]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/marvell/octeontx2/af/rvu.c
90dc5343827f0e5ac12bffedd4b1a90340bd6b50
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / marvell / octeontx2 / af / rvu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3 *
4 * Copyright (C) 2018 Marvell.
5 *
6 */
7
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19
20 #include "rvu_trace.h"
21
22 #define DRV_NAME "rvu_af"
23 #define DRV_STRING "Marvell OcteonTX2 RVU Admin Function Driver"
24
25 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
26
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 int type, int num,
35 void (mbox_handler)(struct work_struct *),
36 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 TYPE_AFVF,
39 TYPE_AFPF,
40 };
41
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 { 0, } /* end of table */
46 };
47
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 struct rvu_hwinfo *hw = rvu->hw;
64
65 hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 hw->cap.nix_fixed_txschq_mapping = false;
67 hw->cap.nix_shaping = true;
68 hw->cap.nix_tx_link_bp = true;
69 hw->cap.nix_rx_multicast = true;
70 hw->cap.nix_shaper_toggle_wait = false;
71 hw->rvu = rvu;
72
73 if (is_rvu_pre_96xx_C0(rvu)) {
74 hw->cap.nix_fixed_txschq_mapping = true;
75 hw->cap.nix_txsch_per_cgx_lmac = 4;
76 hw->cap.nix_txsch_per_lbk_lmac = 132;
77 hw->cap.nix_txsch_per_sdp_lmac = 76;
78 hw->cap.nix_shaping = false;
79 hw->cap.nix_tx_link_bp = false;
80 if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
81 hw->cap.nix_rx_multicast = false;
82 }
83 if (!is_rvu_pre_96xx_C0(rvu))
84 hw->cap.nix_shaper_toggle_wait = true;
85
86 if (!is_rvu_otx2(rvu))
87 hw->cap.per_pf_mbox_regs = true;
88 }
89
90 /* Poll a RVU block's register 'offset', for a 'zero'
91 * or 'nonzero' at bits specified by 'mask'
92 */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95 unsigned long timeout = jiffies + usecs_to_jiffies(20000);
96 bool twice = false;
97 void __iomem *reg;
98 u64 reg_val;
99
100 reg = rvu->afreg_base + ((block << 28) | offset);
101 again:
102 reg_val = readq(reg);
103 if (zero && !(reg_val & mask))
104 return 0;
105 if (!zero && (reg_val & mask))
106 return 0;
107 if (time_before(jiffies, timeout)) {
108 usleep_range(1, 5);
109 goto again;
110 }
111 /* In scenarios where CPU is scheduled out before checking
112 * 'time_before' (above) and gets scheduled in such that
113 * jiffies are beyond timeout value, then check again if HW is
114 * done with the operation in the meantime.
115 */
116 if (!twice) {
117 twice = true;
118 goto again;
119 }
120 return -EBUSY;
121 }
122
123 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
124 {
125 int id;
126
127 if (!rsrc->bmap)
128 return -EINVAL;
129
130 id = find_first_zero_bit(rsrc->bmap, rsrc->max);
131 if (id >= rsrc->max)
132 return -ENOSPC;
133
134 __set_bit(id, rsrc->bmap);
135
136 return id;
137 }
138
139 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
140 {
141 int start;
142
143 if (!rsrc->bmap)
144 return -EINVAL;
145
146 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
147 if (start >= rsrc->max)
148 return -ENOSPC;
149
150 bitmap_set(rsrc->bmap, start, nrsrc);
151 return start;
152 }
153
154 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
155 {
156 if (!rsrc->bmap)
157 return;
158 if (start >= rsrc->max)
159 return;
160
161 bitmap_clear(rsrc->bmap, start, nrsrc);
162 }
163
164 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
165 {
166 int start;
167
168 if (!rsrc->bmap)
169 return false;
170
171 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
172 if (start >= rsrc->max)
173 return false;
174
175 return true;
176 }
177
178 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
179 {
180 if (!rsrc->bmap)
181 return;
182
183 __clear_bit(id, rsrc->bmap);
184 }
185
186 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
187 {
188 int used;
189
190 if (!rsrc->bmap)
191 return 0;
192
193 used = bitmap_weight(rsrc->bmap, rsrc->max);
194 return (rsrc->max - used);
195 }
196
197 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
198 {
199 if (!rsrc->bmap)
200 return false;
201
202 return !test_bit(id, rsrc->bmap);
203 }
204
205 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
206 {
207 rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
208 sizeof(long), GFP_KERNEL);
209 if (!rsrc->bmap)
210 return -ENOMEM;
211 return 0;
212 }
213
214 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
215 {
216 kfree(rsrc->bmap);
217 }
218
219 /* Get block LF's HW index from a PF_FUNC's block slot number */
220 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
221 {
222 u16 match = 0;
223 int lf;
224
225 mutex_lock(&rvu->rsrc_lock);
226 for (lf = 0; lf < block->lf.max; lf++) {
227 if (block->fn_map[lf] == pcifunc) {
228 if (slot == match) {
229 mutex_unlock(&rvu->rsrc_lock);
230 return lf;
231 }
232 match++;
233 }
234 }
235 mutex_unlock(&rvu->rsrc_lock);
236 return -ENODEV;
237 }
238
239 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
240 * Some silicon variants of OcteonTX2 supports
241 * multiple blocks of same type.
242 *
243 * @pcifunc has to be zero when no LF is yet attached.
244 *
245 * For a pcifunc if LFs are attached from multiple blocks of same type, then
246 * return blkaddr of first encountered block.
247 */
248 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
249 {
250 int devnum, blkaddr = -ENODEV;
251 u64 cfg, reg;
252 bool is_pf;
253
254 switch (blktype) {
255 case BLKTYPE_NPC:
256 blkaddr = BLKADDR_NPC;
257 goto exit;
258 case BLKTYPE_NPA:
259 blkaddr = BLKADDR_NPA;
260 goto exit;
261 case BLKTYPE_NIX:
262 /* For now assume NIX0 */
263 if (!pcifunc) {
264 blkaddr = BLKADDR_NIX0;
265 goto exit;
266 }
267 break;
268 case BLKTYPE_SSO:
269 blkaddr = BLKADDR_SSO;
270 goto exit;
271 case BLKTYPE_SSOW:
272 blkaddr = BLKADDR_SSOW;
273 goto exit;
274 case BLKTYPE_TIM:
275 blkaddr = BLKADDR_TIM;
276 goto exit;
277 case BLKTYPE_CPT:
278 /* For now assume CPT0 */
279 if (!pcifunc) {
280 blkaddr = BLKADDR_CPT0;
281 goto exit;
282 }
283 break;
284 }
285
286 /* Check if this is a RVU PF or VF */
287 if (pcifunc & RVU_PFVF_FUNC_MASK) {
288 is_pf = false;
289 devnum = rvu_get_hwvf(rvu, pcifunc);
290 } else {
291 is_pf = true;
292 devnum = rvu_get_pf(pcifunc);
293 }
294
295 /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
296 * 'BLKADDR_NIX1'.
297 */
298 if (blktype == BLKTYPE_NIX) {
299 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
300 RVU_PRIV_HWVFX_NIXX_CFG(0);
301 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
302 if (cfg) {
303 blkaddr = BLKADDR_NIX0;
304 goto exit;
305 }
306
307 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
308 RVU_PRIV_HWVFX_NIXX_CFG(1);
309 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
310 if (cfg)
311 blkaddr = BLKADDR_NIX1;
312 }
313
314 if (blktype == BLKTYPE_CPT) {
315 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
316 RVU_PRIV_HWVFX_CPTX_CFG(0);
317 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
318 if (cfg) {
319 blkaddr = BLKADDR_CPT0;
320 goto exit;
321 }
322
323 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
324 RVU_PRIV_HWVFX_CPTX_CFG(1);
325 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
326 if (cfg)
327 blkaddr = BLKADDR_CPT1;
328 }
329
330 exit:
331 if (is_block_implemented(rvu->hw, blkaddr))
332 return blkaddr;
333 return -ENODEV;
334 }
335
336 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
337 struct rvu_block *block, u16 pcifunc,
338 u16 lf, bool attach)
339 {
340 int devnum, num_lfs = 0;
341 bool is_pf;
342 u64 reg;
343
344 if (lf >= block->lf.max) {
345 dev_err(&rvu->pdev->dev,
346 "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
347 __func__, lf, block->name, block->lf.max);
348 return;
349 }
350
351 /* Check if this is for a RVU PF or VF */
352 if (pcifunc & RVU_PFVF_FUNC_MASK) {
353 is_pf = false;
354 devnum = rvu_get_hwvf(rvu, pcifunc);
355 } else {
356 is_pf = true;
357 devnum = rvu_get_pf(pcifunc);
358 }
359
360 block->fn_map[lf] = attach ? pcifunc : 0;
361
362 switch (block->addr) {
363 case BLKADDR_NPA:
364 pfvf->npalf = attach ? true : false;
365 num_lfs = pfvf->npalf;
366 break;
367 case BLKADDR_NIX0:
368 case BLKADDR_NIX1:
369 pfvf->nixlf = attach ? true : false;
370 num_lfs = pfvf->nixlf;
371 break;
372 case BLKADDR_SSO:
373 attach ? pfvf->sso++ : pfvf->sso--;
374 num_lfs = pfvf->sso;
375 break;
376 case BLKADDR_SSOW:
377 attach ? pfvf->ssow++ : pfvf->ssow--;
378 num_lfs = pfvf->ssow;
379 break;
380 case BLKADDR_TIM:
381 attach ? pfvf->timlfs++ : pfvf->timlfs--;
382 num_lfs = pfvf->timlfs;
383 break;
384 case BLKADDR_CPT0:
385 attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
386 num_lfs = pfvf->cptlfs;
387 break;
388 case BLKADDR_CPT1:
389 attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
390 num_lfs = pfvf->cpt1_lfs;
391 break;
392 }
393
394 reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
395 rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
396 }
397
398 inline int rvu_get_pf(u16 pcifunc)
399 {
400 return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
401 }
402
403 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
404 {
405 u64 cfg;
406
407 /* Get numVFs attached to this PF and first HWVF */
408 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
409 if (numvfs)
410 *numvfs = (cfg >> 12) & 0xFF;
411 if (hwvf)
412 *hwvf = cfg & 0xFFF;
413 }
414
415 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
416 {
417 int pf, func;
418 u64 cfg;
419
420 pf = rvu_get_pf(pcifunc);
421 func = pcifunc & RVU_PFVF_FUNC_MASK;
422
423 /* Get first HWVF attached to this PF */
424 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
425
426 return ((cfg & 0xFFF) + func - 1);
427 }
428
429 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
430 {
431 /* Check if it is a PF or VF */
432 if (pcifunc & RVU_PFVF_FUNC_MASK)
433 return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
434 else
435 return &rvu->pf[rvu_get_pf(pcifunc)];
436 }
437
438 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
439 {
440 int pf, vf, nvfs;
441 u64 cfg;
442
443 pf = rvu_get_pf(pcifunc);
444 if (pf >= rvu->hw->total_pfs)
445 return false;
446
447 if (!(pcifunc & RVU_PFVF_FUNC_MASK))
448 return true;
449
450 /* Check if VF is within number of VFs attached to this PF */
451 vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
452 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
453 nvfs = (cfg >> 12) & 0xFF;
454 if (vf >= nvfs)
455 return false;
456
457 return true;
458 }
459
460 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
461 {
462 struct rvu_block *block;
463
464 if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
