]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/micrel/ks8851.c
Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / micrel / ks8851.c
1 /* drivers/net/ethernet/micrel/ks8851.c
2 *
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #define DEBUG
15
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/cache.h>
23 #include <linux/crc32.h>
24 #include <linux/mii.h>
25 #include <linux/eeprom_93cx6.h>
26
27 #include <linux/spi/spi.h>
28
29 #include "ks8851.h"
30
31 /**
32 * struct ks8851_rxctrl - KS8851 driver rx control
33 * @mchash: Multicast hash-table data.
34 * @rxcr1: KS_RXCR1 register setting
35 * @rxcr2: KS_RXCR2 register setting
36 *
37 * Representation of the settings needs to control the receive filtering
38 * such as the multicast hash-filter and the receive register settings. This
39 * is used to make the job of working out if the receive settings change and
40 * then issuing the new settings to the worker that will send the necessary
41 * commands.
42 */
43 struct ks8851_rxctrl {
44 u16 mchash[4];
45 u16 rxcr1;
46 u16 rxcr2;
47 };
48
49 /**
50 * union ks8851_tx_hdr - tx header data
51 * @txb: The header as bytes
52 * @txw: The header as 16bit, little-endian words
53 *
54 * A dual representation of the tx header data to allow
55 * access to individual bytes, and to allow 16bit accesses
56 * with 16bit alignment.
57 */
58 union ks8851_tx_hdr {
59 u8 txb[6];
60 __le16 txw[3];
61 };
62
63 /**
64 * struct ks8851_net - KS8851 driver private data
65 * @netdev: The network device we're bound to
66 * @spidev: The spi device we're bound to.
67 * @lock: Lock to ensure that the device is not accessed when busy.
68 * @statelock: Lock on this structure for tx list.
69 * @mii: The MII state information for the mii calls.
70 * @rxctrl: RX settings for @rxctrl_work.
71 * @tx_work: Work queue for tx packets
72 * @irq_work: Work queue for servicing interrupts
73 * @rxctrl_work: Work queue for updating RX mode and multicast lists
74 * @txq: Queue of packets for transmission.
75 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
76 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
77 * @txh: Space for generating packet TX header in DMA-able data
78 * @rxd: Space for receiving SPI data, in DMA-able space.
79 * @txd: Space for transmitting SPI data, in DMA-able space.
80 * @msg_enable: The message flags controlling driver output (see ethtool).
81 * @fid: Incrementing frame id tag.
82 * @rc_ier: Cached copy of KS_IER.
83 * @rc_ccr: Cached copy of KS_CCR.
84 * @rc_rxqcr: Cached copy of KS_RXQCR.
85 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
86 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
87 *
88 * The @lock ensures that the chip is protected when certain operations are
89 * in progress. When the read or write packet transfer is in progress, most
90 * of the chip registers are not ccessible until the transfer is finished and
91 * the DMA has been de-asserted.
92 *
93 * The @statelock is used to protect information in the structure which may
94 * need to be accessed via several sources, such as the network driver layer
95 * or one of the work queues.
96 *
97 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
98 * wants to DMA map them, it will not have any problems with data the driver
99 * modifies.
100 */
101 struct ks8851_net {
102 struct net_device *netdev;
103 struct spi_device *spidev;
104 struct mutex lock;
105 spinlock_t statelock;
106
107 union ks8851_tx_hdr txh ____cacheline_aligned;
108 u8 rxd[8];
109 u8 txd[8];
110
111 u32 msg_enable ____cacheline_aligned;
112 u16 tx_space;
113 u8 fid;
114
115 u16 rc_ier;
116 u16 rc_rxqcr;
117 u16 rc_ccr;
118 u16 eeprom_size;
119
120 struct mii_if_info mii;
121 struct ks8851_rxctrl rxctrl;
122
123 struct work_struct tx_work;
124 struct work_struct irq_work;
125 struct work_struct rxctrl_work;
126
127 struct sk_buff_head txq;
128
129 struct spi_message spi_msg1;
130 struct spi_message spi_msg2;
131 struct spi_transfer spi_xfer1;
132 struct spi_transfer spi_xfer2[2];
133
134 struct eeprom_93cx6 eeprom;
135 };
136
137 static int msg_enable;
138
139 /* shift for byte-enable data */
140 #define BYTE_EN(_x) ((_x) << 2)
141
142 /* turn register number and byte-enable mask into data for start of packet */
143 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
144
145 /* SPI register read/write calls.
146 *
147 * All these calls issue SPI transactions to access the chip's registers. They
148 * all require that the necessary lock is held to prevent accesses when the
149 * chip is busy transferring packet data (RX/TX FIFO accesses).
150 */
151
152 /**
153 * ks8851_wrreg16 - write 16bit register value to chip
154 * @ks: The chip state
155 * @reg: The register address
156 * @val: The value to write
157 *
158 * Issue a write to put the value @val into the register specified in @reg.
159 */
160 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
161 {
162 struct spi_transfer *xfer = &ks->spi_xfer1;
163 struct spi_message *msg = &ks->spi_msg1;
164 __le16 txb[2];
165 int ret;
166
167 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
168 txb[1] = cpu_to_le16(val);
169
170 xfer->tx_buf = txb;
171 xfer->rx_buf = NULL;
172 xfer->len = 4;
173
174 ret = spi_sync(ks->spidev, msg);
175 if (ret < 0)
176 netdev_err(ks->netdev, "spi_sync() failed\n");
177 }
178
179 /**
180 * ks8851_wrreg8 - write 8bit register value to chip
181 * @ks: The chip state
182 * @reg: The register address
183 * @val: The value to write
184 *
185 * Issue a write to put the value @val into the register specified in @reg.
