]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/micrel/ksz884x.c
Merge branch 'for-davem' of git://git.infradead.org/users/linville/wireless-next
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / micrel / ksz884x.c
1 /**
2 * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
3 *
4 * Copyright (c) 2009-2010 Micrel, Inc.
5 * Tristram Ha <Tristram.Ha@micrel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/pci.h>
25 #include <linux/proc_fs.h>
26 #include <linux/mii.h>
27 #include <linux/platform_device.h>
28 #include <linux/ethtool.h>
29 #include <linux/etherdevice.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/if_vlan.h>
33 #include <linux/crc32.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36
37
38 /* DMA Registers */
39
40 #define KS_DMA_TX_CTRL 0x0000
41 #define DMA_TX_ENABLE 0x00000001
42 #define DMA_TX_CRC_ENABLE 0x00000002
43 #define DMA_TX_PAD_ENABLE 0x00000004
44 #define DMA_TX_LOOPBACK 0x00000100
45 #define DMA_TX_FLOW_ENABLE 0x00000200
46 #define DMA_TX_CSUM_IP 0x00010000
47 #define DMA_TX_CSUM_TCP 0x00020000
48 #define DMA_TX_CSUM_UDP 0x00040000
49 #define DMA_TX_BURST_SIZE 0x3F000000
50
51 #define KS_DMA_RX_CTRL 0x0004
52 #define DMA_RX_ENABLE 0x00000001
53 #define KS884X_DMA_RX_MULTICAST 0x00000002
54 #define DMA_RX_PROMISCUOUS 0x00000004
55 #define DMA_RX_ERROR 0x00000008
56 #define DMA_RX_UNICAST 0x00000010
57 #define DMA_RX_ALL_MULTICAST 0x00000020
58 #define DMA_RX_BROADCAST 0x00000040
59 #define DMA_RX_FLOW_ENABLE 0x00000200
60 #define DMA_RX_CSUM_IP 0x00010000
61 #define DMA_RX_CSUM_TCP 0x00020000
62 #define DMA_RX_CSUM_UDP 0x00040000
63 #define DMA_RX_BURST_SIZE 0x3F000000
64
65 #define DMA_BURST_SHIFT 24
66 #define DMA_BURST_DEFAULT 8
67
68 #define KS_DMA_TX_START 0x0008
69 #define KS_DMA_RX_START 0x000C
70 #define DMA_START 0x00000001
71
72 #define KS_DMA_TX_ADDR 0x0010
73 #define KS_DMA_RX_ADDR 0x0014
74
75 #define DMA_ADDR_LIST_MASK 0xFFFFFFFC
76 #define DMA_ADDR_LIST_SHIFT 2
77
78 /* MTR0 */
79 #define KS884X_MULTICAST_0_OFFSET 0x0020
80 #define KS884X_MULTICAST_1_OFFSET 0x0021
81 #define KS884X_MULTICAST_2_OFFSET 0x0022
82 #define KS884x_MULTICAST_3_OFFSET 0x0023
83 /* MTR1 */
84 #define KS884X_MULTICAST_4_OFFSET 0x0024
85 #define KS884X_MULTICAST_5_OFFSET 0x0025
86 #define KS884X_MULTICAST_6_OFFSET 0x0026
87 #define KS884X_MULTICAST_7_OFFSET 0x0027
88
89 /* Interrupt Registers */
90
91 /* INTEN */
92 #define KS884X_INTERRUPTS_ENABLE 0x0028
93 /* INTST */
94 #define KS884X_INTERRUPTS_STATUS 0x002C
95
96 #define KS884X_INT_RX_STOPPED 0x02000000
97 #define KS884X_INT_TX_STOPPED 0x04000000
98 #define KS884X_INT_RX_OVERRUN 0x08000000
99 #define KS884X_INT_TX_EMPTY 0x10000000
100 #define KS884X_INT_RX 0x20000000
101 #define KS884X_INT_TX 0x40000000
102 #define KS884X_INT_PHY 0x80000000
103
104 #define KS884X_INT_RX_MASK \
105 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
106 #define KS884X_INT_TX_MASK \
107 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
108 #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
109
110 /* MAC Additional Station Address */
111
112 /* MAAL0 */
113 #define KS_ADD_ADDR_0_LO 0x0080
114 /* MAAH0 */
115 #define KS_ADD_ADDR_0_HI 0x0084
116 /* MAAL1 */
117 #define KS_ADD_ADDR_1_LO 0x0088
118 /* MAAH1 */
119 #define KS_ADD_ADDR_1_HI 0x008C
120 /* MAAL2 */
121 #define KS_ADD_ADDR_2_LO 0x0090
122 /* MAAH2 */
123 #define KS_ADD_ADDR_2_HI 0x0094
124 /* MAAL3 */
125 #define KS_ADD_ADDR_3_LO 0x0098
126 /* MAAH3 */
127 #define KS_ADD_ADDR_3_HI 0x009C
128 /* MAAL4 */
129 #define KS_ADD_ADDR_4_LO 0x00A0
130 /* MAAH4 */
131 #define KS_ADD_ADDR_4_HI 0x00A4
132 /* MAAL5 */
133 #define KS_ADD_ADDR_5_LO 0x00A8
134 /* MAAH5 */
135 #define KS_ADD_ADDR_5_HI 0x00AC
136 /* MAAL6 */
137 #define KS_ADD_ADDR_6_LO 0x00B0
138 /* MAAH6 */
139 #define KS_ADD_ADDR_6_HI 0x00B4
140 /* MAAL7 */
141 #define KS_ADD_ADDR_7_LO 0x00B8
142 /* MAAH7 */
143 #define KS_ADD_ADDR_7_HI 0x00BC
144 /* MAAL8 */
145 #define KS_ADD_ADDR_8_LO 0x00C0
146 /* MAAH8 */
147 #define KS_ADD_ADDR_8_HI 0x00C4
148 /* MAAL9 */
149 #define KS_ADD_ADDR_9_LO 0x00C8
150 /* MAAH9 */
151 #define KS_ADD_ADDR_9_HI 0x00CC
152 /* MAAL10 */
153 #define KS_ADD_ADDR_A_LO 0x00D0
154 /* MAAH10 */
155 #define KS_ADD_ADDR_A_HI 0x00D4
156 /* MAAL11 */
157 #define KS_ADD_ADDR_B_LO 0x00D8
158 /* MAAH11 */
159 #define KS_ADD_ADDR_B_HI 0x00DC
160 /* MAAL12 */
161 #define KS_ADD_ADDR_C_LO 0x00E0
162 /* MAAH12 */
163 #define KS_ADD_ADDR_C_HI 0x00E4
164 /* MAAL13 */
165 #define KS_ADD_ADDR_D_LO 0x00E8
166 /* MAAH13 */
167 #define KS_ADD_ADDR_D_HI 0x00EC
168 /* MAAL14 */
169 #define KS_ADD_ADDR_E_LO 0x00F0
170 /* MAAH14 */
171 #define KS_ADD_ADDR_E_HI 0x00F4
172 /* MAAL15 */
173 #define KS_ADD_ADDR_F_LO 0x00F8
174 /* MAAH15 */
175 #define KS_ADD_ADDR_F_HI 0x00FC
176
177 #define ADD_ADDR_HI_MASK 0x0000FFFF
178 #define ADD_ADDR_ENABLE 0x80000000
179 #define ADD_ADDR_INCR 8
180
181 /* Miscellaneous Registers */
182
183 /* MARL */
184 #define KS884X_ADDR_0_OFFSET 0x0200
185 #define KS884X_ADDR_1_OFFSET 0x0201
186 /* MARM */
187 #define KS884X_ADDR_2_OFFSET 0x0202
188 #define KS884X_ADDR_3_OFFSET 0x0203
189 /* MARH */
190 #define KS884X_ADDR_4_OFFSET 0x0204
191 #define KS884X_ADDR_5_OFFSET 0x0205
192
193 /* OBCR */
194 #define KS884X_BUS_CTRL_OFFSET 0x0210
195
196 #define BUS_SPEED_125_MHZ 0x0000
197 #define BUS_SPEED_62_5_MHZ 0x0001
198 #define BUS_SPEED_41_66_MHZ 0x0002
199 #define BUS_SPEED_25_MHZ 0x0003
200
201 /* EEPCR */
202 #define KS884X_EEPROM_CTRL_OFFSET 0x0212
203
204 #define EEPROM_CHIP_SELECT 0x0001
205 #define EEPROM_SERIAL_CLOCK 0x0002
206 #define EEPROM_DATA_OUT 0x0004
207 #define EEPROM_DATA_IN 0x0008
208 #define EEPROM_ACCESS_ENABLE 0x0010
209
210 /* MBIR */
211 #define KS884X_MEM_INFO_OFFSET 0x0214
212
213 #define RX_MEM_TEST_FAILED 0x0008
214 #define RX_MEM_TEST_FINISHED 0x0010
215 #define TX_MEM_TEST_FAILED 0x0800
216 #define TX_MEM_TEST_FINISHED 0x1000
217
218 /* GCR */
219 #define KS884X_GLOBAL_CTRL_OFFSET 0x0216
220 #define GLOBAL_SOFTWARE_RESET 0x0001
221
222 #define KS8841_POWER_MANAGE_OFFSET 0x0218
223
224 /* WFCR */
225 #define KS8841_WOL_CTRL_OFFSET 0x021A
226 #define KS8841_WOL_MAGIC_ENABLE 0x0080
227 #define KS8841_WOL_FRAME3_ENABLE 0x0008
228 #define KS8841_WOL_FRAME2_ENABLE 0x0004
229 #define KS8841_WOL_FRAME1_ENABLE 0x0002
230 #define KS8841_WOL_FRAME0_ENABLE 0x0001
231
232 /* WF0 */
233 #define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
234 #define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
235 #define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
236
237 /* IACR */
238 #define KS884X_IACR_P 0x04A0
239 #define KS884X_IACR_OFFSET KS884X_IACR_P
240
241 /* IADR1 */
242 #define KS884X_IADR1_P 0x04A2
243 #define KS884X_IADR2_P 0x04A4
244 #define KS884X_IADR3_P 0x04A6
245 #define KS884X_IADR4_P 0x04A8
246 #define KS884X_IADR5_P 0x04AA
247
248 #define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
249 #define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
250
251 #define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
252 #define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
253 #define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
254 #define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
255 #define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
256 #define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
257 #define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
258 #define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
259 #define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
260
261 /* P1MBCR */
262 #define KS884X_P1MBCR_P 0x04D0
263 #define KS884X_P1MBSR_P 0x04D2
264 #define KS884X_PHY1ILR_P 0x04D4
265 #define KS884X_PHY1IHR_P 0x04D6
266 #define KS884X_P1ANAR_P 0x04D8
267 #define KS884X_P1ANLPR_P 0x04DA
268
269 /* P2MBCR */
270 #define KS884X_P2MBCR_P 0x04E0
271 #define KS884X_P2MBSR_P 0x04E2
272 #define KS884X_PHY2ILR_P 0x04E4
273 #define KS884X_PHY2IHR_P 0x04E6
274 #define KS884X_P2ANAR_P 0x04E8
275 #define KS884X_P2ANLPR_P 0x04EA
276
277 #define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
278 #define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
279
280 #define KS884X_PHY_CTRL_OFFSET 0x00
281
282 /* Mode Control Register */
283 #define PHY_REG_CTRL 0
284
285 #define PHY_RESET 0x8000
286 #define PHY_LOOPBACK 0x4000
287 #define PHY_SPEED_100MBIT 0x2000
288 #define PHY_AUTO_NEG_ENABLE 0x1000
289 #define PHY_POWER_DOWN 0x0800
290 #define PHY_MII_DISABLE 0x0400
291 #define PHY_AUTO_NEG_RESTART 0x0200
292 #define PHY_FULL_DUPLEX 0x0100
293 #define PHY_COLLISION_TEST 0x0080
294 #define PHY_HP_MDIX 0x0020
295 #define PHY_FORCE_MDIX 0x0010
296 #define PHY_AUTO_MDIX_DISABLE 0x0008
297 #define PHY_REMOTE_FAULT_DISABLE 0x0004
298 #define PHY_TRANSMIT_DISABLE 0x0002
299 #define PHY_LED_DISABLE 0x0001
300
301 #define KS884X_PHY_STATUS_OFFSET 0x02
302
303 /* Mode Status Register */
304 #define PHY_REG_STATUS 1
305
306 #define PHY_100BT4_CAPABLE 0x8000
307 #define PHY_100BTX_FD_CAPABLE 0x4000
308 #define PHY_100BTX_CAPABLE 0x2000
309 #define PHY_10BT_FD_CAPABLE 0x1000
310 #define PHY_10BT_CAPABLE 0x0800
311 #define PHY_MII_SUPPRESS_CAPABLE 0x0040
312 #define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
313 #define PHY_REMOTE_FAULT 0x0010
314 #define PHY_AUTO_NEG_CAPABLE 0x0008
315 #define PHY_LINK_STATUS 0x0004
316 #define PHY_JABBER_DETECT 0x0002
317 #define PHY_EXTENDED_CAPABILITY 0x0001
318
319 #define KS884X_PHY_ID_1_OFFSET 0x04
320 #define KS884X_PHY_ID_2_OFFSET 0x06
321
322 /* PHY Identifier Registers */
323 #define PHY_REG_ID_1 2
324 #define PHY_REG_ID_2 3
325
326 #define KS884X_PHY_AUTO_NEG_OFFSET 0x08
327
328 /* Auto-Negotiation Advertisement Register */
329 #define PHY_REG_AUTO_NEGOTIATION 4
330
331 #define PHY_AUTO_NEG_NEXT_PAGE 0x8000
332 #define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
333 /* Not supported. */
334 #define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
335 #define PHY_AUTO_NEG_SYM_PAUSE 0x0400
336 #define PHY_AUTO_NEG_100BT4 0x0200
337 #define PHY_AUTO_NEG_100BTX_FD 0x0100
338 #define PHY_AUTO_NEG_100BTX 0x0080
339 #define PHY_AUTO_NEG_10BT_FD 0x0040
340 #define PHY_AUTO_NEG_10BT 0x0020
341 #define PHY_AUTO_NEG_SELECTOR 0x001F
342 #define PHY_AUTO_NEG_802_3 0x0001
343
344 #define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
345
346 #define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
347
348 /* Auto-Negotiation Link Partner Ability Register */
349 #define PHY_REG_REMOTE_CAPABILITY 5
350
351 #define PHY_REMOTE_NEXT_PAGE 0x8000
352 #define PHY_REMOTE_ACKNOWLEDGE 0x4000
353 #define PHY_REMOTE_REMOTE_FAULT 0x2000
354 #define PHY_REMOTE_SYM_PAUSE 0x0400
355 #define PHY_REMOTE_100BTX_FD 0x0100
356 #define PHY_REMOTE_100BTX 0x0080
357 #define PHY_REMOTE_10BT_FD 0x0040
358 #define PHY_REMOTE_10BT 0x0020
359
360 /* P1VCT */
361 #define KS884X_P1VCT_P 0x04F0
362 #define KS884X_P1PHYCTRL_P 0x04F2
363
364 /* P2VCT */
365 #define KS884X_P2VCT_P 0x04F4
366 #define KS884X_P2PHYCTRL_P 0x04F6
367
368 #define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
369 #define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
370
371 #define KS884X_PHY_LINK_MD_OFFSET 0x00
372
373 #define PHY_START_CABLE_DIAG 0x8000
374 #define PHY_CABLE_DIAG_RESULT 0x6000
375 #define PHY_CABLE_STAT_NORMAL 0x0000
376 #define PHY_CABLE_STAT_OPEN 0x2000
377 #define PHY_CABLE_STAT_SHORT 0x4000
378 #define PHY_CABLE_STAT_FAILED 0x6000
379 #define PHY_CABLE_10M_SHORT 0x1000
380 #define PHY_CABLE_FAULT_COUNTER 0x01FF
381
382 #define KS884X_PHY_PHY_CTRL_OFFSET 0x02
383
384 #define PHY_STAT_REVERSED_POLARITY 0x0020
385 #define PHY_STAT_MDIX 0x0010
386 #define PHY_FORCE_LINK 0x0008
387 #define PHY_POWER_SAVING_DISABLE 0x0004
388 #define PHY_REMOTE_LOOPBACK 0x0002
389
390 /* SIDER */
391 #define KS884X_SIDER_P 0x0400
392 #define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
393 #define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
394
395 #define REG_FAMILY_ID 0x88
396
397 #define REG_CHIP_ID_41 0x8810
398 #define REG_CHIP_ID_42 0x8800
399
400 #define KS884X_CHIP_ID_MASK_41 0xFF10
401 #define KS884X_CHIP_ID_MASK 0xFFF0
402 #define KS884X_CHIP_ID_SHIFT 4
403 #define KS884X_REVISION_MASK 0x000E
404 #define KS884X_REVISION_SHIFT 1
405 #define KS8842_START 0x0001
406
407 #define CHIP_IP_41_M 0x8810
408 #define CHIP_IP_42_M 0x8800
409 #define CHIP_IP_61_M 0x8890
410 #define CHIP_IP_62_M 0x8880
411
412 #define CHIP_IP_41_P 0x8850
413 #define CHIP_IP_42_P 0x8840
414 #define CHIP_IP_61_P 0x88D0
415 #define CHIP_IP_62_P 0x88C0
416
417 /* SGCR1 */
418 #define KS8842_SGCR1_P 0x0402
419 #define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
420
421 #define SWITCH_PASS_ALL 0x8000
422 #define SWITCH_TX_FLOW_CTRL 0x2000
423 #define SWITCH_RX_FLOW_CTRL 0x1000
424 #define SWITCH_CHECK_LENGTH 0x0800
425 #define SWITCH_AGING_ENABLE 0x0400
426 #define SWITCH_FAST_AGING 0x0200
427 #define SWITCH_AGGR_BACKOFF 0x0100
428 #define SWITCH_PASS_PAUSE 0x0008
429 #define SWITCH_LINK_AUTO_AGING 0x0001
430
431 /* SGCR2 */
432 #define KS8842_SGCR2_P 0x0404
433 #define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
434
435 #define SWITCH_VLAN_ENABLE 0x8000
436 #define SWITCH_IGMP_SNOOP 0x4000
437 #define IPV6_MLD_SNOOP_ENABLE 0x2000
438 #define IPV6_MLD_SNOOP_OPTION 0x1000
439 #define PRIORITY_SCHEME_SELECT 0x0800
440 #define SWITCH_MIRROR_RX_TX 0x0100
441 #define UNICAST_VLAN_BOUNDARY 0x0080
442 #define MULTICAST_STORM_DISABLE 0x0040
443 #define SWITCH_BACK_PRESSURE 0x0020
444 #define FAIR_FLOW_CTRL 0x0010
445 #define NO_EXC_COLLISION_DROP 0x0008
446 #define SWITCH_HUGE_PACKET 0x0004
447 #define SWITCH_LEGAL_PACKET 0x0002
448 #define SWITCH_BUF_RESERVE 0x0001
449
450 /* SGCR3 */
451 #define KS8842_SGCR3_P 0x0406
452 #define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
453
454 #define BROADCAST_STORM_RATE_LO 0xFF00
455 #define SWITCH_REPEATER 0x0080
456 #define SWITCH_HALF_DUPLEX 0x0040
457 #define SWITCH_FLOW_CTRL 0x0020
458 #define SWITCH_10_MBIT 0x0010
459 #define SWITCH_REPLACE_NULL_VID 0x0008
460 #define BROADCAST_STORM_RATE_HI 0x0007
461
462 #define BROADCAST_STORM_RATE 0x07FF
463
464 /* SGCR4 */
465 #define KS8842_SGCR4_P 0x0408
466
467 /* SGCR5 */
468 #define KS8842_SGCR5_P 0x040A
469 #define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
470
471 #define LED_MODE 0x8200
472 #define LED_SPEED_DUPLEX_ACT 0x0000
473 #define LED_SPEED_DUPLEX_LINK_ACT 0x8000
474 #define LED_DUPLEX_10_100 0x0200
475
476 /* SGCR6 */
477 #define KS8842_SGCR6_P 0x0410
478 #define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
479
480 #define KS8842_PRIORITY_MASK 3
481 #define KS8842_PRIORITY_SHIFT 2
482
483 /* SGCR7 */
484 #define KS8842_SGCR7_P 0x0412
485 #define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
486
487 #define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
488 #define SWITCH_UNK_DEF_PORT_3 0x0004
489 #define SWITCH_UNK_DEF_PORT_2 0x0002
490 #define SWITCH_UNK_DEF_PORT_1 0x0001
491
492 /* MACAR1 */
493 #define KS8842_MACAR1_P 0x0470
494 #define KS8842_MACAR2_P 0x0472
495 #define KS8842_MACAR3_P 0x0474
496 #define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
497 #define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
498 #define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
499 #define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
500 #define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
501 #define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
502
503 /* TOSR1 */
504 #define KS8842_TOSR1_P 0x0480
505 #define KS8842_TOSR2_P 0x0482
506 #define KS8842_TOSR3_P 0x0484
507 #define KS8842_TOSR4_P 0x0486
508 #define KS8842_TOSR5_P 0x0488
509 #define KS8842_TOSR6_P 0x048A
510 #define KS8842_TOSR7_P 0x0490
511 #define KS8842_TOSR8_P 0x0492
512 #define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
513 #define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
514 #define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
515 #define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
516 #define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
517 #define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
518
519 #define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
520 #define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
521
522 /* P1CR1 */
523 #define KS8842_P1CR1_P 0x0500
524 #define KS8842_P1CR2_P 0x0502
525 #define KS8842_P1VIDR_P 0x0504
526 #define KS8842_P1CR3_P 0x0506
527 #define KS8842_P1IRCR_P 0x0508
528 #define KS8842_P1ERCR_P 0x050A
529 #define KS884X_P1SCSLMD_P 0x0510
530 #define KS884X_P1CR4_P 0x0512
531 #define KS884X_P1SR_P 0x0514
532
533 /* P2CR1 */
534 #define KS8842_P2CR1_P 0x0520
535 #define KS8842_P2CR2_P 0x0522
536 #define KS8842_P2VIDR_P 0x0524
537 #define KS8842_P2CR3_P 0x0526
538 #define KS8842_P2IRCR_P 0x0528
539 #define KS8842_P2ERCR_P 0x052A
540 #define KS884X_P2SCSLMD_P 0x0530
541 #define KS884X_P2CR4_P 0x0532
542 #define KS884X_P2SR_P 0x0534
543
544 /* P3CR1 */
545 #define KS8842_P3CR1_P 0x0540
546 #define KS8842_P3CR2_P 0x0542
547 #define KS8842_P3VIDR_P 0x0544
548 #define KS8842_P3CR3_P 0x0546
549 #define KS8842_P3IRCR_P 0x0548
550 #define KS8842_P3ERCR_P 0x054A
551
552 #define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
553 #define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
554 #define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
555
556 #define PORT_CTRL_ADDR(port, addr) \
557 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
558 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
559
560 #define KS8842_PORT_CTRL_1_OFFSET 0x00
561
562 #define PORT_BROADCAST_STORM 0x0080
563 #define PORT_DIFFSERV_ENABLE 0x0040
564 #define PORT_802_1P_ENABLE 0x0020
565 #define PORT_BASED_PRIORITY_MASK 0x0018
566 #define PORT_BASED_PRIORITY_BASE 0x0003
567 #define PORT_BASED_PRIORITY_SHIFT 3
568 #define PORT_BASED_PRIORITY_0 0x0000
569 #define PORT_BASED_PRIORITY_1 0x0008
570 #define PORT_BASED_PRIORITY_2 0x0010
571 #define PORT_BASED_PRIORITY_3 0x0018
572 #define PORT_INSERT_TAG 0x0004
573 #define PORT_REMOVE_TAG 0x0002
574 #define PORT_PRIO_QUEUE_ENABLE 0x0001
575
576 #define KS8842_PORT_CTRL_2_OFFSET 0x02
577
578 #define PORT_INGRESS_VLAN_FILTER 0x4000
579 #define PORT_DISCARD_NON_VID 0x2000
580 #define PORT_FORCE_FLOW_CTRL 0x1000
581 #define PORT_BACK_PRESSURE 0x0800
582 #define PORT_TX_ENABLE 0x0400
583 #define PORT_RX_ENABLE 0x0200
584 #define PORT_LEARN_DISABLE 0x0100
585 #define PORT_MIRROR_SNIFFER 0x0080
586 #define PORT_MIRROR_RX 0x0040
587 #define PORT_MIRROR_TX 0x0020
588 #define PORT_USER_PRIORITY_CEILING 0x0008
589 #define PORT_VLAN_MEMBERSHIP 0x0007
590
591 #define KS8842_PORT_CTRL_VID_OFFSET 0x04
592
593 #define PORT_DEFAULT_VID 0x0001
594
595 #define KS8842_PORT_CTRL_3_OFFSET 0x06
596
597 #define PORT_INGRESS_LIMIT_MODE 0x000C
598 #define PORT_INGRESS_ALL 0x0000
599 #define PORT_INGRESS_UNICAST 0x0004
600 #define PORT_INGRESS_MULTICAST 0x0008
601 #define PORT_INGRESS_BROADCAST 0x000C
602 #define PORT_COUNT_IFG 0x0002
603 #define PORT_COUNT_PREAMBLE 0x0001
604
605 #define KS8842_PORT_IN_RATE_OFFSET 0x08
606 #define KS8842_PORT_OUT_RATE_OFFSET 0x0A
607
608 #define PORT_PRIORITY_RATE 0x0F
609 #define PORT_PRIORITY_RATE_SHIFT 4
610
611 #define KS884X_PORT_LINK_MD 0x10
612
613 #define PORT_CABLE_10M_SHORT 0x8000
614 #define PORT_CABLE_DIAG_RESULT 0x6000
615 #define PORT_CABLE_STAT_NORMAL 0x0000
616 #define PORT_CABLE_STAT_OPEN 0x2000
617 #define PORT_CABLE_STAT_SHORT 0x4000
618 #define PORT_CABLE_STAT_FAILED 0x6000
619 #define PORT_START_CABLE_DIAG 0x1000
620 #define PORT_FORCE_LINK 0x0800
621 #define PORT_POWER_SAVING_DISABLE 0x0400
622 #define PORT_PHY_REMOTE_LOOPBACK 0x0200
623 #define PORT_CABLE_FAULT_COUNTER 0x01FF
624
625 #define KS884X_PORT_CTRL_4_OFFSET 0x12
626
627 #define PORT_LED_OFF 0x8000
628 #define PORT_TX_DISABLE 0x4000
629 #define PORT_AUTO_NEG_RESTART 0x2000
630 #define PORT_REMOTE_FAULT_DISABLE 0x1000
631 #define PORT_POWER_DOWN 0x0800
632 #define PORT_AUTO_MDIX_DISABLE 0x0400
633 #define PORT_FORCE_MDIX 0x0200
634 #define PORT_LOOPBACK 0x0100
635 #define PORT_AUTO_NEG_ENABLE 0x0080
636 #define PORT_FORCE_100_MBIT 0x0040
637 #define PORT_FORCE_FULL_DUPLEX 0x0020
638 #define PORT_AUTO_NEG_SYM_PAUSE 0x0010
639 #define PORT_AUTO_NEG_100BTX_FD 0x0008
640 #define PORT_AUTO_NEG_100BTX 0x0004
641 #define PORT_AUTO_NEG_10BT_FD 0x0002
642 #define PORT_AUTO_NEG_10BT 0x0001
643
644 #define KS884X_PORT_STATUS_OFFSET 0x14
645
646 #define PORT_HP_MDIX 0x8000
647 #define PORT_REVERSED_POLARITY 0x2000
648 #define PORT_RX_FLOW_CTRL 0x0800
649 #define PORT_TX_FLOW_CTRL 0x1000
650 #define PORT_STATUS_SPEED_100MBIT 0x0400
651 #define PORT_STATUS_FULL_DUPLEX 0x0200
652 #define PORT_REMOTE_FAULT 0x0100
653 #define PORT_MDIX_STATUS 0x0080
654 #define PORT_AUTO_NEG_COMPLETE 0x0040
655 #define PORT_STATUS_LINK_GOOD 0x0020
656 #define PORT_REMOTE_SYM_PAUSE 0x0010
657 #define PORT_REMOTE_100BTX_FD 0x0008
658 #define PORT_REMOTE_100BTX 0x0004
659 #define PORT_REMOTE_10BT_FD 0x0002
660 #define PORT_REMOTE_10BT 0x0001
661
662 /*
663 #define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
665 #define STATIC_MAC_TABLE_VALID 00-00080000-00000000
666 #define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
667 #define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
668 #define STATIC_MAC_TABLE_FID 00-03C00000-00000000
669 */
670
671 #define STATIC_MAC_TABLE_ADDR 0x0000FFFF
672 #define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
673 #define STATIC_MAC_TABLE_VALID 0x00080000
674 #define STATIC_MAC_TABLE_OVERRIDE 0x00100000
675 #define STATIC_MAC_TABLE_USE_FID 0x00200000
676 #define STATIC_MAC_TABLE_FID 0x03C00000
677
678 #define STATIC_MAC_FWD_PORTS_SHIFT 16
679 #define STATIC_MAC_FID_SHIFT 22
680
681 /*
682 #define VLAN_TABLE_VID 00-00000000-00000FFF
683 #define VLAN_TABLE_FID 00-00000000-0000F000
684 #define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
685 #define VLAN_TABLE_VALID 00-00000000-00080000
686 */
687
688 #define VLAN_TABLE_VID 0x00000FFF
689 #define VLAN_TABLE_FID 0x0000F000
690 #define VLAN_TABLE_MEMBERSHIP 0x00070000
691 #define VLAN_TABLE_VALID 0x00080000
692
693 #define VLAN_TABLE_FID_SHIFT 12
694 #define VLAN_TABLE_MEMBERSHIP_SHIFT 16
695
696 /*
697 #define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
698 #define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
699 #define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
700 #define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
701 #define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
702 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
703 #define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
704 #define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
705 */
706
707 #define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