465 return false;
466
467 block = &hw->block[blkaddr];
468 return block->implemented;
469 }
470
471 static void rvu_check_block_implemented(struct rvu *rvu)
472 {
473 struct rvu_hwinfo *hw = rvu->hw;
474 struct rvu_block *block;
475 int blkid;
476 u64 cfg;
477
478 /* For each block check if 'implemented' bit is set */
479 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
480 block = &hw->block[blkid];
481 cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
482 if (cfg & BIT_ULL(11))
483 block->implemented = true;
484 }
485 }
486
487 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
488 {
489 rvu_write64(rvu, BLKADDR_RVUM,
490 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
491 RVU_BLK_RVUM_REVID);
492 }
493
494 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
495 {
496 rvu_write64(rvu, BLKADDR_RVUM,
497 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
498 }
499
500 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
501 {
502 int err;
503
504 if (!block->implemented)
505 return 0;
506
507 rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
508 err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
509 true);
510 return err;
511 }
512
513 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
514 {
515 struct rvu_block *block = &rvu->hw->block[blkaddr];
516 int err;
517
518 if (!block->implemented)
519 return;
520
521 rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
522 err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
523 if (err)
524 dev_err(rvu->dev, "HW block:%d reset failed\n", blkaddr);
525 }
526
527 static void rvu_reset_all_blocks(struct rvu *rvu)
528 {
529 /* Do a HW reset of all RVU blocks */
530 rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
531 rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
532 rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
533 rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
534 rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
535 rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
536 rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
537 rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
538 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
539 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
540 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
541 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
542 rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
543 }
544
545 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
546 {
547 struct rvu_pfvf *pfvf;
548 u64 cfg;
549 int lf;
550
551 for (lf = 0; lf < block->lf.max; lf++) {
552 cfg = rvu_read64(rvu, block->addr,
553 block->lfcfg_reg | (lf << block->lfshift));
554 if (!(cfg & BIT_ULL(63)))
555 continue;
556
557 /* Set this resource as being used */
558 __set_bit(lf, block->lf.bmap);
559
560 /* Get, to whom this LF is attached */
561 pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
562 rvu_update_rsrc_map(rvu, pfvf, block,
563 (cfg >> 8) & 0xFFFF, lf, true);
564
565 /* Set start MSIX vector for this LF within this PF/VF */
566 rvu_set_msix_offset(rvu, pfvf, block, lf);
567 }
568 }
569
570 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
571 {
572 int min_vecs;
573
574 if (!vf)
575 goto check_pf;
576
577 if (!nvecs) {
578 dev_warn(rvu->dev,
579 "PF%d:VF%d is configured with zero msix vectors, %d\n",
580 pf, vf - 1, nvecs);
581 }
582 return;
583
584 check_pf:
585 if (pf == 0)
586 min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
587 else
588 min_vecs = RVU_PF_INT_VEC_CNT;
589
590 if (!(nvecs < min_vecs))
591 return;
592 dev_warn(rvu->dev,
593 "PF%d is configured with too few vectors, %d, min is %d\n",
594 pf, nvecs, min_vecs);
595 }
596
597 static int rvu_setup_msix_resources(struct rvu *rvu)
598 {
599 struct rvu_hwinfo *hw = rvu->hw;
600 int pf, vf, numvfs, hwvf, err;
601 int nvecs, offset, max_msix;
602 struct rvu_pfvf *pfvf;
603 u64 cfg, phy_addr;
604 dma_addr_t iova;
605
606 for (pf = 0; pf < hw->total_pfs; pf++) {
607 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
608 /* If PF is not enabled, nothing to do */
609 if (!((cfg >> 20) & 0x01))
610 continue;
611
612 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
613
614 pfvf = &rvu->pf[pf];
615 /* Get num of MSIX vectors attached to this PF */
616 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
617 pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
618 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
619
620 /* Alloc msix bitmap for this PF */
621 err = rvu_alloc_bitmap(&pfvf->msix);
622 if (err)
623 return err;
624
625 /* Allocate memory for MSIX vector to RVU block LF mapping */
626 pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
627 sizeof(u16), GFP_KERNEL);
628 if (!pfvf->msix_lfmap)
629 return -ENOMEM;
630
631 /* For PF0 (AF) firmware will set msix vector offsets for
632 * AF, block AF and PF0_INT vectors, so jump to VFs.
633 */
634 if (!pf)
635 goto setup_vfmsix;
636
637 /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
638 * These are allocated on driver init and never freed,
639 * so no need to set 'msix_lfmap' for these.
640 */
641 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
642 nvecs = (cfg >> 12) & 0xFF;
643 cfg &= ~0x7FFULL;
644 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
645 rvu_write64(rvu, BLKADDR_RVUM,
646 RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
647 setup_vfmsix:
648 /* Alloc msix bitmap for VFs */
649 for (vf = 0; vf < numvfs; vf++) {
650 pfvf = &rvu->hwvf[hwvf + vf];
651 /* Get num of MSIX vectors attached to this VF */
652 cfg = rvu_read64(rvu, BLKADDR_RVUM,
653 RVU_PRIV_PFX_MSIX_CFG(pf));
654 pfvf->msix.max = (cfg & 0xFFF) + 1;
655 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
656
657 /* Alloc msix bitmap for this VF */
658 err = rvu_alloc_bitmap(&pfvf->msix);
659 if (err)
660 return err;
661
662 pfvf->msix_lfmap =
663 devm_kcalloc(rvu->dev, pfvf->msix.max,
664 sizeof(u16), GFP_KERNEL);
665 if (!pfvf->msix_lfmap)
666 return -ENOMEM;
667
668 /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
669 * These are allocated on driver init and never freed,
670 * so no need to set 'msix_lfmap' for these.
671 */
672 cfg = rvu_read64(rvu, BLKADDR_RVUM,
673 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
674 nvecs = (cfg >> 12) & 0xFF;
675 cfg &= ~0x7FFULL;
676 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
677 rvu_write64(rvu, BLKADDR_RVUM,
678 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
679 cfg | offset);
680 }
681 }
682
683 /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
684 * create an IOMMU mapping for the physical address configured by
685 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
686 */
687 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
688 max_msix = cfg & 0xFFFFF;
689 if (rvu->fwdata && rvu->fwdata->msixtr_base)
690 phy_addr = rvu->fwdata->msixtr_base;
691 else
692 phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
693
694 iova = dma_map_resource(rvu->dev, phy_addr,
695 max_msix * PCI_MSIX_ENTRY_SIZE,
696 DMA_BIDIRECTIONAL, 0);
697
698 if (dma_mapping_error(rvu->dev, iova))
699 return -ENOMEM;
700
701 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
702 rvu->msix_base_iova = iova;
703 rvu->msixtr_base_phy = phy_addr;
704
705 return 0;
706 }
707
708 static void rvu_reset_msix(struct rvu *rvu)
709 {
710 /* Restore msixtr base register */
711 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
712 rvu->msixtr_base_phy);
713 }
714
715 static void rvu_free_hw_resources(struct rvu *rvu)
716 {
717 struct rvu_hwinfo *hw = rvu->hw;
718 struct rvu_block *block;
719 struct rvu_pfvf *pfvf;
720 int id, max_msix;
721 u64 cfg;
722
723 rvu_npa_freemem(rvu);
724 rvu_npc_freemem(rvu);
725 rvu_nix_freemem(rvu);
726
727 /* Free block LF bitmaps */
728 for (id = 0; id < BLK_COUNT; id++) {
729 block = &hw->block[id];
730 kfree(block->lf.bmap);
731 }
732
733 /* Free MSIX bitmaps */
734 for (id = 0; id < hw->total_pfs; id++) {
735 pfvf = &rvu->pf[id];
736 kfree(pfvf->msix.bmap);
737 }
738
739 for (id = 0; id < hw->total_vfs; id++) {
740 pfvf = &rvu->hwvf[id];
741 kfree(pfvf->msix.bmap);
742 }
743
744 /* Unmap MSIX vector base IOVA mapping */
745 if (!rvu->msix_base_iova)
746 return;
747 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
748 max_msix = cfg & 0xFFFFF;
749 dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
750 max_msix * PCI_MSIX_ENTRY_SIZE,
751 DMA_BIDIRECTIONAL, 0);
752
753 rvu_reset_msix(rvu);
754 mutex_destroy(&rvu->rsrc_lock);
755 }
756
757 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
758 {
759 struct rvu_hwinfo *hw = rvu->hw;
760 int pf, vf, numvfs, hwvf;
761 struct rvu_pfvf *pfvf;
762 u64 *mac;
763
764 for (pf = 0; pf < hw->total_pfs; pf++) {
765 /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
766 if (!pf)
767 goto lbkvf;
768
769 if (!is_pf_cgxmapped(rvu, pf))
770 continue;
771 /* Assign MAC address to PF */
772 pfvf = &rvu->pf[pf];
773 if (rvu->fwdata && pf < PF_MACNUM_MAX) {
774 mac = &rvu->fwdata->pf_macs[pf];
775 if (*mac)
776 u64_to_ether_addr(*mac, pfvf->mac_addr);
777 else
778 eth_random_addr(pfvf->mac_addr);
779 } else {
780 eth_random_addr(pfvf->mac_addr);
781 }
782 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
783
784 lbkvf:
785 /* Assign MAC address to VFs*/
786 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
787 for (vf = 0; vf < numvfs; vf++, hwvf++) {
788 pfvf = &rvu->hwvf[hwvf];
789 if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
790 mac = &rvu->fwdata->vf_macs[hwvf];
791 if (*mac)
792 u64_to_ether_addr(*mac, pfvf->mac_addr);
793 else
794 eth_random_addr(pfvf->mac_addr);
795 } else {
796 eth_random_addr(pfvf->mac_addr);
797 }
798 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
799 }
800 }
801 }
802
803 static int rvu_fwdata_init(struct rvu *rvu)
804 {
805 u64 fwdbase;
806 int err;
807
808 /* Get firmware data base address */
809 err = cgx_get_fwdata_base(&fwdbase);
810 if (err)
811 goto fail;
812 rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
813 if (!rvu->fwdata)
814 goto fail;
815 if (!is_rvu_fwdata_valid(rvu)) {
816 dev_err(rvu->dev,
817 "Mismatch in 'fwdata' struct btw kernel and firmware\n");
818 iounmap(rvu->fwdata);
819 rvu->fwdata = NULL;
820 return -EINVAL;
821 }
822 return 0;
823 fail:
824 dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
825 return -EIO;
826 }
827
828 static void rvu_fwdata_exit(struct rvu *rvu)
829 {
830 if (rvu->fwdata)
831 iounmap(rvu->fwdata);
832 }
833
834 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
835 {
836 struct rvu_hwinfo *hw = rvu->hw;
837 struct rvu_block *block;
838 int blkid;
839 u64 cfg;
840
841 /* Init NIX LF's bitmap */