186 */
187 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
188 {
189 struct spi_transfer *xfer = &ks->spi_xfer1;
190 struct spi_message *msg = &ks->spi_msg1;
191 __le16 txb[2];
192 int ret;
193 int bit;
194
195 bit = 1 << (reg & 3);
196
197 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
198 txb[1] = val;
199
200 xfer->tx_buf = txb;
201 xfer->rx_buf = NULL;
202 xfer->len = 3;
203
204 ret = spi_sync(ks->spidev, msg);
205 if (ret < 0)
206 netdev_err(ks->netdev, "spi_sync() failed\n");
207 }
208
209 /**
210 * ks8851_rx_1msg - select whether to use one or two messages for spi read
211 * @ks: The device structure
212 *
213 * Return whether to generate a single message with a tx and rx buffer
214 * supplied to spi_sync(), or alternatively send the tx and rx buffers
215 * as separate messages.
216 *
217 * Depending on the hardware in use, a single message may be more efficient
218 * on interrupts or work done by the driver.
219 *
220 * This currently always returns true until we add some per-device data passed
221 * from the platform code to specify which mode is better.
222 */
223 static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
224 {
225 return true;
226 }
227
228 /**
229 * ks8851_rdreg - issue read register command and return the data
230 * @ks: The device state
231 * @op: The register address and byte enables in message format.
232 * @rxb: The RX buffer to return the result into
233 * @rxl: The length of data expected.
234 *
235 * This is the low level read call that issues the necessary spi message(s)
236 * to read data from the register specified in @op.
237 */
238 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
239 u8 *rxb, unsigned rxl)
240 {
241 struct spi_transfer *xfer;
242 struct spi_message *msg;
243 __le16 *txb = (__le16 *)ks->txd;
244 u8 *trx = ks->rxd;
245 int ret;
246
247 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
248
249 if (ks8851_rx_1msg(ks)) {
250 msg = &ks->spi_msg1;
251 xfer = &ks->spi_xfer1;
252
253 xfer->tx_buf = txb;
254 xfer->rx_buf = trx;
255 xfer->len = rxl + 2;
256 } else {
257 msg = &ks->spi_msg2;
258 xfer = ks->spi_xfer2;
259
260 xfer->tx_buf = txb;
261 xfer->rx_buf = NULL;
262 xfer->len = 2;
263
264 xfer++;
265 xfer->tx_buf = NULL;
266 xfer->rx_buf = trx;
267 xfer->len = rxl;
268 }
269
270 ret = spi_sync(ks->spidev, msg);
271 if (ret < 0)
272 netdev_err(ks->netdev, "read: spi_sync() failed\n");
273 else if (ks8851_rx_1msg(ks))
274 memcpy(rxb, trx + 2, rxl);
275 else
276 memcpy(rxb, trx, rxl);
277 }
278
279 /**
280 * ks8851_rdreg8 - read 8 bit register from device
281 * @ks: The chip information
282 * @reg: The register address
283 *
284 * Read a 8bit register from the chip, returning the result
285 */
286 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
287 {
288 u8 rxb[1];
289
290 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
291 return rxb[0];
292 }
293
294 /**
295 * ks8851_rdreg16 - read 16 bit register from device
296 * @ks: The chip information
297 * @reg: The register address
298 *
299 * Read a 16bit register from the chip, returning the result
300 */
301 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
302 {
303 __le16 rx = 0;
304
305 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
306 return le16_to_cpu(rx);
307 }
308
309 /**
310 * ks8851_rdreg32 - read 32 bit register from device
311 * @ks: The chip information
312 * @reg: The register address
313 *
314 * Read a 32bit register from the chip.
315 *
316 * Note, this read requires the address be aligned to 4 bytes.
317 */
318 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
319 {
320 __le32 rx = 0;
321
322 WARN_ON(reg & 3);
323
324 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
325 return le32_to_cpu(rx);
326 }
327
328 /**
329 * ks8851_soft_reset - issue one of the soft reset to the device
330 * @ks: The device state.
331 * @op: The bit(s) to set in the GRR
332 *
333 * Issue the relevant soft-reset command to the device's GRR register
334 * specified by @op.
335 *
336 * Note, the delays are in there as a caution to ensure that the reset
337 * has time to take effect and then complete. Since the datasheet does
338 * not currently specify the exact sequence, we have chosen something
339 * that seems to work with our device.
340 */
341 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
342 {
343 ks8851_wrreg16(ks, KS_GRR, op);
344 mdelay(1); /* wait a short time to effect reset */
345 ks8851_wrreg16(ks, KS_GRR, 0);
346 mdelay(1); /* wait for condition to clear */
347 }
348
349 /**
350 * ks8851_set_powermode - set power mode of the device
351 * @ks: The device state
352 * @pwrmode: The power mode value to write to KS_PMECR.
353 *
354 * Change the power mode of the chip.
355 */
356 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
357 {
358 unsigned pmecr;
359
360 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
361
362 pmecr = ks8851_rdreg16(ks, KS_PMECR);
363 pmecr &= ~PMECR_PM_MASK;
364 pmecr |= pwrmode;
365
366 ks8851_wrreg16(ks, KS_PMECR, pmecr);
367 }
368
369 /**
370 * ks8851_write_mac_addr - write mac address to device registers
371 * @dev: The network device
372 *
373 * Update the KS8851 MAC address registers from the address in @dev.
374 *
375 * This call assumes that the chip is not running, so there is no need to
376 * shutdown the RXQ process whilst setting this.
377 */
378 static int ks8851_write_mac_addr(struct net_device *dev)
379 {
380 struct ks8851_net *ks = netdev_priv(dev);
381 int i;
382
383 mutex_lock(&ks->lock);
384
385 /*
386 * Wake up chip in case it was powered off when stopped; otherwise,
387 * the first write to the MAC address does not take effect.
388 */
389 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
390 for (i = 0; i < ETH_ALEN; i++)
391 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
392 if (!netif_running(dev))
393 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
394
395 mutex_unlock(&ks->lock);
396
397 return 0;
398 }
399
400 /**
401 * ks8851_read_mac_addr - read mac address from device registers
402 * @dev: The network device
403 *
404 * Update our copy of the KS8851 MAC address from the registers of @dev.
