]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/marvell/skge.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / marvell / skge.c
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/in.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
37 #include <linux/ip.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
48 #include <asm/irq.h>
49
50 #include "skge.h"
51
52 #define DRV_NAME "skge"
53 #define DRV_VERSION "1.14"
54
55 #define DEFAULT_TX_RING_SIZE 128
56 #define DEFAULT_RX_RING_SIZE 512
57 #define MAX_TX_RING_SIZE 1024
58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE 4096
60 #define RX_COPY_THRESHOLD 128
61 #define RX_BUF_SIZE 1536
62 #define PHY_RETRIES 1000
63 #define ETH_JUMBO_MTU 9000
64 #define TX_WATCHDOG (5 * HZ)
65 #define NAPI_WEIGHT 64
66 #define BLINK_MS 250
67 #define LINK_HZ HZ
68
69 #define SKGE_EEPROM_MAGIC 0x9933aabb
70
71
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION);
76
77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
78 NETIF_MSG_LINK | NETIF_MSG_IFUP |
79 NETIF_MSG_IFDOWN);
80
81 static int debug = -1; /* defaults above */
82 module_param(debug, int, 0);
83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
84
85 static const struct pci_device_id skge_id_table[] = {
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
87 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
90 #endif
91 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
92 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
93 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
94 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
95 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
96 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
97 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
98 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
99 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
100 { 0 }
101 };
102 MODULE_DEVICE_TABLE(pci, skge_id_table);
103
104 static int skge_up(struct net_device *dev);
105 static int skge_down(struct net_device *dev);
106 static void skge_phy_reset(struct skge_port *skge);
107 static void skge_tx_clean(struct net_device *dev);
108 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
109 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
110 static void genesis_get_stats(struct skge_port *skge, u64 *data);
111 static void yukon_get_stats(struct skge_port *skge, u64 *data);
112 static void yukon_init(struct skge_hw *hw, int port);
113 static void genesis_mac_init(struct skge_hw *hw, int port);
114 static void genesis_link_up(struct skge_port *skge);
115 static void skge_set_multicast(struct net_device *dev);
116 static irqreturn_t skge_intr(int irq, void *dev_id);
117
118 /* Avoid conditionals by using array */
119 static const int txqaddr[] = { Q_XA1, Q_XA2 };
120 static const int rxqaddr[] = { Q_R1, Q_R2 };
121 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
122 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
123 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
124 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
125
126 static inline bool is_genesis(const struct skge_hw *hw)
127 {
128 #ifdef CONFIG_SKGE_GENESIS
129 return hw->chip_id == CHIP_ID_GENESIS;
130 #else
131 return false;
132 #endif
133 }
134
135 static int skge_get_regs_len(struct net_device *dev)
136 {
137 return 0x4000;
138 }
139
140 /*
141 * Returns copy of whole control register region
142 * Note: skip RAM address register because accessing it will
143 * cause bus hangs!
144 */
145 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
146 void *p)
147 {
148 const struct skge_port *skge = netdev_priv(dev);
149 const void __iomem *io = skge->hw->regs;
150
151 regs->version = 1;
152 memset(p, 0, regs->len);
153 memcpy_fromio(p, io, B3_RAM_ADDR);
154
155 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
156 regs->len - B3_RI_WTO_R1);
157 }
158
159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
160 static u32 wol_supported(const struct skge_hw *hw)
161 {
162 if (is_genesis(hw))
163 return 0;
164
165 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
166 return 0;
167
168 return WAKE_MAGIC | WAKE_PHY;
169 }
170
171 static void skge_wol_init(struct skge_port *skge)
172 {
173 struct skge_hw *hw = skge->hw;
174 int port = skge->port;
175 u16 ctrl;
176
177 skge_write16(hw, B0_CTST, CS_RST_CLR);
178 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
179
180 /* Turn on Vaux */
181 skge_write8(hw, B0_POWER_CTRL,
182 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
183
184 /* WA code for COMA mode -- clear PHY reset */
185 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
186 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
187 u32 reg = skge_read32(hw, B2_GP_IO);
188 reg |= GP_DIR_9;
189 reg &= ~GP_IO_9;
190 skge_write32(hw, B2_GP_IO, reg);
191 }
192
193 skge_write32(hw, SK_REG(port, GPHY_CTRL),
194 GPC_DIS_SLEEP |
195 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
196 GPC_ANEG_1 | GPC_RST_SET);
197
198 skge_write32(hw, SK_REG(port, GPHY_CTRL),
199 GPC_DIS_SLEEP |
200 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
201 GPC_ANEG_1 | GPC_RST_CLR);
202
203 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
204
205 /* Force to 10/100 skge_reset will re-enable on resume */
206 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
207 (PHY_AN_100FULL | PHY_AN_100HALF |
208 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
209 /* no 1000 HD/FD */
210 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
211 gm_phy_write(hw, port, PHY_MARV_CTRL,
212 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
213 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
214
215
216 /* Set GMAC to no flow control and auto update for speed/duplex */
217 gma_write16(hw, port, GM_GP_CTRL,
218 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
219 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
220
221 /* Set WOL address */
222 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
223 skge->netdev->dev_addr, ETH_ALEN);
224
225 /* Turn on appropriate WOL control bits */
226 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
227 ctrl = 0;
228 if (skge->wol & WAKE_PHY)
229 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
230 else
231 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
232
233 if (skge->wol & WAKE_MAGIC)
234 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
235 else
236 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
237
238 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
239 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
240
241 /* block receiver */
242 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
243 }
244
245 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
246 {
247 struct skge_port *skge = netdev_priv(dev);
248
249 wol->supported = wol_supported(skge->hw);
250 wol->wolopts = skge->wol;
251 }
252
253 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
254 {
255 struct skge_port *skge = netdev_priv(dev);
256 struct skge_hw *hw = skge->hw;
257
258 if ((wol->wolopts & ~wol_supported(hw)) ||
259 !device_can_wakeup(&hw->pdev->dev))
260 return -EOPNOTSUPP;
261
262 skge->wol = wol->wolopts;
263
264 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
265
266 return 0;
267 }
268
269 /* Determine supported/advertised modes based on hardware.
270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
271 */
272 static u32 skge_supported_modes(const struct skge_hw *hw)
273 {
274 u32 supported;
275
276 if (hw->copper) {
277 supported = (SUPPORTED_10baseT_Half |
278 SUPPORTED_10baseT_Full |
279 SUPPORTED_100baseT_Half |
280 SUPPORTED_100baseT_Full |
281 SUPPORTED_1000baseT_Half |
282 SUPPORTED_1000baseT_Full |
283 SUPPORTED_Autoneg |
284 SUPPORTED_TP);
285
286 if (is_genesis(hw))
287 supported &= ~(SUPPORTED_10baseT_Half |
288 SUPPORTED_10baseT_Full |
289 SUPPORTED_100baseT_Half |
290 SUPPORTED_100baseT_Full);
291
292 else if (hw->chip_id == CHIP_ID_YUKON)
293 supported &= ~SUPPORTED_1000baseT_Half;
294 } else
295 supported = (SUPPORTED_1000baseT_Full |
296 SUPPORTED_1000baseT_Half |
297 SUPPORTED_FIBRE |
298 SUPPORTED_Autoneg);
299
300 return supported;
301 }
302
303 static int skge_get_link_ksettings(struct net_device *dev,
304 struct ethtool_link_ksettings *cmd)
305 {
306 struct skge_port *skge = netdev_priv(dev);
307 struct skge_hw *hw = skge->hw;
308 u32 supported, advertising;
309
310 supported = skge_supported_modes(hw);
311
312 if (hw->copper) {
313 cmd->base.port = PORT_TP;
314 cmd->base.phy_address = hw->phy_addr;
315 } else
316 cmd->base.port = PORT_FIBRE;
317
318 advertising = skge->advertising;
319 cmd->base.autoneg = skge->autoneg;
320 cmd->base.speed = skge->speed;
321 cmd->base.duplex = skge->duplex;
322
323 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
324 supported);
325 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
326 advertising);
327
328 return 0;
329 }
330
331 static int skge_set_link_ksettings(struct net_device *dev,
332 const struct ethtool_link_ksettings *cmd)
333 {
334 struct skge_port *skge = netdev_priv(dev);
335 const struct skge_hw *hw = skge->hw;
336 u32 supported = skge_supported_modes(hw);
337 int err = 0;
338 u32 advertising;
339
340 ethtool_convert_link_mode_to_legacy_u32(&advertising,
341 cmd->link_modes.advertising);
342
343 if (cmd->base.autoneg == AUTONEG_ENABLE) {
344 advertising = supported;
345 skge->duplex = -1;
346 skge->speed = -1;
347 } else {
348 u32 setting;
349 u32 speed = cmd->base.speed;
350
351 switch (speed) {
352 case SPEED_1000:
353 if (cmd->base.duplex == DUPLEX_FULL)
354 setting = SUPPORTED_1000baseT_Full;
355 else if (cmd->base.duplex == DUPLEX_HALF)
356 setting = SUPPORTED_1000baseT_Half;
357 else
358 return -EINVAL;
359 break;
360 case SPEED_100:
361 if (cmd->base.duplex == DUPLEX_FULL)
362 setting = SUPPORTED_100baseT_Full;
363 else if (cmd->base.duplex == DUPLEX_HALF)
364 setting = SUPPORTED_100baseT_Half;
365 else
366 return -EINVAL;
367 break;
368
369 case SPEED_10:
370 if (cmd->base.duplex == DUPLEX_FULL)
371 setting = SUPPORTED_10baseT_Full;
372 else if (cmd->base.duplex == DUPLEX_HALF)
373 setting = SUPPORTED_10baseT_Half;
374 else
375 return -EINVAL;
376 break;
377 default:
378 return -EINVAL;
379 }
380
381 if ((setting & supported) == 0)
382 return -EINVAL;
383
384 skge->speed = speed;
385 skge->duplex = cmd->base.duplex;
386 }
387
388 skge->autoneg = cmd->base.autoneg;
389 skge->advertising = advertising;
390
391 if (netif_running(dev)) {
392 skge_down(dev);
393 err = skge_up(dev);
394 if (err) {
395 dev_close(dev);
396 return err;
397 }
398 }
399
400 return 0;
401 }
402
403 static void skge_get_drvinfo(struct net_device *dev,
404 struct ethtool_drvinfo *info)
405 {
406 struct skge_port *skge = netdev_priv(dev);
407
408 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
409 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
410 strlcpy(info->bus_info, pci_name(skge->hw->pdev),
411 sizeof(info->bus_info));
412 }
413
414 static const struct skge_stat {
415 char name[ETH_GSTRING_LEN];
416 u16 xmac_offset;
417 u16 gma_offset;
418 } skge_stats[] = {
419 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
420 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
421
422 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
423 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
424 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
425 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
426 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
427 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
428 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
429 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
430
431 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
432 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
433 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
434 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
435 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
436 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
437
438 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
439 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
440 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
441 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
442 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
443 };
444
445 static int skge_get_sset_count(struct net_device *dev, int sset)
446 {
447 switch (sset) {
448 case ETH_SS_STATS:
449 return ARRAY_SIZE(skge_stats);
450 default:
451 return -EOPNOTSUPP;
452 }
453 }
454
455 static void skge_get_ethtool_stats(struct net_device *dev,
456 struct ethtool_stats *stats, u64 *data)
457 {
458 struct skge_port *skge = netdev_priv(dev);
459
460 if (is_genesis(skge->hw))
461 genesis_get_stats(skge, data);
462 else
463 yukon_get_stats(skge, data);
464 }
465
466 /* Use hardware MIB variables for critical path statistics and
467 * transmit feedback not reported at interrupt.
468 * Other errors are accounted for in interrupt handler.