842 block = &hw->block[blkaddr];
843 if (!block->implemented)
844 return 0;
845 blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
846 cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
847 block->lf.max = cfg & 0xFFF;
848 block->addr = blkaddr;
849 block->type = BLKTYPE_NIX;
850 block->lfshift = 8;
851 block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
852 block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
853 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
854 block->lfcfg_reg = NIX_PRIV_LFX_CFG;
855 block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
856 block->lfreset_reg = NIX_AF_LF_RST;
857 sprintf(block->name, "NIX%d", blkid);
858 rvu->nix_blkaddr[blkid] = blkaddr;
859 return rvu_alloc_bitmap(&block->lf);
860 }
861
862 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
863 {
864 struct rvu_hwinfo *hw = rvu->hw;
865 struct rvu_block *block;
866 int blkid;
867 u64 cfg;
868
869 /* Init CPT LF's bitmap */
870 block = &hw->block[blkaddr];
871 if (!block->implemented)
872 return 0;
873 blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
874 cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
875 block->lf.max = cfg & 0xFF;
876 block->addr = blkaddr;
877 block->type = BLKTYPE_CPT;
878 block->multislot = true;
879 block->lfshift = 3;
880 block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
881 block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
882 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
883 block->lfcfg_reg = CPT_PRIV_LFX_CFG;
884 block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
885 block->lfreset_reg = CPT_AF_LF_RST;
886 sprintf(block->name, "CPT%d", blkid);
887 return rvu_alloc_bitmap(&block->lf);
888 }
889
890 static void rvu_get_lbk_bufsize(struct rvu *rvu)
891 {
892 struct pci_dev *pdev = NULL;
893 void __iomem *base;
894 u64 lbk_const;
895
896 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
897 PCI_DEVID_OCTEONTX2_LBK, pdev);
898 if (!pdev)
899 return;
900
901 base = pci_ioremap_bar(pdev, 0);
902 if (!base)
903 goto err_put;
904
905 lbk_const = readq(base + LBK_CONST);
906
907 /* cache fifo size */
908 rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
909
910 iounmap(base);
911 err_put:
912 pci_dev_put(pdev);
913 }
914
915 static int rvu_setup_hw_resources(struct rvu *rvu)
916 {
917 struct rvu_hwinfo *hw = rvu->hw;
918 struct rvu_block *block;
919 int blkid, err;
920 u64 cfg;
921
922 /* Get HW supported max RVU PF & VF count */
923 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
924 hw->total_pfs = (cfg >> 32) & 0xFF;
925 hw->total_vfs = (cfg >> 20) & 0xFFF;
926 hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
927
928 /* Init NPA LF's bitmap */
929 block = &hw->block[BLKADDR_NPA];
930 if (!block->implemented)
931 goto nix;
932 cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
933 block->lf.max = (cfg >> 16) & 0xFFF;
934 block->addr = BLKADDR_NPA;
935 block->type = BLKTYPE_NPA;
936 block->lfshift = 8;
937 block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
938 block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
939 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
940 block->lfcfg_reg = NPA_PRIV_LFX_CFG;
941 block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
942 block->lfreset_reg = NPA_AF_LF_RST;
943 sprintf(block->name, "NPA");
944 err = rvu_alloc_bitmap(&block->lf);
945 if (err) {
946 dev_err(rvu->dev,
947 "%s: Failed to allocate NPA LF bitmap\n", __func__);
948 return err;
949 }
950
951 nix:
952 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
953 if (err) {
954 dev_err(rvu->dev,
955 "%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
956 return err;
957 }
958
959 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
960 if (err) {
961 dev_err(rvu->dev,
962 "%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
963 return err;
964 }
965
966 /* Init SSO group's bitmap */
967 block = &hw->block[BLKADDR_SSO];
968 if (!block->implemented)
969 goto ssow;
970 cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
971 block->lf.max = cfg & 0xFFFF;
972 block->addr = BLKADDR_SSO;
973 block->type = BLKTYPE_SSO;
974 block->multislot = true;
975 block->lfshift = 3;
976 block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
977 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
978 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
979 block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
980 block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
981 block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
982 sprintf(block->name, "SSO GROUP");
983 err = rvu_alloc_bitmap(&block->lf);
984 if (err) {
985 dev_err(rvu->dev,
986 "%s: Failed to allocate SSO LF bitmap\n", __func__);
987 return err;
988 }
989
990 ssow:
991 /* Init SSO workslot's bitmap */
992 block = &hw->block[BLKADDR_SSOW];
993 if (!block->implemented)
994 goto tim;
995 block->lf.max = (cfg >> 56) & 0xFF;
996 block->addr = BLKADDR_SSOW;
997 block->type = BLKTYPE_SSOW;
998 block->multislot = true;
999 block->lfshift = 3;
1000 block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1001 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1002 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1003 block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1004 block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1005 block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1006 sprintf(block->name, "SSOWS");
1007 err = rvu_alloc_bitmap(&block->lf);
1008 if (err) {
1009 dev_err(rvu->dev,
1010 "%s: Failed to allocate SSOW LF bitmap\n", __func__);
1011 return err;
1012 }
1013
1014 tim:
1015 /* Init TIM LF's bitmap */
1016 block = &hw->block[BLKADDR_TIM];
1017 if (!block->implemented)
1018 goto cpt;
1019 cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1020 block->lf.max = cfg & 0xFFFF;
1021 block->addr = BLKADDR_TIM;
1022 block->type = BLKTYPE_TIM;
1023 block->multislot = true;
1024 block->lfshift = 3;
1025 block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1026 block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1027 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1028 block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1029 block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1030 block->lfreset_reg = TIM_AF_LF_RST;
1031 sprintf(block->name, "TIM");
1032 err = rvu_alloc_bitmap(&block->lf);
1033 if (err) {
1034 dev_err(rvu->dev,
1035 "%s: Failed to allocate TIM LF bitmap\n", __func__);
1036 return err;
1037 }
1038
1039 cpt:
1040 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1041 if (err) {
1042 dev_err(rvu->dev,
1043 "%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1044 return err;
1045 }
1046 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1047 if (err) {
1048 dev_err(rvu->dev,
1049 "%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1050 return err;
1051 }
1052
1053 /* Allocate memory for PFVF data */
1054 rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1055 sizeof(struct rvu_pfvf), GFP_KERNEL);
1056 if (!rvu->pf) {
1057 dev_err(rvu->dev,
1058 "%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1059 return -ENOMEM;
1060 }
1061
1062 rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1063 sizeof(struct rvu_pfvf), GFP_KERNEL);
1064 if (!rvu->hwvf) {
1065 dev_err(rvu->dev,
1066 "%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1067 return -ENOMEM;
1068 }
1069
1070 mutex_init(&rvu->rsrc_lock);
1071
1072 rvu_fwdata_init(rvu);
1073
1074 err = rvu_setup_msix_resources(rvu);
1075 if (err) {
1076 dev_err(rvu->dev,
1077 "%s: Failed to setup MSIX resources\n", __func__);
1078 return err;
1079 }
1080
1081 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1082 block = &hw->block[blkid];
1083 if (!block->lf.bmap)
1084 continue;
1085
1086 /* Allocate memory for block LF/slot to pcifunc mapping info */
1087 block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1088 sizeof(u16), GFP_KERNEL);
1089 if (!block->fn_map) {
1090 err = -ENOMEM;
1091 goto msix_err;
1092 }
1093
1094 /* Scan all blocks to check if low level firmware has
1095 * already provisioned any of the resources to a PF/VF.
1096 */
1097 rvu_scan_block(rvu, block);
1098 }
1099
1100 err = rvu_set_channels_base(rvu);
1101 if (err)
1102 goto msix_err;
1103
1104 err = rvu_npc_init(rvu);
1105 if (err) {
1106 dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1107 goto npc_err;
1108 }
1109
1110 err = rvu_cgx_init(rvu);
1111 if (err) {
1112 dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1113 goto cgx_err;
1114 }
1115
1116 /* Assign MACs for CGX mapped functions */
1117 rvu_setup_pfvf_macaddress(rvu);
1118
1119 err = rvu_npa_init(rvu);
1120 if (err) {
1121 dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1122 goto npa_err;
1123 }
1124
1125 rvu_get_lbk_bufsize(rvu);
1126
1127 err = rvu_nix_init(rvu);
1128 if (err) {
1129 dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1130 goto nix_err;
1131 }
1132
1133 err = rvu_sdp_init(rvu);
1134 if (err) {
1135 dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1136 goto nix_err;
1137 }
1138
1139 rvu_program_channels(rvu);
1140
1141 return 0;
1142
1143 nix_err:
1144 rvu_nix_freemem(rvu);
1145 npa_err:
1146 rvu_npa_freemem(rvu);
1147 cgx_err:
1148 rvu_cgx_exit(rvu);
1149 npc_err:
1150 rvu_npc_freemem(rvu);
1151 rvu_fwdata_exit(rvu);
1152 msix_err:
1153 rvu_reset_msix(rvu);
1154 return err;
1155 }
1156
1157 /* NPA and NIX admin queue APIs */
1158 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1159 {
1160 if (!aq)
1161 return;
1162
1163 qmem_free(rvu->dev, aq->inst);
1164 qmem_free(rvu->dev, aq->res);
1165 devm_kfree(rvu->dev, aq);
1166 }
1167
1168 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1169 int qsize, int inst_size, int res_size)
1170 {
1171 struct admin_queue *aq;
1172 int err;
1173
1174 *ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1175 if (!*ad_queue)
1176 return -ENOMEM;
1177 aq = *ad_queue;
1178
1179 /* Alloc memory for instructions i.e AQ */
1180 err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1181 if (err) {
1182 devm_kfree(rvu->dev, aq);
1183 return err;
1184 }
1185
1186 /* Alloc memory for results */
1187 err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1188 if (err) {
1189 rvu_aq_free(rvu, aq);
1190 return err;
1191 }
1192
1193 spin_lock_init(&aq->lock);
1194 return 0;
1195 }
1196
1197 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1198 struct ready_msg_rsp *rsp)
1199 {
1200 if (rvu->fwdata) {
1201 rsp->rclk_freq = rvu->fwdata->rclk;
1202 rsp->sclk_freq = rvu->fwdata->sclk;
1203 }
1204 return 0;
1205 }
1206
1207 /* Get current count of a RVU block's LF/slots
1208 * provisioned to a given RVU func.
