pe;
1702 }
1703 kfree(pe);
1704
1705 return NULL;
1706 }
1707
1708 /* Add/update single/triple vlan entry */
1709 static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1710 unsigned int port_map)
1711 {
1712 struct mvpp2_prs_entry *pe;
1713 int tid_aux, tid;
1714 int ret = 0;
1715
1716 pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1717
1718 if (!pe) {
1719 /* Create new tcam entry */
1720 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1721 MVPP2_PE_FIRST_FREE_TID);
1722 if (tid < 0)
1723 return tid;
1724
1725 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1726 if (!pe)
1727 return -ENOMEM;
1728
1729 /* Get last double vlan tid */
1730 for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1731 tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1732 unsigned int ri_bits;
1733
1734 if (!priv->prs_shadow[tid_aux].valid ||
1735 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1736 continue;
1737
1738 pe->index = tid_aux;
1739 mvpp2_prs_hw_read(priv, pe);
1740 ri_bits = mvpp2_prs_sram_ri_get(pe);
1741 if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1742 MVPP2_PRS_RI_VLAN_DOUBLE)
1743 break;
1744 }
1745
1746 if (tid <= tid_aux) {
1747 ret = -EINVAL;
1748 goto error;
1749 }
1750
1751 memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1752 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1753 pe->index = tid;
1754
1755 mvpp2_prs_match_etype(pe, 0, tpid);
1756
1757 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1758 /* Shift 4 bytes - skip 1 vlan tag */
1759 mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1760 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1761 /* Clear all ai bits for next iteration */
1762 mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1763
1764 if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1765 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1766 MVPP2_PRS_RI_VLAN_MASK);
1767 } else {
1768 ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1769 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1770 MVPP2_PRS_RI_VLAN_MASK);
1771 }
1772 mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1773
1774 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1775 }
1776 /* Update ports' mask */
1777 mvpp2_prs_tcam_port_map_set(pe, port_map);
1778
1779 mvpp2_prs_hw_write(priv, pe);
1780
1781 error:
1782 kfree(pe);
1783
1784 return ret;
1785 }
1786
1787 /* Get first free double vlan ai number */
1788 static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1789 {
1790 int i;
1791
1792 for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1793 if (!priv->prs_double_vlans[i])
1794 return i;
1795 }
1796
1797 return -EINVAL;
1798 }
1799
1800 /* Search for existing double vlan entry */
1801 static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1802 unsigned short tpid1,
1803 unsigned short tpid2)
1804 {
1805 struct mvpp2_prs_entry *pe;
1806 int tid;
1807
1808 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1809 if (!pe)
1810 return NULL;
1811 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1812
1813 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1814 for (tid = MVPP2_PE_FIRST_FREE_TID;
1815 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1816 unsigned int ri_mask;
1817 bool match;
1818
1819 if (!priv->prs_shadow[tid].valid ||
1820 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1821 continue;
1822
1823 pe->index = tid;
1824 mvpp2_prs_hw_read(priv, pe);
1825
1826 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1827 && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1828
1829 if (!match)
1830 continue;
1831
1832 ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1833 if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1834 return pe;
1835 }
1836 kfree(pe);
1837
1838 return NULL;
1839 }
1840
1841 /* Add or update double vlan entry */
1842 static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1843 unsigned short tpid2,
1844 unsigned int port_map)
1845 {
1846 struct mvpp2_prs_entry *pe;
1847 int tid_aux, tid, ai, ret = 0;
1848
1849 pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1850
1851 if (!pe) {
1852 /* Create new tcam entry */
1853 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1854 MVPP2_PE_LAST_FREE_TID);
1855 if (tid < 0)
1856 return tid;
1857
1858 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1859 if (!pe)
1860 return -ENOMEM;
1861
1862 /* Set ai value for new double vlan entry */
1863 ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1864 if (ai < 0) {
1865 ret = ai;
1866 goto error;
1867 }
1868
1869 /* Get first single/triple vlan tid */
1870 for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1871 tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1872 unsigned int ri_bits;
1873
1874 if (!priv->prs_shadow[tid_aux].valid ||
1875 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1876 continue;
1877
1878 pe->index = tid_aux;
1879 mvpp2_prs_hw_read(priv, pe);
1880 ri_bits = mvpp2_prs_sram_ri_get(pe);
1881 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1882 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1883 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1884 break;
1885 }
1886
1887 if (tid >= tid_aux) {
1888 ret = -ERANGE;
1889 goto error;
1890 }
1891
1892 memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1893 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1894 pe->index = tid;
1895
1896 priv->prs_double_vlans[ai] = true;
1897
1898 mvpp2_prs_match_etype(pe, 0, tpid1);
1899 mvpp2_prs_match_etype(pe, 4, tpid2);
1900
1901 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1902 /* Shift 8 bytes - skip 2 vlan tags */
1903 mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1904 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1905 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1906 MVPP2_PRS_RI_VLAN_MASK);
1907 mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1908 MVPP2_PRS_SRAM_AI_MASK);
1909
1910 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1911 }
1912
1913 /* Update ports' mask */
1914 mvpp2_prs_tcam_port_map_set(pe, port_map);
1915 mvpp2_prs_hw_write(priv, pe);
1916
1917 error:
1918 kfree(pe);
1919 return ret;
1920 }
1921
1922 /* IPv4 header parsing for fragmentation and L4 offset */
1923 static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1924 unsigned int ri, unsigned int ri_mask)
1925 {
1926 struct mvpp2_prs_entry pe;
1927 int tid;
1928
1929 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1930 (proto != IPPROTO_IGMP))
1931 return -EINVAL;
1932
1933 /* Fragmented packet */
1934 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1935 MVPP2_PE_LAST_FREE_TID);
1936 if (tid < 0)
1937 return tid;
1938
1939 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1940 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1941 pe.index = tid;
1942
1943 /* Set next lu to IPv4 */
1944 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1945 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1946 /* Set L4 offset */
1947 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1948 sizeof(struct iphdr) - 4,
1949 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1950 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1951 MVPP2_PRS_IPV4_DIP_AI_BIT);
1952 mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1953 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1954
1955 mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1956 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1957 /* Unmask all ports */
1958 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1959
1960 /* Update shadow table and hw entry */
1961 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1962 mvpp2_prs_hw_write(priv, &pe);
1963
1964 /* Not fragmented packet */
1965 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1966 MVPP2_PE_LAST_FREE_TID);
1967 if (tid < 0)
1968 return tid;
1969
1970 pe.index = tid;
1971 /* Clear ri before updating */
1972 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1973 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1974 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1975
1976 mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1977 mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1978
1979 /* Update shadow table and hw entry */
1980 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1981 mvpp2_prs_hw_write(priv, &pe);
1982
1983 return 0;
1984 }
1985
1986 /* IPv4 L3 multicast or broadcast */
1987 static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1988 {
1989 struct mvpp2_prs_entry pe;
1990 int mask, tid;
1991
1992 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1993 MVPP2_PE_LAST_FREE_TID);
1994 if (tid < 0)
1995 return tid;
1996
1997 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1998 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1999 pe.index = tid;
2000
2001 switch (l3_cast) {
2002 case MVPP2_PRS_L3_MULTI_CAST:
2003 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
2004 MVPP2_PRS_IPV4_MC_MASK);
2005 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2006 MVPP2_PRS_RI_L3_ADDR_MASK);
2007 break;
2008 case MVPP2_PRS_L3_BROAD_CAST:
2009 mask = MVPP2_PRS_IPV4_BC_MASK;
2010 mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
2011 mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
2012 mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
2013 mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
2014 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
2015 MVPP2_PRS_RI_L3_ADDR_MASK);
2016 break;
2017 default:
2018 return -EINVAL;
2019 }
2020
2021 /* Finished: go to flowid generation */
2022 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2023 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2024
2025 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2026 MVPP2_PRS_IPV4_DIP_AI_BIT);
2027 /* Unmask all ports */
2028 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2029
2030 /* Update shadow table and hw entry */
2031 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2032 mvpp2_prs_hw_write(priv, &pe);
2033
2034 return 0;
2035 }
2036
2037 /* Set entries for protocols over IPv6 */
2038 static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2039 unsigned int ri, unsigned int ri_mask)
2040 {
2041 struct mvpp2_prs_entry pe;
2042 int tid;
2043
2044 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2045 (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2046 return -EINVAL;
2047
2048 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2049 MVPP2_PE_LAST_FREE_TID);
2050 if (tid < 0)
2051 return tid;
2052
2053 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2054 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2055 pe.index = tid;
2056
2057 /* Finished: go to flowid generation */
2058 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2059 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2060 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2061 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2062 sizeof(struct ipv6hdr) - 6,
2063 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2064
2065 mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2066 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2067 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2068 /* Unmask all ports */
2069 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2070
2071 /* Write HW */
2072 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2073 mvpp2_prs_hw_write(priv, &pe);
2074
2075 return 0;
2076 }
2077
2078 /* IPv6 L3 multicast entry */
2079 static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2080 {
2081 struct mvpp2_prs_entry pe;
2082 int tid;
2083
2084 if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2085 return -EINVAL;
2086
2087 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2088 MVPP2_PE_LAST_FREE_TID);
2089 if (tid < 0)
2090 return tid;
2091
2092 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2093 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2094 pe.index = tid;
2095
2096 /* Finished: go to flowid generation */
2097 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2098 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2099 MVPP2_PRS_RI_L3_ADDR_MASK);
2100 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2101 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2102 /* Shift back to IPv6 NH */
2103 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2104
2105 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2106 MVPP2_PRS_IPV6_MC_MASK);
2107 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2108 /* Unmask all ports */
2109 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2110
2111 /* Update shadow table and hw entry */
2112 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2113 mvpp2_prs_hw_write(priv, &pe);
2114
2115 return 0;
2116 }
2117
2118 /* Parser per-port initialization */
2119 static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2120 int lu_max, int offset)
2121 {
2122 u32 val;
2123
2124 /* Set lookup ID */
2125 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2126 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2127 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2128 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2129
2130 /* Set maximum number of loops for packet received from port */
2131 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2132 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2133 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2134 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2135
2136 /* Set initial offset for packet header extraction for the first
2137 * searching loop
2138 */
2139 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2140 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2141 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2142 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2143 }
2144
2145 /* Default flow entries initialization for all ports */
2146 static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2147 {
2148 struct mvpp2_prs_entry pe;
2149 int port;
2150
2151 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2152 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2153 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2154 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2155
2156 /* Mask all ports */
2157 mvpp2_prs_tcam_port_map_set(&pe, 0);
2158
2159 /* Set flow ID*/
2160 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2161 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2162
2163 /* Update shadow table and hw entry */
2164 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2165 mvpp2_prs_hw_write(priv, &pe);
2166 }
2167 }
2168
2169 /* Set default entry for Marvell Header field */
2170 static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2171 {
2172 struct mvpp2_prs_entry pe;
2173
2174 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2175
2176 pe.index = MVPP2_PE_MH_DEFAULT;
2177 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2178 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2179 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2180 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2181
2182 /* Unmask all ports */
2183 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2184
2185 /* Update shadow table and hw entry */
2186 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2187 mvpp2_prs_hw_write(priv, &pe);
2188 }
2189
2190 /* Set default entires (place holder) for promiscuous, non-promiscuous and
2191 * multicast MAC addresses
2192 */
2193 static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2194 {
2195 struct mvpp2_prs_entry pe;
2196
2197 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2198
2199 /* Non-promiscuous mode for all ports - DROP unknown packets */
2200 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2201 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2202
2203 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2204 MVPP2_PRS_RI_DROP_MASK);
2205 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2206 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2207
2208 /* Unmask all ports */
2209 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2210
2211 /* Update shadow table and hw entry */
2212 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2213 mvpp2_prs_hw_write(priv, &pe);
2214
2215 /* place holders only - no ports */
2216 mvpp2_prs_mac_drop_all_set(priv, 0, false);
2217 mvpp2_prs_mac_promisc_set(priv, 0, false);
2218 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2219 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2220 }
2221
2222 /* Set default entries for various types of dsa packets */
2223 static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2224 {
2225 struct mvpp2_prs_entry pe;
2226
2227 /* None tagged EDSA entry - place holder */
2228 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2229 MVPP2_PRS_EDSA);
2230
2231 /* Tagged EDSA entry - place holder */
2232 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2233
2234 /* None tagged DSA entry - place holder */
2235 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2236 MVPP2_PRS_DSA);
2237
2238 /* Tagged DSA entry - place holder */
2239 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2240
2241 /* None tagged EDSA ethertype entry - place holder*/
2242 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2243 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2244
2245 /* Tagged EDSA ethertype entry - place holder*/
2246 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2247 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2248
2249 /* None tagged DSA ethertype entry */
2250 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2251 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2252
2253 /* Tagged DSA ethertype entry */
2254 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2255 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2256
2257 /* Set default entry, in case DSA or EDSA tag not found */
2258 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2259 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2260 pe.index = MVPP2_PE_DSA_DEFAULT;
2261 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2262
2263 /* Shift 0 bytes */
2264 mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2265 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2266
2267 /* Clear all sram ai bits for next iteration */
2268 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2269
2270 /* Unmask all ports */
2271 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2272
2273 mvpp2_prs_hw_write(priv, &pe);
2274 }
2275
2276 /* Match basic ethertypes */
2277 static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2278 {
2279 struct mvpp2_prs_entry pe;
2280 int tid;
2281
2282 /* Ethertype: PPPoE */
2283 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2284 MVPP2_PE_LAST_FREE_TID);
2285 if (tid < 0)
2286 return tid;
2287
2288 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2289 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2290 pe.index = tid;
2291
2292 mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2293
2294 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2295 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2296 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2297 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2298 MVPP2_PRS_RI_PPPOE_MASK);
2299
2300 /* Update shadow table and hw entry */
2301 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2302 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2303 priv->prs_shadow[pe.index].finish = false;
2304 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2305 MVPP2_PRS_RI_PPPOE_MASK);
2306 mvpp2_prs_hw_write(priv, &pe);
2307
2308 /* Ethertype: ARP */
2309 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2310 MVPP2_PE_LAST_FREE_TID);
2311 if (tid < 0)
2312 return tid;
2313
2314 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2315 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2316 pe.index = tid;
2317
2318 mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2319
2320 /* Generate flow in the next iteration*/
2321 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2322 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2323 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2324 MVPP2_PRS_RI_L3_PROTO_MASK);
2325 /* Set L3 offset */
2326 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2327 MVPP2_ETH_TYPE_LEN,
2328 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2329
2330 /* Update shadow table and hw entry */
2331 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2332 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2333 priv->prs_shadow[pe.index].finish = true;
2334 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2335 MVPP2_PRS_RI_L3_PROTO_MASK);
2336 mvpp2_prs_hw_write(priv, &pe);
2337
2338 /* Ethertype: LBTD */
2339 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2340 MVPP2_PE_LAST_FREE_TID);
2341 if (tid < 0)
2342 return tid;
2343
2344 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2345 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2346 pe.index = tid;
2347
2348 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2349
2350 /* Generate flow in the next iteration*/
2351 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2352 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2353 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2354 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2355 MVPP2_PRS_RI_CPU_CODE_MASK |
2356 MVPP2_PRS_RI_UDF3_MASK);
2357 /* Set L3 offset */
2358 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2359 MVPP2_ETH_TYPE_LEN,
2360 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2361
2362 /* Update shadow table and hw entry */
2363 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2364 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2365 priv->prs_shadow[pe.index].finish = true;
2366 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2367 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2368 MVPP2_PRS_RI_CPU_CODE_MASK |
2369 MVPP2_PRS_RI_UDF3_MASK);
2370 mvpp2_prs_hw_write(priv, &pe);
2371
2372 /* Ethertype: IPv4 without options */
2373 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2374 MVPP2_PE_LAST_FREE_TID);
2375 if (tid < 0)
2376 return tid;
2377
2378 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2379 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2380 pe.index = tid;
2381
2382 mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2383 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2384 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2385 MVPP2_PRS_IPV4_HEAD_MASK |
2386 MVPP2_PRS_IPV4_IHL_MASK);
2387
2388 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2389 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2390 MVPP2_PRS_RI_L3_PROTO_MASK);
2391 /* Skip eth_type + 4 bytes of IP header */
2392 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2393 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2394 /* Set L3 offset */
2395 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2396 MVPP2_ETH_TYPE_LEN,
2397 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2398
2399 /* Update shadow table and hw entry */
2400 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2401 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2402 priv->prs_shadow[pe.index].finish = false;
2403 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2404 MVPP2_PRS_RI_L3_PROTO_MASK);
2405 mvpp2_prs_hw_write(priv, &pe);
2406
2407 /* Ethertype: IPv4 with options */
2408 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2409 MVPP2_PE_LAST_FREE_TID);
2410 if (tid < 0)
2411 return tid;
2412
2413 pe.index = tid;
2414
2415 /* Clear tcam data before updating */
2416 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2417 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2418
2419 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2420 MVPP2_PRS_IPV4_HEAD,
2421 MVPP2_PRS_IPV4_HEAD_MASK);
2422
2423 /* Clear ri before updating */
2424 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2425 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2426 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2427 MVPP2_PRS_RI_L3_PROTO_MASK);
2428
2429 /* Update shadow table and hw entry */
2430 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2431 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2432 priv->prs_shadow[pe.index].finish = false;
2433 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2434 MVPP2_PRS_RI_L3_PROTO_MASK);
2435 mvpp2_prs_hw_write(priv, &pe);
2436
2437 /* Ethertype: IPv6 without options */
2438 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2439 MVPP2_PE_LAST_FREE_TID);
2440 if (tid < 0)
2441 return tid;
2442
2443 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2444 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2445 pe.index = tid;
2446
2447 mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2448
2449 /* Skip DIP of IPV6 header */
2450 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2451 MVPP2_MAX_L3_ADDR_SIZE,
2452 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2453 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2454 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2455 MVPP2_PRS_RI_L3_PROTO_MASK);
2456 /* Set L3 offset */
2457 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2458 MVPP2_ETH_TYPE_LEN,
2459 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2460
2461 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2462 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2463 priv->prs_shadow[pe.index].finish = false;
2464 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2465 MVPP2_PRS_RI_L3_PROTO_MASK);
2466 mvpp2_prs_hw_write(priv, &pe);
2467
2468 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2469 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2470 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2471 pe.index = MVPP2_PE_ETH_TYPE_UN;
2472
2473 /* Unmask all ports */
2474 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2475
2476 /* Generate flow in the next iteration*/
2477 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2478 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2479 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2480 MVPP2_PRS_RI_L3_PROTO_MASK);
2481 /* Set L3 offset even it's unknown L3 */
2482 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2483 MVPP2_ETH_TYPE_LEN,
2484 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2485
2486 /* Update shadow table and hw entry */
2487 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2488 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2489 priv->prs_shadow[pe.index].finish = true;
2490 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2491 MVPP2_PRS_RI_L3_PROTO_MASK);
2492 mvpp2_prs_hw_write(priv, &pe);
2493
2494 return 0;
2495 }
2496
2497 /* Configure vlan entries and detect up to 2 successive VLAN tags.