708 #define DYNAMIC_MAC_TABLE_FID 0x000F0000
709 #define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
710 #define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
711 #define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
712
713 #define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
714 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
715 #define DYNAMIC_MAC_TABLE_RESERVED 0x78
716 #define DYNAMIC_MAC_TABLE_NOT_READY 0x80
717
718 #define DYNAMIC_MAC_FID_SHIFT 16
719 #define DYNAMIC_MAC_SRC_PORT_SHIFT 20
720 #define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
721 #define DYNAMIC_MAC_ENTRIES_SHIFT 24
722 #define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
723
724 /*
725 #define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
726 #define MIB_COUNTER_VALID 00-00000000-40000000
727 #define MIB_COUNTER_OVERFLOW 00-00000000-80000000
728 */
729
730 #define MIB_COUNTER_VALUE 0x3FFFFFFF
731 #define MIB_COUNTER_VALID 0x40000000
732 #define MIB_COUNTER_OVERFLOW 0x80000000
733
734 #define MIB_PACKET_DROPPED 0x0000FFFF
735
736 #define KS_MIB_PACKET_DROPPED_TX_0 0x100
737 #define KS_MIB_PACKET_DROPPED_TX_1 0x101
738 #define KS_MIB_PACKET_DROPPED_TX 0x102
739 #define KS_MIB_PACKET_DROPPED_RX_0 0x103
740 #define KS_MIB_PACKET_DROPPED_RX_1 0x104
741 #define KS_MIB_PACKET_DROPPED_RX 0x105
742
743 /* Change default LED mode. */
744 #define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
745
746 #define MAC_ADDR_LEN 6
747 #define MAC_ADDR_ORDER(i) (MAC_ADDR_LEN - 1 - (i))
748
749 #define MAX_ETHERNET_BODY_SIZE 1500
750 #define ETHERNET_HEADER_SIZE 14
751
752 #define MAX_ETHERNET_PACKET_SIZE \
753 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
754
755 #define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
756 #define MAX_RX_BUF_SIZE (1912 + 4)
757
758 #define ADDITIONAL_ENTRIES 16
759 #define MAX_MULTICAST_LIST 32
760
761 #define HW_MULTICAST_SIZE 8
762
763 #define HW_TO_DEV_PORT(port) (port - 1)
764
765 enum {
766 media_connected,
767 media_disconnected
768 };
769
770 enum {
771 OID_COUNTER_UNKOWN,
772
773 OID_COUNTER_FIRST,
774
775 /* total transmit errors */
776 OID_COUNTER_XMIT_ERROR,
777
778 /* total receive errors */
779 OID_COUNTER_RCV_ERROR,
780
781 OID_COUNTER_LAST
782 };
783
784 /*
785 * Hardware descriptor definitions
786 */
787
788 #define DESC_ALIGNMENT 16
789 #define BUFFER_ALIGNMENT 8
790
791 #define NUM_OF_RX_DESC 64
792 #define NUM_OF_TX_DESC 64
793
794 #define KS_DESC_RX_FRAME_LEN 0x000007FF
795 #define KS_DESC_RX_FRAME_TYPE 0x00008000
796 #define KS_DESC_RX_ERROR_CRC 0x00010000
797 #define KS_DESC_RX_ERROR_RUNT 0x00020000
798 #define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
799 #define KS_DESC_RX_ERROR_PHY 0x00080000
800 #define KS884X_DESC_RX_PORT_MASK 0x00300000
801 #define KS_DESC_RX_MULTICAST 0x01000000
802 #define KS_DESC_RX_ERROR 0x02000000
803 #define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
804 #define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
805 #define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
806 #define KS_DESC_RX_LAST 0x20000000
807 #define KS_DESC_RX_FIRST 0x40000000
808 #define KS_DESC_RX_ERROR_COND \
809 (KS_DESC_RX_ERROR_CRC | \
810 KS_DESC_RX_ERROR_RUNT | \
811 KS_DESC_RX_ERROR_PHY | \
812 KS_DESC_RX_ERROR_TOO_LONG)
813
814 #define KS_DESC_HW_OWNED 0x80000000
815
816 #define KS_DESC_BUF_SIZE 0x000007FF
817 #define KS884X_DESC_TX_PORT_MASK 0x00300000
818 #define KS_DESC_END_OF_RING 0x02000000
819 #define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
820 #define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
821 #define KS_DESC_TX_CSUM_GEN_IP 0x10000000
822 #define KS_DESC_TX_LAST 0x20000000
823 #define KS_DESC_TX_FIRST 0x40000000
824 #define KS_DESC_TX_INTERRUPT 0x80000000
825
826 #define KS_DESC_PORT_SHIFT 20
827
828 #define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
829
830 #define KS_DESC_TX_MASK \
831 (KS_DESC_TX_INTERRUPT | \
832 KS_DESC_TX_FIRST | \
833 KS_DESC_TX_LAST | \
834 KS_DESC_TX_CSUM_GEN_IP | \
835 KS_DESC_TX_CSUM_GEN_TCP | \
836 KS_DESC_TX_CSUM_GEN_UDP | \
837 KS_DESC_BUF_SIZE)
838
839 struct ksz_desc_rx_stat {
840 #ifdef __BIG_ENDIAN_BITFIELD
841 u32 hw_owned:1;
842 u32 first_desc:1;
843 u32 last_desc:1;
844 u32 csum_err_ip:1;
845 u32 csum_err_tcp:1;
846 u32 csum_err_udp:1;
847 u32 error:1;
848 u32 multicast:1;
849 u32 src_port:4;
850 u32 err_phy:1;
851 u32 err_too_long:1;
852 u32 err_runt:1;
853 u32 err_crc:1;
854 u32 frame_type:1;
855 u32 reserved1:4;
856 u32 frame_len:11;
857 #else
858 u32 frame_len:11;
859 u32 reserved1:4;
860 u32 frame_type:1;
861 u32 err_crc:1;
862 u32 err_runt:1;
863 u32 err_too_long:1;
864 u32 err_phy:1;
865 u32 src_port:4;
866 u32 multicast:1;
867 u32 error:1;
868 u32 csum_err_udp:1;
869 u32 csum_err_tcp:1;
870 u32 csum_err_ip:1;
871 u32 last_desc:1;
872 u32 first_desc:1;
873 u32 hw_owned:1;
874 #endif
875 };
876
877 struct ksz_desc_tx_stat {
878 #ifdef __BIG_ENDIAN_BITFIELD
879 u32 hw_owned:1;
880 u32 reserved1:31;
881 #else
882 u32 reserved1:31;
883 u32 hw_owned:1;
884 #endif
885 };
886
887 struct ksz_desc_rx_buf {
888 #ifdef __BIG_ENDIAN_BITFIELD
889 u32 reserved4:6;
890 u32 end_of_ring:1;
891 u32 reserved3:14;
892 u32 buf_size:11;
893 #else
894 u32 buf_size:11;
895 u32 reserved3:14;
896 u32 end_of_ring:1;
897 u32 reserved4:6;
898 #endif
899 };
900
901 struct ksz_desc_tx_buf {
902 #ifdef __BIG_ENDIAN_BITFIELD
903 u32 intr:1;
904 u32 first_seg:1;
905 u32 last_seg:1;
906 u32 csum_gen_ip:1;
907 u32 csum_gen_tcp:1;
908 u32 csum_gen_udp:1;
909 u32 end_of_ring:1;
910 u32 reserved4:1;
911 u32 dest_port:4;
912 u32 reserved3:9;
913 u32 buf_size:11;
914 #else
915 u32 buf_size:11;
916 u32 reserved3:9;
917 u32 dest_port:4;
918 u32 reserved4:1;
919 u32 end_of_ring:1;
920 u32 csum_gen_udp:1;
921 u32 csum_gen_tcp:1;
922 u32 csum_gen_ip:1;
923 u32 last_seg:1;
924 u32 first_seg:1;
925 u32 intr:1;
926 #endif
927 };
928
929 union desc_stat {
930 struct ksz_desc_rx_stat rx;
931 struct ksz_desc_tx_stat tx;
932 u32 data;
933 };
934
935 union desc_buf {
936 struct ksz_desc_rx_buf rx;
937 struct ksz_desc_tx_buf tx;
938 u32 data;
939 };
940
941 /**
942 * struct ksz_hw_desc - Hardware descriptor data structure
943 * @ctrl: Descriptor control value.
944 * @buf: Descriptor buffer value.
945 * @addr: Physical address of memory buffer.
946 * @next: Pointer to next hardware descriptor.
947 */
948 struct ksz_hw_desc {
949 union desc_stat ctrl;
950 union desc_buf buf;
951 u32 addr;
952 u32 next;
953 };
954
955 /**
956 * struct ksz_sw_desc - Software descriptor data structure
957 * @ctrl: Descriptor control value.
958 * @buf: Descriptor buffer value.
959 * @buf_size: Current buffers size value in hardware descriptor.
960 */
961 struct ksz_sw_desc {
962 union desc_stat ctrl;
963 union desc_buf buf;
964 u32 buf_size;
965 };
966
967 /**
968 * struct ksz_dma_buf - OS dependent DMA buffer data structure
969 * @skb: Associated socket buffer.
970 * @dma: Associated physical DMA address.
971 * len: Actual len used.
972 */
973 struct ksz_dma_buf {
974 struct sk_buff *skb;
975 dma_addr_t dma;
976 int len;
977 };
978
979 /**
980 * struct ksz_desc - Descriptor structure
981 * @phw: Hardware descriptor pointer to uncached physical memory.
982 * @sw: Cached memory to hold hardware descriptor values for
983 * manipulation.
984 * @dma_buf: Operating system dependent data structure to hold physical
985 * memory buffer allocation information.
986 */
987 struct ksz_desc {
988 struct ksz_hw_desc *phw;
989 struct ksz_sw_desc sw;
990 struct ksz_dma_buf dma_buf;
991 };
992
993 #define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
994
995 /**
996 * struct ksz_desc_info - Descriptor information data structure
997 * @ring: First descriptor in the ring.
998 * @cur: Current descriptor being manipulated.
999 * @ring_virt: First hardware descriptor in the ring.
1000 * @ring_phys: The physical address of the first descriptor of the ring.
1001 * @size: Size of hardware descriptor.
1002 * @alloc: Number of descriptors allocated.
1003 * @avail: Number of descriptors available for use.
1004 * @last: Index for last descriptor released to hardware.
1005 * @next: Index for next descriptor available for use.
1006 * @mask: Mask for index wrapping.
1007 */
1008 struct ksz_desc_info {
1009 struct ksz_desc *ring;
1010 struct ksz_desc *cur;
1011 struct ksz_hw_desc *ring_virt;
1012 u32 ring_phys;
1013 int size;
1014 int alloc;
1015 int avail;
1016 int last;
1017 int next;
1018 int mask;
1019 };
1020
1021 /*
1022 * KSZ8842 switch definitions
1023 */
1024
1025 enum {
1026 TABLE_STATIC_MAC = 0,
1027 TABLE_VLAN,
1028 TABLE_DYNAMIC_MAC,
1029 TABLE_MIB
1030 };
1031
1032 #define LEARNED_MAC_TABLE_ENTRIES 1024
1033 #define STATIC_MAC_TABLE_ENTRIES 8
1034
1035 /**
1036 * struct ksz_mac_table - Static MAC table data structure
1037 * @mac_addr: MAC address to filter.
1038 * @vid: VID value.
1039 * @fid: FID value.
1040 * @ports: Port membership.
1041 * @override: Override setting.
1042 * @use_fid: FID use setting.
1043 * @valid: Valid setting indicating the entry is being used.
1044 */
1045 struct ksz_mac_table {
1046 u8 mac_addr[MAC_ADDR_LEN];
1047 u16 vid;
1048 u8 fid;
1049 u8 ports;
1050 u8 override:1;
1051 u8 use_fid:1;
1052 u8 valid:1;
1053 };
1054
1055 #define VLAN_TABLE_ENTRIES 16
1056
1057 /**
1058 * struct ksz_vlan_table - VLAN table data structure
1059 * @vid: VID value.
1060 * @fid: FID value.
1061 * @member: Port membership.
1062 */
1063 struct ksz_vlan_table {
1064 u16 vid;
1065 u8 fid;
1066 u8 member;
1067 };
1068
1069 #define DIFFSERV_ENTRIES 64
1070 #define PRIO_802_1P_ENTRIES 8
1071 #define PRIO_QUEUES 4
1072
1073 #define SWITCH_PORT_NUM 2
1074 #define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1075 #define HOST_MASK (1 << SWITCH_PORT_NUM)
1076 #define PORT_MASK 7
1077
1078 #define MAIN_PORT 0
1079 #define OTHER_PORT 1
1080 #define HOST_PORT SWITCH_PORT_NUM
1081
1082 #define PORT_COUNTER_NUM 0x20
1083 #define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1084
1085 #define MIB_COUNTER_RX_LO_PRIORITY 0x00
1086 #define MIB_COUNTER_RX_HI_PRIORITY 0x01
1087 #define MIB_COUNTER_RX_UNDERSIZE 0x02
1088 #define MIB_COUNTER_RX_FRAGMENT 0x03
1089 #define MIB_COUNTER_RX_OVERSIZE 0x04
1090 #define MIB_COUNTER_RX_JABBER 0x05
1091 #define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1092 #define MIB_COUNTER_RX_CRC_ERR 0x07
1093 #define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1094 #define MIB_COUNTER_RX_CTRL_8808 0x09
1095 #define MIB_COUNTER_RX_PAUSE 0x0A
1096 #define MIB_COUNTER_RX_BROADCAST 0x0B
1097 #define MIB_COUNTER_RX_MULTICAST 0x0C
1098 #define MIB_COUNTER_RX_UNICAST 0x0D
1099 #define MIB_COUNTER_RX_OCTET_64 0x0E
1100 #define MIB_COUNTER_RX_OCTET_65_127 0x0F
1101 #define MIB_COUNTER_RX_OCTET_128_255 0x10
1102 #define MIB_COUNTER_RX_OCTET_256_511 0x11
1103 #define MIB_COUNTER_RX_OCTET_512_1023 0x12
1104 #define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1105 #define MIB_COUNTER_TX_LO_PRIORITY 0x14
1106 #define MIB_COUNTER_TX_HI_PRIORITY 0x15
1107 #define MIB_COUNTER_TX_LATE_COLLISION 0x16
1108 #define MIB_COUNTER_TX_PAUSE 0x17
1109 #define MIB_COUNTER_TX_BROADCAST 0x18
1110 #define MIB_COUNTER_TX_MULTICAST 0x19
1111 #define MIB_COUNTER_TX_UNICAST 0x1A
1112 #define MIB_COUNTER_TX_DEFERRED 0x1B
1113 #define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1114 #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1115 #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1116 #define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1117
1118 #define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1119 #define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1120
1121 /**
1122 * struct ksz_port_mib - Port MIB data structure
1123 * @cnt_ptr: Current pointer to MIB counter index.
1124 * @link_down: Indication the link has just gone down.
1125 * @state: Connection status of the port.
1126 * @mib_start: The starting counter index. Some ports do not start at 0.
1127 * @counter: 64-bit MIB counter value.
1128 * @dropped: Temporary buffer to remember last read packet dropped values.
1129 *
1130 * MIB counters needs to be read periodically so that counters do not get
1131 * overflowed and give incorrect values. A right balance is needed to
1132 * satisfy this condition and not waste too much CPU time.
1133 *
1134 * It is pointless to read MIB counters when the port is disconnected. The
1135 * @state provides the connection status so that MIB counters are read only
1136 * when the port is connected. The @link_down indicates the port is just
1137 * disconnected so that all MIB counters are read one last time to update the
1138 * information.
1139 */
1140 struct ksz_port_mib {
1141 u8 cnt_ptr;
1142 u8 link_down;
1143 u8 state;
1144 u8 mib_start;
1145
1146 u64 counter[TOTAL_PORT_COUNTER_NUM];
1147 u32 dropped[2];
1148 };
1149
1150 /**
1151 * struct ksz_port_cfg - Port configuration data structure
1152 * @vid: VID value.
1153 * @member: Port membership.
1154 * @port_prio: Port priority.
1155 * @rx_rate: Receive priority rate.
1156 * @tx_rate: Transmit priority rate.
1157 * @stp_state: Current Spanning Tree Protocol state.
1158 */
1159 struct ksz_port_cfg {
1160 u16 vid;
1161 u8 member;
1162 u8 port_prio;
1163 u32 rx_rate[PRIO_QUEUES];
1164 u32 tx_rate[PRIO_QUEUES];
1165 int stp_state;
1166 };
1167
1168 /**
1169 * struct ksz_switch - KSZ8842 switch data structure
1170 * @mac_table: MAC table entries information.
1171 * @vlan_table: VLAN table entries information.
1172 * @port_cfg: Port configuration information.
1173 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1174 * (bit7 ~ bit2) field.
1175 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1176 * Tag priority field.
1177 * @br_addr: Bridge address. Used for STP.
1178 * @other_addr: Other MAC address. Used for multiple network device mode.
1179 * @broad_per: Broadcast storm percentage.
1180 * @member: Current port membership. Used for STP.
1181 */
1182 struct ksz_switch {
1183 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1184 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1185 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1186
1187 u8 diffserv[DIFFSERV_ENTRIES];
1188 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1189
1190 u8 br_addr[MAC_ADDR_LEN];
1191 u8 other_addr[MAC_ADDR_LEN];
1192
1193 u8 broad_per;
1194 u8 member;
1195 };
1196
1197 #define TX_RATE_UNIT 10000
1198
1199 /**
1200 * struct ksz_port_info - Port information data structure
1201 * @state: Connection status of the port.
1202 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1203 * @duplex: Duplex mode.
1204 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1205 * @partner: Auto-negotiation partner setting. Used to determine link.
1206 * @port_id: Port index to access actual hardware register.
1207 * @pdev: Pointer to OS dependent network device.
1208 */
1209 struct ksz_port_info {
1210 uint state;
1211 uint tx_rate;
1212 u8 duplex;
1213 u8 advertised;
1214 u8 partner;
1215 u8 port_id;
1216 void *pdev;
1217 };
1218
1219 #define MAX_TX_HELD_SIZE 52000
1220
1221 /* Hardware features and bug fixes. */
1222 #define LINK_INT_WORKING (1 << 0)
1223 #define SMALL_PACKET_TX_BUG (1 << 1)
1224 #define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1225 #define RX_HUGE_FRAME (1 << 4)
1226 #define STP_SUPPORT (1 << 8)
1227
1228 /* Software overrides. */
1229 #define PAUSE_FLOW_CTRL (1 << 0)
1230 #define FAST_AGING (1 << 1)
1231
1232 /**
1233 * struct ksz_hw - KSZ884X hardware data structure
1234 * @io: Virtual address assigned.
1235 * @ksz_switch: Pointer to KSZ8842 switch.
1236 * @port_info: Port information.
1237 * @port_mib: Port MIB information.
1238 * @dev_count: Number of network devices this hardware supports.
1239 * @dst_ports: Destination ports in switch for transmission.
1240 * @id: Hardware ID. Used for display only.
1241 * @mib_cnt: Number of MIB counters this hardware has.
1242 * @mib_port_cnt: Number of ports with MIB counters.
1243 * @tx_cfg: Cached transmit control settings.
1244 * @rx_cfg: Cached receive control settings.
1245 * @intr_mask: Current interrupt mask.
1246 * @intr_set: Current interrup set.
1247 * @intr_blocked: Interrupt blocked.
1248 * @rx_desc_info: Receive descriptor information.
1249 * @tx_desc_info: Transmit descriptor information.
1250 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1251 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1252 * @tx_size: Transmit data size. Used for TX optimization.
1253 * The maximum is defined by MAX_TX_HELD_SIZE.
1254 * @perm_addr: Permanent MAC address.
1255 * @override_addr: Overrided MAC address.
1256 * @address: Additional MAC address entries.
1257 * @addr_list_size: Additional MAC address list size.
1258 * @mac_override: Indication of MAC address overrided.
1259 * @promiscuous: Counter to keep track of promiscuous mode set.
1260 * @all_multi: Counter to keep track of all multicast mode set.
1261 * @multi_list: Multicast address entries.
1262 * @multi_bits: Cached multicast hash table settings.
1263 * @multi_list_size: Multicast address list size.
1264 * @enabled: Indication of hardware enabled.
1265 * @rx_stop: Indication of receive process stop.
1266 * @features: Hardware features to enable.
1267 * @overrides: Hardware features to override.
1268 * @parent: Pointer to parent, network device private structure.
1269 */
1270 struct ksz_hw {
1271 void __iomem *io;
1272
1273 struct ksz_switch *ksz_switch;
1274 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1275 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1276 int dev_count;
1277 int dst_ports;
1278 int id;
1279 int mib_cnt;
1280 int mib_port_cnt;
1281
1282 u32 tx_cfg;
1283 u32 rx_cfg;
1284 u32 intr_mask;
1285 u32 intr_set;
1286 uint intr_blocked;
1287
1288 struct ksz_desc_info rx_desc_info;
1289 struct ksz_desc_info tx_desc_info;
1290
1291 int tx_int_cnt;
1292 int tx_int_mask;
1293 int tx_size;
1294
1295 u8 perm_addr[MAC_ADDR_LEN];
1296 u8 override_addr[MAC_ADDR_LEN];
1297 u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
1298 u8 addr_list_size;
1299 u8 mac_override;
1300 u8 promiscuous;
1301 u8 all_multi;
1302 u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
1303 u8 multi_bits[HW_MULTICAST_SIZE];
1304 u8 multi_list_size;
1305
1306 u8 enabled;
1307 u8 rx_stop;
1308 u8 reserved2[1];
1309
1310 uint features;
1311 uint overrides;
1312
1313 void *parent;
1314 };
1315
1316 enum {
1317 PHY_NO_FLOW_CTRL,
1318 PHY_FLOW_CTRL,
1319 PHY_TX_ONLY,
1320 PHY_RX_ONLY
1321 };
1322
1323 /**
1324 * struct ksz_port - Virtual port data structure
1325 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1326 * duplex, and 0 for auto, which normally results in full
1327 * duplex.
1328 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1329 * 0 for auto, which normally results in 100 Mbit.
1330 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1331 * force.
1332 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1333 * control, and PHY_FLOW_CTRL for flow control.
1334 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1335 * Mbit PHY.
1336 * @first_port: Index of first port this port supports.
1337 * @mib_port_cnt: Number of ports with MIB counters.
1338 * @port_cnt: Number of ports this port supports.
1339 * @counter: Port statistics counter.
1340 * @hw: Pointer to hardware structure.
1341 * @linked: Pointer to port information linked to this port.
1342 */
1343 struct ksz_port {
1344 u8 duplex;
1345 u8 speed;
1346 u8 force_link;
1347 u8 flow_ctrl;
1348
1349 int first_port;
1350 int mib_port_cnt;
1351 int port_cnt;
1352 u64 counter[OID_COUNTER_LAST];
1353
1354 struct ksz_hw *hw;
1355 struct ksz_port_info *linked;
1356 };
1357
1358 /**
1359 * struct ksz_timer_info - Timer information data structure
1360 * @timer: Kernel timer.
1361 * @cnt: Running timer counter.
1362 * @max: Number of times to run timer; -1 for infinity.
1363 * @period: Timer period in jiffies.
1364 */
1365 struct ksz_timer_info {
1366 struct timer_list timer;
1367 int cnt;
1368 int max;
1369 int period;
1370 };
1371
1372 /**
1373 * struct ksz_shared_mem - OS dependent shared memory data structure
1374 * @dma_addr: Physical DMA address allocated.
1375 * @alloc_size: Allocation size.
1376 * @phys: Actual physical address used.
1377 * @alloc_virt: Virtual address allocated.
1378 * @virt: Actual virtual address used.
1379 */
1380 struct ksz_shared_mem {
1381 dma_addr_t dma_addr;
1382 uint alloc_size;
1383 uint phys;
1384 u8 *alloc_virt;
1385 u8 *virt;
1386 };
1387
1388 /**
1389 * struct ksz_counter_info - OS dependent counter information data structure
1390 * @counter: Wait queue to wakeup after counters are read.
1391 * @time: Next time in jiffies to read counter.
1392 * @read: Indication of counters read in full or not.
1393 */
1394 struct ksz_counter_info {
1395 wait_queue_head_t counter;
1396 unsigned long time;
1397 int read;
1398 };
1399
1400 /**
1401 * struct dev_info - Network device information data structure
1402 * @dev: Pointer to network device.
1403 * @pdev: Pointer to PCI device.
1404 * @hw: Hardware structure.
1405 * @desc_pool: Physical memory used for descriptor pool.
1406 * @hwlock: Spinlock to prevent hardware from accessing.
1407 * @lock: Mutex lock to prevent device from accessing.
1408 * @dev_rcv: Receive process function used.
1409 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1410 * @skb_index: Buffer index for receiving fragments.
1411 * @skb_len: Buffer length for receiving fragments.
1412 * @mib_read: Workqueue to read MIB counters.
1413 * @mib_timer_info: Timer to read MIB counters.
1414 * @counter: Used for MIB reading.
1415 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1416 * the maximum is MAX_RX_BUF_SIZE.
1417 * @opened: Counter to keep track of device open.
1418 * @rx_tasklet: Receive processing tasklet.
1419 * @tx_tasklet: Transmit processing tasklet.
1420 * @wol_enable: Wake-on-LAN enable set by ethtool.
1421 * @wol_support: Wake-on-LAN support used by ethtool.
1422 * @pme_wait: Used for KSZ8841 power management.
1423 */
1424 struct dev_info {
1425 struct net_device *dev;
1426 struct pci_dev *pdev;
1427
1428 struct ksz_hw hw;
1429 struct ksz_shared_mem desc_pool;
1430
1431 spinlock_t hwlock;
1432 struct mutex lock;
1433
1434 int (*dev_rcv)(struct dev_info *);
1435
1436 struct sk_buff *last_skb;
1437 int skb_index;
1438 int skb_len;
1439
1440 struct work_struct mib_read;
1441 struct ksz_timer_info mib_timer_info;
1442 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1443
1444 int mtu;
1445 int opened;
1446
1447 struct tasklet_struct rx_tasklet;
1448 struct tasklet_struct tx_tasklet;
1449
1450 int wol_enable;
1451 int wol_support;
1452 unsigned long pme_wait;
1453 };
1454
1455 /**
1456 * struct dev_priv - Network device private data structure
1457 * @adapter: Adapter device information.
1458 * @port: Port information.