1209 */
1210 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1211 {
1212 switch (blkaddr) {
1213 case BLKADDR_NPA:
1214 return pfvf->npalf ? 1 : 0;
1215 case BLKADDR_NIX0:
1216 case BLKADDR_NIX1:
1217 return pfvf->nixlf ? 1 : 0;
1218 case BLKADDR_SSO:
1219 return pfvf->sso;
1220 case BLKADDR_SSOW:
1221 return pfvf->ssow;
1222 case BLKADDR_TIM:
1223 return pfvf->timlfs;
1224 case BLKADDR_CPT0:
1225 return pfvf->cptlfs;
1226 case BLKADDR_CPT1:
1227 return pfvf->cpt1_lfs;
1228 }
1229 return 0;
1230 }
1231
1232 /* Return true if LFs of block type are attached to pcifunc */
1233 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1234 {
1235 switch (blktype) {
1236 case BLKTYPE_NPA:
1237 return pfvf->npalf ? 1 : 0;
1238 case BLKTYPE_NIX:
1239 return pfvf->nixlf ? 1 : 0;
1240 case BLKTYPE_SSO:
1241 return !!pfvf->sso;
1242 case BLKTYPE_SSOW:
1243 return !!pfvf->ssow;
1244 case BLKTYPE_TIM:
1245 return !!pfvf->timlfs;
1246 case BLKTYPE_CPT:
1247 return pfvf->cptlfs || pfvf->cpt1_lfs;
1248 }
1249
1250 return false;
1251 }
1252
1253 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1254 {
1255 struct rvu_pfvf *pfvf;
1256
1257 if (!is_pf_func_valid(rvu, pcifunc))
1258 return false;
1259
1260 pfvf = rvu_get_pfvf(rvu, pcifunc);
1261
1262 /* Check if this PFFUNC has a LF of type blktype attached */
1263 if (!is_blktype_attached(pfvf, blktype))
1264 return false;
1265
1266 return true;
1267 }
1268
1269 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1270 int pcifunc, int slot)
1271 {
1272 u64 val;
1273
1274 val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1275 rvu_write64(rvu, block->addr, block->lookup_reg, val);
1276 /* Wait for the lookup to finish */
1277 /* TODO: put some timeout here */
1278 while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1279 ;
1280
1281 val = rvu_read64(rvu, block->addr, block->lookup_reg);
1282
1283 /* Check LF valid bit */
1284 if (!(val & (1ULL << 12)))
1285 return -1;
1286
1287 return (val & 0xFFF);
1288 }
1289
1290 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1291 {
1292 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1293 struct rvu_hwinfo *hw = rvu->hw;
1294 struct rvu_block *block;
1295 int slot, lf, num_lfs;
1296 int blkaddr;
1297
1298 blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1299 if (blkaddr < 0)
1300 return;
1301
1302 if (blktype == BLKTYPE_NIX)
1303 rvu_nix_reset_mac(pfvf, pcifunc);
1304
1305 block = &hw->block[blkaddr];
1306
1307 num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1308 if (!num_lfs)
1309 return;
1310
1311 for (slot = 0; slot < num_lfs; slot++) {
1312 lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1313 if (lf < 0) /* This should never happen */
1314 continue;
1315
1316 /* Disable the LF */
1317 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1318 (lf << block->lfshift), 0x00ULL);
1319
1320 /* Update SW maintained mapping info as well */
1321 rvu_update_rsrc_map(rvu, pfvf, block,
1322 pcifunc, lf, false);
1323
1324 /* Free the resource */
1325 rvu_free_rsrc(&block->lf, lf);
1326
1327 /* Clear MSIX vector offset for this LF */
1328 rvu_clear_msix_offset(rvu, pfvf, block, lf);
1329 }
1330 }
1331
1332 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1333 u16 pcifunc)
1334 {
1335 struct rvu_hwinfo *hw = rvu->hw;
1336 bool detach_all = true;
1337 struct rvu_block *block;
1338 int blkid;
1339
1340 mutex_lock(&rvu->rsrc_lock);
1341
1342 /* Check for partial resource detach */
1343 if (detach && detach->partial)
1344 detach_all = false;
1345
1346 /* Check for RVU block's LFs attached to this func,
1347 * if so, detach them.
1348 */
1349 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1350 block = &hw->block[blkid];
1351 if (!block->lf.bmap)
1352 continue;
1353 if (!detach_all && detach) {
1354 if (blkid == BLKADDR_NPA && !detach->npalf)
1355 continue;
1356 else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1357 continue;
1358 else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1359 continue;
1360 else if ((blkid == BLKADDR_SSO) && !detach->sso)
1361 continue;
1362 else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1363 continue;
1364 else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1365 continue;
1366 else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1367 continue;
1368 else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1369 continue;
1370 }
1371 rvu_detach_block(rvu, pcifunc, block->type);
1372 }
1373
1374 mutex_unlock(&rvu->rsrc_lock);
1375 return 0;
1376 }
1377
1378 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1379 struct rsrc_detach *detach,
1380 struct msg_rsp *rsp)
1381 {
1382 return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1383 }
1384
1385 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1386 {
1387 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1388 int blkaddr = BLKADDR_NIX0, vf;
1389 struct rvu_pfvf *pf;
1390
1391 pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1392
1393 /* All CGX mapped PFs are set with assigned NIX block during init */
1394 if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1395 blkaddr = pf->nix_blkaddr;
1396 } else if (is_afvf(pcifunc)) {
1397 vf = pcifunc - 1;
1398 /* Assign NIX based on VF number. All even numbered VFs get
1399 * NIX0 and odd numbered gets NIX1
1400 */
1401 blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1402 /* NIX1 is not present on all silicons */
1403 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1404 blkaddr = BLKADDR_NIX0;
1405 }
1406
1407 /* if SDP1 then the blkaddr is NIX1 */
1408 if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1409 blkaddr = BLKADDR_NIX1;
1410
1411 switch (blkaddr) {
1412 case BLKADDR_NIX1:
1413 pfvf->nix_blkaddr = BLKADDR_NIX1;
1414 pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1415 pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1416 break;
1417 case BLKADDR_NIX0:
1418 default:
1419 pfvf->nix_blkaddr = BLKADDR_NIX0;
1420 pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1421 pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1422 break;
1423 }
1424
1425 return pfvf->nix_blkaddr;
1426 }
1427
1428 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1429 u16 pcifunc, struct rsrc_attach *attach)
1430 {
1431 int blkaddr;
1432
1433 switch (blktype) {
1434 case BLKTYPE_NIX:
1435 blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1436 break;
1437 case BLKTYPE_CPT:
1438 if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1439 return rvu_get_blkaddr(rvu, blktype, 0);
1440 blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1441 BLKADDR_CPT0;
1442 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1443 return -ENODEV;
1444 break;
1445 default:
1446 return rvu_get_blkaddr(rvu, blktype, 0);
1447 }
1448
1449 if (is_block_implemented(rvu->hw, blkaddr))
1450 return blkaddr;
1451
1452 return -ENODEV;
1453 }
1454
1455 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1456 int num_lfs, struct rsrc_attach *attach)
1457 {
1458 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1459 struct rvu_hwinfo *hw = rvu->hw;
1460 struct rvu_block *block;
1461 int slot, lf;
1462 int blkaddr;
1463 u64 cfg;
1464
1465 if (!num_lfs)
1466 return;
1467
1468 blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1469 if (blkaddr < 0)
1470 return;
1471
1472 block = &hw->block[blkaddr];
1473 if (!block->lf.bmap)
1474 return;
1475
1476 for (slot = 0; slot < num_lfs; slot++) {
1477 /* Allocate the resource */
1478 lf = rvu_alloc_rsrc(&block->lf);
1479 if (lf < 0)
1480 return;
1481
1482 cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1483 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1484 (lf << block->lfshift), cfg);
1485 rvu_update_rsrc_map(rvu, pfvf, block,
1486 pcifunc, lf, true);
1487
1488 /* Set start MSIX vector for this LF within this PF/VF */
1489 rvu_set_msix_offset(rvu, pfvf, block, lf);
1490 }
1491 }
1492
1493 static int rvu_check_rsrc_availability(struct rvu *rvu,
1494 struct rsrc_attach *req, u16 pcifunc)
1495 {
1496 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1497 int free_lfs, mappedlfs, blkaddr;
1498 struct rvu_hwinfo *hw = rvu->hw;
1499 struct rvu_block *block;
1500
1501 /* Only one NPA LF can be attached */
1502 if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1503 block = &hw->block[BLKADDR_NPA];
1504 free_lfs = rvu_rsrc_free_count(&block->lf);
1505 if (!free_lfs)
1506 goto fail;
1507 } else if (req->npalf) {
1508 dev_err(&rvu->pdev->dev,
1509 "Func 0x%x: Invalid req, already has NPA\n",
1510 pcifunc);
1511 return -EINVAL;
1512 }
1513
1514 /* Only one NIX LF can be attached */
1515 if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1516 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1517 pcifunc, req);
1518 if (blkaddr < 0)
1519 return blkaddr;
1520 block = &hw->block[blkaddr];
1521 free_lfs = rvu_rsrc_free_count(&block->lf);
1522 if (!free_lfs)
1523 goto fail;
1524 } else if (req->nixlf) {
1525 dev_err(&rvu->pdev->dev,
1526 "Func 0x%x: Invalid req, already has NIX\n",
1527 pcifunc);
1528 return -EINVAL;
1529 }
1530
1531 if (req->sso) {
1532 block = &hw->block[BLKADDR_SSO];
1533 /* Is request within limits ? */
1534 if (req->sso > block->lf.max) {
1535 dev_err(&rvu->pdev->dev,
1536 "Func 0x%x: Invalid SSO req, %d > max %d\n",
1537 pcifunc, req->sso, block->lf.max);
1538 return -EINVAL;
1539 }
1540 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1541 free_lfs = rvu_rsrc_free_count(&block->lf);
1542 /* Check if additional resources are available */
1543 if (req->sso > mappedlfs &&
1544 ((req->sso - mappedlfs) > free_lfs))
1545 goto fail;
1546 }
1547
1548 if (req->ssow) {
1549 block = &hw->block[BLKADDR_SSOW];
1550 if (req->ssow > block->lf.max) {
1551 dev_err(&rvu->pdev->dev,
1552 "Func 0x%x: Invalid SSOW req, %d > max %d\n",
1553 pcifunc, req->sso, block->lf.max);
1554 return -EINVAL;
1555 }
1556 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1557 free_lfs = rvu_rsrc_free_count(&block->lf);
1558 if (req->ssow > mappedlfs &&
1559 ((req->ssow - mappedlfs) > free_lfs))
1560 goto fail;
1561 }
1562
1563 if (req->timlfs) {
1564 block = &hw->block[BLKADDR_TIM];
1565 if (req->timlfs > block->lf.max) {
1566 dev_err(&rvu->pdev->dev,
1567 "Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1568 pcifunc, req->timlfs, block->lf.max);
1569 return -EINVAL;
1570 }
1571 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1572 free_lfs = rvu_rsrc_free_count(&block->lf);
1573 if (req->timlfs > mappedlfs &&
1574 ((req->timlfs - mappedlfs) > free_lfs))
1575 goto fail;
1576 }
1577
1578 if (req->cptlfs) {
1579 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1580 pcifunc, req);
1581 if (blkaddr < 0)
1582 return blkaddr;
1583 block = &hw->block[blkaddr];
1584 if (req->cptlfs > block->lf.max) {
1585 dev_err(&rvu->pdev->dev,
1586 "Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1587 pcifunc, req->cptlfs, block->lf.max);
1588 return -EINVAL;
1589 }
1590 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1591 free_lfs = rvu_rsrc_free_count(&block->lf);
1592 if (req->cptlfs > mappedlfs &&
1593 ((req->cptlfs - mappedlfs) > free_lfs))
1594 goto fail;
1595 }
1596
1597 return 0;
1598
1599 fail:
1600 dev_info(rvu->dev, "Request for %s failed\n", block->name);
1601 return -ENOSPC;
1602 }
1603
1604 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1605 struct rsrc_attach *attach)
1606 {
1607 int blkaddr, num_lfs;
1608
1609 blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1610 attach->hdr.pcifunc, attach);
1611 if (blkaddr < 0)
1612 return false;
1613
1614 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1615 blkaddr);
1616 /* Requester already has LFs from given block ? */
1617 return !!num_lfs;
1618 }
1619
1620 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1621 struct rsrc_attach *attach,
1622 struct msg_rsp *rsp)
1623 {
1624 u16 pcifunc = attach->hdr.pcifunc;
1625 int err;
1626
1627 /* If first request, detach all existing attached resources */
1628 if (!attach->modify)
1629 rvu_detach_rsrcs(rvu, NULL, pcifunc);
1630
1631 mutex_lock(&rvu->rsrc_lock);
1632
1633 /* Check if the request can be accommodated */
1634 err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1635 if (err)
1636 goto exit;
1637
1638 /* Now attach the requested resources */
1639 if (attach->npalf)
1640 rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1641
1642 if (attach->nixlf)
1643 rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1644
1645 if (attach->sso) {
1646 /* RVU func doesn't know which exact LF or slot is attached
1647 * to it, it always sees as slot 0,1,2. So for a 'modify'
1648 * request, simply detach all existing attached LFs/slots
1649 * and attach a fresh.