2498 * Possible options:
2499 * 0x8100, 0x88A8
2500 * 0x8100, 0x8100
2501 * 0x8100
2502 * 0x88A8
2503 */
2504 static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2505 {
2506 struct mvpp2_prs_entry pe;
2507 int err;
2508
2509 priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2510 MVPP2_PRS_DBL_VLANS_MAX,
2511 GFP_KERNEL);
2512 if (!priv->prs_double_vlans)
2513 return -ENOMEM;
2514
2515 /* Double VLAN: 0x8100, 0x88A8 */
2516 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2517 MVPP2_PRS_PORT_MASK);
2518 if (err)
2519 return err;
2520
2521 /* Double VLAN: 0x8100, 0x8100 */
2522 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2523 MVPP2_PRS_PORT_MASK);
2524 if (err)
2525 return err;
2526
2527 /* Single VLAN: 0x88a8 */
2528 err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2529 MVPP2_PRS_PORT_MASK);
2530 if (err)
2531 return err;
2532
2533 /* Single VLAN: 0x8100 */
2534 err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2535 MVPP2_PRS_PORT_MASK);
2536 if (err)
2537 return err;
2538
2539 /* Set default double vlan entry */
2540 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2541 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2542 pe.index = MVPP2_PE_VLAN_DBL;
2543
2544 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2545 /* Clear ai for next iterations */
2546 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2547 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2548 MVPP2_PRS_RI_VLAN_MASK);
2549
2550 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2551 MVPP2_PRS_DBL_VLAN_AI_BIT);
2552 /* Unmask all ports */
2553 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2554
2555 /* Update shadow table and hw entry */
2556 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2557 mvpp2_prs_hw_write(priv, &pe);
2558
2559 /* Set default vlan none entry */
2560 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2561 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2562 pe.index = MVPP2_PE_VLAN_NONE;
2563
2564 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2565 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2566 MVPP2_PRS_RI_VLAN_MASK);
2567
2568 /* Unmask all ports */
2569 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2570
2571 /* Update shadow table and hw entry */
2572 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2573 mvpp2_prs_hw_write(priv, &pe);
2574
2575 return 0;
2576 }
2577
2578 /* Set entries for PPPoE ethertype */
2579 static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2580 {
2581 struct mvpp2_prs_entry pe;
2582 int tid;
2583
2584 /* IPv4 over PPPoE with options */
2585 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2586 MVPP2_PE_LAST_FREE_TID);
2587 if (tid < 0)
2588 return tid;
2589
2590 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2591 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2592 pe.index = tid;
2593
2594 mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2595
2596 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2597 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2598 MVPP2_PRS_RI_L3_PROTO_MASK);
2599 /* Skip eth_type + 4 bytes of IP header */
2600 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2601 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2602 /* Set L3 offset */
2603 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2604 MVPP2_ETH_TYPE_LEN,
2605 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2606
2607 /* Update shadow table and hw entry */
2608 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2609 mvpp2_prs_hw_write(priv, &pe);
2610
2611 /* IPv4 over PPPoE without options */
2612 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2613 MVPP2_PE_LAST_FREE_TID);
2614 if (tid < 0)
2615 return tid;
2616
2617 pe.index = tid;
2618
2619 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2620 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2621 MVPP2_PRS_IPV4_HEAD_MASK |
2622 MVPP2_PRS_IPV4_IHL_MASK);
2623
2624 /* Clear ri before updating */
2625 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2626 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2627 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2628 MVPP2_PRS_RI_L3_PROTO_MASK);
2629
2630 /* Update shadow table and hw entry */
2631 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2632 mvpp2_prs_hw_write(priv, &pe);
2633
2634 /* IPv6 over PPPoE */
2635 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2636 MVPP2_PE_LAST_FREE_TID);
2637 if (tid < 0)
2638 return tid;
2639
2640 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2641 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2642 pe.index = tid;
2643
2644 mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2645
2646 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2647 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2648 MVPP2_PRS_RI_L3_PROTO_MASK);
2649 /* Skip eth_type + 4 bytes of IPv6 header */
2650 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2651 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2652 /* Set L3 offset */
2653 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2654 MVPP2_ETH_TYPE_LEN,
2655 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2656
2657 /* Update shadow table and hw entry */
2658 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2659 mvpp2_prs_hw_write(priv, &pe);
2660
2661 /* Non-IP over PPPoE */
2662 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2663 MVPP2_PE_LAST_FREE_TID);
2664 if (tid < 0)
2665 return tid;
2666
2667 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2668 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2669 pe.index = tid;
2670
2671 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2672 MVPP2_PRS_RI_L3_PROTO_MASK);
2673
2674 /* Finished: go to flowid generation */
2675 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2676 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2677 /* Set L3 offset even if it's unknown L3 */
2678 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2679 MVPP2_ETH_TYPE_LEN,
2680 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2681
2682 /* Update shadow table and hw entry */
2683 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2684 mvpp2_prs_hw_write(priv, &pe);
2685
2686 return 0;
2687 }
2688
2689 /* Initialize entries for IPv4 */
2690 static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2691 {
2692 struct mvpp2_prs_entry pe;
2693 int err;
2694
2695 /* Set entries for TCP, UDP and IGMP over IPv4 */
2696 err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2697 MVPP2_PRS_RI_L4_PROTO_MASK);
2698 if (err)
2699 return err;
2700
2701 err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2702 MVPP2_PRS_RI_L4_PROTO_MASK);
2703 if (err)
2704 return err;
2705
2706 err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2707 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2708 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2709 MVPP2_PRS_RI_CPU_CODE_MASK |
2710 MVPP2_PRS_RI_UDF3_MASK);
2711 if (err)
2712 return err;
2713
2714 /* IPv4 Broadcast */
2715 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2716 if (err)
2717 return err;
2718
2719 /* IPv4 Multicast */
2720 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2721 if (err)
2722 return err;
2723
2724 /* Default IPv4 entry for unknown protocols */
2725 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2726 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2727 pe.index = MVPP2_PE_IP4_PROTO_UN;
2728
2729 /* Set next lu to IPv4 */
2730 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2731 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2732 /* Set L4 offset */
2733 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2734 sizeof(struct iphdr) - 4,
2735 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2736 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2737 MVPP2_PRS_IPV4_DIP_AI_BIT);
2738 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2739 MVPP2_PRS_RI_L4_PROTO_MASK);
2740
2741 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2742 /* Unmask all ports */
2743 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2744
2745 /* Update shadow table and hw entry */
2746 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2747 mvpp2_prs_hw_write(priv, &pe);
2748
2749 /* Default IPv4 entry for unicast address */
2750 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2751 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2752 pe.index = MVPP2_PE_IP4_ADDR_UN;
2753
2754 /* Finished: go to flowid generation */
2755 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2756 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2757 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2758 MVPP2_PRS_RI_L3_ADDR_MASK);
2759
2760 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2761 MVPP2_PRS_IPV4_DIP_AI_BIT);
2762 /* Unmask all ports */
2763 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2764
2765 /* Update shadow table and hw entry */
2766 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2767 mvpp2_prs_hw_write(priv, &pe);
2768
2769 return 0;
2770 }
2771
2772 /* Initialize entries for IPv6 */
2773 static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2774 {
2775 struct mvpp2_prs_entry pe;
2776 int tid, err;
2777
2778 /* Set entries for TCP, UDP and ICMP over IPv6 */
2779 err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2780 MVPP2_PRS_RI_L4_TCP,
2781 MVPP2_PRS_RI_L4_PROTO_MASK);
2782 if (err)
2783 return err;
2784
2785 err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2786 MVPP2_PRS_RI_L4_UDP,
2787 MVPP2_PRS_RI_L4_PROTO_MASK);
2788 if (err)
2789 return err;
2790
2791 err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2792 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2793 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2794 MVPP2_PRS_RI_CPU_CODE_MASK |
2795 MVPP2_PRS_RI_UDF3_MASK);
2796 if (err)
2797 return err;
2798
2799 /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2800 /* Result Info: UDF7=1, DS lite */
2801 err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2802 MVPP2_PRS_RI_UDF7_IP6_LITE,
2803 MVPP2_PRS_RI_UDF7_MASK);
2804 if (err)
2805 return err;
2806
2807 /* IPv6 multicast */
2808 err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2809 if (err)
2810 return err;
2811
2812 /* Entry for checking hop limit */
2813 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2814 MVPP2_PE_LAST_FREE_TID);
2815 if (tid < 0)
2816 return tid;
2817
2818 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2819 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2820 pe.index = tid;
2821
2822 /* Finished: go to flowid generation */
2823 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2824 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2825 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2826 MVPP2_PRS_RI_DROP_MASK,
2827 MVPP2_PRS_RI_L3_PROTO_MASK |
2828 MVPP2_PRS_RI_DROP_MASK);
2829
2830 mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2831 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2832 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2833
2834 /* Update shadow table and hw entry */
2835 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2836 mvpp2_prs_hw_write(priv, &pe);
2837
2838 /* Default IPv6 entry for unknown protocols */
2839 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2840 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2841 pe.index = MVPP2_PE_IP6_PROTO_UN;
2842
2843 /* Finished: go to flowid generation */
2844 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2845 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2846 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2847 MVPP2_PRS_RI_L4_PROTO_MASK);
2848 /* Set L4 offset relatively to our current place */
2849 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2850 sizeof(struct ipv6hdr) - 4,
2851 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2852
2853 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2854 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2855 /* Unmask all ports */
2856 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2857
2858 /* Update shadow table and hw entry */
2859 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2860 mvpp2_prs_hw_write(priv, &pe);
2861
2862 /* Default IPv6 entry for unknown ext protocols */
2863 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2864 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2865 pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2866
2867 /* Finished: go to flowid generation */
2868 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2869 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2870 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2871 MVPP2_PRS_RI_L4_PROTO_MASK);
2872
2873 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2874 MVPP2_PRS_IPV6_EXT_AI_BIT);
2875 /* Unmask all ports */
2876 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2877
2878 /* Update shadow table and hw entry */
2879 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2880 mvpp2_prs_hw_write(priv, &pe);
2881
2882 /* Default IPv6 entry for unicast address */
2883 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2884 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2885 pe.index = MVPP2_PE_IP6_ADDR_UN;
2886
2887 /* Finished: go to IPv6 again */
2888 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2889 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2890 MVPP2_PRS_RI_L3_ADDR_MASK);
2891 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2892 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2893 /* Shift back to IPV6 NH */
2894 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2895
2896 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2897 /* Unmask all ports */
2898 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2899
2900 /* Update shadow table and hw entry */
2901 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2902 mvpp2_prs_hw_write(priv, &pe);
2903
2904 return 0;
2905 }
2906
2907 /* Parser default initialization */
2908 static int mvpp2_prs_default_init(struct platform_device *pdev,
2909 struct mvpp2 *priv)
2910 {
2911 int err, index, i;
2912
2913 /* Enable tcam table */
2914 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2915
2916 /* Clear all tcam and sram entries */
2917 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2918 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2919 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2920 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2921
2922 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2923 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2924 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2925 }
2926
2927 /* Invalidate all tcam entries */
2928 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2929 mvpp2_prs_hw_inv(priv, index);
2930
2931 priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2932 sizeof(struct mvpp2_prs_shadow),
2933 GFP_KERNEL);
2934 if (!priv->prs_shadow)
2935 return -ENOMEM;
2936
2937 /* Always start from lookup = 0 */
2938 for (index = 0; index < MVPP2_MAX_PORTS; index++)
2939 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2940 MVPP2_PRS_PORT_LU_MAX, 0);
2941
2942 mvpp2_prs_def_flow_init(priv);
2943
2944 mvpp2_prs_mh_init(priv);
2945
2946 mvpp2_prs_mac_init(priv);
2947
2948 mvpp2_prs_dsa_init(priv);
2949
2950 err = mvpp2_prs_etype_init(priv);
2951 if (err)
2952 return err;
2953
2954 err = mvpp2_prs_vlan_init(pdev, priv);
2955 if (err)
2956 return err;
2957
2958 err = mvpp2_prs_pppoe_init(priv);
2959 if (err)
2960 return err;
2961
2962 err = mvpp2_prs_ip6_init(priv);
2963 if (err)
2964 return err;
2965
2966 err = mvpp2_prs_ip4_init(priv);
2967 if (err)
2968 return err;
2969
2970 return 0;
2971 }
2972
2973 /* Compare MAC DA with tcam entry data */
2974 static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2975 const u8 *da, unsigned char *mask)
2976 {
2977 unsigned char tcam_byte, tcam_mask;
2978 int index;
2979
2980 for (index = 0; index < ETH_ALEN; index++) {
2981 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2982 if (tcam_mask != mask[index])
2983 return false;
2984
2985 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2986 return false;
2987 }
2988
2989 return true;
2990 }
2991
2992 /* Find tcam entry with matched pair <MAC DA, port> */
2993 static struct mvpp2_prs_entry *
2994 mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2995 unsigned char *mask, int udf_type)
2996 {
2997 struct mvpp2_prs_entry *pe;
2998 int tid;
2999
3000 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3001 if (!pe)
3002 return NULL;
3003 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3004
3005 /* Go through the all entires with MVPP2_PRS_LU_MAC */
3006 for (tid = MVPP2_PE_FIRST_FREE_TID;
3007 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3008 unsigned int entry_pmap;
3009
3010 if (!priv->prs_shadow[tid].valid ||
3011 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3012 (priv->prs_shadow[tid].udf != udf_type))
3013 continue;
3014
3015 pe->index = tid;
3016 mvpp2_prs_hw_read(priv, pe);
3017 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
3018
3019 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3020 entry_pmap == pmap)
3021 return pe;
3022 }
3023 kfree(pe);
3024
3025 return NULL;
3026 }
3027
3028 /* Update parser's mac da entry */
3029 static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3030 const u8 *da, bool add)
3031 {
3032 struct mvpp2_prs_entry *pe;
3033 unsigned int pmap, len, ri;
3034 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3035 int tid;
3036
3037 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3038 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3039 MVPP2_PRS_UDF_MAC_DEF);
3040
3041 /* No such entry */
3042 if (!pe) {
3043 if (!add)
3044 return 0;
3045
3046 /* Create new TCAM entry */
3047 /* Find first range mac entry*/
3048 for (tid = MVPP2_PE_FIRST_FREE_TID;
3049 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3050 if (priv->prs_shadow[tid].valid &&
3051 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3052 (priv->prs_shadow[tid].udf ==
3053 MVPP2_PRS_UDF_MAC_RANGE))
3054 break;
3055
3056 /* Go through the all entries from first to last */
3057 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3058 tid - 1);
3059 if (tid < 0)
3060 return tid;
3061
3062 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3063 if (!pe)
3064 return -1;
3065 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3066 pe->index = tid;
3067
3068 /* Mask all ports */
3069 mvpp2_prs_tcam_port_map_set(pe, 0);
3070 }
3071
3072 /* Update port mask */
3073 mvpp2_prs_tcam_port_set(pe, port, add);
3074
3075 /* Invalidate the entry if no ports are left enabled */
