]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/mellanox/mlx4/en_tx.c
spi/s3c64xx: Remove redundant runtime PM management
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / mellanox / mlx4 / en_tx.c
1 /*
2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33
34 #include <asm/page.h>
35 #include <linux/mlx4/cq.h>
36 #include <linux/slab.h>
37 #include <linux/mlx4/qp.h>
38 #include <linux/skbuff.h>
39 #include <linux/if_vlan.h>
40 #include <linux/prefetch.h>
41 #include <linux/vmalloc.h>
42 #include <linux/tcp.h>
43 #include <linux/ip.h>
44 #include <linux/moduleparam.h>
45
46 #include "mlx4_en.h"
47
48 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
49 struct mlx4_en_tx_ring **pring, int qpn, u32 size,
50 u16 stride, int node, int queue_index)
51 {
52 struct mlx4_en_dev *mdev = priv->mdev;
53 struct mlx4_en_tx_ring *ring;
54 int tmp;
55 int err;
56
57 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
58 if (!ring) {
59 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
60 if (!ring) {
61 en_err(priv, "Failed allocating TX ring\n");
62 return -ENOMEM;
63 }
64 }
65
66 ring->size = size;
67 ring->size_mask = size - 1;
68 ring->stride = stride;
69
70 tmp = size * sizeof(struct mlx4_en_tx_info);
71 ring->tx_info = kmalloc_node(tmp, GFP_KERNEL | __GFP_NOWARN, node);
72 if (!ring->tx_info) {
73 ring->tx_info = vmalloc(tmp);
74 if (!ring->tx_info) {
75 err = -ENOMEM;
76 goto err_ring;
77 }
78 }
79
80 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
81 ring->tx_info, tmp);
82
83 ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node);
84 if (!ring->bounce_buf) {
85 ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
86 if (!ring->bounce_buf) {
87 err = -ENOMEM;
88 goto err_info;
89 }
90 }
91 ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
92
93 /* Allocate HW buffers on provided NUMA node */
94 set_dev_node(&mdev->dev->pdev->dev, node);
95 err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
96 2 * PAGE_SIZE);
97 set_dev_node(&mdev->dev->pdev->dev, mdev->dev->numa_node);
98 if (err) {
99 en_err(priv, "Failed allocating hwq resources\n");
100 goto err_bounce;
101 }
102
103 err = mlx4_en_map_buffer(&ring->wqres.buf);
104 if (err) {
105 en_err(priv, "Failed to map TX buffer\n");
106 goto err_hwq_res;
107 }
108
109 ring->buf = ring->wqres.buf.direct.buf;
110
111 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d buf_size:%d dma:%llx\n",
112 ring, ring->buf, ring->size, ring->buf_size,
113 (unsigned long long) ring->wqres.buf.direct.map);
114
115 ring->qpn = qpn;
116 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp, GFP_KERNEL);
117 if (err) {
118 en_err(priv, "Failed allocating qp %d\n", ring->qpn);
119 goto err_map;
120 }
121 ring->qp.event = mlx4_en_sqp_event;
122
123 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
124 if (err) {
125 en_dbg(DRV, priv, "working without blueflame (%d)\n", err);
126 ring->bf.uar = &mdev->priv_uar;
127 ring->bf.uar->map = mdev->uar_map;
128 ring->bf_enabled = false;
129 ring->bf_alloced = false;
130 priv->pflags &= ~MLX4_EN_PRIV_FLAGS_BLUEFLAME;
131 } else {
132 ring->bf_alloced = true;
133 ring->bf_enabled = !!(priv->pflags &
134 MLX4_EN_PRIV_FLAGS_BLUEFLAME);
135 }
136
137 ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type;
138 ring->queue_index = queue_index;
139
140 if (queue_index < priv->num_tx_rings_p_up && cpu_online(queue_index))
141 cpumask_set_cpu(queue_index, &ring->affinity_mask);
142
143 *pring = ring;
144 return 0;
145
146 err_map:
147 mlx4_en_unmap_buffer(&ring->wqres.buf);
148 err_hwq_res:
149 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