405 */
406 static void ks8851_read_mac_addr(struct net_device *dev)
407 {
408 struct ks8851_net *ks = netdev_priv(dev);
409 int i;
410
411 mutex_lock(&ks->lock);
412
413 for (i = 0; i < ETH_ALEN; i++)
414 dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
415
416 mutex_unlock(&ks->lock);
417 }
418
419 /**
420 * ks8851_init_mac - initialise the mac address
421 * @ks: The device structure
422 *
423 * Get or create the initial mac address for the device and then set that
424 * into the station address register. If there is an EEPROM present, then
425 * we try that. If no valid mac address is found we use random_ether_addr()
426 * to create a new one.
427 */
428 static void ks8851_init_mac(struct ks8851_net *ks)
429 {
430 struct net_device *dev = ks->netdev;
431
432 /* first, try reading what we've got already */
433 if (ks->rc_ccr & CCR_EEPROM) {
434 ks8851_read_mac_addr(dev);
435 if (is_valid_ether_addr(dev->dev_addr))
436 return;
437
438 netdev_err(ks->netdev, "invalid mac address read %pM\n",
439 dev->dev_addr);
440 }
441
442 eth_hw_addr_random(dev);
443 ks8851_write_mac_addr(dev);
444 }
445
446 /**
447 * ks8851_irq - device interrupt handler
448 * @irq: Interrupt number passed from the IRQ handler.
449 * @pw: The private word passed to register_irq(), our struct ks8851_net.
450 *
451 * Disable the interrupt from happening again until we've processed the
452 * current status by scheduling ks8851_irq_work().
453 */
454 static irqreturn_t ks8851_irq(int irq, void *pw)
455 {
456 struct ks8851_net *ks = pw;
457
458 disable_irq_nosync(irq);
459 schedule_work(&ks->irq_work);
460 return IRQ_HANDLED;
461 }
462
463 /**
464 * ks8851_rdfifo - read data from the receive fifo
465 * @ks: The device state.
466 * @buff: The buffer address
467 * @len: The length of the data to read
468 *
469 * Issue an RXQ FIFO read command and read the @len amount of data from
470 * the FIFO into the buffer specified by @buff.
471 */
472 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
473 {
474 struct spi_transfer *xfer = ks->spi_xfer2;
475 struct spi_message *msg = &ks->spi_msg2;
476 u8 txb[1];
477 int ret;
478
479 netif_dbg(ks, rx_status, ks->netdev,
480 "%s: %d@%p\n", __func__, len, buff);
481
482 /* set the operation we're issuing */
483 txb[0] = KS_SPIOP_RXFIFO;
484
485 xfer->tx_buf = txb;
486 xfer->rx_buf = NULL;
487 xfer->len = 1;
488
489 xfer++;
490 xfer->rx_buf = buff;
491 xfer->tx_buf = NULL;
492 xfer->len = len;
493
494 ret = spi_sync(ks->spidev, msg);
495 if (ret < 0)
496 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
497 }
498
499 /**
500 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
501 * @ks: The device state
502 * @rxpkt: The data for the received packet
503 *
504 * Dump the initial data from the packet to dev_dbg().
505 */
506 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
507 {
508 netdev_dbg(ks->netdev,
509 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
510 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
511 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
512 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
513 }
514
515 /**
516 * ks8851_rx_pkts - receive packets from the host
517 * @ks: The device information.
518 *
519 * This is called from the IRQ work queue when the system detects that there
520 * are packets in the receive queue. Find out how many packets there are and
521 * read them from the FIFO.
522 */
523 static void ks8851_rx_pkts(struct ks8851_net *ks)
524 {
525 struct sk_buff *skb;
526 unsigned rxfc;
527 unsigned rxlen;
528 unsigned rxstat;
529 u32 rxh;
530 u8 *rxpkt;
531
532 rxfc = ks8851_rdreg8(ks, KS_RXFC);
533
534 netif_dbg(ks, rx_status, ks->netdev,
535 "%s: %d packets\n", __func__, rxfc);
536
537 /* Currently we're issuing a read per packet, but we could possibly
538 * improve the code by issuing a single read, getting the receive
539 * header, allocating the packet and then reading the packet data
540 * out in one go.
541 *
542 * This form of operation would require us to hold the SPI bus'
543 * chipselect low during the entie transaction to avoid any
544 * reset to the data stream coming from the chip.
545 */
546
547 for (; rxfc != 0; rxfc--) {
548 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
549 rxstat = rxh & 0xffff;
550 rxlen = rxh >> 16;
551
552 netif_dbg(ks, rx_status, ks->netdev,
553 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
554
555 /* the length of the packet includes the 32bit CRC */
556
557 /* set dma read address */
558 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
559
560 /* start the packet dma process, and set auto-dequeue rx */
561 ks8851_wrreg16(ks, KS_RXQCR,
562 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
563
564 if (rxlen > 4) {
565 unsigned int rxalign;
566
567 rxlen -= 4;
568 rxalign = ALIGN(rxlen, 4);
569 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
570 if (skb) {
571
572 /* 4 bytes of status header + 4 bytes of
573 * garbage: we put them before ethernet
574 * header, so that they are copied,
575 * but ignored.
576 */
577
578 rxpkt = skb_put(skb, rxlen) - 8;
579
580 ks8851_rdfifo(ks, rxpkt, rxalign + 8);
581
582 if (netif_msg_pktdata(ks))
583 ks8851_dbg_dumpkkt(ks, rxpkt);
584
585 skb->protocol = eth_type_trans(skb, ks->netdev);
586 netif_rx_ni(skb);
587
588 ks->netdev->stats.rx_packets++;
589 ks->netdev->stats.rx_bytes += rxlen;
590 }
591 }
592
593 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
594 }
595 }
596
597 /**
598 * ks8851_irq_work - work queue handler for dealing with interrupt requests
599 * @work: The work structure that was scheduled by schedule_work()
600 *
601 * This is the handler invoked when the ks8851_irq() is called to find out
602 * what happened, as we cannot allow ourselves to sleep whilst waiting for
603 * anything other process has the chip's lock.