469 */
470 static struct net_device_stats *skge_get_stats(struct net_device *dev)
471 {
472 struct skge_port *skge = netdev_priv(dev);
473 u64 data[ARRAY_SIZE(skge_stats)];
474
475 if (is_genesis(skge->hw))
476 genesis_get_stats(skge, data);
477 else
478 yukon_get_stats(skge, data);
479
480 dev->stats.tx_bytes = data[0];
481 dev->stats.rx_bytes = data[1];
482 dev->stats.tx_packets = data[2] + data[4] + data[6];
483 dev->stats.rx_packets = data[3] + data[5] + data[7];
484 dev->stats.multicast = data[3] + data[5];
485 dev->stats.collisions = data[10];
486 dev->stats.tx_aborted_errors = data[12];
487
488 return &dev->stats;
489 }
490
491 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
492 {
493 int i;
494
495 switch (stringset) {
496 case ETH_SS_STATS:
497 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
498 memcpy(data + i * ETH_GSTRING_LEN,
499 skge_stats[i].name, ETH_GSTRING_LEN);
500 break;
501 }
502 }
503
504 static void skge_get_ring_param(struct net_device *dev,
505 struct ethtool_ringparam *p)
506 {
507 struct skge_port *skge = netdev_priv(dev);
508
509 p->rx_max_pending = MAX_RX_RING_SIZE;
510 p->tx_max_pending = MAX_TX_RING_SIZE;
511
512 p->rx_pending = skge->rx_ring.count;
513 p->tx_pending = skge->tx_ring.count;
514 }
515
516 static int skge_set_ring_param(struct net_device *dev,
517 struct ethtool_ringparam *p)
518 {
519 struct skge_port *skge = netdev_priv(dev);
520 int err = 0;
521
522 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
523 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
524 return -EINVAL;
525
526 skge->rx_ring.count = p->rx_pending;
527 skge->tx_ring.count = p->tx_pending;
528
529 if (netif_running(dev)) {
530 skge_down(dev);
531 err = skge_up(dev);
532 if (err)
533 dev_close(dev);
534 }
535
536 return err;
537 }
538
539 static u32 skge_get_msglevel(struct net_device *netdev)
540 {
541 struct skge_port *skge = netdev_priv(netdev);
542 return skge->msg_enable;
543 }
544
545 static void skge_set_msglevel(struct net_device *netdev, u32 value)
546 {
547 struct skge_port *skge = netdev_priv(netdev);
548 skge->msg_enable = value;
549 }
550
551 static int skge_nway_reset(struct net_device *dev)
552 {
553 struct skge_port *skge = netdev_priv(dev);
554
555 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
556 return -EINVAL;
557
558 skge_phy_reset(skge);
559 return 0;
560 }
561
562 static void skge_get_pauseparam(struct net_device *dev,
563 struct ethtool_pauseparam *ecmd)
564 {
565 struct skge_port *skge = netdev_priv(dev);
566
567 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
568 (skge->flow_control == FLOW_MODE_SYM_OR_REM));
569 ecmd->tx_pause = (ecmd->rx_pause ||
570 (skge->flow_control == FLOW_MODE_LOC_SEND));
571
572 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
573 }
574
575 static int skge_set_pauseparam(struct net_device *dev,
576 struct ethtool_pauseparam *ecmd)
577 {
578 struct skge_port *skge = netdev_priv(dev);
579 struct ethtool_pauseparam old;
580 int err = 0;
581
582 skge_get_pauseparam(dev, &old);
583
584 if (ecmd->autoneg != old.autoneg)
585 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
586 else {
587 if (ecmd->rx_pause && ecmd->tx_pause)
588 skge->flow_control = FLOW_MODE_SYMMETRIC;
589 else if (ecmd->rx_pause && !ecmd->tx_pause)
590 skge->flow_control = FLOW_MODE_SYM_OR_REM;
591 else if (!ecmd->rx_pause && ecmd->tx_pause)
592 skge->flow_control = FLOW_MODE_LOC_SEND;
593 else
594 skge->flow_control = FLOW_MODE_NONE;
595 }
596
597 if (netif_running(dev)) {
598 skge_down(dev);
599 err = skge_up(dev);
600 if (err) {
601 dev_close(dev);
602 return err;
603 }
604 }
605
606 return 0;
607 }
608
609 /* Chip internal frequency for clock calculations */
610 static inline u32 hwkhz(const struct skge_hw *hw)
611 {
612 return is_genesis(hw) ? 53125 : 78125;
613 }
614
615 /* Chip HZ to microseconds */
616 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
617 {
618 return (ticks * 1000) / hwkhz(hw);
619 }
620
621 /* Microseconds to chip HZ */
622 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
623 {
624 return hwkhz(hw) * usec / 1000;
625 }
626
627 static int skge_get_coalesce(struct net_device *dev,
628 struct ethtool_coalesce *ecmd)
629 {
630 struct skge_port *skge = netdev_priv(dev);
631 struct skge_hw *hw = skge->hw;
632 int port = skge->port;
633
634 ecmd->rx_coalesce_usecs = 0;
635 ecmd->tx_coalesce_usecs = 0;
636
637 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
638 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
639 u32 msk = skge_read32(hw, B2_IRQM_MSK);
640
641 if (msk & rxirqmask[port])
642 ecmd->rx_coalesce_usecs = delay;
643 if (msk & txirqmask[port])
644 ecmd->tx_coalesce_usecs = delay;
645 }
646
647 return 0;
648 }
649
650 /* Note: interrupt timer is per board, but can turn on/off per port */
651 static int skge_set_coalesce(struct net_device *dev,
652 struct ethtool_coalesce *ecmd)
653 {
654 struct skge_port *skge = netdev_priv(dev);
655 struct skge_hw *hw = skge->hw;
656 int port = skge->port;
657 u32 msk = skge_read32(hw, B2_IRQM_MSK);
658 u32 delay = 25;
659
660 if (ecmd->rx_coalesce_usecs == 0)
661 msk &= ~rxirqmask[port];
662 else if (ecmd->rx_coalesce_usecs < 25 ||
663 ecmd->rx_coalesce_usecs > 33333)
664 return -EINVAL;
665 else {
666 msk |= rxirqmask[port];
667 delay = ecmd->rx_coalesce_usecs;
668 }
669
670 if (ecmd->tx_coalesce_usecs == 0)
671 msk &= ~txirqmask[port];
672 else if (ecmd->tx_coalesce_usecs < 25 ||
673 ecmd->tx_coalesce_usecs > 33333)
674 return -EINVAL;
675 else {
676 msk |= txirqmask[port];
677 delay = min(delay, ecmd->rx_coalesce_usecs);
678 }
679
680 skge_write32(hw, B2_IRQM_MSK, msk);
681 if (msk == 0)
682 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
683 else {
684 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
685 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
686 }
687 return 0;
688 }
689
690 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
691 static void skge_led(struct skge_port *skge, enum led_mode mode)
692 {
693 struct skge_hw *hw = skge->hw;
694 int port = skge->port;
695
696 spin_lock_bh(&hw->phy_lock);
697 if (is_genesis(hw)) {
698 switch (mode) {
699 case LED_MODE_OFF:
700 if (hw->phy_type == SK_PHY_BCOM)
701 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
702 else {
703 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
704 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
705 }
706 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
707 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
708 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
709 break;
710
711 case LED_MODE_ON:
712 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
713 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
714
715 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
716 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
717
718 break;
719
720 case LED_MODE_TST:
721 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
722 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
723 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
724
725 if (hw->phy_type == SK_PHY_BCOM)
726 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
727 else {
728 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
729 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
730 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
731 }
732
733 }
734 } else {
735 switch (mode) {
736 case LED_MODE_OFF:
737 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
738 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
739 PHY_M_LED_MO_DUP(MO_LED_OFF) |
740 PHY_M_LED_MO_10(MO_LED_OFF) |
741 PHY_M_LED_MO_100(MO_LED_OFF) |
742 PHY_M_LED_MO_1000(MO_LED_OFF) |
743 PHY_M_LED_MO_RX(MO_LED_OFF));
744 break;
745 case LED_MODE_ON:
746 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
747 PHY_M_LED_PULS_DUR(PULS_170MS) |
748 PHY_M_LED_BLINK_RT(BLINK_84MS) |
749 PHY_M_LEDC_TX_CTRL |
750 PHY_M_LEDC_DP_CTRL);
751
752 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
753 PHY_M_LED_MO_RX(MO_LED_OFF) |
754 (skge->speed == SPEED_100 ?
755 PHY_M_LED_MO_100(MO_LED_ON) : 0));
756 break;
757 case LED_MODE_TST:
758 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
759 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
760 PHY_M_LED_MO_DUP(MO_LED_ON) |
761 PHY_M_LED_MO_10(MO_LED_ON) |
762 PHY_M_LED_MO_100(MO_LED_ON) |
763 PHY_M_LED_MO_1000(MO_LED_ON) |
764 PHY_M_LED_MO_RX(MO_LED_ON));
765 }
766 }
767 spin_unlock_bh(&hw->phy_lock);
768 }
769
770 /* blink LED's for finding board */
771 static int skge_set_phys_id(struct net_device *dev,
772 enum ethtool_phys_id_state state)
773 {
774 struct skge_port *skge = netdev_priv(dev);
775
776 switch (state) {
777 case ETHTOOL_ID_ACTIVE:
778 return 2; /* cycle on/off twice per second */
779
780 case ETHTOOL_ID_ON:
781 skge_led(skge, LED_MODE_TST);
782 break;
783
784 case ETHTOOL_ID_OFF:
785 skge_led(skge, LED_MODE_OFF);
786 break;
787
788 case ETHTOOL_ID_INACTIVE:
789 /* back to regular LED state */
790 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
791 }
792
793 return 0;
794 }
795
796 static int skge_get_eeprom_len(struct net_device *dev)
797 {
798 struct skge_port *skge = netdev_priv(dev);
799 u32 reg2;
800
801 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
802 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
803 }
804
805 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
806 {
807 u32 val;
808
809 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
810
811 do {
812 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
813 } while (!(offset & PCI_VPD_ADDR_F));
814
815 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
816 return val;
817 }
818
819 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
820 {
821 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
822 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
823 offset | PCI_VPD_ADDR_F);
824
825 do {
826 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
827 } while (offset & PCI_VPD_ADDR_F);
828 }
829
830 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
831 u8 *data)
832 {
833 struct skge_port *skge = netdev_priv(dev);
834 struct pci_dev *pdev = skge->hw->pdev;
835 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
836 int length = eeprom->len;
837 u16 offset = eeprom->offset;
838
839 if (!cap)
840 return -EINVAL;
841
842 eeprom->magic = SKGE_EEPROM_MAGIC;
843
844 while (length > 0) {
845 u32 val = skge_vpd_read(pdev, cap, offset);
846 int n = min_t(int, length, sizeof(val));
847
848 memcpy(data, &val, n);
849 length -= n;
850 data += n;
851 offset += n;
852 }
853 return 0;
854 }
855
856 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
857 u8 *data)
858 {
859 struct skge_port *skge = netdev_priv(dev);
860 struct pci_dev *pdev = skge->hw->pdev;
861 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
862 int length = eeprom->len;
863 u16 offset = eeprom->offset;
864
865 if (!cap)
866 return -EINVAL;
867
868 if (eeprom->magic != SKGE_EEPROM_MAGIC)
869 return -EINVAL;
870
871 while (length > 0) {
872 u32 val;
873 int n = min_t(int, length, sizeof(val));
874
875 if (n < sizeof(val))
876 val = skge_vpd_read(pdev, cap, offset);
877 memcpy(&val, data, n);
878
879 skge_vpd_write(pdev, cap, offset, val);
880
881 length -= n;
882 data += n;
883 offset += n;
884 }
885 return 0;
886 }
887
888 static const struct ethtool_ops skge_ethtool_ops = {
889 .get_drvinfo = skge_get_drvinfo,
890 .get_regs_len = skge_get_regs_len,
891 .get_regs = skge_get_regs,
892 .get_wol = skge_get_wol,
893 .set_wol = skge_set_wol,
894 .get_msglevel = skge_get_msglevel,
895 .set_msglevel = skge_set_msglevel,
896 .nway_reset = skge_nway_reset,
897 .get_link = ethtool_op_get_link,
898 .get_eeprom_len = skge_get_eeprom_len,
899 .get_eeprom = skge_get_eeprom,
900 .set_eeprom = skge_set_eeprom,
901 .get_ringparam = skge_get_ring_param,
902 .set_ringparam = skge_set_ring_param,
903 .get_pauseparam = skge_get_pauseparam,
904 .set_pauseparam = skge_set_pauseparam,
905 .get_coalesce = skge_get_coalesce,
906 .set_coalesce = skge_set_coalesce,
907 .get_strings = skge_get_strings,
908 .set_phys_id = skge_set_phys_id,
909 .get_sset_count = skge_get_sset_count,
910 .get_ethtool_stats = skge_get_ethtool_stats,
911 .get_link_ksettings = skge_get_link_ksettings,
912 .set_link_ksettings = skge_set_link_ksettings,
913 };
914
915 /*
916 * Allocate ring elements and chain them together
917 * One-to-one association of board descriptors with ring elements
918 */
919 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
920 {
921 struct skge_tx_desc *d;
922 struct skge_element *e;
923 int i;
924
925 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
926 if (!ring->start)
927 return -ENOMEM;
928
929 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
930 e->desc = d;
931 if (i == ring->count - 1) {
932 e->next = ring->start;
933 d->next_offset = base;
934 } else {
935 e->next = e + 1;
936 d->next_offset = base + (i+1) * sizeof(*d);
937 }
938 }
939 ring->to_use = ring->to_clean = ring->start;
940
941 return 0;
942 }
943
944 /* Allocate and setup a new buffer for receiving */
945 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
946 struct sk_buff *skb, unsigned int bufsize)
947 {
948 struct skge_rx_desc *rd = e->desc;
949 dma_addr_t map;
950
951 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
952 PCI_DMA_FROMDEVICE);
953
954 if (pci_dma_mapping_error(skge->hw->pdev, map))
955 return -1;
956
957 rd->dma_lo = lower_32_bits(map);
958 rd->dma_hi = upper_32_bits(map);
959 e->skb = skb;
960 rd->csum1_start = ETH_HLEN;
961 rd->csum2_start = ETH_HLEN;
962 rd->csum1 = 0;
963 rd->csum2 = 0;
964
965 wmb();
966
967 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
968 dma_unmap_addr_set(e, mapaddr, map);
969 dma_unmap_len_set(e, maplen, bufsize);
970 return 0;
971 }
972
973 /* Resume receiving using existing skb,
974 * Note: DMA address is not changed by chip.
975 * MTU not changed while receiver active.
976 */
977 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
978 {
979 struct skge_rx_desc *rd = e->desc;
980
981 rd->csum2 = 0;
982 rd->csum2_start = ETH_HLEN;
983
984 wmb();
985
986 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
987 }
988
989
990 /* Free all buffers in receive ring, assumes receiver stopped */
991 static void skge_rx_clean(struct skge_port *skge)
992 {
993 struct skge_hw *hw = skge->hw;
994 struct skge_ring *ring = &skge->rx_ring;
995 struct skge_element *e;
996
997 e = ring->start;
998 do {
999 struct skge_rx_desc *rd = e->desc;
1000 rd->control = 0;
1001 if (e->skb) {
1002 pci_unmap_single(hw->pdev,
1003 dma_unmap_addr(e, mapaddr),
1004 dma_unmap_len(e, maplen),
1005 PCI_DMA_FROMDEVICE);
1006 dev_kfree_skb(e->skb);
1007 e->skb = NULL;
1008 }
1009 } while ((e = e->next) != ring->start);
1010 }
1011
1012
1013 /* Allocate buffers for receive ring
1014 * For receive: to_clean is next received frame.
