]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/net/ethernet/micrel/ks8851.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / drivers / net / ethernet / micrel / ks8851.c
1 /* drivers/net/ethernet/micrel/ks8851.c
2 *
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #define DEBUG
15
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/cache.h>
23 #include <linux/crc32.h>
24 #include <linux/mii.h>
25 #include <linux/eeprom_93cx6.h>
26 #include <linux/regulator/consumer.h>
27
28 #include <linux/spi/spi.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/of_net.h>
32
33 #include "ks8851.h"
34
35 /**
36 * struct ks8851_rxctrl - KS8851 driver rx control
37 * @mchash: Multicast hash-table data.
38 * @rxcr1: KS_RXCR1 register setting
39 * @rxcr2: KS_RXCR2 register setting
40 *
41 * Representation of the settings needs to control the receive filtering
42 * such as the multicast hash-filter and the receive register settings. This
43 * is used to make the job of working out if the receive settings change and
44 * then issuing the new settings to the worker that will send the necessary
45 * commands.
46 */
47 struct ks8851_rxctrl {
48 u16 mchash[4];
49 u16 rxcr1;
50 u16 rxcr2;
51 };
52
53 /**
54 * union ks8851_tx_hdr - tx header data
55 * @txb: The header as bytes
56 * @txw: The header as 16bit, little-endian words
57 *
58 * A dual representation of the tx header data to allow
59 * access to individual bytes, and to allow 16bit accesses
60 * with 16bit alignment.
61 */
62 union ks8851_tx_hdr {
63 u8 txb[6];
64 __le16 txw[3];
65 };
66
67 /**
68 * struct ks8851_net - KS8851 driver private data
69 * @netdev: The network device we're bound to
70 * @spidev: The spi device we're bound to.
71 * @lock: Lock to ensure that the device is not accessed when busy.
72 * @statelock: Lock on this structure for tx list.
73 * @mii: The MII state information for the mii calls.
74 * @rxctrl: RX settings for @rxctrl_work.
75 * @tx_work: Work queue for tx packets
76 * @rxctrl_work: Work queue for updating RX mode and multicast lists
77 * @txq: Queue of packets for transmission.
78 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
79 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
80 * @txh: Space for generating packet TX header in DMA-able data
81 * @rxd: Space for receiving SPI data, in DMA-able space.
82 * @txd: Space for transmitting SPI data, in DMA-able space.
83 * @msg_enable: The message flags controlling driver output (see ethtool).
84 * @fid: Incrementing frame id tag.
85 * @rc_ier: Cached copy of KS_IER.
86 * @rc_ccr: Cached copy of KS_CCR.
87 * @rc_rxqcr: Cached copy of KS_RXQCR.
88 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
89 * @vdd_reg: Optional regulator supplying the chip
90 * @vdd_io: Optional digital power supply for IO
91 * @gpio: Optional reset_n gpio
92 *
93 * The @lock ensures that the chip is protected when certain operations are
94 * in progress. When the read or write packet transfer is in progress, most
95 * of the chip registers are not ccessible until the transfer is finished and
96 * the DMA has been de-asserted.
97 *
98 * The @statelock is used to protect information in the structure which may
99 * need to be accessed via several sources, such as the network driver layer
100 * or one of the work queues.
101 *
102 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
103 * wants to DMA map them, it will not have any problems with data the driver
104 * modifies.
105 */
106 struct ks8851_net {
107 struct net_device *netdev;
108 struct spi_device *spidev;
109 struct mutex lock;
110 spinlock_t statelock;
111
112 union ks8851_tx_hdr txh ____cacheline_aligned;
113 u8 rxd[8];
114 u8 txd[8];
115
116 u32 msg_enable ____cacheline_aligned;
117 u16 tx_space;
118 u8 fid;
119
120 u16 rc_ier;
121 u16 rc_rxqcr;
122 u16 rc_ccr;
123
124 struct mii_if_info mii;
125 struct ks8851_rxctrl rxctrl;
126
127 struct work_struct tx_work;
128 struct work_struct rxctrl_work;
129
130 struct sk_buff_head txq;
131
132 struct spi_message spi_msg1;
133 struct spi_message spi_msg2;
134 struct spi_transfer spi_xfer1;
135 struct spi_transfer spi_xfer2[2];
136
137 struct eeprom_93cx6 eeprom;
138 struct regulator *vdd_reg;
139 struct regulator *vdd_io;
140 int gpio;
141 };
142
143 static int msg_enable;
144
145 /* shift for byte-enable data */
146 #define BYTE_EN(_x) ((_x) << 2)
147
148 /* turn register number and byte-enable mask into data for start of packet */
149 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
150
151 /* SPI register read/write calls.
152 *
153 * All these calls issue SPI transactions to access the chip's registers. They
154 * all require that the necessary lock is held to prevent accesses when the
155 * chip is busy transferring packet data (RX/TX FIFO accesses).
156 */
157
158 /**
159 * ks8851_wrreg16 - write 16bit register value to chip
160 * @ks: The chip state
161 * @reg: The register address
162 * @val: The value to write
163 *
164 * Issue a write to put the value @val into the register specified in @reg.
165 */
166 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
167 {
168 struct spi_transfer *xfer = &ks->spi_xfer1;
169 struct spi_message *msg = &ks->spi_msg1;
170 __le16 txb[2];
171 int ret;
172
173 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
174 txb[1] = cpu_to_le16(val);
175
176 xfer->tx_buf = txb;
177 xfer->rx_buf = NULL;
178 xfer->len = 4;
179
180 ret = spi_sync(ks->spidev, msg);
181 if (ret < 0)
182 netdev_err(ks->netdev, "spi_sync() failed\n");
183 }
184
185 /**
186 * ks8851_wrreg8 - write 8bit register value to chip
187 * @ks: The chip state
188 * @reg: The register address
189 * @val: The value to write
190 *
191 * Issue a write to put the value @val into the register specified in @reg.