604 *
605 * Read the interrupt status, work out what needs to be done and then clear
606 * any of the interrupts that are not needed.
607 */
608 static void ks8851_irq_work(struct work_struct *work)
609 {
610 struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
611 unsigned status;
612 unsigned handled = 0;
613
614 mutex_lock(&ks->lock);
615
616 status = ks8851_rdreg16(ks, KS_ISR);
617
618 netif_dbg(ks, intr, ks->netdev,
619 "%s: status 0x%04x\n", __func__, status);
620
621 if (status & IRQ_LCI) {
622 /* should do something about checking link status */
623 handled |= IRQ_LCI;
624 }
625
626 if (status & IRQ_LDI) {
627 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
628 pmecr &= ~PMECR_WKEVT_MASK;
629 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
630
631 handled |= IRQ_LDI;
632 }
633
634 if (status & IRQ_RXPSI)
635 handled |= IRQ_RXPSI;
636
637 if (status & IRQ_TXI) {
638 handled |= IRQ_TXI;
639
640 /* no lock here, tx queue should have been stopped */
641
642 /* update our idea of how much tx space is available to the
643 * system */
644 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
645
646 netif_dbg(ks, intr, ks->netdev,
647 "%s: txspace %d\n", __func__, ks->tx_space);
648 }
649
650 if (status & IRQ_RXI)
651 handled |= IRQ_RXI;
652
653 if (status & IRQ_SPIBEI) {
654 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
655 handled |= IRQ_SPIBEI;
656 }
657
658 ks8851_wrreg16(ks, KS_ISR, handled);
659
660 if (status & IRQ_RXI) {
661 /* the datasheet says to disable the rx interrupt during
662 * packet read-out, however we're masking the interrupt
663 * from the device so do not bother masking just the RX
664 * from the device. */
665
666 ks8851_rx_pkts(ks);
667 }
668
669 /* if something stopped the rx process, probably due to wanting
670 * to change the rx settings, then do something about restarting
671 * it. */
672 if (status & IRQ_RXPSI) {
673 struct ks8851_rxctrl *rxc = &ks->rxctrl;
674
675 /* update the multicast hash table */
676 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
677 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
678 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
679 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
680
681 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
682 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
683 }
684
685 mutex_unlock(&ks->lock);
686
687 if (status & IRQ_TXI)
688 netif_wake_queue(ks->netdev);
689
690 enable_irq(ks->netdev->irq);
691 }
692
693 /**
694 * calc_txlen - calculate size of message to send packet
695 * @len: Length of data
696 *
697 * Returns the size of the TXFIFO message needed to send
698 * this packet.
699 */
700 static inline unsigned calc_txlen(unsigned len)
701 {
702 return ALIGN(len + 4, 4);
703 }
704
705 /**
706 * ks8851_wrpkt - write packet to TX FIFO
707 * @ks: The device state.
708 * @txp: The sk_buff to transmit.
709 * @irq: IRQ on completion of the packet.
710 *
711 * Send the @txp to the chip. This means creating the relevant packet header
712 * specifying the length of the packet and the other information the chip
713 * needs, such as IRQ on completion. Send the header and the packet data to
714 * the device.
715 */
716 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
717 {
718 struct spi_transfer *xfer = ks->spi_xfer2;
719 struct spi_message *msg = &ks->spi_msg2;
720 unsigned fid = 0;
721 int ret;
722
723 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
724 __func__, txp, txp->len, txp->data, irq);
725
726 fid = ks->fid++;
727 fid &= TXFR_TXFID_MASK;
728
729 if (irq)
730 fid |= TXFR_TXIC; /* irq on completion */
731
732 /* start header at txb[1] to align txw entries */
733 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
734 ks->txh.txw[1] = cpu_to_le16(fid);
735 ks->txh.txw[2] = cpu_to_le16(txp->len);
736
737 xfer->tx_buf = &ks->txh.txb[1];
738 xfer->rx_buf = NULL;
739 xfer->len = 5;
740
741 xfer++;
742 xfer->tx_buf = txp->data;
743 xfer->rx_buf = NULL;
744 xfer->len = ALIGN(txp->len, 4);
745
746 ret = spi_sync(ks->spidev, msg);
747 if (ret < 0)
748 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
749 }
750
751 /**
752 * ks8851_done_tx - update and then free skbuff after transmitting
753 * @ks: The device state
754 * @txb: The buffer transmitted
755 */
756 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
757 {
758 struct net_device *dev = ks->netdev;
759
760 dev->stats.tx_bytes += txb->len;
761 dev->stats.tx_packets++;
762
763 dev_kfree_skb(txb);
764 }
765
766 /**
767 * ks8851_tx_work - process tx packet(s)
768 * @work: The work strucutre what was scheduled.
769 *
770 * This is called when a number of packets have been scheduled for
771 * transmission and need to be sent to the device.
772 */
773 static void ks8851_tx_work(struct work_struct *work)
774 {
775 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
776 struct sk_buff *txb;
777 bool last = skb_queue_empty(&ks->txq);
778
779 mutex_lock(&ks->lock);
780
781 while (!last) {
782 txb = skb_dequeue(&ks->txq);
783 last = skb_queue_empty(&ks->txq);
784
785 if (txb != NULL) {
786 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
787 ks8851_wrpkt(ks, txb, last);
788 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
789 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
790
791 ks8851_done_tx(ks, txb);
792 }
793 }
794
795 mutex_unlock(&ks->lock);
796 }
797
798 /**
799 * ks8851_net_open - open network device
800 * @dev: The network device being opened.