1015 */
1016 static int skge_rx_fill(struct net_device *dev)
1017 {
1018 struct skge_port *skge = netdev_priv(dev);
1019 struct skge_ring *ring = &skge->rx_ring;
1020 struct skge_element *e;
1021
1022 e = ring->start;
1023 do {
1024 struct sk_buff *skb;
1025
1026 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1027 GFP_KERNEL);
1028 if (!skb)
1029 return -ENOMEM;
1030
1031 skb_reserve(skb, NET_IP_ALIGN);
1032 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1033 dev_kfree_skb(skb);
1034 return -EIO;
1035 }
1036 } while ((e = e->next) != ring->start);
1037
1038 ring->to_clean = ring->start;
1039 return 0;
1040 }
1041
1042 static const char *skge_pause(enum pause_status status)
1043 {
1044 switch (status) {
1045 case FLOW_STAT_NONE:
1046 return "none";
1047 case FLOW_STAT_REM_SEND:
1048 return "rx only";
1049 case FLOW_STAT_LOC_SEND:
1050 return "tx_only";
1051 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1052 return "both";
1053 default:
1054 return "indeterminated";
1055 }
1056 }
1057
1058
1059 static void skge_link_up(struct skge_port *skge)
1060 {
1061 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1062 LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1063
1064 netif_carrier_on(skge->netdev);
1065 netif_wake_queue(skge->netdev);
1066
1067 netif_info(skge, link, skge->netdev,
1068 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1069 skge->speed,
1070 skge->duplex == DUPLEX_FULL ? "full" : "half",
1071 skge_pause(skge->flow_status));
1072 }
1073
1074 static void skge_link_down(struct skge_port *skge)
1075 {
1076 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1077 netif_carrier_off(skge->netdev);
1078 netif_stop_queue(skge->netdev);
1079
1080 netif_info(skge, link, skge->netdev, "Link is down\n");
1081 }
1082
1083 static void xm_link_down(struct skge_hw *hw, int port)
1084 {
1085 struct net_device *dev = hw->dev[port];
1086 struct skge_port *skge = netdev_priv(dev);
1087
1088 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1089
1090 if (netif_carrier_ok(dev))
1091 skge_link_down(skge);
1092 }
1093
1094 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1095 {
1096 int i;
1097
1098 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1099 *val = xm_read16(hw, port, XM_PHY_DATA);
1100
1101 if (hw->phy_type == SK_PHY_XMAC)
1102 goto ready;
1103
1104 for (i = 0; i < PHY_RETRIES; i++) {
1105 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1106 goto ready;
1107 udelay(1);
1108 }
1109
1110 return -ETIMEDOUT;
1111 ready:
1112 *val = xm_read16(hw, port, XM_PHY_DATA);
1113
1114 return 0;
1115 }
1116
1117 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1118 {
1119 u16 v = 0;
1120 if (__xm_phy_read(hw, port, reg, &v))
1121 pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1122 return v;
1123 }
1124
1125 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1126 {
1127 int i;
1128
1129 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1130 for (i = 0; i < PHY_RETRIES; i++) {
1131 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1132 goto ready;
1133 udelay(1);
1134 }
1135 return -EIO;
1136
1137 ready:
1138 xm_write16(hw, port, XM_PHY_DATA, val);
1139 for (i = 0; i < PHY_RETRIES; i++) {
1140 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1141 return 0;
1142 udelay(1);
1143 }
1144 return -ETIMEDOUT;
1145 }
1146
1147 static void genesis_init(struct skge_hw *hw)
1148 {
1149 /* set blink source counter */
1150 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1151 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1152
1153 /* configure mac arbiter */
1154 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1155
1156 /* configure mac arbiter timeout values */
1157 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1158 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1159 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1160 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1161
1162 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1163 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1164 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1165 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1166
1167 /* configure packet arbiter timeout */
1168 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1169 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1170 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1171 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1172 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1173 }
1174
1175 static void genesis_reset(struct skge_hw *hw, int port)
1176 {
1177 static const u8 zero[8] = { 0 };
1178 u32 reg;
1179
1180 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1181
1182 /* reset the statistics module */
1183 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1184 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1185 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1186 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1187 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1188
1189 /* disable Broadcom PHY IRQ */
1190 if (hw->phy_type == SK_PHY_BCOM)
1191 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1192
1193 xm_outhash(hw, port, XM_HSM, zero);
1194
1195 /* Flush TX and RX fifo */
1196 reg = xm_read32(hw, port, XM_MODE);
1197 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1198 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1199 }
1200
1201 /* Convert mode to MII values */
1202 static const u16 phy_pause_map[] = {
1203 [FLOW_MODE_NONE] = 0,
1204 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1205 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1206 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1207 };
1208
1209 /* special defines for FIBER (88E1011S only) */
1210 static const u16 fiber_pause_map[] = {
1211 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1212 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1213 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1214 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1215 };
1216
1217
1218 /* Check status of Broadcom phy link */
1219 static void bcom_check_link(struct skge_hw *hw, int port)
1220 {
1221 struct net_device *dev = hw->dev[port];
1222 struct skge_port *skge = netdev_priv(dev);
1223 u16 status;
1224
1225 /* read twice because of latch */
1226 xm_phy_read(hw, port, PHY_BCOM_STAT);
1227 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1228
1229 if ((status & PHY_ST_LSYNC) == 0) {
1230 xm_link_down(hw, port);
1231 return;
1232 }
1233
1234 if (skge->autoneg == AUTONEG_ENABLE) {
1235 u16 lpa, aux;
1236
1237 if (!(status & PHY_ST_AN_OVER))
1238 return;
1239
1240 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1241 if (lpa & PHY_B_AN_RF) {
1242 netdev_notice(dev, "remote fault\n");
1243 return;
1244 }
1245
1246 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1247
1248 /* Check Duplex mismatch */
1249 switch (aux & PHY_B_AS_AN_RES_MSK) {
1250 case PHY_B_RES_1000FD:
1251 skge->duplex = DUPLEX_FULL;
1252 break;
1253 case PHY_B_RES_1000HD:
1254 skge->duplex = DUPLEX_HALF;
1255 break;
1256 default:
1257 netdev_notice(dev, "duplex mismatch\n");
1258 return;
1259 }
1260
1261 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1262 switch (aux & PHY_B_AS_PAUSE_MSK) {
1263 case PHY_B_AS_PAUSE_MSK:
1264 skge->flow_status = FLOW_STAT_SYMMETRIC;
1265 break;
1266 case PHY_B_AS_PRR:
1267 skge->flow_status = FLOW_STAT_REM_SEND;
1268 break;
1269 case PHY_B_AS_PRT:
1270 skge->flow_status = FLOW_STAT_LOC_SEND;
1271 break;
1272 default:
1273 skge->flow_status = FLOW_STAT_NONE;
1274 }
1275 skge->speed = SPEED_1000;
1276 }
1277
1278 if (!netif_carrier_ok(dev))
1279 genesis_link_up(skge);
1280 }
1281
1282 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1283 * Phy on for 100 or 10Mbit operation
1284 */
1285 static void bcom_phy_init(struct skge_port *skge)
1286 {
1287 struct skge_hw *hw = skge->hw;
1288 int port = skge->port;
1289 int i;
1290 u16 id1, r, ext, ctl;
1291
1292 /* magic workaround patterns for Broadcom */
1293 static const struct {
1294 u16 reg;
1295 u16 val;
1296 } A1hack[] = {
1297 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1298 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1299 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1300 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1301 }, C0hack[] = {
1302 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1303 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1304 };
1305
1306 /* read Id from external PHY (all have the same address) */
1307 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1308
1309 /* Optimize MDIO transfer by suppressing preamble. */
1310 r = xm_read16(hw, port, XM_MMU_CMD);
1311 r |= XM_MMU_NO_PRE;
1312 xm_write16(hw, port, XM_MMU_CMD, r);
1313
1314 switch (id1) {
1315 case PHY_BCOM_ID1_C0:
1316 /*
1317 * Workaround BCOM Errata for the C0 type.
1318 * Write magic patterns to reserved registers.
1319 */
1320 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1321 xm_phy_write(hw, port,
1322 C0hack[i].reg, C0hack[i].val);
1323
1324 break;
1325 case PHY_BCOM_ID1_A1:
1326 /*
1327 * Workaround BCOM Errata for the A1 type.
1328 * Write magic patterns to reserved registers.
1329 */
1330 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1331 xm_phy_write(hw, port,
1332 A1hack[i].reg, A1hack[i].val);
1333 break;
1334 }
1335
1336 /*
1337 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1338 * Disable Power Management after reset.
1339 */
1340 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1341 r |= PHY_B_AC_DIS_PM;
1342 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1343
1344 /* Dummy read */
1345 xm_read16(hw, port, XM_ISRC);
1346
1347 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1348 ctl = PHY_CT_SP1000; /* always 1000mbit */
1349
1350 if (skge->autoneg == AUTONEG_ENABLE) {
1351 /*
1352 * Workaround BCOM Errata #1 for the C5 type.
1353 * 1000Base-T Link Acquisition Failure in Slave Mode
1354 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1355 */
1356 u16 adv = PHY_B_1000C_RD;
1357 if (skge->advertising & ADVERTISED_1000baseT_Half)
1358 adv |= PHY_B_1000C_AHD;
1359 if (skge->advertising & ADVERTISED_1000baseT_Full)
1360 adv |= PHY_B_1000C_AFD;
1361 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1362
1363 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1364 } else {
1365 if (skge->duplex == DUPLEX_FULL)
1366 ctl |= PHY_CT_DUP_MD;
1367 /* Force to slave */
1368 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1369 }
1370
1371 /* Set autonegotiation pause parameters */
1372 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1373 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1374
1375 /* Handle Jumbo frames */
1376 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1377 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1378 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1379
1380 ext |= PHY_B_PEC_HIGH_LA;
1381
1382 }
1383
1384 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1385 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1386
1387 /* Use link status change interrupt */
1388 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1389 }
1390
1391 static void xm_phy_init(struct skge_port *skge)
1392 {
1393 struct skge_hw *hw = skge->hw;
1394 int port = skge->port;
1395 u16 ctrl = 0;
1396
1397 if (skge->autoneg == AUTONEG_ENABLE) {
1398 if (skge->advertising & ADVERTISED_1000baseT_Half)
1399 ctrl |= PHY_X_AN_HD;
1400 if (skge->advertising & ADVERTISED_1000baseT_Full)
1401 ctrl |= PHY_X_AN_FD;
1402
1403 ctrl |= fiber_pause_map[skge->flow_control];
1404
1405 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1406
1407 /* Restart Auto-negotiation */
1408 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1409 } else {
1410 /* Set DuplexMode in Config register */
1411 if (skge->duplex == DUPLEX_FULL)
1412 ctrl |= PHY_CT_DUP_MD;
1413 /*
1414 * Do NOT enable Auto-negotiation here. This would hold
1415 * the link down because no IDLEs are transmitted
1416 */
1417 }
1418
1419 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1420
1421 /* Poll PHY for status changes */
1422 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1423 }
1424
1425 static int xm_check_link(struct net_device *dev)
1426 {
1427 struct skge_port *skge = netdev_priv(dev);
1428 struct skge_hw *hw = skge->hw;
1429 int port = skge->port;
1430 u16 status;
1431
1432 /* read twice because of latch */
1433 xm_phy_read(hw, port, PHY_XMAC_STAT);
1434 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1435
1436 if ((status & PHY_ST_LSYNC) == 0) {
1437 xm_link_down(hw, port);
1438 return 0;
1439 }
1440
1441 if (skge->autoneg == AUTONEG_ENABLE) {
1442 u16 lpa, res;
1443
1444 if (!(status & PHY_ST_AN_OVER))
1445 return 0;
1446
1447 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1448 if (lpa & PHY_B_AN_RF) {
1449 netdev_notice(dev, "remote fault\n");
1450 return 0;
1451 }
1452
1453 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1454
1455 /* Check Duplex mismatch */
1456 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1457 case PHY_X_RS_FD:
1458 skge->duplex = DUPLEX_FULL;
1459 break;
1460 case PHY_X_RS_HD:
1461 skge->duplex = DUPLEX_HALF;
1462 break;
1463 default:
1464 netdev_notice(dev, "duplex mismatch\n");
1465 return 0;
1466 }
1467
1468 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1469 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1470 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1471 (lpa & PHY_X_P_SYM_MD))
1472 skge->flow_status = FLOW_STAT_SYMMETRIC;
1473 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1474 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1475 /* Enable PAUSE receive, disable PAUSE transmit */
1476 skge->flow_status = FLOW_STAT_REM_SEND;
1477 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1478 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1479 /* Disable PAUSE receive, enable PAUSE transmit */
1480 skge->flow_status = FLOW_STAT_LOC_SEND;
1481 else
1482 skge->flow_status = FLOW_STAT_NONE;
1483
1484 skge->speed = SPEED_1000;
1485 }
1486
1487 if (!netif_carrier_ok(dev))
1488 genesis_link_up(skge);
1489 return 1;
1490 }
1491
1492 /* Poll to check for link coming up.
1493 *
1494 * Since internal PHY is wired to a level triggered pin, can't
1495 * get an interrupt when carrier is detected, need to poll for
1496 * link coming up.
1497 */
1498 static void xm_link_timer(struct timer_list *t)
1499 {
1500 struct skge_port *skge = from_timer(skge, t, link_timer);
1501 struct net_device *dev = skge->netdev;
1502 struct skge_hw *hw = skge->hw;
1503 int port = skge->port;
1504 int i;
1505 unsigned long flags;
1506
1507 if (!netif_running(dev))
1508 return;
1509
1510 spin_lock_irqsave(&hw->phy_lock, flags);
1511
1512 /*
1513 * Verify that the link by checking GPIO register three times.
1514 * This pin has the signal from the link_sync pin connected to it.
1515 */
1516 for (i = 0; i < 3; i++) {
1517 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1518 goto link_down;
1519 }
1520
1521 /* Re-enable interrupt to detect link down */
1522 if (xm_check_link(dev)) {
1523 u16 msk = xm_read16(hw, port, XM_IMSK);
1524 msk &= ~XM_IS_INP_ASS;
1525 xm_write16(hw, port, XM_IMSK, msk);
1526 xm_read16(hw, port, XM_ISRC);
1527 } else {
1528 link_down:
1529 mod_timer(&skge->link_timer,
1530 round_jiffies(jiffies + LINK_HZ));
1531 }
1532 spin_unlock_irqrestore(&hw->phy_lock, flags);
1533 }
1534
1535 static void genesis_mac_init(struct skge_hw *hw, int port)
1536 {
1537 struct net_device *dev = hw->dev[port];
1538 struct skge_port *skge = netdev_priv(dev);
1539 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1540 int i;
1541 u32 r;
1542 static const u8 zero[6] = { 0 };
1543
1544 for (i = 0; i < 10; i++) {
1545 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1546 MFF_SET_MAC_RST);
1547 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1548 goto reset_ok;
1549 udelay(1);
1550 }
1551
1552 netdev_warn(dev, "genesis reset failed\n");
1553
1554 reset_ok:
1555 /* Unreset the XMAC. */
1556 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1557
1558 /*
1559 * Perform additional initialization for external PHYs,
1560 * namely for the 1000baseTX cards that use the XMAC's
1561 * GMII mode.
1562 */
1563 if (hw->phy_type != SK_PHY_XMAC) {
1564 /* Take external Phy out of reset */
1565 r = skge_read32(hw, B2_GP_IO);
1566 if (port == 0)
1567 r |= GP_DIR_0|GP_IO_0;
1568 else
1569 r |= GP_DIR_2|GP_IO_2;
1570
1571 skge_write32(hw, B2_GP_IO, r);
1572
1573 /* Enable GMII interface */
1574 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1575 }
1576
1577
1578 switch (hw->phy_type) {
1579 case SK_PHY_XMAC:
1580 xm_phy_init(skge);
1581 break;
1582 case SK_PHY_BCOM:
1583 bcom_phy_init(skge);
1584 bcom_check_link(hw, port);
1585 }
1586
1587 /* Set Station Address */
1588 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1589
1590 /* We don't use match addresses so clear */
1591 for (i = 1; i < 16; i++)
1592 xm_outaddr(hw, port, XM_EXM(i), zero);
1593
1594 /* Clear MIB counters */
1595 xm_write16(hw, port, XM_STAT_CMD,
1596 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1597 /* Clear two times according to Errata #3 */
1598 xm_write16(hw, port, XM_STAT_CMD,
1599 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1600
1601 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1602 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1603
1604 /* We don't need the FCS appended to the packet. */
1605 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1606 if (jumbo)
1607 r |= XM_RX_BIG_PK_OK;
1608
1609 if (skge->duplex == DUPLEX_HALF) {
1610 /*
1611 * If in manual half duplex mode the other side might be in
1612 * full duplex mode, so ignore if a carrier extension is not seen
1613 * on frames received
1614 */
1615 r |= XM_RX_DIS_CEXT;
1616 }
1617 xm_write16(hw, port, XM_RX_CMD, r);
1618
1619 /* We want short frames padded to 60 bytes. */
1620 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1621
1622 /* Increase threshold for jumbo frames on dual port */
1623 if (hw->ports > 1 && jumbo)
1624 xm_write16(hw, port, XM_TX_THR, 1020);
1625 else
1626 xm_write16(hw, port, XM_TX_THR, 512);
1627
1628 /*
1629 * Enable the reception of all error frames. This is is
1630 * a necessary evil due to the design of the XMAC. The
1631 * XMAC's receive FIFO is only 8K in size, however jumbo
1632 * frames can be up to 9000 bytes in length. When bad
1633 * frame filtering is enabled, the XMAC's RX FIFO operates
1634 * in 'store and forward' mode. For this to work, the
1635 * entire frame has to fit into the FIFO, but that means
1636 * that jumbo frames larger than 8192 bytes will be
1637 * truncated. Disabling all bad frame filtering causes
1638 * the RX FIFO to operate in streaming mode, in which
1639 * case the XMAC will start transferring frames out of the
1640 * RX FIFO as soon as the FIFO threshold is reached.