1459 * @monitor_time_info: Timer to monitor ports.
1460 * @proc_sem: Semaphore for proc accessing.
1461 * @id: Device ID.
1462 * @mii_if: MII interface information.
1463 * @advertising: Temporary variable to store advertised settings.
1464 * @msg_enable: The message flags controlling driver output.
1465 * @media_state: The connection status of the device.
1466 * @multicast: The all multicast state of the device.
1467 * @promiscuous: The promiscuous state of the device.
1468 */
1469 struct dev_priv {
1470 struct dev_info *adapter;
1471 struct ksz_port port;
1472 struct ksz_timer_info monitor_timer_info;
1473
1474 struct semaphore proc_sem;
1475 int id;
1476
1477 struct mii_if_info mii_if;
1478 u32 advertising;
1479
1480 u32 msg_enable;
1481 int media_state;
1482 int multicast;
1483 int promiscuous;
1484 };
1485
1486 #define DRV_NAME "KSZ884X PCI"
1487 #define DEVICE_NAME "KSZ884x PCI"
1488 #define DRV_VERSION "1.0.0"
1489 #define DRV_RELDATE "Feb 8, 2010"
1490
1491 static char version[] __devinitdata =
1492 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1493
1494 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1495
1496 /*
1497 * Interrupt processing primary routines
1498 */
1499
1500 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1501 {
1502 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1503 }
1504
1505 static inline void hw_dis_intr(struct ksz_hw *hw)
1506 {
1507 hw->intr_blocked = hw->intr_mask;
1508 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1509 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1510 }
1511
1512 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1513 {
1514 hw->intr_set = interrupt;
1515 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1516 }
1517
1518 static inline void hw_ena_intr(struct ksz_hw *hw)
1519 {
1520 hw->intr_blocked = 0;
1521 hw_set_intr(hw, hw->intr_mask);
1522 }
1523
1524 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1525 {
1526 hw->intr_mask &= ~(bit);
1527 }
1528
1529 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1530 {
1531 u32 read_intr;
1532
1533 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1534 hw->intr_set = read_intr & ~interrupt;
1535 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1536 hw_dis_intr_bit(hw, interrupt);
1537 }
1538
1539 /**
1540 * hw_turn_on_intr - turn on specified interrupts
1541 * @hw: The hardware instance.
1542 * @bit: The interrupt bits to be on.
1543 *
1544 * This routine turns on the specified interrupts in the interrupt mask so that
1545 * those interrupts will be enabled.
1546 */
1547 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1548 {
1549 hw->intr_mask |= bit;
1550
1551 if (!hw->intr_blocked)
1552 hw_set_intr(hw, hw->intr_mask);
1553 }
1554
1555 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1556 {
1557 u32 read_intr;
1558
1559 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1560 hw->intr_set = read_intr | interrupt;
1561 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1562 }
1563
1564 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1565 {
1566 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1567 *status = *status & hw->intr_set;
1568 }
1569
1570 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1571 {
1572 if (interrupt)
1573 hw_ena_intr(hw);
1574 }
1575
1576 /**
1577 * hw_block_intr - block hardware interrupts
1578 *
1579 * This function blocks all interrupts of the hardware and returns the current
1580 * interrupt enable mask so that interrupts can be restored later.
1581 *
1582 * Return the current interrupt enable mask.
1583 */
1584 static uint hw_block_intr(struct ksz_hw *hw)
1585 {
1586 uint interrupt = 0;
1587
1588 if (!hw->intr_blocked) {
1589 hw_dis_intr(hw);
1590 interrupt = hw->intr_blocked;
1591 }
1592 return interrupt;
1593 }
1594
1595 /*
1596 * Hardware descriptor routines
1597 */
1598
1599 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1600 {
1601 status.rx.hw_owned = 0;
1602 desc->phw->ctrl.data = cpu_to_le32(status.data);
1603 }
1604
1605 static inline void release_desc(struct ksz_desc *desc)
1606 {
1607 desc->sw.ctrl.tx.hw_owned = 1;
1608 if (desc->sw.buf_size != desc->sw.buf.data) {
1609 desc->sw.buf_size = desc->sw.buf.data;
1610 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1611 }
1612 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1613 }
1614
1615 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1616 {
1617 *desc = &info->ring[info->last];
1618 info->last++;
1619 info->last &= info->mask;
1620 info->avail--;
1621 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1622 }
1623
1624 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1625 {
1626 desc->phw->addr = cpu_to_le32(addr);
1627 }
1628
1629 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1630 {
1631 desc->sw.buf.rx.buf_size = len;
1632 }
1633
1634 static inline void get_tx_pkt(struct ksz_desc_info *info,
1635 struct ksz_desc **desc)
1636 {
1637 *desc = &info->ring[info->next];
1638 info->next++;
1639 info->next &= info->mask;
1640 info->avail--;
1641 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1642 }
1643
1644 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1645 {
1646 desc->phw->addr = cpu_to_le32(addr);
1647 }
1648
1649 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1650 {
1651 desc->sw.buf.tx.buf_size = len;
1652 }
1653
1654 /* Switch functions */
1655
1656 #define TABLE_READ 0x10
1657 #define TABLE_SEL_SHIFT 2
1658
1659 #define HW_DELAY(hw, reg) \
1660 do { \
1661 u16 dummy; \
1662 dummy = readw(hw->io + reg); \
1663 } while (0)
1664
1665 /**
1666 * sw_r_table - read 4 bytes of data from switch table
1667 * @hw: The hardware instance.
1668 * @table: The table selector.
1669 * @addr: The address of the table entry.
1670 * @data: Buffer to store the read data.
1671 *
1672 * This routine reads 4 bytes of data from the table of the switch.
1673 * Hardware interrupts are disabled to minimize corruption of read data.
1674 */
1675 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1676 {
1677 u16 ctrl_addr;
1678 uint interrupt;
1679
1680 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1681
1682 interrupt = hw_block_intr(hw);
1683
1684 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1685 HW_DELAY(hw, KS884X_IACR_OFFSET);
1686 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1687
1688 hw_restore_intr(hw, interrupt);
1689 }
1690
1691 /**
1692 * sw_w_table_64 - write 8 bytes of data to the switch table
1693 * @hw: The hardware instance.
1694 * @table: The table selector.
1695 * @addr: The address of the table entry.
1696 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1697 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1698 *
1699 * This routine writes 8 bytes of data to the table of the switch.
1700 * Hardware interrupts are disabled to minimize corruption of written data.
1701 */
1702 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1703 u32 data_lo)
1704 {
1705 u16 ctrl_addr;
1706 uint interrupt;
1707
1708 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1709
1710 interrupt = hw_block_intr(hw);
1711
1712 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1713 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1714
1715 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1716 HW_DELAY(hw, KS884X_IACR_OFFSET);
1717
1718 hw_restore_intr(hw, interrupt);
1719 }
1720
1721 /**
1722 * sw_w_sta_mac_table - write to the static MAC table
1723 * @hw: The hardware instance.
1724 * @addr: The address of the table entry.
1725 * @mac_addr: The MAC address.
1726 * @ports: The port members.
1727 * @override: The flag to override the port receive/transmit settings.
1728 * @valid: The flag to indicate entry is valid.
1729 * @use_fid: The flag to indicate the FID is valid.
1730 * @fid: The FID value.
1731 *
1732 * This routine writes an entry of the static MAC table of the switch. It
1733 * calls sw_w_table_64() to write the data.
1734 */
1735 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1736 u8 ports, int override, int valid, int use_fid, u8 fid)
1737 {
1738 u32 data_hi;
1739 u32 data_lo;
1740
1741 data_lo = ((u32) mac_addr[2] << 24) |
1742 ((u32) mac_addr[3] << 16) |
1743 ((u32) mac_addr[4] << 8) | mac_addr[5];
1744 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1745 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1746
1747 if (override)
1748 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1749 if (use_fid) {
1750 data_hi |= STATIC_MAC_TABLE_USE_FID;
1751 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1752 }
1753 if (valid)
1754 data_hi |= STATIC_MAC_TABLE_VALID;
1755
1756 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1757 }
1758
1759 /**
1760 * sw_r_vlan_table - read from the VLAN table
1761 * @hw: The hardware instance.
1762 * @addr: The address of the table entry.
1763 * @vid: Buffer to store the VID.
1764 * @fid: Buffer to store the VID.
1765 * @member: Buffer to store the port membership.
1766 *
1767 * This function reads an entry of the VLAN table of the switch. It calls
1768 * sw_r_table() to get the data.
1769 *
1770 * Return 0 if the entry is valid; otherwise -1.
1771 */
1772 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1773 u8 *member)
1774 {
1775 u32 data;
1776
1777 sw_r_table(hw, TABLE_VLAN, addr, &data);
1778 if (data & VLAN_TABLE_VALID) {
1779 *vid = (u16)(data & VLAN_TABLE_VID);
1780 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1781 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1782 VLAN_TABLE_MEMBERSHIP_SHIFT);
1783 return 0;
1784 }
1785 return -1;
1786 }
1787
1788 /**
1789 * port_r_mib_cnt - read MIB counter
1790 * @hw: The hardware instance.
1791 * @port: The port index.
1792 * @addr: The address of the counter.
1793 * @cnt: Buffer to store the counter.
1794 *
1795 * This routine reads a MIB counter of the port.
1796 * Hardware interrupts are disabled to minimize corruption of read data.
1797 */
1798 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1799 {
1800 u32 data;
1801 u16 ctrl_addr;
1802 uint interrupt;
1803 int timeout;
1804
1805 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1806
1807 interrupt = hw_block_intr(hw);
1808
1809 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1810 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1811 HW_DELAY(hw, KS884X_IACR_OFFSET);
1812
1813 for (timeout = 100; timeout > 0; timeout--) {
1814 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1815
1816 if (data & MIB_COUNTER_VALID) {
1817 if (data & MIB_COUNTER_OVERFLOW)
1818 *cnt += MIB_COUNTER_VALUE + 1;
1819 *cnt += data & MIB_COUNTER_VALUE;
1820 break;
1821 }
1822 }
1823
1824 hw_restore_intr(hw, interrupt);
1825 }
1826
1827 /**
1828 * port_r_mib_pkt - read dropped packet counts
1829 * @hw: The hardware instance.
1830 * @port: The port index.
1831 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1832 *
1833 * This routine reads the dropped packet counts of the port.
1834 * Hardware interrupts are disabled to minimize corruption of read data.
1835 */
1836 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1837 {
1838 u32 cur;
1839 u32 data;
1840 u16 ctrl_addr;
1841 uint interrupt;
1842 int index;
1843
1844 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1845 do {
1846 interrupt = hw_block_intr(hw);
1847
1848 ctrl_addr = (u16) index;
1849 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1850 << 8);
1851 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1852 HW_DELAY(hw, KS884X_IACR_OFFSET);
1853 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1854
1855 hw_restore_intr(hw, interrupt);
1856
1857 data &= MIB_PACKET_DROPPED;
1858 cur = *last;
1859 if (data != cur) {
1860 *last = data;
1861 if (data < cur)
1862 data += MIB_PACKET_DROPPED + 1;
1863 data -= cur;
1864 *cnt += data;
1865 }
1866 ++last;
1867 ++cnt;
1868 index -= KS_MIB_PACKET_DROPPED_TX -
1869 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1870 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1871 }
1872
1873 /**
1874 * port_r_cnt - read MIB counters periodically
1875 * @hw: The hardware instance.
1876 * @port: The port index.
1877 *
1878 * This routine is used to read the counters of the port periodically to avoid
1879 * counter overflow. The hardware should be acquired first before calling this
1880 * routine.
1881 *
1882 * Return non-zero when not all counters not read.
1883 */
1884 static int port_r_cnt(struct ksz_hw *hw, int port)
1885 {
1886 struct ksz_port_mib *mib = &hw->port_mib[port];
1887
1888 if (mib->mib_start < PORT_COUNTER_NUM)
1889 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1890 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1891 &mib->counter[mib->cnt_ptr]);
1892 ++mib->cnt_ptr;
1893 }
1894 if (hw->mib_cnt > PORT_COUNTER_NUM)
1895 port_r_mib_pkt(hw, port, mib->dropped,
1896 &mib->counter[PORT_COUNTER_NUM]);
1897 mib->cnt_ptr = 0;
1898 return 0;
1899 }
1900
1901 /**
1902 * port_init_cnt - initialize MIB counter values
1903 * @hw: The hardware instance.
1904 * @port: The port index.
1905 *
1906 * This routine is used to initialize all counters to zero if the hardware
1907 * cannot do it after reset.
1908 */
1909 static void port_init_cnt(struct ksz_hw *hw, int port)
1910 {
1911 struct ksz_port_mib *mib = &hw->port_mib[port];
1912
1913 mib->cnt_ptr = 0;
1914 if (mib->mib_start < PORT_COUNTER_NUM)
1915 do {
1916 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1917 &mib->counter[mib->cnt_ptr]);
1918 ++mib->cnt_ptr;
1919 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1920 if (hw->mib_cnt > PORT_COUNTER_NUM)
1921 port_r_mib_pkt(hw, port, mib->dropped,
1922 &mib->counter[PORT_COUNTER_NUM]);
1923 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1924 mib->cnt_ptr = 0;
1925 }
1926
1927 /*
1928 * Port functions
1929 */
1930
1931 /**
1932 * port_chk - check port register bits
1933 * @hw: The hardware instance.
1934 * @port: The port index.
1935 * @offset: The offset of the port register.
1936 * @bits: The data bits to check.
1937 *
1938 * This function checks whether the specified bits of the port register are set
1939 * or not.
1940 *
1941 * Return 0 if the bits are not set.
1942 */
1943 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1944 {
1945 u32 addr;
1946 u16 data;
1947
1948 PORT_CTRL_ADDR(port, addr);
1949 addr += offset;
1950 data = readw(hw->io + addr);
1951 return (data & bits) == bits;
1952 }
1953
1954 /**
1955 * port_cfg - set port register bits
1956 * @hw: The hardware instance.
1957 * @port: The port index.
1958 * @offset: The offset of the port register.
1959 * @bits: The data bits to set.
1960 * @set: The flag indicating whether the bits are to be set or not.
1961 *
1962 * This routine sets or resets the specified bits of the port register.
1963 */
1964 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1965 int set)
1966 {
1967 u32 addr;
1968 u16 data;
1969
1970 PORT_CTRL_ADDR(port, addr);
1971 addr += offset;
1972 data = readw(hw->io + addr);
1973 if (set)
1974 data |= bits;
1975 else
1976 data &= ~bits;
1977 writew(data, hw->io + addr);
1978 }
1979
1980 /**
1981 * port_chk_shift - check port bit
1982 * @hw: The hardware instance.
1983 * @port: The port index.
1984 * @offset: The offset of the register.
1985 * @shift: Number of bits to shift.
1986 *
1987 * This function checks whether the specified port is set in the register or
1988 * not.
1989 *
1990 * Return 0 if the port is not set.
1991 */
1992 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1993 {
1994 u16 data;
1995 u16 bit = 1 << port;
1996
1997 data = readw(hw->io + addr);
1998 data >>= shift;
1999 return (data & bit) == bit;
2000 }
2001
2002 /**
2003 * port_cfg_shift - set port bit
2004 * @hw: The hardware instance.
2005 * @port: The port index.
2006 * @offset: The offset of the register.
2007 * @shift: Number of bits to shift.
2008 * @set: The flag indicating whether the port is to be set or not.
2009 *
2010 * This routine sets or resets the specified port in the register.
2011 */
2012 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2013 int set)
2014 {
2015 u16 data;
2016 u16 bits = 1 << port;
2017
2018 data = readw(hw->io + addr);
2019 bits <<= shift;
2020 if (set)
2021 data |= bits;
2022 else
2023 data &= ~bits;
2024 writew(data, hw->io + addr);
2025 }
2026
2027 /**
2028 * port_r8 - read byte from port register
2029 * @hw: The hardware instance.
2030 * @port: The port index.
2031 * @offset: The offset of the port register.
2032 * @data: Buffer to store the data.
2033 *
2034 * This routine reads a byte from the port register.
2035 */
2036 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2037 {
2038 u32 addr;
2039
2040 PORT_CTRL_ADDR(port, addr);
2041 addr += offset;
2042 *data = readb(hw->io + addr);
2043 }
2044
2045 /**
2046 * port_r16 - read word from port register.
2047 * @hw: The hardware instance.
2048 * @port: The port index.
2049 * @offset: The offset of the port register.
2050 * @data: Buffer to store the data.
2051 *
2052 * This routine reads a word from the port register.
2053 */
2054 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2055 {
2056 u32 addr;
2057
2058 PORT_CTRL_ADDR(port, addr);
2059 addr += offset;
2060 *data = readw(hw->io + addr);
2061 }
2062
2063 /**
2064 * port_w16 - write word to port register.
2065 * @hw: The hardware instance.
2066 * @port: The port index.
2067 * @offset: The offset of the port register.
2068 * @data: Data to write.
2069 *
2070 * This routine writes a word to the port register.
2071 */
2072 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2073 {
2074 u32 addr;
2075
2076 PORT_CTRL_ADDR(port, addr);
2077 addr += offset;
2078 writew(data, hw->io + addr);
2079 }
2080
2081 /**
2082 * sw_chk - check switch register bits
2083 * @hw: The hardware instance.
2084 * @addr: The address of the switch register.
2085 * @bits: The data bits to check.
2086 *
2087 * This function checks whether the specified bits of the switch register are
2088 * set or not.
2089 *
2090 * Return 0 if the bits are not set.
2091 */
2092 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2093 {
2094 u16 data;
2095
2096 data = readw(hw->io + addr);
2097 return (data & bits) == bits;
2098 }
2099
2100 /**
2101 * sw_cfg - set switch register bits
2102 * @hw: The hardware instance.
2103 * @addr: The address of the switch register.
2104 * @bits: The data bits to set.
2105 * @set: The flag indicating whether the bits are to be set or not.
2106 *
2107 * This function sets or resets the specified bits of the switch register.
2108 */
2109 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2110 {
2111 u16 data;
2112
2113 data = readw(hw->io + addr);
2114 if (set)
2115 data |= bits;
2116 else
2117 data &= ~bits;
2118 writew(data, hw->io + addr);
2119 }
2120
2121 /* Bandwidth */
2122
2123 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2124 {
2125 port_cfg(hw, p,
2126 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2127 }
2128
2129 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2130 {
2131 return port_chk(hw, p,
2132 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2133 }
2134
2135 /* Driver set switch broadcast storm protection at 10% rate. */
2136 #define BROADCAST_STORM_PROTECTION_RATE 10
2137
2138 /* 148,800 frames * 67 ms / 100 */
2139 #define BROADCAST_STORM_VALUE 9969
2140
2141 /**
2142 * sw_cfg_broad_storm - configure broadcast storm threshold
2143 * @hw: The hardware instance.
2144 * @percent: Broadcast storm threshold in percent of transmit rate.
2145 *
2146 * This routine configures the broadcast storm threshold of the switch.
2147 */
2148 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2149 {
2150 u16 data;
2151 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2152
2153 if (value > BROADCAST_STORM_RATE)
2154 value = BROADCAST_STORM_RATE;
2155
2156 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2157 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2158 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2159 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2160 }
2161
2162 /**
2163 * sw_get_board_storm - get broadcast storm threshold
2164 * @hw: The hardware instance.
2165 * @percent: Buffer to store the broadcast storm threshold percentage.
2166 *
2167 * This routine retrieves the broadcast storm threshold of the switch.
2168 */
2169 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2170 {
2171 int num;
2172 u16 data;
2173
2174 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2175 num = (data & BROADCAST_STORM_RATE_HI);
2176 num <<= 8;
2177 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2178 num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2179 *percent = (u8) num;
2180 }
2181
2182 /**
2183 * sw_dis_broad_storm - disable broadstorm
2184 * @hw: The hardware instance.
2185 * @port: The port index.
2186 *
2187 * This routine disables the broadcast storm limit function of the switch.
2188 */
2189 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2190 {
2191 port_cfg_broad_storm(hw, port, 0);
2192 }
2193
2194 /**
2195 * sw_ena_broad_storm - enable broadcast storm
2196 * @hw: The hardware instance.
2197 * @port: The port index.
2198 *
2199 * This routine enables the broadcast storm limit function of the switch.
2200 */
2201 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2202 {
2203 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2204 port_cfg_broad_storm(hw, port, 1);
2205 }
2206
2207 /**
2208 * sw_init_broad_storm - initialize broadcast storm
2209 * @hw: The hardware instance.
2210 *
2211 * This routine initializes the broadcast storm limit function of the switch.
2212 */
2213 static void sw_init_broad_storm(struct ksz_hw *hw)
2214 {
2215 int port;
2216
2217 hw->ksz_switch->broad_per = 1;
2218 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2219 for (port = 0; port < TOTAL_PORT_NUM; port++)
2220 sw_dis_broad_storm(hw, port);
2221 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2222 }
2223
2224 /**
2225 * hw_cfg_broad_storm - configure broadcast storm
2226 * @hw: The hardware instance.
2227 * @percent: Broadcast storm threshold in percent of transmit rate.
2228 *
2229 * This routine configures the broadcast storm threshold of the switch.
2230 * It is called by user functions. The hardware should be acquired first.
2231 */
2232 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2233 {
2234 if (percent > 100)
2235 percent = 100;
2236
2237 sw_cfg_broad_storm(hw, percent);
2238 sw_get_broad_storm(hw, &percent);
2239 hw->ksz_switch->broad_per = percent;
2240 }
2241
2242 /**
2243 * sw_dis_prio_rate - disable switch priority rate
2244 * @hw: The hardware instance.
2245 * @port: The port index.
2246 *
2247 * This routine disables the priority rate function of the switch.
2248 */
2249 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2250 {
2251 u32 addr;
2252
2253 PORT_CTRL_ADDR(port, addr);
2254 addr += KS8842_PORT_IN_RATE_OFFSET;
2255 writel(0, hw->io + addr);
2256 }
2257
2258 /**
2259 * sw_init_prio_rate - initialize switch prioirty rate
2260 * @hw: The hardware instance.
2261 *
2262 * This routine initializes the priority rate function of the switch.
2263 */
2264 static void sw_init_prio_rate(struct ksz_hw *hw)
2265 {
2266 int port;
2267 int prio;
2268 struct ksz_switch *sw = hw->ksz_switch;
2269
2270 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2271 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2272 sw->port_cfg[port].rx_rate[prio] =
2273 sw->port_cfg[port].tx_rate[prio] = 0;
2274 }
2275 sw_dis_prio_rate(hw, port);
2276 }
2277 }
2278
2279 /* Communication */
2280
2281 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2282 {
2283 port_cfg(hw, p,
2284 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2285 }
2286
2287 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2288 {
2289 port_cfg(hw, p,
2290 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2291 }
2292
2293 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2294 {
2295 return port_chk(hw, p,
2296 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2297 }
2298
2299 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2300 {
2301 return port_chk(hw, p,
2302 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2303 }
2304
2305 /* Spanning Tree */
2306
2307 static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2308 {
2309 port_cfg(hw, p,
2310 KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2311 }
2312
2313 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2314 {
2315 port_cfg(hw, p,
2316 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2317 }
2318
2319 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2320 {
2321 port_cfg(hw, p,
2322 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2323 }
2324
2325 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2326 {
2327 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2328 }
2329
2330 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2331 {
2332 if (!(hw->overrides & FAST_AGING)) {
2333 sw_cfg_fast_aging(hw, 1);
2334 mdelay(1);
2335 sw_cfg_fast_aging(hw, 0);
2336 }
2337 }
2338
2339 /* VLAN */
2340
2341 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2342 {
2343 port_cfg(hw, p,
2344 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2345 }
2346
2347 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2348 {
2349 port_cfg(hw, p,
2350 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2351 }
2352
2353 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2354 {
2355 return port_chk(hw, p,
2356 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2357 }
2358
2359 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2360 {
2361 return port_chk(hw, p,
2362 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2363 }
2364
2365 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2366 {
2367 port_cfg(hw, p,
2368 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2369 }
2370
2371 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2372 {
2373 port_cfg(hw, p,
2374 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2375 }
2376
2377 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2378 {
2379 return port_chk(hw, p,
2380 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2381 }
2382
2383 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2384 {
2385 return port_chk(hw, p,
2386 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2387 }
2388
2389 /* Mirroring */
2390
2391 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2392 {
2393 port_cfg(hw, p,
2394 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2395 }
2396
2397 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2398 {
2399 port_cfg(hw, p,
2400 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2401 }
2402
2403 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2404 {
2405 port_cfg(hw, p,
2406 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2407 }
2408
2409 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2410 {
2411 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2412 }
2413
2414 static void sw_init_mirror(struct ksz_hw *hw)
2415 {
2416 int port;
2417
2418 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2419 port_cfg_mirror_sniffer(hw, port, 0);
2420 port_cfg_mirror_rx(hw, port, 0);
2421 port_cfg_mirror_tx(hw, port, 0);
2422 }
2423 sw_cfg_mirror_rx_tx(hw, 0);
2424 }
2425
2426 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2427 {
2428 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2429 SWITCH_UNK_DEF_PORT_ENABLE, set);
2430 }
2431
2432 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2433 {
2434 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2435 SWITCH_UNK_DEF_PORT_ENABLE);
2436 }
2437
2438 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2439 {
2440 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2441 }
2442
2443 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2444 {
2445 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2446 }
2447
2448 /* Priority */
2449
2450 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2451 {
2452 port_cfg(hw, p,
2453 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2454 }
2455
2456 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2457 {
2458 port_cfg(hw, p,
2459 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2460 }
2461
2462 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2463 {
2464 port_cfg(hw, p,
2465 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2466 }
2467
2468 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2469 {
2470 port_cfg(hw, p,
2471 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2472 }
2473
2474 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2475 {
2476 return port_chk(hw, p,
2477 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2478 }
2479
2480 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2481 {
2482 return port_chk(hw, p,
2483 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2484 }
2485
2486 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2487 {
2488 return port_chk(hw, p,
2489 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2490 }
2491
2492 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2493 {
2494 return port_chk(hw, p,
2495 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2496 }
2497
2498 /**
2499 * sw_dis_diffserv - disable switch DiffServ priority
2500 * @hw: The hardware instance.
2501 * @port: The port index.
2502 *
2503 * This routine disables the DiffServ priority function of the switch.
2504 */
2505 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2506 {
2507 port_cfg_diffserv(hw, port, 0);
2508 }
2509
2510 /**
2511 * sw_dis_802_1p - disable switch 802.1p priority
2512 * @hw: The hardware instance.
2513 * @port: The port index.
2514 *
2515 * This routine disables the 802.1p priority function of the switch.
2516 */
2517 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2518 {
2519 port_cfg_802_1p(hw, port, 0);
2520 }
2521
2522 /**
2523 * sw_cfg_replace_null_vid -
2524 * @hw: The hardware instance.
2525 * @set: The flag to disable or enable.
2526 *
2527 */
2528 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2529 {
2530 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2531 }
2532
2533 /**
2534 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2535 * @hw: The hardware instance.
2536 * @port: The port index.
2537 * @set: The flag to disable or enable.
2538 *
2539 * This routine enables the 802.1p priority re-mapping function of the switch.
2540 * That allows 802.1p priority field to be replaced with the port's default
2541 * tag's priority value if the ingress packet's 802.1p priority has a higher
2542 * priority than port's default tag's priority.
2543 */
2544 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2545 {
2546 port_cfg_replace_vid(hw, port, set);
2547 }
2548
2549 /**
2550 * sw_cfg_port_based - configure switch port based priority
2551 * @hw: The hardware instance.
2552 * @port: The port index.
2553 * @prio: The priority to set.
2554 *
2555 * This routine configures the port based priority of the switch.
2556 */
2557 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2558 {
2559 u16 data;
2560
2561 if (prio > PORT_BASED_PRIORITY_BASE)
2562 prio = PORT_BASED_PRIORITY_BASE;
2563
2564 hw->ksz_switch->port_cfg[port].port_prio = prio;
2565
2566 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2567 data &= ~PORT_BASED_PRIORITY_MASK;
2568 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2569 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2570 }
2571
2572 /**
2573 * sw_dis_multi_queue - disable transmit multiple queues
2574 * @hw: The hardware instance.
2575 * @port: The port index.
