]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/mellanox/mlx4/alloc.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / mellanox / mlx4 / alloc.c
1 /*
2 * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/errno.h>
35 #include <linux/slab.h>
36 #include <linux/mm.h>
37 #include <linux/export.h>
38 #include <linux/bitmap.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/vmalloc.h>
41
42 #include "mlx4.h"
43
44 u32 mlx4_bitmap_alloc(struct mlx4_bitmap *bitmap)
45 {
46 u32 obj;
47
48 spin_lock(&bitmap->lock);
49
50 obj = find_next_zero_bit(bitmap->table, bitmap->max, bitmap->last);
51 if (obj >= bitmap->max) {
52 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
53 & bitmap->mask;
54 obj = find_first_zero_bit(bitmap->table, bitmap->max);
55 }
56
57 if (obj < bitmap->max) {
58 set_bit(obj, bitmap->table);
59 bitmap->last = (obj + 1);
60 if (bitmap->last == bitmap->max)
61 bitmap->last = 0;
62 obj |= bitmap->top;
63 } else
64 obj = -1;
65
66 if (obj != -1)
67 --bitmap->avail;
68
69 spin_unlock(&bitmap->lock);
70
71 return obj;
72 }
73
74 void mlx4_bitmap_free(struct mlx4_bitmap *bitmap, u32 obj, int use_rr)
75 {
76 mlx4_bitmap_free_range(bitmap, obj, 1, use_rr);
77 }
78
79 static unsigned long find_aligned_range(unsigned long *bitmap,
80 u32 start, u32 nbits,
81 int len, int align, u32 skip_mask)
82 {
83 unsigned long end, i;
84
85 again:
86 start = ALIGN(start, align);
87
88 while ((start < nbits) && (test_bit(start, bitmap) ||
89 (start & skip_mask)))
90 start += align;
91
92 if (start >= nbits)
93 return -1;
94
95 end = start+len;
96 if (end > nbits)
97 return -1;
98
99 for (i = start + 1; i < end; i++) {
100 if (test_bit(i, bitmap) || ((u32)i & skip_mask)) {
101 start = i + 1;
102 goto again;
103 }
104 }
105
106 return start;
107 }
108
109 u32 mlx4_bitmap_alloc_range(struct mlx4_bitmap *bitmap, int cnt,
110 int align, u32 skip_mask)
111 {
112 u32 obj;
113
114 if (likely(cnt == 1 && align == 1 && !skip_mask))
115 return mlx4_bitmap_alloc(bitmap);
116
117 spin_lock(&bitmap->lock);
118
119 obj = find_aligned_range(bitmap->table, bitmap->last,
120 bitmap->max, cnt, align, skip_mask);
121 if (obj >= bitmap->max) {
122 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
123 & bitmap->mask;
124 obj = find_aligned_range(bitmap->table, 0, bitmap->max,
125 cnt, align, skip_mask);
126 }
127
128 if (obj < bitmap->max) {
129 bitmap_set(bitmap->table, obj, cnt);
130 if (obj == bitmap->last) {
131 bitmap->last = (obj + cnt);
132 if (bitmap->last >= bitmap->max)
133 bitmap->last = 0;
134 }
135 obj |= bitmap->top;
136 } else
137 obj = -1;
138
139 if (obj != -1)
140 bitmap->avail -= cnt;
141
142 spin_unlock(&bitmap->lock);
143
144 return obj;
145 }
146
147 u32 mlx4_bitmap_avail(struct mlx4_bitmap *bitmap)
148 {
149 return bitmap->avail;
150 }
151
152 static u32 mlx4_bitmap_masked_value(struct mlx4_bitmap *bitmap, u32 obj)
153 {
154 return obj & (bitmap->max + bitmap->reserved_top - 1);
155 }
156
157 void mlx4_bitmap_free_range(struct mlx4_bitmap *bitmap, u32 obj, int cnt,
158 int use_rr)
159 {
160 obj &= bitmap->max + bitmap->reserved_top - 1;
161
162 spin_lock(&bitmap->lock);
163 if (!use_rr) {
164 bitmap->last = min(bitmap->last, obj);
165 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
166 & bitmap->mask;
167 }
168 bitmap_clear(bitmap->table, obj, cnt);
169 bitmap->avail += cnt;
170 spin_unlock(&bitmap->lock);
171 }
172
173 int mlx4_bitmap_init(struct mlx4_bitmap *bitmap, u32 num, u32 mask,
174 u32 reserved_bot, u32 reserved_top)
175 {
176 /* num must be a power of 2 */