1641 */
1642 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1643
1644
1645 /*
1646 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1647 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1648 * and 'Octets Rx OK Hi Cnt Ov'.
1649 */
1650 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1651
1652 /*
1653 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1654 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1655 * and 'Octets Tx OK Hi Cnt Ov'.
1656 */
1657 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1658
1659 /* Configure MAC arbiter */
1660 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1661
1662 /* configure timeout values */
1663 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1664 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1665 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1666 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1667
1668 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1669 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1670 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1671 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1672
1673 /* Configure Rx MAC FIFO */
1674 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1675 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1676 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1677
1678 /* Configure Tx MAC FIFO */
1679 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1680 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1681 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1682
1683 if (jumbo) {
1684 /* Enable frame flushing if jumbo frames used */
1685 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1686 } else {
1687 /* enable timeout timers if normal frames */
1688 skge_write16(hw, B3_PA_CTRL,
1689 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1690 }
1691 }
1692
1693 static void genesis_stop(struct skge_port *skge)
1694 {
1695 struct skge_hw *hw = skge->hw;
1696 int port = skge->port;
1697 unsigned retries = 1000;
1698 u16 cmd;
1699
1700 /* Disable Tx and Rx */
1701 cmd = xm_read16(hw, port, XM_MMU_CMD);
1702 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1703 xm_write16(hw, port, XM_MMU_CMD, cmd);
1704
1705 genesis_reset(hw, port);
1706
1707 /* Clear Tx packet arbiter timeout IRQ */
1708 skge_write16(hw, B3_PA_CTRL,
1709 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1710
1711 /* Reset the MAC */
1712 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1713 do {
1714 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1715 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1716 break;
1717 } while (--retries > 0);
1718
1719 /* For external PHYs there must be special handling */
1720 if (hw->phy_type != SK_PHY_XMAC) {
1721 u32 reg = skge_read32(hw, B2_GP_IO);
1722 if (port == 0) {
1723 reg |= GP_DIR_0;
1724 reg &= ~GP_IO_0;
1725 } else {
1726 reg |= GP_DIR_2;
1727 reg &= ~GP_IO_2;
1728 }
1729 skge_write32(hw, B2_GP_IO, reg);
1730 skge_read32(hw, B2_GP_IO);
1731 }
1732
1733 xm_write16(hw, port, XM_MMU_CMD,
1734 xm_read16(hw, port, XM_MMU_CMD)
1735 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1736
1737 xm_read16(hw, port, XM_MMU_CMD);
1738 }
1739
1740
1741 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1742 {
1743 struct skge_hw *hw = skge->hw;
1744 int port = skge->port;
1745 int i;
1746 unsigned long timeout = jiffies + HZ;
1747
1748 xm_write16(hw, port,
1749 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1750
1751 /* wait for update to complete */
1752 while (xm_read16(hw, port, XM_STAT_CMD)
1753 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1754 if (time_after(jiffies, timeout))
1755 break;
1756 udelay(10);
1757 }
1758
1759 /* special case for 64 bit octet counter */
1760 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1761 | xm_read32(hw, port, XM_TXO_OK_LO);
1762 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1763 | xm_read32(hw, port, XM_RXO_OK_LO);
1764
1765 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1766 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1767 }
1768
1769 static void genesis_mac_intr(struct skge_hw *hw, int port)
1770 {
1771 struct net_device *dev = hw->dev[port];
1772 struct skge_port *skge = netdev_priv(dev);
1773 u16 status = xm_read16(hw, port, XM_ISRC);
1774
1775 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1776 "mac interrupt status 0x%x\n", status);
1777
1778 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1779 xm_link_down(hw, port);
1780 mod_timer(&skge->link_timer, jiffies + 1);
1781 }
1782
1783 if (status & XM_IS_TXF_UR) {
1784 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1785 ++dev->stats.tx_fifo_errors;
1786 }
1787 }
1788
1789 static void genesis_link_up(struct skge_port *skge)
1790 {
1791 struct skge_hw *hw = skge->hw;
1792 int port = skge->port;
1793 u16 cmd, msk;
1794 u32 mode;
1795
1796 cmd = xm_read16(hw, port, XM_MMU_CMD);
1797
1798 /*
1799 * enabling pause frame reception is required for 1000BT
1800 * because the XMAC is not reset if the link is going down
1801 */
1802 if (skge->flow_status == FLOW_STAT_NONE ||
1803 skge->flow_status == FLOW_STAT_LOC_SEND)
1804 /* Disable Pause Frame Reception */
1805 cmd |= XM_MMU_IGN_PF;
1806 else
1807 /* Enable Pause Frame Reception */
1808 cmd &= ~XM_MMU_IGN_PF;
1809
1810 xm_write16(hw, port, XM_MMU_CMD, cmd);
1811
1812 mode = xm_read32(hw, port, XM_MODE);
1813 if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1814 skge->flow_status == FLOW_STAT_LOC_SEND) {
1815 /*
1816 * Configure Pause Frame Generation
1817 * Use internal and external Pause Frame Generation.
1818 * Sending pause frames is edge triggered.
1819 * Send a Pause frame with the maximum pause time if
1820 * internal oder external FIFO full condition occurs.
1821 * Send a zero pause time frame to re-start transmission.
1822 */
1823 /* XM_PAUSE_DA = '010000C28001' (default) */
1824 /* XM_MAC_PTIME = 0xffff (maximum) */
1825 /* remember this value is defined in big endian (!) */
1826 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1827
1828 mode |= XM_PAUSE_MODE;
1829 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1830 } else {
1831 /*
1832 * disable pause frame generation is required for 1000BT
1833 * because the XMAC is not reset if the link is going down
1834 */
1835 /* Disable Pause Mode in Mode Register */
1836 mode &= ~XM_PAUSE_MODE;
1837
1838 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1839 }
1840
1841 xm_write32(hw, port, XM_MODE, mode);
1842
1843 /* Turn on detection of Tx underrun */
1844 msk = xm_read16(hw, port, XM_IMSK);
1845 msk &= ~XM_IS_TXF_UR;
1846 xm_write16(hw, port, XM_IMSK, msk);
1847
1848 xm_read16(hw, port, XM_ISRC);
1849
1850 /* get MMU Command Reg. */
1851 cmd = xm_read16(hw, port, XM_MMU_CMD);
1852 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1853 cmd |= XM_MMU_GMII_FD;
1854
1855 /*
1856 * Workaround BCOM Errata (#10523) for all BCom Phys
1857 * Enable Power Management after link up
1858 */
1859 if (hw->phy_type == SK_PHY_BCOM) {
1860 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1861 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1862 & ~PHY_B_AC_DIS_PM);
1863 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1864 }
1865
1866 /* enable Rx/Tx */
1867 xm_write16(hw, port, XM_MMU_CMD,
1868 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1869 skge_link_up(skge);
1870 }
1871
1872
1873 static inline void bcom_phy_intr(struct skge_port *skge)
1874 {
1875 struct skge_hw *hw = skge->hw;
1876 int port = skge->port;
1877 u16 isrc;
1878
1879 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1880 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1881 "phy interrupt status 0x%x\n", isrc);
1882
1883 if (isrc & PHY_B_IS_PSE)
1884 pr_err("%s: uncorrectable pair swap error\n",
1885 hw->dev[port]->name);
1886
1887 /* Workaround BCom Errata:
1888 * enable and disable loopback mode if "NO HCD" occurs.
1889 */
1890 if (isrc & PHY_B_IS_NO_HDCL) {
1891 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1892 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1893 ctrl | PHY_CT_LOOP);
1894 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1895 ctrl & ~PHY_CT_LOOP);
1896 }
1897
1898 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1899 bcom_check_link(hw, port);
1900
1901 }
1902
1903 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1904 {
1905 int i;
1906
1907 gma_write16(hw, port, GM_SMI_DATA, val);
1908 gma_write16(hw, port, GM_SMI_CTRL,
1909 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1910 for (i = 0; i < PHY_RETRIES; i++) {
1911 udelay(1);
1912
1913 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1914 return 0;
1915 }
1916
1917 pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1918 return -EIO;
1919 }
1920
1921 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1922 {
1923 int i;
1924
1925 gma_write16(hw, port, GM_SMI_CTRL,
1926 GM_SMI_CT_PHY_AD(hw->phy_addr)
1927 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1928
1929 for (i = 0; i < PHY_RETRIES; i++) {
1930 udelay(1);
1931 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1932 goto ready;
1933 }
1934
1935 return -ETIMEDOUT;
1936 ready:
1937 *val = gma_read16(hw, port, GM_SMI_DATA);
1938 return 0;
1939 }
1940
1941 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1942 {
1943 u16 v = 0;
1944 if (__gm_phy_read(hw, port, reg, &v))
1945 pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1946 return v;
1947 }
1948
1949 /* Marvell Phy Initialization */
1950 static void yukon_init(struct skge_hw *hw, int port)
1951 {
1952 struct skge_port *skge = netdev_priv(hw->dev[port]);
1953 u16 ctrl, ct1000, adv;
1954
1955 if (skge->autoneg == AUTONEG_ENABLE) {
1956 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1957
1958 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1959 PHY_M_EC_MAC_S_MSK);
1960 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1961
1962 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1963
1964 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1965 }
1966
1967 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1968 if (skge->autoneg == AUTONEG_DISABLE)
1969 ctrl &= ~PHY_CT_ANE;
1970
1971 ctrl |= PHY_CT_RESET;
1972 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1973
1974 ctrl = 0;
1975 ct1000 = 0;
1976 adv = PHY_AN_CSMA;
1977
1978 if (skge->autoneg == AUTONEG_ENABLE) {
1979 if (hw->copper) {
1980 if (skge->advertising & ADVERTISED_1000baseT_Full)
1981 ct1000 |= PHY_M_1000C_AFD;
1982 if (skge->advertising & ADVERTISED_1000baseT_Half)
1983 ct1000 |= PHY_M_1000C_AHD;
1984 if (skge->advertising & ADVERTISED_100baseT_Full)
1985 adv |= PHY_M_AN_100_FD;
1986 if (skge->advertising & ADVERTISED_100baseT_Half)
1987 adv |= PHY_M_AN_100_HD;
1988 if (skge->advertising & ADVERTISED_10baseT_Full)
1989 adv |= PHY_M_AN_10_FD;
1990 if (skge->advertising & ADVERTISED_10baseT_Half)
1991 adv |= PHY_M_AN_10_HD;
1992
1993 /* Set Flow-control capabilities */
1994 adv |= phy_pause_map[skge->flow_control];
1995 } else {
1996 if (skge->advertising & ADVERTISED_1000baseT_Full)
1997 adv |= PHY_M_AN_1000X_AFD;
1998 if (skge->advertising & ADVERTISED_1000baseT_Half)
1999 adv |= PHY_M_AN_1000X_AHD;
2000
2001 adv |= fiber_pause_map[skge->flow_control];
2002 }
2003
2004 /* Restart Auto-negotiation */
2005 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2006 } else {
2007 /* forced speed/duplex settings */
2008 ct1000 = PHY_M_1000C_MSE;
2009
2010 if (skge->duplex == DUPLEX_FULL)
2011 ctrl |= PHY_CT_DUP_MD;
2012
2013 switch (skge->speed) {
2014 case SPEED_1000:
2015 ctrl |= PHY_CT_SP1000;
2016 break;
2017 case SPEED_100:
2018 ctrl |= PHY_CT_SP100;
2019 break;
2020 }
2021
2022 ctrl |= PHY_CT_RESET;
2023 }
2024
2025 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2026
2027 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2028 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2029
2030 /* Enable phy interrupt on autonegotiation complete (or link up) */
2031 if (skge->autoneg == AUTONEG_ENABLE)
2032 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2033 else
2034 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2035 }
2036
2037 static void yukon_reset(struct skge_hw *hw, int port)
2038 {
2039 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2040 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2041 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2042 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2043 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2044
2045 gma_write16(hw, port, GM_RX_CTRL,
2046 gma_read16(hw, port, GM_RX_CTRL)
2047 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2048 }
2049
2050 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2051 static int is_yukon_lite_a0(struct skge_hw *hw)
2052 {
2053 u32 reg;
2054 int ret;
2055
2056 if (hw->chip_id != CHIP_ID_YUKON)
2057 return 0;
2058
2059 reg = skge_read32(hw, B2_FAR);
2060 skge_write8(hw, B2_FAR + 3, 0xff);
2061 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2062 skge_write32(hw, B2_FAR, reg);
2063 return ret;
2064 }
2065
2066 static void yukon_mac_init(struct skge_hw *hw, int port)
2067 {
2068 struct skge_port *skge = netdev_priv(hw->dev[port]);
2069 int i;
2070 u32 reg;
2071 const u8 *addr = hw->dev[port]->dev_addr;
2072
2073 /* WA code for COMA mode -- set PHY reset */
2074 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2075 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2076 reg = skge_read32(hw, B2_GP_IO);
2077 reg |= GP_DIR_9 | GP_IO_9;
2078 skge_write32(hw, B2_GP_IO, reg);
2079 }
2080
2081 /* hard reset */
2082 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2083 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2084
2085 /* WA code for COMA mode -- clear PHY reset */
2086 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2087 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2088 reg = skge_read32(hw, B2_GP_IO);
2089 reg |= GP_DIR_9;
2090 reg &= ~GP_IO_9;
2091 skge_write32(hw, B2_GP_IO, reg);
2092 }
2093
2094 /* Set hardware config mode */
2095 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2096 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2097 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2098
2099 /* Clear GMC reset */
2100 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2101 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2102 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2103
2104 if (skge->autoneg == AUTONEG_DISABLE) {
2105 reg = GM_GPCR_AU_ALL_DIS;
2106 gma_write16(hw, port, GM_GP_CTRL,
2107 gma_read16(hw, port, GM_GP_CTRL) | reg);
2108
2109 switch (skge->speed) {
2110 case SPEED_1000:
2111 reg &= ~GM_GPCR_SPEED_100;
2112 reg |= GM_GPCR_SPEED_1000;
2113 break;
2114 case SPEED_100:
2115 reg &= ~GM_GPCR_SPEED_1000;
2116 reg |= GM_GPCR_SPEED_100;
2117 break;
2118 case SPEED_10:
2119 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2120 break;
2121 }
2122
2123 if (skge->duplex == DUPLEX_FULL)
2124 reg |= GM_GPCR_DUP_FULL;
2125 } else
2126 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2127
2128 switch (skge->flow_control) {
2129 case FLOW_MODE_NONE:
2130 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2131 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2132 break;
2133 case FLOW_MODE_LOC_SEND:
2134 /* disable Rx flow-control */
2135 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2136 break;
2137 case FLOW_MODE_SYMMETRIC:
2138 case FLOW_MODE_SYM_OR_REM:
2139 /* enable Tx & Rx flow-control */
2140 break;
2141 }
2142
2143 gma_write16(hw, port, GM_GP_CTRL, reg);
2144 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2145
2146 yukon_init(hw, port);
2147
2148 /* MIB clear */
2149 reg = gma_read16(hw, port, GM_PHY_ADDR);
2150 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2151
2152 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2153 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2154 gma_write16(hw, port, GM_PHY_ADDR, reg);
2155
2156 /* transmit control */
2157 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2158
2159 /* receive control reg: unicast + multicast + no FCS */
2160 gma_write16(hw, port, GM_RX_CTRL,
2161 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2162
2163 /* transmit flow control */
2164 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2165
2166 /* transmit parameter */
2167 gma_write16(hw, port, GM_TX_PARAM,
2168 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2169 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2170 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2171
2172 /* configure the Serial Mode Register */
2173 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2174 | GM_SMOD_VLAN_ENA
2175 | IPG_DATA_VAL(IPG_DATA_DEF);
2176
2177 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2178 reg |= GM_SMOD_JUMBO_ENA;
2179
2180 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2181
2182 /* physical address: used for pause frames */
2183 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2184 /* virtual address for data */
2185 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2186
2187 /* enable interrupt mask for counter overflows */