192 */
193 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
194 {
195 struct spi_transfer *xfer = &ks->spi_xfer1;
196 struct spi_message *msg = &ks->spi_msg1;
197 __le16 txb[2];
198 int ret;
199 int bit;
200
201 bit = 1 << (reg & 3);
202
203 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
204 txb[1] = val;
205
206 xfer->tx_buf = txb;
207 xfer->rx_buf = NULL;
208 xfer->len = 3;
209
210 ret = spi_sync(ks->spidev, msg);
211 if (ret < 0)
212 netdev_err(ks->netdev, "spi_sync() failed\n");
213 }
214
215 /**
216 * ks8851_rdreg - issue read register command and return the data
217 * @ks: The device state
218 * @op: The register address and byte enables in message format.
219 * @rxb: The RX buffer to return the result into
220 * @rxl: The length of data expected.
221 *
222 * This is the low level read call that issues the necessary spi message(s)
223 * to read data from the register specified in @op.
224 */
225 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
226 u8 *rxb, unsigned rxl)
227 {
228 struct spi_transfer *xfer;
229 struct spi_message *msg;
230 __le16 *txb = (__le16 *)ks->txd;
231 u8 *trx = ks->rxd;
232 int ret;
233
234 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
235
236 if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
237 msg = &ks->spi_msg2;
238 xfer = ks->spi_xfer2;
239
240 xfer->tx_buf = txb;
241 xfer->rx_buf = NULL;
242 xfer->len = 2;
243
244 xfer++;
245 xfer->tx_buf = NULL;
246 xfer->rx_buf = trx;
247 xfer->len = rxl;
248 } else {
249 msg = &ks->spi_msg1;
250 xfer = &ks->spi_xfer1;
251
252 xfer->tx_buf = txb;
253 xfer->rx_buf = trx;
254 xfer->len = rxl + 2;
255 }
256
257 ret = spi_sync(ks->spidev, msg);
258 if (ret < 0)
259 netdev_err(ks->netdev, "read: spi_sync() failed\n");
260 else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
261 memcpy(rxb, trx, rxl);
262 else
263 memcpy(rxb, trx + 2, rxl);
264 }
265
266 /**
267 * ks8851_rdreg8 - read 8 bit register from device
268 * @ks: The chip information
269 * @reg: The register address
270 *
271 * Read a 8bit register from the chip, returning the result
272 */
273 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
274 {
275 u8 rxb[1];
276
277 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
278 return rxb[0];
279 }
280
281 /**
282 * ks8851_rdreg16 - read 16 bit register from device
283 * @ks: The chip information
284 * @reg: The register address
285 *
286 * Read a 16bit register from the chip, returning the result
287 */
288 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
289 {
290 __le16 rx = 0;
291
292 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
293 return le16_to_cpu(rx);
294 }
295
296 /**
297 * ks8851_rdreg32 - read 32 bit register from device
298 * @ks: The chip information
299 * @reg: The register address
300 *
301 * Read a 32bit register from the chip.
302 *
303 * Note, this read requires the address be aligned to 4 bytes.
304 */
305 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
306 {
307 __le32 rx = 0;
308
309 WARN_ON(reg & 3);
310
311 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
312 return le32_to_cpu(rx);
313 }
314
315 /**
316 * ks8851_soft_reset - issue one of the soft reset to the device
317 * @ks: The device state.
318 * @op: The bit(s) to set in the GRR
319 *
320 * Issue the relevant soft-reset command to the device's GRR register
321 * specified by @op.
322 *
323 * Note, the delays are in there as a caution to ensure that the reset
324 * has time to take effect and then complete. Since the datasheet does
325 * not currently specify the exact sequence, we have chosen something
326 * that seems to work with our device.
327 */
328 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
329 {
330 ks8851_wrreg16(ks, KS_GRR, op);
331 mdelay(1); /* wait a short time to effect reset */
332 ks8851_wrreg16(ks, KS_GRR, 0);
333 mdelay(1); /* wait for condition to clear */
334 }
335
336 /**
337 * ks8851_set_powermode - set power mode of the device
338 * @ks: The device state
339 * @pwrmode: The power mode value to write to KS_PMECR.
340 *
341 * Change the power mode of the chip.
342 */
343 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
344 {
345 unsigned pmecr;
346
347 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
348
349 pmecr = ks8851_rdreg16(ks, KS_PMECR);
350 pmecr &= ~PMECR_PM_MASK;
351 pmecr |= pwrmode;
352
353 ks8851_wrreg16(ks, KS_PMECR, pmecr);
354 }
355
356 /**
357 * ks8851_write_mac_addr - write mac address to device registers
358 * @dev: The network device
359 *
360 * Update the KS8851 MAC address registers from the address in @dev.
361 *
362 * This call assumes that the chip is not running, so there is no need to
363 * shutdown the RXQ process whilst setting this.
364 */
365 static int ks8851_write_mac_addr(struct net_device *dev)
366 {
367 struct ks8851_net *ks = netdev_priv(dev);
368 int i;
369
370 mutex_lock(&ks->lock);
371
372 /*
373 * Wake up chip in case it was powered off when stopped; otherwise,
374 * the first write to the MAC address does not take effect.
375 */
376 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
377 for (i = 0; i < ETH_ALEN; i++)
378 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
379 if (!netif_running(dev))
380 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
381
382 mutex_unlock(&ks->lock);
383
384 return 0;
385 }
386
387 /**
388 * ks8851_read_mac_addr - read mac address from device registers
389 * @dev: The network device
390 *
391 * Update our copy of the KS8851 MAC address from the registers of @dev.
392 */
393 static void ks8851_read_mac_addr(struct net_device *dev)
394 {
395 struct ks8851_net *ks = netdev_priv(dev);
396 int i;
397
398 mutex_lock(&ks->lock);
399
400 for (i = 0; i < ETH_ALEN; i++)
401 dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
402
403 mutex_unlock(&ks->lock);
404 }
405
406 /**
407 * ks8851_init_mac - initialise the mac address
408 * @ks: The device structure
409 *
410 * Get or create the initial mac address for the device and then set that
411 * into the station address register. A mac address supplied in the device
412 * tree takes precedence. Otherwise, if there is an EEPROM present, then
413 * we try that. If no valid mac address is found we use eth_random_addr()
414 * to create a new one.