2576 *
2577 * This routine disables the transmit multiple queues selection of the switch
2578 * port. Only single transmit queue on the port.
2579 */
2580 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2581 {
2582 port_cfg_prio(hw, port, 0);
2583 }
2584
2585 /**
2586 * sw_init_prio - initialize switch priority
2587 * @hw: The hardware instance.
2588 *
2589 * This routine initializes the switch QoS priority functions.
2590 */
2591 static void sw_init_prio(struct ksz_hw *hw)
2592 {
2593 int port;
2594 int tos;
2595 struct ksz_switch *sw = hw->ksz_switch;
2596
2597 /*
2598 * Init all the 802.1p tag priority value to be assigned to different
2599 * priority queue.
2600 */
2601 sw->p_802_1p[0] = 0;
2602 sw->p_802_1p[1] = 0;
2603 sw->p_802_1p[2] = 1;
2604 sw->p_802_1p[3] = 1;
2605 sw->p_802_1p[4] = 2;
2606 sw->p_802_1p[5] = 2;
2607 sw->p_802_1p[6] = 3;
2608 sw->p_802_1p[7] = 3;
2609
2610 /*
2611 * Init all the DiffServ priority value to be assigned to priority
2612 * queue 0.
2613 */
2614 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2615 sw->diffserv[tos] = 0;
2616
2617 /* All QoS functions disabled. */
2618 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2619 sw_dis_multi_queue(hw, port);
2620 sw_dis_diffserv(hw, port);
2621 sw_dis_802_1p(hw, port);
2622 sw_cfg_replace_vid(hw, port, 0);
2623
2624 sw->port_cfg[port].port_prio = 0;
2625 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2626 }
2627 sw_cfg_replace_null_vid(hw, 0);
2628 }
2629
2630 /**
2631 * port_get_def_vid - get port default VID.
2632 * @hw: The hardware instance.
2633 * @port: The port index.
2634 * @vid: Buffer to store the VID.
2635 *
2636 * This routine retrieves the default VID of the port.
2637 */
2638 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2639 {
2640 u32 addr;
2641
2642 PORT_CTRL_ADDR(port, addr);
2643 addr += KS8842_PORT_CTRL_VID_OFFSET;
2644 *vid = readw(hw->io + addr);
2645 }
2646
2647 /**
2648 * sw_init_vlan - initialize switch VLAN
2649 * @hw: The hardware instance.
2650 *
2651 * This routine initializes the VLAN function of the switch.
2652 */
2653 static void sw_init_vlan(struct ksz_hw *hw)
2654 {
2655 int port;
2656 int entry;
2657 struct ksz_switch *sw = hw->ksz_switch;
2658
2659 /* Read 16 VLAN entries from device's VLAN table. */
2660 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2661 sw_r_vlan_table(hw, entry,
2662 &sw->vlan_table[entry].vid,
2663 &sw->vlan_table[entry].fid,
2664 &sw->vlan_table[entry].member);
2665 }
2666
2667 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2668 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2669 sw->port_cfg[port].member = PORT_MASK;
2670 }
2671 }
2672
2673 /**
2674 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2675 * @hw: The hardware instance.
2676 * @port: The port index.
2677 * @member: The port-based VLAN membership.
2678 *
2679 * This routine configures the port-based VLAN membership of the port.
2680 */
2681 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2682 {
2683 u32 addr;
2684 u8 data;
2685
2686 PORT_CTRL_ADDR(port, addr);
2687 addr += KS8842_PORT_CTRL_2_OFFSET;
2688
2689 data = readb(hw->io + addr);
2690 data &= ~PORT_VLAN_MEMBERSHIP;
2691 data |= (member & PORT_MASK);
2692 writeb(data, hw->io + addr);
2693
2694 hw->ksz_switch->port_cfg[port].member = member;
2695 }
2696
2697 /**
2698 * sw_get_addr - get the switch MAC address.
2699 * @hw: The hardware instance.
2700 * @mac_addr: Buffer to store the MAC address.
2701 *
2702 * This function retrieves the MAC address of the switch.
2703 */
2704 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2705 {
2706 int i;
2707
2708 for (i = 0; i < 6; i += 2) {
2709 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2710 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2711 }
2712 }
2713
2714 /**
2715 * sw_set_addr - configure switch MAC address
2716 * @hw: The hardware instance.
2717 * @mac_addr: The MAC address.
2718 *
2719 * This function configures the MAC address of the switch.
2720 */
2721 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2722 {
2723 int i;
2724
2725 for (i = 0; i < 6; i += 2) {
2726 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2727 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2728 }
2729 }
2730
2731 /**
2732 * sw_set_global_ctrl - set switch global control
2733 * @hw: The hardware instance.
2734 *
2735 * This routine sets the global control of the switch function.
2736 */
2737 static void sw_set_global_ctrl(struct ksz_hw *hw)
2738 {
2739 u16 data;
2740
2741 /* Enable switch MII flow control. */
2742 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2743 data |= SWITCH_FLOW_CTRL;
2744 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2745
2746 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2747
2748 /* Enable aggressive back off algorithm in half duplex mode. */
2749 data |= SWITCH_AGGR_BACKOFF;
2750
2751 /* Enable automatic fast aging when link changed detected. */
2752 data |= SWITCH_AGING_ENABLE;
2753 data |= SWITCH_LINK_AUTO_AGING;
2754
2755 if (hw->overrides & FAST_AGING)
2756 data |= SWITCH_FAST_AGING;
2757 else
2758 data &= ~SWITCH_FAST_AGING;
2759 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2760
2761 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2762
2763 /* Enable no excessive collision drop. */
2764 data |= NO_EXC_COLLISION_DROP;
2765 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2766 }
2767
2768 enum {
2769 STP_STATE_DISABLED = 0,
2770 STP_STATE_LISTENING,
2771 STP_STATE_LEARNING,
2772 STP_STATE_FORWARDING,
2773 STP_STATE_BLOCKED,
2774 STP_STATE_SIMPLE
2775 };
2776
2777 /**
2778 * port_set_stp_state - configure port spanning tree state
2779 * @hw: The hardware instance.
2780 * @port: The port index.
2781 * @state: The spanning tree state.
2782 *
2783 * This routine configures the spanning tree state of the port.
2784 */
2785 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2786 {
2787 u16 data;
2788
2789 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2790 switch (state) {
2791 case STP_STATE_DISABLED:
2792 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2793 data |= PORT_LEARN_DISABLE;
2794 break;
2795 case STP_STATE_LISTENING:
2796 /*
2797 * No need to turn on transmit because of port direct mode.
2798 * Turning on receive is required if static MAC table is not setup.
2799 */
2800 data &= ~PORT_TX_ENABLE;
2801 data |= PORT_RX_ENABLE;
2802 data |= PORT_LEARN_DISABLE;
2803 break;
2804 case STP_STATE_LEARNING:
2805 data &= ~PORT_TX_ENABLE;
2806 data |= PORT_RX_ENABLE;
2807 data &= ~PORT_LEARN_DISABLE;
2808 break;
2809 case STP_STATE_FORWARDING:
2810 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2811 data &= ~PORT_LEARN_DISABLE;
2812 break;
2813 case STP_STATE_BLOCKED:
2814 /*
2815 * Need to setup static MAC table with override to keep receiving BPDU
2816 * messages. See sw_init_stp routine.
2817 */
2818 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2819 data |= PORT_LEARN_DISABLE;
2820 break;
2821 case STP_STATE_SIMPLE:
2822 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2823 data |= PORT_LEARN_DISABLE;
2824 break;
2825 }
2826 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2827 hw->ksz_switch->port_cfg[port].stp_state = state;
2828 }
2829
2830 #define STP_ENTRY 0
2831 #define BROADCAST_ENTRY 1
2832 #define BRIDGE_ADDR_ENTRY 2
2833 #define IPV6_ADDR_ENTRY 3
2834
2835 /**
2836 * sw_clr_sta_mac_table - clear static MAC table
2837 * @hw: The hardware instance.
2838 *
2839 * This routine clears the static MAC table.
2840 */
2841 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2842 {
2843 struct ksz_mac_table *entry;
2844 int i;
2845
2846 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2847 entry = &hw->ksz_switch->mac_table[i];
2848 sw_w_sta_mac_table(hw, i,
2849 entry->mac_addr, entry->ports,
2850 entry->override, 0,
2851 entry->use_fid, entry->fid);
2852 }
2853 }
2854
2855 /**
2856 * sw_init_stp - initialize switch spanning tree support
2857 * @hw: The hardware instance.
2858 *
2859 * This routine initializes the spanning tree support of the switch.
2860 */
2861 static void sw_init_stp(struct ksz_hw *hw)
2862 {
2863 struct ksz_mac_table *entry;
2864
2865 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2866 entry->mac_addr[0] = 0x01;
2867 entry->mac_addr[1] = 0x80;
2868 entry->mac_addr[2] = 0xC2;
2869 entry->mac_addr[3] = 0x00;
2870 entry->mac_addr[4] = 0x00;
2871 entry->mac_addr[5] = 0x00;
2872 entry->ports = HOST_MASK;
2873 entry->override = 1;
2874 entry->valid = 1;
2875 sw_w_sta_mac_table(hw, STP_ENTRY,
2876 entry->mac_addr, entry->ports,
2877 entry->override, entry->valid,
2878 entry->use_fid, entry->fid);
2879 }
2880
2881 /**
2882 * sw_block_addr - block certain packets from the host port
2883 * @hw: The hardware instance.
2884 *
2885 * This routine blocks certain packets from reaching to the host port.
2886 */
2887 static void sw_block_addr(struct ksz_hw *hw)
2888 {
2889 struct ksz_mac_table *entry;
2890 int i;
2891
2892 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2893 entry = &hw->ksz_switch->mac_table[i];
2894 entry->valid = 0;
2895 sw_w_sta_mac_table(hw, i,
2896 entry->mac_addr, entry->ports,
2897 entry->override, entry->valid,
2898 entry->use_fid, entry->fid);
2899 }
2900 }
2901
2902 #define PHY_LINK_SUPPORT \
2903 (PHY_AUTO_NEG_ASYM_PAUSE | \
2904 PHY_AUTO_NEG_SYM_PAUSE | \
2905 PHY_AUTO_NEG_100BT4 | \
2906 PHY_AUTO_NEG_100BTX_FD | \
2907 PHY_AUTO_NEG_100BTX | \
2908 PHY_AUTO_NEG_10BT_FD | \
2909 PHY_AUTO_NEG_10BT)
2910
2911 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2912 {
2913 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2914 }
2915
2916 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2917 {
2918 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2919 }
2920
2921 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2922 {
2923 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2924 }
2925
2926 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2927 {
2928 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2929 }
2930
2931 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2932 {
2933 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2934 }
2935
2936 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2937 {
2938 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2939 }
2940
2941 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2942 {
2943 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2944 }
2945
2946 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2947 {
2948 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2949 }
2950
2951 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2952 {
2953 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2954 }
2955
2956 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2957 {
2958 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2959 }
2960
2961 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2962 {
2963 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2964 }
2965
2966 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2967 {
2968 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2969 }
2970
2971 /**
2972 * hw_r_phy - read data from PHY register
2973 * @hw: The hardware instance.
2974 * @port: Port to read.
2975 * @reg: PHY register to read.
2976 * @val: Buffer to store the read data.
2977 *
2978 * This routine reads data from the PHY register.
2979 */
2980 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2981 {
2982 int phy;
2983
2984 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2985 *val = readw(hw->io + phy);
2986 }
2987
2988 /**
2989 * port_w_phy - write data to PHY register
2990 * @hw: The hardware instance.
2991 * @port: Port to write.
2992 * @reg: PHY register to write.
2993 * @val: Word data to write.
2994 *
2995 * This routine writes data to the PHY register.
2996 */
2997 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2998 {
2999 int phy;
3000
3001 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3002 writew(val, hw->io + phy);
3003 }
3004
3005 /*
3006 * EEPROM access functions
3007 */
3008
3009 #define AT93C_CODE 0
3010 #define AT93C_WR_OFF 0x00
3011 #define AT93C_WR_ALL 0x10
3012 #define AT93C_ER_ALL 0x20
3013 #define AT93C_WR_ON 0x30
3014
3015 #define AT93C_WRITE 1
3016 #define AT93C_READ 2
3017 #define AT93C_ERASE 3
3018
3019 #define EEPROM_DELAY 4
3020
3021 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3022 {
3023 u16 data;
3024
3025 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3026 data &= ~gpio;
3027 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028 }
3029
3030 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3031 {
3032 u16 data;
3033
3034 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3035 data |= gpio;
3036 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037 }
3038
3039 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3040 {
3041 u16 data;
3042
3043 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3044 return (u8)(data & gpio);
3045 }
3046
3047 static void eeprom_clk(struct ksz_hw *hw)
3048 {
3049 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3050 udelay(EEPROM_DELAY);
3051 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052 udelay(EEPROM_DELAY);
3053 }
3054
3055 static u16 spi_r(struct ksz_hw *hw)
3056 {
3057 int i;
3058 u16 temp = 0;
3059
3060 for (i = 15; i >= 0; i--) {
3061 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3062 udelay(EEPROM_DELAY);
3063
3064 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3065
3066 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3067 udelay(EEPROM_DELAY);
3068 }
3069 return temp;
3070 }
3071
3072 static void spi_w(struct ksz_hw *hw, u16 data)
3073 {
3074 int i;
3075
3076 for (i = 15; i >= 0; i--) {
3077 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3078 drop_gpio(hw, EEPROM_DATA_OUT);
3079 eeprom_clk(hw);
3080 }
3081 }
3082
3083 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3084 {
3085 int i;
3086
3087 /* Initial start bit */
3088 raise_gpio(hw, EEPROM_DATA_OUT);
3089 eeprom_clk(hw);
3090
3091 /* AT93C operation */
3092 for (i = 1; i >= 0; i--) {
3093 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094 drop_gpio(hw, EEPROM_DATA_OUT);
3095 eeprom_clk(hw);
3096 }
3097
3098 /* Address location */
3099 for (i = 5; i >= 0; i--) {
3100 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3101 drop_gpio(hw, EEPROM_DATA_OUT);
3102 eeprom_clk(hw);
3103 }
3104 }
3105
3106 #define EEPROM_DATA_RESERVED 0
3107 #define EEPROM_DATA_MAC_ADDR_0 1
3108 #define EEPROM_DATA_MAC_ADDR_1 2
3109 #define EEPROM_DATA_MAC_ADDR_2 3
3110 #define EEPROM_DATA_SUBSYS_ID 4
3111 #define EEPROM_DATA_SUBSYS_VEN_ID 5
3112 #define EEPROM_DATA_PM_CAP 6
3113
3114 /* User defined EEPROM data */
3115 #define EEPROM_DATA_OTHER_MAC_ADDR 9
3116
3117 /**
3118 * eeprom_read - read from AT93C46 EEPROM
3119 * @hw: The hardware instance.
3120 * @reg: The register offset.
3121 *
3122 * This function reads a word from the AT93C46 EEPROM.
3123 *
3124 * Return the data value.
3125 */
3126 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3127 {
3128 u16 data;
3129
3130 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3131
3132 spi_reg(hw, AT93C_READ, reg);
3133 data = spi_r(hw);
3134
3135 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3136
3137 return data;
3138 }
3139
3140 /**
3141 * eeprom_write - write to AT93C46 EEPROM
3142 * @hw: The hardware instance.
3143 * @reg: The register offset.
3144 * @data: The data value.
3145 *
3146 * This procedure writes a word to the AT93C46 EEPROM.
3147 */
3148 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3149 {
3150 int timeout;
3151
3152 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3153
3154 /* Enable write. */
3155 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3156 drop_gpio(hw, EEPROM_CHIP_SELECT);
3157 udelay(1);
3158
3159 /* Erase the register. */
3160 raise_gpio(hw, EEPROM_CHIP_SELECT);
3161 spi_reg(hw, AT93C_ERASE, reg);
3162 drop_gpio(hw, EEPROM_CHIP_SELECT);
3163 udelay(1);
3164
3165 /* Check operation complete. */
3166 raise_gpio(hw, EEPROM_CHIP_SELECT);
3167 timeout = 8;
3168 mdelay(2);
3169 do {
3170 mdelay(1);
3171 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3172 drop_gpio(hw, EEPROM_CHIP_SELECT);
3173 udelay(1);
3174
3175 /* Write the register. */
3176 raise_gpio(hw, EEPROM_CHIP_SELECT);
3177 spi_reg(hw, AT93C_WRITE, reg);
3178 spi_w(hw, data);
3179 drop_gpio(hw, EEPROM_CHIP_SELECT);
3180 udelay(1);
3181
3182 /* Check operation complete. */
3183 raise_gpio(hw, EEPROM_CHIP_SELECT);
3184 timeout = 8;
3185 mdelay(2);
3186 do {
3187 mdelay(1);
3188 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3189 drop_gpio(hw, EEPROM_CHIP_SELECT);
3190 udelay(1);
3191
3192 /* Disable write. */
3193 raise_gpio(hw, EEPROM_CHIP_SELECT);
3194 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3195
3196 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3197 }
3198
3199 /*
3200 * Link detection routines
3201 */
3202
3203 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3204 {
3205 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3206 switch (port->flow_ctrl) {
3207 case PHY_FLOW_CTRL:
3208 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3209 break;
3210 /* Not supported. */
3211 case PHY_TX_ONLY:
3212 case PHY_RX_ONLY:
3213 default:
3214 break;
3215 }
3216 return ctrl;
3217 }
3218
3219 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3220 {
3221 u32 rx_cfg;
3222 u32 tx_cfg;
3223
3224 rx_cfg = hw->rx_cfg;
3225 tx_cfg = hw->tx_cfg;
3226 if (rx)
3227 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3228 else
3229 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3230 if (tx)
3231 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3232 else
3233 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3234 if (hw->enabled) {
3235 if (rx_cfg != hw->rx_cfg)
3236 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3237 if (tx_cfg != hw->tx_cfg)
3238 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3239 }
3240 }
3241
3242 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3243 u16 local, u16 remote)
3244 {
3245 int rx;
3246 int tx;
3247
3248 if (hw->overrides & PAUSE_FLOW_CTRL)
3249 return;
3250
3251 rx = tx = 0;
3252 if (port->force_link)
3253 rx = tx = 1;
3254 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3255 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3256 rx = tx = 1;
3257 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3258 (local & PHY_AUTO_NEG_PAUSE) ==
3259 PHY_AUTO_NEG_ASYM_PAUSE) {
3260 tx = 1;
3261 }
3262 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3263 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3264 rx = 1;
3265 }
3266 if (!hw->ksz_switch)
3267 set_flow_ctrl(hw, rx, tx);
3268 }
3269
3270 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3271 struct ksz_port_info *info, u16 link_status)
3272 {
3273 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3274 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3275 u32 cfg = hw->tx_cfg;
3276
3277 /* Disable flow control in the half duplex mode. */
3278 if (1 == info->duplex)
3279 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3280 if (hw->enabled && cfg != hw->tx_cfg)
3281 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3282 }
3283 }
3284
3285 /**
3286 * port_get_link_speed - get current link status
3287 * @port: The port instance.
3288 *
3289 * This routine reads PHY registers to determine the current link status of the
3290 * switch ports.
3291 */
3292 static void port_get_link_speed(struct ksz_port *port)
3293 {
3294 uint interrupt;
3295 struct ksz_port_info *info;
3296 struct ksz_port_info *linked = NULL;
3297 struct ksz_hw *hw = port->hw;
3298 u16 data;
3299 u16 status;
3300 u8 local;
3301 u8 remote;
3302 int i;
3303 int p;
3304 int change = 0;
3305
3306 interrupt = hw_block_intr(hw);
3307
3308 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3309 info = &hw->port_info[p];
3310 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3311 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3312
3313 /*
3314 * Link status is changing all the time even when there is no
3315 * cable connection!
3316 */
3317 remote = status & (PORT_AUTO_NEG_COMPLETE |
3318 PORT_STATUS_LINK_GOOD);
3319 local = (u8) data;
3320
3321 /* No change to status. */
3322 if (local == info->advertised && remote == info->partner)
3323 continue;
3324
3325 info->advertised = local;
3326 info->partner = remote;
3327 if (status & PORT_STATUS_LINK_GOOD) {
3328
3329 /* Remember the first linked port. */
3330 if (!linked)
3331 linked = info;
3332
3333 info->tx_rate = 10 * TX_RATE_UNIT;
3334 if (status & PORT_STATUS_SPEED_100MBIT)
3335 info->tx_rate = 100 * TX_RATE_UNIT;
3336
3337 info->duplex = 1;
3338 if (status & PORT_STATUS_FULL_DUPLEX)
3339 info->duplex = 2;
3340
3341 if (media_connected != info->state) {
3342 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3343 &data);
3344 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3345 &status);
3346 determine_flow_ctrl(hw, port, data, status);
3347 if (hw->ksz_switch) {
3348 port_cfg_back_pressure(hw, p,
3349 (1 == info->duplex));
3350 }
3351 change |= 1 << i;
3352 port_cfg_change(hw, port, info, status);
3353 }
3354 info->state = media_connected;
3355 } else {
3356 if (media_disconnected != info->state) {
3357 change |= 1 << i;
3358
3359 /* Indicate the link just goes down. */
3360 hw->port_mib[p].link_down = 1;
3361 }
3362 info->state = media_disconnected;
3363 }
3364 hw->port_mib[p].state = (u8) info->state;
3365 }
3366
3367 if (linked && media_disconnected == port->linked->state)
3368 port->linked = linked;
3369
3370 hw_restore_intr(hw, interrupt);
3371 }
3372
3373 #define PHY_RESET_TIMEOUT 10
3374
3375 /**
3376 * port_set_link_speed - set port speed
3377 * @port: The port instance.
3378 *
3379 * This routine sets the link speed of the switch ports.
3380 */
3381 static void port_set_link_speed(struct ksz_port *port)
3382 {
3383 struct ksz_port_info *info;
3384 struct ksz_hw *hw = port->hw;
3385 u16 data;
3386 u16 cfg;
3387 u8 status;
3388 int i;
3389 int p;
3390
3391 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3392 info = &hw->port_info[p];
3393
3394 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3395 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3396
3397 cfg = 0;
3398 if (status & PORT_STATUS_LINK_GOOD)
3399 cfg = data;
3400
3401 data |= PORT_AUTO_NEG_ENABLE;
3402 data = advertised_flow_ctrl(port, data);
3403
3404 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3405 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3406
3407 /* Check if manual configuration is specified by the user. */
3408 if (port->speed || port->duplex) {
3409 if (10 == port->speed)
3410 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3411 PORT_AUTO_NEG_100BTX);
3412 else if (100 == port->speed)
3413 data &= ~(PORT_AUTO_NEG_10BT_FD |
3414 PORT_AUTO_NEG_10BT);
3415 if (1 == port->duplex)
3416 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3417 PORT_AUTO_NEG_10BT_FD);
3418 else if (2 == port->duplex)
3419 data &= ~(PORT_AUTO_NEG_100BTX |
3420 PORT_AUTO_NEG_10BT);
3421 }
3422 if (data != cfg) {
3423 data |= PORT_AUTO_NEG_RESTART;
3424 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3425 }
3426 }
3427 }
3428
3429 /**
3430 * port_force_link_speed - force port speed
3431 * @port: The port instance.
3432 *
3433 * This routine forces the link speed of the switch ports.
3434 */
3435 static void port_force_link_speed(struct ksz_port *port)
3436 {
3437 struct ksz_hw *hw = port->hw;
3438 u16 data;
3439 int i;
3440 int phy;
3441 int p;
3442
3443 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3444 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3445 hw_r_phy_ctrl(hw, phy, &data);
3446
3447 data &= ~PHY_AUTO_NEG_ENABLE;
3448
3449 if (10 == port->speed)
3450 data &= ~PHY_SPEED_100MBIT;
3451 else if (100 == port->speed)
3452 data |= PHY_SPEED_100MBIT;
3453 if (1 == port->duplex)
3454 data &= ~PHY_FULL_DUPLEX;
3455 else if (2 == port->duplex)
3456 data |= PHY_FULL_DUPLEX;
3457 hw_w_phy_ctrl(hw, phy, data);
3458 }
3459 }
3460
3461 static void port_set_power_saving(struct ksz_port *port, int enable)
3462 {
3463 struct ksz_hw *hw = port->hw;
3464 int i;
3465 int p;
3466
3467 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3468 port_cfg(hw, p,
3469 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3470 }
3471
3472 /*
3473 * KSZ8841 power management functions
3474 */
3475
3476 /**
3477 * hw_chk_wol_pme_status - check PMEN pin
3478 * @hw: The hardware instance.
3479 *
3480 * This function is used to check PMEN pin is asserted.
3481 *
3482 * Return 1 if PMEN pin is asserted; otherwise, 0.
3483 */
3484 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3485 {
3486 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487 struct pci_dev *pdev = hw_priv->pdev;
3488 u16 data;
3489
3490 if (!pdev->pm_cap)
3491 return 0;
3492 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3493 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3494 }
3495
3496 /**
3497 * hw_clr_wol_pme_status - clear PMEN pin
3498 * @hw: The hardware instance.
3499 *
3500 * This routine is used to clear PME_Status to deassert PMEN pin.
3501 */
3502 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3503 {
3504 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3505 struct pci_dev *pdev = hw_priv->pdev;
3506 u16 data;
3507
3508 if (!pdev->pm_cap)
3509 return;
3510
3511 /* Clear PME_Status to deassert PMEN pin. */
3512 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3513 data |= PCI_PM_CTRL_PME_STATUS;
3514 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3515 }
3516
3517 /**
3518 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3519 * @hw: The hardware instance.
3520 * @set: The flag indicating whether to enable or disable.
3521 *
3522 * This routine is used to enable or disable Wake-on-LAN.
3523 */
3524 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3525 {
3526 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3527 struct pci_dev *pdev = hw_priv->pdev;
3528 u16 data;
3529
3530 if (!pdev->pm_cap)
3531 return;
3532 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3533 data &= ~PCI_PM_CTRL_STATE_MASK;
3534 if (set)
3535 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3536 else
3537 data &= ~PCI_PM_CTRL_PME_ENABLE;
3538 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3539 }
3540
3541 /**
3542 * hw_cfg_wol - configure Wake-on-LAN features
3543 * @hw: The hardware instance.
3544 * @frame: The pattern frame bit.
3545 * @set: The flag indicating whether to enable or disable.
3546 *
3547 * This routine is used to enable or disable certain Wake-on-LAN features.
3548 */
3549 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3550 {
3551 u16 data;
3552
3553 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3554 if (set)
3555 data |= frame;
3556 else
3557 data &= ~frame;
3558 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3559 }
3560
3561 /**
3562 * hw_set_wol_frame - program Wake-on-LAN pattern
3563 * @hw: The hardware instance.
3564 * @i: The frame index.
3565 * @mask_size: The size of the mask.
3566 * @mask: Mask to ignore certain bytes in the pattern.
3567 * @frame_size: The size of the frame.
3568 * @pattern: The frame data.
3569 *
3570 * This routine is used to program Wake-on-LAN pattern.
3571 */
3572 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3573 const u8 *mask, uint frame_size, const u8 *pattern)
3574 {
3575 int bits;
3576 int from;
3577 int len;
3578 int to;
3579 u32 crc;
3580 u8 data[64];
3581 u8 val = 0;
3582
3583 if (frame_size > mask_size * 8)
3584 frame_size = mask_size * 8;
3585 if (frame_size > 64)
3586 frame_size = 64;
3587
3588 i *= 0x10;
3589 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3590 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3591
3592 bits = len = from = to = 0;
3593 do {
3594 if (bits) {
3595 if ((val & 1))
3596 data[to++] = pattern[from];
3597 val >>= 1;
3598 ++from;
3599 --bits;
3600 } else {
3601 val = mask[len];
3602 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3603 + len);
3604 ++len;
3605 if (val)
3606 bits = 8;
3607 else
3608 from += 8;
3609 }
3610 } while (from < (int) frame_size);
3611 if (val) {
3612 bits = mask[len - 1];
3613 val <<= (from % 8);
3614 bits &= ~val;
3615 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3616 1);
3617 }
3618 crc = ether_crc(to, data);
3619 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3620 }
3621
3622 /**
3623 * hw_add_wol_arp - add ARP pattern
3624 * @hw: The hardware instance.