2188 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2189 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2190 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2191
2192 /* Initialize Mac Fifo */
2193
2194 /* Configure Rx MAC FIFO */
2195 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2196 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2197
2198 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2199 if (is_yukon_lite_a0(hw))
2200 reg &= ~GMF_RX_F_FL_ON;
2201
2202 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2203 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2204 /*
2205 * because Pause Packet Truncation in GMAC is not working
2206 * we have to increase the Flush Threshold to 64 bytes
2207 * in order to flush pause packets in Rx FIFO on Yukon-1
2208 */
2209 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2210
2211 /* Configure Tx MAC FIFO */
2212 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2213 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2214 }
2215
2216 /* Go into power down mode */
2217 static void yukon_suspend(struct skge_hw *hw, int port)
2218 {
2219 u16 ctrl;
2220
2221 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2222 ctrl |= PHY_M_PC_POL_R_DIS;
2223 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2224
2225 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2226 ctrl |= PHY_CT_RESET;
2227 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2228
2229 /* switch IEEE compatible power down mode on */
2230 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2231 ctrl |= PHY_CT_PDOWN;
2232 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2233 }
2234
2235 static void yukon_stop(struct skge_port *skge)
2236 {
2237 struct skge_hw *hw = skge->hw;
2238 int port = skge->port;
2239
2240 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2241 yukon_reset(hw, port);
2242
2243 gma_write16(hw, port, GM_GP_CTRL,
2244 gma_read16(hw, port, GM_GP_CTRL)
2245 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2246 gma_read16(hw, port, GM_GP_CTRL);
2247
2248 yukon_suspend(hw, port);
2249
2250 /* set GPHY Control reset */
2251 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2252 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2253 }
2254
2255 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2256 {
2257 struct skge_hw *hw = skge->hw;
2258 int port = skge->port;
2259 int i;
2260
2261 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2262 | gma_read32(hw, port, GM_TXO_OK_LO);
2263 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2264 | gma_read32(hw, port, GM_RXO_OK_LO);
2265
2266 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2267 data[i] = gma_read32(hw, port,
2268 skge_stats[i].gma_offset);
2269 }
2270
2271 static void yukon_mac_intr(struct skge_hw *hw, int port)
2272 {
2273 struct net_device *dev = hw->dev[port];
2274 struct skge_port *skge = netdev_priv(dev);
2275 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2276
2277 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2278 "mac interrupt status 0x%x\n", status);
2279
2280 if (status & GM_IS_RX_FF_OR) {
2281 ++dev->stats.rx_fifo_errors;
2282 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2283 }
2284
2285 if (status & GM_IS_TX_FF_UR) {
2286 ++dev->stats.tx_fifo_errors;
2287 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2288 }
2289
2290 }
2291
2292 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2293 {
2294 switch (aux & PHY_M_PS_SPEED_MSK) {
2295 case PHY_M_PS_SPEED_1000:
2296 return SPEED_1000;
2297 case PHY_M_PS_SPEED_100:
2298 return SPEED_100;
2299 default:
2300 return SPEED_10;
2301 }
2302 }
2303
2304 static void yukon_link_up(struct skge_port *skge)
2305 {
2306 struct skge_hw *hw = skge->hw;
2307 int port = skge->port;
2308 u16 reg;
2309
2310 /* Enable Transmit FIFO Underrun */
2311 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2312
2313 reg = gma_read16(hw, port, GM_GP_CTRL);
2314 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2315 reg |= GM_GPCR_DUP_FULL;
2316
2317 /* enable Rx/Tx */
2318 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2319 gma_write16(hw, port, GM_GP_CTRL, reg);
2320
2321 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2322 skge_link_up(skge);
2323 }
2324
2325 static void yukon_link_down(struct skge_port *skge)
2326 {
2327 struct skge_hw *hw = skge->hw;
2328 int port = skge->port;
2329 u16 ctrl;
2330
2331 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2332 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2333 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2334
2335 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2336 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2337 ctrl |= PHY_M_AN_ASP;
2338 /* restore Asymmetric Pause bit */
2339 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2340 }
2341
2342 skge_link_down(skge);
2343
2344 yukon_init(hw, port);
2345 }
2346
2347 static void yukon_phy_intr(struct skge_port *skge)
2348 {
2349 struct skge_hw *hw = skge->hw;
2350 int port = skge->port;
2351 const char *reason = NULL;
2352 u16 istatus, phystat;
2353
2354 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2355 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2356
2357 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2358 "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2359
2360 if (istatus & PHY_M_IS_AN_COMPL) {
2361 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2362 & PHY_M_AN_RF) {
2363 reason = "remote fault";
2364 goto failed;
2365 }
2366
2367 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2368 reason = "master/slave fault";
2369 goto failed;
2370 }
2371
2372 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2373 reason = "speed/duplex";
2374 goto failed;
2375 }
2376
2377 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2378 ? DUPLEX_FULL : DUPLEX_HALF;
2379 skge->speed = yukon_speed(hw, phystat);
2380
2381 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2382 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2383 case PHY_M_PS_PAUSE_MSK:
2384 skge->flow_status = FLOW_STAT_SYMMETRIC;
2385 break;
2386 case PHY_M_PS_RX_P_EN:
2387 skge->flow_status = FLOW_STAT_REM_SEND;
2388 break;
2389 case PHY_M_PS_TX_P_EN:
2390 skge->flow_status = FLOW_STAT_LOC_SEND;
2391 break;
2392 default:
2393 skge->flow_status = FLOW_STAT_NONE;
2394 }
2395
2396 if (skge->flow_status == FLOW_STAT_NONE ||
2397 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2398 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2399 else
2400 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2401 yukon_link_up(skge);
2402 return;
2403 }
2404
2405 if (istatus & PHY_M_IS_LSP_CHANGE)
2406 skge->speed = yukon_speed(hw, phystat);
2407
2408 if (istatus & PHY_M_IS_DUP_CHANGE)
2409 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2410 if (istatus & PHY_M_IS_LST_CHANGE) {
2411 if (phystat & PHY_M_PS_LINK_UP)
2412 yukon_link_up(skge);
2413 else
2414 yukon_link_down(skge);
2415 }
2416 return;
2417 failed:
2418 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2419
2420 /* XXX restart autonegotiation? */
2421 }
2422
2423 static void skge_phy_reset(struct skge_port *skge)
2424 {
2425 struct skge_hw *hw = skge->hw;
2426 int port = skge->port;
2427 struct net_device *dev = hw->dev[port];
2428
2429 netif_stop_queue(skge->netdev);
2430 netif_carrier_off(skge->netdev);
2431
2432 spin_lock_bh(&hw->phy_lock);
2433 if (is_genesis(hw)) {
2434 genesis_reset(hw, port);
2435 genesis_mac_init(hw, port);
2436 } else {
2437 yukon_reset(hw, port);
2438 yukon_init(hw, port);
2439 }
2440 spin_unlock_bh(&hw->phy_lock);
2441
2442 skge_set_multicast(dev);
2443 }
2444
2445 /* Basic MII support */
2446 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2447 {
2448 struct mii_ioctl_data *data = if_mii(ifr);
2449 struct skge_port *skge = netdev_priv(dev);
2450 struct skge_hw *hw = skge->hw;
2451 int err = -EOPNOTSUPP;
2452
2453 if (!netif_running(dev))
2454 return -ENODEV; /* Phy still in reset */
2455
2456 switch (cmd) {
2457 case SIOCGMIIPHY:
2458 data->phy_id = hw->phy_addr;
2459
2460 /* fallthru */
2461 case SIOCGMIIREG: {
2462 u16 val = 0;
2463 spin_lock_bh(&hw->phy_lock);
2464
2465 if (is_genesis(hw))
2466 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2467 else
2468 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2469 spin_unlock_bh(&hw->phy_lock);
2470 data->val_out = val;
2471 break;
2472 }
2473
2474 case SIOCSMIIREG:
2475 spin_lock_bh(&hw->phy_lock);
2476 if (is_genesis(hw))
2477 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2478 data->val_in);
2479 else
2480 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2481 data->val_in);
2482 spin_unlock_bh(&hw->phy_lock);
2483 break;
2484 }
2485 return err;
2486 }
2487
2488 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2489 {
2490 u32 end;
2491
2492 start /= 8;
2493 len /= 8;
2494 end = start + len - 1;
2495
2496 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2497 skge_write32(hw, RB_ADDR(q, RB_START), start);
2498 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2499 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2500 skge_write32(hw, RB_ADDR(q, RB_END), end);
2501
2502 if (q == Q_R1 || q == Q_R2) {
2503 /* Set thresholds on receive queue's */
2504 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2505 start + (2*len)/3);
2506 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2507 start + (len/3));
2508 } else {
2509 /* Enable store & forward on Tx queue's because
2510 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2511 */
2512 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2513 }
2514
2515 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2516 }
2517
2518 /* Setup Bus Memory Interface */
2519 static void skge_qset(struct skge_port *skge, u16 q,
2520 const struct skge_element *e)
2521 {
2522 struct skge_hw *hw = skge->hw;
2523 u32 watermark = 0x600;
2524 u64 base = skge->dma + (e->desc - skge->mem);
2525
2526 /* optimization to reduce window on 32bit/33mhz */
2527 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2528 watermark /= 2;
2529
2530 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2531 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2532 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2533 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2534 }
2535
2536 static int skge_up(struct net_device *dev)
2537 {
2538 struct skge_port *skge = netdev_priv(dev);
2539 struct skge_hw *hw = skge->hw;
2540 int port = skge->port;
2541 u32 chunk, ram_addr;
2542 size_t rx_size, tx_size;
2543 int err;
2544
2545 if (!is_valid_ether_addr(dev->dev_addr))
2546 return -EINVAL;
2547
2548 netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2549
2550 if (dev->mtu > RX_BUF_SIZE)
2551 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2552 else
2553 skge->rx_buf_size = RX_BUF_SIZE;
2554
2555
2556 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2557 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2558 skge->mem_size = tx_size + rx_size;
2559 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2560 if (!skge->mem)
2561 return -ENOMEM;
2562
2563 BUG_ON(skge->dma & 7);
2564
2565 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2566 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2567 err = -EINVAL;
2568 goto free_pci_mem;
2569 }
2570
2571 memset(skge->mem, 0, skge->mem_size);
2572
2573 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2574 if (err)
2575 goto free_pci_mem;
2576
2577 err = skge_rx_fill(dev);
2578 if (err)
2579 goto free_rx_ring;
2580
2581 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2582 skge->dma + rx_size);
2583 if (err)
2584 goto free_rx_ring;
2585
2586 if (hw->ports == 1) {
2587 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2588 dev->name, hw);
2589 if (err) {
2590 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2591 hw->pdev->irq, err);
2592 goto free_tx_ring;
2593 }
2594 }
2595
2596 /* Initialize MAC */
2597 netif_carrier_off(dev);
2598 spin_lock_bh(&hw->phy_lock);
2599 if (is_genesis(hw))
2600 genesis_mac_init(hw, port);
2601 else
2602 yukon_mac_init(hw, port);
2603 spin_unlock_bh(&hw->phy_lock);
2604
2605 /* Configure RAMbuffers - equally between ports and tx/rx */
2606 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2607 ram_addr = hw->ram_offset + 2 * chunk * port;
2608
2609 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2610 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2611
2612 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2613 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2614 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2615
2616 /* Start receiver BMU */
2617 wmb();
2618 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2619 skge_led(skge, LED_MODE_ON);
2620
2621 spin_lock_irq(&hw->hw_lock);
2622 hw->intr_mask |= portmask[port];
2623 skge_write32(hw, B0_IMSK, hw->intr_mask);
2624 skge_read32(hw, B0_IMSK);
2625 spin_unlock_irq(&hw->hw_lock);
2626
2627 napi_enable(&skge->napi);
2628
2629 skge_set_multicast(dev);
2630
2631 return 0;
2632
2633 free_tx_ring:
2634 kfree(skge->tx_ring.start);
2635 free_rx_ring:
2636 skge_rx_clean(skge);
2637 kfree(skge->rx_ring.start);
2638 free_pci_mem:
2639 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2640 skge->mem = NULL;
2641
2642 return err;
2643 }
2644
2645 /* stop receiver */
2646 static void skge_rx_stop(struct skge_hw *hw, int port)
2647 {
2648 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2649 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2650 RB_RST_SET|RB_DIS_OP_MD);
2651 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2652 }
2653
2654 static int skge_down(struct net_device *dev)
2655 {
2656 struct skge_port *skge = netdev_priv(dev);
2657 struct skge_hw *hw = skge->hw;
2658 int port = skge->port;
2659
2660 if (!skge->mem)
2661 return 0;
2662
2663 netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2664
2665 netif_tx_disable(dev);
2666
2667 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2668 del_timer_sync(&skge->link_timer);
2669
2670 napi_disable(&skge->napi);
2671 netif_carrier_off(dev);
2672
2673 spin_lock_irq(&hw->hw_lock);
2674 hw->intr_mask &= ~portmask[port];
2675 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2676 skge_read32(hw, B0_IMSK);
2677 spin_unlock_irq(&hw->hw_lock);
2678
2679 if (hw->ports == 1)
2680 free_irq(hw->pdev->irq, hw);
2681
2682 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2683 if (is_genesis(hw))
2684 genesis_stop(skge);
2685 else
2686 yukon_stop(skge);
2687
2688 /* Stop transmitter */
2689 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2690 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2691 RB_RST_SET|RB_DIS_OP_MD);
2692
2693
2694 /* Disable Force Sync bit and Enable Alloc bit */
2695 skge_write8(hw, SK_REG(port, TXA_CTRL),
2696 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2697
2698 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2699 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2700 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2701
2702 /* Reset PCI FIFO */
2703 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2704 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2705
2706 /* Reset the RAM Buffer async Tx queue */
2707 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2708
2709 skge_rx_stop(hw, port);
2710
2711 if (is_genesis(hw)) {
2712 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2713 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2714 } else {
2715 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2716 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2717 }
2718
2719 skge_led(skge, LED_MODE_OFF);
2720
2721 netif_tx_lock_bh(dev);
2722 skge_tx_clean(dev);
2723 netif_tx_unlock_bh(dev);
2724
2725 skge_rx_clean(skge);
2726
2727 kfree(skge->rx_ring.start);
2728 kfree(skge->tx_ring.start);
2729 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2730 skge->mem = NULL;
2731 return 0;
2732 }
2733
2734 static inline int skge_avail(const struct skge_ring *ring)
2735 {
2736 smp_mb();
2737 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2738 + (ring->to_clean - ring->to_use) - 1;
2739 }
2740
2741 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2742 struct net_device *dev)
2743 {
2744 struct skge_port *skge = netdev_priv(dev);
2745 struct skge_hw *hw = skge->hw;
2746 struct skge_element *e;
2747 struct skge_tx_desc *td;
2748 int i;
2749 u32 control, len;
2750 dma_addr_t map;
2751
2752 if (skb_padto(skb, ETH_ZLEN))
2753 return NETDEV_TX_OK;
2754
2755 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2756 return NETDEV_TX_BUSY;
2757
2758 e = skge->tx_ring.to_use;
2759 td = e->desc;
2760 BUG_ON(td->control & BMU_OWN);
2761 e->skb = skb;
2762 len = skb_headlen(skb);
2763 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2764 if (pci_dma_mapping_error(hw->pdev, map))
2765 goto mapping_error;
2766
2767 dma_unmap_addr_set(e, mapaddr, map);
2768 dma_unmap_len_set(e, maplen, len);
2769
2770 td->dma_lo = lower_32_bits(map);
2771 td->dma_hi = upper_32_bits(map);
2772
2773 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2774 const int offset = skb_checksum_start_offset(skb);
2775
2776 /* This seems backwards, but it is what the sk98lin
2777 * does. Looks like hardware is wrong?