3076 pmap = mvpp2_prs_tcam_port_map_get(pe);
3077 if (pmap == 0) {
3078 if (add) {
3079 kfree(pe);
3080 return -1;
3081 }
3082 mvpp2_prs_hw_inv(priv, pe->index);
3083 priv->prs_shadow[pe->index].valid = false;
3084 kfree(pe);
3085 return 0;
3086 }
3087
3088 /* Continue - set next lookup */
3089 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3090
3091 /* Set match on DA */
3092 len = ETH_ALEN;
3093 while (len--)
3094 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3095
3096 /* Set result info bits */
3097 if (is_broadcast_ether_addr(da))
3098 ri = MVPP2_PRS_RI_L2_BCAST;
3099 else if (is_multicast_ether_addr(da))
3100 ri = MVPP2_PRS_RI_L2_MCAST;
3101 else
3102 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3103
3104 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3105 MVPP2_PRS_RI_MAC_ME_MASK);
3106 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3107 MVPP2_PRS_RI_MAC_ME_MASK);
3108
3109 /* Shift to ethertype */
3110 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3111 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3112
3113 /* Update shadow table and hw entry */
3114 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3115 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3116 mvpp2_prs_hw_write(priv, pe);
3117
3118 kfree(pe);
3119
3120 return 0;
3121 }
3122
3123 static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3124 {
3125 struct mvpp2_port *port = netdev_priv(dev);
3126 int err;
3127
3128 /* Remove old parser entry */
3129 err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3130 false);
3131 if (err)
3132 return err;
3133
3134 /* Add new parser entry */
3135 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3136 if (err)
3137 return err;
3138
3139 /* Set addr in the device */
3140 ether_addr_copy(dev->dev_addr, da);
3141
3142 return 0;
3143 }
3144
3145 /* Delete all port's multicast simple (not range) entries */
3146 static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3147 {
3148 struct mvpp2_prs_entry pe;
3149 int index, tid;
3150
3151 for (tid = MVPP2_PE_FIRST_FREE_TID;
3152 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3153 unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3154
3155 if (!priv->prs_shadow[tid].valid ||
3156 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3157 (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3158 continue;
3159
3160 /* Only simple mac entries */
3161 pe.index = tid;
3162 mvpp2_prs_hw_read(priv, &pe);
3163
3164 /* Read mac addr from entry */
3165 for (index = 0; index < ETH_ALEN; index++)
3166 mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3167 &da_mask[index]);
3168
3169 if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3170 /* Delete this entry */
3171 mvpp2_prs_mac_da_accept(priv, port, da, false);
3172 }
3173 }
3174
3175 static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3176 {
3177 switch (type) {
3178 case MVPP2_TAG_TYPE_EDSA:
3179 /* Add port to EDSA entries */
3180 mvpp2_prs_dsa_tag_set(priv, port, true,
3181 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3182 mvpp2_prs_dsa_tag_set(priv, port, true,
3183 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3184 /* Remove port from DSA entries */
3185 mvpp2_prs_dsa_tag_set(priv, port, false,
3186 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3187 mvpp2_prs_dsa_tag_set(priv, port, false,
3188 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3189 break;
3190
3191 case MVPP2_TAG_TYPE_DSA:
3192 /* Add port to DSA entries */
3193 mvpp2_prs_dsa_tag_set(priv, port, true,
3194 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3195 mvpp2_prs_dsa_tag_set(priv, port, true,
3196 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3197 /* Remove port from EDSA entries */
3198 mvpp2_prs_dsa_tag_set(priv, port, false,
3199 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3200 mvpp2_prs_dsa_tag_set(priv, port, false,
3201 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3202 break;
3203
3204 case MVPP2_TAG_TYPE_MH:
3205 case MVPP2_TAG_TYPE_NONE:
3206 /* Remove port form EDSA and DSA entries */
3207 mvpp2_prs_dsa_tag_set(priv, port, false,
3208 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3209 mvpp2_prs_dsa_tag_set(priv, port, false,
3210 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3211 mvpp2_prs_dsa_tag_set(priv, port, false,
3212 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3213 mvpp2_prs_dsa_tag_set(priv, port, false,
3214 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3215 break;
3216
3217 default:
3218 if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3219 return -EINVAL;
3220 }
3221
3222 return 0;
3223 }
3224
3225 /* Set prs flow for the port */
3226 static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3227 {
3228 struct mvpp2_prs_entry *pe;
3229 int tid;
3230
3231 pe = mvpp2_prs_flow_find(port->priv, port->id);
3232
3233 /* Such entry not exist */
3234 if (!pe) {
3235 /* Go through the all entires from last to first */
3236 tid = mvpp2_prs_tcam_first_free(port->priv,
3237 MVPP2_PE_LAST_FREE_TID,
3238 MVPP2_PE_FIRST_FREE_TID);
3239 if (tid < 0)
3240 return tid;
3241
3242 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3243 if (!pe)
3244 return -ENOMEM;
3245
3246 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3247 pe->index = tid;
3248
3249 /* Set flow ID*/
3250 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3251 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3252
3253 /* Update shadow table */
3254 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3255 }
3256
3257 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3258 mvpp2_prs_hw_write(port->priv, pe);
3259 kfree(pe);
3260
3261 return 0;
3262 }
3263
3264 /* Classifier configuration routines */
3265
3266 /* Update classification flow table registers */
3267 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3268 struct mvpp2_cls_flow_entry *fe)
3269 {
3270 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3271 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
3272 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
3273 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
3274 }
3275
3276 /* Update classification lookup table register */
3277 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3278 struct mvpp2_cls_lookup_entry *le)
3279 {
3280 u32 val;
3281
3282 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3283 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3284 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3285 }
3286
3287 /* Classifier default initialization */
3288 static void mvpp2_cls_init(struct mvpp2 *priv)
3289 {
3290 struct mvpp2_cls_lookup_entry le;
3291 struct mvpp2_cls_flow_entry fe;
3292 int index;
3293
3294 /* Enable classifier */
3295 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3296
3297 /* Clear classifier flow table */
3298 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
3299 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3300 fe.index = index;
3301 mvpp2_cls_flow_write(priv, &fe);
3302 }
3303
3304 /* Clear classifier lookup table */
3305 le.data = 0;
3306 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3307 le.lkpid = index;
3308 le.way = 0;
3309 mvpp2_cls_lookup_write(priv, &le);
3310
3311 le.way = 1;
3312 mvpp2_cls_lookup_write(priv, &le);
3313 }
3314 }
3315
3316 static void mvpp2_cls_port_config(struct mvpp2_port *port)
3317 {
3318 struct mvpp2_cls_lookup_entry le;
3319 u32 val;
3320
3321 /* Set way for the port */
3322 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3323 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3324 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3325
3326 /* Pick the entry to be accessed in lookup ID decoding table
3327 * according to the way and lkpid.
3328 */
3329 le.lkpid = port->id;
3330 le.way = 0;
3331 le.data = 0;
3332
3333 /* Set initial CPU queue for receiving packets */
3334 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3335 le.data |= port->first_rxq;
3336
3337 /* Disable classification engines */
3338 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3339
3340 /* Update lookup ID table entry */
3341 mvpp2_cls_lookup_write(port->priv, &le);
3342 }
3343
3344 /* Set CPU queue number for oversize packets */
3345 static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3346 {
3347 u32 val;
3348
3349 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3350 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3351
3352 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3353 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3354
3355 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3356 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3357 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3358 }
3359
3360 /* Buffer Manager configuration routines */
3361
3362 /* Create pool */
3363 static int mvpp2_bm_pool_create(struct platform_device *pdev,
3364 struct mvpp2 *priv,
3365 struct mvpp2_bm_pool *bm_pool, int size)
3366 {
3367 int size_bytes;
3368 u32 val;
3369
3370 size_bytes = sizeof(u32) * size;
3371 bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3372 &bm_pool->phys_addr,
3373 GFP_KERNEL);
3374 if (!bm_pool->virt_addr)
3375 return -ENOMEM;
3376
3377 if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3378 dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3379 bm_pool->phys_addr);
3380 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3381 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3382 return -ENOMEM;
3383 }
3384
3385 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3386 bm_pool->phys_addr);
3387 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3388
3389 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3390 val |= MVPP2_BM_START_MASK;
3391 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3392
3393 bm_pool->type = MVPP2_BM_FREE;
3394 bm_pool->size = size;
3395 bm_pool->pkt_size = 0;
3396 bm_pool->buf_num = 0;
3397 atomic_set(&bm_pool->in_use, 0);
3398
3399 return 0;
3400 }
3401
3402 /* Set pool buffer size */
3403 static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3404 struct mvpp2_bm_pool *bm_pool,
3405 int buf_size)
3406 {
3407 u32 val;
3408
3409 bm_pool->buf_size = buf_size;
3410
3411 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3412 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3413 }
3414
3415 /* Free all buffers from the pool */
3416 static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
3417 struct mvpp2_bm_pool *bm_pool)
3418 {
3419 int i;
3420
3421 for (i = 0; i < bm_pool->buf_num; i++) {
3422 dma_addr_t buf_phys_addr;
3423 u32 vaddr;
3424
3425 /* Get buffer virtual address (indirect access) */
3426 buf_phys_addr = mvpp2_read(priv,
3427 MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3428 vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3429
3430 dma_unmap_single(dev, buf_phys_addr,
3431 bm_pool->buf_size, DMA_FROM_DEVICE);
3432
3433 if (!vaddr)
3434 break;
3435 dev_kfree_skb_any((struct sk_buff *)vaddr);
3436 }
3437
3438 /* Update BM driver with number of buffers removed from pool */
3439 bm_pool->buf_num -= i;
3440 }
3441
3442 /* Cleanup pool */
3443 static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3444 struct mvpp2 *priv,
3445 struct mvpp2_bm_pool *bm_pool)
3446 {
3447 u32 val;
3448
3449 mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3450 if (bm_pool->buf_num) {
3451 WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3452 return 0;
3453 }
3454
3455 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3456 val |= MVPP2_BM_STOP_MASK;
3457 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3458
3459 dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3460 bm_pool->virt_addr,
3461 bm_pool->phys_addr);
3462 return 0;
3463 }
3464
3465 static int mvpp2_bm_pools_init(struct platform_device *pdev,
3466 struct mvpp2 *priv)
3467 {
3468 int i, err, size;
3469 struct mvpp2_bm_pool *bm_pool;
3470
3471 /* Create all pools with maximum size */
3472 size = MVPP2_BM_POOL_SIZE_MAX;
3473 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3474 bm_pool = &priv->bm_pools[i];
3475 bm_pool->id = i;
3476 err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3477 if (err)
3478 goto err_unroll_pools;
3479 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3480 }
3481 return 0;
3482
3483 err_unroll_pools:
3484 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3485 for (i = i - 1; i >= 0; i--)
3486 mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3487 return err;
3488 }
3489
3490 static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3491 {
3492 int i, err;
3493
3494 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3495 /* Mask BM all interrupts */
3496 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3497 /* Clear BM cause register */
3498 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3499 }
3500
3501 /* Allocate and initialize BM pools */
3502 priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3503 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3504 if (!priv->bm_pools)
3505 return -ENOMEM;
3506
3507 err = mvpp2_bm_pools_init(pdev, priv);
3508 if (err < 0)
3509 return err;
3510 return 0;
3511 }
3512
3513 /* Attach long pool to rxq */
3514 static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3515 int lrxq, int long_pool)
3516 {
3517 u32 val;
3518 int prxq;
3519
3520 /* Get queue physical ID */
3521 prxq = port->rxqs[lrxq]->id;
3522
3523 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3524 val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3525 val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3526 MVPP2_RXQ_POOL_LONG_MASK);
3527
3528 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3529 }
3530
3531 /* Attach short pool to rxq */
3532 static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3533 int lrxq, int short_pool)
3534 {
3535 u32 val;
3536 int prxq;
3537
3538 /* Get queue physical ID */
3539 prxq = port->rxqs[lrxq]->id;
3540
3541 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3542 val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3543 val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3544 MVPP2_RXQ_POOL_SHORT_MASK);
3545
3546 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3547 }
3548
3549 /* Allocate skb for BM pool */
3550 static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3551 struct mvpp2_bm_pool *bm_pool,
3552 dma_addr_t *buf_phys_addr,
3553 gfp_t gfp_mask)
3554 {
3555 struct sk_buff *skb;
3556 dma_addr_t phys_addr;
3557
3558 skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3559 if (!skb)
3560 return NULL;
3561
3562 phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3563 MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3564 DMA_FROM_DEVICE);
3565 if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3566 dev_kfree_skb_any(skb);
3567 return NULL;
3568 }
3569 *buf_phys_addr = phys_addr;
3570
3571 return skb;
3572 }
3573
3574 /* Set pool number in a BM cookie */
3575 static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3576 {
3577 u32 bm;
3578
3579 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3580 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3581
3582 return bm;
3583 }
3584
3585 /* Get pool number from a BM cookie */
3586 static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3587 {
3588 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3589 }
3590
3591 /* Release buffer to BM */
3592 static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3593 u32 buf_phys_addr, u32 buf_virt_addr)
3594 {
3595 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3596 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3597 }
3598
3599 /* Release multicast buffer */
3600 static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3601 u32 buf_phys_addr, u32 buf_virt_addr,
3602 int mc_id)
3603 {
3604 u32 val = 0;
3605
3606 val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3607 mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3608
3609 mvpp2_bm_pool_put(port, pool,
3610 buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3611 buf_virt_addr);
3612 }
3613
3614 /* Refill BM pool */
3615 static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3616 u32 phys_addr, u32 cookie)
3617 {
3618 int pool = mvpp2_bm_cookie_pool_get(bm);
3619
3620 mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3621 }
3622
3623 /* Allocate buffers for the pool */
3624 static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3625 struct mvpp2_bm_pool *bm_pool, int buf_num)
3626 {
3627 struct sk_buff *skb;
3628 int i, buf_size, total_size;
3629 u32 bm;
3630 dma_addr_t phys_addr;
3631
3632 buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3633 total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3634
3635 if (buf_num < 0 ||
3636 (buf_num + bm_pool->buf_num > bm_pool->size)) {
3637 netdev_err(port->dev,
3638 "cannot allocate %d buffers for pool %d\n",
3639 buf_num, bm_pool->id);
3640 return 0;
3641 }
3642
3643 bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3644 for (i = 0; i < buf_num; i++) {
3645 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3646 if (!skb)
3647 break;
3648
3649 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3650 }
3651
3652 /* Update BM driver with number of buffers added to pool */
3653 bm_pool->buf_num += i;
3654 bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3655
3656 netdev_dbg(port->dev,
3657 "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3658 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3659 bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3660
3661 netdev_dbg(port->dev,
3662 "%s pool %d: %d of %d buffers added\n",
3663 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3664 bm_pool->id, i, buf_num);
3665 return i;
3666 }
3667
3668 /* Notify the driver that BM pool is being used as specific type and return the
3669 * pool pointer on success
3670 */
3671 static struct mvpp2_bm_pool *
3672 mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3673 int pkt_size)
3674 {
3675 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3676 int num;
3677
3678 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3679 netdev_err(port->dev, "mixing pool types is forbidden\n");
3680 return NULL;
3681 }
3682
3683 if (new_pool->type == MVPP2_BM_FREE)
3684 new_pool->type = type;
3685
3686 /* Allocate buffers in case BM pool is used as long pool, but packet
3687 * size doesn't match MTU or BM pool hasn't being used yet
3688 */
3689 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3690 (new_pool->pkt_size == 0)) {
3691 int pkts_num;
3692
3693 /* Set default buffer number or free all the buffers in case
3694 * the pool is not empty
3695 */
3696 pkts_num = new_pool->buf_num;
3697 if (pkts_num == 0)
3698 pkts_num = type == MVPP2_BM_SWF_LONG ?