415 */
416 static void ks8851_init_mac(struct ks8851_net *ks)
417 {
418 struct net_device *dev = ks->netdev;
419 const u8 *mac_addr;
420
421 mac_addr = of_get_mac_address(ks->spidev->dev.of_node);
422 if (mac_addr) {
423 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
424 ks8851_write_mac_addr(dev);
425 return;
426 }
427
428 if (ks->rc_ccr & CCR_EEPROM) {
429 ks8851_read_mac_addr(dev);
430 if (is_valid_ether_addr(dev->dev_addr))
431 return;
432
433 netdev_err(ks->netdev, "invalid mac address read %pM\n",
434 dev->dev_addr);
435 }
436
437 eth_hw_addr_random(dev);
438 ks8851_write_mac_addr(dev);
439 }
440
441 /**
442 * ks8851_rdfifo - read data from the receive fifo
443 * @ks: The device state.
444 * @buff: The buffer address
445 * @len: The length of the data to read
446 *
447 * Issue an RXQ FIFO read command and read the @len amount of data from
448 * the FIFO into the buffer specified by @buff.
449 */
450 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
451 {
452 struct spi_transfer *xfer = ks->spi_xfer2;
453 struct spi_message *msg = &ks->spi_msg2;
454 u8 txb[1];
455 int ret;
456
457 netif_dbg(ks, rx_status, ks->netdev,
458 "%s: %d@%p\n", __func__, len, buff);
459
460 /* set the operation we're issuing */
461 txb[0] = KS_SPIOP_RXFIFO;
462
463 xfer->tx_buf = txb;
464 xfer->rx_buf = NULL;
465 xfer->len = 1;
466
467 xfer++;
468 xfer->rx_buf = buff;
469 xfer->tx_buf = NULL;
470 xfer->len = len;
471
472 ret = spi_sync(ks->spidev, msg);
473 if (ret < 0)
474 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
475 }
476
477 /**
478 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
479 * @ks: The device state
480 * @rxpkt: The data for the received packet
481 *
482 * Dump the initial data from the packet to dev_dbg().
483 */
484 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
485 {
486 netdev_dbg(ks->netdev,
487 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
488 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
489 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
490 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
491 }
492
493 /**
494 * ks8851_rx_pkts - receive packets from the host
495 * @ks: The device information.
496 *
497 * This is called from the IRQ work queue when the system detects that there
498 * are packets in the receive queue. Find out how many packets there are and
499 * read them from the FIFO.
500 */
501 static void ks8851_rx_pkts(struct ks8851_net *ks)
502 {
503 struct sk_buff *skb;
504 unsigned rxfc;
505 unsigned rxlen;
506 unsigned rxstat;
507 u32 rxh;
508 u8 *rxpkt;
509
510 rxfc = ks8851_rdreg8(ks, KS_RXFC);
511
512 netif_dbg(ks, rx_status, ks->netdev,
513 "%s: %d packets\n", __func__, rxfc);
514
515 /* Currently we're issuing a read per packet, but we could possibly
516 * improve the code by issuing a single read, getting the receive
517 * header, allocating the packet and then reading the packet data
518 * out in one go.
519 *
520 * This form of operation would require us to hold the SPI bus'
521 * chipselect low during the entie transaction to avoid any
522 * reset to the data stream coming from the chip.
523 */
524
525 for (; rxfc != 0; rxfc--) {
526 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
527 rxstat = rxh & 0xffff;
528 rxlen = (rxh >> 16) & 0xfff;
529
530 netif_dbg(ks, rx_status, ks->netdev,
531 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
532
533 /* the length of the packet includes the 32bit CRC */
534
535 /* set dma read address */
536 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
537
538 /* start the packet dma process, and set auto-dequeue rx */
539 ks8851_wrreg16(ks, KS_RXQCR,
540 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
541
542 if (rxlen > 4) {
543 unsigned int rxalign;
544
545 rxlen -= 4;
546 rxalign = ALIGN(rxlen, 4);
547 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
548 if (skb) {
549
550 /* 4 bytes of status header + 4 bytes of
551 * garbage: we put them before ethernet
552 * header, so that they are copied,
553 * but ignored.
554 */
555
556 rxpkt = skb_put(skb, rxlen) - 8;
557
558 ks8851_rdfifo(ks, rxpkt, rxalign + 8);
559
560 if (netif_msg_pktdata(ks))
561 ks8851_dbg_dumpkkt(ks, rxpkt);
562
563 skb->protocol = eth_type_trans(skb, ks->netdev);
564 netif_rx_ni(skb);
565
566 ks->netdev->stats.rx_packets++;
567 ks->netdev->stats.rx_bytes += rxlen;
568 }
569 }
570
571 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
572 }
573 }
574
575 /**
576 * ks8851_irq - IRQ handler for dealing with interrupt requests
577 * @irq: IRQ number
578 * @_ks: cookie
579 *
580 * This handler is invoked when the IRQ line asserts to find out what happened.
581 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
582 * in thread context.
583 *
584 * Read the interrupt status, work out what needs to be done and then clear
585 * any of the interrupts that are not needed.