177 if (num != roundup_pow_of_two(num))
178 return -EINVAL;
179
180 bitmap->last = 0;
181 bitmap->top = 0;
182 bitmap->max = num - reserved_top;
183 bitmap->mask = mask;
184 bitmap->reserved_top = reserved_top;
185 bitmap->avail = num - reserved_top - reserved_bot;
186 bitmap->effective_len = bitmap->avail;
187 spin_lock_init(&bitmap->lock);
188 bitmap->table = kzalloc(BITS_TO_LONGS(bitmap->max) *
189 sizeof (long), GFP_KERNEL);
190 if (!bitmap->table)
191 return -ENOMEM;
192
193 bitmap_set(bitmap->table, 0, reserved_bot);
194
195 return 0;
196 }
197
198 void mlx4_bitmap_cleanup(struct mlx4_bitmap *bitmap)
199 {
200 kfree(bitmap->table);
201 }
202
203 struct mlx4_zone_allocator {
204 struct list_head entries;
205 struct list_head prios;
206 u32 last_uid;
207 u32 mask;
208 /* protect the zone_allocator from concurrent accesses */
209 spinlock_t lock;
210 enum mlx4_zone_alloc_flags flags;
211 };
212
213 struct mlx4_zone_entry {
214 struct list_head list;
215 struct list_head prio_list;
216 u32 uid;
217 struct mlx4_zone_allocator *allocator;
218 struct mlx4_bitmap *bitmap;
219 int use_rr;
220 int priority;
221 int offset;
222 enum mlx4_zone_flags flags;
223 };
224
225 struct mlx4_zone_allocator *mlx4_zone_allocator_create(enum mlx4_zone_alloc_flags flags)
226 {
227 struct mlx4_zone_allocator *zones = kmalloc(sizeof(*zones), GFP_KERNEL);
228
229 if (NULL == zones)
230 return NULL;
231
232 INIT_LIST_HEAD(&zones->entries);
233 INIT_LIST_HEAD(&zones->prios);
234 spin_lock_init(&zones->lock);
235 zones->last_uid = 0;
236 zones->mask = 0;
237 zones->flags = flags;
238
239 return zones;
240 }
241
242 int mlx4_zone_add_one(struct mlx4_zone_allocator *zone_alloc,
243 struct mlx4_bitmap *bitmap,
244 u32 flags,
245 int priority,
246 int offset,
247 u32 *puid)
248 {
249 u32 mask = mlx4_bitmap_masked_value(bitmap, (u32)-1);
250 struct mlx4_zone_entry *it;
251 struct mlx4_zone_entry *zone = kmalloc(sizeof(*zone), GFP_KERNEL);
252
253 if (NULL == zone)
254 return -ENOMEM;
255
256 zone->flags = flags;
257 zone->bitmap = bitmap;
258 zone->use_rr = (flags & MLX4_ZONE_USE_RR) ? MLX4_USE_RR : 0;
259 zone->priority = priority;
260 zone->offset = offset;
261
262 spin_lock(&zone_alloc->lock);
263
264 zone->uid = zone_alloc->last_uid++;
265 zone->allocator = zone_alloc;
266
267 if (zone_alloc->mask < mask)
268 zone_alloc->mask = mask;
269
270 list_for_each_entry(it, &zone_alloc->prios, prio_list)
271 if (it->priority >= priority)
272 break;
273
274 if (&it->prio_list == &zone_alloc->prios || it->priority > priority)
275 list_add_tail(&zone->prio_list, &it->prio_list);
276 list_add_tail(&zone->list, &it->list);
277
278 spin_unlock(&zone_alloc->lock);
279
280 *puid = zone->uid;
281
282 return 0;
283 }
284
285 /* Should be called under a lock */
286 static void __mlx4_zone_remove_one_entry(struct mlx4_zone_entry *entry)
287 {
288 struct mlx4_zone_allocator *zone_alloc = entry->allocator;
289
290 if (!list_empty(&entry->prio_list)) {
291 /* Check if we need to add an alternative node to the prio list */
292 if (!list_is_last(&entry->list, &zone_alloc->entries)) {
293 struct mlx4_zone_entry *next = list_first_entry(&entry->list,
294 typeof(*next),
295 list);
296
297 if (next->priority == entry->priority)
298 list_add_tail(&next->prio_list, &entry->prio_list);
299 }
300
301 list_del(&entry->prio_list);
302 }
303
304 list_del(&entry->list);
305
306 if (zone_alloc->flags & MLX4_ZONE_ALLOC_FLAGS_NO_OVERLAP) {
307 u32 mask = 0;
308 struct mlx4_zone_entry *it;
309
310 list_for_each_entry(it, &zone_alloc->prios, prio_list) {