3699 MVPP2_BM_LONG_BUF_NUM :
3700 MVPP2_BM_SHORT_BUF_NUM;
3701 else
3702 mvpp2_bm_bufs_free(port->dev->dev.parent,
3703 port->priv, new_pool);
3704
3705 new_pool->pkt_size = pkt_size;
3706
3707 /* Allocate buffers for this pool */
3708 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3709 if (num != pkts_num) {
3710 WARN(1, "pool %d: %d of %d allocated\n",
3711 new_pool->id, num, pkts_num);
3712 return NULL;
3713 }
3714 }
3715
3716 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3717 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3718
3719 return new_pool;
3720 }
3721
3722 /* Initialize pools for swf */
3723 static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3724 {
3725 int rxq;
3726
3727 if (!port->pool_long) {
3728 port->pool_long =
3729 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3730 MVPP2_BM_SWF_LONG,
3731 port->pkt_size);
3732 if (!port->pool_long)
3733 return -ENOMEM;
3734
3735 port->pool_long->port_map |= (1 << port->id);
3736
3737 for (rxq = 0; rxq < rxq_number; rxq++)
3738 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3739 }
3740
3741 if (!port->pool_short) {
3742 port->pool_short =
3743 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3744 MVPP2_BM_SWF_SHORT,
3745 MVPP2_BM_SHORT_PKT_SIZE);
3746 if (!port->pool_short)
3747 return -ENOMEM;
3748
3749 port->pool_short->port_map |= (1 << port->id);
3750
3751 for (rxq = 0; rxq < rxq_number; rxq++)
3752 mvpp2_rxq_short_pool_set(port, rxq,
3753 port->pool_short->id);
3754 }
3755
3756 return 0;
3757 }
3758
3759 static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3760 {
3761 struct mvpp2_port *port = netdev_priv(dev);
3762 struct mvpp2_bm_pool *port_pool = port->pool_long;
3763 int num, pkts_num = port_pool->buf_num;
3764 int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3765
3766 /* Update BM pool with new buffer size */
3767 mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
3768 if (port_pool->buf_num) {
3769 WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3770 return -EIO;
3771 }
3772
3773 port_pool->pkt_size = pkt_size;
3774 num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3775 if (num != pkts_num) {
3776 WARN(1, "pool %d: %d of %d allocated\n",
3777 port_pool->id, num, pkts_num);
3778 return -EIO;
3779 }
3780
3781 mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3782 MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3783 dev->mtu = mtu;
3784 netdev_update_features(dev);
3785 return 0;
3786 }
3787
3788 static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3789 {
3790 int cpu, cpu_mask = 0;
3791
3792 for_each_present_cpu(cpu)
3793 cpu_mask |= 1 << cpu;
3794 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3795 MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3796 }
3797
3798 static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3799 {
3800 int cpu, cpu_mask = 0;
3801
3802 for_each_present_cpu(cpu)
3803 cpu_mask |= 1 << cpu;
3804 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3805 MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3806 }
3807
3808 /* Mask the current CPU's Rx/Tx interrupts */
3809 static void mvpp2_interrupts_mask(void *arg)
3810 {
3811 struct mvpp2_port *port = arg;
3812
3813 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3814 }
3815
3816 /* Unmask the current CPU's Rx/Tx interrupts */
3817 static void mvpp2_interrupts_unmask(void *arg)
3818 {
3819 struct mvpp2_port *port = arg;
3820
3821 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3822 (MVPP2_CAUSE_MISC_SUM_MASK |
3823 MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3824 }
3825
3826 /* Port configuration routines */
3827
3828 static void mvpp2_port_mii_set(struct mvpp2_port *port)
3829 {
3830 u32 val;
3831
3832 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3833
3834 switch (port->phy_interface) {
3835 case PHY_INTERFACE_MODE_SGMII:
3836 val |= MVPP2_GMAC_INBAND_AN_MASK;
3837 break;
3838 case PHY_INTERFACE_MODE_RGMII:
3839 val |= MVPP2_GMAC_PORT_RGMII_MASK;
3840 default:
3841 val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3842 }
3843
3844 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3845 }
3846
3847 static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
3848 {
3849 u32 val;
3850
3851 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3852 val |= MVPP2_GMAC_FC_ADV_EN;
3853 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3854 }
3855
3856 static void mvpp2_port_enable(struct mvpp2_port *port)
3857 {
3858 u32 val;
3859
3860 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3861 val |= MVPP2_GMAC_PORT_EN_MASK;
3862 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3863 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3864 }
3865
3866 static void mvpp2_port_disable(struct mvpp2_port *port)
3867 {
3868 u32 val;
3869
3870 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3871 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3872 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3873 }
3874
3875 /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
3876 static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3877 {
3878 u32 val;
3879
3880 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3881 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3882 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3883 }
3884
3885 /* Configure loopback port */
3886 static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3887 {
3888 u32 val;
3889
3890 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3891
3892 if (port->speed == 1000)
3893 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3894 else
3895 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3896
3897 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3898 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3899 else
3900 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3901
3902 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3903 }
3904
3905 static void mvpp2_port_reset(struct mvpp2_port *port)
3906 {
3907 u32 val;
3908
3909 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3910 ~MVPP2_GMAC_PORT_RESET_MASK;
3911 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3912
3913 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3914 MVPP2_GMAC_PORT_RESET_MASK)
3915 continue;
3916 }
3917
3918 /* Change maximum receive size of the port */
3919 static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3920 {
3921 u32 val;
3922
3923 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3924 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3925 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3926 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3927 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3928 }
3929
3930 /* Set defaults to the MVPP2 port */
3931 static void mvpp2_defaults_set(struct mvpp2_port *port)
3932 {
3933 int tx_port_num, val, queue, ptxq, lrxq;
3934
3935 /* Configure port to loopback if needed */
3936 if (port->flags & MVPP2_F_LOOPBACK)
3937 mvpp2_port_loopback_set(port);
3938
3939 /* Update TX FIFO MIN Threshold */
3940 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3941 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3942 /* Min. TX threshold must be less than minimal packet length */
3943 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3944 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3945
3946 /* Disable Legacy WRR, Disable EJP, Release from reset */
3947 tx_port_num = mvpp2_egress_port(port);
3948 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3949 tx_port_num);
3950 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3951
3952 /* Close bandwidth for all queues */
3953 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3954 ptxq = mvpp2_txq_phys(port->id, queue);
3955 mvpp2_write(port->priv,
3956 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3957 }
3958
3959 /* Set refill period to 1 usec, refill tokens
3960 * and bucket size to maximum
3961 */
3962 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3963 port->priv->tclk / USEC_PER_SEC);
3964 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3965 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3966 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3967 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3968 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3969 val = MVPP2_TXP_TOKEN_SIZE_MAX;
3970 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3971
3972 /* Set MaximumLowLatencyPacketSize value to 256 */
3973 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3974 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3975 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3976
3977 /* Enable Rx cache snoop */
3978 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3979 queue = port->rxqs[lrxq]->id;
3980 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3981 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3982 MVPP2_SNOOP_BUF_HDR_MASK;
3983 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3984 }
3985
3986 /* At default, mask all interrupts to all present cpus */
3987 mvpp2_interrupts_disable(port);
3988 }
3989
3990 /* Enable/disable receiving packets */
3991 static void mvpp2_ingress_enable(struct mvpp2_port *port)
3992 {
3993 u32 val;
3994 int lrxq, queue;
3995
3996 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3997 queue = port->rxqs[lrxq]->id;
3998 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3999 val &= ~MVPP2_RXQ_DISABLE_MASK;
4000 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4001 }
4002 }
4003
4004 static void mvpp2_ingress_disable(struct mvpp2_port *port)
4005 {
4006 u32 val;
4007 int lrxq, queue;
4008
4009 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4010 queue = port->rxqs[lrxq]->id;
4011 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4012 val |= MVPP2_RXQ_DISABLE_MASK;
4013 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4014 }
4015 }
4016
4017 /* Enable transmit via physical egress queue
4018 * - HW starts take descriptors from DRAM
4019 */
4020 static void mvpp2_egress_enable(struct mvpp2_port *port)
4021 {
4022 u32 qmap;
4023 int queue;
4024 int tx_port_num = mvpp2_egress_port(port);
4025
4026 /* Enable all initialized TXs. */
4027 qmap = 0;
4028 for (queue = 0; queue < txq_number; queue++) {
4029 struct mvpp2_tx_queue *txq = port->txqs[queue];
4030
4031 if (txq->descs != NULL)
4032 qmap |= (1 << queue);
4033 }
4034
4035 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4036 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4037 }
4038
4039 /* Disable transmit via physical egress queue
4040 * - HW doesn't take descriptors from DRAM
4041 */
4042 static void mvpp2_egress_disable(struct mvpp2_port *port)
4043 {
4044 u32 reg_data;
4045 int delay;
4046 int tx_port_num = mvpp2_egress_port(port);
4047
4048 /* Issue stop command for active channels only */
4049 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4050 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4051 MVPP2_TXP_SCHED_ENQ_MASK;
4052 if (reg_data != 0)
4053 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4054 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4055
4056 /* Wait for all Tx activity to terminate. */
4057 delay = 0;
4058 do {
4059 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4060 netdev_warn(port->dev,
4061 "Tx stop timed out, status=0x%08x\n",
4062 reg_data);
4063 break;
4064 }
4065 mdelay(1);
4066 delay++;
4067
4068 /* Check port TX Command register that all
4069 * Tx queues are stopped
4070 */
4071 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4072 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4073 }
4074
4075 /* Rx descriptors helper methods */
4076
4077 /* Get number of Rx descriptors occupied by received packets */
4078 static inline int
4079 mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4080 {
4081 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4082
4083 return val & MVPP2_RXQ_OCCUPIED_MASK;
4084 }
4085
4086 /* Update Rx queue status with the number of occupied and available
4087 * Rx descriptor slots.
4088 */
4089 static inline void
4090 mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4091 int used_count, int free_count)
4092 {
4093 /* Decrement the number of used descriptors and increment count
4094 * increment the number of free descriptors.
4095 */
4096 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4097
4098 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4099 }
4100
4101 /* Get pointer to next RX descriptor to be processed by SW */
4102 static inline struct mvpp2_rx_desc *
4103 mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4104 {
4105 int rx_desc = rxq->next_desc_to_proc;
4106
4107 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4108 prefetch(rxq->descs + rxq->next_desc_to_proc);
4109 return rxq->descs + rx_desc;
4110 }
4111
4112 /* Set rx queue offset */
4113 static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4114 int prxq, int offset)
4115 {
4116 u32 val;
4117
4118 /* Convert offset from bytes to units of 32 bytes */
4119 offset = offset >> 5;
4120
4121 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4122 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4123
4124 /* Offset is in */
4125 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4126 MVPP2_RXQ_PACKET_OFFSET_MASK);
4127
4128 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4129 }
4130
4131 /* Obtain BM cookie information from descriptor */
4132 static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4133 {
4134 int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4135 MVPP2_RXD_BM_POOL_ID_OFFS;
4136 int cpu = smp_processor_id();
4137
4138 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4139 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4140 }
4141
4142 /* Tx descriptors helper methods */
4143
4144 /* Get number of Tx descriptors waiting to be transmitted by HW */
4145 static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4146 struct mvpp2_tx_queue *txq)
4147 {
4148 u32 val;
4149
4150 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4151 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4152
4153 return val & MVPP2_TXQ_PENDING_MASK;
4154 }
4155
4156 /* Get pointer to next Tx descriptor to be processed (send) by HW */
4157 static struct mvpp2_tx_desc *
4158 mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4159 {
4160 int tx_desc = txq->next_desc_to_proc;
4161
4162 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4163 return txq->descs + tx_desc;
4164 }
4165
4166 /* Update HW with number of aggregated Tx descriptors to be sent */
4167 static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4168 {
4169 /* aggregated access - relevant TXQ number is written in TX desc */
4170 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4171 }
4172
4173
4174 /* Check if there are enough free descriptors in aggregated txq.
4175 * If not, update the number of occupied descriptors and repeat the check.
4176 */
4177 static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4178 struct mvpp2_tx_queue *aggr_txq, int num)
4179 {
4180 if ((aggr_txq->count + num) > aggr_txq->size) {
4181 /* Update number of occupied aggregated Tx descriptors */
4182 int cpu = smp_processor_id();
4183 u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4184
4185 aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4186 }
4187
4188 if ((aggr_txq->count + num) > aggr_txq->size)
4189 return -ENOMEM;
4190
4191 return 0;
4192 }
4193
4194 /* Reserved Tx descriptors allocation request */
4195 static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4196 struct mvpp2_tx_queue *txq, int num)
4197 {
4198 u32 val;
4199
4200 val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4201 mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4202
4203 val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4204
4205 return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4206 }
4207
4208 /* Check if there are enough reserved descriptors for transmission.
4209 * If not, request chunk of reserved descriptors and check again.
4210 */
4211 static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4212 struct mvpp2_tx_queue *txq,
4213 struct mvpp2_txq_pcpu *txq_pcpu,
4214 int num)
4215 {
4216 int req, cpu, desc_count;
4217
4218 if (txq_pcpu->reserved_num >= num)
4219 return 0;
4220
4221 /* Not enough descriptors reserved! Update the reserved descriptor
4222 * count and check again.
4223 */
4224
4225 desc_count = 0;
4226 /* Compute total of used descriptors */
4227 for_each_present_cpu(cpu) {
4228 struct mvpp2_txq_pcpu *txq_pcpu_aux;
4229
4230 txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4231 desc_count += txq_pcpu_aux->count;
4232 desc_count += txq_pcpu_aux->reserved_num;
4233 }
4234
4235 req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4236 desc_count += req;
4237
4238 if (desc_count >
4239 (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4240 return -ENOMEM;
4241
4242 txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4243
4244 /* OK, the descriptor cound has been updated: check again. */
4245 if (txq_pcpu->reserved_num < num)
4246 return -ENOMEM;
4247 return 0;
4248 }
4249
4250 /* Release the last allocated Tx descriptor. Useful to handle DMA
4251 * mapping failures in the Tx path.
4252 */
4253 static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4254 {
4255 if (txq->next_desc_to_proc == 0)
4256 txq->next_desc_to_proc = txq->last_desc - 1;
4257 else
4258 txq->next_desc_to_proc--;
4259 }
4260
4261 /* Set Tx descriptors fields relevant for CSUM calculation */
4262 static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4263 int ip_hdr_len, int l4_proto)
4264 {
4265 u32 command;
4266
4267 /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4268 * G_L4_chk, L4_type required only for checksum calculation
4269 */
4270 command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4271 command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4272 command |= MVPP2_TXD_IP_CSUM_DISABLE;
4273
4274 if (l3_proto == swab16(ETH_P_IP)) {
4275 command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
4276 command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
4277 } else {
4278 command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
4279 }
4280
4281 if (l4_proto == IPPROTO_TCP) {
4282 command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
4283 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4284 } else if (l4_proto == IPPROTO_UDP) {
4285 command |= MVPP2_TXD_L4_UDP; /* enable UDP */
4286 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4287 } else {
4288 command |= MVPP2_TXD_L4_CSUM_NOT;
4289 }
4290
4291 return command;
4292 }
4293
4294 /* Get number of sent descriptors and decrement counter.
4295 * The number of sent descriptors is returned.