3625 * @ip_addr: The IPv4 address assigned to the device.
3626 *
3627 * This routine is used to add ARP pattern for waking up the host.
3628 */
3629 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3630 {
3631 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3632 u8 pattern[42] = {
3633 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3634 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3635 0x08, 0x06,
3636 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3637 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3638 0x00, 0x00, 0x00, 0x00,
3639 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3640 0x00, 0x00, 0x00, 0x00 };
3641
3642 memcpy(&pattern[38], ip_addr, 4);
3643 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3644 }
3645
3646 /**
3647 * hw_add_wol_bcast - add broadcast pattern
3648 * @hw: The hardware instance.
3649 *
3650 * This routine is used to add broadcast pattern for waking up the host.
3651 */
3652 static void hw_add_wol_bcast(struct ksz_hw *hw)
3653 {
3654 static const u8 mask[] = { 0x3F };
3655 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3656
3657 hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
3658 }
3659
3660 /**
3661 * hw_add_wol_mcast - add multicast pattern
3662 * @hw: The hardware instance.
3663 *
3664 * This routine is used to add multicast pattern for waking up the host.
3665 *
3666 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3667 * by IPv6 ping command. Note that multicast packets are filtred through the
3668 * multicast hash table, so not all multicast packets can wake up the host.
3669 */
3670 static void hw_add_wol_mcast(struct ksz_hw *hw)
3671 {
3672 static const u8 mask[] = { 0x3F };
3673 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3674
3675 memcpy(&pattern[3], &hw->override_addr[3], 3);
3676 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3677 }
3678
3679 /**
3680 * hw_add_wol_ucast - add unicast pattern
3681 * @hw: The hardware instance.
3682 *
3683 * This routine is used to add unicast pattern to wakeup the host.
3684 *
3685 * It is assumed the unicast packet is directed to the device, as the hardware
3686 * can only receive them in normal case.
3687 */
3688 static void hw_add_wol_ucast(struct ksz_hw *hw)
3689 {
3690 static const u8 mask[] = { 0x3F };
3691
3692 hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
3693 }
3694
3695 /**
3696 * hw_enable_wol - enable Wake-on-LAN
3697 * @hw: The hardware instance.
3698 * @wol_enable: The Wake-on-LAN settings.
3699 * @net_addr: The IPv4 address assigned to the device.
3700 *
3701 * This routine is used to enable Wake-on-LAN depending on driver settings.
3702 */
3703 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3704 {
3705 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3706 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3707 hw_add_wol_ucast(hw);
3708 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3709 hw_add_wol_mcast(hw);
3710 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3711 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3712 hw_add_wol_arp(hw, net_addr);
3713 }
3714
3715 /**
3716 * hw_init - check driver is correct for the hardware
3717 * @hw: The hardware instance.
3718 *
3719 * This function checks the hardware is correct for this driver and sets the
3720 * hardware up for proper initialization.
3721 *
3722 * Return number of ports or 0 if not right.
3723 */
3724 static int hw_init(struct ksz_hw *hw)
3725 {
3726 int rc = 0;
3727 u16 data;
3728 u16 revision;
3729
3730 /* Set bus speed to 125MHz. */
3731 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3732
3733 /* Check KSZ884x chip ID. */
3734 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3735
3736 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3737 data &= KS884X_CHIP_ID_MASK_41;
3738 if (REG_CHIP_ID_41 == data)
3739 rc = 1;
3740 else if (REG_CHIP_ID_42 == data)
3741 rc = 2;
3742 else
3743 return 0;
3744
3745 /* Setup hardware features or bug workarounds. */
3746 if (revision <= 1) {
3747 hw->features |= SMALL_PACKET_TX_BUG;
3748 if (1 == rc)
3749 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3750 }
3751 return rc;
3752 }
3753
3754 /**
3755 * hw_reset - reset the hardware
3756 * @hw: The hardware instance.
3757 *
3758 * This routine resets the hardware.
3759 */
3760 static void hw_reset(struct ksz_hw *hw)
3761 {
3762 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3763
3764 /* Wait for device to reset. */
3765 mdelay(10);
3766
3767 /* Write 0 to clear device reset. */
3768 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3769 }
3770
3771 /**
3772 * hw_setup - setup the hardware
3773 * @hw: The hardware instance.
3774 *
3775 * This routine setup the hardware for proper operation.
3776 */
3777 static void hw_setup(struct ksz_hw *hw)
3778 {
3779 #if SET_DEFAULT_LED
3780 u16 data;
3781
3782 /* Change default LED mode. */
3783 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3784 data &= ~LED_MODE;
3785 data |= SET_DEFAULT_LED;
3786 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3787 #endif
3788
3789 /* Setup transmit control. */
3790 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3791 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3792
3793 /* Setup receive control. */
3794 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3795 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3796 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3797
3798 /* Hardware cannot handle UDP packet in IP fragments. */
3799 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3800
3801 if (hw->all_multi)
3802 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3803 if (hw->promiscuous)
3804 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3805 }
3806
3807 /**
3808 * hw_setup_intr - setup interrupt mask
3809 * @hw: The hardware instance.
3810 *
3811 * This routine setup the interrupt mask for proper operation.
3812 */
3813 static void hw_setup_intr(struct ksz_hw *hw)
3814 {
3815 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3816 }
3817
3818 static void ksz_check_desc_num(struct ksz_desc_info *info)
3819 {
3820 #define MIN_DESC_SHIFT 2
3821
3822 int alloc = info->alloc;
3823 int shift;
3824
3825 shift = 0;
3826 while (!(alloc & 1)) {
3827 shift++;
3828 alloc >>= 1;
3829 }
3830 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3831 pr_alert("Hardware descriptor numbers not right!\n");
3832 while (alloc) {
3833 shift++;
3834 alloc >>= 1;
3835 }
3836 if (shift < MIN_DESC_SHIFT)
3837 shift = MIN_DESC_SHIFT;
3838 alloc = 1 << shift;
3839 info->alloc = alloc;
3840 }
3841 info->mask = info->alloc - 1;
3842 }
3843
3844 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3845 {
3846 int i;
3847 u32 phys = desc_info->ring_phys;
3848 struct ksz_hw_desc *desc = desc_info->ring_virt;
3849 struct ksz_desc *cur = desc_info->ring;
3850 struct ksz_desc *previous = NULL;
3851
3852 for (i = 0; i < desc_info->alloc; i++) {
3853 cur->phw = desc++;
3854 phys += desc_info->size;
3855 previous = cur++;
3856 previous->phw->next = cpu_to_le32(phys);
3857 }
3858 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3859 previous->sw.buf.rx.end_of_ring = 1;
3860 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3861
3862 desc_info->avail = desc_info->alloc;
3863 desc_info->last = desc_info->next = 0;
3864
3865 desc_info->cur = desc_info->ring;
3866 }
3867
3868 /**
3869 * hw_set_desc_base - set descriptor base addresses
3870 * @hw: The hardware instance.
3871 * @tx_addr: The transmit descriptor base.
3872 * @rx_addr: The receive descriptor base.
3873 *
3874 * This routine programs the descriptor base addresses after reset.
3875 */
3876 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3877 {
3878 /* Set base address of Tx/Rx descriptors. */
3879 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3880 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3881 }
3882
3883 static void hw_reset_pkts(struct ksz_desc_info *info)
3884 {
3885 info->cur = info->ring;
3886 info->avail = info->alloc;
3887 info->last = info->next = 0;
3888 }
3889
3890 static inline void hw_resume_rx(struct ksz_hw *hw)
3891 {
3892 writel(DMA_START, hw->io + KS_DMA_RX_START);
3893 }
3894
3895 /**
3896 * hw_start_rx - start receiving
3897 * @hw: The hardware instance.
3898 *
3899 * This routine starts the receive function of the hardware.
3900 */
3901 static void hw_start_rx(struct ksz_hw *hw)
3902 {
3903 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3904
3905 /* Notify when the receive stops. */
3906 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3907
3908 writel(DMA_START, hw->io + KS_DMA_RX_START);
3909 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3910 hw->rx_stop++;
3911
3912 /* Variable overflows. */
3913 if (0 == hw->rx_stop)
3914 hw->rx_stop = 2;
3915 }
3916
3917 /*
3918 * hw_stop_rx - stop receiving
3919 * @hw: The hardware instance.
3920 *
3921 * This routine stops the receive function of the hardware.
3922 */
3923 static void hw_stop_rx(struct ksz_hw *hw)
3924 {
3925 hw->rx_stop = 0;
3926 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3927 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3928 }
3929
3930 /**
3931 * hw_start_tx - start transmitting
3932 * @hw: The hardware instance.
3933 *
3934 * This routine starts the transmit function of the hardware.
3935 */
3936 static void hw_start_tx(struct ksz_hw *hw)
3937 {
3938 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3939 }
3940
3941 /**
3942 * hw_stop_tx - stop transmitting
3943 * @hw: The hardware instance.
3944 *
3945 * This routine stops the transmit function of the hardware.
3946 */
3947 static void hw_stop_tx(struct ksz_hw *hw)
3948 {
3949 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3950 }
3951
3952 /**
3953 * hw_disable - disable hardware
3954 * @hw: The hardware instance.
3955 *
3956 * This routine disables the hardware.
3957 */
3958 static void hw_disable(struct ksz_hw *hw)
3959 {
3960 hw_stop_rx(hw);
3961 hw_stop_tx(hw);
3962 hw->enabled = 0;
3963 }
3964
3965 /**
3966 * hw_enable - enable hardware
3967 * @hw: The hardware instance.
3968 *
3969 * This routine enables the hardware.
3970 */
3971 static void hw_enable(struct ksz_hw *hw)
3972 {
3973 hw_start_tx(hw);
3974 hw_start_rx(hw);
3975 hw->enabled = 1;
3976 }
3977
3978 /**
3979 * hw_alloc_pkt - allocate enough descriptors for transmission
3980 * @hw: The hardware instance.
3981 * @length: The length of the packet.
3982 * @physical: Number of descriptors required.
3983 *
3984 * This function allocates descriptors for transmission.
3985 *
3986 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3987 */
3988 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3989 {
3990 /* Always leave one descriptor free. */
3991 if (hw->tx_desc_info.avail <= 1)
3992 return 0;
3993
3994 /* Allocate a descriptor for transmission and mark it current. */
3995 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3996 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3997
3998 /* Keep track of number of transmit descriptors used so far. */
3999 ++hw->tx_int_cnt;
4000 hw->tx_size += length;
4001
4002 /* Cannot hold on too much data. */
4003 if (hw->tx_size >= MAX_TX_HELD_SIZE)
4004 hw->tx_int_cnt = hw->tx_int_mask + 1;
4005
4006 if (physical > hw->tx_desc_info.avail)
4007 return 1;
4008
4009 return hw->tx_desc_info.avail;
4010 }
4011
4012 /**
4013 * hw_send_pkt - mark packet for transmission
4014 * @hw: The hardware instance.
4015 *
4016 * This routine marks the packet for transmission in PCI version.
4017 */
4018 static void hw_send_pkt(struct ksz_hw *hw)
4019 {
4020 struct ksz_desc *cur = hw->tx_desc_info.cur;
4021
4022 cur->sw.buf.tx.last_seg = 1;
4023
4024 /* Interrupt only after specified number of descriptors used. */
4025 if (hw->tx_int_cnt > hw->tx_int_mask) {
4026 cur->sw.buf.tx.intr = 1;
4027 hw->tx_int_cnt = 0;
4028 hw->tx_size = 0;
4029 }
4030
4031 /* KSZ8842 supports port directed transmission. */
4032 cur->sw.buf.tx.dest_port = hw->dst_ports;
4033
4034 release_desc(cur);
4035
4036 writel(0, hw->io + KS_DMA_TX_START);
4037 }
4038
4039 static int empty_addr(u8 *addr)
4040 {
4041 u32 *addr1 = (u32 *) addr;
4042 u16 *addr2 = (u16 *) &addr[4];
4043
4044 return 0 == *addr1 && 0 == *addr2;
4045 }
4046
4047 /**
4048 * hw_set_addr - set MAC address
4049 * @hw: The hardware instance.
4050 *
4051 * This routine programs the MAC address of the hardware when the address is
4052 * overrided.
4053 */
4054 static void hw_set_addr(struct ksz_hw *hw)
4055 {
4056 int i;
4057
4058 for (i = 0; i < MAC_ADDR_LEN; i++)
4059 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4060 hw->io + KS884X_ADDR_0_OFFSET + i);
4061
4062 sw_set_addr(hw, hw->override_addr);
4063 }
4064
4065 /**
4066 * hw_read_addr - read MAC address
4067 * @hw: The hardware instance.
4068 *
4069 * This routine retrieves the MAC address of the hardware.
4070 */
4071 static void hw_read_addr(struct ksz_hw *hw)
4072 {
4073 int i;
4074
4075 for (i = 0; i < MAC_ADDR_LEN; i++)
4076 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4077 KS884X_ADDR_0_OFFSET + i);
4078
4079 if (!hw->mac_override) {
4080 memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
4081 if (empty_addr(hw->override_addr)) {
4082 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
4083 MAC_ADDR_LEN);
4084 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4085 MAC_ADDR_LEN);
4086 hw->override_addr[5] += hw->id;
4087 hw_set_addr(hw);
4088 }
4089 }
4090 }
4091
4092 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4093 {
4094 int i;
4095 u32 mac_addr_lo;
4096 u32 mac_addr_hi;
4097
4098 mac_addr_hi = 0;
4099 for (i = 0; i < 2; i++) {
4100 mac_addr_hi <<= 8;
4101 mac_addr_hi |= mac_addr[i];
4102 }
4103 mac_addr_hi |= ADD_ADDR_ENABLE;
4104 mac_addr_lo = 0;
4105 for (i = 2; i < 6; i++) {
4106 mac_addr_lo <<= 8;
4107 mac_addr_lo |= mac_addr[i];
4108 }
4109 index *= ADD_ADDR_INCR;
4110
4111 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4112 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4113 }
4114
4115 static void hw_set_add_addr(struct ksz_hw *hw)
4116 {
4117 int i;
4118
4119 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4120 if (empty_addr(hw->address[i]))
4121 writel(0, hw->io + ADD_ADDR_INCR * i +
4122 KS_ADD_ADDR_0_HI);
4123 else
4124 hw_ena_add_addr(hw, i, hw->address[i]);
4125 }
4126 }
4127
4128 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4129 {
4130 int i;
4131 int j = ADDITIONAL_ENTRIES;
4132
4133 if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
4134 return 0;
4135 for (i = 0; i < hw->addr_list_size; i++) {
4136 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
4137 return 0;
4138 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4139 j = i;
4140 }
4141 if (j < ADDITIONAL_ENTRIES) {
4142 memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
4143 hw_ena_add_addr(hw, j, hw->address[j]);
4144 return 0;
4145 }
4146 return -1;
4147 }
4148
4149 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4150 {
4151 int i;
4152
4153 for (i = 0; i < hw->addr_list_size; i++) {
4154 if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
4155 memset(hw->address[i], 0, MAC_ADDR_LEN);
4156 writel(0, hw->io + ADD_ADDR_INCR * i +
4157 KS_ADD_ADDR_0_HI);
4158 return 0;
4159 }
4160 }
4161 return -1;
4162 }
4163
4164 /**
4165 * hw_clr_multicast - clear multicast addresses
4166 * @hw: The hardware instance.
4167 *
4168 * This routine removes all multicast addresses set in the hardware.
4169 */
4170 static void hw_clr_multicast(struct ksz_hw *hw)
4171 {
4172 int i;
4173
4174 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4175 hw->multi_bits[i] = 0;
4176
4177 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4178 }
4179 }
4180
4181 /**
4182 * hw_set_grp_addr - set multicast addresses
4183 * @hw: The hardware instance.
4184 *
4185 * This routine programs multicast addresses for the hardware to accept those
4186 * addresses.
4187 */
4188 static void hw_set_grp_addr(struct ksz_hw *hw)
4189 {
4190 int i;
4191 int index;
4192 int position;
4193 int value;
4194
4195 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4196
4197 for (i = 0; i < hw->multi_list_size; i++) {
4198 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4199 index = position >> 3;
4200 value = 1 << (position & 7);
4201 hw->multi_bits[index] |= (u8) value;
4202 }
4203
4204 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4205 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4206 i);
4207 }
4208
4209 /**
4210 * hw_set_multicast - enable or disable all multicast receiving
4211 * @hw: The hardware instance.
4212 * @multicast: To turn on or off the all multicast feature.
4213 *
4214 * This routine enables/disables the hardware to accept all multicast packets.
4215 */
4216 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4217 {
4218 /* Stop receiving for reconfiguration. */
4219 hw_stop_rx(hw);
4220
4221 if (multicast)
4222 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4223 else
4224 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4225
4226 if (hw->enabled)
4227 hw_start_rx(hw);
4228 }
4229
4230 /**
4231 * hw_set_promiscuous - enable or disable promiscuous receiving
4232 * @hw: The hardware instance.
4233 * @prom: To turn on or off the promiscuous feature.
4234 *
4235 * This routine enables/disables the hardware to accept all packets.
4236 */
4237 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4238 {
4239 /* Stop receiving for reconfiguration. */
4240 hw_stop_rx(hw);
4241
4242 if (prom)
4243 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4244 else
4245 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4246
4247 if (hw->enabled)
4248 hw_start_rx(hw);
4249 }
4250
4251 /**
4252 * sw_enable - enable the switch
4253 * @hw: The hardware instance.
4254 * @enable: The flag to enable or disable the switch
4255 *
4256 * This routine is used to enable/disable the switch in KSZ8842.
4257 */
4258 static void sw_enable(struct ksz_hw *hw, int enable)
4259 {
4260 int port;
4261
4262 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4263 if (hw->dev_count > 1) {
4264 /* Set port-base vlan membership with host port. */
4265 sw_cfg_port_base_vlan(hw, port,
4266 HOST_MASK | (1 << port));
4267 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4268 } else {
4269 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4270 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4271 }
4272 }
4273 if (hw->dev_count > 1)
4274 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4275 else
4276 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4277
4278 if (enable)
4279 enable = KS8842_START;
4280 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4281 }
4282
4283 /**
4284 * sw_setup - setup the switch
4285 * @hw: The hardware instance.
4286 *
4287 * This routine setup the hardware switch engine for default operation.
4288 */
4289 static void sw_setup(struct ksz_hw *hw)
4290 {
4291 int port;
4292
4293 sw_set_global_ctrl(hw);
4294
4295 /* Enable switch broadcast storm protection at 10% percent rate. */
4296 sw_init_broad_storm(hw);
4297 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4298 for (port = 0; port < SWITCH_PORT_NUM; port++)
4299 sw_ena_broad_storm(hw, port);
4300
4301 sw_init_prio(hw);
4302
4303 sw_init_mirror(hw);
4304
4305 sw_init_prio_rate(hw);
4306
4307 sw_init_vlan(hw);
4308
4309 if (hw->features & STP_SUPPORT)
4310 sw_init_stp(hw);
4311 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4312 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4313 hw->overrides |= PAUSE_FLOW_CTRL;
4314 sw_enable(hw, 1);
4315 }
4316
4317 /**
4318 * ksz_start_timer - start kernel timer
4319 * @info: Kernel timer information.
4320 * @time: The time tick.
4321 *
4322 * This routine starts the kernel timer after the specified time tick.
4323 */
4324 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4325 {
4326 info->cnt = 0;
4327 info->timer.expires = jiffies + time;
4328 add_timer(&info->timer);
4329
4330 /* infinity */
4331 info->max = -1;
4332 }
4333
4334 /**
4335 * ksz_stop_timer - stop kernel timer
4336 * @info: Kernel timer information.
4337 *
4338 * This routine stops the kernel timer.
4339 */
4340 static void ksz_stop_timer(struct ksz_timer_info *info)
4341 {
4342 if (info->max) {
4343 info->max = 0;
4344 del_timer_sync(&info->timer);
4345 }
4346 }
4347
4348 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4349 void (*function)(unsigned long), void *data)
4350 {
4351 info->max = 0;
4352 info->period = period;
4353 init_timer(&info->timer);
4354 info->timer.function = function;
4355 info->timer.data = (unsigned long) data;
4356 }
4357
4358 static void ksz_update_timer(struct ksz_timer_info *info)
4359 {
4360 ++info->cnt;
4361 if (info->max > 0) {
4362 if (info->cnt < info->max) {
4363 info->timer.expires = jiffies + info->period;
4364 add_timer(&info->timer);
4365 } else
4366 info->max = 0;
4367 } else if (info->max < 0) {
4368 info->timer.expires = jiffies + info->period;
4369 add_timer(&info->timer);
4370 }
4371 }
4372
4373 /**
4374 * ksz_alloc_soft_desc - allocate software descriptors
4375 * @desc_info: Descriptor information structure.
4376 * @transmit: Indication that descriptors are for transmit.
4377 *
4378 * This local function allocates software descriptors for manipulation in
4379 * memory.
4380 *
4381 * Return 0 if successful.
4382 */
4383 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4384 {
4385 desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4386 GFP_KERNEL);
4387 if (!desc_info->ring)
4388 return 1;
4389 memset((void *) desc_info->ring, 0,
4390 sizeof(struct ksz_desc) * desc_info->alloc);
4391 hw_init_desc(desc_info, transmit);
4392 return 0;
4393 }
4394
4395 /**
4396 * ksz_alloc_desc - allocate hardware descriptors
4397 * @adapter: Adapter information structure.
4398 *
4399 * This local function allocates hardware descriptors for receiving and
4400 * transmitting.
4401 *
4402 * Return 0 if successful.
4403 */
4404 static int ksz_alloc_desc(struct dev_info *adapter)
4405 {
4406 struct ksz_hw *hw = &adapter->hw;
4407 int offset;
4408
4409 /* Allocate memory for RX & TX descriptors. */
4410 adapter->desc_pool.alloc_size =
4411 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4412 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4413 DESC_ALIGNMENT;
4414
4415 adapter->desc_pool.alloc_virt =
4416 pci_alloc_consistent(
4417 adapter->pdev, adapter->desc_pool.alloc_size,
4418 &adapter->desc_pool.dma_addr);
4419 if (adapter->desc_pool.alloc_virt == NULL) {
4420 adapter->desc_pool.alloc_size = 0;
4421 return 1;
4422 }
4423 memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4424
4425 /* Align to the next cache line boundary. */
4426 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4427 (DESC_ALIGNMENT -
4428 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4429 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4430 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4431
4432 /* Allocate receive/transmit descriptors. */
4433 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4434 adapter->desc_pool.virt;
4435 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4436 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4437 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4438 (adapter->desc_pool.virt + offset);
4439 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4440
4441 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4442 return 1;
4443 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4444 return 1;
4445
4446 return 0;
4447 }
4448
4449 /**
4450 * free_dma_buf - release DMA buffer resources
4451 * @adapter: Adapter information structure.
4452 *
4453 * This routine is just a helper function to release the DMA buffer resources.
4454 */
4455 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4456 int direction)
4457 {
4458 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4459 dev_kfree_skb(dma_buf->skb);
4460 dma_buf->skb = NULL;
4461 dma_buf->dma = 0;
4462 }
4463
4464 /**
4465 * ksz_init_rx_buffers - initialize receive descriptors
4466 * @adapter: Adapter information structure.
4467 *
4468 * This routine initializes DMA buffers for receiving.
4469 */
4470 static void ksz_init_rx_buffers(struct dev_info *adapter)
4471 {
4472 int i;
4473 struct ksz_desc *desc;
4474 struct ksz_dma_buf *dma_buf;
4475 struct ksz_hw *hw = &adapter->hw;
4476 struct ksz_desc_info *info = &hw->rx_desc_info;
4477
4478 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4479 get_rx_pkt(info, &desc);
4480
4481 dma_buf = DMA_BUFFER(desc);
4482 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4483 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4484 dma_buf->len = adapter->mtu;
4485 if (!dma_buf->skb)
4486 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4487 if (dma_buf->skb && !dma_buf->dma) {
4488 dma_buf->skb->dev = adapter->dev;
4489 dma_buf->dma = pci_map_single(
4490 adapter->pdev,
4491 skb_tail_pointer(dma_buf->skb),
4492 dma_buf->len,
4493 PCI_DMA_FROMDEVICE);
4494 }
4495
4496 /* Set descriptor. */
4497 set_rx_buf(desc, dma_buf->dma);
4498 set_rx_len(desc, dma_buf->len);
4499 release_desc(desc);
4500 }
4501 }
4502
4503 /**
4504 * ksz_alloc_mem - allocate memory for hardware descriptors
4505 * @adapter: Adapter information structure.
4506 *
4507 * This function allocates memory for use by hardware descriptors for receiving
4508 * and transmitting.
4509 *
4510 * Return 0 if successful.
4511 */
4512 static int ksz_alloc_mem(struct dev_info *adapter)
4513 {
4514 struct ksz_hw *hw = &adapter->hw;
4515
4516 /* Determine the number of receive and transmit descriptors. */
4517 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4518 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4519
4520 /* Determine how many descriptors to skip transmit interrupt. */
4521 hw->tx_int_cnt = 0;
4522 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4523 if (hw->tx_int_mask > 8)
4524 hw->tx_int_mask = 8;
4525 while (hw->tx_int_mask) {
4526 hw->tx_int_cnt++;
4527 hw->tx_int_mask >>= 1;
4528 }
4529 if (hw->tx_int_cnt) {
4530 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4531 hw->tx_int_cnt = 0;
4532 }
4533
4534 /* Determine the descriptor size. */
4535 hw->rx_desc_info.size =
4536 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4537 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4538 hw->tx_desc_info.size =
4539 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4540 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4541 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4542 pr_alert("Hardware descriptor size not right!\n");
4543 ksz_check_desc_num(&hw->rx_desc_info);
4544 ksz_check_desc_num(&hw->tx_desc_info);
4545
4546 /* Allocate descriptors. */
4547 if (ksz_alloc_desc(adapter))
4548 return 1;
4549
4550 return 0;
4551 }
4552
4553 /**
4554 * ksz_free_desc - free software and hardware descriptors
4555 * @adapter: Adapter information structure.
4556 *
4557 * This local routine frees the software and hardware descriptors allocated by
4558 * ksz_alloc_desc().
4559 */
4560 static void ksz_free_desc(struct dev_info *adapter)
4561 {
4562 struct ksz_hw *hw = &adapter->hw;
4563
4564 /* Reset descriptor. */
4565 hw->rx_desc_info.ring_virt = NULL;
4566 hw->tx_desc_info.ring_virt = NULL;
4567 hw->rx_desc_info.ring_phys = 0;
4568 hw->tx_desc_info.ring_phys = 0;
4569
4570 /* Free memory. */
4571 if (adapter->desc_pool.alloc_virt)
4572 pci_free_consistent(
4573 adapter->pdev,
4574 adapter->desc_pool.alloc_size,
4575 adapter->desc_pool.alloc_virt,
4576 adapter->desc_pool.dma_addr);
4577
4578 /* Reset resource pool. */
4579 adapter->desc_pool.alloc_size = 0;
4580 adapter->desc_pool.alloc_virt = NULL;
4581
4582 kfree(hw->rx_desc_info.ring);
4583 hw->rx_desc_info.ring = NULL;
4584 kfree(hw->tx_desc_info.ring);
4585 hw->tx_desc_info.ring = NULL;
4586 }
4587
4588 /**
4589 * ksz_free_buffers - free buffers used in the descriptors
4590 * @adapter: Adapter information structure.
4591 * @desc_info: Descriptor information structure.
4592 *
4593 * This local routine frees buffers used in the DMA buffers.
4594 */
4595 static void ksz_free_buffers(struct dev_info *adapter,
4596 struct ksz_desc_info *desc_info, int direction)
4597 {
4598 int i;
4599 struct ksz_dma_buf *dma_buf;
4600 struct ksz_desc *desc = desc_info->ring;
4601
4602 for (i = 0; i < desc_info->alloc; i++) {
4603 dma_buf = DMA_BUFFER(desc);
4604 if (dma_buf->skb)
4605 free_dma_buf(adapter, dma_buf, direction);
4606 desc++;
4607 }
4608 }
4609
4610 /**
4611 * ksz_free_mem - free all resources used by descriptors
4612 * @adapter: Adapter information structure.