311 u32 cur_mask = mlx4_bitmap_masked_value(it->bitmap, (u32)-1);
312
313 if (mask < cur_mask)
314 mask = cur_mask;
315 }
316 zone_alloc->mask = mask;
317 }
318 }
319
320 void mlx4_zone_allocator_destroy(struct mlx4_zone_allocator *zone_alloc)
321 {
322 struct mlx4_zone_entry *zone, *tmp;
323
324 spin_lock(&zone_alloc->lock);
325
326 list_for_each_entry_safe(zone, tmp, &zone_alloc->entries, list) {
327 list_del(&zone->list);
328 list_del(&zone->prio_list);
329 kfree(zone);
330 }
331
332 spin_unlock(&zone_alloc->lock);
333 kfree(zone_alloc);
334 }
335
336 /* Should be called under a lock */
337 static u32 __mlx4_alloc_from_zone(struct mlx4_zone_entry *zone, int count,
338 int align, u32 skip_mask, u32 *puid)
339 {
340 u32 uid;
341 u32 res;
342 struct mlx4_zone_allocator *zone_alloc = zone->allocator;
343 struct mlx4_zone_entry *curr_node;
344
345 res = mlx4_bitmap_alloc_range(zone->bitmap, count,
346 align, skip_mask);
347
348 if (res != (u32)-1) {
349 res += zone->offset;
350 uid = zone->uid;
351 goto out;
352 }
353
354 list_for_each_entry(curr_node, &zone_alloc->prios, prio_list) {
355 if (unlikely(curr_node->priority == zone->priority))
356 break;
357 }
358
359 if (zone->flags & MLX4_ZONE_ALLOW_ALLOC_FROM_LOWER_PRIO) {
360 struct mlx4_zone_entry *it = curr_node;
361
362 list_for_each_entry_continue_reverse(it, &zone_alloc->entries, list) {
363 res = mlx4_bitmap_alloc_range(it->bitmap, count,
364 align, skip_mask);
365 if (res != (u32)-1) {
366 res += it->offset;
367 uid = it->uid;
368 goto out;
369 }
370 }
371 }
372
373 if (zone->flags & MLX4_ZONE_ALLOW_ALLOC_FROM_EQ_PRIO) {
374 struct mlx4_zone_entry *it = curr_node;
375
376 list_for_each_entry_from(it, &zone_alloc->entries, list) {
377 if (unlikely(it == zone))
378 continue;
379
380 if (unlikely(it->priority != curr_node->priority))
381 break;
382
383 res = mlx4_bitmap_alloc_range(it->bitmap, count,
384 align, skip_mask);
385 if (res != (u32)-1) {
386 res += it->offset;
387 uid = it->uid;
388 goto out;
389 }
390 }
391 }
392
393 if (zone->flags & MLX4_ZONE_FALLBACK_TO_HIGHER_PRIO) {
394 if (list_is_last(&curr_node->prio_list, &zone_alloc->prios))
395 goto out;
396
397 curr_node = list_first_entry(&curr_node->prio_list,
398 typeof(*curr_node),
399 prio_list);
400
401 list_for_each_entry_from(curr_node, &zone_alloc->entries, list) {
402 res = mlx4_bitmap_alloc_range(curr_node->bitmap, count,
403 align, skip_mask);
404 if (res != (u32)-1) {
405 res += curr_node->offset;
406 uid = curr_node->uid;
407 goto out;
408 }
409 }
410 }
411
412 out:
413 if (NULL != puid && res != (u32)-1)
414 *puid = uid;
415 return res;
416 }
417
418 /* Should be called under a lock */
419 static void __mlx4_free_from_zone(struct mlx4_zone_entry *zone, u32 obj,
420 u32 count)
421 {
422 mlx4_bitmap_free_range(zone->bitmap, obj - zone->offset, count, zone->use_rr);
423 }
424
425 /* Should be called under a lock */
426 static struct mlx4_zone_entry *__mlx4_find_zone_by_uid(
427 struct mlx4_zone_allocator *zones, u32 uid)
428 {
429 struct mlx4_zone_entry *zone;
430
431 list_for_each_entry(zone, &zones->entries, list) {
432 if (zone->uid == uid)
433 return zone;
434 }
435
436 return NULL;
437 }
438
439 struct mlx4_bitmap *mlx4_zone_get_bitmap(struct mlx4_zone_allocator *zones, u32 uid)
440 {
441 struct mlx4_zone_entry *zone;
442 struct mlx4_bitmap *bitmap;
443
444 spin_lock(&zones->lock);
445
446 zone = __mlx4_find_zone_by_uid(zones, uid);
447
448 bitmap = zone == NULL ? NULL : zone->bitmap;
449
450 spin_unlock(&zones->lock);