4296 * Per-CPU access
4297 */
4298 static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4299 struct mvpp2_tx_queue *txq)
4300 {
4301 u32 val;
4302
4303 /* Reading status reg resets transmitted descriptor counter */
4304 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4305
4306 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4307 MVPP2_TRANSMITTED_COUNT_OFFSET;
4308 }
4309
4310 static void mvpp2_txq_sent_counter_clear(void *arg)
4311 {
4312 struct mvpp2_port *port = arg;
4313 int queue;
4314
4315 for (queue = 0; queue < txq_number; queue++) {
4316 int id = port->txqs[queue]->id;
4317
4318 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4319 }
4320 }
4321
4322 /* Set max sizes for Tx queues */
4323 static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4324 {
4325 u32 val, size, mtu;
4326 int txq, tx_port_num;
4327
4328 mtu = port->pkt_size * 8;
4329 if (mtu > MVPP2_TXP_MTU_MAX)
4330 mtu = MVPP2_TXP_MTU_MAX;
4331
4332 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4333 mtu = 3 * mtu;
4334
4335 /* Indirect access to registers */
4336 tx_port_num = mvpp2_egress_port(port);
4337 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4338
4339 /* Set MTU */
4340 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4341 val &= ~MVPP2_TXP_MTU_MAX;
4342 val |= mtu;
4343 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4344
4345 /* TXP token size and all TXQs token size must be larger that MTU */
4346 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4347 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4348 if (size < mtu) {
4349 size = mtu;
4350 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4351 val |= size;
4352 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4353 }
4354
4355 for (txq = 0; txq < txq_number; txq++) {
4356 val = mvpp2_read(port->priv,
4357 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4358 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4359
4360 if (size < mtu) {
4361 size = mtu;
4362 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4363 val |= size;
4364 mvpp2_write(port->priv,
4365 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4366 val);
4367 }
4368 }
4369 }
4370
4371 /* Set the number of packets that will be received before Rx interrupt
4372 * will be generated by HW.
4373 */
4374 static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4375 struct mvpp2_rx_queue *rxq, u32 pkts)
4376 {
4377 u32 val;
4378
4379 val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4380 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4381 mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4382
4383 rxq->pkts_coal = pkts;
4384 }
4385
4386 /* Set the time delay in usec before Rx interrupt */
4387 static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4388 struct mvpp2_rx_queue *rxq, u32 usec)
4389 {
4390 u32 val;
4391
4392 val = (port->priv->tclk / USEC_PER_SEC) * usec;
4393 mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4394
4395 rxq->time_coal = usec;
4396 }
4397
4398 /* Free Tx queue skbuffs */
4399 static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4400 struct mvpp2_tx_queue *txq,
4401 struct mvpp2_txq_pcpu *txq_pcpu, int num)
4402 {
4403 int i;
4404
4405 for (i = 0; i < num; i++) {
4406 dma_addr_t buf_phys_addr =
4407 txq_pcpu->tx_buffs[txq_pcpu->txq_get_index];
4408 struct sk_buff *skb = txq_pcpu->tx_skb[txq_pcpu->txq_get_index];
4409
4410 mvpp2_txq_inc_get(txq_pcpu);
4411
4412 dma_unmap_single(port->dev->dev.parent, buf_phys_addr,
4413 skb_headlen(skb), DMA_TO_DEVICE);
4414 if (!skb)
4415 continue;
4416 dev_kfree_skb_any(skb);
4417 }
4418 }
4419
4420 static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4421 u32 cause)
4422 {
4423 int queue = fls(cause) - 1;
4424
4425 return port->rxqs[queue];
4426 }
4427
4428 static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4429 u32 cause)
4430 {
4431 int queue = fls(cause) - 1;
4432
4433 return port->txqs[queue];
4434 }
4435
4436 /* Handle end of transmission */
4437 static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4438 struct mvpp2_txq_pcpu *txq_pcpu)
4439 {
4440 struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4441 int tx_done;
4442
4443 if (txq_pcpu->cpu != smp_processor_id())
4444 netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4445
4446 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4447 if (!tx_done)
4448 return;
4449 mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4450
4451 txq_pcpu->count -= tx_done;
4452
4453 if (netif_tx_queue_stopped(nq))
4454 if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4455 netif_tx_wake_queue(nq);
4456 }
4457
4458 static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
4459 {
4460 struct mvpp2_tx_queue *txq;
4461 struct mvpp2_txq_pcpu *txq_pcpu;
4462 unsigned int tx_todo = 0;
4463
4464 while (cause) {
4465 txq = mvpp2_get_tx_queue(port, cause);
4466 if (!txq)
4467 break;
4468
4469 txq_pcpu = this_cpu_ptr(txq->pcpu);
4470
4471 if (txq_pcpu->count) {
4472 mvpp2_txq_done(port, txq, txq_pcpu);
4473 tx_todo += txq_pcpu->count;
4474 }
4475
4476 cause &= ~(1 << txq->log_id);
4477 }
4478 return tx_todo;
4479 }
4480
4481 /* Rx/Tx queue initialization/cleanup methods */
4482
4483 /* Allocate and initialize descriptors for aggr TXQ */
4484 static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4485 struct mvpp2_tx_queue *aggr_txq,
4486 int desc_num, int cpu,
4487 struct mvpp2 *priv)
4488 {
4489 /* Allocate memory for TX descriptors */
4490 aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4491 desc_num * MVPP2_DESC_ALIGNED_SIZE,
4492 &aggr_txq->descs_phys, GFP_KERNEL);
4493 if (!aggr_txq->descs)
4494 return -ENOMEM;
4495
4496 /* Make sure descriptor address is cache line size aligned */
4497 BUG_ON(aggr_txq->descs !=
4498 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4499
4500 aggr_txq->last_desc = aggr_txq->size - 1;
4501
4502 /* Aggr TXQ no reset WA */
4503 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4504 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4505
4506 /* Set Tx descriptors queue starting address */
4507 /* indirect access */
4508 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4509 aggr_txq->descs_phys);
4510 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4511
4512 return 0;
4513 }
4514
4515 /* Create a specified Rx queue */
4516 static int mvpp2_rxq_init(struct mvpp2_port *port,
4517 struct mvpp2_rx_queue *rxq)
4518
4519 {
4520 rxq->size = port->rx_ring_size;
4521
4522 /* Allocate memory for RX descriptors */
4523 rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4524 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4525 &rxq->descs_phys, GFP_KERNEL);
4526 if (!rxq->descs)
4527 return -ENOMEM;
4528
4529 BUG_ON(rxq->descs !=
4530 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4531
4532 rxq->last_desc = rxq->size - 1;
4533
4534 /* Zero occupied and non-occupied counters - direct access */
4535 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4536
4537 /* Set Rx descriptors queue starting address - indirect access */
4538 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4539 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4540 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4541 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4542
4543 /* Set Offset */
4544 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4545
4546 /* Set coalescing pkts and time */
4547 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4548 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4549
4550 /* Add number of descriptors ready for receiving packets */
4551 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4552
4553 return 0;
4554 }
4555
4556 /* Push packets received by the RXQ to BM pool */
4557 static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4558 struct mvpp2_rx_queue *rxq)
4559 {
4560 int rx_received, i;
4561
4562 rx_received = mvpp2_rxq_received(port, rxq->id);
4563 if (!rx_received)
4564 return;
4565
4566 for (i = 0; i < rx_received; i++) {
4567 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4568 u32 bm = mvpp2_bm_cookie_build(rx_desc);
4569
4570 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4571 rx_desc->buf_cookie);
4572 }
4573 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4574 }
4575
4576 /* Cleanup Rx queue */
4577 static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4578 struct mvpp2_rx_queue *rxq)
4579 {
4580 mvpp2_rxq_drop_pkts(port, rxq);
4581
4582 if (rxq->descs)
4583 dma_free_coherent(port->dev->dev.parent,
4584 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4585 rxq->descs,
4586 rxq->descs_phys);
4587
4588 rxq->descs = NULL;
4589 rxq->last_desc = 0;
4590 rxq->next_desc_to_proc = 0;
4591 rxq->descs_phys = 0;
4592
4593 /* Clear Rx descriptors queue starting address and size;
4594 * free descriptor number
4595 */
4596 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4597 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4598 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4599 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4600 }
4601
4602 /* Create and initialize a Tx queue */
4603 static int mvpp2_txq_init(struct mvpp2_port *port,
4604 struct mvpp2_tx_queue *txq)
4605 {
4606 u32 val;
4607 int cpu, desc, desc_per_txq, tx_port_num;
4608 struct mvpp2_txq_pcpu *txq_pcpu;
4609
4610 txq->size = port->tx_ring_size;
4611
4612 /* Allocate memory for Tx descriptors */
4613 txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4614 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4615 &txq->descs_phys, GFP_KERNEL);
4616 if (!txq->descs)
4617 return -ENOMEM;
4618
4619 /* Make sure descriptor address is cache line size aligned */
4620 BUG_ON(txq->descs !=
4621 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4622
4623 txq->last_desc = txq->size - 1;
4624
4625 /* Set Tx descriptors queue starting address - indirect access */
4626 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4627 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4628 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4629 MVPP2_TXQ_DESC_SIZE_MASK);
4630 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4631 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4632 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4633 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4634 val &= ~MVPP2_TXQ_PENDING_MASK;
4635 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4636
4637 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
4638 * for each existing TXQ.
4639 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4640 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4641 */
4642 desc_per_txq = 16;
4643 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4644 (txq->log_id * desc_per_txq);
4645
4646 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4647 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4648 MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4649
4650 /* WRR / EJP configuration - indirect access */
4651 tx_port_num = mvpp2_egress_port(port);
4652 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4653
4654 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4655 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4656 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4657 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4658 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4659
4660 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4661 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4662 val);
4663
4664 for_each_present_cpu(cpu) {
4665 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4666 txq_pcpu->size = txq->size;
4667 txq_pcpu->tx_skb = kmalloc(txq_pcpu->size *
4668 sizeof(*txq_pcpu->tx_skb),
4669 GFP_KERNEL);
4670 if (!txq_pcpu->tx_skb)
4671 goto error;
4672
4673 txq_pcpu->tx_buffs = kmalloc(txq_pcpu->size *
4674 sizeof(dma_addr_t), GFP_KERNEL);
4675 if (!txq_pcpu->tx_buffs)
4676 goto error;
4677
4678 txq_pcpu->count = 0;
4679 txq_pcpu->reserved_num = 0;
4680 txq_pcpu->txq_put_index = 0;
4681 txq_pcpu->txq_get_index = 0;
4682 }
4683
4684 return 0;
4685
4686 error:
4687 for_each_present_cpu(cpu) {
4688 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4689 kfree(txq_pcpu->tx_skb);
4690 kfree(txq_pcpu->tx_buffs);
4691 }
4692
4693 dma_free_coherent(port->dev->dev.parent,
4694 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4695 txq->descs, txq->descs_phys);
4696
4697 return -ENOMEM;
4698 }
4699
4700 /* Free allocated TXQ resources */
4701 static void mvpp2_txq_deinit(struct mvpp2_port *port,
4702 struct mvpp2_tx_queue *txq)
4703 {
4704 struct mvpp2_txq_pcpu *txq_pcpu;
4705 int cpu;
4706
4707 for_each_present_cpu(cpu) {
4708 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4709 kfree(txq_pcpu->tx_skb);
4710 kfree(txq_pcpu->tx_buffs);
4711 }
4712
4713 if (txq->descs)
4714 dma_free_coherent(port->dev->dev.parent,
4715 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4716 txq->descs, txq->descs_phys);
4717
4718 txq->descs = NULL;
4719 txq->last_desc = 0;
4720 txq->next_desc_to_proc = 0;
4721 txq->descs_phys = 0;
4722
4723 /* Set minimum bandwidth for disabled TXQs */
4724 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4725
4726 /* Set Tx descriptors queue starting address and size */
4727 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4728 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4729 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4730 }
4731
4732 /* Cleanup Tx ports */
4733 static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4734 {
4735 struct mvpp2_txq_pcpu *txq_pcpu;
4736 int delay, pending, cpu;
4737 u32 val;
4738
4739 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4740 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4741 val |= MVPP2_TXQ_DRAIN_EN_MASK;
4742 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4743
4744 /* The napi queue has been stopped so wait for all packets
4745 * to be transmitted.