4613 *
4614 * This local routine frees all the resources allocated by ksz_alloc_mem().
4615 */
4616 static void ksz_free_mem(struct dev_info *adapter)
4617 {
4618 /* Free transmit buffers. */
4619 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4620 PCI_DMA_TODEVICE);
4621
4622 /* Free receive buffers. */
4623 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4624 PCI_DMA_FROMDEVICE);
4625
4626 /* Free descriptors. */
4627 ksz_free_desc(adapter);
4628 }
4629
4630 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4631 u64 *counter)
4632 {
4633 int i;
4634 int mib;
4635 int port;
4636 struct ksz_port_mib *port_mib;
4637
4638 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4639 for (i = 0, port = first; i < cnt; i++, port++) {
4640 port_mib = &hw->port_mib[port];
4641 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4642 counter[mib] += port_mib->counter[mib];
4643 }
4644 }
4645
4646 /**
4647 * send_packet - send packet
4648 * @skb: Socket buffer.
4649 * @dev: Network device.
4650 *
4651 * This routine is used to send a packet out to the network.
4652 */
4653 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4654 {
4655 struct ksz_desc *desc;
4656 struct ksz_desc *first;
4657 struct dev_priv *priv = netdev_priv(dev);
4658 struct dev_info *hw_priv = priv->adapter;
4659 struct ksz_hw *hw = &hw_priv->hw;
4660 struct ksz_desc_info *info = &hw->tx_desc_info;
4661 struct ksz_dma_buf *dma_buf;
4662 int len;
4663 int last_frag = skb_shinfo(skb)->nr_frags;
4664
4665 /*
4666 * KSZ8842 with multiple device interfaces needs to be told which port
4667 * to send.
4668 */
4669 if (hw->dev_count > 1)
4670 hw->dst_ports = 1 << priv->port.first_port;
4671
4672 /* Hardware will pad the length to 60. */
4673 len = skb->len;
4674
4675 /* Remember the very first descriptor. */
4676 first = info->cur;
4677 desc = first;
4678
4679 dma_buf = DMA_BUFFER(desc);
4680 if (last_frag) {
4681 int frag;
4682 skb_frag_t *this_frag;
4683
4684 dma_buf->len = skb_headlen(skb);
4685
4686 dma_buf->dma = pci_map_single(
4687 hw_priv->pdev, skb->data, dma_buf->len,
4688 PCI_DMA_TODEVICE);
4689 set_tx_buf(desc, dma_buf->dma);
4690 set_tx_len(desc, dma_buf->len);
4691
4692 frag = 0;
4693 do {
4694 this_frag = &skb_shinfo(skb)->frags[frag];
4695
4696 /* Get a new descriptor. */
4697 get_tx_pkt(info, &desc);
4698
4699 /* Keep track of descriptors used so far. */
4700 ++hw->tx_int_cnt;
4701
4702 dma_buf = DMA_BUFFER(desc);
4703 dma_buf->len = this_frag->size;
4704
4705 dma_buf->dma = pci_map_single(
4706 hw_priv->pdev,
4707 skb_frag_address(this_frag),
4708 dma_buf->len,
4709 PCI_DMA_TODEVICE);
4710 set_tx_buf(desc, dma_buf->dma);
4711 set_tx_len(desc, dma_buf->len);
4712
4713 frag++;
4714 if (frag == last_frag)
4715 break;
4716
4717 /* Do not release the last descriptor here. */
4718 release_desc(desc);
4719 } while (1);
4720
4721 /* current points to the last descriptor. */
4722 info->cur = desc;
4723
4724 /* Release the first descriptor. */
4725 release_desc(first);
4726 } else {
4727 dma_buf->len = len;
4728
4729 dma_buf->dma = pci_map_single(
4730 hw_priv->pdev, skb->data, dma_buf->len,
4731 PCI_DMA_TODEVICE);
4732 set_tx_buf(desc, dma_buf->dma);
4733 set_tx_len(desc, dma_buf->len);
4734 }
4735
4736 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4737 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4738 (desc)->sw.buf.tx.csum_gen_udp = 1;
4739 }
4740
4741 /*
4742 * The last descriptor holds the packet so that it can be returned to
4743 * network subsystem after all descriptors are transmitted.
4744 */
4745 dma_buf->skb = skb;
4746
4747 hw_send_pkt(hw);
4748
4749 /* Update transmit statistics. */
4750 dev->stats.tx_packets++;
4751 dev->stats.tx_bytes += len;
4752 }
4753
4754 /**
4755 * transmit_cleanup - clean up transmit descriptors
4756 * @dev: Network device.
4757 *
4758 * This routine is called to clean up the transmitted buffers.
4759 */
4760 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4761 {
4762 int last;
4763 union desc_stat status;
4764 struct ksz_hw *hw = &hw_priv->hw;
4765 struct ksz_desc_info *info = &hw->tx_desc_info;
4766 struct ksz_desc *desc;
4767 struct ksz_dma_buf *dma_buf;
4768 struct net_device *dev = NULL;
4769
4770 spin_lock(&hw_priv->hwlock);
4771 last = info->last;
4772
4773 while (info->avail < info->alloc) {
4774 /* Get next descriptor which is not hardware owned. */
4775 desc = &info->ring[last];
4776 status.data = le32_to_cpu(desc->phw->ctrl.data);
4777 if (status.tx.hw_owned) {
4778 if (normal)
4779 break;
4780 else
4781 reset_desc(desc, status);
4782 }
4783
4784 dma_buf = DMA_BUFFER(desc);
4785 pci_unmap_single(
4786 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4787 PCI_DMA_TODEVICE);
4788
4789 /* This descriptor contains the last buffer in the packet. */
4790 if (dma_buf->skb) {
4791 dev = dma_buf->skb->dev;
4792
4793 /* Release the packet back to network subsystem. */
4794 dev_kfree_skb_irq(dma_buf->skb);
4795 dma_buf->skb = NULL;
4796 }
4797
4798 /* Free the transmitted descriptor. */
4799 last++;
4800 last &= info->mask;
4801 info->avail++;
4802 }
4803 info->last = last;
4804 spin_unlock(&hw_priv->hwlock);
4805
4806 /* Notify the network subsystem that the packet has been sent. */
4807 if (dev)
4808 dev->trans_start = jiffies;
4809 }
4810
4811 /**
4812 * transmit_done - transmit done processing
4813 * @dev: Network device.
4814 *
4815 * This routine is called when the transmit interrupt is triggered, indicating
4816 * either a packet is sent successfully or there are transmit errors.
4817 */
4818 static void tx_done(struct dev_info *hw_priv)
4819 {
4820 struct ksz_hw *hw = &hw_priv->hw;
4821 int port;
4822
4823 transmit_cleanup(hw_priv, 1);
4824
4825 for (port = 0; port < hw->dev_count; port++) {
4826 struct net_device *dev = hw->port_info[port].pdev;
4827
4828 if (netif_running(dev) && netif_queue_stopped(dev))
4829 netif_wake_queue(dev);
4830 }
4831 }
4832
4833 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4834 {
4835 skb->dev = old->dev;
4836 skb->protocol = old->protocol;
4837 skb->ip_summed = old->ip_summed;
4838 skb->csum = old->csum;
4839 skb_set_network_header(skb, ETH_HLEN);
4840
4841 dev_kfree_skb(old);
4842 }
4843
4844 /**
4845 * netdev_tx - send out packet
4846 * @skb: Socket buffer.
4847 * @dev: Network device.
4848 *
4849 * This function is used by the upper network layer to send out a packet.
4850 *
4851 * Return 0 if successful; otherwise an error code indicating failure.
4852 */
4853 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4854 {
4855 struct dev_priv *priv = netdev_priv(dev);
4856 struct dev_info *hw_priv = priv->adapter;
4857 struct ksz_hw *hw = &hw_priv->hw;
4858 int left;
4859 int num = 1;
4860 int rc = 0;
4861
4862 if (hw->features & SMALL_PACKET_TX_BUG) {
4863 struct sk_buff *org_skb = skb;
4864
4865 if (skb->len <= 48) {
4866 if (skb_end_pointer(skb) - skb->data >= 50) {
4867 memset(&skb->data[skb->len], 0, 50 - skb->len);
4868 skb->len = 50;
4869 } else {
4870 skb = dev_alloc_skb(50);
4871 if (!skb)
4872 return NETDEV_TX_BUSY;
4873 memcpy(skb->data, org_skb->data, org_skb->len);
4874 memset(&skb->data[org_skb->len], 0,
4875 50 - org_skb->len);
4876 skb->len = 50;
4877 copy_old_skb(org_skb, skb);
4878 }
4879 }
4880 }
4881
4882 spin_lock_irq(&hw_priv->hwlock);
4883
4884 num = skb_shinfo(skb)->nr_frags + 1;
4885 left = hw_alloc_pkt(hw, skb->len, num);
4886 if (left) {
4887 if (left < num ||
4888 ((CHECKSUM_PARTIAL == skb->ip_summed) &&
4889 (ETH_P_IPV6 == htons(skb->protocol)))) {
4890 struct sk_buff *org_skb = skb;
4891
4892 skb = dev_alloc_skb(org_skb->len);
4893 if (!skb) {
4894 rc = NETDEV_TX_BUSY;
4895 goto unlock;
4896 }
4897 skb_copy_and_csum_dev(org_skb, skb->data);
4898 org_skb->ip_summed = CHECKSUM_NONE;
4899 skb->len = org_skb->len;
4900 copy_old_skb(org_skb, skb);
4901 }
4902 send_packet(skb, dev);
4903 if (left <= num)
4904 netif_stop_queue(dev);
4905 } else {
4906 /* Stop the transmit queue until packet is allocated. */
4907 netif_stop_queue(dev);
4908 rc = NETDEV_TX_BUSY;
4909 }
4910 unlock:
4911 spin_unlock_irq(&hw_priv->hwlock);
4912
4913 return rc;
4914 }
4915
4916 /**
4917 * netdev_tx_timeout - transmit timeout processing
4918 * @dev: Network device.
4919 *
4920 * This routine is called when the transmit timer expires. That indicates the
4921 * hardware is not running correctly because transmit interrupts are not
4922 * triggered to free up resources so that the transmit routine can continue
4923 * sending out packets. The hardware is reset to correct the problem.
4924 */
4925 static void netdev_tx_timeout(struct net_device *dev)
4926 {
4927 static unsigned long last_reset;
4928
4929 struct dev_priv *priv = netdev_priv(dev);
4930 struct dev_info *hw_priv = priv->adapter;
4931 struct ksz_hw *hw = &hw_priv->hw;
4932 int port;
4933
4934 if (hw->dev_count > 1) {
4935 /*
4936 * Only reset the hardware if time between calls is long
4937 * enough.
4938 */
4939 if (jiffies - last_reset <= dev->watchdog_timeo)
4940 hw_priv = NULL;
4941 }
4942
4943 last_reset = jiffies;
4944 if (hw_priv) {
4945 hw_dis_intr(hw);
4946 hw_disable(hw);
4947
4948 transmit_cleanup(hw_priv, 0);
4949 hw_reset_pkts(&hw->rx_desc_info);
4950 hw_reset_pkts(&hw->tx_desc_info);
4951 ksz_init_rx_buffers(hw_priv);
4952
4953 hw_reset(hw);
4954
4955 hw_set_desc_base(hw,
4956 hw->tx_desc_info.ring_phys,
4957 hw->rx_desc_info.ring_phys);
4958 hw_set_addr(hw);
4959 if (hw->all_multi)
4960 hw_set_multicast(hw, hw->all_multi);
4961 else if (hw->multi_list_size)
4962 hw_set_grp_addr(hw);
4963
4964 if (hw->dev_count > 1) {
4965 hw_set_add_addr(hw);
4966 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4967 struct net_device *port_dev;
4968
4969 port_set_stp_state(hw, port,
4970 STP_STATE_DISABLED);
4971
4972 port_dev = hw->port_info[port].pdev;
4973 if (netif_running(port_dev))
4974 port_set_stp_state(hw, port,
4975 STP_STATE_SIMPLE);
4976 }
4977 }
4978
4979 hw_enable(hw);
4980 hw_ena_intr(hw);
4981 }
4982
4983 dev->trans_start = jiffies;
4984 netif_wake_queue(dev);
4985 }
4986
4987 static inline void csum_verified(struct sk_buff *skb)
4988 {
4989 unsigned short protocol;
4990 struct iphdr *iph;
4991
4992 protocol = skb->protocol;
4993 skb_reset_network_header(skb);
4994 iph = (struct iphdr *) skb_network_header(skb);
4995 if (protocol == htons(ETH_P_8021Q)) {
4996 protocol = iph->tot_len;
4997 skb_set_network_header(skb, VLAN_HLEN);
4998 iph = (struct iphdr *) skb_network_header(skb);
4999 }
5000 if (protocol == htons(ETH_P_IP)) {
5001 if (iph->protocol == IPPROTO_TCP)
5002 skb->ip_summed = CHECKSUM_UNNECESSARY;
5003 }
5004 }
5005
5006 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5007 struct ksz_desc *desc, union desc_stat status)
5008 {
5009 int packet_len;
5010 struct dev_priv *priv = netdev_priv(dev);
5011 struct dev_info *hw_priv = priv->adapter;
5012 struct ksz_dma_buf *dma_buf;
5013 struct sk_buff *skb;
5014 int rx_status;
5015
5016 /* Received length includes 4-byte CRC. */
5017 packet_len = status.rx.frame_len - 4;
5018
5019 dma_buf = DMA_BUFFER(desc);
5020 pci_dma_sync_single_for_cpu(
5021 hw_priv->pdev, dma_buf->dma, packet_len + 4,
5022 PCI_DMA_FROMDEVICE);
5023
5024 do {
5025 /* skb->data != skb->head */
5026 skb = dev_alloc_skb(packet_len + 2);
5027 if (!skb) {
5028 dev->stats.rx_dropped++;
5029 return -ENOMEM;
5030 }
5031
5032 /*
5033 * Align socket buffer in 4-byte boundary for better
5034 * performance.
5035 */
5036 skb_reserve(skb, 2);
5037
5038 memcpy(skb_put(skb, packet_len),
5039 dma_buf->skb->data, packet_len);
5040 } while (0);
5041
5042 skb->protocol = eth_type_trans(skb, dev);
5043
5044 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5045 csum_verified(skb);
5046
5047 /* Update receive statistics. */
5048 dev->stats.rx_packets++;
5049 dev->stats.rx_bytes += packet_len;
5050
5051 /* Notify upper layer for received packet. */
5052 rx_status = netif_rx(skb);
5053
5054 return 0;
5055 }
5056
5057 static int dev_rcv_packets(struct dev_info *hw_priv)
5058 {
5059 int next;
5060 union desc_stat status;
5061 struct ksz_hw *hw = &hw_priv->hw;
5062 struct net_device *dev = hw->port_info[0].pdev;
5063 struct ksz_desc_info *info = &hw->rx_desc_info;
5064 int left = info->alloc;
5065 struct ksz_desc *desc;
5066 int received = 0;
5067
5068 next = info->next;
5069 while (left--) {
5070 /* Get next descriptor which is not hardware owned. */
5071 desc = &info->ring[next];
5072 status.data = le32_to_cpu(desc->phw->ctrl.data);
5073 if (status.rx.hw_owned)
5074 break;
5075
5076 /* Status valid only when last descriptor bit is set. */
5077 if (status.rx.last_desc && status.rx.first_desc) {
5078 if (rx_proc(dev, hw, desc, status))
5079 goto release_packet;
5080 received++;
5081 }
5082
5083 release_packet:
5084 release_desc(desc);
5085 next++;
5086 next &= info->mask;
5087 }
5088 info->next = next;
5089
5090 return received;
5091 }
5092
5093 static int port_rcv_packets(struct dev_info *hw_priv)
5094 {
5095 int next;
5096 union desc_stat status;
5097 struct ksz_hw *hw = &hw_priv->hw;
5098 struct net_device *dev = hw->port_info[0].pdev;
5099 struct ksz_desc_info *info = &hw->rx_desc_info;
5100 int left = info->alloc;
5101 struct ksz_desc *desc;
5102 int received = 0;
5103
5104 next = info->next;
5105 while (left--) {
5106 /* Get next descriptor which is not hardware owned. */
5107 desc = &info->ring[next];
5108 status.data = le32_to_cpu(desc->phw->ctrl.data);
5109 if (status.rx.hw_owned)
5110 break;
5111
5112 if (hw->dev_count > 1) {
5113 /* Get received port number. */
5114 int p = HW_TO_DEV_PORT(status.rx.src_port);
5115
5116 dev = hw->port_info[p].pdev;
5117 if (!netif_running(dev))
5118 goto release_packet;
5119 }
5120
5121 /* Status valid only when last descriptor bit is set. */
5122 if (status.rx.last_desc && status.rx.first_desc) {
5123 if (rx_proc(dev, hw, desc, status))
5124 goto release_packet;
5125 received++;
5126 }
5127
5128 release_packet:
5129 release_desc(desc);
5130 next++;
5131 next &= info->mask;
5132 }
5133 info->next = next;
5134
5135 return received;
5136 }
5137
5138 static int dev_rcv_special(struct dev_info *hw_priv)
5139 {
5140 int next;
5141 union desc_stat status;
5142 struct ksz_hw *hw = &hw_priv->hw;
5143 struct net_device *dev = hw->port_info[0].pdev;
5144 struct ksz_desc_info *info = &hw->rx_desc_info;
5145 int left = info->alloc;
5146 struct ksz_desc *desc;
5147 int received = 0;
5148
5149 next = info->next;
5150 while (left--) {
5151 /* Get next descriptor which is not hardware owned. */
5152 desc = &info->ring[next];
5153 status.data = le32_to_cpu(desc->phw->ctrl.data);
5154 if (status.rx.hw_owned)
5155 break;
5156
5157 if (hw->dev_count > 1) {
5158 /* Get received port number. */
5159 int p = HW_TO_DEV_PORT(status.rx.src_port);
5160
5161 dev = hw->port_info[p].pdev;
5162 if (!netif_running(dev))
5163 goto release_packet;
5164 }
5165
5166 /* Status valid only when last descriptor bit is set. */
5167 if (status.rx.last_desc && status.rx.first_desc) {
5168 /*
5169 * Receive without error. With receive errors
5170 * disabled, packets with receive errors will be
5171 * dropped, so no need to check the error bit.
5172 */
5173 if (!status.rx.error || (status.data &
5174 KS_DESC_RX_ERROR_COND) ==
5175 KS_DESC_RX_ERROR_TOO_LONG) {
5176 if (rx_proc(dev, hw, desc, status))
5177 goto release_packet;
5178 received++;
5179 } else {
5180 struct dev_priv *priv = netdev_priv(dev);
5181
5182 /* Update receive error statistics. */
5183 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5184 }
5185 }
5186
5187 release_packet:
5188 release_desc(desc);
5189 next++;
5190 next &= info->mask;
5191 }
5192 info->next = next;
5193
5194 return received;
5195 }
5196
5197 static void rx_proc_task(unsigned long data)
5198 {
5199 struct dev_info *hw_priv = (struct dev_info *) data;
5200 struct ksz_hw *hw = &hw_priv->hw;
5201
5202 if (!hw->enabled)
5203 return;
5204 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5205
5206 /* In case receive process is suspended because of overrun. */
5207 hw_resume_rx(hw);
5208
5209 /* tasklets are interruptible. */
5210 spin_lock_irq(&hw_priv->hwlock);
5211 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5212 spin_unlock_irq(&hw_priv->hwlock);
5213 } else {
5214 hw_ack_intr(hw, KS884X_INT_RX);
5215 tasklet_schedule(&hw_priv->rx_tasklet);
5216 }
5217 }
5218
5219 static void tx_proc_task(unsigned long data)
5220 {
5221 struct dev_info *hw_priv = (struct dev_info *) data;
5222 struct ksz_hw *hw = &hw_priv->hw;
5223
5224 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5225
5226 tx_done(hw_priv);
5227
5228 /* tasklets are interruptible. */
5229 spin_lock_irq(&hw_priv->hwlock);
5230 hw_turn_on_intr(hw, KS884X_INT_TX);
5231 spin_unlock_irq(&hw_priv->hwlock);
5232 }
5233
5234 static inline void handle_rx_stop(struct ksz_hw *hw)
5235 {
5236 /* Receive just has been stopped. */
5237 if (0 == hw->rx_stop)
5238 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5239 else if (hw->rx_stop > 1) {
5240 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5241 hw_start_rx(hw);
5242 } else {
5243 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5244 hw->rx_stop = 0;
5245 }
5246 } else
5247 /* Receive just has been started. */
5248 hw->rx_stop++;
5249 }
5250
5251 /**
5252 * netdev_intr - interrupt handling
5253 * @irq: Interrupt number.
5254 * @dev_id: Network device.
5255 *
5256 * This function is called by upper network layer to signal interrupt.
5257 *
5258 * Return IRQ_HANDLED if interrupt is handled.
5259 */
5260 static irqreturn_t netdev_intr(int irq, void *dev_id)
5261 {
5262 uint int_enable = 0;
5263 struct net_device *dev = (struct net_device *) dev_id;
5264 struct dev_priv *priv = netdev_priv(dev);
5265 struct dev_info *hw_priv = priv->adapter;
5266 struct ksz_hw *hw = &hw_priv->hw;
5267
5268 hw_read_intr(hw, &int_enable);
5269
5270 /* Not our interrupt! */
5271 if (!int_enable)
5272 return IRQ_NONE;
5273
5274 do {
5275 hw_ack_intr(hw, int_enable);
5276 int_enable &= hw->intr_mask;
5277
5278 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5279 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5280 tasklet_schedule(&hw_priv->tx_tasklet);
5281 }
5282
5283 if (likely(int_enable & KS884X_INT_RX)) {
5284 hw_dis_intr_bit(hw, KS884X_INT_RX);
5285 tasklet_schedule(&hw_priv->rx_tasklet);
5286 }
5287
5288 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5289 dev->stats.rx_fifo_errors++;
5290 hw_resume_rx(hw);
5291 }
5292
5293 if (unlikely(int_enable & KS884X_INT_PHY)) {
5294 struct ksz_port *port = &priv->port;
5295
5296 hw->features |= LINK_INT_WORKING;
5297 port_get_link_speed(port);
5298 }
5299
5300 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5301 handle_rx_stop(hw);
5302 break;
5303 }
5304
5305 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5306 u32 data;
5307
5308 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5309 pr_info("Tx stopped\n");
5310 data = readl(hw->io + KS_DMA_TX_CTRL);
5311 if (!(data & DMA_TX_ENABLE))
5312 pr_info("Tx disabled\n");
5313 break;
5314 }
5315 } while (0);
5316
5317 hw_ena_intr(hw);
5318
5319 return IRQ_HANDLED;
5320 }
5321
5322 /*
5323 * Linux network device functions
5324 */
5325
5326 static unsigned long next_jiffies;
5327
5328 #ifdef CONFIG_NET_POLL_CONTROLLER
5329 static void netdev_netpoll(struct net_device *dev)
5330 {
5331 struct dev_priv *priv = netdev_priv(dev);
5332 struct dev_info *hw_priv = priv->adapter;
5333
5334 hw_dis_intr(&hw_priv->hw);
5335 netdev_intr(dev->irq, dev);
5336 }
5337 #endif
5338
5339 static void bridge_change(struct ksz_hw *hw)
5340 {
5341 int port;
5342 u8 member;
5343 struct ksz_switch *sw = hw->ksz_switch;
5344
5345 /* No ports in forwarding state. */
5346 if (!sw->member) {
5347 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5348 sw_block_addr(hw);
5349 }
5350 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5351 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5352 member = HOST_MASK | sw->member;
5353 else
5354 member = HOST_MASK | (1 << port);
5355 if (member != sw->port_cfg[port].member)
5356 sw_cfg_port_base_vlan(hw, port, member);
5357 }
5358 }
5359
5360 /**
5361 * netdev_close - close network device
5362 * @dev: Network device.
5363 *
5364 * This function process the close operation of network device. This is caused
5365 * by the user command "ifconfig ethX down."
5366 *
5367 * Return 0 if successful; otherwise an error code indicating failure.
5368 */
5369 static int netdev_close(struct net_device *dev)
5370 {
5371 struct dev_priv *priv = netdev_priv(dev);
5372 struct dev_info *hw_priv = priv->adapter;
5373 struct ksz_port *port = &priv->port;
5374 struct ksz_hw *hw = &hw_priv->hw;
5375 int pi;
5376
5377 netif_stop_queue(dev);
5378
5379 ksz_stop_timer(&priv->monitor_timer_info);
5380
5381 /* Need to shut the port manually in multiple device interfaces mode. */
5382 if (hw->dev_count > 1) {
5383 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5384
5385 /* Port is closed. Need to change bridge setting. */
5386 if (hw->features & STP_SUPPORT) {
5387 pi = 1 << port->first_port;
5388 if (hw->ksz_switch->member & pi) {
5389 hw->ksz_switch->member &= ~pi;
5390 bridge_change(hw);
5391 }
5392 }
5393 }
5394 if (port->first_port > 0)
5395 hw_del_addr(hw, dev->dev_addr);
5396 if (!hw_priv->wol_enable)
5397 port_set_power_saving(port, true);
5398
5399 if (priv->multicast)
5400 --hw->all_multi;
5401 if (priv->promiscuous)
5402 --hw->promiscuous;
5403
5404 hw_priv->opened--;
5405 if (!(hw_priv->opened)) {
5406 ksz_stop_timer(&hw_priv->mib_timer_info);
5407 flush_work(&hw_priv->mib_read);
5408
5409 hw_dis_intr(hw);
5410 hw_disable(hw);
5411 hw_clr_multicast(hw);
5412
5413 /* Delay for receive task to stop scheduling itself. */
5414 msleep(2000 / HZ);
5415
5416 tasklet_disable(&hw_priv->rx_tasklet);
5417 tasklet_disable(&hw_priv->tx_tasklet);
5418 free_irq(dev->irq, hw_priv->dev);
5419
5420 transmit_cleanup(hw_priv, 0);
5421 hw_reset_pkts(&hw->rx_desc_info);
5422 hw_reset_pkts(&hw->tx_desc_info);
5423
5424 /* Clean out static MAC table when the switch is shutdown. */
5425 if (hw->features & STP_SUPPORT)
5426 sw_clr_sta_mac_table(hw);
5427 }
5428
5429 return 0;
5430 }
5431
5432 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5433 {
5434 if (hw->ksz_switch) {
5435 u32 data;
5436
5437 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5438 if (hw->features & RX_HUGE_FRAME)
5439 data |= SWITCH_HUGE_PACKET;
5440 else
5441 data &= ~SWITCH_HUGE_PACKET;
5442 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5443 }
5444 if (hw->features & RX_HUGE_FRAME) {
5445 hw->rx_cfg |= DMA_RX_ERROR;
5446 hw_priv->dev_rcv = dev_rcv_special;
5447 } else {
5448 hw->rx_cfg &= ~DMA_RX_ERROR;
5449 if (hw->dev_count > 1)
5450 hw_priv->dev_rcv = port_rcv_packets;
5451 else
5452 hw_priv->dev_rcv = dev_rcv_packets;
5453 }
5454 }
5455
5456 static int prepare_hardware(struct net_device *dev)
5457 {
5458 struct dev_priv *priv = netdev_priv(dev);
5459 struct dev_info *hw_priv = priv->adapter;
5460 struct ksz_hw *hw = &hw_priv->hw;
5461 int rc = 0;
5462
5463 /* Remember the network device that requests interrupts. */
5464 hw_priv->dev = dev;
5465 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5466 if (rc)
5467 return rc;
5468 tasklet_enable(&hw_priv->rx_tasklet);
5469 tasklet_enable(&hw_priv->tx_tasklet);
5470
5471 hw->promiscuous = 0;
5472 hw->all_multi = 0;
5473 hw->multi_list_size = 0;
5474
5475 hw_reset(hw);
5476
5477 hw_set_desc_base(hw,
5478 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5479 hw_set_addr(hw);
5480 hw_cfg_huge_frame(hw_priv, hw);
5481 ksz_init_rx_buffers(hw_priv);
5482 return 0;
5483 }
5484
5485 static void set_media_state(struct net_device *dev, int media_state)
5486 {
5487 struct dev_priv *priv = netdev_priv(dev);
5488
5489 if (media_state == priv->media_state)
5490 netif_carrier_on(dev);
5491 else
5492 netif_carrier_off(dev);
5493 netif_info(priv, link, dev, "link %s\n",
5494 media_state == priv->media_state ? "on" : "off");
5495 }
5496
5497 /**
5498 * netdev_open - open network device
5499 * @dev: Network device.