451
452 return bitmap;
453 }
454
455 int mlx4_zone_remove_one(struct mlx4_zone_allocator *zones, u32 uid)
456 {
457 struct mlx4_zone_entry *zone;
458 int res = 0;
459
460 spin_lock(&zones->lock);
461
462 zone = __mlx4_find_zone_by_uid(zones, uid);
463
464 if (NULL == zone) {
465 res = -1;
466 goto out;
467 }
468
469 __mlx4_zone_remove_one_entry(zone);
470
471 out:
472 spin_unlock(&zones->lock);
473 kfree(zone);
474
475 return res;
476 }
477
478 /* Should be called under a lock */
479 static struct mlx4_zone_entry *__mlx4_find_zone_by_uid_unique(
480 struct mlx4_zone_allocator *zones, u32 obj)
481 {
482 struct mlx4_zone_entry *zone, *zone_candidate = NULL;
483 u32 dist = (u32)-1;
484
485 /* Search for the smallest zone that this obj could be
486 * allocated from. This is done in order to handle
487 * situations when small bitmaps are allocated from bigger
488 * bitmaps (and the allocated space is marked as reserved in
489 * the bigger bitmap.
490 */
491 list_for_each_entry(zone, &zones->entries, list) {
492 if (obj >= zone->offset) {
493 u32 mobj = (obj - zone->offset) & zones->mask;
494
495 if (mobj < zone->bitmap->max) {
496 u32 curr_dist = zone->bitmap->effective_len;
497
498 if (curr_dist < dist) {
499 dist = curr_dist;
500 zone_candidate = zone;
501 }
502 }
503 }
504 }
505
506 return zone_candidate;
507 }
508
509 u32 mlx4_zone_alloc_entries(struct mlx4_zone_allocator *zones, u32 uid, int count,
510 int align, u32 skip_mask, u32 *puid)
511 {
512 struct mlx4_zone_entry *zone;
513 int res = -1;
514
515 spin_lock(&zones->lock);
516
517 zone = __mlx4_find_zone_by_uid(zones, uid);
518
519 if (NULL == zone)
520 goto out;
521
522 res = __mlx4_alloc_from_zone(zone, count, align, skip_mask, puid);
523
524 out:
525 spin_unlock(&zones->lock);
526
527 return res;
528 }
529
530 u32 mlx4_zone_free_entries(struct mlx4_zone_allocator *zones, u32 uid, u32 obj, u32 count)
531 {
532 struct mlx4_zone_entry *zone;
533 int res = 0;
534
535 spin_lock(&zones->lock);
536
537 zone = __mlx4_find_zone_by_uid(zones, uid);
538
539 if (NULL == zone) {
540 res = -1;
541 goto out;
542 }
543
544 __mlx4_free_from_zone(zone, obj, count);
545
546 out:
547 spin_unlock(&zones->lock);
548
549 return res;
550 }
551
552 u32 mlx4_zone_free_entries_unique(struct mlx4_zone_allocator *zones, u32 obj, u32 count)
553 {
554 struct mlx4_zone_entry *zone;
555 int res;
556
557 if (!(zones->flags & MLX4_ZONE_ALLOC_FLAGS_NO_OVERLAP))
558 return -EFAULT;
559
560 spin_lock(&zones->lock);
561
562 zone = __mlx4_find_zone_by_uid_unique(zones, obj);
563
564 if (NULL == zone) {
565 res = -1;
566 goto out;
567 }
568
569 __mlx4_free_from_zone(zone, obj, count);
570 res = 0;
571
572 out:
573 spin_unlock(&zones->lock);
574
575 return res;
576 }
577
578 static int mlx4_buf_direct_alloc(struct mlx4_dev *dev, int size,
579 struct mlx4_buf *buf)
580 {
581 dma_addr_t t;
582
583 buf->nbufs = 1;
584 buf->npages = 1;
585 buf->page_shift = get_order(size) + PAGE_SHIFT;
586 buf->direct.buf =
587 dma_zalloc_coherent(&dev->persist->pdev->dev,
588 size, &t, GFP_KERNEL);
589 if (!buf->direct.buf)
590 return -ENOMEM;
591
592 buf->direct.map = t;
593
594 while (t & ((1 << buf->page_shift) - 1)) {
595 --buf->page_shift;
596 buf->npages *= 2;
597 }
598
599 return 0;
600 }
601
602 /* Handling for queue buffers -- we allocate a bunch of memory and
603 * register it in a memory region at HCA virtual address 0. If the
604 * requested size is > max_direct, we split the allocation into
605 * multiple pages, so we don't require too much contiguous memory.