1650 */
1651 if (attach->modify)
1652 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1653 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1654 attach->sso, attach);
1655 }
1656
1657 if (attach->ssow) {
1658 if (attach->modify)
1659 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1660 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1661 attach->ssow, attach);
1662 }
1663
1664 if (attach->timlfs) {
1665 if (attach->modify)
1666 rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1667 rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1668 attach->timlfs, attach);
1669 }
1670
1671 if (attach->cptlfs) {
1672 if (attach->modify &&
1673 rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1674 rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1675 rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1676 attach->cptlfs, attach);
1677 }
1678
1679 exit:
1680 mutex_unlock(&rvu->rsrc_lock);
1681 return err;
1682 }
1683
1684 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1685 int blkaddr, int lf)
1686 {
1687 u16 vec;
1688
1689 if (lf < 0)
1690 return MSIX_VECTOR_INVALID;
1691
1692 for (vec = 0; vec < pfvf->msix.max; vec++) {
1693 if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1694 return vec;
1695 }
1696 return MSIX_VECTOR_INVALID;
1697 }
1698
1699 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1700 struct rvu_block *block, int lf)
1701 {
1702 u16 nvecs, vec, offset;
1703 u64 cfg;
1704
1705 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1706 (lf << block->lfshift));
1707 nvecs = (cfg >> 12) & 0xFF;
1708
1709 /* Check and alloc MSIX vectors, must be contiguous */
1710 if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1711 return;
1712
1713 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1714
1715 /* Config MSIX offset in LF */
1716 rvu_write64(rvu, block->addr, block->msixcfg_reg |
1717 (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1718
1719 /* Update the bitmap as well */
1720 for (vec = 0; vec < nvecs; vec++)
1721 pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1722 }
1723
1724 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1725 struct rvu_block *block, int lf)
1726 {
1727 u16 nvecs, vec, offset;
1728 u64 cfg;
1729
1730 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1731 (lf << block->lfshift));
1732 nvecs = (cfg >> 12) & 0xFF;
1733
1734 /* Clear MSIX offset in LF */
1735 rvu_write64(rvu, block->addr, block->msixcfg_reg |
1736 (lf << block->lfshift), cfg & ~0x7FFULL);
1737
1738 offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1739
1740 /* Update the mapping */
1741 for (vec = 0; vec < nvecs; vec++)
1742 pfvf->msix_lfmap[offset + vec] = 0;
1743
1744 /* Free the same in MSIX bitmap */
1745 rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1746 }
1747
1748 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1749 struct msix_offset_rsp *rsp)
1750 {
1751 struct rvu_hwinfo *hw = rvu->hw;
1752 u16 pcifunc = req->hdr.pcifunc;
1753 struct rvu_pfvf *pfvf;
1754 int lf, slot, blkaddr;
1755
1756 pfvf = rvu_get_pfvf(rvu, pcifunc);
1757 if (!pfvf->msix.bmap)
1758 return 0;
1759
1760 /* Set MSIX offsets for each block's LFs attached to this PF/VF */
1761 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1762 rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1763
1764 /* Get BLKADDR from which LFs are attached to pcifunc */
1765 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1766 if (blkaddr < 0) {
1767 rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1768 } else {
1769 lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1770 rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1771 }
1772
1773 rsp->sso = pfvf->sso;
1774 for (slot = 0; slot < rsp->sso; slot++) {
1775 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1776 rsp->sso_msixoff[slot] =
1777 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1778 }
1779
1780 rsp->ssow = pfvf->ssow;
1781 for (slot = 0; slot < rsp->ssow; slot++) {
1782 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1783 rsp->ssow_msixoff[slot] =
1784 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1785 }
1786
1787 rsp->timlfs = pfvf->timlfs;
1788 for (slot = 0; slot < rsp->timlfs; slot++) {
1789 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1790 rsp->timlf_msixoff[slot] =
1791 rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1792 }
1793
1794 rsp->cptlfs = pfvf->cptlfs;
1795 for (slot = 0; slot < rsp->cptlfs; slot++) {
1796 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1797 rsp->cptlf_msixoff[slot] =
1798 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1799 }
1800
1801 rsp->cpt1_lfs = pfvf->cpt1_lfs;
1802 for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1803 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1804 rsp->cpt1_lf_msixoff[slot] =
1805 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1806 }
1807
1808 return 0;
1809 }
1810
1811 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1812 struct free_rsrcs_rsp *rsp)
1813 {
1814 struct rvu_hwinfo *hw = rvu->hw;
1815 struct rvu_block *block;
1816 struct nix_txsch *txsch;
1817 struct nix_hw *nix_hw;
1818
1819 mutex_lock(&rvu->rsrc_lock);
1820
1821 block = &hw->block[BLKADDR_NPA];
1822 rsp->npa = rvu_rsrc_free_count(&block->lf);
1823
1824 block = &hw->block[BLKADDR_NIX0];
1825 rsp->nix = rvu_rsrc_free_count(&block->lf);
1826
1827 block = &hw->block[BLKADDR_NIX1];
1828 rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1829
1830 block = &hw->block[BLKADDR_SSO];
1831 rsp->sso = rvu_rsrc_free_count(&block->lf);
1832
1833 block = &hw->block[BLKADDR_SSOW];
1834 rsp->ssow = rvu_rsrc_free_count(&block->lf);
1835
1836 block = &hw->block[BLKADDR_TIM];
1837 rsp->tim = rvu_rsrc_free_count(&block->lf);
1838
1839 block = &hw->block[BLKADDR_CPT0];
1840 rsp->cpt = rvu_rsrc_free_count(&block->lf);
1841
1842 block = &hw->block[BLKADDR_CPT1];
1843 rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1844
1845 if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1846 rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1847 rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1848 rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1849 rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1850 /* NIX1 */
1851 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1852 goto out;
1853 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1854 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1855 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1856 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1857 } else {
1858 nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1859 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1860 rsp->schq[NIX_TXSCH_LVL_SMQ] =
1861 rvu_rsrc_free_count(&txsch->schq);
1862
1863 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1864 rsp->schq[NIX_TXSCH_LVL_TL4] =
1865 rvu_rsrc_free_count(&txsch->schq);
1866
1867 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1868 rsp->schq[NIX_TXSCH_LVL_TL3] =
1869 rvu_rsrc_free_count(&txsch->schq);
1870
1871 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1872 rsp->schq[NIX_TXSCH_LVL_TL2] =
1873 rvu_rsrc_free_count(&txsch->schq);
1874
1875 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1876 goto out;
1877
1878 nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1879 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1880 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1881 rvu_rsrc_free_count(&txsch->schq);
1882
1883 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1884 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1885 rvu_rsrc_free_count(&txsch->schq);
1886
1887 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1888 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1889 rvu_rsrc_free_count(&txsch->schq);
1890
1891 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1892 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1893 rvu_rsrc_free_count(&txsch->schq);
1894 }
1895
1896 rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1897 out:
1898 rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1899 mutex_unlock(&rvu->rsrc_lock);
1900
1901 return 0;
1902 }
1903
1904 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1905 struct msg_rsp *rsp)
1906 {
1907 u16 pcifunc = req->hdr.pcifunc;
1908 u16 vf, numvfs;
1909 u64 cfg;
1910
1911 vf = pcifunc & RVU_PFVF_FUNC_MASK;
1912 cfg = rvu_read64(rvu, BLKADDR_RVUM,
1913 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1914 numvfs = (cfg >> 12) & 0xFF;
1915
1916 if (vf && vf <= numvfs)
1917 __rvu_flr_handler(rvu, pcifunc);
1918 else
1919 return RVU_INVALID_VF_ID;
1920
1921 return 0;
1922 }
1923
1924 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1925 struct get_hw_cap_rsp *rsp)
1926 {
1927 struct rvu_hwinfo *hw = rvu->hw;
1928
1929 rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1930 rsp->nix_shaping = hw->cap.nix_shaping;
1931
1932 return 0;
1933 }
1934
1935 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1936 struct msg_rsp *rsp)
1937 {
1938 struct rvu_hwinfo *hw = rvu->hw;
1939 u16 pcifunc = req->hdr.pcifunc;
1940 struct rvu_pfvf *pfvf;
1941 int blkaddr, nixlf;
1942 u16 target;
1943
1944 /* Only PF can add VF permissions */
1945 if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
1946 return -EOPNOTSUPP;
1947
1948 target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
1949 pfvf = rvu_get_pfvf(rvu, target);
1950
1951 if (req->flags & RESET_VF_PERM) {
1952 pfvf->flags &= RVU_CLEAR_VF_PERM;
1953 } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
1954 (req->flags & VF_TRUSTED)) {
1955 change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
1956 /* disable multicast and promisc entries */
1957 if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
1958 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
1959 if (blkaddr < 0)
1960 return 0;
1961 nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
1962 target, 0);
1963 if (nixlf < 0)
1964 return 0;
1965 npc_enadis_default_mce_entry(rvu, target, nixlf,
1966 NIXLF_ALLMULTI_ENTRY,
1967 false);
1968 npc_enadis_default_mce_entry(rvu, target, nixlf,
1969 NIXLF_PROMISC_ENTRY,
1970 false);
1971 }
1972 }
1973
1974 return 0;
1975 }
1976
1977 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1978 struct mbox_msghdr *req)
1979 {
1980 struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1981
1982 /* Check if valid, if not reply with a invalid msg */
1983 if (req->sig != OTX2_MBOX_REQ_SIG)
1984 goto bad_message;
1985
1986 switch (req->id) {
1987 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