586 */
587 static irqreturn_t ks8851_irq(int irq, void *_ks)
588 {
589 struct ks8851_net *ks = _ks;
590 unsigned status;
591 unsigned handled = 0;
592
593 mutex_lock(&ks->lock);
594
595 status = ks8851_rdreg16(ks, KS_ISR);
596
597 netif_dbg(ks, intr, ks->netdev,
598 "%s: status 0x%04x\n", __func__, status);
599
600 if (status & IRQ_LCI)
601 handled |= IRQ_LCI;
602
603 if (status & IRQ_LDI) {
604 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
605 pmecr &= ~PMECR_WKEVT_MASK;
606 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
607
608 handled |= IRQ_LDI;
609 }
610
611 if (status & IRQ_RXPSI)
612 handled |= IRQ_RXPSI;
613
614 if (status & IRQ_TXI) {
615 handled |= IRQ_TXI;
616
617 /* no lock here, tx queue should have been stopped */
618
619 /* update our idea of how much tx space is available to the
620 * system */
621 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
622
623 netif_dbg(ks, intr, ks->netdev,
624 "%s: txspace %d\n", __func__, ks->tx_space);
625 }
626
627 if (status & IRQ_RXI)
628 handled |= IRQ_RXI;
629
630 if (status & IRQ_SPIBEI) {
631 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
632 handled |= IRQ_SPIBEI;
633 }
634
635 ks8851_wrreg16(ks, KS_ISR, handled);
636
637 if (status & IRQ_RXI) {
638 /* the datasheet says to disable the rx interrupt during
639 * packet read-out, however we're masking the interrupt
640 * from the device so do not bother masking just the RX
641 * from the device. */
642
643 ks8851_rx_pkts(ks);
644 }
645
646 /* if something stopped the rx process, probably due to wanting
647 * to change the rx settings, then do something about restarting
648 * it. */
649 if (status & IRQ_RXPSI) {
650 struct ks8851_rxctrl *rxc = &ks->rxctrl;
651
652 /* update the multicast hash table */
653 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
654 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
655 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
656 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
657
658 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
659 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
660 }
661
662 mutex_unlock(&ks->lock);
663
664 if (status & IRQ_LCI)
665 mii_check_link(&ks->mii);
666
667 if (status & IRQ_TXI)
668 netif_wake_queue(ks->netdev);
669
670 return IRQ_HANDLED;
671 }
672
673 /**
674 * calc_txlen - calculate size of message to send packet
675 * @len: Length of data
676 *
677 * Returns the size of the TXFIFO message needed to send
678 * this packet.
679 */
680 static inline unsigned calc_txlen(unsigned len)
681 {
682 return ALIGN(len + 4, 4);
683 }
684
685 /**
686 * ks8851_wrpkt - write packet to TX FIFO
687 * @ks: The device state.
688 * @txp: The sk_buff to transmit.
689 * @irq: IRQ on completion of the packet.
690 *
691 * Send the @txp to the chip. This means creating the relevant packet header
692 * specifying the length of the packet and the other information the chip
693 * needs, such as IRQ on completion. Send the header and the packet data to
694 * the device.
695 */
696 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
697 {
698 struct spi_transfer *xfer = ks->spi_xfer2;
699 struct spi_message *msg = &ks->spi_msg2;
700 unsigned fid = 0;
701 int ret;
702
703 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
704 __func__, txp, txp->len, txp->data, irq);
705
706 fid = ks->fid++;
707 fid &= TXFR_TXFID_MASK;
708
709 if (irq)
710 fid |= TXFR_TXIC; /* irq on completion */
711
712 /* start header at txb[1] to align txw entries */
713 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
714 ks->txh.txw[1] = cpu_to_le16(fid);
715 ks->txh.txw[2] = cpu_to_le16(txp->len);
716
717 xfer->tx_buf = &ks->txh.txb[1];
718 xfer->rx_buf = NULL;
719 xfer->len = 5;
720
721 xfer++;
722 xfer->tx_buf = txp->data;
723 xfer->rx_buf = NULL;
724 xfer->len = ALIGN(txp->len, 4);
725
726 ret = spi_sync(ks->spidev, msg);
727 if (ret < 0)
728 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
729 }
730
731 /**
732 * ks8851_done_tx - update and then free skbuff after transmitting
733 * @ks: The device state
734 * @txb: The buffer transmitted
735 */
736 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
737 {
738 struct net_device *dev = ks->netdev;
739
740 dev->stats.tx_bytes += txb->len;
741 dev->stats.tx_packets++;
742
743 dev_kfree_skb(txb);
744 }
745
746 /**
747 * ks8851_tx_work - process tx packet(s)
748 * @work: The work strucutre what was scheduled.
749 *
750 * This is called when a number of packets have been scheduled for
751 * transmission and need to be sent to the device.
752 */
753 static void ks8851_tx_work(struct work_struct *work)
754 {
755 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
756 struct sk_buff *txb;
757 bool last = skb_queue_empty(&ks->txq);
758
759 mutex_lock(&ks->lock);
760
761 while (!last) {
762 txb = skb_dequeue(&ks->txq);
763 last = skb_queue_empty(&ks->txq);
764
765 if (txb != NULL) {
766 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
767 ks8851_wrpkt(ks, txb, last);
768 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
769 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
770
771 ks8851_done_tx(ks, txb);
772 }
773 }
774
775 mutex_unlock(&ks->lock);
776 }
777
778 /**
779 * ks8851_net_open - open network device
780 * @dev: The network device being opened.
781 *
782 * Called when the network device is marked active, such as a user executing
783 * 'ifconfig up' on the device.
784 */
785 static int ks8851_net_open(struct net_device *dev)
786 {
787 struct ks8851_net *ks = netdev_priv(dev);
788
789 /* lock the card, even if we may not actually be doing anything
790 * else at the moment */
791 mutex_lock(&ks->lock);
792
793 netif_dbg(ks, ifup, ks->netdev, "opening\n");
794
795 /* bring chip out of any power saving mode it was in */
796 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
797
798 /* issue a soft reset to the RX/TX QMU to put it into a known
799 * state. */
800 ks8851_soft_reset(ks, GRR_QMU);
801
802 /* setup transmission parameters */
803
804 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
805 TXCR_TXPE | /* pad to min length */
806 TXCR_TXCRC | /* add CRC */
807 TXCR_TXFCE)); /* enable flow control */
808
809 /* auto-increment tx data, reset tx pointer */
810 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
811
812 /* setup receiver control */
813
814 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
815 RXCR1_RXFCE | /* enable flow control */
816 RXCR1_RXBE | /* broadcast enable */
817 RXCR1_RXUE | /* unicast enable */
818 RXCR1_RXE)); /* enable rx block */
819
820 /* transfer entire frames out in one go */
821 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
822
823 /* set receive counter timeouts */
824 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
825 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
826 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
827
828 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
829 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
830 RXQCR_RXDTTE); /* IRQ on time exceeded */
831
832 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
833
834 /* clear then enable interrupts */
835
836 #define STD_IRQ (IRQ_LCI | /* Link Change */ \
837 IRQ_TXI | /* TX done */ \
838 IRQ_RXI | /* RX done */ \
839 IRQ_SPIBEI | /* SPI bus error */ \
840 IRQ_TXPSI | /* TX process stop */ \
841 IRQ_RXPSI) /* RX process stop */
842
843 ks->rc_ier = STD_IRQ;
844 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
845 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
846
847 netif_start_queue(ks->netdev);
848
849 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
850
851 mutex_unlock(&ks->lock);
852 return 0;
853 }
854
855 /**
856 * ks8851_net_stop - close network device
857 * @dev: The device being closed.