4746 */
4747 delay = 0;
4748 do {
4749 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4750 netdev_warn(port->dev,
4751 "port %d: cleaning queue %d timed out\n",
4752 port->id, txq->log_id);
4753 break;
4754 }
4755 mdelay(1);
4756 delay++;
4757
4758 pending = mvpp2_txq_pend_desc_num_get(port, txq);
4759 } while (pending);
4760
4761 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4762 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4763
4764 for_each_present_cpu(cpu) {
4765 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4766
4767 /* Release all packets */
4768 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4769
4770 /* Reset queue */
4771 txq_pcpu->count = 0;
4772 txq_pcpu->txq_put_index = 0;
4773 txq_pcpu->txq_get_index = 0;
4774 }
4775 }
4776
4777 /* Cleanup all Tx queues */
4778 static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4779 {
4780 struct mvpp2_tx_queue *txq;
4781 int queue;
4782 u32 val;
4783
4784 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4785
4786 /* Reset Tx ports and delete Tx queues */
4787 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4788 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4789
4790 for (queue = 0; queue < txq_number; queue++) {
4791 txq = port->txqs[queue];
4792 mvpp2_txq_clean(port, txq);
4793 mvpp2_txq_deinit(port, txq);
4794 }
4795
4796 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4797
4798 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4799 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4800 }
4801
4802 /* Cleanup all Rx queues */
4803 static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4804 {
4805 int queue;
4806
4807 for (queue = 0; queue < rxq_number; queue++)
4808 mvpp2_rxq_deinit(port, port->rxqs[queue]);
4809 }
4810
4811 /* Init all Rx queues for port */
4812 static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4813 {
4814 int queue, err;
4815
4816 for (queue = 0; queue < rxq_number; queue++) {
4817 err = mvpp2_rxq_init(port, port->rxqs[queue]);
4818 if (err)
4819 goto err_cleanup;
4820 }
4821 return 0;
4822
4823 err_cleanup:
4824 mvpp2_cleanup_rxqs(port);
4825 return err;
4826 }
4827
4828 /* Init all tx queues for port */
4829 static int mvpp2_setup_txqs(struct mvpp2_port *port)
4830 {
4831 struct mvpp2_tx_queue *txq;
4832 int queue, err;
4833
4834 for (queue = 0; queue < txq_number; queue++) {
4835 txq = port->txqs[queue];
4836 err = mvpp2_txq_init(port, txq);
4837 if (err)
4838 goto err_cleanup;
4839 }
4840
4841 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4842 return 0;
4843
4844 err_cleanup:
4845 mvpp2_cleanup_txqs(port);
4846 return err;
4847 }
4848
4849 /* The callback for per-port interrupt */
4850 static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4851 {
4852 struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4853
4854 mvpp2_interrupts_disable(port);
4855
4856 napi_schedule(&port->napi);
4857
4858 return IRQ_HANDLED;
4859 }
4860
4861 /* Adjust link */
4862 static void mvpp2_link_event(struct net_device *dev)
4863 {
4864 struct mvpp2_port *port = netdev_priv(dev);
4865 struct phy_device *phydev = port->phy_dev;
4866 int status_change = 0;
4867 u32 val;
4868
4869 if (phydev->link) {
4870 if ((port->speed != phydev->speed) ||
4871 (port->duplex != phydev->duplex)) {
4872 u32 val;
4873
4874 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4875 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4876 MVPP2_GMAC_CONFIG_GMII_SPEED |
4877 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4878 MVPP2_GMAC_AN_SPEED_EN |
4879 MVPP2_GMAC_AN_DUPLEX_EN);
4880
4881 if (phydev->duplex)
4882 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4883
4884 if (phydev->speed == SPEED_1000)
4885 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4886 else if (phydev->speed == SPEED_100)
4887 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4888
4889 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4890
4891 port->duplex = phydev->duplex;
4892 port->speed = phydev->speed;
4893 }
4894 }
4895
4896 if (phydev->link != port->link) {
4897 if (!phydev->link) {
4898 port->duplex = -1;
4899 port->speed = 0;
4900 }
4901
4902 port->link = phydev->link;
4903 status_change = 1;
4904 }
4905
4906 if (status_change) {
4907 if (phydev->link) {
4908 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4909 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4910 MVPP2_GMAC_FORCE_LINK_DOWN);
4911 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4912 mvpp2_egress_enable(port);
4913 mvpp2_ingress_enable(port);
4914 } else {
4915 mvpp2_ingress_disable(port);
4916 mvpp2_egress_disable(port);
4917 }
4918 phy_print_status(phydev);
4919 }
4920 }
4921
4922 static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
4923 {
4924 ktime_t interval;
4925
4926 if (!port_pcpu->timer_scheduled) {
4927 port_pcpu->timer_scheduled = true;
4928 interval = ktime_set(0, MVPP2_TXDONE_HRTIMER_PERIOD_NS);
4929 hrtimer_start(&port_pcpu->tx_done_timer, interval,
4930 HRTIMER_MODE_REL_PINNED);
4931 }
4932 }
4933
4934 static void mvpp2_tx_proc_cb(unsigned long data)
4935 {
4936 struct net_device *dev = (struct net_device *)data;
4937 struct mvpp2_port *port = netdev_priv(dev);
4938 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
4939 unsigned int tx_todo, cause;
4940
4941 if (!netif_running(dev))
4942 return;
4943 port_pcpu->timer_scheduled = false;
4944
4945 /* Process all the Tx queues */
4946 cause = (1 << txq_number) - 1;
4947 tx_todo = mvpp2_tx_done(port, cause);
4948
4949 /* Set the timer in case not all the packets were processed */
4950 if (tx_todo)
4951 mvpp2_timer_set(port_pcpu);
4952 }
4953
4954 static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
4955 {
4956 struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
4957 struct mvpp2_port_pcpu,
4958 tx_done_timer);
4959
4960 tasklet_schedule(&port_pcpu->tx_done_tasklet);
4961
4962 return HRTIMER_NORESTART;
4963 }
4964
4965 /* Main RX/TX processing routines */
4966
4967 /* Display more error info */
4968 static void mvpp2_rx_error(struct mvpp2_port *port,
4969 struct mvpp2_rx_desc *rx_desc)
4970 {
4971 u32 status = rx_desc->status;
4972
4973 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4974 case MVPP2_RXD_ERR_CRC:
4975 netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4976 status, rx_desc->data_size);
4977 break;
4978 case MVPP2_RXD_ERR_OVERRUN:
4979 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4980 status, rx_desc->data_size);
4981 break;
4982 case MVPP2_RXD_ERR_RESOURCE:
4983 netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4984 status, rx_desc->data_size);
4985 break;
4986 }
4987 }
4988
4989 /* Handle RX checksum offload */
4990 static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4991 struct sk_buff *skb)
4992 {
4993 if (((status & MVPP2_RXD_L3_IP4) &&
4994 !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4995 (status & MVPP2_RXD_L3_IP6))
4996 if (((status & MVPP2_RXD_L4_UDP) ||
4997 (status & MVPP2_RXD_L4_TCP)) &&
4998 (status & MVPP2_RXD_L4_CSUM_OK)) {
4999 skb->csum = 0;
5000 skb->ip_summed = CHECKSUM_UNNECESSARY;
5001 return;
5002 }
5003
5004 skb->ip_summed = CHECKSUM_NONE;
5005 }
5006
5007 /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
5008 static int mvpp2_rx_refill(struct mvpp2_port *port,
5009 struct mvpp2_bm_pool *bm_pool,
5010 u32 bm, int is_recycle)
5011 {
5012 struct sk_buff *skb;
5013 dma_addr_t phys_addr;
5014
5015 if (is_recycle &&
5016 (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
5017 return 0;
5018
5019 /* No recycle or too many buffers are in use, so allocate a new skb */
5020 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
5021 if (!skb)
5022 return -ENOMEM;
5023
5024 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
5025 atomic_dec(&bm_pool->in_use);
5026 return 0;
5027 }
5028
5029 /* Handle tx checksum */
5030 static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
5031 {
5032 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5033 int ip_hdr_len = 0;
5034 u8 l4_proto;
5035
5036 if (skb->protocol == htons(ETH_P_IP)) {
5037 struct iphdr *ip4h = ip_hdr(skb);
5038
5039 /* Calculate IPv4 checksum and L4 checksum */
5040 ip_hdr_len = ip4h->ihl;
5041 l4_proto = ip4h->protocol;
5042 } else if (skb->protocol == htons(ETH_P_IPV6)) {
5043 struct ipv6hdr *ip6h = ipv6_hdr(skb);
5044
5045 /* Read l4_protocol from one of IPv6 extra headers */
5046 if (skb_network_header_len(skb) > 0)
5047 ip_hdr_len = (skb_network_header_len(skb) >> 2);
5048 l4_proto = ip6h->nexthdr;
5049 } else {
5050 return MVPP2_TXD_L4_CSUM_NOT;
5051 }
5052
5053 return mvpp2_txq_desc_csum(skb_network_offset(skb),
5054 skb->protocol, ip_hdr_len, l4_proto);
5055 }
5056
5057 return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
5058 }
5059
5060 static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
5061 struct mvpp2_rx_desc *rx_desc)
5062 {
5063 struct mvpp2_buff_hdr *buff_hdr;
5064 struct sk_buff *skb;
5065 u32 rx_status = rx_desc->status;
5066 u32 buff_phys_addr;
5067 u32 buff_virt_addr;
5068 u32 buff_phys_addr_next;
5069 u32 buff_virt_addr_next;
5070 int mc_id;
5071 int pool_id;
5072
5073 pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
5074 MVPP2_RXD_BM_POOL_ID_OFFS;
5075 buff_phys_addr = rx_desc->buf_phys_addr;
5076 buff_virt_addr = rx_desc->buf_cookie;
5077
5078 do {
5079 skb = (struct sk_buff *)buff_virt_addr;
5080 buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
5081
5082 mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
5083
5084 buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
5085 buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
5086
5087 /* Release buffer */
5088 mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
5089 buff_virt_addr, mc_id);
5090
5091 buff_phys_addr = buff_phys_addr_next;
5092 buff_virt_addr = buff_virt_addr_next;
5093
5094 } while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5095 }
5096
5097 /* Main rx processing */
5098 static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5099 struct mvpp2_rx_queue *rxq)
5100 {
5101 struct net_device *dev = port->dev;
5102 int rx_received;
5103 int rx_done = 0;
5104 u32 rcvd_pkts = 0;
5105 u32 rcvd_bytes = 0;
5106
5107 /* Get number of received packets and clamp the to-do */
5108 rx_received = mvpp2_rxq_received(port, rxq->id);
5109 if (rx_todo > rx_received)
5110 rx_todo = rx_received;
5111
5112 while (rx_done < rx_todo) {
5113 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5114 struct mvpp2_bm_pool *bm_pool;
5115 struct sk_buff *skb;
5116 dma_addr_t phys_addr;
5117 u32 bm, rx_status;
5118 int pool, rx_bytes, err;
5119
5120 rx_done++;
5121 rx_status = rx_desc->status;
5122 rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5123 phys_addr = rx_desc->buf_phys_addr;
5124
5125 bm = mvpp2_bm_cookie_build(rx_desc);
5126 pool = mvpp2_bm_cookie_pool_get(bm);
5127 bm_pool = &port->priv->bm_pools[pool];
5128 /* Check if buffer header is used */
5129 if (rx_status & MVPP2_RXD_BUF_HDR) {
5130 mvpp2_buff_hdr_rx(port, rx_desc);
5131 continue;
5132 }
5133
5134 /* In case of an error, release the requested buffer pointer
5135 * to the Buffer Manager. This request process is controlled
5136 * by the hardware, and the information about the buffer is
5137 * comprised by the RX descriptor.
5138 */
5139 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5140 err_drop_frame:
5141 dev->stats.rx_errors++;
5142 mvpp2_rx_error(port, rx_desc);
5143 /* Return the buffer to the pool */
5144 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5145 rx_desc->buf_cookie);
5146 continue;
5147 }
5148
5149 skb = (struct sk_buff *)rx_desc->buf_cookie;
5150
5151 err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5152 if (err) {
5153 netdev_err(port->dev, "failed to refill BM pools\n");
5154 goto err_drop_frame;
5155 }
5156
5157 dma_unmap_single(dev->dev.parent, phys_addr,
5158 bm_pool->buf_size, DMA_FROM_DEVICE);
5159
5160 rcvd_pkts++;
5161 rcvd_bytes += rx_bytes;
5162 atomic_inc(&bm_pool->in_use);
5163
5164 skb_reserve(skb, MVPP2_MH_SIZE);
5165 skb_put(skb, rx_bytes);
5166 skb->protocol = eth_type_trans(skb, dev);
5167 mvpp2_rx_csum(port, rx_status, skb);
5168
5169 napi_gro_receive(&port->napi, skb);
5170 }
5171
5172 if (rcvd_pkts) {
5173 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5174
5175 u64_stats_update_begin(&stats->syncp);
5176 stats->rx_packets += rcvd_pkts;
5177 stats->rx_bytes += rcvd_bytes;
5178 u64_stats_update_end(&stats->syncp);
5179 }
5180
5181 /* Update Rx queue management counters */
5182 wmb();
5183 mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
5184
5185 return rx_todo;
5186 }
5187
5188 static inline void
5189 tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5190 struct mvpp2_tx_desc *desc)
5191 {
5192 dma_unmap_single(dev, desc->buf_phys_addr,
5193 desc->data_size, DMA_TO_DEVICE);
5194 mvpp2_txq_desc_put(txq);
5195 }
5196
5197 /* Handle tx fragmentation processing */
5198 static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5199 struct mvpp2_tx_queue *aggr_txq,
5200 struct mvpp2_tx_queue *txq)
5201 {
5202 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5203 struct mvpp2_tx_desc *tx_desc;
5204 int i;
5205 dma_addr_t buf_phys_addr;
5206
5207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5208 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5209 void *addr = page_address(frag->page.p) + frag->page_offset;
5210
5211 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5212 tx_desc->phys_txq = txq->id;
5213 tx_desc->data_size = frag->size;
5214
5215 buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5216 tx_desc->data_size,
5217 DMA_TO_DEVICE);
5218 if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5219 mvpp2_txq_desc_put(txq);
5220 goto error;
5221 }
5222
5223 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5224 tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5225
5226 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5227 /* Last descriptor */
5228 tx_desc->command = MVPP2_TXD_L_DESC;
5229 mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5230 } else {
5231 /* Descriptor in the middle: Not First, Not Last */
5232 tx_desc->command = 0;
5233 mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5234 }
5235 }
5236
5237 return 0;
5238
5239 error:
5240 /* Release all descriptors that were used to map fragments of
5241 * this packet, as well as the corresponding DMA mappings
5242 */
5243 for (i = i - 1; i >= 0; i--) {
5244 tx_desc = txq->descs + i;
5245 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5246 }
5247
5248 return -ENOMEM;
5249 }
5250
5251 /* Main tx processing */
5252 static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5253 {
5254 struct mvpp2_port *port = netdev_priv(dev);
5255 struct mvpp2_tx_queue *txq, *aggr_txq;
5256 struct mvpp2_txq_pcpu *txq_pcpu;
5257 struct mvpp2_tx_desc *tx_desc;
5258 dma_addr_t buf_phys_addr;
5259 int frags = 0;
5260 u16 txq_id;
5261 u32 tx_cmd;
5262
5263 txq_id = skb_get_queue_mapping(skb);
5264 txq = port->txqs[txq_id];
5265 txq_pcpu = this_cpu_ptr(txq->pcpu);
5266 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5267
5268 frags = skb_shinfo(skb)->nr_frags + 1;
5269
5270 /* Check number of available descriptors */
5271 if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5272 mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5273 txq_pcpu, frags)) {
5274 frags = 0;
5275 goto out;
5276 }
5277
5278 /* Get a descriptor for the first part of the packet */
5279 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5280 tx_desc->phys_txq = txq->id;
5281 tx_desc->data_size = skb_headlen(skb);
5282
5283 buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5284 tx_desc->data_size, DMA_TO_DEVICE);
5285 if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5286 mvpp2_txq_desc_put(txq);
5287 frags = 0;
5288 goto out;
5289 }
5290 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5291 tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5292
5293 tx_cmd = mvpp2_skb_tx_csum(port, skb);
5294
5295 if (frags == 1) {
5296 /* First and Last descriptor */
5297 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5298 tx_desc->command = tx_cmd;
5299 mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5300 } else {
5301 /* First but not Last */
5302 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5303 tx_desc->command = tx_cmd;
5304 mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5305
5306 /* Continue with other skb fragments */
5307 if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5308 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5309 frags = 0;
5310 goto out;
5311 }
5312 }
5313
5314 txq_pcpu->reserved_num -= frags;
5315 txq_pcpu->count += frags;
5316 aggr_txq->count += frags;
5317
5318 /* Enable transmit */
5319 wmb();
5320 mvpp2_aggr_txq_pend_desc_add(port, frags);
5321
5322 if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5323 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5324
5325 netif_tx_stop_queue(nq);
5326 }
5327 out:
5328 if (frags > 0) {
5329 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5330
5331 u64_stats_update_begin(&stats->syncp);
5332 stats->tx_packets++;
5333 stats->tx_bytes += skb->len;
5334 u64_stats_update_end(&stats->syncp);
5335 } else {
5336 dev->stats.tx_dropped++;
5337 dev_kfree_skb_any(skb);
5338 }
5339
5340 /* Finalize TX processing */
5341 if (txq_pcpu->count >= txq->done_pkts_coal)
5342 mvpp2_txq_done(port, txq, txq_pcpu);
5343
5344 /* Set the timer in case not all frags were processed */
5345 if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
5346 struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
5347
5348 mvpp2_timer_set(port_pcpu);
5349 }
5350
5351 return NETDEV_TX_OK;
5352 }
5353
5354 static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5355 {
5356 if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5357 netdev_err(dev, "FCS error\n");
5358 if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5359 netdev_err(dev, "rx fifo overrun error\n");
5360 if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5361 netdev_err(dev, "tx fifo underrun error\n");
5362 }
5363
5364 static int mvpp2_poll(struct napi_struct *napi, int budget)
5365 {
5366 u32 cause_rx_tx, cause_rx, cause_misc;
5367 int rx_done = 0;
5368 struct mvpp2_port *port = netdev_priv(napi->dev);
5369
5370 /* Rx/Tx cause register
5371 *
5372 * Bits 0-15: each bit indicates received packets on the Rx queue
5373 * (bit 0 is for Rx queue 0).
5374 *
5375 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5376 * (bit 16 is for Tx queue 0).
5377 *
5378 * Each CPU has its own Rx/Tx cause register
5379 */
5380 cause_rx_tx = mvpp2_read(port->priv,
5381 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5382 cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5383 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5384
5385 if (cause_misc) {
5386 mvpp2_cause_error(port->dev, cause_misc);
5387
5388 /* Clear the cause register */
5389 mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5390 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5391 cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5392 }
5393
5394 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5395
5396 /* Process RX packets */
5397 cause_rx |= port->pending_cause_rx;
5398 while (cause_rx && budget > 0) {
5399 int count;
5400 struct mvpp2_rx_queue *rxq;
5401
5402 rxq = mvpp2_get_rx_queue(port, cause_rx);
5403 if (!rxq)
5404 break;
5405
5406 count = mvpp2_rx(port, budget, rxq);
5407 rx_done += count;
5408 budget -= count;
5409 if (budget > 0) {
5410 /* Clear the bit associated to this Rx queue
5411 * so that next iteration will continue from
5412 * the next Rx queue.