2778 */
2779 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2780 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2781 control = BMU_TCP_CHECK;
2782 else
2783 control = BMU_UDP_CHECK;
2784
2785 td->csum_offs = 0;
2786 td->csum_start = offset;
2787 td->csum_write = offset + skb->csum_offset;
2788 } else
2789 control = BMU_CHECK;
2790
2791 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2792 control |= BMU_EOF | BMU_IRQ_EOF;
2793 else {
2794 struct skge_tx_desc *tf = td;
2795
2796 control |= BMU_STFWD;
2797 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2798 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2799
2800 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2801 skb_frag_size(frag), DMA_TO_DEVICE);
2802 if (dma_mapping_error(&hw->pdev->dev, map))
2803 goto mapping_unwind;
2804
2805 e = e->next;
2806 e->skb = skb;
2807 tf = e->desc;
2808 BUG_ON(tf->control & BMU_OWN);
2809
2810 tf->dma_lo = lower_32_bits(map);
2811 tf->dma_hi = upper_32_bits(map);
2812 dma_unmap_addr_set(e, mapaddr, map);
2813 dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2814
2815 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2816 }
2817 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2818 }
2819 /* Make sure all the descriptors written */
2820 wmb();
2821 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2822 wmb();
2823
2824 netdev_sent_queue(dev, skb->len);
2825
2826 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2827
2828 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2829 "tx queued, slot %td, len %d\n",
2830 e - skge->tx_ring.start, skb->len);
2831
2832 skge->tx_ring.to_use = e->next;
2833 smp_wmb();
2834
2835 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2836 netdev_dbg(dev, "transmit queue full\n");
2837 netif_stop_queue(dev);
2838 }
2839
2840 return NETDEV_TX_OK;
2841
2842 mapping_unwind:
2843 e = skge->tx_ring.to_use;
2844 pci_unmap_single(hw->pdev,
2845 dma_unmap_addr(e, mapaddr),
2846 dma_unmap_len(e, maplen),
2847 PCI_DMA_TODEVICE);
2848 while (i-- > 0) {
2849 e = e->next;
2850 pci_unmap_page(hw->pdev,
2851 dma_unmap_addr(e, mapaddr),
2852 dma_unmap_len(e, maplen),
2853 PCI_DMA_TODEVICE);
2854 }
2855
2856 mapping_error:
2857 if (net_ratelimit())
2858 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2859 dev_kfree_skb_any(skb);
2860 return NETDEV_TX_OK;
2861 }
2862
2863
2864 /* Free resources associated with this reing element */
2865 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2866 u32 control)
2867 {
2868 /* skb header vs. fragment */
2869 if (control & BMU_STF)
2870 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2871 dma_unmap_len(e, maplen),
2872 PCI_DMA_TODEVICE);
2873 else
2874 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2875 dma_unmap_len(e, maplen),
2876 PCI_DMA_TODEVICE);
2877 }
2878
2879 /* Free all buffers in transmit ring */
2880 static void skge_tx_clean(struct net_device *dev)
2881 {
2882 struct skge_port *skge = netdev_priv(dev);
2883 struct skge_element *e;
2884
2885 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2886 struct skge_tx_desc *td = e->desc;
2887
2888 skge_tx_unmap(skge->hw->pdev, e, td->control);
2889
2890 if (td->control & BMU_EOF)
2891 dev_kfree_skb(e->skb);
2892 td->control = 0;
2893 }
2894
2895 netdev_reset_queue(dev);
2896 skge->tx_ring.to_clean = e;
2897 }
2898
2899 static void skge_tx_timeout(struct net_device *dev)
2900 {
2901 struct skge_port *skge = netdev_priv(dev);
2902
2903 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2904
2905 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2906 skge_tx_clean(dev);
2907 netif_wake_queue(dev);
2908 }
2909
2910 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2911 {
2912 int err;
2913
2914 if (!netif_running(dev)) {
2915 dev->mtu = new_mtu;
2916 return 0;
2917 }
2918
2919 skge_down(dev);
2920
2921 dev->mtu = new_mtu;
2922
2923 err = skge_up(dev);
2924 if (err)
2925 dev_close(dev);
2926
2927 return err;
2928 }
2929
2930 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2931
2932 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2933 {
2934 u32 crc, bit;
2935
2936 crc = ether_crc_le(ETH_ALEN, addr);
2937 bit = ~crc & 0x3f;
2938 filter[bit/8] |= 1 << (bit%8);
2939 }
2940
2941 static void genesis_set_multicast(struct net_device *dev)
2942 {
2943 struct skge_port *skge = netdev_priv(dev);
2944 struct skge_hw *hw = skge->hw;
2945 int port = skge->port;
2946 struct netdev_hw_addr *ha;
2947 u32 mode;
2948 u8 filter[8];
2949
2950 mode = xm_read32(hw, port, XM_MODE);
2951 mode |= XM_MD_ENA_HASH;
2952 if (dev->flags & IFF_PROMISC)
2953 mode |= XM_MD_ENA_PROM;
2954 else
2955 mode &= ~XM_MD_ENA_PROM;
2956
2957 if (dev->flags & IFF_ALLMULTI)
2958 memset(filter, 0xff, sizeof(filter));
2959 else {
2960 memset(filter, 0, sizeof(filter));
2961
2962 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2963 skge->flow_status == FLOW_STAT_SYMMETRIC)
2964 genesis_add_filter(filter, pause_mc_addr);
2965
2966 netdev_for_each_mc_addr(ha, dev)
2967 genesis_add_filter(filter, ha->addr);
2968 }
2969
2970 xm_write32(hw, port, XM_MODE, mode);
2971 xm_outhash(hw, port, XM_HSM, filter);
2972 }
2973
2974 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2975 {
2976 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2977 filter[bit/8] |= 1 << (bit%8);
2978 }
2979
2980 static void yukon_set_multicast(struct net_device *dev)
2981 {
2982 struct skge_port *skge = netdev_priv(dev);
2983 struct skge_hw *hw = skge->hw;
2984 int port = skge->port;
2985 struct netdev_hw_addr *ha;
2986 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2987 skge->flow_status == FLOW_STAT_SYMMETRIC);
2988 u16 reg;
2989 u8 filter[8];
2990
2991 memset(filter, 0, sizeof(filter));
2992
2993 reg = gma_read16(hw, port, GM_RX_CTRL);
2994 reg |= GM_RXCR_UCF_ENA;
2995
2996 if (dev->flags & IFF_PROMISC) /* promiscuous */
2997 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2998 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2999 memset(filter, 0xff, sizeof(filter));
3000 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
3001 reg &= ~GM_RXCR_MCF_ENA;
3002 else {
3003 reg |= GM_RXCR_MCF_ENA;
3004
3005 if (rx_pause)
3006 yukon_add_filter(filter, pause_mc_addr);
3007
3008 netdev_for_each_mc_addr(ha, dev)
3009 yukon_add_filter(filter, ha->addr);
3010 }
3011
3012
3013 gma_write16(hw, port, GM_MC_ADDR_H1,
3014 (u16)filter[0] | ((u16)filter[1] << 8));
3015 gma_write16(hw, port, GM_MC_ADDR_H2,
3016 (u16)filter[2] | ((u16)filter[3] << 8));
3017 gma_write16(hw, port, GM_MC_ADDR_H3,
3018 (u16)filter[4] | ((u16)filter[5] << 8));
3019 gma_write16(hw, port, GM_MC_ADDR_H4,
3020 (u16)filter[6] | ((u16)filter[7] << 8));
3021
3022 gma_write16(hw, port, GM_RX_CTRL, reg);
3023 }
3024
3025 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3026 {
3027 if (is_genesis(hw))
3028 return status >> XMR_FS_LEN_SHIFT;
3029 else
3030 return status >> GMR_FS_LEN_SHIFT;
3031 }
3032
3033 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3034 {
3035 if (is_genesis(hw))
3036 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3037 else
3038 return (status & GMR_FS_ANY_ERR) ||
3039 (status & GMR_FS_RX_OK) == 0;
3040 }
3041
3042 static void skge_set_multicast(struct net_device *dev)
3043 {
3044 struct skge_port *skge = netdev_priv(dev);
3045
3046 if (is_genesis(skge->hw))
3047 genesis_set_multicast(dev);
3048 else
3049 yukon_set_multicast(dev);
3050
3051 }
3052
3053
3054 /* Get receive buffer from descriptor.
3055 * Handles copy of small buffers and reallocation failures
3056 */
3057 static struct sk_buff *skge_rx_get(struct net_device *dev,
3058 struct skge_element *e,
3059 u32 control, u32 status, u16 csum)
3060 {
3061 struct skge_port *skge = netdev_priv(dev);
3062 struct sk_buff *skb;
3063 u16 len = control & BMU_BBC;
3064
3065 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3066 "rx slot %td status 0x%x len %d\n",
3067 e - skge->rx_ring.start, status, len);
3068
3069 if (len > skge->rx_buf_size)
3070 goto error;
3071
3072 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3073 goto error;
3074
3075 if (bad_phy_status(skge->hw, status))
3076 goto error;
3077
3078 if (phy_length(skge->hw, status) != len)
3079 goto error;
3080
3081 if (len < RX_COPY_THRESHOLD) {
3082 skb = netdev_alloc_skb_ip_align(dev, len);
3083 if (!skb)
3084 goto resubmit;
3085
3086 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3087 dma_unmap_addr(e, mapaddr),
3088 dma_unmap_len(e, maplen),
3089 PCI_DMA_FROMDEVICE);
3090 skb_copy_from_linear_data(e->skb, skb->data, len);
3091 pci_dma_sync_single_for_device(skge->hw->pdev,
3092 dma_unmap_addr(e, mapaddr),
3093 dma_unmap_len(e, maplen),
3094 PCI_DMA_FROMDEVICE);
3095 skge_rx_reuse(e, skge->rx_buf_size);
3096 } else {
3097 struct skge_element ee;
3098 struct sk_buff *nskb;
3099
3100 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3101 if (!nskb)
3102 goto resubmit;
3103
3104 ee = *e;
3105
3106 skb = ee.skb;
3107 prefetch(skb->data);
3108
3109 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3110 dev_kfree_skb(nskb);
3111 goto resubmit;
3112 }
3113
3114 pci_unmap_single(skge->hw->pdev,
3115 dma_unmap_addr(&ee, mapaddr),
3116 dma_unmap_len(&ee, maplen),
3117 PCI_DMA_FROMDEVICE);
3118 }
3119
3120 skb_put(skb, len);
3121
3122 if (dev->features & NETIF_F_RXCSUM) {
3123 skb->csum = csum;
3124 skb->ip_summed = CHECKSUM_COMPLETE;
3125 }
3126
3127 skb->protocol = eth_type_trans(skb, dev);
3128
3129 return skb;
3130 error:
3131
3132 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3133 "rx err, slot %td control 0x%x status 0x%x\n",
3134 e - skge->rx_ring.start, control, status);
3135
3136 if (is_genesis(skge->hw)) {
3137 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3138 dev->stats.rx_length_errors++;
3139 if (status & XMR_FS_FRA_ERR)
3140 dev->stats.rx_frame_errors++;
3141 if (status & XMR_FS_FCS_ERR)
3142 dev->stats.rx_crc_errors++;
3143 } else {
3144 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3145 dev->stats.rx_length_errors++;
3146 if (status & GMR_FS_FRAGMENT)
3147 dev->stats.rx_frame_errors++;
3148 if (status & GMR_FS_CRC_ERR)
3149 dev->stats.rx_crc_errors++;
3150 }
3151
3152 resubmit:
3153 skge_rx_reuse(e, skge->rx_buf_size);
3154 return NULL;
3155 }
3156
3157 /* Free all buffers in Tx ring which are no longer owned by device */
3158 static void skge_tx_done(struct net_device *dev)
3159 {
3160 struct skge_port *skge = netdev_priv(dev);
3161 struct skge_ring *ring = &skge->tx_ring;
3162 struct skge_element *e;
3163 unsigned int bytes_compl = 0, pkts_compl = 0;
3164
3165 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3166
3167 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3168 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3169
3170 if (control & BMU_OWN)
3171 break;
3172
3173 skge_tx_unmap(skge->hw->pdev, e, control);
3174
3175 if (control & BMU_EOF) {
3176 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3177 "tx done slot %td\n",
3178 e - skge->tx_ring.start);
3179
3180 pkts_compl++;
3181 bytes_compl += e->skb->len;
3182
3183 dev_consume_skb_any(e->skb);
3184 }
3185 }
3186 netdev_completed_queue(dev, pkts_compl, bytes_compl);
3187 skge->tx_ring.to_clean = e;
3188
3189 /* Can run lockless until we need to synchronize to restart queue. */
3190 smp_mb();
3191
3192 if (unlikely(netif_queue_stopped(dev) &&
3193 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3194 netif_tx_lock(dev);
3195 if (unlikely(netif_queue_stopped(dev) &&
3196 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3197 netif_wake_queue(dev);
3198
3199 }
3200 netif_tx_unlock(dev);
3201 }
3202 }
3203
3204 static int skge_poll(struct napi_struct *napi, int budget)
3205 {
3206 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3207 struct net_device *dev = skge->netdev;
3208 struct skge_hw *hw = skge->hw;
3209 struct skge_ring *ring = &skge->rx_ring;
3210 struct skge_element *e;
3211 int work_done = 0;
3212
3213 skge_tx_done(dev);
3214
3215 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3216
3217 for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3218 struct skge_rx_desc *rd = e->desc;
3219 struct sk_buff *skb;
3220 u32 control;
3221
3222 rmb();
3223 control = rd->control;
3224 if (control & BMU_OWN)
3225 break;
3226
3227 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3228 if (likely(skb)) {
3229 napi_gro_receive(napi, skb);
3230 ++work_done;
3231 }
3232 }
3233 ring->to_clean = e;
3234
3235 /* restart receiver */
3236 wmb();
3237 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3238
3239 if (work_done < budget && napi_complete_done(napi, work_done)) {
3240 unsigned long flags;
3241
3242 spin_lock_irqsave(&hw->hw_lock, flags);
3243 hw->intr_mask |= napimask[skge->port];
3244 skge_write32(hw, B0_IMSK, hw->intr_mask);
3245 skge_read32(hw, B0_IMSK);
3246 spin_unlock_irqrestore(&hw->hw_lock, flags);
3247 }
3248
3249 return work_done;
3250 }
3251
3252 /* Parity errors seem to happen when Genesis is connected to a switch
3253 * with no other ports present. Heartbeat error??