858 *
859 * Called to close down a network device which has been active. Cancell any
860 * work, shutdown the RX and TX process and then place the chip into a low
861 * power state whilst it is not being used.
862 */
863 static int ks8851_net_stop(struct net_device *dev)
864 {
865 struct ks8851_net *ks = netdev_priv(dev);
866
867 netif_info(ks, ifdown, dev, "shutting down\n");
868
869 netif_stop_queue(dev);
870
871 mutex_lock(&ks->lock);
872 /* turn off the IRQs and ack any outstanding */
873 ks8851_wrreg16(ks, KS_IER, 0x0000);
874 ks8851_wrreg16(ks, KS_ISR, 0xffff);
875 mutex_unlock(&ks->lock);
876
877 /* stop any outstanding work */
878 flush_work(&ks->tx_work);
879 flush_work(&ks->rxctrl_work);
880
881 mutex_lock(&ks->lock);
882 /* shutdown RX process */
883 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
884
885 /* shutdown TX process */
886 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
887
888 /* set powermode to soft power down to save power */
889 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
890 mutex_unlock(&ks->lock);
891
892 /* ensure any queued tx buffers are dumped */
893 while (!skb_queue_empty(&ks->txq)) {
894 struct sk_buff *txb = skb_dequeue(&ks->txq);
895
896 netif_dbg(ks, ifdown, ks->netdev,
897 "%s: freeing txb %p\n", __func__, txb);
898
899 dev_kfree_skb(txb);
900 }
901
902 return 0;
903 }
904
905 /**
906 * ks8851_start_xmit - transmit packet
907 * @skb: The buffer to transmit
908 * @dev: The device used to transmit the packet.
909 *
910 * Called by the network layer to transmit the @skb. Queue the packet for
911 * the device and schedule the necessary work to transmit the packet when
912 * it is free.
913 *
914 * We do this to firstly avoid sleeping with the network device locked,
915 * and secondly so we can round up more than one packet to transmit which
916 * means we can try and avoid generating too many transmit done interrupts.
917 */
918 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
919 struct net_device *dev)
920 {
921 struct ks8851_net *ks = netdev_priv(dev);
922 unsigned needed = calc_txlen(skb->len);
923 netdev_tx_t ret = NETDEV_TX_OK;
924
925 netif_dbg(ks, tx_queued, ks->netdev,
926 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
927
928 spin_lock(&ks->statelock);
929
930 if (needed > ks->tx_space) {
931 netif_stop_queue(dev);
932 ret = NETDEV_TX_BUSY;
933 } else {
934 ks->tx_space -= needed;
935 skb_queue_tail(&ks->txq, skb);
936 }
937
938 spin_unlock(&ks->statelock);
939 schedule_work(&ks->tx_work);
940
941 return ret;
942 }
943
944 /**
945 * ks8851_rxctrl_work - work handler to change rx mode
946 * @work: The work structure this belongs to.
947 *
948 * Lock the device and issue the necessary changes to the receive mode from
949 * the network device layer. This is done so that we can do this without
950 * having to sleep whilst holding the network device lock.
951 *
952 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
953 * receive parameters are programmed, we issue a write to disable the RXQ and
954 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
955 * complete. The interrupt handler then writes the new values into the chip.
956 */
957 static void ks8851_rxctrl_work(struct work_struct *work)
958 {
959 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
960
961 mutex_lock(&ks->lock);
962
963 /* need to shutdown RXQ before modifying filter parameters */
964 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
965
966 mutex_unlock(&ks->lock);
967 }
968
969 static void ks8851_set_rx_mode(struct net_device *dev)
970 {
971 struct ks8851_net *ks = netdev_priv(dev);
972 struct ks8851_rxctrl rxctrl;
973
974 memset(&rxctrl, 0, sizeof(rxctrl));
975
976 if (dev->flags & IFF_PROMISC) {
977 /* interface to receive everything */
978
979 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
980 } else if (dev->flags & IFF_ALLMULTI) {
981 /* accept all multicast packets */
982
983 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
984 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
985 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
986 struct netdev_hw_addr *ha;
987 u32 crc;
988
989 /* accept some multicast */
990
991 netdev_for_each_mc_addr(ha, dev) {
992 crc = ether_crc(ETH_ALEN, ha->addr);
993 crc >>= (32 - 6); /* get top six bits */
994
995 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
996 }
997
998 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
999 } else {
1000 /* just accept broadcast / unicast */
1001 rxctrl.rxcr1 = RXCR1_RXPAFMA;
1002 }
1003
1004 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1005 RXCR1_RXBE | /* broadcast enable */
1006 RXCR1_RXE | /* RX process enable */
1007 RXCR1_RXFCE); /* enable flow control */
1008
1009 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1010
1011 /* schedule work to do the actual set of the data if needed */
1012
1013 spin_lock(&ks->statelock);
1014
1015 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1016 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1017 schedule_work(&ks->rxctrl_work);
1018 }
1019
1020 spin_unlock(&ks->statelock);
1021 }
1022
1023 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1024 {
1025 struct sockaddr *sa = addr;
1026
1027 if (netif_running(dev))
1028 return -EBUSY;
1029
1030 if (!is_valid_ether_addr(sa->sa_data))
1031 return -EADDRNOTAVAIL;
1032
1033 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1034 return ks8851_write_mac_addr(dev);
1035 }
1036
1037 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1038 {
1039 struct ks8851_net *ks = netdev_priv(dev);
1040
1041 if (!netif_running(dev))
1042 return -EINVAL;
1043
1044 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1045 }
1046
1047 static const struct net_device_ops ks8851_netdev_ops = {
1048 .ndo_open = ks8851_net_open,
1049 .ndo_stop = ks8851_net_stop,
1050 .ndo_do_ioctl = ks8851_net_ioctl,