5413 */
5414 cause_rx &= ~(1 << rxq->logic_rxq);
5415 }
5416 }
5417
5418 if (budget > 0) {
5419 cause_rx = 0;
5420 napi_complete(napi);
5421
5422 mvpp2_interrupts_enable(port);
5423 }
5424 port->pending_cause_rx = cause_rx;
5425 return rx_done;
5426 }
5427
5428 /* Set hw internals when starting port */
5429 static void mvpp2_start_dev(struct mvpp2_port *port)
5430 {
5431 mvpp2_gmac_max_rx_size_set(port);
5432 mvpp2_txp_max_tx_size_set(port);
5433
5434 napi_enable(&port->napi);
5435
5436 /* Enable interrupts on all CPUs */
5437 mvpp2_interrupts_enable(port);
5438
5439 mvpp2_port_enable(port);
5440 phy_start(port->phy_dev);
5441 netif_tx_start_all_queues(port->dev);
5442 }
5443
5444 /* Set hw internals when stopping port */
5445 static void mvpp2_stop_dev(struct mvpp2_port *port)
5446 {
5447 /* Stop new packets from arriving to RXQs */
5448 mvpp2_ingress_disable(port);
5449
5450 mdelay(10);
5451
5452 /* Disable interrupts on all CPUs */
5453 mvpp2_interrupts_disable(port);
5454
5455 napi_disable(&port->napi);
5456
5457 netif_carrier_off(port->dev);
5458 netif_tx_stop_all_queues(port->dev);
5459
5460 mvpp2_egress_disable(port);
5461 mvpp2_port_disable(port);
5462 phy_stop(port->phy_dev);
5463 }
5464
5465 /* Return positive if MTU is valid */
5466 static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu)
5467 {
5468 if (mtu < 68) {
5469 netdev_err(dev, "cannot change mtu to less than 68\n");
5470 return -EINVAL;
5471 }
5472
5473 /* 9676 == 9700 - 20 and rounding to 8 */
5474 if (mtu > 9676) {
5475 netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu);
5476 mtu = 9676;
5477 }
5478
5479 if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5480 netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5481 ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5482 mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5483 }
5484
5485 return mtu;
5486 }
5487
5488 static int mvpp2_check_ringparam_valid(struct net_device *dev,
5489 struct ethtool_ringparam *ring)
5490 {
5491 u16 new_rx_pending = ring->rx_pending;
5492 u16 new_tx_pending = ring->tx_pending;
5493
5494 if (ring->rx_pending == 0 || ring->tx_pending == 0)
5495 return -EINVAL;
5496
5497 if (ring->rx_pending > MVPP2_MAX_RXD)
5498 new_rx_pending = MVPP2_MAX_RXD;
5499 else if (!IS_ALIGNED(ring->rx_pending, 16))
5500 new_rx_pending = ALIGN(ring->rx_pending, 16);
5501
5502 if (ring->tx_pending > MVPP2_MAX_TXD)
5503 new_tx_pending = MVPP2_MAX_TXD;
5504 else if (!IS_ALIGNED(ring->tx_pending, 32))
5505 new_tx_pending = ALIGN(ring->tx_pending, 32);
5506
5507 if (ring->rx_pending != new_rx_pending) {
5508 netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5509 ring->rx_pending, new_rx_pending);
5510 ring->rx_pending = new_rx_pending;
5511 }
5512
5513 if (ring->tx_pending != new_tx_pending) {
5514 netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5515 ring->tx_pending, new_tx_pending);
5516 ring->tx_pending = new_tx_pending;
5517 }
5518
5519 return 0;
5520 }
5521
5522 static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5523 {
5524 u32 mac_addr_l, mac_addr_m, mac_addr_h;
5525
5526 mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5527 mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5528 mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5529 addr[0] = (mac_addr_h >> 24) & 0xFF;
5530 addr[1] = (mac_addr_h >> 16) & 0xFF;
5531 addr[2] = (mac_addr_h >> 8) & 0xFF;
5532 addr[3] = mac_addr_h & 0xFF;
5533 addr[4] = mac_addr_m & 0xFF;
5534 addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5535 }
5536
5537 static int mvpp2_phy_connect(struct mvpp2_port *port)
5538 {
5539 struct phy_device *phy_dev;
5540
5541 phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5542 port->phy_interface);
5543 if (!phy_dev) {
5544 netdev_err(port->dev, "cannot connect to phy\n");
5545 return -ENODEV;
5546 }
5547 phy_dev->supported &= PHY_GBIT_FEATURES;
5548 phy_dev->advertising = phy_dev->supported;
5549
5550 port->phy_dev = phy_dev;
5551 port->link = 0;
5552 port->duplex = 0;
5553 port->speed = 0;
5554
5555 return 0;
5556 }
5557
5558 static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5559 {
5560 phy_disconnect(port->phy_dev);
5561 port->phy_dev = NULL;
5562 }
5563
5564 static int mvpp2_open(struct net_device *dev)
5565 {
5566 struct mvpp2_port *port = netdev_priv(dev);
5567 unsigned char mac_bcast[ETH_ALEN] = {
5568 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5569 int err;
5570
5571 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5572 if (err) {
5573 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5574 return err;
5575 }
5576 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5577 dev->dev_addr, true);
5578 if (err) {
5579 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5580 return err;
5581 }
5582 err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5583 if (err) {
5584 netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5585 return err;
5586 }
5587 err = mvpp2_prs_def_flow(port);
5588 if (err) {
5589 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5590 return err;
5591 }
5592
5593 /* Allocate the Rx/Tx queues */
5594 err = mvpp2_setup_rxqs(port);
5595 if (err) {
5596 netdev_err(port->dev, "cannot allocate Rx queues\n");
5597 return err;
5598 }
5599
5600 err = mvpp2_setup_txqs(port);
5601 if (err) {
5602 netdev_err(port->dev, "cannot allocate Tx queues\n");
5603 goto err_cleanup_rxqs;
5604 }
5605
5606 err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5607 if (err) {
5608 netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5609 goto err_cleanup_txqs;
5610 }
5611
5612 /* In default link is down */
5613 netif_carrier_off(port->dev);
5614
5615 err = mvpp2_phy_connect(port);
5616 if (err < 0)
5617 goto err_free_irq;
5618
5619 /* Unmask interrupts on all CPUs */
5620 on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5621
5622 mvpp2_start_dev(port);
5623
5624 return 0;
5625
5626 err_free_irq:
5627 free_irq(port->irq, port);
5628 err_cleanup_txqs:
5629 mvpp2_cleanup_txqs(port);
5630 err_cleanup_rxqs:
5631 mvpp2_cleanup_rxqs(port);
5632 return err;
5633 }
5634
5635 static int mvpp2_stop(struct net_device *dev)
5636 {
5637 struct mvpp2_port *port = netdev_priv(dev);
5638 struct mvpp2_port_pcpu *port_pcpu;
5639 int cpu;
5640
5641 mvpp2_stop_dev(port);
5642 mvpp2_phy_disconnect(port);
5643
5644 /* Mask interrupts on all CPUs */
5645 on_each_cpu(mvpp2_interrupts_mask, port, 1);
5646
5647 free_irq(port->irq, port);
5648 for_each_present_cpu(cpu) {
5649 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
5650
5651 hrtimer_cancel(&port_pcpu->tx_done_timer);
5652 port_pcpu->timer_scheduled = false;
5653 tasklet_kill(&port_pcpu->tx_done_tasklet);
5654 }
5655 mvpp2_cleanup_rxqs(port);
5656 mvpp2_cleanup_txqs(port);
5657
5658 return 0;
5659 }
5660
5661 static void mvpp2_set_rx_mode(struct net_device *dev)
5662 {
5663 struct mvpp2_port *port = netdev_priv(dev);
5664 struct mvpp2 *priv = port->priv;
5665 struct netdev_hw_addr *ha;
5666 int id = port->id;
5667 bool allmulti = dev->flags & IFF_ALLMULTI;
5668
5669 mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5670 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5671 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5672
5673 /* Remove all port->id's mcast enries */
5674 mvpp2_prs_mcast_del_all(priv, id);
5675
5676 if (allmulti && !netdev_mc_empty(dev)) {
5677 netdev_for_each_mc_addr(ha, dev)
5678 mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5679 }
5680 }
5681
5682 static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5683 {
5684 struct mvpp2_port *port = netdev_priv(dev);
5685 const struct sockaddr *addr = p;
5686 int err;
5687
5688 if (!is_valid_ether_addr(addr->sa_data)) {
5689 err = -EADDRNOTAVAIL;
5690 goto error;
5691 }
5692
5693 if (!netif_running(dev)) {
5694 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5695 if (!err)
5696 return 0;
5697 /* Reconfigure parser to accept the original MAC address */
5698 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5699 if (err)
5700 goto error;
5701 }
5702
5703 mvpp2_stop_dev(port);
5704
5705 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5706 if (!err)
5707 goto out_start;
5708
5709 /* Reconfigure parser accept the original MAC address */
5710 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5711 if (err)
5712 goto error;
5713 out_start:
5714 mvpp2_start_dev(port);
5715 mvpp2_egress_enable(port);
5716 mvpp2_ingress_enable(port);
5717 return 0;
5718
5719 error:
5720 netdev_err(dev, "fail to change MAC address\n");
5721 return err;
5722 }
5723
5724 static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5725 {
5726 struct mvpp2_port *port = netdev_priv(dev);
5727 int err;
5728
5729 mtu = mvpp2_check_mtu_valid(dev, mtu);
5730 if (mtu < 0) {
5731 err = mtu;
5732 goto error;
5733 }
5734
5735 if (!netif_running(dev)) {
5736 err = mvpp2_bm_update_mtu(dev, mtu);
5737 if (!err) {
5738 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5739 return 0;
5740 }
5741
5742 /* Reconfigure BM to the original MTU */
5743 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5744 if (err)
5745 goto error;
5746 }
5747
5748 mvpp2_stop_dev(port);
5749
5750 err = mvpp2_bm_update_mtu(dev, mtu);
5751 if (!err) {
5752 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5753 goto out_start;
5754 }
5755
5756 /* Reconfigure BM to the original MTU */
5757 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5758 if (err)
5759 goto error;
5760
5761 out_start:
5762 mvpp2_start_dev(port);
5763 mvpp2_egress_enable(port);
5764 mvpp2_ingress_enable(port);
5765
5766 return 0;
5767
5768 error:
5769 netdev_err(dev, "fail to change MTU\n");
5770 return err;
5771 }
5772
5773 static struct rtnl_link_stats64 *
5774 mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5775 {
5776 struct mvpp2_port *port = netdev_priv(dev);
5777 unsigned int start;
5778 int cpu;
5779
5780 for_each_possible_cpu(cpu) {
5781 struct mvpp2_pcpu_stats *cpu_stats;
5782 u64 rx_packets;
5783 u64 rx_bytes;
5784 u64 tx_packets;
5785 u64 tx_bytes;
5786
5787 cpu_stats = per_cpu_ptr(port->stats, cpu);
5788 do {
5789 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5790 rx_packets = cpu_stats->rx_packets;
5791 rx_bytes = cpu_stats->rx_bytes;
5792 tx_packets = cpu_stats->tx_packets;
5793 tx_bytes = cpu_stats->tx_bytes;
5794 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5795
5796 stats->rx_packets += rx_packets;
5797 stats->rx_bytes += rx_bytes;
5798 stats->tx_packets += tx_packets;
5799 stats->tx_bytes += tx_bytes;
5800 }
5801
5802 stats->rx_errors = dev->stats.rx_errors;
5803 stats->rx_dropped = dev->stats.rx_dropped;
5804 stats->tx_dropped = dev->stats.tx_dropped;
5805
5806 return stats;
5807 }
5808
5809 static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5810 {
5811 struct mvpp2_port *port = netdev_priv(dev);
5812 int ret;
5813
5814 if (!port->phy_dev)
5815 return -ENOTSUPP;
5816
5817 ret = phy_mii_ioctl(port->phy_dev, ifr, cmd);
5818 if (!ret)
5819 mvpp2_link_event(dev);
5820
5821 return ret;
5822 }
5823
5824 /* Ethtool methods */
5825
5826 /* Get settings (phy address, speed) for ethtools */
5827 static int mvpp2_ethtool_get_settings(struct net_device *dev,
5828 struct ethtool_cmd *cmd)
5829 {
5830 struct mvpp2_port *port = netdev_priv(dev);
5831
5832 if (!port->phy_dev)
5833 return -ENODEV;
5834 return phy_ethtool_gset(port->phy_dev, cmd);
5835 }
5836
5837 /* Set settings (phy address, speed) for ethtools */
5838 static int mvpp2_ethtool_set_settings(struct net_device *dev,
5839 struct ethtool_cmd *cmd)
5840 {
5841 struct mvpp2_port *port = netdev_priv(dev);
5842
5843 if (!port->phy_dev)
5844 return -ENODEV;
5845 return phy_ethtool_sset(port->phy_dev, cmd);
5846 }
5847
5848 /* Set interrupt coalescing for ethtools */
5849 static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5850 struct ethtool_coalesce *c)
5851 {
5852 struct mvpp2_port *port = netdev_priv(dev);
5853 int queue;
5854
5855 for (queue = 0; queue < rxq_number; queue++) {
5856 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5857
5858 rxq->time_coal = c->rx_coalesce_usecs;
5859 rxq->pkts_coal = c->rx_max_coalesced_frames;
5860 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5861 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5862 }
5863
5864 for (queue = 0; queue < txq_number; queue++) {
5865 struct mvpp2_tx_queue *txq = port->txqs[queue];
5866
5867 txq->done_pkts_coal = c->tx_max_coalesced_frames;
5868 }
5869
5870 return 0;
5871 }
5872
5873 /* get coalescing for ethtools */
5874 static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5875 struct ethtool_coalesce *c)
5876 {
5877 struct mvpp2_port *port = netdev_priv(dev);
5878
5879 c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
5880 c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
5881 c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
5882 return 0;
5883 }
5884
5885 static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5886 struct ethtool_drvinfo *drvinfo)
5887 {
5888 strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5889 sizeof(drvinfo->driver));
5890 strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5891 sizeof(drvinfo->version));
5892 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5893 sizeof(drvinfo->bus_info));
5894 }
5895
5896 static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5897 struct ethtool_ringparam *ring)
5898 {
5899 struct mvpp2_port *port = netdev_priv(dev);
5900
5901 ring->rx_max_pending = MVPP2_MAX_RXD;
5902 ring->tx_max_pending = MVPP2_MAX_TXD;
5903 ring->rx_pending = port->rx_ring_size;
5904 ring->tx_pending = port->tx_ring_size;
5905 }
5906
5907 static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5908 struct ethtool_ringparam *ring)
5909 {
5910 struct mvpp2_port *port = netdev_priv(dev);
5911 u16 prev_rx_ring_size = port->rx_ring_size;
5912 u16 prev_tx_ring_size = port->tx_ring_size;
5913 int err;
5914
5915 err = mvpp2_check_ringparam_valid(dev, ring);
5916 if (err)
5917 return err;
5918
5919 if (!netif_running(dev)) {
5920 port->rx_ring_size = ring->rx_pending;
5921 port->tx_ring_size = ring->tx_pending;
5922 return 0;
5923 }
5924
5925 /* The interface is running, so we have to force a
5926 * reallocation of the queues
5927 */
5928 mvpp2_stop_dev(port);
5929 mvpp2_cleanup_rxqs(port);
5930 mvpp2_cleanup_txqs(port);
5931
5932 port->rx_ring_size = ring->rx_pending;
5933 port->tx_ring_size = ring->tx_pending;
5934
5935 err = mvpp2_setup_rxqs(port);
5936 if (err) {
5937 /* Reallocate Rx queues with the original ring size */
5938 port->rx_ring_size = prev_rx_ring_size;
5939 ring->rx_pending = prev_rx_ring_size;
5940 err = mvpp2_setup_rxqs(port);
5941 if (err)
5942 goto err_out;
5943 }
5944 err = mvpp2_setup_txqs(port);
5945 if (err) {
5946 /* Reallocate Tx queues with the original ring size */
5947 port->tx_ring_size = prev_tx_ring_size;
5948 ring->tx_pending = prev_tx_ring_size;
5949 err = mvpp2_setup_txqs(port);
5950 if (err)
5951 goto err_clean_rxqs;
5952 }
5953
5954 mvpp2_start_dev(port);
5955 mvpp2_egress_enable(port);
5956 mvpp2_ingress_enable(port);
5957
5958 return 0;
5959
5960 err_clean_rxqs:
5961 mvpp2_cleanup_rxqs(port);
5962 err_out:
5963 netdev_err(dev, "fail to change ring parameters");
5964 return err;
5965 }
5966
5967 /* Device ops */
5968
5969 static const struct net_device_ops mvpp2_netdev_ops = {
5970 .ndo_open = mvpp2_open,
5971 .ndo_stop = mvpp2_stop,
5972 .ndo_start_xmit = mvpp2_tx,
5973 .ndo_set_rx_mode = mvpp2_set_rx_mode,
5974 .ndo_set_mac_address = mvpp2_set_mac_address,
5975 .ndo_change_mtu = mvpp2_change_mtu,
5976 .ndo_get_stats64 = mvpp2_get_stats64,
5977 .ndo_do_ioctl = mvpp2_ioctl,
5978 };
5979
5980 static const struct ethtool_ops mvpp2_eth_tool_ops = {
5981 .get_link = ethtool_op_get_link,
5982 .get_settings = mvpp2_ethtool_get_settings,
5983 .set_settings = mvpp2_ethtool_set_settings,
5984 .set_coalesce = mvpp2_ethtool_set_coalesce,
5985 .get_coalesce = mvpp2_ethtool_get_coalesce,
5986 .get_drvinfo = mvpp2_ethtool_get_drvinfo,
5987 .get_ringparam = mvpp2_ethtool_get_ringparam,
5988 .set_ringparam = mvpp2_ethtool_set_ringparam,
5989 };
5990
5991 /* Driver initialization */
5992
5993 static void mvpp2_port_power_up(struct mvpp2_port *port)
5994 {
5995 mvpp2_port_mii_set(port);
5996 mvpp2_port_periodic_xon_disable(port);
5997 mvpp2_port_fc_adv_enable(port);
5998 mvpp2_port_reset(port);
5999 }
6000
6001 /* Initialize port HW */
6002 static int mvpp2_port_init(struct mvpp2_port *port)
6003 {
6004 struct device *dev = port->dev->dev.parent;
6005 struct mvpp2 *priv = port->priv;
6006 struct mvpp2_txq_pcpu *txq_pcpu;
6007 int queue, cpu, err;
6008
6009 if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
6010 return -EINVAL;
6011
6012 /* Disable port */
6013 mvpp2_egress_disable(port);
6014 mvpp2_port_disable(port);
6015
6016 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
6017 GFP_KERNEL);
6018 if (!port->txqs)
6019 return -ENOMEM;
6020
6021 /* Associate physical Tx queues to this port and initialize.