1988 case _id: { \
1989 struct _rsp_type *rsp; \
1990 int err; \
1991 \
1992 rsp = (struct _rsp_type *)otx2_mbox_alloc_msg( \
1993 mbox, devid, \
1994 sizeof(struct _rsp_type)); \
1995 /* some handlers should complete even if reply */ \
1996 /* could not be allocated */ \
1997 if (!rsp && \
1998 _id != MBOX_MSG_DETACH_RESOURCES && \
1999 _id != MBOX_MSG_NIX_TXSCH_FREE && \
2000 _id != MBOX_MSG_VF_FLR) \
2001 return -ENOMEM; \
2002 if (rsp) { \
2003 rsp->hdr.id = _id; \
2004 rsp->hdr.sig = OTX2_MBOX_RSP_SIG; \
2005 rsp->hdr.pcifunc = req->pcifunc; \
2006 rsp->hdr.rc = 0; \
2007 } \
2008 \
2009 err = rvu_mbox_handler_ ## _fn_name(rvu, \
2010 (struct _req_type *)req, \
2011 rsp); \
2012 if (rsp && err) \
2013 rsp->hdr.rc = err; \
2014 \
2015 trace_otx2_msg_process(mbox->pdev, _id, err); \
2016 return rsp ? err : -ENOMEM; \
2017 }
2018 MBOX_MESSAGES
2019 #undef M
2020
2021 bad_message:
2022 default:
2023 otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2024 return -ENODEV;
2025 }
2026 }
2027
2028 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2029 {
2030 struct rvu *rvu = mwork->rvu;
2031 int offset, err, id, devid;
2032 struct otx2_mbox_dev *mdev;
2033 struct mbox_hdr *req_hdr;
2034 struct mbox_msghdr *msg;
2035 struct mbox_wq_info *mw;
2036 struct otx2_mbox *mbox;
2037
2038 switch (type) {
2039 case TYPE_AFPF:
2040 mw = &rvu->afpf_wq_info;
2041 break;
2042 case TYPE_AFVF:
2043 mw = &rvu->afvf_wq_info;
2044 break;
2045 default:
2046 return;
2047 }
2048
2049 devid = mwork - mw->mbox_wrk;
2050 mbox = &mw->mbox;
2051 mdev = &mbox->dev[devid];
2052
2053 /* Process received mbox messages */
2054 req_hdr = mdev->mbase + mbox->rx_start;
2055 if (mw->mbox_wrk[devid].num_msgs == 0)
2056 return;
2057
2058 offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2059
2060 for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2061 msg = mdev->mbase + offset;
2062
2063 /* Set which PF/VF sent this message based on mbox IRQ */
2064 switch (type) {
2065 case TYPE_AFPF:
2066 msg->pcifunc &=
2067 ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2068 msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2069 break;
2070 case TYPE_AFVF:
2071 msg->pcifunc &=
2072 ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2073 msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2074 break;
2075 }
2076
2077 err = rvu_process_mbox_msg(mbox, devid, msg);
2078 if (!err) {
2079 offset = mbox->rx_start + msg->next_msgoff;
2080 continue;
2081 }
2082
2083 if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2084 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2085 err, otx2_mbox_id2name(msg->id),
2086 msg->id, rvu_get_pf(msg->pcifunc),
2087 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2088 else
2089 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2090 err, otx2_mbox_id2name(msg->id),
2091 msg->id, devid);
2092 }
2093 mw->mbox_wrk[devid].num_msgs = 0;
2094
2095 /* Send mbox responses to VF/PF */
2096 otx2_mbox_msg_send(mbox, devid);
2097 }
2098
2099 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2100 {
2101 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2102
2103 __rvu_mbox_handler(mwork, TYPE_AFPF);
2104 }
2105
2106 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2107 {
2108 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2109
2110 __rvu_mbox_handler(mwork, TYPE_AFVF);
2111 }
2112
2113 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2114 {
2115 struct rvu *rvu = mwork->rvu;
2116 struct otx2_mbox_dev *mdev;
2117 struct mbox_hdr *rsp_hdr;
2118 struct mbox_msghdr *msg;
2119 struct mbox_wq_info *mw;
2120 struct otx2_mbox *mbox;
2121 int offset, id, devid;
2122
2123 switch (type) {
2124 case TYPE_AFPF:
2125 mw = &rvu->afpf_wq_info;
2126 break;
2127 case TYPE_AFVF:
2128 mw = &rvu->afvf_wq_info;
2129 break;
2130 default:
2131 return;
2132 }
2133
2134 devid = mwork - mw->mbox_wrk_up;
2135 mbox = &mw->mbox_up;
2136 mdev = &mbox->dev[devid];
2137
2138 rsp_hdr = mdev->mbase + mbox->rx_start;
2139 if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2140 dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2141 return;
2142 }
2143
2144 offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2145
2146 for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2147 msg = mdev->mbase + offset;
2148
2149 if (msg->id >= MBOX_MSG_MAX) {
2150 dev_err(rvu->dev,
2151 "Mbox msg with unknown ID 0x%x\n", msg->id);
2152 goto end;
2153 }
2154
2155 if (msg->sig != OTX2_MBOX_RSP_SIG) {
2156 dev_err(rvu->dev,
2157 "Mbox msg with wrong signature %x, ID 0x%x\n",
2158 msg->sig, msg->id);
2159 goto end;
2160 }
2161
2162 switch (msg->id) {
2163 case MBOX_MSG_CGX_LINK_EVENT:
2164 break;
2165 default:
2166 if (msg->rc)
2167 dev_err(rvu->dev,
2168 "Mbox msg response has err %d, ID 0x%x\n",
2169 msg->rc, msg->id);
2170 break;
2171 }
2172 end:
2173 offset = mbox->rx_start + msg->next_msgoff;
2174 mdev->msgs_acked++;
2175 }
2176 mw->mbox_wrk_up[devid].up_num_msgs = 0;
2177
2178 otx2_mbox_reset(mbox, devid);
2179 }
2180
2181 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2182 {
2183 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2184
2185 __rvu_mbox_up_handler(mwork, TYPE_AFPF);
2186 }
2187
2188 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2189 {
2190 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2191
2192 __rvu_mbox_up_handler(mwork, TYPE_AFVF);
2193 }
2194
2195 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2196 int num, int type)
2197 {
2198 struct rvu_hwinfo *hw = rvu->hw;
2199 int region;
2200 u64 bar4;
2201
2202 /* For cn10k platform VF mailbox regions of a PF follows after the
2203 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2204 * RVU_PF_VF_BAR4_ADDR register.
2205 */
2206 if (type == TYPE_AFVF) {
2207 for (region = 0; region < num; region++) {
2208 if (hw->cap.per_pf_mbox_regs) {
2209 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2210 RVU_AF_PFX_BAR4_ADDR(0)) +
2211 MBOX_SIZE;
2212 bar4 += region * MBOX_SIZE;
2213 } else {
2214 bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2215 bar4 += region * MBOX_SIZE;
2216 }
2217 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2218 if (!mbox_addr[region])
2219 goto error;
2220 }
2221 return 0;
2222 }
2223
2224 /* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2225 * PF registers. Whereas for Octeontx2 it is read from
2226 * RVU_AF_PF_BAR4_ADDR register.
2227 */
2228 for (region = 0; region < num; region++) {
2229 if (hw->cap.per_pf_mbox_regs) {
2230 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2231 RVU_AF_PFX_BAR4_ADDR(region));
2232 } else {
2233 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2234 RVU_AF_PF_BAR4_ADDR);
2235 bar4 += region * MBOX_SIZE;
2236 }
2237 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2238 if (!mbox_addr[region])
2239 goto error;
2240 }
2241 return 0;
2242
2243 error:
2244 while (region--)
2245 iounmap((void __iomem *)mbox_addr[region]);
2246 return -ENOMEM;
2247 }
2248
2249 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2250 int type, int num,
2251 void (mbox_handler)(struct work_struct *),
2252 void (mbox_up_handler)(struct work_struct *))
2253 {
2254 int err = -EINVAL, i, dir, dir_up;
2255 void __iomem *reg_base;
2256 struct rvu_work *mwork;
2257 void **mbox_regions;
2258 const char *name;
2259
2260 mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2261 if (!mbox_regions)
2262 return -ENOMEM;
2263
2264 switch (type) {
2265 case TYPE_AFPF:
2266 name = "rvu_afpf_mailbox";
2267 dir = MBOX_DIR_AFPF;
2268 dir_up = MBOX_DIR_AFPF_UP;
2269 reg_base = rvu->afreg_base;
2270 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2271 if (err)
2272 goto free_regions;
2273 break;
2274 case TYPE_AFVF:
2275 name = "rvu_afvf_mailbox";
2276 dir = MBOX_DIR_PFVF;
2277 dir_up = MBOX_DIR_PFVF_UP;
2278 reg_base = rvu->pfreg_base;
2279 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2280 if (err)
2281 goto free_regions;
2282 break;
2283 default:
2284 goto free_regions;
2285 }
2286
2287 mw->mbox_wq = alloc_workqueue(name,
2288 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2289 num);
2290 if (!mw->mbox_wq) {
2291 err = -ENOMEM;
2292 goto unmap_regions;
2293 }
2294
2295 mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2296 sizeof(struct rvu_work), GFP_KERNEL);
2297 if (!mw->mbox_wrk) {
2298 err = -ENOMEM;
2299 goto exit;
2300 }
2301
2302 mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2303 sizeof(struct rvu_work), GFP_KERNEL);
2304 if (!mw->mbox_wrk_up) {
2305 err = -ENOMEM;
2306 goto exit;
2307 }
2308
2309 err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2310 reg_base, dir, num);
2311 if (err)
2312 goto exit;
2313
2314 err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2315 reg_base, dir_up, num);
2316 if (err)
2317 goto exit;
2318
2319 for (i = 0; i < num; i++) {
2320 mwork = &mw->mbox_wrk[i];
2321 mwork->rvu = rvu;
2322 INIT_WORK(&mwork->work, mbox_handler);
2323
2324 mwork = &mw->mbox_wrk_up[i];
2325 mwork->rvu = rvu;
2326 INIT_WORK(&mwork->work, mbox_up_handler);
2327 }
2328 kfree(mbox_regions);
2329 return 0;
2330
2331 exit:
2332 destroy_workqueue(mw->mbox_wq);
2333 unmap_regions:
2334 while (num--)
2335 iounmap((void __iomem *)mbox_regions[num]);
2336 free_regions:
2337 kfree(mbox_regions);
2338 return err;
2339 }
2340
2341 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2342 {
2343 struct otx2_mbox *mbox = &mw->mbox;
2344 struct otx2_mbox_dev *mdev;
2345 int devid;
2346
2347 if (mw->mbox_wq) {
2348 flush_workqueue(mw->mbox_wq);
2349 destroy_workqueue(mw->mbox_wq);
2350 mw->mbox_wq = NULL;
2351 }
2352
2353 for (devid = 0; devid < mbox->ndevs; devid++) {
2354 mdev = &mbox->dev[devid];
2355 if (mdev->hwbase)
2356 iounmap((void __iomem *)mdev->hwbase);
2357 }
2358
2359 otx2_mbox_destroy(&mw->mbox);
2360 otx2_mbox_destroy(&mw->mbox_up);
2361 }
2362
2363 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2364 int mdevs, u64 intr)
2365 {
2366 struct otx2_mbox_dev *mdev;
2367 struct otx2_mbox *mbox;
2368 struct mbox_hdr *hdr;
2369 int i;
2370
2371 for (i = first; i < mdevs; i++) {
2372 /* start from 0 */
2373 if (!(intr & BIT_ULL(i - first)))
2374 continue;
2375
2376 mbox = &mw->mbox;
2377 mdev = &mbox->dev[i];
2378 hdr = mdev->mbase + mbox->rx_start;
2379
2380 /*The hdr->num_msgs is set to zero immediately in the interrupt
2381 * handler to ensure that it holds a correct value next time
2382 * when the interrupt handler is called.
2383 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2384 * pf>mbox.up_num_msgs holds the data for use in
2385 * pfaf_mbox_up_handler.