150 err_bounce:
151 kfree(ring->bounce_buf);
152 ring->bounce_buf = NULL;
153 err_info:
154 kvfree(ring->tx_info);
155 ring->tx_info = NULL;
156 err_ring:
157 kfree(ring);
158 *pring = NULL;
159 return err;
160 }
161
162 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
163 struct mlx4_en_tx_ring **pring)
164 {
165 struct mlx4_en_dev *mdev = priv->mdev;
166 struct mlx4_en_tx_ring *ring = *pring;
167 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
168
169 if (ring->bf_alloced)
170 mlx4_bf_free(mdev->dev, &ring->bf);
171 mlx4_qp_remove(mdev->dev, &ring->qp);
172 mlx4_qp_free(mdev->dev, &ring->qp);
173 mlx4_en_unmap_buffer(&ring->wqres.buf);
174 mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
175 kfree(ring->bounce_buf);
176 ring->bounce_buf = NULL;
177 kvfree(ring->tx_info);
178 ring->tx_info = NULL;
179 kfree(ring);
180 *pring = NULL;
181 }
182
183 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
184 struct mlx4_en_tx_ring *ring,
185 int cq, int user_prio)
186 {
187 struct mlx4_en_dev *mdev = priv->mdev;
188 int err;
189
190 ring->cqn = cq;
191 ring->prod = 0;
192 ring->cons = 0xffffffff;
193 ring->last_nr_txbb = 1;
194 memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
195 memset(ring->buf, 0, ring->buf_size);
196
197 ring->qp_state = MLX4_QP_STATE_RST;
198 ring->doorbell_qpn = cpu_to_be32(ring->qp.qpn << 8);
199 ring->mr_key = cpu_to_be32(mdev->mr.key);
200
201 mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
202 ring->cqn, user_prio, &ring->context);
203 if (ring->bf_alloced)
204 ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
205
206 err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
207 &ring->qp, &ring->qp_state);
208 if (!user_prio && cpu_online(ring->queue_index))
209 netif_set_xps_queue(priv->dev, &ring->affinity_mask,
210 ring->queue_index);
211
212 return err;
213 }
214
215 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
216 struct mlx4_en_tx_ring *ring)
217 {
218 struct mlx4_en_dev *mdev = priv->mdev;
219
220 mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
221 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
222 }
223
224 static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
225 struct mlx4_en_tx_ring *ring, int index,
226 u8 owner)
227 {
228 __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
229 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
230 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
231 void *end = ring->buf + ring->buf_size;
232 __be32 *ptr = (__be32 *)tx_desc;
233 int i;
234
235 /* Optimize the common case when there are no wraparounds */
236 if (likely((void *)tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
237 /* Stamp the freed descriptor */
238 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE;
239 i += STAMP_STRIDE) {
240 *ptr = stamp;
241 ptr += STAMP_DWORDS;
242 }
243 } else {
244 /* Stamp the freed descriptor */
245 for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE;
246 i += STAMP_STRIDE) {
247 *ptr = stamp;
248 ptr += STAMP_DWORDS;
249 if ((void *)ptr >= end) {
250 ptr = ring->buf;
251 stamp ^= cpu_to_be32(0x80000000);
252 }
253 }
254 }
255 }
256
257
258 static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
259 struct mlx4_en_tx_ring *ring,
260 int index, u8 owner, u64 timestamp)
261 {
262 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
263 struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE;
264 struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
265 void *end = ring->buf + ring->buf_size;
266 struct sk_buff *skb = tx_info->skb;
267 int nr_maps = tx_info->nr_maps;
268 int i;
269