6022 * The mapping is predefined.
6023 */
6024 for (queue = 0; queue < txq_number; queue++) {
6025 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
6026 struct mvpp2_tx_queue *txq;
6027
6028 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
6029 if (!txq)
6030 return -ENOMEM;
6031
6032 txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
6033 if (!txq->pcpu) {
6034 err = -ENOMEM;
6035 goto err_free_percpu;
6036 }
6037
6038 txq->id = queue_phy_id;
6039 txq->log_id = queue;
6040 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
6041 for_each_present_cpu(cpu) {
6042 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
6043 txq_pcpu->cpu = cpu;
6044 }
6045
6046 port->txqs[queue] = txq;
6047 }
6048
6049 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
6050 GFP_KERNEL);
6051 if (!port->rxqs) {
6052 err = -ENOMEM;
6053 goto err_free_percpu;
6054 }
6055
6056 /* Allocate and initialize Rx queue for this port */
6057 for (queue = 0; queue < rxq_number; queue++) {
6058 struct mvpp2_rx_queue *rxq;
6059
6060 /* Map physical Rx queue to port's logical Rx queue */
6061 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
6062 if (!rxq)
6063 goto err_free_percpu;
6064 /* Map this Rx queue to a physical queue */
6065 rxq->id = port->first_rxq + queue;
6066 rxq->port = port->id;
6067 rxq->logic_rxq = queue;
6068
6069 port->rxqs[queue] = rxq;
6070 }
6071
6072 /* Configure Rx queue group interrupt for this port */
6073 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
6074
6075 /* Create Rx descriptor rings */
6076 for (queue = 0; queue < rxq_number; queue++) {
6077 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
6078
6079 rxq->size = port->rx_ring_size;
6080 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
6081 rxq->time_coal = MVPP2_RX_COAL_USEC;
6082 }
6083
6084 mvpp2_ingress_disable(port);
6085
6086 /* Port default configuration */
6087 mvpp2_defaults_set(port);
6088
6089 /* Port's classifier configuration */
6090 mvpp2_cls_oversize_rxq_set(port);
6091 mvpp2_cls_port_config(port);
6092
6093 /* Provide an initial Rx packet size */
6094 port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6095
6096 /* Initialize pools for swf */
6097 err = mvpp2_swf_bm_pool_init(port);
6098 if (err)
6099 goto err_free_percpu;
6100
6101 return 0;
6102
6103 err_free_percpu:
6104 for (queue = 0; queue < txq_number; queue++) {
6105 if (!port->txqs[queue])
6106 continue;
6107 free_percpu(port->txqs[queue]->pcpu);
6108 }
6109 return err;
6110 }
6111
6112 /* Ports initialization */
6113 static int mvpp2_port_probe(struct platform_device *pdev,
6114 struct device_node *port_node,
6115 struct mvpp2 *priv,
6116 int *next_first_rxq)
6117 {
6118 struct device_node *phy_node;
6119 struct mvpp2_port *port;
6120 struct mvpp2_port_pcpu *port_pcpu;
6121 struct net_device *dev;
6122 struct resource *res;
6123 const char *dt_mac_addr;
6124 const char *mac_from;
6125 char hw_mac_addr[ETH_ALEN];
6126 u32 id;
6127 int features;
6128 int phy_mode;
6129 int priv_common_regs_num = 2;
6130 int err, i, cpu;
6131
6132 dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6133 rxq_number);
6134 if (!dev)
6135 return -ENOMEM;
6136
6137 phy_node = of_parse_phandle(port_node, "phy", 0);
6138 if (!phy_node) {
6139 dev_err(&pdev->dev, "missing phy\n");
6140 err = -ENODEV;
6141 goto err_free_netdev;
6142 }
6143
6144 phy_mode = of_get_phy_mode(port_node);
6145 if (phy_mode < 0) {
6146 dev_err(&pdev->dev, "incorrect phy mode\n");
6147 err = phy_mode;
6148 goto err_free_netdev;
6149 }
6150
6151 if (of_property_read_u32(port_node, "port-id", &id)) {
6152 err = -EINVAL;
6153 dev_err(&pdev->dev, "missing port-id value\n");
6154 goto err_free_netdev;
6155 }
6156
6157 dev->tx_queue_len = MVPP2_MAX_TXD;
6158 dev->watchdog_timeo = 5 * HZ;
6159 dev->netdev_ops = &mvpp2_netdev_ops;
6160 dev->ethtool_ops = &mvpp2_eth_tool_ops;
6161
6162 port = netdev_priv(dev);
6163
6164 port->irq = irq_of_parse_and_map(port_node, 0);
6165 if (port->irq <= 0) {
6166 err = -EINVAL;
6167 goto err_free_netdev;
6168 }
6169
6170 if (of_property_read_bool(port_node, "marvell,loopback"))
6171 port->flags |= MVPP2_F_LOOPBACK;
6172
6173 port->priv = priv;
6174 port->id = id;
6175 port->first_rxq = *next_first_rxq;
6176 port->phy_node = phy_node;
6177 port->phy_interface = phy_mode;
6178
6179 res = platform_get_resource(pdev, IORESOURCE_MEM,
6180 priv_common_regs_num + id);
6181 port->base = devm_ioremap_resource(&pdev->dev, res);
6182 if (IS_ERR(port->base)) {
6183 err = PTR_ERR(port->base);
6184 goto err_free_irq;
6185 }
6186
6187 /* Alloc per-cpu stats */
6188 port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6189 if (!port->stats) {
6190 err = -ENOMEM;
6191 goto err_free_irq;
6192 }
6193
6194 dt_mac_addr = of_get_mac_address(port_node);
6195 if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6196 mac_from = "device tree";
6197 ether_addr_copy(dev->dev_addr, dt_mac_addr);
6198 } else {
6199 mvpp2_get_mac_address(port, hw_mac_addr);
6200 if (is_valid_ether_addr(hw_mac_addr)) {
6201 mac_from = "hardware";
6202 ether_addr_copy(dev->dev_addr, hw_mac_addr);
6203 } else {
6204 mac_from = "random";
6205 eth_hw_addr_random(dev);
6206 }
6207 }
6208
6209 port->tx_ring_size = MVPP2_MAX_TXD;
6210 port->rx_ring_size = MVPP2_MAX_RXD;
6211 port->dev = dev;
6212 SET_NETDEV_DEV(dev, &pdev->dev);
6213
6214 err = mvpp2_port_init(port);
6215 if (err < 0) {
6216 dev_err(&pdev->dev, "failed to init port %d\n", id);
6217 goto err_free_stats;
6218 }
6219 mvpp2_port_power_up(port);
6220
6221 port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
6222 if (!port->pcpu) {
6223 err = -ENOMEM;
6224 goto err_free_txq_pcpu;
6225 }
6226
6227 for_each_present_cpu(cpu) {
6228 port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6229
6230 hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
6231 HRTIMER_MODE_REL_PINNED);
6232 port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
6233 port_pcpu->timer_scheduled = false;
6234
6235 tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
6236 (unsigned long)dev);
6237 }
6238
6239 netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6240 features = NETIF_F_SG | NETIF_F_IP_CSUM;
6241 dev->features = features | NETIF_F_RXCSUM;
6242 dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6243 dev->vlan_features |= features;
6244
6245 err = register_netdev(dev);
6246 if (err < 0) {
6247 dev_err(&pdev->dev, "failed to register netdev\n");
6248 goto err_free_port_pcpu;
6249 }
6250 netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6251
6252 /* Increment the first Rx queue number to be used by the next port */
6253 *next_first_rxq += rxq_number;
6254 priv->port_list[id] = port;
6255 return 0;
6256
6257 err_free_port_pcpu:
6258 free_percpu(port->pcpu);
6259 err_free_txq_pcpu:
6260 for (i = 0; i < txq_number; i++)
6261 free_percpu(port->txqs[i]->pcpu);
6262 err_free_stats:
6263 free_percpu(port->stats);
6264 err_free_irq:
6265 irq_dispose_mapping(port->irq);
6266 err_free_netdev:
6267 free_netdev(dev);
6268 return err;
6269 }
6270
6271 /* Ports removal routine */
6272 static void mvpp2_port_remove(struct mvpp2_port *port)
6273 {
6274 int i;
6275
6276 unregister_netdev(port->dev);
6277 free_percpu(port->pcpu);
6278 free_percpu(port->stats);
6279 for (i = 0; i < txq_number; i++)
6280 free_percpu(port->txqs[i]->pcpu);
6281 irq_dispose_mapping(port->irq);
6282 free_netdev(port->dev);
6283 }
6284
6285 /* Initialize decoding windows */
6286 static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6287 struct mvpp2 *priv)
6288 {
6289 u32 win_enable;
6290 int i;
6291
6292 for (i = 0; i < 6; i++) {
6293 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6294 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6295
6296 if (i < 4)
6297 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6298 }
6299
6300 win_enable = 0;
6301
6302 for (i = 0; i < dram->num_cs; i++) {
6303 const struct mbus_dram_window *cs = dram->cs + i;
6304
6305 mvpp2_write(priv, MVPP2_WIN_BASE(i),
6306 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6307 dram->mbus_dram_target_id);
6308
6309 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6310 (cs->size - 1) & 0xffff0000);
6311
6312 win_enable |= (1 << i);
6313 }
6314
6315 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6316 }
6317
6318 /* Initialize Rx FIFO's */
6319 static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6320 {
6321 int port;
6322
6323 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6324 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6325 MVPP2_RX_FIFO_PORT_DATA_SIZE);
6326 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6327 MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6328 }
6329
6330 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6331 MVPP2_RX_FIFO_PORT_MIN_PKT);
6332 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6333 }
6334
6335 /* Initialize network controller common part HW */
6336 static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6337 {
6338 const struct mbus_dram_target_info *dram_target_info;
6339 int err, i;
6340 u32 val;
6341
6342 /* Checks for hardware constraints */
6343 if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6344 (txq_number > MVPP2_MAX_TXQ)) {
6345 dev_err(&pdev->dev, "invalid queue size parameter\n");
6346 return -EINVAL;
6347 }
6348
6349 /* MBUS windows configuration */
6350 dram_target_info = mv_mbus_dram_info();
6351 if (dram_target_info)
6352 mvpp2_conf_mbus_windows(dram_target_info, priv);
6353
6354 /* Disable HW PHY polling */
6355 val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6356 val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6357 writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6358
6359 /* Allocate and initialize aggregated TXQs */
6360 priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6361 sizeof(struct mvpp2_tx_queue),
6362 GFP_KERNEL);
6363 if (!priv->aggr_txqs)
6364 return -ENOMEM;
6365
6366 for_each_present_cpu(i) {
6367 priv->aggr_txqs[i].id = i;
6368 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6369 err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6370 MVPP2_AGGR_TXQ_SIZE, i, priv);
6371 if (err < 0)
6372 return err;
6373 }
6374
6375 /* Rx Fifo Init */
6376 mvpp2_rx_fifo_init(priv);
6377
6378 /* Reset Rx queue group interrupt configuration */
6379 for (i = 0; i < MVPP2_MAX_PORTS; i++)
6380 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6381
6382 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6383 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6384
6385 /* Allow cache snoop when transmiting packets */
6386 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6387
6388 /* Buffer Manager initialization */
6389 err = mvpp2_bm_init(pdev, priv);
6390 if (err < 0)
6391 return err;
6392
6393 /* Parser default initialization */
6394 err = mvpp2_prs_default_init(pdev, priv);
6395 if (err < 0)
6396 return err;
6397
6398 /* Classifier default initialization */
6399 mvpp2_cls_init(priv);
6400
6401 return 0;
6402 }
6403
6404 static int mvpp2_probe(struct platform_device *pdev)
6405 {
6406 struct device_node *dn = pdev->dev.of_node;
6407 struct device_node *port_node;
6408 struct mvpp2 *priv;
6409 struct resource *res;
6410 int port_count, first_rxq;
6411 int err;
6412
6413 priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6414 if (!priv)
6415 return -ENOMEM;
6416
6417 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6418 priv->base = devm_ioremap_resource(&pdev->dev, res);
6419 if (IS_ERR(priv->base))
6420 return PTR_ERR(priv->base);
6421
6422 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6423 priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6424 if (IS_ERR(priv->lms_base))
6425 return PTR_ERR(priv->lms_base);
6426
6427 priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6428 if (IS_ERR(priv->pp_clk))
6429 return PTR_ERR(priv->pp_clk);
6430 err = clk_prepare_enable(priv->pp_clk);
6431 if (err < 0)
6432 return err;
6433
6434 priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6435 if (IS_ERR(priv->gop_clk)) {
6436 err = PTR_ERR(priv->gop_clk);
6437 goto err_pp_clk;
6438 }
6439 err = clk_prepare_enable(priv->gop_clk);
6440 if (err < 0)
6441 goto err_pp_clk;
6442
6443 /* Get system's tclk rate */
6444 priv->tclk = clk_get_rate(priv->pp_clk);
6445
6446 /* Initialize network controller */
6447 err = mvpp2_init(pdev, priv);
6448 if (err < 0) {
6449 dev_err(&pdev->dev, "failed to initialize controller\n");
6450 goto err_gop_clk;
6451 }
6452
6453 port_count = of_get_available_child_count(dn);
6454 if (port_count == 0) {
6455 dev_err(&pdev->dev, "no ports enabled\n");
6456 err = -ENODEV;
6457 goto err_gop_clk;
6458 }
6459
6460 priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6461 sizeof(struct mvpp2_port *),
6462 GFP_KERNEL);
6463 if (!priv->port_list) {
6464 err = -ENOMEM;
6465 goto err_gop_clk;
6466 }
6467
6468 /* Initialize ports */
6469 first_rxq = 0;
6470 for_each_available_child_of_node(dn, port_node) {
6471 err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6472 if (err < 0)
6473 goto err_gop_clk;
6474 }
6475
6476 platform_set_drvdata(pdev, priv);
6477 return 0;
6478
6479 err_gop_clk:
6480 clk_disable_unprepare(priv->gop_clk);
6481 err_pp_clk:
6482 clk_disable_unprepare(priv->pp_clk);
6483 return err;
6484 }
6485
6486 static int mvpp2_remove(struct platform_device *pdev)
6487 {
6488 struct mvpp2 *priv = platform_get_drvdata(pdev);
6489 struct device_node *dn = pdev->dev.of_node;
6490 struct device_node *port_node;
6491 int i = 0;
6492
6493 for_each_available_child_of_node(dn, port_node) {
6494 if (priv->port_list[i])
6495 mvpp2_port_remove(priv->port_list[i]);
6496 i++;
6497 }
6498
6499 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6500 struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6501
6502 mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6503 }
6504
6505 for_each_present_cpu(i) {
6506 struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6507
6508 dma_free_coherent(&pdev->dev,
6509 MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6510 aggr_txq->descs,
6511 aggr_txq->descs_phys);
6512 }
6513
6514 clk_disable_unprepare(priv->pp_clk);
6515 clk_disable_unprepare(priv->gop_clk);
6516
6517 return 0;
6518 }
6519
6520 static const struct of_device_id mvpp2_match[] = {
6521 { .compatible = "marvell,armada-375-pp2" },
6522 { }
6523 };
6524 MODULE_DEVICE_TABLE(of, mvpp2_match);
6525
6526 static struct platform_driver mvpp2_driver = {
6527 .probe = mvpp2_probe,
6528 .remove = mvpp2_remove,
6529 .driver = {
6530 .name = MVPP2_DRIVER_NAME,
6531 .of_match_table = mvpp2_match,
6532 },
6533 };
6534
6535 module_platform_driver(mvpp2_driver);
6536
6537 MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6538 MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6539 MODULE_LICENSE("GPL v2");