3254 */
3255 static void skge_mac_parity(struct skge_hw *hw, int port)
3256 {
3257 struct net_device *dev = hw->dev[port];
3258
3259 ++dev->stats.tx_heartbeat_errors;
3260
3261 if (is_genesis(hw))
3262 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3263 MFF_CLR_PERR);
3264 else
3265 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3266 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3267 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3268 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3269 }
3270
3271 static void skge_mac_intr(struct skge_hw *hw, int port)
3272 {
3273 if (is_genesis(hw))
3274 genesis_mac_intr(hw, port);
3275 else
3276 yukon_mac_intr(hw, port);
3277 }
3278
3279 /* Handle device specific framing and timeout interrupts */
3280 static void skge_error_irq(struct skge_hw *hw)
3281 {
3282 struct pci_dev *pdev = hw->pdev;
3283 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3284
3285 if (is_genesis(hw)) {
3286 /* clear xmac errors */
3287 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3288 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3289 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3290 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3291 } else {
3292 /* Timestamp (unused) overflow */
3293 if (hwstatus & IS_IRQ_TIST_OV)
3294 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3295 }
3296
3297 if (hwstatus & IS_RAM_RD_PAR) {
3298 dev_err(&pdev->dev, "Ram read data parity error\n");
3299 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3300 }
3301
3302 if (hwstatus & IS_RAM_WR_PAR) {
3303 dev_err(&pdev->dev, "Ram write data parity error\n");
3304 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3305 }
3306
3307 if (hwstatus & IS_M1_PAR_ERR)
3308 skge_mac_parity(hw, 0);
3309
3310 if (hwstatus & IS_M2_PAR_ERR)
3311 skge_mac_parity(hw, 1);
3312
3313 if (hwstatus & IS_R1_PAR_ERR) {
3314 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3315 hw->dev[0]->name);
3316 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3317 }
3318
3319 if (hwstatus & IS_R2_PAR_ERR) {
3320 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3321 hw->dev[1]->name);
3322 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3323 }
3324
3325 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3326 u16 pci_status, pci_cmd;
3327
3328 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3329 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3330
3331 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3332 pci_cmd, pci_status);
3333
3334 /* Write the error bits back to clear them. */
3335 pci_status &= PCI_STATUS_ERROR_BITS;
3336 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3337 pci_write_config_word(pdev, PCI_COMMAND,
3338 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3339 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3340 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3341
3342 /* if error still set then just ignore it */
3343 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3344 if (hwstatus & IS_IRQ_STAT) {
3345 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3346 hw->intr_mask &= ~IS_HW_ERR;
3347 }
3348 }
3349 }
3350
3351 /*
3352 * Interrupt from PHY are handled in tasklet (softirq)
3353 * because accessing phy registers requires spin wait which might
3354 * cause excess interrupt latency.
3355 */
3356 static void skge_extirq(unsigned long arg)
3357 {
3358 struct skge_hw *hw = (struct skge_hw *) arg;
3359 int port;
3360
3361 for (port = 0; port < hw->ports; port++) {
3362 struct net_device *dev = hw->dev[port];
3363
3364 if (netif_running(dev)) {
3365 struct skge_port *skge = netdev_priv(dev);
3366
3367 spin_lock(&hw->phy_lock);
3368 if (!is_genesis(hw))
3369 yukon_phy_intr(skge);
3370 else if (hw->phy_type == SK_PHY_BCOM)
3371 bcom_phy_intr(skge);
3372 spin_unlock(&hw->phy_lock);
3373 }
3374 }
3375
3376 spin_lock_irq(&hw->hw_lock);
3377 hw->intr_mask |= IS_EXT_REG;
3378 skge_write32(hw, B0_IMSK, hw->intr_mask);
3379 skge_read32(hw, B0_IMSK);
3380 spin_unlock_irq(&hw->hw_lock);
3381 }
3382
3383 static irqreturn_t skge_intr(int irq, void *dev_id)
3384 {
3385 struct skge_hw *hw = dev_id;
3386 u32 status;
3387 int handled = 0;
3388
3389 spin_lock(&hw->hw_lock);
3390 /* Reading this register masks IRQ */
3391 status = skge_read32(hw, B0_SP_ISRC);
3392 if (status == 0 || status == ~0)
3393 goto out;
3394
3395 handled = 1;
3396 status &= hw->intr_mask;
3397 if (status & IS_EXT_REG) {
3398 hw->intr_mask &= ~IS_EXT_REG;
3399 tasklet_schedule(&hw->phy_task);
3400 }
3401
3402 if (status & (IS_XA1_F|IS_R1_F)) {
3403 struct skge_port *skge = netdev_priv(hw->dev[0]);
3404 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3405 napi_schedule(&skge->napi);
3406 }
3407
3408 if (status & IS_PA_TO_TX1)
3409 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3410
3411 if (status & IS_PA_TO_RX1) {
3412 ++hw->dev[0]->stats.rx_over_errors;
3413 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3414 }
3415
3416
3417 if (status & IS_MAC1)
3418 skge_mac_intr(hw, 0);
3419
3420 if (hw->dev[1]) {
3421 struct skge_port *skge = netdev_priv(hw->dev[1]);
3422
3423 if (status & (IS_XA2_F|IS_R2_F)) {
3424 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3425 napi_schedule(&skge->napi);
3426 }
3427
3428 if (status & IS_PA_TO_RX2) {
3429 ++hw->dev[1]->stats.rx_over_errors;
3430 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3431 }
3432
3433 if (status & IS_PA_TO_TX2)
3434 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3435
3436 if (status & IS_MAC2)
3437 skge_mac_intr(hw, 1);
3438 }
3439
3440 if (status & IS_HW_ERR)
3441 skge_error_irq(hw);
3442 out:
3443 skge_write32(hw, B0_IMSK, hw->intr_mask);
3444 skge_read32(hw, B0_IMSK);
3445 spin_unlock(&hw->hw_lock);
3446
3447 return IRQ_RETVAL(handled);
3448 }
3449
3450 #ifdef CONFIG_NET_POLL_CONTROLLER
3451 static void skge_netpoll(struct net_device *dev)
3452 {
3453 struct skge_port *skge = netdev_priv(dev);
3454
3455 disable_irq(dev->irq);
3456 skge_intr(dev->irq, skge->hw);
3457 enable_irq(dev->irq);
3458 }
3459 #endif
3460
3461 static int skge_set_mac_address(struct net_device *dev, void *p)
3462 {
3463 struct skge_port *skge = netdev_priv(dev);
3464 struct skge_hw *hw = skge->hw;
3465 unsigned port = skge->port;
3466 const struct sockaddr *addr = p;
3467 u16 ctrl;
3468
3469 if (!is_valid_ether_addr(addr->sa_data))
3470 return -EADDRNOTAVAIL;
3471
3472 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3473
3474 if (!netif_running(dev)) {
3475 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3476 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3477 } else {
3478 /* disable Rx */
3479 spin_lock_bh(&hw->phy_lock);
3480 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3481 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3482
3483 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3484 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3485
3486 if (is_genesis(hw))
3487 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3488 else {
3489 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3490 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3491 }
3492
3493 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3494 spin_unlock_bh(&hw->phy_lock);
3495 }
3496
3497 return 0;
3498 }
3499
3500 static const struct {
3501 u8 id;
3502 const char *name;
3503 } skge_chips[] = {
3504 { CHIP_ID_GENESIS, "Genesis" },
3505 { CHIP_ID_YUKON, "Yukon" },
3506 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3507 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3508 };
3509
3510 static const char *skge_board_name(const struct skge_hw *hw)
3511 {
3512 int i;
3513 static char buf[16];
3514
3515 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3516 if (skge_chips[i].id == hw->chip_id)
3517 return skge_chips[i].name;
3518
3519 snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3520 return buf;
3521 }
3522
3523
3524 /*
3525 * Setup the board data structure, but don't bring up
3526 * the port(s)
3527 */
3528 static int skge_reset(struct skge_hw *hw)
3529 {
3530 u32 reg;
3531 u16 ctst, pci_status;
3532 u8 t8, mac_cfg, pmd_type;
3533 int i;
3534
3535 ctst = skge_read16(hw, B0_CTST);
3536
3537 /* do a SW reset */
3538 skge_write8(hw, B0_CTST, CS_RST_SET);
3539 skge_write8(hw, B0_CTST, CS_RST_CLR);
3540
3541 /* clear PCI errors, if any */
3542 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3543 skge_write8(hw, B2_TST_CTRL2, 0);
3544
3545 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3546 pci_write_config_word(hw->pdev, PCI_STATUS,
3547 pci_status | PCI_STATUS_ERROR_BITS);
3548 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3549 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3550
3551 /* restore CLK_RUN bits (for Yukon-Lite) */
3552 skge_write16(hw, B0_CTST,
3553 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3554
3555 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3556 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3557 pmd_type = skge_read8(hw, B2_PMD_TYP);
3558 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3559
3560 switch (hw->chip_id) {
3561 case CHIP_ID_GENESIS:
3562 #ifdef CONFIG_SKGE_GENESIS
3563 switch (hw->phy_type) {
3564 case SK_PHY_XMAC:
3565 hw->phy_addr = PHY_ADDR_XMAC;
3566 break;
3567 case SK_PHY_BCOM:
3568 hw->phy_addr = PHY_ADDR_BCOM;
3569 break;
3570 default:
3571 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3572 hw->phy_type);
3573 return -EOPNOTSUPP;
3574 }
3575 break;
3576 #else
3577 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3578 return -EOPNOTSUPP;
3579 #endif
3580
3581 case CHIP_ID_YUKON:
3582 case CHIP_ID_YUKON_LITE:
3583 case CHIP_ID_YUKON_LP:
3584 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3585 hw->copper = 1;
3586
3587 hw->phy_addr = PHY_ADDR_MARV;
3588 break;
3589
3590 default:
3591 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3592 hw->chip_id);
3593 return -EOPNOTSUPP;
3594 }
3595
3596 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3597 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3598 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3599
3600 /* read the adapters RAM size */
3601 t8 = skge_read8(hw, B2_E_0);
3602 if (is_genesis(hw)) {
3603 if (t8 == 3) {
3604 /* special case: 4 x 64k x 36, offset = 0x80000 */
3605 hw->ram_size = 0x100000;
3606 hw->ram_offset = 0x80000;
3607 } else
3608 hw->ram_size = t8 * 512;
3609 } else if (t8 == 0)
3610 hw->ram_size = 0x20000;
3611 else
3612 hw->ram_size = t8 * 4096;
3613
3614 hw->intr_mask = IS_HW_ERR;
3615
3616 /* Use PHY IRQ for all but fiber based Genesis board */
3617 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3618 hw->intr_mask |= IS_EXT_REG;
3619
3620 if (is_genesis(hw))
3621 genesis_init(hw);
3622 else {
3623 /* switch power to VCC (WA for VAUX problem) */
3624 skge_write8(hw, B0_POWER_CTRL,
3625 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3626
3627 /* avoid boards with stuck Hardware error bits */
3628 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3629 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3630 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3631 hw->intr_mask &= ~IS_HW_ERR;
3632 }
3633
3634 /* Clear PHY COMA */
3635 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3636 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3637 reg &= ~PCI_PHY_COMA;
3638 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3639 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3640
3641
3642 for (i = 0; i < hw->ports; i++) {
3643 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3644 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3645 }
3646 }
3647
3648 /* turn off hardware timer (unused) */
3649 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3650 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3651 skge_write8(hw, B0_LED, LED_STAT_ON);
3652
3653 /* enable the Tx Arbiters */
3654 for (i = 0; i < hw->ports; i++)
3655 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3656
3657 /* Initialize ram interface */
3658 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3659
3660 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3661 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3662 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3663 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3664 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3665 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3666 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3667 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3668 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3669 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3670 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3671 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3672
3673 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3674
3675 /* Set interrupt moderation for Transmit only
3676 * Receive interrupts avoided by NAPI
3677 */
3678 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3679 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3680 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3681
3682 /* Leave irq disabled until first port is brought up. */
3683 skge_write32(hw, B0_IMSK, 0);
3684
3685 for (i = 0; i < hw->ports; i++) {
3686 if (is_genesis(hw))
3687 genesis_reset(hw, i);
3688 else
3689 yukon_reset(hw, i);
3690 }
3691
3692 return 0;
3693 }
3694
3695
3696 #ifdef CONFIG_SKGE_DEBUG
3697
3698 static struct dentry *skge_debug;
3699
3700 static int skge_debug_show(struct seq_file *seq, void *v)
3701 {