2386 */
2387
2388 if (hdr->num_msgs) {
2389 mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2390 hdr->num_msgs = 0;
2391 queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2392 }
2393 mbox = &mw->mbox_up;
2394 mdev = &mbox->dev[i];
2395 hdr = mdev->mbase + mbox->rx_start;
2396 if (hdr->num_msgs) {
2397 mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2398 hdr->num_msgs = 0;
2399 queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2400 }
2401 }
2402 }
2403
2404 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2405 {
2406 struct rvu *rvu = (struct rvu *)rvu_irq;
2407 int vfs = rvu->vfs;
2408 u64 intr;
2409
2410 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2411 /* Clear interrupts */
2412 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2413 if (intr)
2414 trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2415
2416 /* Sync with mbox memory region */
2417 rmb();
2418
2419 rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2420
2421 /* Handle VF interrupts */
2422 if (vfs > 64) {
2423 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2424 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2425
2426 rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2427 vfs -= 64;
2428 }
2429
2430 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2431 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2432 if (intr)
2433 trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2434
2435 rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2436
2437 return IRQ_HANDLED;
2438 }
2439
2440 static void rvu_enable_mbox_intr(struct rvu *rvu)
2441 {
2442 struct rvu_hwinfo *hw = rvu->hw;
2443
2444 /* Clear spurious irqs, if any */
2445 rvu_write64(rvu, BLKADDR_RVUM,
2446 RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2447
2448 /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2449 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2450 INTR_MASK(hw->total_pfs) & ~1ULL);
2451 }
2452
2453 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2454 {
2455 struct rvu_block *block;
2456 int slot, lf, num_lfs;
2457 int err;
2458
2459 block = &rvu->hw->block[blkaddr];
2460 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2461 block->addr);
2462 if (!num_lfs)
2463 return;
2464 for (slot = 0; slot < num_lfs; slot++) {
2465 lf = rvu_get_lf(rvu, block, pcifunc, slot);
2466 if (lf < 0)
2467 continue;
2468
2469 /* Cleanup LF and reset it */
2470 if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2471 rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2472 else if (block->addr == BLKADDR_NPA)
2473 rvu_npa_lf_teardown(rvu, pcifunc, lf);
2474 else if ((block->addr == BLKADDR_CPT0) ||
2475 (block->addr == BLKADDR_CPT1))
2476 rvu_cpt_lf_teardown(rvu, pcifunc, lf, slot);
2477
2478 err = rvu_lf_reset(rvu, block, lf);
2479 if (err) {
2480 dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2481 block->addr, lf);
2482 }
2483 }
2484 }
2485
2486 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2487 {
2488 mutex_lock(&rvu->flr_lock);
2489 /* Reset order should reflect inter-block dependencies:
2490 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2491 * 2. Flush and reset SSO/SSOW
2492 * 3. Cleanup pools (NPA)
2493 */
2494 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2495 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2496 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2497 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2498 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2499 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2500 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2501 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2502 rvu_reset_lmt_map_tbl(rvu, pcifunc);
2503 rvu_detach_rsrcs(rvu, NULL, pcifunc);
2504 mutex_unlock(&rvu->flr_lock);
2505 }
2506
2507 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2508 {
2509 int reg = 0;
2510
2511 /* pcifunc = 0(PF0) | (vf + 1) */
2512 __rvu_flr_handler(rvu, vf + 1);
2513
2514 if (vf >= 64) {
2515 reg = 1;
2516 vf = vf - 64;
2517 }
2518
2519 /* Signal FLR finish and enable IRQ */
2520 rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2521 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2522 }
2523
2524 static void rvu_flr_handler(struct work_struct *work)
2525 {
2526 struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2527 struct rvu *rvu = flrwork->rvu;
2528 u16 pcifunc, numvfs, vf;
2529 u64 cfg;
2530 int pf;
2531
2532 pf = flrwork - rvu->flr_wrk;
2533 if (pf >= rvu->hw->total_pfs) {
2534 rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2535 return;
2536 }
2537
2538 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2539 numvfs = (cfg >> 12) & 0xFF;
2540 pcifunc = pf << RVU_PFVF_PF_SHIFT;
2541
2542 for (vf = 0; vf < numvfs; vf++)
2543 __rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2544
2545 __rvu_flr_handler(rvu, pcifunc);
2546
2547 /* Signal FLR finish */
2548 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2549
2550 /* Enable interrupt */
2551 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, BIT_ULL(pf));
2552 }
2553
2554 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2555 {
2556 int dev, vf, reg = 0;
2557 u64 intr;
2558
2559 if (start_vf >= 64)
2560 reg = 1;
2561
2562 intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2563 if (!intr)
2564 return;
2565
2566 for (vf = 0; vf < numvfs; vf++) {
2567 if (!(intr & BIT_ULL(vf)))
2568 continue;
2569 /* Clear and disable the interrupt */
2570 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2571 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2572
2573 dev = vf + start_vf + rvu->hw->total_pfs;
2574 queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2575 }
2576 }
2577
2578 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2579 {
2580 struct rvu *rvu = (struct rvu *)rvu_irq;
2581 u64 intr;
2582 u8 pf;
2583
2584 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2585 if (!intr)
2586 goto afvf_flr;
2587
2588 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2589 if (intr & (1ULL << pf)) {
2590 /* clear interrupt */
2591 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2592 BIT_ULL(pf));
2593 /* Disable the interrupt */
2594 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2595 BIT_ULL(pf));
2596 /* PF is already dead do only AF related operations */
2597 queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2598 }
2599 }
2600
2601 afvf_flr:
2602 rvu_afvf_queue_flr_work(rvu, 0, 64);
2603 if (rvu->vfs > 64)
2604 rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2605
2606 return IRQ_HANDLED;
2607 }
2608
2609 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2610 {
2611 int vf;
2612
2613 /* Nothing to be done here other than clearing the
2614 * TRPEND bit.
2615 */
2616 for (vf = 0; vf < 64; vf++) {
2617 if (intr & (1ULL << vf)) {
2618 /* clear the trpend due to ME(master enable) */
2619 rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2620 /* clear interrupt */
2621 rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2622 }
2623 }
2624 }
2625
2626 /* Handles ME interrupts from VFs of AF */
2627 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2628 {
2629 struct rvu *rvu = (struct rvu *)rvu_irq;
2630 int vfset;
2631 u64 intr;
2632
2633 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2634
2635 for (vfset = 0; vfset <= 1; vfset++) {
2636 intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2637 if (intr)
2638 rvu_me_handle_vfset(rvu, vfset, intr);
2639 }
2640
2641 return IRQ_HANDLED;
2642 }
2643
2644 /* Handles ME interrupts from PFs */
2645 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2646 {
2647 struct rvu *rvu = (struct rvu *)rvu_irq;
2648 u64 intr;
2649 u8 pf;
2650
2651 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2652
2653 /* Nothing to be done here other than clearing the
2654 * TRPEND bit.
2655 */
2656 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2657 if (intr & (1ULL << pf)) {
2658 /* clear the trpend due to ME(master enable) */
2659 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2660 BIT_ULL(pf));
2661 /* clear interrupt */
2662 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2663 BIT_ULL(pf));
2664 }
2665 }
2666
2667 return IRQ_HANDLED;
2668 }
2669
2670 static void rvu_unregister_interrupts(struct rvu *rvu)
2671 {
2672 int irq;
2673
2674 /* Disable the Mbox interrupt */
2675 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2676 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2677
2678 /* Disable the PF FLR interrupt */
2679 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2680 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2681
2682 /* Disable the PF ME interrupt */
2683 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2684 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2685
2686 for (irq = 0; irq < rvu->num_vec; irq++) {
2687 if (rvu->irq_allocated[irq]) {
2688 free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2689 rvu->irq_allocated[irq] = false;
2690 }
2691 }
2692
2693 pci_free_irq_vectors(rvu->pdev);
2694 rvu->num_vec = 0;
2695 }
2696
2697 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2698 {
2699 struct rvu_pfvf *pfvf = &rvu->pf[0];
2700 int offset;
2701
2702 pfvf = &rvu->pf[0];
2703 offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2704
2705 /* Make sure there are enough MSIX vectors configured so that
2706 * VF interrupts can be handled. Offset equal to zero means
2707 * that PF vectors are not configured and overlapping AF vectors.
2708 */
2709 return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2710 offset;
2711 }
2712
2713 static int rvu_register_interrupts(struct rvu *rvu)
2714 {
2715 int ret, offset, pf_vec_start;
2716
2717 rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2718
2719 rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2720 NAME_SIZE, GFP_KERNEL);
2721 if (!rvu->irq_name)
2722 return -ENOMEM;
2723
2724 rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2725 sizeof(bool), GFP_KERNEL);
2726 if (!rvu->irq_allocated)
2727 return -ENOMEM;
2728
2729 /* Enable MSI-X */
2730 ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2731 rvu->num_vec, PCI_IRQ_MSIX);
2732 if (ret < 0) {
2733 dev_err(rvu->dev,
2734 "RVUAF: Request for %d msix vectors failed, ret %d\n",
2735 rvu->num_vec, ret);
2736 return ret;
2737 }
2738
2739 /* Register mailbox interrupt handler */
2740 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2741 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2742 rvu_mbox_intr_handler, 0,
2743 &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2744 if (ret) {
2745 dev_err(rvu->dev,
2746 "RVUAF: IRQ registration failed for mbox irq\n");
2747 goto fail;
2748 }
2749
2750 rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2751
2752 /* Enable mailbox interrupts from all PFs */
2753 rvu_enable_mbox_intr(rvu);
2754
2755 /* Register FLR interrupt handler */
2756 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2757 "RVUAF FLR");
2758 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2759 rvu_flr_intr_handler, 0,
2760 &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2761 rvu);
2762 if (ret) {
2763 dev_err(rvu->dev,
2764 "RVUAF: IRQ registration failed for FLR\n");
2765 goto fail;
2766 }
2767 rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2768
2769 /* Enable FLR interrupt for all PFs*/
2770 rvu_write64(rvu, BLKADDR_RVUM,
2771 RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2772
2773 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2774 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2775
2776 /* Register ME interrupt handler */
2777 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2778 "RVUAF ME");
2779 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2780 rvu_me_pf_intr_handler, 0,
2781 &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2782 rvu);
2783 if (ret) {
2784 dev_err(rvu->dev,
2785 "RVUAF: IRQ registration failed for ME\n");
2786 }
2787 rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2788
2789 /* Clear TRPEND bit for all PF */
2790 rvu_write64(rvu, BLKADDR_RVUM,
2791 RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2792 /* Enable ME interrupt for all PFs*/
2793 rvu_write64(rvu, BLKADDR_RVUM,
2794 RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2795
2796 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2797 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2798
2799 if (!rvu_afvf_msix_vectors_num_ok(rvu))
2800 return 0;
2801
2802 /* Get PF MSIX vectors offset. */
2803 pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2804 RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2805
2806 /* Register MBOX0 interrupt. */
2807 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2808 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2809 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2810 rvu_mbox_intr_handler, 0,
2811 &rvu->irq_name[offset * NAME_SIZE],
2812 rvu);
2813 if (ret)
2814 dev_err(rvu->dev,
2815 "RVUAF: IRQ registration failed for Mbox0\n");
2816
2817 rvu->irq_allocated[offset] = true;
2818
2819 /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2820 * simply increment current offset by 1.