801 *
802 * Called when the network device is marked active, such as a user executing
803 * 'ifconfig up' on the device.
804 */
805 static int ks8851_net_open(struct net_device *dev)
806 {
807 struct ks8851_net *ks = netdev_priv(dev);
808
809 /* lock the card, even if we may not actually be doing anything
810 * else at the moment */
811 mutex_lock(&ks->lock);
812
813 netif_dbg(ks, ifup, ks->netdev, "opening\n");
814
815 /* bring chip out of any power saving mode it was in */
816 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
817
818 /* issue a soft reset to the RX/TX QMU to put it into a known
819 * state. */
820 ks8851_soft_reset(ks, GRR_QMU);
821
822 /* setup transmission parameters */
823
824 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
825 TXCR_TXPE | /* pad to min length */
826 TXCR_TXCRC | /* add CRC */
827 TXCR_TXFCE)); /* enable flow control */
828
829 /* auto-increment tx data, reset tx pointer */
830 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
831
832 /* setup receiver control */
833
834 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
835 RXCR1_RXFCE | /* enable flow control */
836 RXCR1_RXBE | /* broadcast enable */
837 RXCR1_RXUE | /* unicast enable */
838 RXCR1_RXE)); /* enable rx block */
839
840 /* transfer entire frames out in one go */
841 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
842
843 /* set receive counter timeouts */
844 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
845 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
846 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
847
848 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
849 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
850 RXQCR_RXDTTE); /* IRQ on time exceeded */
851
852 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
853
854 /* clear then enable interrupts */
855
856 #define STD_IRQ (IRQ_LCI | /* Link Change */ \
857 IRQ_TXI | /* TX done */ \
858 IRQ_RXI | /* RX done */ \
859 IRQ_SPIBEI | /* SPI bus error */ \
860 IRQ_TXPSI | /* TX process stop */ \
861 IRQ_RXPSI) /* RX process stop */
862
863 ks->rc_ier = STD_IRQ;
864 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
865 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
866
867 netif_start_queue(ks->netdev);
868
869 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
870
871 mutex_unlock(&ks->lock);
872 return 0;
873 }
874
875 /**
876 * ks8851_net_stop - close network device
877 * @dev: The device being closed.
878 *
879 * Called to close down a network device which has been active. Cancell any
880 * work, shutdown the RX and TX process and then place the chip into a low
881 * power state whilst it is not being used.
882 */
883 static int ks8851_net_stop(struct net_device *dev)
884 {
885 struct ks8851_net *ks = netdev_priv(dev);
886
887 netif_info(ks, ifdown, dev, "shutting down\n");
888
889 netif_stop_queue(dev);
890
891 mutex_lock(&ks->lock);
892
893 /* stop any outstanding work */
894 flush_work(&ks->irq_work);
895 flush_work(&ks->tx_work);
896 flush_work(&ks->rxctrl_work);
897
898 /* turn off the IRQs and ack any outstanding */
899 ks8851_wrreg16(ks, KS_IER, 0x0000);
900 ks8851_wrreg16(ks, KS_ISR, 0xffff);
901
902 /* shutdown RX process */
903 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
904
905 /* shutdown TX process */
906 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
907
908 /* set powermode to soft power down to save power */
909 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
910
911 /* ensure any queued tx buffers are dumped */
912 while (!skb_queue_empty(&ks->txq)) {
913 struct sk_buff *txb = skb_dequeue(&ks->txq);
914
915 netif_dbg(ks, ifdown, ks->netdev,
916 "%s: freeing txb %p\n", __func__, txb);
917
918 dev_kfree_skb(txb);
919 }
920
921 mutex_unlock(&ks->lock);
922 return 0;
923 }
924
925 /**
926 * ks8851_start_xmit - transmit packet
927 * @skb: The buffer to transmit
928 * @dev: The device used to transmit the packet.
929 *
930 * Called by the network layer to transmit the @skb. Queue the packet for
931 * the device and schedule the necessary work to transmit the packet when
932 * it is free.
933 *
934 * We do this to firstly avoid sleeping with the network device locked,
935 * and secondly so we can round up more than one packet to transmit which
936 * means we can try and avoid generating too many transmit done interrupts.
937 */
938 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
939 struct net_device *dev)
940 {
941 struct ks8851_net *ks = netdev_priv(dev);
942 unsigned needed = calc_txlen(skb->len);
943 netdev_tx_t ret = NETDEV_TX_OK;
944
945 netif_dbg(ks, tx_queued, ks->netdev,
946 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
947
948 spin_lock(&ks->statelock);
949
950 if (needed > ks->tx_space) {
951 netif_stop_queue(dev);
952 ret = NETDEV_TX_BUSY;
953 } else {
954 ks->tx_space -= needed;
955 skb_queue_tail(&ks->txq, skb);
956 }
957
958 spin_unlock(&ks->statelock);
959 schedule_work(&ks->tx_work);
960
961 return ret;
962 }
963
964 /**
965 * ks8851_rxctrl_work - work handler to change rx mode
966 * @work: The work structure this belongs to.
967 *
968 * Lock the device and issue the necessary changes to the receive mode from
969 * the network device layer. This is done so that we can do this without
970 * having to sleep whilst holding the network device lock.
971 *
972 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
973 * receive parameters are programmed, we issue a write to disable the RXQ and
974 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
975 * complete. The interrupt handler then writes the new values into the chip.