270 /* We do not touch skb here, so prefetch skb->users location
271 * to speedup consume_skb()
272 */
273 prefetchw(&skb->users);
274
275 if (unlikely(timestamp)) {
276 struct skb_shared_hwtstamps hwts;
277
278 mlx4_en_fill_hwtstamps(priv->mdev, &hwts, timestamp);
279 skb_tstamp_tx(skb, &hwts);
280 }
281
282 /* Optimize the common case when there are no wraparounds */
283 if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) {
284 if (!tx_info->inl) {
285 if (tx_info->linear)
286 dma_unmap_single(priv->ddev,
287 tx_info->map0_dma,
288 tx_info->map0_byte_count,
289 PCI_DMA_TODEVICE);
290 else
291 dma_unmap_page(priv->ddev,
292 tx_info->map0_dma,
293 tx_info->map0_byte_count,
294 PCI_DMA_TODEVICE);
295 for (i = 1; i < nr_maps; i++) {
296 data++;
297 dma_unmap_page(priv->ddev,
298 (dma_addr_t)be64_to_cpu(data->addr),
299 be32_to_cpu(data->byte_count),
300 PCI_DMA_TODEVICE);
301 }
302 }
303 } else {
304 if (!tx_info->inl) {
305 if ((void *) data >= end) {
306 data = ring->buf + ((void *)data - end);
307 }
308
309 if (tx_info->linear)
310 dma_unmap_single(priv->ddev,
311 tx_info->map0_dma,
312 tx_info->map0_byte_count,
313 PCI_DMA_TODEVICE);
314 else
315 dma_unmap_page(priv->ddev,
316 tx_info->map0_dma,
317 tx_info->map0_byte_count,
318 PCI_DMA_TODEVICE);
319 for (i = 1; i < nr_maps; i++) {
320 data++;
321 /* Check for wraparound before unmapping */
322 if ((void *) data >= end)
323 data = ring->buf;
324 dma_unmap_page(priv->ddev,
325 (dma_addr_t)be64_to_cpu(data->addr),
326 be32_to_cpu(data->byte_count),
327 PCI_DMA_TODEVICE);
328 }
329 }
330 }
331 dev_consume_skb_any(skb);
332 return tx_info->nr_txbb;
333 }
334
335
336 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
337 {
338 struct mlx4_en_priv *priv = netdev_priv(dev);
339 int cnt = 0;
340
341 /* Skip last polled descriptor */
342 ring->cons += ring->last_nr_txbb;
343 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
344 ring->cons, ring->prod);
345
346 if ((u32) (ring->prod - ring->cons) > ring->size) {
347 if (netif_msg_tx_err(priv))
348 en_warn(priv, "Tx consumer passed producer!\n");
349 return 0;
350 }
351
352 while (ring->cons != ring->prod) {
353 ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
354 ring->cons & ring->size_mask,
355 !!(ring->cons & ring->size), 0);
356 ring->cons += ring->last_nr_txbb;
357 cnt++;
358 }
359
360 netdev_tx_reset_queue(ring->tx_queue);
361
362 if (cnt)
363 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
364
365 return cnt;
366 }
367
368 static bool mlx4_en_process_tx_cq(struct net_device *dev,
369 struct mlx4_en_cq *cq)
370 {
371 struct mlx4_en_priv *priv = netdev_priv(dev);
372 struct mlx4_cq *mcq = &cq->mcq;
373 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
374 struct mlx4_cqe *cqe;
375 u16 index;
376 u16 new_index, ring_index, stamp_index;
377 u32 txbbs_skipped = 0;
378 u32 txbbs_stamp = 0;
379 u32 cons_index = mcq->cons_index;
380 int size = cq->size;
381 u32 size_mask = ring->size_mask;
382 struct mlx4_cqe *buf = cq->buf;
383 u32 packets = 0;
384 u32 bytes = 0;
385 int factor = priv->cqe_factor;
386 u64 timestamp = 0;
387 int done = 0;
388 int budget = priv->tx_work_limit;
389 u32 last_nr_txbb;
390 u32 ring_cons;
391
392 if (!priv->port_up)
393 return true;
394
395 netdev_txq_bql_complete_prefetchw(ring->tx_queue);
396
397 index = cons_index & size_mask;
398 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor;
399 last_nr_txbb = ACCESS_ONCE(ring->last_nr_txbb);
400 ring_cons = ACCESS_ONCE(ring->cons);
401 ring_index = ring_cons & size_mask;
402 stamp_index = ring_index;
403
404 /* Process all completed CQEs */