2821 */
2822 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2823 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2824 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2825 rvu_mbox_intr_handler, 0,
2826 &rvu->irq_name[offset * NAME_SIZE],
2827 rvu);
2828 if (ret)
2829 dev_err(rvu->dev,
2830 "RVUAF: IRQ registration failed for Mbox1\n");
2831
2832 rvu->irq_allocated[offset] = true;
2833
2834 /* Register FLR interrupt handler for AF's VFs */
2835 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2836 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2837 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2838 rvu_flr_intr_handler, 0,
2839 &rvu->irq_name[offset * NAME_SIZE], rvu);
2840 if (ret) {
2841 dev_err(rvu->dev,
2842 "RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2843 goto fail;
2844 }
2845 rvu->irq_allocated[offset] = true;
2846
2847 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2848 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2849 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2850 rvu_flr_intr_handler, 0,
2851 &rvu->irq_name[offset * NAME_SIZE], rvu);
2852 if (ret) {
2853 dev_err(rvu->dev,
2854 "RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2855 goto fail;
2856 }
2857 rvu->irq_allocated[offset] = true;
2858
2859 /* Register ME interrupt handler for AF's VFs */
2860 offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2861 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2862 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2863 rvu_me_vf_intr_handler, 0,
2864 &rvu->irq_name[offset * NAME_SIZE], rvu);
2865 if (ret) {
2866 dev_err(rvu->dev,
2867 "RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2868 goto fail;
2869 }
2870 rvu->irq_allocated[offset] = true;
2871
2872 offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2873 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2874 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2875 rvu_me_vf_intr_handler, 0,
2876 &rvu->irq_name[offset * NAME_SIZE], rvu);
2877 if (ret) {
2878 dev_err(rvu->dev,
2879 "RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2880 goto fail;
2881 }
2882 rvu->irq_allocated[offset] = true;
2883 return 0;
2884
2885 fail:
2886 rvu_unregister_interrupts(rvu);
2887 return ret;
2888 }
2889
2890 static void rvu_flr_wq_destroy(struct rvu *rvu)
2891 {
2892 if (rvu->flr_wq) {
2893 flush_workqueue(rvu->flr_wq);
2894 destroy_workqueue(rvu->flr_wq);
2895 rvu->flr_wq = NULL;
2896 }
2897 }
2898
2899 static int rvu_flr_init(struct rvu *rvu)
2900 {
2901 int dev, num_devs;
2902 u64 cfg;
2903 int pf;
2904
2905 /* Enable FLR for all PFs*/
2906 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2907 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2908 rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2909 cfg | BIT_ULL(22));
2910 }
2911
2912 rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2913 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2914 1);
2915 if (!rvu->flr_wq)
2916 return -ENOMEM;
2917
2918 num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2919 rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2920 sizeof(struct rvu_work), GFP_KERNEL);
2921 if (!rvu->flr_wrk) {
2922 destroy_workqueue(rvu->flr_wq);
2923 return -ENOMEM;
2924 }
2925
2926 for (dev = 0; dev < num_devs; dev++) {
2927 rvu->flr_wrk[dev].rvu = rvu;
2928 INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2929 }
2930
2931 mutex_init(&rvu->flr_lock);
2932
2933 return 0;
2934 }
2935
2936 static void rvu_disable_afvf_intr(struct rvu *rvu)
2937 {
2938 int vfs = rvu->vfs;
2939
2940 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2941 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2942 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2943 if (vfs <= 64)
2944 return;
2945
2946 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2947 INTR_MASK(vfs - 64));
2948 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2949 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2950 }
2951
2952 static void rvu_enable_afvf_intr(struct rvu *rvu)
2953 {
2954 int vfs = rvu->vfs;
2955
2956 /* Clear any pending interrupts and enable AF VF interrupts for
2957 * the first 64 VFs.
2958 */
2959 /* Mbox */
2960 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2961 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2962
2963 /* FLR */
2964 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2965 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2966 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2967
2968 /* Same for remaining VFs, if any. */
2969 if (vfs <= 64)
2970 return;
2971
2972 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2973 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2974 INTR_MASK(vfs - 64));
2975
2976 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2977 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2978 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2979 }
2980
2981 int rvu_get_num_lbk_chans(void)
2982 {
2983 struct pci_dev *pdev;
2984 void __iomem *base;
2985 int ret = -EIO;
2986
2987 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2988 NULL);
2989 if (!pdev)
2990 goto err;
2991
2992 base = pci_ioremap_bar(pdev, 0);
2993 if (!base)
2994 goto err_put;
2995
2996 /* Read number of available LBK channels from LBK(0)_CONST register. */
2997 ret = (readq(base + 0x10) >> 32) & 0xffff;
2998 iounmap(base);
2999 err_put:
3000 pci_dev_put(pdev);
3001 err:
3002 return ret;
3003 }
3004
3005 static int rvu_enable_sriov(struct rvu *rvu)
3006 {
3007 struct pci_dev *pdev = rvu->pdev;
3008 int err, chans, vfs;
3009
3010 if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3011 dev_warn(&pdev->dev,
3012 "Skipping SRIOV enablement since not enough IRQs are available\n");
3013 return 0;
3014 }
3015
3016 chans = rvu_get_num_lbk_chans();
3017 if (chans < 0)
3018 return chans;
3019
3020 vfs = pci_sriov_get_totalvfs(pdev);
3021
3022 /* Limit VFs in case we have more VFs than LBK channels available. */
3023 if (vfs > chans)
3024 vfs = chans;
3025
3026 if (!vfs)
3027 return 0;
3028
3029 /* LBK channel number 63 is used for switching packets between
3030 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3031 */
3032 if (vfs > 62)
3033 vfs = 62;
3034
3035 /* Save VFs number for reference in VF interrupts handlers.
3036 * Since interrupts might start arriving during SRIOV enablement
3037 * ordinary API cannot be used to get number of enabled VFs.
3038 */
3039 rvu->vfs = vfs;
3040
3041 err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3042 rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3043 if (err)
3044 return err;
3045
3046 rvu_enable_afvf_intr(rvu);
3047 /* Make sure IRQs are enabled before SRIOV. */
3048 mb();
3049
3050 err = pci_enable_sriov(pdev, vfs);
3051 if (err) {
3052 rvu_disable_afvf_intr(rvu);
3053 rvu_mbox_destroy(&rvu->afvf_wq_info);
3054 return err;
3055 }
3056
3057 return 0;
3058 }
3059
3060 static void rvu_disable_sriov(struct rvu *rvu)
3061 {
3062 rvu_disable_afvf_intr(rvu);
3063 rvu_mbox_destroy(&rvu->afvf_wq_info);
3064 pci_disable_sriov(rvu->pdev);
3065 }
3066
3067 static void rvu_update_module_params(struct rvu *rvu)
3068 {
3069 const char *default_pfl_name = "default";
3070
3071 strscpy(rvu->mkex_pfl_name,
3072 mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3073 strscpy(rvu->kpu_pfl_name,
3074 kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3075 }
3076
3077 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3078 {
3079 struct device *dev = &pdev->dev;
3080 struct rvu *rvu;
3081 int err;
3082
3083 rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3084 if (!rvu)
3085 return -ENOMEM;
3086
3087 rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3088 if (!rvu->hw) {
3089 devm_kfree(dev, rvu);
3090 return -ENOMEM;
3091 }
3092
3093 pci_set_drvdata(pdev, rvu);
3094 rvu->pdev = pdev;
3095 rvu->dev = &pdev->dev;
3096
3097 err = pci_enable_device(pdev);
3098 if (err) {
3099 dev_err(dev, "Failed to enable PCI device\n");
3100 goto err_freemem;
3101 }
3102
3103 err = pci_request_regions(pdev, DRV_NAME);
3104 if (err) {
3105 dev_err(dev, "PCI request regions failed 0x%x\n", err);
3106 goto err_disable_device;
3107 }
3108
3109 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3110 if (err) {
3111 dev_err(dev, "DMA mask config failed, abort\n");
3112 goto err_release_regions;
3113 }
3114
3115 pci_set_master(pdev);
3116
3117 rvu->ptp = ptp_get();
3118 if (IS_ERR(rvu->ptp)) {
3119 err = PTR_ERR(rvu->ptp);
3120 if (err == -EPROBE_DEFER)
3121 goto err_release_regions;
3122 rvu->ptp = NULL;
3123 }
3124
3125 /* Map Admin function CSRs */
3126 rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3127 rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3128 if (!rvu->afreg_base || !rvu->pfreg_base) {
3129 dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3130 err = -ENOMEM;
3131 goto err_put_ptp;
3132 }
3133
3134 /* Store module params in rvu structure */
3135 rvu_update_module_params(rvu);
3136
3137 /* Check which blocks the HW supports */
3138 rvu_check_block_implemented(rvu);
3139
3140 rvu_reset_all_blocks(rvu);
3141
3142 rvu_setup_hw_capabilities(rvu);
3143
3144 err = rvu_setup_hw_resources(rvu);
3145 if (err)
3146 goto err_put_ptp;
3147
3148 /* Init mailbox btw AF and PFs */
3149 err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3150 rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3151 rvu_afpf_mbox_up_handler);
3152 if (err) {
3153 dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3154 goto err_hwsetup;
3155 }
3156
3157 err = rvu_flr_init(rvu);
3158 if (err) {
3159 dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3160 goto err_mbox;
3161 }
3162
3163 err = rvu_register_interrupts(rvu);
3164 if (err) {
3165 dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3166 goto err_flr;
3167 }
3168
3169 err = rvu_register_dl(rvu);
3170 if (err) {
3171 dev_err(dev, "%s: Failed to register devlink\n", __func__);
3172 goto err_irq;
3173 }
3174
3175 rvu_setup_rvum_blk_revid(rvu);
3176
3177 /* Enable AF's VFs (if any) */
3178 err = rvu_enable_sriov(rvu);
3179 if (err) {
3180 dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3181 goto err_dl;
3182 }
3183
3184 /* Initialize debugfs */
3185 rvu_dbg_init(rvu);
3186
3187 mutex_init(&rvu->rswitch.switch_lock);
3188
3189 return 0;
3190 err_dl:
3191 rvu_unregister_dl(rvu);
3192 err_irq:
3193 rvu_unregister_interrupts(rvu);
3194 err_flr:
3195 rvu_flr_wq_destroy(rvu);
3196 err_mbox:
3197 rvu_mbox_destroy(&rvu->afpf_wq_info);
3198 err_hwsetup:
3199 rvu_cgx_exit(rvu);
3200 rvu_fwdata_exit(rvu);
3201 rvu_reset_all_blocks(rvu);
3202 rvu_free_hw_resources(rvu);
3203 rvu_clear_rvum_blk_revid(rvu);
3204 err_put_ptp:
3205 ptp_put(rvu->ptp);
3206 err_release_regions:
3207 pci_release_regions(pdev);
3208 err_disable_device:
3209 pci_disable_device(pdev);
3210 err_freemem:
3211 pci_set_drvdata(pdev, NULL);
3212 devm_kfree(&pdev->dev, rvu->hw);
3213 devm_kfree(dev, rvu);
3214 return err;
3215 }
3216
3217 static void rvu_remove(struct pci_dev *pdev)
3218 {
3219 struct rvu *rvu = pci_get_drvdata(pdev);
3220
3221 rvu_dbg_exit(rvu);
3222 rvu_unregister_dl(rvu);
3223 rvu_unregister_interrupts(rvu);
3224 rvu_flr_wq_destroy(rvu);
3225 rvu_cgx_exit(rvu);
3226 rvu_fwdata_exit(rvu);
3227 rvu_mbox_destroy(&rvu->afpf_wq_info);
3228 rvu_disable_sriov(rvu);
3229 rvu_reset_all_blocks(rvu);
3230 rvu_free_hw_resources(rvu);
3231 rvu_clear_rvum_blk_revid(rvu);
3232 ptp_put(rvu->ptp);
3233 pci_release_regions(pdev);
3234 pci_disable_device(pdev);
3235 pci_set_drvdata(pdev, NULL);
3236
3237 devm_kfree(&pdev->dev, rvu->hw);
3238 devm_kfree(&pdev->dev, rvu);
3239 }
3240
3241 static struct pci_driver rvu_driver = {
3242 .name = DRV_NAME,
3243 .id_table = rvu_id_table,
3244 .probe = rvu_probe,
3245 .remove = rvu_remove,
3246 };
3247
3248 static int __init rvu_init_module(void)
3249 {
3250 int err;
3251
3252 pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3253
3254 err = pci_register_driver(&cgx_driver);
3255 if (err < 0)
3256 return err;
3257
3258 err = pci_register_driver(&ptp_driver);
3259 if (err < 0)
3260 goto ptp_err;
3261
3262 err = pci_register_driver(&rvu_driver);
3263 if (err < 0)
3264 goto rvu_err;
3265
3266 return 0;
3267 rvu_err:
3268 pci_unregister_driver(&ptp_driver);
3269 ptp_err:
3270 pci_unregister_driver(&cgx_driver);
3271
3272 return err;
3273 }
3274
3275 static void __exit rvu_cleanup_module(void)
3276 {
3277 pci_unregister_driver(&rvu_driver);
3278 pci_unregister_driver(&ptp_driver);
3279 pci_unregister_driver(&cgx_driver);
3280 }
3281
3282 module_init(rvu_init_module);
3283 module_exit(rvu_cleanup_module);