976 */
977 static void ks8851_rxctrl_work(struct work_struct *work)
978 {
979 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
980
981 mutex_lock(&ks->lock);
982
983 /* need to shutdown RXQ before modifying filter parameters */
984 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
985
986 mutex_unlock(&ks->lock);
987 }
988
989 static void ks8851_set_rx_mode(struct net_device *dev)
990 {
991 struct ks8851_net *ks = netdev_priv(dev);
992 struct ks8851_rxctrl rxctrl;
993
994 memset(&rxctrl, 0, sizeof(rxctrl));
995
996 if (dev->flags & IFF_PROMISC) {
997 /* interface to receive everything */
998
999 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
1000 } else if (dev->flags & IFF_ALLMULTI) {
1001 /* accept all multicast packets */
1002
1003 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
1004 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
1005 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
1006 struct netdev_hw_addr *ha;
1007 u32 crc;
1008
1009 /* accept some multicast */
1010
1011 netdev_for_each_mc_addr(ha, dev) {
1012 crc = ether_crc(ETH_ALEN, ha->addr);
1013 crc >>= (32 - 6); /* get top six bits */
1014
1015 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1016 }
1017
1018 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1019 } else {
1020 /* just accept broadcast / unicast */
1021 rxctrl.rxcr1 = RXCR1_RXPAFMA;
1022 }
1023
1024 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1025 RXCR1_RXBE | /* broadcast enable */
1026 RXCR1_RXE | /* RX process enable */
1027 RXCR1_RXFCE); /* enable flow control */
1028
1029 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1030
1031 /* schedule work to do the actual set of the data if needed */
1032
1033 spin_lock(&ks->statelock);
1034
1035 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1036 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1037 schedule_work(&ks->rxctrl_work);
1038 }
1039
1040 spin_unlock(&ks->statelock);
1041 }
1042
1043 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1044 {
1045 struct sockaddr *sa = addr;
1046
1047 if (netif_running(dev))
1048 return -EBUSY;
1049
1050 if (!is_valid_ether_addr(sa->sa_data))
1051 return -EADDRNOTAVAIL;
1052
1053 dev->addr_assign_type &= ~NET_ADDR_RANDOM;
1054 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1055 return ks8851_write_mac_addr(dev);
1056 }
1057
1058 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1059 {
1060 struct ks8851_net *ks = netdev_priv(dev);
1061
1062 if (!netif_running(dev))
1063 return -EINVAL;
1064
1065 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1066 }
1067
1068 static const struct net_device_ops ks8851_netdev_ops = {
1069 .ndo_open = ks8851_net_open,
1070 .ndo_stop = ks8851_net_stop,
1071 .ndo_do_ioctl = ks8851_net_ioctl,
1072 .ndo_start_xmit = ks8851_start_xmit,
1073 .ndo_set_mac_address = ks8851_set_mac_address,
1074 .ndo_set_rx_mode = ks8851_set_rx_mode,
1075 .ndo_change_mtu = eth_change_mtu,
1076 .ndo_validate_addr = eth_validate_addr,
1077 };
1078
1079 /* ethtool support */
1080
1081 static void ks8851_get_drvinfo(struct net_device *dev,
1082 struct ethtool_drvinfo *di)
1083 {
1084 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1085 strlcpy(di->version, "1.00", sizeof(di->version));
1086 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1087 }
1088
1089 static u32 ks8851_get_msglevel(struct net_device *dev)
1090 {
1091 struct ks8851_net *ks = netdev_priv(dev);
1092 return ks->msg_enable;
1093 }
1094
1095 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1096 {
1097 struct ks8851_net *ks = netdev_priv(dev);
1098 ks->msg_enable = to;
1099 }
1100
1101 static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1102 {
1103 struct ks8851_net *ks = netdev_priv(dev);
1104 return mii_ethtool_gset(&ks->mii, cmd);
1105 }
1106
1107 static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1108 {
1109 struct ks8851_net *ks = netdev_priv(dev);
1110 return mii_ethtool_sset(&ks->mii, cmd);
1111 }
1112
1113 static u32 ks8851_get_link(struct net_device *dev)
1114 {
1115 struct ks8851_net *ks = netdev_priv(dev);
1116 return mii_link_ok(&ks->mii);
1117 }
1118
1119 static int ks8851_nway_reset(struct net_device *dev)
1120 {
1121 struct ks8851_net *ks = netdev_priv(dev);
1122 return mii_nway_restart(&ks->mii);
1123 }
1124
1125 /* EEPROM support */
1126
1127 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1128 {
1129 struct ks8851_net *ks = ee->data;
1130 unsigned val;
1131
1132 val = ks8851_rdreg16(ks, KS_EEPCR);
1133
1134 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1135 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1136 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1137 }
1138
1139 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1140 {
1141 struct ks8851_net *ks = ee->data;
1142 unsigned val = EEPCR_EESA; /* default - eeprom access on */
1143
1144 if (ee->drive_data)
1145 val |= EEPCR_EESRWA;
1146 if (ee->reg_data_in)
1147 val |= EEPCR_EEDO;
1148 if (ee->reg_data_clock)
1149 val |= EEPCR_EESCK;
1150 if (ee->reg_chip_select)
1151 val |= EEPCR_EECS;
1152
1153 ks8851_wrreg16(ks, KS_EEPCR, val);
1154 }
1155
1156 /**
1157 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1158 * @ks: The network device state.
1159 *
1160 * Check for the presence of an EEPROM, and then activate software access
1161 * to the device.