405 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
406 cons_index & size) && (done < budget)) {
407 /*
408 * make sure we read the CQE after we read the
409 * ownership bit
410 */
411 rmb();
412
413 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
414 MLX4_CQE_OPCODE_ERROR)) {
415 struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe;
416
417 en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n",
418 cqe_err->vendor_err_syndrome,
419 cqe_err->syndrome);
420 }
421
422 /* Skip over last polled CQE */
423 new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
424
425 do {
426 txbbs_skipped += last_nr_txbb;
427 ring_index = (ring_index + last_nr_txbb) & size_mask;
428 if (ring->tx_info[ring_index].ts_requested)
429 timestamp = mlx4_en_get_cqe_ts(cqe);
430
431 /* free next descriptor */
432 last_nr_txbb = mlx4_en_free_tx_desc(
433 priv, ring, ring_index,
434 !!((ring_cons + txbbs_skipped) &
435 ring->size), timestamp);
436
437 mlx4_en_stamp_wqe(priv, ring, stamp_index,
438 !!((ring_cons + txbbs_stamp) &
439 ring->size));
440 stamp_index = ring_index;
441 txbbs_stamp = txbbs_skipped;
442 packets++;
443 bytes += ring->tx_info[ring_index].nr_bytes;
444 } while ((++done < budget) && (ring_index != new_index));
445
446 ++cons_index;
447 index = cons_index & size_mask;
448 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor;
449 }
450
451
452 /*
453 * To prevent CQ overflow we first update CQ consumer and only then
454 * the ring consumer.
455 */
456 mcq->cons_index = cons_index;
457 mlx4_cq_set_ci(mcq);
458 wmb();
459
460 /* we want to dirty this cache line once */
461 ACCESS_ONCE(ring->last_nr_txbb) = last_nr_txbb;
462 ACCESS_ONCE(ring->cons) = ring_cons + txbbs_skipped;
463
464 netdev_tx_completed_queue(ring->tx_queue, packets, bytes);
465
466 /*
467 * Wakeup Tx queue if this stopped, and at least 1 packet
468 * was completed
469 */
470 if (netif_tx_queue_stopped(ring->tx_queue) && txbbs_skipped > 0) {
471 netif_tx_wake_queue(ring->tx_queue);
472 ring->wake_queue++;
473 }
474 return done < budget;
475 }
476
477 void mlx4_en_tx_irq(struct mlx4_cq *mcq)
478 {
479 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
480 struct mlx4_en_priv *priv = netdev_priv(cq->dev);
481
482 if (priv->port_up)
483 napi_schedule(&cq->napi);
484 else
485 mlx4_en_arm_cq(priv, cq);
486 }
487
488 /* TX CQ polling - called by NAPI */
489 int mlx4_en_poll_tx_cq(struct napi_struct *napi, int budget)
490 {
491 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
492 struct net_device *dev = cq->dev;
493 struct mlx4_en_priv *priv = netdev_priv(dev);
494 int clean_complete;
495
496 clean_complete = mlx4_en_process_tx_cq(dev, cq);
497 if (!clean_complete)
498 return budget;
499
500 napi_complete(napi);
501 mlx4_en_arm_cq(priv, cq);
502
503 return 0;
504 }
505
506 static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
507 struct mlx4_en_tx_ring *ring,
508 u32 index,
509 unsigned int desc_size)
510 {
511 u32 copy = (ring->size - index) * TXBB_SIZE;
512 int i;
513
514 for (i = desc_size - copy - 4; i >= 0; i -= 4) {
515 if ((i & (TXBB_SIZE - 1)) == 0)
516 wmb();
517
518 *((u32 *) (ring->buf + i)) =
519 *((u32 *) (ring->bounce_buf + copy + i));
520 }
521
522 for (i = copy - 4; i >= 4 ; i -= 4) {
523 if ((i & (TXBB_SIZE - 1)) == 0)
524 wmb();
525
526 *((u32 *) (ring->buf + index * TXBB_SIZE + i)) =
527 *((u32 *) (ring->bounce_buf + i));
528 }
529
530 /* Return real descriptor location */
531 return ring->buf + index * TXBB_SIZE;
532 }
533
534 /* Decide if skb can be inlined in tx descriptor to avoid dma mapping
535 *
536 * It seems strange we do not simply use skb_copy_bits().