1051 .ndo_start_xmit = ks8851_start_xmit,
1052 .ndo_set_mac_address = ks8851_set_mac_address,
1053 .ndo_set_rx_mode = ks8851_set_rx_mode,
1054 .ndo_validate_addr = eth_validate_addr,
1055 };
1056
1057 /* ethtool support */
1058
1059 static void ks8851_get_drvinfo(struct net_device *dev,
1060 struct ethtool_drvinfo *di)
1061 {
1062 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1063 strlcpy(di->version, "1.00", sizeof(di->version));
1064 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1065 }
1066
1067 static u32 ks8851_get_msglevel(struct net_device *dev)
1068 {
1069 struct ks8851_net *ks = netdev_priv(dev);
1070 return ks->msg_enable;
1071 }
1072
1073 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1074 {
1075 struct ks8851_net *ks = netdev_priv(dev);
1076 ks->msg_enable = to;
1077 }
1078
1079 static int ks8851_get_link_ksettings(struct net_device *dev,
1080 struct ethtool_link_ksettings *cmd)
1081 {
1082 struct ks8851_net *ks = netdev_priv(dev);
1083
1084 mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1085
1086 return 0;
1087 }
1088
1089 static int ks8851_set_link_ksettings(struct net_device *dev,
1090 const struct ethtool_link_ksettings *cmd)
1091 {
1092 struct ks8851_net *ks = netdev_priv(dev);
1093 return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1094 }
1095
1096 static u32 ks8851_get_link(struct net_device *dev)
1097 {
1098 struct ks8851_net *ks = netdev_priv(dev);
1099 return mii_link_ok(&ks->mii);
1100 }
1101
1102 static int ks8851_nway_reset(struct net_device *dev)
1103 {
1104 struct ks8851_net *ks = netdev_priv(dev);
1105 return mii_nway_restart(&ks->mii);
1106 }
1107
1108 /* EEPROM support */
1109
1110 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1111 {
1112 struct ks8851_net *ks = ee->data;
1113 unsigned val;
1114
1115 val = ks8851_rdreg16(ks, KS_EEPCR);
1116
1117 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1118 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1119 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1120 }
1121
1122 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1123 {
1124 struct ks8851_net *ks = ee->data;
1125 unsigned val = EEPCR_EESA; /* default - eeprom access on */
1126
1127 if (ee->drive_data)
1128 val |= EEPCR_EESRWA;
1129 if (ee->reg_data_in)
1130 val |= EEPCR_EEDO;
1131 if (ee->reg_data_clock)
1132 val |= EEPCR_EESCK;
1133 if (ee->reg_chip_select)
1134 val |= EEPCR_EECS;
1135
1136 ks8851_wrreg16(ks, KS_EEPCR, val);
1137 }
1138
1139 /**
1140 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1141 * @ks: The network device state.
1142 *
1143 * Check for the presence of an EEPROM, and then activate software access
1144 * to the device.
1145 */
1146 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1147 {
1148 if (!(ks->rc_ccr & CCR_EEPROM))
1149 return -ENOENT;
1150
1151 mutex_lock(&ks->lock);
1152
1153 /* start with clock low, cs high */
1154 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1155 return 0;
1156 }
1157
1158 /**
1159 * ks8851_eeprom_release - release the EEPROM interface
1160 * @ks: The device state
1161 *
1162 * Release the software access to the device EEPROM
1163 */
1164 static void ks8851_eeprom_release(struct ks8851_net *ks)
1165 {
1166 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1167
1168 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1169 mutex_unlock(&ks->lock);
1170 }
1171
1172 #define KS_EEPROM_MAGIC (0x00008851)
1173
1174 static int ks8851_set_eeprom(struct net_device *dev,
1175 struct ethtool_eeprom *ee, u8 *data)
1176 {
1177 struct ks8851_net *ks = netdev_priv(dev);
1178 int offset = ee->offset;
1179 int len = ee->len;
1180 u16 tmp;
1181
1182 /* currently only support byte writing */
1183 if (len != 1)
1184 return -EINVAL;
1185
1186 if (ee->magic != KS_EEPROM_MAGIC)
1187 return -EINVAL;
1188
1189 if (ks8851_eeprom_claim(ks))
1190 return -ENOENT;
1191
1192 eeprom_93cx6_wren(&ks->eeprom, true);
1193
1194 /* ethtool currently only supports writing bytes, which means
1195 * we have to read/modify/write our 16bit EEPROMs */
1196
1197 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1198
1199 if (offset & 1) {
1200 tmp &= 0xff;
1201 tmp |= *data << 8;
1202 } else {
1203 tmp &= 0xff00;
1204 tmp |= *data;
1205 }
1206
1207 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1208 eeprom_93cx6_wren(&ks->eeprom, false);
1209
1210 ks8851_eeprom_release(ks);
1211
1212 return 0;
1213 }
1214
1215 static int ks8851_get_eeprom(struct net_device *dev,
1216 struct ethtool_eeprom *ee, u8 *data)
1217 {
1218 struct ks8851_net *ks = netdev_priv(dev);
1219 int offset = ee->offset;
1220 int len = ee->len;
1221
1222 /* must be 2 byte aligned */
1223 if (len & 1 || offset & 1)
1224 return -EINVAL;
1225
1226 if (ks8851_eeprom_claim(ks))
1227 return -ENOENT;
1228
1229 ee->magic = KS_EEPROM_MAGIC;
1230
1231 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1232 ks8851_eeprom_release(ks);
1233
1234 return 0;
1235 }
1236
1237 static int ks8851_get_eeprom_len(struct net_device *dev)
1238 {
1239 struct ks8851_net *ks = netdev_priv(dev);
1240
1241 /* currently, we assume it is an 93C46 attached, so return 128 */
1242 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1243 }
1244
1245 static const struct ethtool_ops ks8851_ethtool_ops = {
1246 .get_drvinfo = ks8851_get_drvinfo,
1247 .get_msglevel = ks8851_get_msglevel,
1248 .set_msglevel = ks8851_set_msglevel,
1249 .get_link = ks8851_get_link,
1250 .nway_reset = ks8851_nway_reset,
1251 .get_eeprom_len = ks8851_get_eeprom_len,
1252 .get_eeprom = ks8851_get_eeprom,
1253 .set_eeprom = ks8851_set_eeprom,
1254 .get_link_ksettings = ks8851_get_link_ksettings,
1255 .set_link_ksettings = ks8851_set_link_ksettings,
1256 };
1257
1258 /* MII interface controls */
1259
1260 /**
1261 * ks8851_phy_reg - convert MII register into a KS8851 register
1262 * @reg: MII register number.