1162 */
1163 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1164 {
1165 if (!(ks->rc_ccr & CCR_EEPROM))
1166 return -ENOENT;
1167
1168 mutex_lock(&ks->lock);
1169
1170 /* start with clock low, cs high */
1171 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1172 return 0;
1173 }
1174
1175 /**
1176 * ks8851_eeprom_release - release the EEPROM interface
1177 * @ks: The device state
1178 *
1179 * Release the software access to the device EEPROM
1180 */
1181 static void ks8851_eeprom_release(struct ks8851_net *ks)
1182 {
1183 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1184
1185 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1186 mutex_unlock(&ks->lock);
1187 }
1188
1189 #define KS_EEPROM_MAGIC (0x00008851)
1190
1191 static int ks8851_set_eeprom(struct net_device *dev,
1192 struct ethtool_eeprom *ee, u8 *data)
1193 {
1194 struct ks8851_net *ks = netdev_priv(dev);
1195 int offset = ee->offset;
1196 int len = ee->len;
1197 u16 tmp;
1198
1199 /* currently only support byte writing */
1200 if (len != 1)
1201 return -EINVAL;
1202
1203 if (ee->magic != KS_EEPROM_MAGIC)
1204 return -EINVAL;
1205
1206 if (ks8851_eeprom_claim(ks))
1207 return -ENOENT;
1208
1209 eeprom_93cx6_wren(&ks->eeprom, true);
1210
1211 /* ethtool currently only supports writing bytes, which means
1212 * we have to read/modify/write our 16bit EEPROMs */
1213
1214 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1215
1216 if (offset & 1) {
1217 tmp &= 0xff;
1218 tmp |= *data << 8;
1219 } else {
1220 tmp &= 0xff00;
1221 tmp |= *data;
1222 }
1223
1224 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1225 eeprom_93cx6_wren(&ks->eeprom, false);
1226
1227 ks8851_eeprom_release(ks);
1228
1229 return 0;
1230 }
1231
1232 static int ks8851_get_eeprom(struct net_device *dev,
1233 struct ethtool_eeprom *ee, u8 *data)
1234 {
1235 struct ks8851_net *ks = netdev_priv(dev);
1236 int offset = ee->offset;
1237 int len = ee->len;
1238
1239 /* must be 2 byte aligned */
1240 if (len & 1 || offset & 1)
1241 return -EINVAL;
1242
1243 if (ks8851_eeprom_claim(ks))
1244 return -ENOENT;
1245
1246 ee->magic = KS_EEPROM_MAGIC;
1247
1248 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1249 ks8851_eeprom_release(ks);
1250
1251 return 0;
1252 }
1253
1254 static int ks8851_get_eeprom_len(struct net_device *dev)
1255 {
1256 struct ks8851_net *ks = netdev_priv(dev);
1257
1258 /* currently, we assume it is an 93C46 attached, so return 128 */
1259 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1260 }
1261
1262 static const struct ethtool_ops ks8851_ethtool_ops = {
1263 .get_drvinfo = ks8851_get_drvinfo,
1264 .get_msglevel = ks8851_get_msglevel,
1265 .set_msglevel = ks8851_set_msglevel,
1266 .get_settings = ks8851_get_settings,
1267 .set_settings = ks8851_set_settings,
1268 .get_link = ks8851_get_link,
1269 .nway_reset = ks8851_nway_reset,
1270 .get_eeprom_len = ks8851_get_eeprom_len,
1271 .get_eeprom = ks8851_get_eeprom,
1272 .set_eeprom = ks8851_set_eeprom,
1273 };
1274
1275 /* MII interface controls */
1276
1277 /**
1278 * ks8851_phy_reg - convert MII register into a KS8851 register
1279 * @reg: MII register number.
1280 *
1281 * Return the KS8851 register number for the corresponding MII PHY register
1282 * if possible. Return zero if the MII register has no direct mapping to the
1283 * KS8851 register set.
1284 */
1285 static int ks8851_phy_reg(int reg)
1286 {
1287 switch (reg) {
1288 case MII_BMCR:
1289 return KS_P1MBCR;
1290 case MII_BMSR:
1291 return KS_P1MBSR;
1292 case MII_PHYSID1:
1293 return KS_PHY1ILR;
1294 case MII_PHYSID2:
1295 return KS_PHY1IHR;
1296 case MII_ADVERTISE:
1297 return KS_P1ANAR;
1298 case MII_LPA:
1299 return KS_P1ANLPR;
1300 }
1301
1302 return 0x0;
1303 }
1304
1305 /**
1306 * ks8851_phy_read - MII interface PHY register read.
1307 * @dev: The network device the PHY is on.
1308 * @phy_addr: Address of PHY (ignored as we only have one)
1309 * @reg: The register to read.
1310 *
1311 * This call reads data from the PHY register specified in @reg. Since the
1312 * device does not support all the MII registers, the non-existent values
1313 * are always returned as zero.
1314 *
1315 * We return zero for unsupported registers as the MII code does not check
1316 * the value returned for any error status, and simply returns it to the
1317 * caller. The mii-tool that the driver was tested with takes any -ve error
1318 * as real PHY capabilities, thus displaying incorrect data to the user.
1319 */
1320 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1321 {
1322 struct ks8851_net *ks = netdev_priv(dev);
1323 int ksreg;
1324 int result;
1325
1326 ksreg = ks8851_phy_reg(reg);
1327 if (!ksreg)
1328 return 0x0; /* no error return allowed, so use zero */
1329
1330 mutex_lock(&ks->lock);
1331 result = ks8851_rdreg16(ks, ksreg);
1332 mutex_unlock(&ks->lock);
1333
1334 return result;
1335 }
1336
1337 static void ks8851_phy_write(struct net_device *dev,
1338 int phy, int reg, int value)
1339 {
1340 struct ks8851_net *ks = netdev_priv(dev);
1341 int ksreg;
1342
1343 ksreg = ks8851_phy_reg(reg);
1344 if (ksreg) {
1345 mutex_lock(&ks->lock);
1346 ks8851_wrreg16(ks, ksreg, value);
1347 mutex_unlock(&ks->lock);
1348 }
1349 }
1350
1351 /**
1352 * ks8851_read_selftest - read the selftest memory info.
1353 * @ks: The device state
1354 *
1355 * Read and check the TX/RX memory selftest information.