537 * This would allow to inline all skbs iff skb->len <= inline_thold
538 *
539 * Note that caller already checked skb was not a gso packet
540 */
541 static bool is_inline(int inline_thold, const struct sk_buff *skb,
542 const struct skb_shared_info *shinfo,
543 void **pfrag)
544 {
545 void *ptr;
546
547 if (skb->len > inline_thold || !inline_thold)
548 return false;
549
550 if (shinfo->nr_frags == 1) {
551 ptr = skb_frag_address_safe(&shinfo->frags[0]);
552 if (unlikely(!ptr))
553 return false;
554 *pfrag = ptr;
555 return true;
556 }
557 if (shinfo->nr_frags)
558 return false;
559 return true;
560 }
561
562 static int inline_size(const struct sk_buff *skb)
563 {
564 if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
565 <= MLX4_INLINE_ALIGN)
566 return ALIGN(skb->len + CTRL_SIZE +
567 sizeof(struct mlx4_wqe_inline_seg), 16);
568 else
569 return ALIGN(skb->len + CTRL_SIZE + 2 *
570 sizeof(struct mlx4_wqe_inline_seg), 16);
571 }
572
573 static int get_real_size(const struct sk_buff *skb,
574 const struct skb_shared_info *shinfo,
575 struct net_device *dev,
576 int *lso_header_size,
577 bool *inline_ok,
578 void **pfrag)
579 {
580 struct mlx4_en_priv *priv = netdev_priv(dev);
581 int real_size;
582
583 if (shinfo->gso_size) {
584 *inline_ok = false;
585 if (skb->encapsulation)
586 *lso_header_size = (skb_inner_transport_header(skb) - skb->data) + inner_tcp_hdrlen(skb);
587 else
588 *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb);
589 real_size = CTRL_SIZE + shinfo->nr_frags * DS_SIZE +
590 ALIGN(*lso_header_size + 4, DS_SIZE);
591 if (unlikely(*lso_header_size != skb_headlen(skb))) {
592 /* We add a segment for the skb linear buffer only if
593 * it contains data */
594 if (*lso_header_size < skb_headlen(skb))
595 real_size += DS_SIZE;
596 else {
597 if (netif_msg_tx_err(priv))
598 en_warn(priv, "Non-linear headers\n");
599 return 0;
600 }
601 }
602 } else {
603 *lso_header_size = 0;
604 *inline_ok = is_inline(priv->prof->inline_thold, skb,
605 shinfo, pfrag);
606
607 if (*inline_ok)
608 real_size = inline_size(skb);
609 else
610 real_size = CTRL_SIZE +
611 (shinfo->nr_frags + 1) * DS_SIZE;
612 }
613
614 return real_size;
615 }
616
617 static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc,
618 const struct sk_buff *skb,
619 const struct skb_shared_info *shinfo,
620 int real_size, u16 *vlan_tag,
621 int tx_ind, void *fragptr)
622 {
623 struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
624 int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl;
625 unsigned int hlen = skb_headlen(skb);
626
627 if (skb->len <= spc) {
628 if (likely(skb->len >= MIN_PKT_LEN)) {
629 inl->byte_count = cpu_to_be32(1 << 31 | skb->len);
630 } else {
631 inl->byte_count = cpu_to_be32(1 << 31 | MIN_PKT_LEN);
632 memset(((void *)(inl + 1)) + skb->len, 0,
633 MIN_PKT_LEN - skb->len);
634 }
635 skb_copy_from_linear_data(skb, inl + 1, hlen);
636 if (shinfo->nr_frags)
637 memcpy(((void *)(inl + 1)) + hlen, fragptr,
638 skb_frag_size(&shinfo->frags[0]));
639
640 } else {
641 inl->byte_count = cpu_to_be32(1 << 31 | spc);
642 if (hlen <= spc) {
643 skb_copy_from_linear_data(skb, inl + 1, hlen);
644 if (hlen < spc) {
645 memcpy(((void *)(inl + 1)) + hlen,
646 fragptr, spc - hlen);
647 fragptr += spc - hlen;
648 }
649 inl = (void *) (inl + 1) + spc;
650 memcpy(((void *)(inl + 1)), fragptr, skb->len - spc);
651 } else {