606 */
607 int mlx4_buf_alloc(struct mlx4_dev *dev, int size, int max_direct,
608 struct mlx4_buf *buf)
609 {
610 if (size <= max_direct) {
611 return mlx4_buf_direct_alloc(dev, size, buf);
612 } else {
613 dma_addr_t t;
614 int i;
615
616 buf->direct.buf = NULL;
617 buf->nbufs = (size + PAGE_SIZE - 1) / PAGE_SIZE;
618 buf->npages = buf->nbufs;
619 buf->page_shift = PAGE_SHIFT;
620 buf->page_list = kcalloc(buf->nbufs, sizeof(*buf->page_list),
621 GFP_KERNEL);
622 if (!buf->page_list)
623 return -ENOMEM;
624
625 for (i = 0; i < buf->nbufs; ++i) {
626 buf->page_list[i].buf =
627 dma_zalloc_coherent(&dev->persist->pdev->dev,
628 PAGE_SIZE, &t, GFP_KERNEL);
629 if (!buf->page_list[i].buf)
630 goto err_free;
631
632 buf->page_list[i].map = t;
633 }
634 }
635
636 return 0;
637
638 err_free:
639 mlx4_buf_free(dev, size, buf);
640
641 return -ENOMEM;
642 }
643 EXPORT_SYMBOL_GPL(mlx4_buf_alloc);
644
645 void mlx4_buf_free(struct mlx4_dev *dev, int size, struct mlx4_buf *buf)
646 {
647 if (buf->nbufs == 1) {
648 dma_free_coherent(&dev->persist->pdev->dev, size,
649 buf->direct.buf, buf->direct.map);
650 } else {
651 int i;
652
653 for (i = 0; i < buf->nbufs; ++i)
654 if (buf->page_list[i].buf)
655 dma_free_coherent(&dev->persist->pdev->dev,
656 PAGE_SIZE,
657 buf->page_list[i].buf,
658 buf->page_list[i].map);
659 kfree(buf->page_list);
660 }
661 }
662 EXPORT_SYMBOL_GPL(mlx4_buf_free);
663
664 static struct mlx4_db_pgdir *mlx4_alloc_db_pgdir(struct device *dma_device)
665 {
666 struct mlx4_db_pgdir *pgdir;
667
668 pgdir = kzalloc(sizeof(*pgdir), GFP_KERNEL);
669 if (!pgdir)
670 return NULL;
671
672 bitmap_fill(pgdir->order1, MLX4_DB_PER_PAGE / 2);
673 pgdir->bits[0] = pgdir->order0;
674 pgdir->bits[1] = pgdir->order1;
675 pgdir->db_page = dma_alloc_coherent(dma_device, PAGE_SIZE,
676 &pgdir->db_dma, GFP_KERNEL);
677 if (!pgdir->db_page) {
678 kfree(pgdir);
679 return NULL;
680 }
681
682 return pgdir;
683 }
684
685 static int mlx4_alloc_db_from_pgdir(struct mlx4_db_pgdir *pgdir,
686 struct mlx4_db *db, int order)
687 {
688 int o;
689 int i;
690
691 for (o = order; o <= 1; ++o) {
692 i = find_first_bit(pgdir->bits[o], MLX4_DB_PER_PAGE >> o);
693 if (i < MLX4_DB_PER_PAGE >> o)
694 goto found;
695 }
696
697 return -ENOMEM;
698
699 found:
700 clear_bit(i, pgdir->bits[o]);
701
702 i <<= o;
703
704 if (o > order)
705 set_bit(i ^ 1, pgdir->bits[order]);
706
707 db->u.pgdir = pgdir;
708 db->index = i;
709 db->db = pgdir->db_page + db->index;
710 db->dma = pgdir->db_dma + db->index * 4;
711 db->order = order;
712