1356 */
1357 static int ks8851_read_selftest(struct ks8851_net *ks)
1358 {
1359 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1360 int ret = 0;
1361 unsigned rd;
1362
1363 rd = ks8851_rdreg16(ks, KS_MBIR);
1364
1365 if ((rd & both_done) != both_done) {
1366 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1367 return 0;
1368 }
1369
1370 if (rd & MBIR_TXMBFA) {
1371 netdev_err(ks->netdev, "TX memory selftest fail\n");
1372 ret |= 1;
1373 }
1374
1375 if (rd & MBIR_RXMBFA) {
1376 netdev_err(ks->netdev, "RX memory selftest fail\n");
1377 ret |= 2;
1378 }
1379
1380 return 0;
1381 }
1382
1383 /* driver bus management functions */
1384
1385 #ifdef CONFIG_PM
1386 static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
1387 {
1388 struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1389 struct net_device *dev = ks->netdev;
1390
1391 if (netif_running(dev)) {
1392 netif_device_detach(dev);
1393 ks8851_net_stop(dev);
1394 }
1395
1396 return 0;
1397 }
1398
1399 static int ks8851_resume(struct spi_device *spi)
1400 {
1401 struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1402 struct net_device *dev = ks->netdev;
1403
1404 if (netif_running(dev)) {
1405 ks8851_net_open(dev);
1406 netif_device_attach(dev);
1407 }
1408
1409 return 0;
1410 }
1411 #else
1412 #define ks8851_suspend NULL
1413 #define ks8851_resume NULL
1414 #endif
1415
1416 static int __devinit ks8851_probe(struct spi_device *spi)
1417 {
1418 struct net_device *ndev;
1419 struct ks8851_net *ks;
1420 int ret;
1421
1422 ndev = alloc_etherdev(sizeof(struct ks8851_net));
1423 if (!ndev)
1424 return -ENOMEM;
1425
1426 spi->bits_per_word = 8;
1427
1428 ks = netdev_priv(ndev);
1429
1430 ks->netdev = ndev;
1431 ks->spidev = spi;
1432 ks->tx_space = 6144;
1433
1434 mutex_init(&ks->lock);
1435 spin_lock_init(&ks->statelock);
1436
1437 INIT_WORK(&ks->tx_work, ks8851_tx_work);
1438 INIT_WORK(&ks->irq_work, ks8851_irq_work);
1439 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1440
1441 /* initialise pre-made spi transfer messages */
1442
1443 spi_message_init(&ks->spi_msg1);
1444 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1445
1446 spi_message_init(&ks->spi_msg2);
1447 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1448 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1449
1450 /* setup EEPROM state */
1451
1452 ks->eeprom.data = ks;
1453 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1454 ks->eeprom.register_read = ks8851_eeprom_regread;
1455 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1456
1457 /* setup mii state */
1458 ks->mii.dev = ndev;
1459 ks->mii.phy_id = 1,
1460 ks->mii.phy_id_mask = 1;
1461 ks->mii.reg_num_mask = 0xf;
1462 ks->mii.mdio_read = ks8851_phy_read;
1463 ks->mii.mdio_write = ks8851_phy_write;
1464
1465 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1466
1467 /* set the default message enable */
1468 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1469 NETIF_MSG_PROBE |
1470 NETIF_MSG_LINK));
1471
1472 skb_queue_head_init(&ks->txq);
1473
1474 SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1475 SET_NETDEV_DEV(ndev, &spi->dev);
1476
1477 dev_set_drvdata(&spi->dev, ks);
1478
1479 ndev->if_port = IF_PORT_100BASET;
1480 ndev->netdev_ops = &ks8851_netdev_ops;
1481 ndev->irq = spi->irq;
1482
1483 /* issue a global soft reset to reset the device. */
1484 ks8851_soft_reset(ks, GRR_GSR);
1485
1486 /* simple check for a valid chip being connected to the bus */
1487
1488 if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1489 dev_err(&spi->dev, "failed to read device ID\n");
1490 ret = -ENODEV;
1491 goto err_id;
1492 }
1493
1494 /* cache the contents of the CCR register for EEPROM, etc. */
1495 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1496
1497 if (ks->rc_ccr & CCR_EEPROM)
1498 ks->eeprom_size = 128;
1499 else
1500 ks->eeprom_size = 0;
1501
1502 ks8851_read_selftest(ks);
1503 ks8851_init_mac(ks);
1504
1505 ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1506 ndev->name, ks);
1507 if (ret < 0) {
1508 dev_err(&spi->dev, "failed to get irq\n");
1509 goto err_irq;
1510 }
1511
1512 ret = register_netdev(ndev);
1513 if (ret) {
1514 dev_err(&spi->dev, "failed to register network device\n");
1515 goto err_netdev;
1516 }
1517
1518 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1519 CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1520 ndev->dev_addr, ndev->irq,
1521 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1522
1523 return 0;
1524
1525
1526 err_netdev:
1527 free_irq(ndev->irq, ndev);
1528
1529 err_id:
1530 err_irq:
1531 free_netdev(ndev);
1532 return ret;
1533 }
1534
1535 static int __devexit ks8851_remove(struct spi_device *spi)
1536 {
1537 struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1538
1539 if (netif_msg_drv(priv))
1540 dev_info(&spi->dev, "remove\n");
1541
1542 unregister_netdev(priv->netdev);
1543 free_irq(spi->irq, priv);
1544 free_netdev(priv->netdev);
1545
1546 return 0;
1547 }
1548
1549 static struct spi_driver ks8851_driver = {
1550 .driver = {
1551 .name = "ks8851",
1552 .owner = THIS_MODULE,
1553 },
1554 .probe = ks8851_probe,
1555 .remove = __devexit_p(ks8851_remove),
1556 .suspend = ks8851_suspend,
1557 .resume = ks8851_resume,
1558 };
1559
1560 static int __init ks8851_init(void)
1561 {
1562 return spi_register_driver(&ks8851_driver);
1563 }
1564
1565 static void __exit ks8851_exit(void)
1566 {
1567 spi_unregister_driver(&ks8851_driver);
1568 }
1569
1570 module_init(ks8851_init);
1571 module_exit(ks8851_exit);
1572
1573 MODULE_DESCRIPTION("KS8851 Network driver");
1574 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1575 MODULE_LICENSE("GPL");
1576
1577 module_param_named(message, msg_enable, int, 0);
1578 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1579 MODULE_ALIAS("spi:ks8851");