652 skb_copy_from_linear_data(skb, inl + 1, spc);
653 inl = (void *) (inl + 1) + spc;
654 skb_copy_from_linear_data_offset(skb, spc, inl + 1,
655 hlen - spc);
656 if (shinfo->nr_frags)
657 memcpy(((void *)(inl + 1)) + hlen - spc,
658 fragptr,
659 skb_frag_size(&shinfo->frags[0]));
660 }
661
662 wmb();
663 inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc));
664 }
665 }
666
667 u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb,
668 void *accel_priv, select_queue_fallback_t fallback)
669 {
670 struct mlx4_en_priv *priv = netdev_priv(dev);
671 u16 rings_p_up = priv->num_tx_rings_p_up;
672 u8 up = 0;
673
674 if (dev->num_tc)
675 return skb_tx_hash(dev, skb);
676
677 if (vlan_tx_tag_present(skb))
678 up = vlan_tx_tag_get(skb) >> VLAN_PRIO_SHIFT;
679
680 return fallback(dev, skb) % rings_p_up + up * rings_p_up;
681 }
682
683 static void mlx4_bf_copy(void __iomem *dst, const void *src,
684 unsigned int bytecnt)
685 {
686 __iowrite64_copy(dst, src, bytecnt / 8);
687 }
688
689 netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev)
690 {
691 struct skb_shared_info *shinfo = skb_shinfo(skb);
692 struct mlx4_en_priv *priv = netdev_priv(dev);
693 struct device *ddev = priv->ddev;
694 struct mlx4_en_tx_ring *ring;
695 struct mlx4_en_tx_desc *tx_desc;
696 struct mlx4_wqe_data_seg *data;
697 struct mlx4_en_tx_info *tx_info;
698 int tx_ind = 0;
699 int nr_txbb;
700 int desc_size;
701 int real_size;
702 u32 index, bf_index;
703 __be32 op_own;
704 u16 vlan_tag = 0;
705 int i_frag;
706 int lso_header_size;
707 void *fragptr = NULL;
708 bool bounce = false;
709 bool send_doorbell;
710 bool stop_queue;
711 bool inline_ok;
712 u32 ring_cons;
713
714 if (!priv->port_up)
715 goto tx_drop;
716
717 tx_ind = skb_get_queue_mapping(skb);
718 ring = priv->tx_ring[tx_ind];
719
720 /* fetch ring->cons far ahead before needing it to avoid stall */
721 ring_cons = ACCESS_ONCE(ring->cons);
722
723 real_size = get_real_size(skb, shinfo, dev, &lso_header_size,
724 &inline_ok, &fragptr);
725 if (unlikely(!real_size))
726 goto tx_drop;
727
728 /* Align descriptor to TXBB size */
729 desc_size = ALIGN(real_size, TXBB_SIZE);
730 nr_txbb = desc_size / TXBB_SIZE;
731 if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
732 if (netif_msg_tx_err(priv))
733 en_warn(priv, "Oversized header or SG list\n");
734 goto tx_drop;
735 }
736
737 if (vlan_tx_tag_present(skb))
738 vlan_tag = vlan_tx_tag_get(skb);
739
740
741 netdev_txq_bql_enqueue_prefetchw(ring->tx_queue);
742
743 /* Track current inflight packets for performance analysis */
744 AVG_PERF_COUNTER(priv->pstats.inflight_avg,
745 (u32)(ring->prod - ring_cons - 1));
746
747 /* Packet is good - grab an index and transmit it */
748 index = ring->prod & ring->size_mask;
749 bf_index = ring->prod;
750
751 /* See if we have enough space for whole descriptor TXBB for setting
752 * SW ownership on next descriptor; if not, use a bounce buffer. */
753 if (likely(index + nr_txbb <= ring->size))
754 tx_desc = ring->buf + index * TXBB_SIZE;
755 else {
756 tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
757 bounce = true;
758 }
759
760 /* Save skb in tx_info ring */
761 tx_info = &ring->tx_info[index];
762 tx_info->skb = skb;
763 tx_info->nr_txbb = nr_txbb;
764
765 data = &tx_desc->data;
766 if (lso_header_size)
767 data = ((void *)&tx_desc->lso + ALIGN(lso_header_size + 4,
768 DS_SIZE));
769
770 /* valid only for none inline segments */