5500 *
5501 * This function process the open operation of network device. This is caused
5502 * by the user command "ifconfig ethX up."
5503 *
5504 * Return 0 if successful; otherwise an error code indicating failure.
5505 */
5506 static int netdev_open(struct net_device *dev)
5507 {
5508 struct dev_priv *priv = netdev_priv(dev);
5509 struct dev_info *hw_priv = priv->adapter;
5510 struct ksz_hw *hw = &hw_priv->hw;
5511 struct ksz_port *port = &priv->port;
5512 int i;
5513 int p;
5514 int rc = 0;
5515
5516 priv->multicast = 0;
5517 priv->promiscuous = 0;
5518
5519 /* Reset device statistics. */
5520 memset(&dev->stats, 0, sizeof(struct net_device_stats));
5521 memset((void *) port->counter, 0,
5522 (sizeof(u64) * OID_COUNTER_LAST));
5523
5524 if (!(hw_priv->opened)) {
5525 rc = prepare_hardware(dev);
5526 if (rc)
5527 return rc;
5528 for (i = 0; i < hw->mib_port_cnt; i++) {
5529 if (next_jiffies < jiffies)
5530 next_jiffies = jiffies + HZ * 2;
5531 else
5532 next_jiffies += HZ * 1;
5533 hw_priv->counter[i].time = next_jiffies;
5534 hw->port_mib[i].state = media_disconnected;
5535 port_init_cnt(hw, i);
5536 }
5537 if (hw->ksz_switch)
5538 hw->port_mib[HOST_PORT].state = media_connected;
5539 else {
5540 hw_add_wol_bcast(hw);
5541 hw_cfg_wol_pme(hw, 0);
5542 hw_clr_wol_pme_status(&hw_priv->hw);
5543 }
5544 }
5545 port_set_power_saving(port, false);
5546
5547 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5548 /*
5549 * Initialize to invalid value so that link detection
5550 * is done.
5551 */
5552 hw->port_info[p].partner = 0xFF;
5553 hw->port_info[p].state = media_disconnected;
5554 }
5555
5556 /* Need to open the port in multiple device interfaces mode. */
5557 if (hw->dev_count > 1) {
5558 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5559 if (port->first_port > 0)
5560 hw_add_addr(hw, dev->dev_addr);
5561 }
5562
5563 port_get_link_speed(port);
5564 if (port->force_link)
5565 port_force_link_speed(port);
5566 else
5567 port_set_link_speed(port);
5568
5569 if (!(hw_priv->opened)) {
5570 hw_setup_intr(hw);
5571 hw_enable(hw);
5572 hw_ena_intr(hw);
5573
5574 if (hw->mib_port_cnt)
5575 ksz_start_timer(&hw_priv->mib_timer_info,
5576 hw_priv->mib_timer_info.period);
5577 }
5578
5579 hw_priv->opened++;
5580
5581 ksz_start_timer(&priv->monitor_timer_info,
5582 priv->monitor_timer_info.period);
5583
5584 priv->media_state = port->linked->state;
5585
5586 set_media_state(dev, media_connected);
5587 netif_start_queue(dev);
5588
5589 return 0;
5590 }
5591
5592 /* RX errors = rx_errors */
5593 /* RX dropped = rx_dropped */
5594 /* RX overruns = rx_fifo_errors */
5595 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5596 /* TX errors = tx_errors */
5597 /* TX dropped = tx_dropped */
5598 /* TX overruns = tx_fifo_errors */
5599 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5600 /* collisions = collisions */
5601
5602 /**
5603 * netdev_query_statistics - query network device statistics
5604 * @dev: Network device.
5605 *
5606 * This function returns the statistics of the network device. The device
5607 * needs not be opened.
5608 *
5609 * Return network device statistics.
5610 */
5611 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5612 {
5613 struct dev_priv *priv = netdev_priv(dev);
5614 struct ksz_port *port = &priv->port;
5615 struct ksz_hw *hw = &priv->adapter->hw;
5616 struct ksz_port_mib *mib;
5617 int i;
5618 int p;
5619
5620 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5621 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5622
5623 /* Reset to zero to add count later. */
5624 dev->stats.multicast = 0;
5625 dev->stats.collisions = 0;
5626 dev->stats.rx_length_errors = 0;
5627 dev->stats.rx_crc_errors = 0;
5628 dev->stats.rx_frame_errors = 0;
5629 dev->stats.tx_window_errors = 0;
5630
5631 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5632 mib = &hw->port_mib[p];
5633
5634 dev->stats.multicast += (unsigned long)
5635 mib->counter[MIB_COUNTER_RX_MULTICAST];
5636
5637 dev->stats.collisions += (unsigned long)
5638 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5639
5640 dev->stats.rx_length_errors += (unsigned long)(
5641 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5642 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5643 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5644 mib->counter[MIB_COUNTER_RX_JABBER]);
5645 dev->stats.rx_crc_errors += (unsigned long)
5646 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5647 dev->stats.rx_frame_errors += (unsigned long)(
5648 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5649 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5650
5651 dev->stats.tx_window_errors += (unsigned long)
5652 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5653 }
5654
5655 return &dev->stats;
5656 }
5657
5658 /**
5659 * netdev_set_mac_address - set network device MAC address
5660 * @dev: Network device.
5661 * @addr: Buffer of MAC address.
5662 *
5663 * This function is used to set the MAC address of the network device.
5664 *
5665 * Return 0 to indicate success.
5666 */
5667 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5668 {
5669 struct dev_priv *priv = netdev_priv(dev);
5670 struct dev_info *hw_priv = priv->adapter;
5671 struct ksz_hw *hw = &hw_priv->hw;
5672 struct sockaddr *mac = addr;
5673 uint interrupt;
5674
5675 if (priv->port.first_port > 0)
5676 hw_del_addr(hw, dev->dev_addr);
5677 else {
5678 hw->mac_override = 1;
5679 memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
5680 }
5681
5682 memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
5683
5684 interrupt = hw_block_intr(hw);
5685
5686 if (priv->port.first_port > 0)
5687 hw_add_addr(hw, dev->dev_addr);
5688 else
5689 hw_set_addr(hw);
5690 hw_restore_intr(hw, interrupt);
5691
5692 return 0;
5693 }
5694
5695 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5696 struct ksz_hw *hw, int promiscuous)
5697 {
5698 if (promiscuous != priv->promiscuous) {
5699 u8 prev_state = hw->promiscuous;
5700
5701 if (promiscuous)
5702 ++hw->promiscuous;
5703 else
5704 --hw->promiscuous;
5705 priv->promiscuous = promiscuous;
5706
5707 /* Turn on/off promiscuous mode. */
5708 if (hw->promiscuous <= 1 && prev_state <= 1)
5709 hw_set_promiscuous(hw, hw->promiscuous);
5710
5711 /*
5712 * Port is not in promiscuous mode, meaning it is released
5713 * from the bridge.
5714 */
5715 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5716 (dev->priv_flags & IFF_BRIDGE_PORT)) {
5717 struct ksz_switch *sw = hw->ksz_switch;
5718 int port = priv->port.first_port;
5719
5720 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5721 port = 1 << port;
5722 if (sw->member & port) {
5723 sw->member &= ~port;
5724 bridge_change(hw);
5725 }
5726 }
5727 }
5728 }
5729
5730 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5731 int multicast)
5732 {
5733 if (multicast != priv->multicast) {
5734 u8 all_multi = hw->all_multi;
5735
5736 if (multicast)
5737 ++hw->all_multi;
5738 else
5739 --hw->all_multi;
5740 priv->multicast = multicast;
5741
5742 /* Turn on/off all multicast mode. */
5743 if (hw->all_multi <= 1 && all_multi <= 1)
5744 hw_set_multicast(hw, hw->all_multi);
5745 }
5746 }
5747
5748 /**
5749 * netdev_set_rx_mode
5750 * @dev: Network device.
5751 *
5752 * This routine is used to set multicast addresses or put the network device
5753 * into promiscuous mode.
5754 */
5755 static void netdev_set_rx_mode(struct net_device *dev)
5756 {
5757 struct dev_priv *priv = netdev_priv(dev);
5758 struct dev_info *hw_priv = priv->adapter;
5759 struct ksz_hw *hw = &hw_priv->hw;
5760 struct netdev_hw_addr *ha;
5761 int multicast = (dev->flags & IFF_ALLMULTI);
5762
5763 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5764
5765 if (hw_priv->hw.dev_count > 1)
5766 multicast |= (dev->flags & IFF_MULTICAST);
5767 dev_set_multicast(priv, hw, multicast);
5768
5769 /* Cannot use different hashes in multiple device interfaces mode. */
5770 if (hw_priv->hw.dev_count > 1)
5771 return;
5772
5773 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5774 int i = 0;
5775
5776 /* List too big to support so turn on all multicast mode. */
5777 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5778 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5779 hw->multi_list_size = MAX_MULTICAST_LIST;
5780 ++hw->all_multi;
5781 hw_set_multicast(hw, hw->all_multi);
5782 }
5783 return;
5784 }
5785
5786 netdev_for_each_mc_addr(ha, dev) {
5787 if (i >= MAX_MULTICAST_LIST)
5788 break;
5789 memcpy(hw->multi_list[i++], ha->addr, MAC_ADDR_LEN);
5790 }
5791 hw->multi_list_size = (u8) i;
5792 hw_set_grp_addr(hw);
5793 } else {
5794 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5795 --hw->all_multi;
5796 hw_set_multicast(hw, hw->all_multi);
5797 }
5798 hw->multi_list_size = 0;
5799 hw_clr_multicast(hw);
5800 }
5801 }
5802
5803 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5804 {
5805 struct dev_priv *priv = netdev_priv(dev);
5806 struct dev_info *hw_priv = priv->adapter;
5807 struct ksz_hw *hw = &hw_priv->hw;
5808 int hw_mtu;
5809
5810 if (netif_running(dev))
5811 return -EBUSY;
5812
5813 /* Cannot use different MTU in multiple device interfaces mode. */
5814 if (hw->dev_count > 1)
5815 if (dev != hw_priv->dev)
5816 return 0;
5817 if (new_mtu < 60)
5818 return -EINVAL;
5819
5820 if (dev->mtu != new_mtu) {
5821 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5822 if (hw_mtu > MAX_RX_BUF_SIZE)
5823 return -EINVAL;
5824 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5825 hw->features |= RX_HUGE_FRAME;
5826 hw_mtu = MAX_RX_BUF_SIZE;
5827 } else {
5828 hw->features &= ~RX_HUGE_FRAME;
5829 hw_mtu = REGULAR_RX_BUF_SIZE;
5830 }
5831 hw_mtu = (hw_mtu + 3) & ~3;
5832 hw_priv->mtu = hw_mtu;
5833 dev->mtu = new_mtu;
5834 }
5835 return 0;
5836 }
5837
5838 /**
5839 * netdev_ioctl - I/O control processing
5840 * @dev: Network device.
5841 * @ifr: Interface request structure.
5842 * @cmd: I/O control code.
5843 *
5844 * This function is used to process I/O control calls.
5845 *
5846 * Return 0 to indicate success.
5847 */
5848 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5849 {
5850 struct dev_priv *priv = netdev_priv(dev);
5851 struct dev_info *hw_priv = priv->adapter;
5852 struct ksz_hw *hw = &hw_priv->hw;
5853 struct ksz_port *port = &priv->port;
5854 int rc;
5855 int result = 0;
5856 struct mii_ioctl_data *data = if_mii(ifr);
5857
5858 if (down_interruptible(&priv->proc_sem))
5859 return -ERESTARTSYS;
5860
5861 /* assume success */
5862 rc = 0;
5863 switch (cmd) {
5864 /* Get address of MII PHY in use. */
5865 case SIOCGMIIPHY:
5866 data->phy_id = priv->id;
5867
5868 /* Fallthrough... */
5869
5870 /* Read MII PHY register. */
5871 case SIOCGMIIREG:
5872 if (data->phy_id != priv->id || data->reg_num >= 6)
5873 result = -EIO;
5874 else
5875 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5876 &data->val_out);
5877 break;
5878
5879 /* Write MII PHY register. */
5880 case SIOCSMIIREG:
5881 if (!capable(CAP_NET_ADMIN))
5882 result = -EPERM;
5883 else if (data->phy_id != priv->id || data->reg_num >= 6)
5884 result = -EIO;
5885 else
5886 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5887 data->val_in);
5888 break;
5889
5890 default:
5891 result = -EOPNOTSUPP;
5892 }
5893
5894 up(&priv->proc_sem);
5895
5896 return result;
5897 }
5898
5899 /*
5900 * MII support
5901 */
5902
5903 /**
5904 * mdio_read - read PHY register
5905 * @dev: Network device.
5906 * @phy_id: The PHY id.
5907 * @reg_num: The register number.
5908 *
5909 * This function returns the PHY register value.
5910 *
5911 * Return the register value.
5912 */
5913 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5914 {
5915 struct dev_priv *priv = netdev_priv(dev);
5916 struct ksz_port *port = &priv->port;
5917 struct ksz_hw *hw = port->hw;
5918 u16 val_out;
5919
5920 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5921 return val_out;
5922 }
5923
5924 /**
5925 * mdio_write - set PHY register
5926 * @dev: Network device.
5927 * @phy_id: The PHY id.
5928 * @reg_num: The register number.
5929 * @val: The register value.
5930 *
5931 * This procedure sets the PHY register value.
5932 */
5933 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5934 {
5935 struct dev_priv *priv = netdev_priv(dev);
5936 struct ksz_port *port = &priv->port;
5937 struct ksz_hw *hw = port->hw;
5938 int i;
5939 int pi;
5940
5941 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5942 hw_w_phy(hw, pi, reg_num << 1, val);
5943 }
5944
5945 /*
5946 * ethtool support
5947 */
5948
5949 #define EEPROM_SIZE 0x40
5950
5951 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5952
5953 #define ADVERTISED_ALL \
5954 (ADVERTISED_10baseT_Half | \
5955 ADVERTISED_10baseT_Full | \
5956 ADVERTISED_100baseT_Half | \
5957 ADVERTISED_100baseT_Full)
5958
5959 /* These functions use the MII functions in mii.c. */
5960
5961 /**
5962 * netdev_get_settings - get network device settings
5963 * @dev: Network device.
5964 * @cmd: Ethtool command.
5965 *
5966 * This function queries the PHY and returns its state in the ethtool command.
5967 *
5968 * Return 0 if successful; otherwise an error code.
5969 */
5970 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5971 {
5972 struct dev_priv *priv = netdev_priv(dev);
5973 struct dev_info *hw_priv = priv->adapter;
5974
5975 mutex_lock(&hw_priv->lock);
5976 mii_ethtool_gset(&priv->mii_if, cmd);
5977 cmd->advertising |= SUPPORTED_TP;
5978 mutex_unlock(&hw_priv->lock);
5979
5980 /* Save advertised settings for workaround in next function. */
5981 priv->advertising = cmd->advertising;
5982 return 0;
5983 }
5984
5985 /**
5986 * netdev_set_settings - set network device settings
5987 * @dev: Network device.
5988 * @cmd: Ethtool command.
5989 *
5990 * This function sets the PHY according to the ethtool command.
5991 *
5992 * Return 0 if successful; otherwise an error code.
5993 */
5994 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5995 {
5996 struct dev_priv *priv = netdev_priv(dev);
5997 struct dev_info *hw_priv = priv->adapter;
5998 struct ksz_port *port = &priv->port;
5999 u32 speed = ethtool_cmd_speed(cmd);
6000 int rc;
6001
6002 /*
6003 * ethtool utility does not change advertised setting if auto
6004 * negotiation is not specified explicitly.
6005 */
6006 if (cmd->autoneg && priv->advertising == cmd->advertising) {
6007 cmd->advertising |= ADVERTISED_ALL;
6008 if (10 == speed)
6009 cmd->advertising &=
6010 ~(ADVERTISED_100baseT_Full |
6011 ADVERTISED_100baseT_Half);
6012 else if (100 == speed)
6013 cmd->advertising &=
6014 ~(ADVERTISED_10baseT_Full |
6015 ADVERTISED_10baseT_Half);
6016 if (0 == cmd->duplex)
6017 cmd->advertising &=
6018 ~(ADVERTISED_100baseT_Full |
6019 ADVERTISED_10baseT_Full);
6020 else if (1 == cmd->duplex)
6021 cmd->advertising &=
6022 ~(ADVERTISED_100baseT_Half |
6023 ADVERTISED_10baseT_Half);
6024 }
6025 mutex_lock(&hw_priv->lock);
6026 if (cmd->autoneg &&
6027 (cmd->advertising & ADVERTISED_ALL) ==
6028 ADVERTISED_ALL) {
6029 port->duplex = 0;
6030 port->speed = 0;
6031 port->force_link = 0;
6032 } else {
6033 port->duplex = cmd->duplex + 1;
6034 if (1000 != speed)
6035 port->speed = speed;
6036 if (cmd->autoneg)
6037 port->force_link = 0;
6038 else
6039 port->force_link = 1;
6040 }
6041 rc = mii_ethtool_sset(&priv->mii_if, cmd);
6042 mutex_unlock(&hw_priv->lock);
6043 return rc;
6044 }
6045
6046 /**
6047 * netdev_nway_reset - restart auto-negotiation
6048 * @dev: Network device.
6049 *
6050 * This function restarts the PHY for auto-negotiation.
6051 *
6052 * Return 0 if successful; otherwise an error code.
6053 */
6054 static int netdev_nway_reset(struct net_device *dev)
6055 {
6056 struct dev_priv *priv = netdev_priv(dev);
6057 struct dev_info *hw_priv = priv->adapter;
6058 int rc;
6059
6060 mutex_lock(&hw_priv->lock);
6061 rc = mii_nway_restart(&priv->mii_if);
6062 mutex_unlock(&hw_priv->lock);
6063 return rc;
6064 }
6065
6066 /**
6067 * netdev_get_link - get network device link status
6068 * @dev: Network device.
6069 *
6070 * This function gets the link status from the PHY.
6071 *
6072 * Return true if PHY is linked and false otherwise.
6073 */
6074 static u32 netdev_get_link(struct net_device *dev)
6075 {
6076 struct dev_priv *priv = netdev_priv(dev);
6077 int rc;
6078
6079 rc = mii_link_ok(&priv->mii_if);
6080 return rc;
6081 }
6082
6083 /**
6084 * netdev_get_drvinfo - get network driver information
6085 * @dev: Network device.
6086 * @info: Ethtool driver info data structure.
6087 *
6088 * This procedure returns the driver information.
6089 */
6090 static void netdev_get_drvinfo(struct net_device *dev,
6091 struct ethtool_drvinfo *info)
6092 {
6093 struct dev_priv *priv = netdev_priv(dev);
6094 struct dev_info *hw_priv = priv->adapter;
6095
6096 strcpy(info->driver, DRV_NAME);
6097 strcpy(info->version, DRV_VERSION);
6098 strcpy(info->bus_info, pci_name(hw_priv->pdev));
6099 }
6100
6101 /**
6102 * netdev_get_regs_len - get length of register dump
6103 * @dev: Network device.
6104 *
6105 * This function returns the length of the register dump.
6106 *
6107 * Return length of the register dump.
6108 */
6109 static struct hw_regs {
6110 int start;
6111 int end;
6112 } hw_regs_range[] = {
6113 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6114 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6115 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6116 { KS884X_SIDER_P, KS8842_SGCR7_P },
6117 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6118 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6119 { 0, 0 }
6120 };
6121
6122 static int netdev_get_regs_len(struct net_device *dev)
6123 {
6124 struct hw_regs *range = hw_regs_range;
6125 int regs_len = 0x10 * sizeof(u32);
6126
6127 while (range->end > range->start) {
6128 regs_len += (range->end - range->start + 3) / 4 * 4;
6129 range++;
6130 }
6131 return regs_len;
6132 }
6133
6134 /**
6135 * netdev_get_regs - get register dump
6136 * @dev: Network device.
6137 * @regs: Ethtool registers data structure.
6138 * @ptr: Buffer to store the register values.
6139 *
6140 * This procedure dumps the register values in the provided buffer.
6141 */
6142 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6143 void *ptr)
6144 {
6145 struct dev_priv *priv = netdev_priv(dev);
6146 struct dev_info *hw_priv = priv->adapter;
6147 struct ksz_hw *hw = &hw_priv->hw;
6148 int *buf = (int *) ptr;
6149 struct hw_regs *range = hw_regs_range;
6150 int len;
6151
6152 mutex_lock(&hw_priv->lock);
6153 regs->version = 0;
6154 for (len = 0; len < 0x40; len += 4) {
6155 pci_read_config_dword(hw_priv->pdev, len, buf);
6156 buf++;
6157 }
6158 while (range->end > range->start) {
6159 for (len = range->start; len < range->end; len += 4) {
6160 *buf = readl(hw->io + len);
6161 buf++;
6162 }
6163 range++;
6164 }
6165 mutex_unlock(&hw_priv->lock);
6166 }
6167
6168 #define WOL_SUPPORT \
6169 (WAKE_PHY | WAKE_MAGIC | \
6170 WAKE_UCAST | WAKE_MCAST | \
6171 WAKE_BCAST | WAKE_ARP)
6172
6173 /**
6174 * netdev_get_wol - get Wake-on-LAN support
6175 * @dev: Network device.
6176 * @wol: Ethtool Wake-on-LAN data structure.
6177 *
6178 * This procedure returns Wake-on-LAN support.
6179 */
6180 static void netdev_get_wol(struct net_device *dev,
6181 struct ethtool_wolinfo *wol)
6182 {
6183 struct dev_priv *priv = netdev_priv(dev);
6184 struct dev_info *hw_priv = priv->adapter;
6185
6186 wol->supported = hw_priv->wol_support;
6187 wol->wolopts = hw_priv->wol_enable;
6188 memset(&wol->sopass, 0, sizeof(wol->sopass));
6189 }
6190
6191 /**
6192 * netdev_set_wol - set Wake-on-LAN support
6193 * @dev: Network device.
6194 * @wol: Ethtool Wake-on-LAN data structure.
6195 *
6196 * This function sets Wake-on-LAN support.
6197 *
6198 * Return 0 if successful; otherwise an error code.
6199 */
6200 static int netdev_set_wol(struct net_device *dev,
6201 struct ethtool_wolinfo *wol)
6202 {
6203 struct dev_priv *priv = netdev_priv(dev);
6204 struct dev_info *hw_priv = priv->adapter;
6205
6206 /* Need to find a way to retrieve the device IP address. */
6207 static const u8 net_addr[] = { 192, 168, 1, 1 };
6208
6209 if (wol->wolopts & ~hw_priv->wol_support)
6210 return -EINVAL;
6211
6212 hw_priv->wol_enable = wol->wolopts;
6213
6214 /* Link wakeup cannot really be disabled. */
6215 if (wol->wolopts)
6216 hw_priv->wol_enable |= WAKE_PHY;
6217 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6218 return 0;
6219 }
6220
6221 /**
6222 * netdev_get_msglevel - get debug message level
6223 * @dev: Network device.
6224 *
6225 * This function returns current debug message level.
6226 *
6227 * Return current debug message flags.
6228 */
6229 static u32 netdev_get_msglevel(struct net_device *dev)
6230 {
6231 struct dev_priv *priv = netdev_priv(dev);
6232
6233 return priv->msg_enable;
6234 }
6235
6236 /**
6237 * netdev_set_msglevel - set debug message level
6238 * @dev: Network device.
6239 * @value: Debug message flags.
6240 *
6241 * This procedure sets debug message level.
6242 */
6243 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6244 {
6245 struct dev_priv *priv = netdev_priv(dev);
6246
6247 priv->msg_enable = value;
6248 }
6249
6250 /**
6251 * netdev_get_eeprom_len - get EEPROM length
6252 * @dev: Network device.
6253 *
6254 * This function returns the length of the EEPROM.
6255 *
6256 * Return length of the EEPROM.
6257 */
6258 static int netdev_get_eeprom_len(struct net_device *dev)
6259 {
6260 return EEPROM_SIZE * 2;
6261 }
6262
6263 /**
6264 * netdev_get_eeprom - get EEPROM data
6265 * @dev: Network device.
6266 * @eeprom: Ethtool EEPROM data structure.
6267 * @data: Buffer to store the EEPROM data.
6268 *
6269 * This function dumps the EEPROM data in the provided buffer.
6270 *
6271 * Return 0 if successful; otherwise an error code.
6272 */
6273 #define EEPROM_MAGIC 0x10A18842
6274
6275 static int netdev_get_eeprom(struct net_device *dev,
6276 struct ethtool_eeprom *eeprom, u8 *data)
6277 {
6278 struct dev_priv *priv = netdev_priv(dev);
6279 struct dev_info *hw_priv = priv->adapter;
6280 u8 *eeprom_byte = (u8 *) eeprom_data;
6281 int i;
6282 int len;
6283
6284 len = (eeprom->offset + eeprom->len + 1) / 2;
6285 for (i = eeprom->offset / 2; i < len; i++)
6286 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6287 eeprom->magic = EEPROM_MAGIC;
6288 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6289
6290 return 0;
6291 }
6292
6293 /**
6294 * netdev_set_eeprom - write EEPROM data
6295 * @dev: Network device.
6296 * @eeprom: Ethtool EEPROM data structure.
6297 * @data: Data buffer.
6298 *
6299 * This function modifies the EEPROM data one byte at a time.
6300 *
6301 * Return 0 if successful; otherwise an error code.
6302 */
6303 static int netdev_set_eeprom(struct net_device *dev,
6304 struct ethtool_eeprom *eeprom, u8 *data)
6305 {
6306 struct dev_priv *priv = netdev_priv(dev);
6307 struct dev_info *hw_priv = priv->adapter;
6308 u16 eeprom_word[EEPROM_SIZE];
6309 u8 *eeprom_byte = (u8 *) eeprom_word;
6310 int i;
6311 int len;
6312
6313 if (eeprom->magic != EEPROM_MAGIC)
6314 return -EINVAL;
6315
6316 len = (eeprom->offset + eeprom->len + 1) / 2;
6317 for (i = eeprom->offset / 2; i < len; i++)
6318 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6319 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6320 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6321 for (i = 0; i < EEPROM_SIZE; i++)
6322 if (eeprom_word[i] != eeprom_data[i]) {
6323 eeprom_data[i] = eeprom_word[i];
6324 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6325 }
6326
6327 return 0;
6328 }
6329
6330 /**
6331 * netdev_get_pauseparam - get flow control parameters
6332 * @dev: Network device.
6333 * @pause: Ethtool PAUSE settings data structure.
6334 *
6335 * This procedure returns the PAUSE control flow settings.
6336 */
6337 static void netdev_get_pauseparam(struct net_device *dev,
6338 struct ethtool_pauseparam *pause)
6339 {
6340 struct dev_priv *priv = netdev_priv(dev);
6341 struct dev_info *hw_priv = priv->adapter;
6342 struct ksz_hw *hw = &hw_priv->hw;
6343
6344 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6345 if (!hw->ksz_switch) {
6346 pause->rx_pause =
6347 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6348 pause->tx_pause =
6349 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6350 } else {
6351 pause->rx_pause =
6352 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6353 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6354 pause->tx_pause =
6355 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6356 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6357 }
6358 }
6359
6360 /**
6361 * netdev_set_pauseparam - set flow control parameters
6362 * @dev: Network device.
6363 * @pause: Ethtool PAUSE settings data structure.
6364 *
6365 * This function sets the PAUSE control flow settings.
6366 * Not implemented yet.
6367 *
6368 * Return 0 if successful; otherwise an error code.