713 return 0;
714 }
715
716 int mlx4_db_alloc(struct mlx4_dev *dev, struct mlx4_db *db, int order)
717 {
718 struct mlx4_priv *priv = mlx4_priv(dev);
719 struct mlx4_db_pgdir *pgdir;
720 int ret = 0;
721
722 mutex_lock(&priv->pgdir_mutex);
723
724 list_for_each_entry(pgdir, &priv->pgdir_list, list)
725 if (!mlx4_alloc_db_from_pgdir(pgdir, db, order))
726 goto out;
727
728 pgdir = mlx4_alloc_db_pgdir(&dev->persist->pdev->dev);
729 if (!pgdir) {
730 ret = -ENOMEM;
731 goto out;
732 }
733
734 list_add(&pgdir->list, &priv->pgdir_list);
735
736 /* This should never fail -- we just allocated an empty page: */
737 WARN_ON(mlx4_alloc_db_from_pgdir(pgdir, db, order));
738
739 out:
740 mutex_unlock(&priv->pgdir_mutex);
741
742 return ret;
743 }
744 EXPORT_SYMBOL_GPL(mlx4_db_alloc);
745
746 void mlx4_db_free(struct mlx4_dev *dev, struct mlx4_db *db)
747 {
748 struct mlx4_priv *priv = mlx4_priv(dev);
749 int o;
750 int i;
751
752 mutex_lock(&priv->pgdir_mutex);
753
754 o = db->order;
755 i = db->index;
756
757 if (db->order == 0 && test_bit(i ^ 1, db->u.pgdir->order0)) {
758 clear_bit(i ^ 1, db->u.pgdir->order0);
759 ++o;
760 }
761 i >>= o;
762 set_bit(i, db->u.pgdir->bits[o]);
763
764 if (bitmap_full(db->u.pgdir->order1, MLX4_DB_PER_PAGE / 2)) {
765 dma_free_coherent(&dev->persist->pdev->dev, PAGE_SIZE,
766 db->u.pgdir->db_page, db->u.pgdir->db_dma);
767 list_del(&db->u.pgdir->list);
768 kfree(db->u.pgdir);
769 }
770
771 mutex_unlock(&priv->pgdir_mutex);
772 }
773 EXPORT_SYMBOL_GPL(mlx4_db_free);
774
775 int mlx4_alloc_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
776 int size)
777 {
778 int err;
779
780 err = mlx4_db_alloc(dev, &wqres->db, 1);
781 if (err)
782 return err;
783
784 *wqres->db.db = 0;
785
786 err = mlx4_buf_direct_alloc(dev, size, &wqres->buf);
787 if (err)
788 goto err_db;
789
790 err = mlx4_mtt_init(dev, wqres->buf.npages, wqres->buf.page_shift,
791 &wqres->mtt);
792 if (err)
793 goto err_buf;
794
795 err = mlx4_buf_write_mtt(dev, &wqres->mtt, &wqres->buf);
796 if (err)
797 goto err_mtt;
798
799 return 0;
800
801 err_mtt:
802 mlx4_mtt_cleanup(dev, &wqres->mtt);
803 err_buf:
804 mlx4_buf_free(dev, size, &wqres->buf);
805 err_db:
806 mlx4_db_free(dev, &wqres->db);
807
808 return err;
809 }
810 EXPORT_SYMBOL_GPL(mlx4_alloc_hwq_res);
811
812 void mlx4_free_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
813 int size)
814 {
815 mlx4_mtt_cleanup(dev, &wqres->mtt);
816 mlx4_buf_free(dev, size, &wqres->buf);
817 mlx4_db_free(dev, &wqres->db);
818 }
819 EXPORT_SYMBOL_GPL(mlx4_free_hwq_res);