771 tx_info->data_offset = (void *)data - (void *)tx_desc;
772
773 tx_info->inl = inline_ok;
774
775 tx_info->linear = (lso_header_size < skb_headlen(skb) &&
776 !inline_ok) ? 1 : 0;
777
778 tx_info->nr_maps = shinfo->nr_frags + tx_info->linear;
779 data += tx_info->nr_maps - 1;
780
781 if (!tx_info->inl) {
782 dma_addr_t dma = 0;
783 u32 byte_count = 0;
784
785 /* Map fragments if any */
786 for (i_frag = shinfo->nr_frags - 1; i_frag >= 0; i_frag--) {
787 const struct skb_frag_struct *frag;
788
789 frag = &shinfo->frags[i_frag];
790 byte_count = skb_frag_size(frag);
791 dma = skb_frag_dma_map(ddev, frag,
792 0, byte_count,
793 DMA_TO_DEVICE);
794 if (dma_mapping_error(ddev, dma))
795 goto tx_drop_unmap;
796
797 data->addr = cpu_to_be64(dma);
798 data->lkey = ring->mr_key;
799 wmb();
800 data->byte_count = cpu_to_be32(byte_count);
801 --data;
802 }
803
804 /* Map linear part if needed */
805 if (tx_info->linear) {
806 byte_count = skb_headlen(skb) - lso_header_size;
807
808 dma = dma_map_single(ddev, skb->data +
809 lso_header_size, byte_count,
810 PCI_DMA_TODEVICE);
811 if (dma_mapping_error(ddev, dma))
812 goto tx_drop_unmap;
813
814 data->addr = cpu_to_be64(dma);
815 data->lkey = ring->mr_key;
816 wmb();
817 data->byte_count = cpu_to_be32(byte_count);
818 }
819 /* tx completion can avoid cache line miss for common cases */
820 tx_info->map0_dma = dma;
821 tx_info->map0_byte_count = byte_count;
822 }
823
824 /*
825 * For timestamping add flag to skb_shinfo and
826 * set flag for further reference
827 */
828 tx_info->ts_requested = 0;
829 if (unlikely(ring->hwtstamp_tx_type == HWTSTAMP_TX_ON &&
830 shinfo->tx_flags & SKBTX_HW_TSTAMP)) {
831 shinfo->tx_flags |= SKBTX_IN_PROGRESS;
832 tx_info->ts_requested = 1;
833 }
834
835 /* Prepare ctrl segement apart opcode+ownership, which depends on
836 * whether LSO is used */
837 tx_desc->ctrl.srcrb_flags = priv->ctrl_flags;
838 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
839 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
840 MLX4_WQE_CTRL_TCP_UDP_CSUM);
841 ring->tx_csum++;
842 }
843
844 if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) {
845 struct ethhdr *ethh;
846
847 /* Copy dst mac address to wqe. This allows loopback in eSwitch,
848 * so that VFs and PF can communicate with each other
849 */
850 ethh = (struct ethhdr *)skb->data;
851 tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest);
852 tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2));
853 }
854
855 /* Handle LSO (TSO) packets */
856 if (lso_header_size) {
857 int i;
858
859 /* Mark opcode as LSO */
860 op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
861 ((ring->prod & ring->size) ?
862 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
863
864 /* Fill in the LSO prefix */
865 tx_desc->lso.mss_hdr_size = cpu_to_be32(
866 shinfo->gso_size << 16 | lso_header_size);
867
868 /* Copy headers;
869 * note that we already verified that it is linear */
870 memcpy(tx_desc->lso.header, skb->data, lso_header_size);
871
872 ring->tso_packets++;
873
874 i = ((skb->len - lso_header_size) / shinfo->gso_size) +
875 !!((skb->len - lso_header_size) % shinfo->gso_size);
876 tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size;
877 ring->packets += i;
878 } else {
879 /* Normal (Non LSO) packet */
880 op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
881 ((ring->prod & ring->size) ?