1263 *
1264 * Return the KS8851 register number for the corresponding MII PHY register
1265 * if possible. Return zero if the MII register has no direct mapping to the
1266 * KS8851 register set.
1267 */
1268 static int ks8851_phy_reg(int reg)
1269 {
1270 switch (reg) {
1271 case MII_BMCR:
1272 return KS_P1MBCR;
1273 case MII_BMSR:
1274 return KS_P1MBSR;
1275 case MII_PHYSID1:
1276 return KS_PHY1ILR;
1277 case MII_PHYSID2:
1278 return KS_PHY1IHR;
1279 case MII_ADVERTISE:
1280 return KS_P1ANAR;
1281 case MII_LPA:
1282 return KS_P1ANLPR;
1283 }
1284
1285 return 0x0;
1286 }
1287
1288 /**
1289 * ks8851_phy_read - MII interface PHY register read.
1290 * @dev: The network device the PHY is on.
1291 * @phy_addr: Address of PHY (ignored as we only have one)
1292 * @reg: The register to read.
1293 *
1294 * This call reads data from the PHY register specified in @reg. Since the
1295 * device does not support all the MII registers, the non-existent values
1296 * are always returned as zero.
1297 *
1298 * We return zero for unsupported registers as the MII code does not check
1299 * the value returned for any error status, and simply returns it to the
1300 * caller. The mii-tool that the driver was tested with takes any -ve error
1301 * as real PHY capabilities, thus displaying incorrect data to the user.
1302 */
1303 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1304 {
1305 struct ks8851_net *ks = netdev_priv(dev);
1306 int ksreg;
1307 int result;
1308
1309 ksreg = ks8851_phy_reg(reg);
1310 if (!ksreg)
1311 return 0x0; /* no error return allowed, so use zero */
1312
1313 mutex_lock(&ks->lock);
1314 result = ks8851_rdreg16(ks, ksreg);
1315 mutex_unlock(&ks->lock);
1316
1317 return result;
1318 }
1319
1320 static void ks8851_phy_write(struct net_device *dev,
1321 int phy, int reg, int value)
1322 {
1323 struct ks8851_net *ks = netdev_priv(dev);
1324 int ksreg;
1325
1326 ksreg = ks8851_phy_reg(reg);
1327 if (ksreg) {
1328 mutex_lock(&ks->lock);
1329 ks8851_wrreg16(ks, ksreg, value);
1330 mutex_unlock(&ks->lock);
1331 }
1332 }
1333
1334 /**
1335 * ks8851_read_selftest - read the selftest memory info.
1336 * @ks: The device state
1337 *
1338 * Read and check the TX/RX memory selftest information.
1339 */
1340 static int ks8851_read_selftest(struct ks8851_net *ks)
1341 {
1342 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1343 int ret = 0;
1344 unsigned rd;
1345
1346 rd = ks8851_rdreg16(ks, KS_MBIR);
1347
1348 if ((rd & both_done) != both_done) {
1349 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1350 return 0;
1351 }
1352
1353 if (rd & MBIR_TXMBFA) {
1354 netdev_err(ks->netdev, "TX memory selftest fail\n");
1355 ret |= 1;
1356 }
1357
1358 if (rd & MBIR_RXMBFA) {
1359 netdev_err(ks->netdev, "RX memory selftest fail\n");
1360 ret |= 2;
1361 }
1362
1363 return 0;
1364 }
1365
1366 /* driver bus management functions */
1367
1368 #ifdef CONFIG_PM_SLEEP
1369
1370 static int ks8851_suspend(struct device *dev)
1371 {
1372 struct ks8851_net *ks = dev_get_drvdata(dev);
1373 struct net_device *netdev = ks->netdev;
1374
1375 if (netif_running(netdev)) {
1376 netif_device_detach(netdev);
1377 ks8851_net_stop(netdev);
1378 }
1379
1380 return 0;
1381 }
1382
1383 static int ks8851_resume(struct device *dev)
1384 {
1385 struct ks8851_net *ks = dev_get_drvdata(dev);
1386 struct net_device *netdev = ks->netdev;
1387
1388 if (netif_running(netdev)) {
1389 ks8851_net_open(netdev);
1390 netif_device_attach(netdev);
1391 }
1392
1393 return 0;
1394 }
1395 #endif
1396
1397 static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1398
1399 static int ks8851_probe(struct spi_device *spi)
1400 {
1401 struct net_device *ndev;
1402 struct ks8851_net *ks;
1403 int ret;
1404 unsigned cider;
1405 int gpio;
1406
1407 ndev = alloc_etherdev(sizeof(struct ks8851_net));
1408 if (!ndev)
1409 return -ENOMEM;
1410
1411 spi->bits_per_word = 8;
1412
1413 ks = netdev_priv(ndev);
1414
1415 ks->netdev = ndev;
1416 ks->spidev = spi;
1417 ks->tx_space = 6144;
1418
1419 gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1420 0, NULL);
1421 if (gpio == -EPROBE_DEFER) {
1422 ret = gpio;
1423 goto err_gpio;
1424 }
1425
1426 ks->gpio = gpio;
1427 if (gpio_is_valid(gpio)) {
1428 ret = devm_gpio_request_one(&spi->dev, gpio,
1429 GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1430 if (ret) {
1431 dev_err(&spi->dev, "reset gpio request failed\n");
1432 goto err_gpio;
1433 }
1434 }
1435
1436 ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1437 if (IS_ERR(ks->vdd_io)) {
1438 ret = PTR_ERR(ks->vdd_io);
1439 goto err_reg_io;
1440 }
1441
1442 ret = regulator_enable(ks->vdd_io);
1443 if (ret) {