3702 struct net_device *dev = seq->private;
3703 const struct skge_port *skge = netdev_priv(dev);
3704 const struct skge_hw *hw = skge->hw;
3705 const struct skge_element *e;
3706
3707 if (!netif_running(dev))
3708 return -ENETDOWN;
3709
3710 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3711 skge_read32(hw, B0_IMSK));
3712
3713 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3714 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3715 const struct skge_tx_desc *t = e->desc;
3716 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3717 t->control, t->dma_hi, t->dma_lo, t->status,
3718 t->csum_offs, t->csum_write, t->csum_start);
3719 }
3720
3721 seq_puts(seq, "\nRx Ring:\n");
3722 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3723 const struct skge_rx_desc *r = e->desc;
3724
3725 if (r->control & BMU_OWN)
3726 break;
3727
3728 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3729 r->control, r->dma_hi, r->dma_lo, r->status,
3730 r->timestamp, r->csum1, r->csum1_start);
3731 }
3732
3733 return 0;
3734 }
3735
3736 static int skge_debug_open(struct inode *inode, struct file *file)
3737 {
3738 return single_open(file, skge_debug_show, inode->i_private);
3739 }
3740
3741 static const struct file_operations skge_debug_fops = {
3742 .owner = THIS_MODULE,
3743 .open = skge_debug_open,
3744 .read = seq_read,
3745 .llseek = seq_lseek,
3746 .release = single_release,
3747 };
3748
3749 /*
3750 * Use network device events to create/remove/rename
3751 * debugfs file entries
3752 */
3753 static int skge_device_event(struct notifier_block *unused,
3754 unsigned long event, void *ptr)
3755 {
3756 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3757 struct skge_port *skge;
3758 struct dentry *d;
3759
3760 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3761 goto done;
3762
3763 skge = netdev_priv(dev);
3764 switch (event) {
3765 case NETDEV_CHANGENAME:
3766 if (skge->debugfs) {
3767 d = debugfs_rename(skge_debug, skge->debugfs,
3768 skge_debug, dev->name);
3769 if (d)
3770 skge->debugfs = d;
3771 else {
3772 netdev_info(dev, "rename failed\n");
3773 debugfs_remove(skge->debugfs);
3774 }
3775 }
3776 break;
3777
3778 case NETDEV_GOING_DOWN:
3779 if (skge->debugfs) {
3780 debugfs_remove(skge->debugfs);
3781 skge->debugfs = NULL;
3782 }
3783 break;
3784
3785 case NETDEV_UP:
3786 d = debugfs_create_file(dev->name, S_IRUGO,
3787 skge_debug, dev,
3788 &skge_debug_fops);
3789 if (!d || IS_ERR(d))
3790 netdev_info(dev, "debugfs create failed\n");
3791 else
3792 skge->debugfs = d;
3793 break;
3794 }
3795
3796 done:
3797 return NOTIFY_DONE;
3798 }
3799
3800 static struct notifier_block skge_notifier = {
3801 .notifier_call = skge_device_event,
3802 };
3803
3804
3805 static __init void skge_debug_init(void)
3806 {
3807 struct dentry *ent;
3808
3809 ent = debugfs_create_dir("skge", NULL);
3810 if (!ent || IS_ERR(ent)) {
3811 pr_info("debugfs create directory failed\n");
3812 return;
3813 }
3814
3815 skge_debug = ent;
3816 register_netdevice_notifier(&skge_notifier);
3817 }
3818
3819 static __exit void skge_debug_cleanup(void)
3820 {
3821 if (skge_debug) {
3822 unregister_netdevice_notifier(&skge_notifier);
3823 debugfs_remove(skge_debug);
3824 skge_debug = NULL;
3825 }
3826 }
3827
3828 #else
3829 #define skge_debug_init()
3830 #define skge_debug_cleanup()
3831 #endif
3832
3833 static const struct net_device_ops skge_netdev_ops = {
3834 .ndo_open = skge_up,
3835 .ndo_stop = skge_down,
3836 .ndo_start_xmit = skge_xmit_frame,
3837 .ndo_do_ioctl = skge_ioctl,
3838 .ndo_get_stats = skge_get_stats,
3839 .ndo_tx_timeout = skge_tx_timeout,
3840 .ndo_change_mtu = skge_change_mtu,
3841 .ndo_validate_addr = eth_validate_addr,
3842 .ndo_set_rx_mode = skge_set_multicast,
3843 .ndo_set_mac_address = skge_set_mac_address,
3844 #ifdef CONFIG_NET_POLL_CONTROLLER
3845 .ndo_poll_controller = skge_netpoll,
3846 #endif
3847 };
3848
3849
3850 /* Initialize network device */
3851 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3852 int highmem)
3853 {
3854 struct skge_port *skge;
3855 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3856
3857 if (!dev)
3858 return NULL;
3859
3860 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3861 dev->netdev_ops = &skge_netdev_ops;
3862 dev->ethtool_ops = &skge_ethtool_ops;
3863 dev->watchdog_timeo = TX_WATCHDOG;
3864 dev->irq = hw->pdev->irq;
3865
3866 /* MTU range: 60 - 9000 */
3867 dev->min_mtu = ETH_ZLEN;
3868 dev->max_mtu = ETH_JUMBO_MTU;
3869
3870 if (highmem)
3871 dev->features |= NETIF_F_HIGHDMA;
3872
3873 skge = netdev_priv(dev);
3874 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3875 skge->netdev = dev;
3876 skge->hw = hw;
3877 skge->msg_enable = netif_msg_init(debug, default_msg);
3878
3879 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3880 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3881
3882 /* Auto speed and flow control */
3883 skge->autoneg = AUTONEG_ENABLE;
3884 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3885 skge->duplex = -1;
3886 skge->speed = -1;
3887 skge->advertising = skge_supported_modes(hw);
3888
3889 if (device_can_wakeup(&hw->pdev->dev)) {
3890 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3891 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3892 }
3893
3894 hw->dev[port] = dev;
3895
3896 skge->port = port;
3897
3898 /* Only used for Genesis XMAC */
3899 if (is_genesis(hw))
3900 timer_setup(&skge->link_timer, xm_link_timer, 0);
3901 else {
3902 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3903 NETIF_F_RXCSUM;
3904 dev->features |= dev->hw_features;
3905 }
3906
3907 /* read the mac address */
3908 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3909
3910 return dev;
3911 }
3912
3913 static void skge_show_addr(struct net_device *dev)
3914 {
3915 const struct skge_port *skge = netdev_priv(dev);
3916
3917 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3918 }
3919
3920 static int only_32bit_dma;
3921
3922 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3923 {
3924 struct net_device *dev, *dev1;
3925 struct skge_hw *hw;
3926 int err, using_dac = 0;
3927
3928 err = pci_enable_device(pdev);
3929 if (err) {
3930 dev_err(&pdev->dev, "cannot enable PCI device\n");
3931 goto err_out;
3932 }
3933
3934 err = pci_request_regions(pdev, DRV_NAME);
3935 if (err) {
3936 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3937 goto err_out_disable_pdev;
3938 }
3939
3940 pci_set_master(pdev);
3941
3942 if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3943 using_dac = 1;
3944 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3945 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3946 using_dac = 0;
3947 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3948 }
3949
3950 if (err) {
3951 dev_err(&pdev->dev, "no usable DMA configuration\n");
3952 goto err_out_free_regions;
3953 }
3954
3955 #ifdef __BIG_ENDIAN
3956 /* byte swap descriptors in hardware */
3957 {
3958 u32 reg;
3959
3960 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3961 reg |= PCI_REV_DESC;
3962 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3963 }
3964 #endif
3965
3966 err = -ENOMEM;
3967 /* space for skge@pci:0000:04:00.0 */
3968 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3969 + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3970 if (!hw)
3971 goto err_out_free_regions;
3972
3973 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3974
3975 hw->pdev = pdev;
3976 spin_lock_init(&hw->hw_lock);
3977 spin_lock_init(&hw->phy_lock);
3978 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3979
3980 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3981 if (!hw->regs) {
3982 dev_err(&pdev->dev, "cannot map device registers\n");
3983 goto err_out_free_hw;
3984 }
3985
3986 err = skge_reset(hw);
3987 if (err)
3988 goto err_out_iounmap;
3989
3990 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3991 DRV_VERSION,
3992 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3993 skge_board_name(hw), hw->chip_rev);
3994
3995 dev = skge_devinit(hw, 0, using_dac);
3996 if (!dev) {
3997 err = -ENOMEM;
3998 goto err_out_led_off;
3999 }
4000
4001 /* Some motherboards are broken and has zero in ROM. */
4002 if (!is_valid_ether_addr(dev->dev_addr))
4003 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
4004
4005 err = register_netdev(dev);
4006 if (err) {
4007 dev_err(&pdev->dev, "cannot register net device\n");
4008 goto err_out_free_netdev;
4009 }
4010
4011 skge_show_addr(dev);
4012
4013 if (hw->ports > 1) {
4014 dev1 = skge_devinit(hw, 1, using_dac);
4015 if (!dev1) {
4016 err = -ENOMEM;
4017 goto err_out_unregister;
4018 }
4019
4020 err = register_netdev(dev1);
4021 if (err) {
4022 dev_err(&pdev->dev, "cannot register second net device\n");
4023 goto err_out_free_dev1;
4024 }
4025
4026 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
4027 hw->irq_name, hw);
4028 if (err) {
4029 dev_err(&pdev->dev, "cannot assign irq %d\n",
4030 pdev->irq);
4031 goto err_out_unregister_dev1;
4032 }
4033
4034 skge_show_addr(dev1);
4035 }
4036 pci_set_drvdata(pdev, hw);
4037
4038 return 0;
4039
4040 err_out_unregister_dev1:
4041 unregister_netdev(dev1);
4042 err_out_free_dev1:
4043 free_netdev(dev1);
4044 err_out_unregister:
4045 unregister_netdev(dev);
4046 err_out_free_netdev:
4047 free_netdev(dev);
4048 err_out_led_off:
4049 skge_write16(hw, B0_LED, LED_STAT_OFF);
4050 err_out_iounmap:
4051 iounmap(hw->regs);
4052 err_out_free_hw:
4053 kfree(hw);
4054 err_out_free_regions:
4055 pci_release_regions(pdev);
4056 err_out_disable_pdev:
4057 pci_disable_device(pdev);
4058 err_out:
4059 return err;
4060 }
4061
4062 static void skge_remove(struct pci_dev *pdev)
4063 {
4064 struct skge_hw *hw = pci_get_drvdata(pdev);
4065 struct net_device *dev0, *dev1;
4066
4067 if (!hw)
4068 return;
4069
4070 dev1 = hw->dev[1];
4071 if (dev1)
4072 unregister_netdev(dev1);
4073 dev0 = hw->dev[0];
4074 unregister_netdev(dev0);
4075
4076 tasklet_kill(&hw->phy_task);
4077
4078 spin_lock_irq(&hw->hw_lock);
4079 hw->intr_mask = 0;
4080
4081 if (hw->ports > 1) {
4082 skge_write32(hw, B0_IMSK, 0);
4083 skge_read32(hw, B0_IMSK);
4084 free_irq(pdev->irq, hw);
4085 }
4086 spin_unlock_irq(&hw->hw_lock);
4087
4088 skge_write16(hw, B0_LED, LED_STAT_OFF);
4089 skge_write8(hw, B0_CTST, CS_RST_SET);
4090
4091 if (hw->ports > 1)
4092 free_irq(pdev->irq, hw);
4093 pci_release_regions(pdev);
4094 pci_disable_device(pdev);
4095 if (dev1)
4096 free_netdev(dev1);
4097 free_netdev(dev0);
4098
4099 iounmap(hw->regs);
4100 kfree(hw);
4101 }
4102
4103 #ifdef CONFIG_PM_SLEEP
4104 static int skge_suspend(struct device *dev)
4105 {
4106 struct pci_dev *pdev = to_pci_dev(dev);
4107 struct skge_hw *hw = pci_get_drvdata(pdev);
4108 int i;
4109
4110 if (!hw)
4111 return 0;
4112
4113 for (i = 0; i < hw->ports; i++) {
4114 struct net_device *dev = hw->dev[i];
4115 struct skge_port *skge = netdev_priv(dev);
4116
4117 if (netif_running(dev))
4118 skge_down(dev);
4119
4120 if (skge->wol)
4121 skge_wol_init(skge);
4122 }
4123
4124 skge_write32(hw, B0_IMSK, 0);
4125
4126 return 0;
4127 }
4128
4129 static int skge_resume(struct device *dev)
4130 {
4131 struct pci_dev *pdev = to_pci_dev(dev);
4132 struct skge_hw *hw = pci_get_drvdata(pdev);
4133 int i, err;
4134
4135 if (!hw)
4136 return 0;
4137
4138 err = skge_reset(hw);
4139 if (err)
4140 goto out;
4141
4142 for (i = 0; i < hw->ports; i++) {
4143 struct net_device *dev = hw->dev[i];
4144
4145 if (netif_running(dev)) {
4146 err = skge_up(dev);
4147
4148 if (err) {
4149 netdev_err(dev, "could not up: %d\n", err);
4150 dev_close(dev);
4151 goto out;
4152 }
4153 }
4154 }
4155 out:
4156 return err;
4157 }
4158
4159 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4160 #define SKGE_PM_OPS (&skge_pm_ops)
4161
4162 #else
4163
4164 #define SKGE_PM_OPS NULL
4165 #endif /* CONFIG_PM_SLEEP */
4166
4167 static void skge_shutdown(struct pci_dev *pdev)
4168 {
4169 struct skge_hw *hw = pci_get_drvdata(pdev);
4170 int i;
4171
4172 if (!hw)
4173 return;
4174
4175 for (i = 0; i < hw->ports; i++) {
4176 struct net_device *dev = hw->dev[i];
4177 struct skge_port *skge = netdev_priv(dev);
4178
4179 if (skge->wol)
4180 skge_wol_init(skge);
4181 }
4182
4183 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4184 pci_set_power_state(pdev, PCI_D3hot);
4185 }
4186
4187 static struct pci_driver skge_driver = {
4188 .name = DRV_NAME,
4189 .id_table = skge_id_table,
4190 .probe = skge_probe,
4191 .remove = skge_remove,
4192 .shutdown = skge_shutdown,
4193 .driver.pm = SKGE_PM_OPS,
4194 };
4195
4196 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4197 {
4198 .ident = "Gigabyte nForce boards",
4199 .matches = {
4200 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4201 DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4202 },
4203 },
4204 {
4205 .ident = "ASUS P5NSLI",
4206 .matches = {
4207 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4208 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4209 },
4210 },
4211 {
4212 .ident = "FUJITSU SIEMENS A8NE-FM",
4213 .matches = {
4214 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4215 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4216 },
4217 },
4218 {}
4219 };
4220
4221 static int __init skge_init_module(void)
4222 {
4223 if (dmi_check_system(skge_32bit_dma_boards))
4224 only_32bit_dma = 1;
4225 skge_debug_init();
4226 return pci_register_driver(&skge_driver);
4227 }
4228
4229 static void __exit skge_cleanup_module(void)
4230 {
4231 pci_unregister_driver(&skge_driver);
4232 skge_debug_cleanup();
4233 }
4234
4235 module_init(skge_init_module);
4236 module_exit(skge_cleanup_module);