882 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
883 tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
884 ring->packets++;
885 }
886 ring->bytes += tx_info->nr_bytes;
887 netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes);
888 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len);
889
890 if (tx_info->inl)
891 build_inline_wqe(tx_desc, skb, shinfo, real_size, &vlan_tag,
892 tx_ind, fragptr);
893
894 if (skb->encapsulation) {
895 struct iphdr *ipv4 = (struct iphdr *)skb_inner_network_header(skb);
896 if (ipv4->protocol == IPPROTO_TCP || ipv4->protocol == IPPROTO_UDP)
897 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP | MLX4_WQE_CTRL_ILP);
898 else
899 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP);
900 }
901
902 ring->prod += nr_txbb;
903
904 /* If we used a bounce buffer then copy descriptor back into place */
905 if (unlikely(bounce))
906 tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
907
908 skb_tx_timestamp(skb);
909
910 /* Check available TXBBs And 2K spare for prefetch */
911 stop_queue = (int)(ring->prod - ring_cons) >
912 ring->size - HEADROOM - MAX_DESC_TXBBS;
913 if (unlikely(stop_queue)) {
914 netif_tx_stop_queue(ring->tx_queue);
915 ring->queue_stopped++;
916 }
917 send_doorbell = !skb->xmit_more || netif_xmit_stopped(ring->tx_queue);
918
919 real_size = (real_size / 16) & 0x3f;
920
921 if (ring->bf_enabled && desc_size <= MAX_BF && !bounce &&
922 !vlan_tx_tag_present(skb) && send_doorbell) {
923 tx_desc->ctrl.bf_qpn = ring->doorbell_qpn |
924 cpu_to_be32(real_size);
925
926 op_own |= htonl((bf_index & 0xffff) << 8);
927 /* Ensure new descriptor hits memory
928 * before setting ownership of this descriptor to HW
929 */
930 wmb();
931 tx_desc->ctrl.owner_opcode = op_own;
932
933 wmb();
934
935 mlx4_bf_copy(ring->bf.reg + ring->bf.offset, &tx_desc->ctrl,
936 desc_size);
937
938 wmb();
939
940 ring->bf.offset ^= ring->bf.buf_size;
941 } else {
942 tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag);
943 tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN *
944 !!vlan_tx_tag_present(skb);
945 tx_desc->ctrl.fence_size = real_size;
946
947 /* Ensure new descriptor hits memory
948 * before setting ownership of this descriptor to HW
949 */
950 wmb();
951 tx_desc->ctrl.owner_opcode = op_own;
952 if (send_doorbell) {
953 wmb();
954 iowrite32(ring->doorbell_qpn,
955 ring->bf.uar->map + MLX4_SEND_DOORBELL);
956 } else {
957 ring->xmit_more++;
958 }
959 }
960
961 if (unlikely(stop_queue)) {
962 /* If queue was emptied after the if (stop_queue) , and before
963 * the netif_tx_stop_queue() - need to wake the queue,
964 * or else it will remain stopped forever.
965 * Need a memory barrier to make sure ring->cons was not
966 * updated before queue was stopped.
967 */
968 smp_rmb();
969
970 ring_cons = ACCESS_ONCE(ring->cons);
971 if (unlikely(((int)(ring->prod - ring_cons)) <=
972 ring->size - HEADROOM - MAX_DESC_TXBBS)) {
973 netif_tx_wake_queue(ring->tx_queue);
974 ring->wake_queue++;
975 }
976 }
977 return NETDEV_TX_OK;
978
979 tx_drop_unmap:
980 en_err(priv, "DMA mapping error\n");
981
982 while (++i_frag < shinfo->nr_frags) {
983 ++data;
984 dma_unmap_page(ddev, (dma_addr_t) be64_to_cpu(data->addr),
985 be32_to_cpu(data->byte_count),
986 PCI_DMA_TODEVICE);
987 }
988
989 tx_drop:
990 dev_kfree_skb_any(skb);
991 priv->stats.tx_dropped++;
992 return NETDEV_TX_OK;
993 }
994