1444 dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1445 ret);
1446 goto err_reg_io;
1447 }
1448
1449 ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1450 if (IS_ERR(ks->vdd_reg)) {
1451 ret = PTR_ERR(ks->vdd_reg);
1452 goto err_reg;
1453 }
1454
1455 ret = regulator_enable(ks->vdd_reg);
1456 if (ret) {
1457 dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1458 ret);
1459 goto err_reg;
1460 }
1461
1462 if (gpio_is_valid(gpio)) {
1463 usleep_range(10000, 11000);
1464 gpio_set_value(gpio, 1);
1465 }
1466
1467 mutex_init(&ks->lock);
1468 spin_lock_init(&ks->statelock);
1469
1470 INIT_WORK(&ks->tx_work, ks8851_tx_work);
1471 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1472
1473 /* initialise pre-made spi transfer messages */
1474
1475 spi_message_init(&ks->spi_msg1);
1476 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1477
1478 spi_message_init(&ks->spi_msg2);
1479 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1480 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1481
1482 /* setup EEPROM state */
1483
1484 ks->eeprom.data = ks;
1485 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1486 ks->eeprom.register_read = ks8851_eeprom_regread;
1487 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1488
1489 /* setup mii state */
1490 ks->mii.dev = ndev;
1491 ks->mii.phy_id = 1,
1492 ks->mii.phy_id_mask = 1;
1493 ks->mii.reg_num_mask = 0xf;
1494 ks->mii.mdio_read = ks8851_phy_read;
1495 ks->mii.mdio_write = ks8851_phy_write;
1496
1497 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1498
1499 /* set the default message enable */
1500 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1501 NETIF_MSG_PROBE |
1502 NETIF_MSG_LINK));
1503
1504 skb_queue_head_init(&ks->txq);
1505
1506 ndev->ethtool_ops = &ks8851_ethtool_ops;
1507 SET_NETDEV_DEV(ndev, &spi->dev);
1508
1509 spi_set_drvdata(spi, ks);
1510
1511 ndev->if_port = IF_PORT_100BASET;
1512 ndev->netdev_ops = &ks8851_netdev_ops;
1513 ndev->irq = spi->irq;
1514
1515 /* issue a global soft reset to reset the device. */
1516 ks8851_soft_reset(ks, GRR_GSR);
1517
1518 /* simple check for a valid chip being connected to the bus */
1519 cider = ks8851_rdreg16(ks, KS_CIDER);
1520 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1521 dev_err(&spi->dev, "failed to read device ID\n");
1522 ret = -ENODEV;
1523 goto err_id;
1524 }
1525
1526 /* cache the contents of the CCR register for EEPROM, etc. */
1527 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1528
1529 ks8851_read_selftest(ks);
1530 ks8851_init_mac(ks);
1531
1532 ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1533 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1534 ndev->name, ks);
1535 if (ret < 0) {
1536 dev_err(&spi->dev, "failed to get irq\n");
1537 goto err_irq;
1538 }
1539
1540 ret = register_netdev(ndev);
1541 if (ret) {
1542 dev_err(&spi->dev, "failed to register network device\n");
1543 goto err_netdev;
1544 }
1545
1546 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1547 CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1548 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1549
1550 return 0;
1551
1552
1553 err_netdev:
1554 free_irq(ndev->irq, ks);
1555
1556 err_irq:
1557 if (gpio_is_valid(gpio))
1558 gpio_set_value(gpio, 0);
1559 err_id:
1560 regulator_disable(ks->vdd_reg);
1561 err_reg:
1562 regulator_disable(ks->vdd_io);
1563 err_reg_io:
1564 err_gpio:
1565 free_netdev(ndev);
1566 return ret;
1567 }
1568
1569 static int ks8851_remove(struct spi_device *spi)
1570 {
1571 struct ks8851_net *priv = spi_get_drvdata(spi);
1572
1573 if (netif_msg_drv(priv))
1574 dev_info(&spi->dev, "remove\n");
1575
1576 unregister_netdev(priv->netdev);
1577 free_irq(spi->irq, priv);
1578 if (gpio_is_valid(priv->gpio))
1579 gpio_set_value(priv->gpio, 0);
1580 regulator_disable(priv->vdd_reg);
1581 regulator_disable(priv->vdd_io);
1582 free_netdev(priv->netdev);
1583
1584 return 0;
1585 }
1586
1587 static const struct of_device_id ks8851_match_table[] = {
1588 { .compatible = "micrel,ks8851" },
1589 { }
1590 };
1591 MODULE_DEVICE_TABLE(of, ks8851_match_table);
1592
1593 static struct spi_driver ks8851_driver = {
1594 .driver = {
1595 .name = "ks8851",
1596 .of_match_table = ks8851_match_table,
1597 .pm = &ks8851_pm_ops,
1598 },
1599 .probe = ks8851_probe,
1600 .remove = ks8851_remove,
1601 };
1602 module_spi_driver(ks8851_driver);
1603
1604 MODULE_DESCRIPTION("KS8851 Network driver");
1605 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1606 MODULE_LICENSE("GPL");
1607
1608 module_param_named(message, msg_enable, int, 0);
1609 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1610 MODULE_ALIAS("spi:ks8851");