6369 */
6370 static int netdev_set_pauseparam(struct net_device *dev,
6371 struct ethtool_pauseparam *pause)
6372 {
6373 struct dev_priv *priv = netdev_priv(dev);
6374 struct dev_info *hw_priv = priv->adapter;
6375 struct ksz_hw *hw = &hw_priv->hw;
6376 struct ksz_port *port = &priv->port;
6377
6378 mutex_lock(&hw_priv->lock);
6379 if (pause->autoneg) {
6380 if (!pause->rx_pause && !pause->tx_pause)
6381 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6382 else
6383 port->flow_ctrl = PHY_FLOW_CTRL;
6384 hw->overrides &= ~PAUSE_FLOW_CTRL;
6385 port->force_link = 0;
6386 if (hw->ksz_switch) {
6387 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6388 SWITCH_RX_FLOW_CTRL, 1);
6389 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6390 SWITCH_TX_FLOW_CTRL, 1);
6391 }
6392 port_set_link_speed(port);
6393 } else {
6394 hw->overrides |= PAUSE_FLOW_CTRL;
6395 if (hw->ksz_switch) {
6396 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6397 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6398 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6399 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6400 } else
6401 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6402 }
6403 mutex_unlock(&hw_priv->lock);
6404
6405 return 0;
6406 }
6407
6408 /**
6409 * netdev_get_ringparam - get tx/rx ring parameters
6410 * @dev: Network device.
6411 * @pause: Ethtool RING settings data structure.
6412 *
6413 * This procedure returns the TX/RX ring settings.
6414 */
6415 static void netdev_get_ringparam(struct net_device *dev,
6416 struct ethtool_ringparam *ring)
6417 {
6418 struct dev_priv *priv = netdev_priv(dev);
6419 struct dev_info *hw_priv = priv->adapter;
6420 struct ksz_hw *hw = &hw_priv->hw;
6421
6422 ring->tx_max_pending = (1 << 9);
6423 ring->tx_pending = hw->tx_desc_info.alloc;
6424 ring->rx_max_pending = (1 << 9);
6425 ring->rx_pending = hw->rx_desc_info.alloc;
6426 }
6427
6428 #define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6429
6430 static struct {
6431 char string[ETH_GSTRING_LEN];
6432 } ethtool_stats_keys[STATS_LEN] = {
6433 { "rx_lo_priority_octets" },
6434 { "rx_hi_priority_octets" },
6435 { "rx_undersize_packets" },
6436 { "rx_fragments" },
6437 { "rx_oversize_packets" },
6438 { "rx_jabbers" },
6439 { "rx_symbol_errors" },
6440 { "rx_crc_errors" },
6441 { "rx_align_errors" },
6442 { "rx_mac_ctrl_packets" },
6443 { "rx_pause_packets" },
6444 { "rx_bcast_packets" },
6445 { "rx_mcast_packets" },
6446 { "rx_ucast_packets" },
6447 { "rx_64_or_less_octet_packets" },
6448 { "rx_65_to_127_octet_packets" },
6449 { "rx_128_to_255_octet_packets" },
6450 { "rx_256_to_511_octet_packets" },
6451 { "rx_512_to_1023_octet_packets" },
6452 { "rx_1024_to_1522_octet_packets" },
6453
6454 { "tx_lo_priority_octets" },
6455 { "tx_hi_priority_octets" },
6456 { "tx_late_collisions" },
6457 { "tx_pause_packets" },
6458 { "tx_bcast_packets" },
6459 { "tx_mcast_packets" },
6460 { "tx_ucast_packets" },
6461 { "tx_deferred" },
6462 { "tx_total_collisions" },
6463 { "tx_excessive_collisions" },
6464 { "tx_single_collisions" },
6465 { "tx_mult_collisions" },
6466
6467 { "rx_discards" },
6468 { "tx_discards" },
6469 };
6470
6471 /**
6472 * netdev_get_strings - get statistics identity strings
6473 * @dev: Network device.
6474 * @stringset: String set identifier.
6475 * @buf: Buffer to store the strings.
6476 *
6477 * This procedure returns the strings used to identify the statistics.
6478 */
6479 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6480 {
6481 struct dev_priv *priv = netdev_priv(dev);
6482 struct dev_info *hw_priv = priv->adapter;
6483 struct ksz_hw *hw = &hw_priv->hw;
6484
6485 if (ETH_SS_STATS == stringset)
6486 memcpy(buf, &ethtool_stats_keys,
6487 ETH_GSTRING_LEN * hw->mib_cnt);
6488 }
6489
6490 /**
6491 * netdev_get_sset_count - get statistics size
6492 * @dev: Network device.
6493 * @sset: The statistics set number.
6494 *
6495 * This function returns the size of the statistics to be reported.
6496 *
6497 * Return size of the statistics to be reported.
6498 */
6499 static int netdev_get_sset_count(struct net_device *dev, int sset)
6500 {
6501 struct dev_priv *priv = netdev_priv(dev);
6502 struct dev_info *hw_priv = priv->adapter;
6503 struct ksz_hw *hw = &hw_priv->hw;
6504
6505 switch (sset) {
6506 case ETH_SS_STATS:
6507 return hw->mib_cnt;
6508 default:
6509 return -EOPNOTSUPP;
6510 }
6511 }
6512
6513 /**
6514 * netdev_get_ethtool_stats - get network device statistics
6515 * @dev: Network device.
6516 * @stats: Ethtool statistics data structure.
6517 * @data: Buffer to store the statistics.
6518 *
6519 * This procedure returns the statistics.
6520 */
6521 static void netdev_get_ethtool_stats(struct net_device *dev,
6522 struct ethtool_stats *stats, u64 *data)
6523 {
6524 struct dev_priv *priv = netdev_priv(dev);
6525 struct dev_info *hw_priv = priv->adapter;
6526 struct ksz_hw *hw = &hw_priv->hw;
6527 struct ksz_port *port = &priv->port;
6528 int n_stats = stats->n_stats;
6529 int i;
6530 int n;
6531 int p;
6532 int rc;
6533 u64 counter[TOTAL_PORT_COUNTER_NUM];
6534
6535 mutex_lock(&hw_priv->lock);
6536 n = SWITCH_PORT_NUM;
6537 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6538 if (media_connected == hw->port_mib[p].state) {
6539 hw_priv->counter[p].read = 1;
6540
6541 /* Remember first port that requests read. */
6542 if (n == SWITCH_PORT_NUM)
6543 n = p;
6544 }
6545 }
6546 mutex_unlock(&hw_priv->lock);
6547
6548 if (n < SWITCH_PORT_NUM)
6549 schedule_work(&hw_priv->mib_read);
6550
6551 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6552 p = n;
6553 rc = wait_event_interruptible_timeout(
6554 hw_priv->counter[p].counter,
6555 2 == hw_priv->counter[p].read,
6556 HZ * 1);
6557 } else
6558 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6559 if (0 == i) {
6560 rc = wait_event_interruptible_timeout(
6561 hw_priv->counter[p].counter,
6562 2 == hw_priv->counter[p].read,
6563 HZ * 2);
6564 } else if (hw->port_mib[p].cnt_ptr) {
6565 rc = wait_event_interruptible_timeout(
6566 hw_priv->counter[p].counter,
6567 2 == hw_priv->counter[p].read,
6568 HZ * 1);
6569 }
6570 }
6571
6572 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6573 n = hw->mib_cnt;
6574 if (n > n_stats)
6575 n = n_stats;
6576 n_stats -= n;
6577 for (i = 0; i < n; i++)
6578 *data++ = counter[i];
6579 }
6580
6581 /**
6582 * netdev_set_features - set receive checksum support
6583 * @dev: Network device.
6584 * @features: New device features (offloads).
6585 *
6586 * This function sets receive checksum support setting.
6587 *
6588 * Return 0 if successful; otherwise an error code.
6589 */
6590 static int netdev_set_features(struct net_device *dev, u32 features)
6591 {
6592 struct dev_priv *priv = netdev_priv(dev);
6593 struct dev_info *hw_priv = priv->adapter;
6594 struct ksz_hw *hw = &hw_priv->hw;
6595
6596 mutex_lock(&hw_priv->lock);
6597
6598 /* see note in hw_setup() */
6599 if (features & NETIF_F_RXCSUM)
6600 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6601 else
6602 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6603
6604 if (hw->enabled)
6605 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6606
6607 mutex_unlock(&hw_priv->lock);
6608
6609 return 0;
6610 }
6611
6612 static struct ethtool_ops netdev_ethtool_ops = {
6613 .get_settings = netdev_get_settings,
6614 .set_settings = netdev_set_settings,
6615 .nway_reset = netdev_nway_reset,
6616 .get_link = netdev_get_link,
6617 .get_drvinfo = netdev_get_drvinfo,
6618 .get_regs_len = netdev_get_regs_len,
6619 .get_regs = netdev_get_regs,
6620 .get_wol = netdev_get_wol,
6621 .set_wol = netdev_set_wol,
6622 .get_msglevel = netdev_get_msglevel,
6623 .set_msglevel = netdev_set_msglevel,
6624 .get_eeprom_len = netdev_get_eeprom_len,
6625 .get_eeprom = netdev_get_eeprom,
6626 .set_eeprom = netdev_set_eeprom,
6627 .get_pauseparam = netdev_get_pauseparam,
6628 .set_pauseparam = netdev_set_pauseparam,
6629 .get_ringparam = netdev_get_ringparam,
6630 .get_strings = netdev_get_strings,
6631 .get_sset_count = netdev_get_sset_count,
6632 .get_ethtool_stats = netdev_get_ethtool_stats,
6633 };
6634
6635 /*
6636 * Hardware monitoring
6637 */
6638
6639 static void update_link(struct net_device *dev, struct dev_priv *priv,
6640 struct ksz_port *port)
6641 {
6642 if (priv->media_state != port->linked->state) {
6643 priv->media_state = port->linked->state;
6644 if (netif_running(dev))
6645 set_media_state(dev, media_connected);
6646 }
6647 }
6648
6649 static void mib_read_work(struct work_struct *work)
6650 {
6651 struct dev_info *hw_priv =
6652 container_of(work, struct dev_info, mib_read);
6653 struct ksz_hw *hw = &hw_priv->hw;
6654 struct ksz_port_mib *mib;
6655 int i;
6656
6657 next_jiffies = jiffies;
6658 for (i = 0; i < hw->mib_port_cnt; i++) {
6659 mib = &hw->port_mib[i];
6660
6661 /* Reading MIB counters or requested to read. */
6662 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6663
6664 /* Need to process receive interrupt. */
6665 if (port_r_cnt(hw, i))
6666 break;
6667 hw_priv->counter[i].read = 0;
6668
6669 /* Finish reading counters. */
6670 if (0 == mib->cnt_ptr) {
6671 hw_priv->counter[i].read = 2;
6672 wake_up_interruptible(
6673 &hw_priv->counter[i].counter);
6674 }
6675 } else if (jiffies >= hw_priv->counter[i].time) {
6676 /* Only read MIB counters when the port is connected. */
6677 if (media_connected == mib->state)
6678 hw_priv->counter[i].read = 1;
6679 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6680 hw_priv->counter[i].time = next_jiffies;
6681
6682 /* Port is just disconnected. */
6683 } else if (mib->link_down) {
6684 mib->link_down = 0;
6685
6686 /* Read counters one last time after link is lost. */
6687 hw_priv->counter[i].read = 1;
6688 }
6689 }
6690 }
6691
6692 static void mib_monitor(unsigned long ptr)
6693 {
6694 struct dev_info *hw_priv = (struct dev_info *) ptr;
6695
6696 mib_read_work(&hw_priv->mib_read);
6697
6698 /* This is used to verify Wake-on-LAN is working. */
6699 if (hw_priv->pme_wait) {
6700 if (hw_priv->pme_wait <= jiffies) {
6701 hw_clr_wol_pme_status(&hw_priv->hw);
6702 hw_priv->pme_wait = 0;
6703 }
6704 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6705
6706 /* PME is asserted. Wait 2 seconds to clear it. */
6707 hw_priv->pme_wait = jiffies + HZ * 2;
6708 }
6709
6710 ksz_update_timer(&hw_priv->mib_timer_info);
6711 }
6712
6713 /**
6714 * dev_monitor - periodic monitoring
6715 * @ptr: Network device pointer.
6716 *
6717 * This routine is run in a kernel timer to monitor the network device.
6718 */
6719 static void dev_monitor(unsigned long ptr)
6720 {
6721 struct net_device *dev = (struct net_device *) ptr;
6722 struct dev_priv *priv = netdev_priv(dev);
6723 struct dev_info *hw_priv = priv->adapter;
6724 struct ksz_hw *hw = &hw_priv->hw;
6725 struct ksz_port *port = &priv->port;
6726
6727 if (!(hw->features & LINK_INT_WORKING))
6728 port_get_link_speed(port);
6729 update_link(dev, priv, port);
6730
6731 ksz_update_timer(&priv->monitor_timer_info);
6732 }
6733
6734 /*
6735 * Linux network device interface functions
6736 */
6737
6738 /* Driver exported variables */
6739
6740 static int msg_enable;
6741
6742 static char *macaddr = ":";
6743 static char *mac1addr = ":";
6744
6745 /*
6746 * This enables multiple network device mode for KSZ8842, which contains a
6747 * switch with two physical ports. Some users like to take control of the
6748 * ports for running Spanning Tree Protocol. The driver will create an
6749 * additional eth? device for the other port.
6750 *
6751 * Some limitations are the network devices cannot have different MTU and
6752 * multicast hash tables.
6753 */
6754 static int multi_dev;
6755
6756 /*
6757 * As most users select multiple network device mode to use Spanning Tree
6758 * Protocol, this enables a feature in which most unicast and multicast packets
6759 * are forwarded inside the switch and not passed to the host. Only packets
6760 * that need the host's attention are passed to it. This prevents the host
6761 * wasting CPU time to examine each and every incoming packets and do the
6762 * forwarding itself.
6763 *
6764 * As the hack requires the private bridge header, the driver cannot compile
6765 * with just the kernel headers.
6766 *
6767 * Enabling STP support also turns on multiple network device mode.
6768 */
6769 static int stp;
6770
6771 /*
6772 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6773 * needs that. However, fast aging is used to flush the dynamic MAC table when
6774 * STP suport is enabled.
6775 */
6776 static int fast_aging;
6777
6778 /**
6779 * netdev_init - initialize network device.
6780 * @dev: Network device.
6781 *
6782 * This function initializes the network device.
6783 *
6784 * Return 0 if successful; otherwise an error code indicating failure.
6785 */
6786 static int __init netdev_init(struct net_device *dev)
6787 {
6788 struct dev_priv *priv = netdev_priv(dev);
6789
6790 /* 500 ms timeout */
6791 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6792 dev_monitor, dev);
6793
6794 /* 500 ms timeout */
6795 dev->watchdog_timeo = HZ / 2;
6796
6797 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6798
6799 /*
6800 * Hardware does not really support IPv6 checksum generation, but
6801 * driver actually runs faster with this on.
6802 */
6803 dev->hw_features |= NETIF_F_IPV6_CSUM;
6804
6805 dev->features |= dev->hw_features;
6806
6807 sema_init(&priv->proc_sem, 1);
6808
6809 priv->mii_if.phy_id_mask = 0x1;
6810 priv->mii_if.reg_num_mask = 0x7;
6811 priv->mii_if.dev = dev;
6812 priv->mii_if.mdio_read = mdio_read;
6813 priv->mii_if.mdio_write = mdio_write;
6814 priv->mii_if.phy_id = priv->port.first_port + 1;
6815
6816 priv->msg_enable = netif_msg_init(msg_enable,
6817 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6818
6819 return 0;
6820 }
6821
6822 static const struct net_device_ops netdev_ops = {
6823 .ndo_init = netdev_init,
6824 .ndo_open = netdev_open,
6825 .ndo_stop = netdev_close,
6826 .ndo_get_stats = netdev_query_statistics,
6827 .ndo_start_xmit = netdev_tx,
6828 .ndo_tx_timeout = netdev_tx_timeout,
6829 .ndo_change_mtu = netdev_change_mtu,
6830 .ndo_set_features = netdev_set_features,
6831 .ndo_set_mac_address = netdev_set_mac_address,
6832 .ndo_validate_addr = eth_validate_addr,
6833 .ndo_do_ioctl = netdev_ioctl,
6834 .ndo_set_rx_mode = netdev_set_rx_mode,
6835 #ifdef CONFIG_NET_POLL_CONTROLLER
6836 .ndo_poll_controller = netdev_netpoll,
6837 #endif
6838 };
6839
6840 static void netdev_free(struct net_device *dev)
6841 {
6842 if (dev->watchdog_timeo)
6843 unregister_netdev(dev);
6844
6845 free_netdev(dev);
6846 }
6847
6848 struct platform_info {
6849 struct dev_info dev_info;
6850 struct net_device *netdev[SWITCH_PORT_NUM];
6851 };
6852
6853 static int net_device_present;
6854
6855 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6856 {
6857 int i;
6858 int j;
6859 int got_num;
6860 int num;
6861
6862 i = j = num = got_num = 0;
6863 while (j < MAC_ADDR_LEN) {
6864 if (macaddr[i]) {
6865 int digit;
6866
6867 got_num = 1;
6868 digit = hex_to_bin(macaddr[i]);
6869 if (digit >= 0)
6870 num = num * 16 + digit;
6871 else if (':' == macaddr[i])
6872 got_num = 2;
6873 else
6874 break;
6875 } else if (got_num)
6876 got_num = 2;
6877 else
6878 break;
6879 if (2 == got_num) {
6880 if (MAIN_PORT == port) {
6881 hw_priv->hw.override_addr[j++] = (u8) num;
6882 hw_priv->hw.override_addr[5] +=
6883 hw_priv->hw.id;
6884 } else {
6885 hw_priv->hw.ksz_switch->other_addr[j++] =
6886 (u8) num;
6887 hw_priv->hw.ksz_switch->other_addr[5] +=
6888 hw_priv->hw.id;
6889 }
6890 num = got_num = 0;
6891 }
6892 i++;
6893 }
6894 if (MAC_ADDR_LEN == j) {
6895 if (MAIN_PORT == port)
6896 hw_priv->hw.mac_override = 1;
6897 }
6898 }
6899
6900 #define KS884X_DMA_MASK (~0x0UL)
6901
6902 static void read_other_addr(struct ksz_hw *hw)
6903 {
6904 int i;
6905 u16 data[3];
6906 struct ksz_switch *sw = hw->ksz_switch;
6907
6908 for (i = 0; i < 3; i++)
6909 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6910 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6911 sw->other_addr[5] = (u8) data[0];
6912 sw->other_addr[4] = (u8)(data[0] >> 8);
6913 sw->other_addr[3] = (u8) data[1];
6914 sw->other_addr[2] = (u8)(data[1] >> 8);
6915 sw->other_addr[1] = (u8) data[2];
6916 sw->other_addr[0] = (u8)(data[2] >> 8);
6917 }
6918 }
6919
6920 #ifndef PCI_VENDOR_ID_MICREL_KS
6921 #define PCI_VENDOR_ID_MICREL_KS 0x16c6
6922 #endif
6923
6924 static int __devinit pcidev_init(struct pci_dev *pdev,
6925 const struct pci_device_id *id)
6926 {
6927 struct net_device *dev;
6928 struct dev_priv *priv;
6929 struct dev_info *hw_priv;
6930 struct ksz_hw *hw;
6931 struct platform_info *info;
6932 struct ksz_port *port;
6933 unsigned long reg_base;
6934 unsigned long reg_len;
6935 int cnt;
6936 int i;
6937 int mib_port_count;
6938 int pi;
6939 int port_count;
6940 int result;
6941 char banner[sizeof(version)];
6942 struct ksz_switch *sw = NULL;
6943
6944 result = pci_enable_device(pdev);
6945 if (result)
6946 return result;
6947
6948 result = -ENODEV;
6949
6950 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6951 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6952 return result;
6953
6954 reg_base = pci_resource_start(pdev, 0);
6955 reg_len = pci_resource_len(pdev, 0);
6956 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6957 return result;
6958
6959 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6960 return result;
6961 pci_set_master(pdev);
6962
6963 result = -ENOMEM;
6964
6965 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6966 if (!info)
6967 goto pcidev_init_dev_err;
6968
6969 hw_priv = &info->dev_info;
6970 hw_priv->pdev = pdev;
6971
6972 hw = &hw_priv->hw;
6973
6974 hw->io = ioremap(reg_base, reg_len);
6975 if (!hw->io)
6976 goto pcidev_init_io_err;
6977
6978 cnt = hw_init(hw);
6979 if (!cnt) {
6980 if (msg_enable & NETIF_MSG_PROBE)
6981 pr_alert("chip not detected\n");
6982 result = -ENODEV;
6983 goto pcidev_init_alloc_err;
6984 }
6985
6986 snprintf(banner, sizeof(banner), "%s", version);
6987 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
6988 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6989 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6990
6991 /* Assume device is KSZ8841. */
6992 hw->dev_count = 1;
6993 port_count = 1;
6994 mib_port_count = 1;
6995 hw->addr_list_size = 0;
6996 hw->mib_cnt = PORT_COUNTER_NUM;
6997 hw->mib_port_cnt = 1;
6998
6999 /* KSZ8842 has a switch with multiple ports. */
7000 if (2 == cnt) {
7001 if (fast_aging)
7002 hw->overrides |= FAST_AGING;
7003
7004 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7005
7006 /* Multiple network device interfaces are required. */
7007 if (multi_dev) {
7008 hw->dev_count = SWITCH_PORT_NUM;
7009 hw->addr_list_size = SWITCH_PORT_NUM - 1;
7010 }
7011
7012 /* Single network device has multiple ports. */
7013 if (1 == hw->dev_count) {
7014 port_count = SWITCH_PORT_NUM;
7015 mib_port_count = SWITCH_PORT_NUM;
7016 }
7017 hw->mib_port_cnt = TOTAL_PORT_NUM;
7018 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7019 if (!hw->ksz_switch)
7020 goto pcidev_init_alloc_err;
7021
7022 sw = hw->ksz_switch;
7023 }
7024 for (i = 0; i < hw->mib_port_cnt; i++)
7025 hw->port_mib[i].mib_start = 0;
7026
7027 hw->parent = hw_priv;
7028
7029 /* Default MTU is 1500. */
7030 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7031
7032 if (ksz_alloc_mem(hw_priv))
7033 goto pcidev_init_mem_err;
7034
7035 hw_priv->hw.id = net_device_present;
7036
7037 spin_lock_init(&hw_priv->hwlock);
7038 mutex_init(&hw_priv->lock);
7039
7040 /* tasklet is enabled. */
7041 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7042 (unsigned long) hw_priv);
7043 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7044 (unsigned long) hw_priv);
7045
7046 /* tasklet_enable will decrement the atomic counter. */
7047 tasklet_disable(&hw_priv->rx_tasklet);
7048 tasklet_disable(&hw_priv->tx_tasklet);
7049
7050 for (i = 0; i < TOTAL_PORT_NUM; i++)
7051 init_waitqueue_head(&hw_priv->counter[i].counter);
7052
7053 if (macaddr[0] != ':')
7054 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7055
7056 /* Read MAC address and initialize override address if not overrided. */
7057 hw_read_addr(hw);
7058
7059 /* Multiple device interfaces mode requires a second MAC address. */
7060 if (hw->dev_count > 1) {
7061 memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
7062 read_other_addr(hw);
7063 if (mac1addr[0] != ':')
7064 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7065 }
7066
7067 hw_setup(hw);
7068 if (hw->ksz_switch)
7069 sw_setup(hw);
7070 else {
7071 hw_priv->wol_support = WOL_SUPPORT;
7072 hw_priv->wol_enable = 0;
7073 }
7074
7075 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7076
7077 /* 500 ms timeout */
7078 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7079 mib_monitor, hw_priv);
7080
7081 for (i = 0; i < hw->dev_count; i++) {
7082 dev = alloc_etherdev(sizeof(struct dev_priv));
7083 if (!dev)
7084 goto pcidev_init_reg_err;
7085 info->netdev[i] = dev;
7086
7087 priv = netdev_priv(dev);
7088 priv->adapter = hw_priv;
7089 priv->id = net_device_present++;
7090
7091 port = &priv->port;
7092 port->port_cnt = port_count;
7093 port->mib_port_cnt = mib_port_count;
7094 port->first_port = i;
7095 port->flow_ctrl = PHY_FLOW_CTRL;
7096
7097 port->hw = hw;
7098 port->linked = &hw->port_info[port->first_port];
7099
7100 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7101 hw->port_info[pi].port_id = pi;
7102 hw->port_info[pi].pdev = dev;
7103 hw->port_info[pi].state = media_disconnected;
7104 }
7105
7106 dev->mem_start = (unsigned long) hw->io;
7107 dev->mem_end = dev->mem_start + reg_len - 1;
7108 dev->irq = pdev->irq;
7109 if (MAIN_PORT == i)
7110 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7111 MAC_ADDR_LEN);
7112 else {
7113 memcpy(dev->dev_addr, sw->other_addr,
7114 MAC_ADDR_LEN);
7115 if (!memcmp(sw->other_addr, hw->override_addr,
7116 MAC_ADDR_LEN))
7117 dev->dev_addr[5] += port->first_port;
7118 }
7119
7120 dev->netdev_ops = &netdev_ops;
7121 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7122 if (register_netdev(dev))
7123 goto pcidev_init_reg_err;
7124 port_set_power_saving(port, true);
7125 }
7126
7127 pci_dev_get(hw_priv->pdev);
7128 pci_set_drvdata(pdev, info);
7129 return 0;
7130
7131 pcidev_init_reg_err:
7132 for (i = 0; i < hw->dev_count; i++) {
7133 if (info->netdev[i]) {
7134 netdev_free(info->netdev[i]);
7135 info->netdev[i] = NULL;
7136 }
7137 }
7138
7139 pcidev_init_mem_err:
7140 ksz_free_mem(hw_priv);
7141 kfree(hw->ksz_switch);
7142
7143 pcidev_init_alloc_err:
7144 iounmap(hw->io);
7145
7146 pcidev_init_io_err:
7147 kfree(info);
7148
7149 pcidev_init_dev_err:
7150 release_mem_region(reg_base, reg_len);
7151
7152 return result;
7153 }
7154
7155 static void pcidev_exit(struct pci_dev *pdev)
7156 {
7157 int i;
7158 struct platform_info *info = pci_get_drvdata(pdev);
7159 struct dev_info *hw_priv = &info->dev_info;
7160
7161 pci_set_drvdata(pdev, NULL);
7162
7163 release_mem_region(pci_resource_start(pdev, 0),
7164 pci_resource_len(pdev, 0));
7165 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7166 if (info->netdev[i])
7167 netdev_free(info->netdev[i]);
7168 }
7169 if (hw_priv->hw.io)
7170 iounmap(hw_priv->hw.io);
7171 ksz_free_mem(hw_priv);
7172 kfree(hw_priv->hw.ksz_switch);
7173 pci_dev_put(hw_priv->pdev);
7174 kfree(info);
7175 }
7176
7177 #ifdef CONFIG_PM
7178 static int pcidev_resume(struct pci_dev *pdev)
7179 {
7180 int i;
7181 struct platform_info *info = pci_get_drvdata(pdev);
7182 struct dev_info *hw_priv = &info->dev_info;
7183 struct ksz_hw *hw = &hw_priv->hw;
7184
7185 pci_set_power_state(pdev, PCI_D0);
7186 pci_restore_state(pdev);
7187 pci_enable_wake(pdev, PCI_D0, 0);
7188
7189 if (hw_priv->wol_enable)
7190 hw_cfg_wol_pme(hw, 0);
7191 for (i = 0; i < hw->dev_count; i++) {
7192 if (info->netdev[i]) {
7193 struct net_device *dev = info->netdev[i];
7194
7195 if (netif_running(dev)) {
7196 netdev_open(dev);
7197 netif_device_attach(dev);
7198 }
7199 }
7200 }
7201 return 0;
7202 }
7203
7204 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7205 {
7206 int i;
7207 struct platform_info *info = pci_get_drvdata(pdev);
7208 struct dev_info *hw_priv = &info->dev_info;
7209 struct ksz_hw *hw = &hw_priv->hw;
7210
7211 /* Need to find a way to retrieve the device IP address. */
7212 static const u8 net_addr[] = { 192, 168, 1, 1 };
7213
7214 for (i = 0; i < hw->dev_count; i++) {
7215 if (info->netdev[i]) {
7216 struct net_device *dev = info->netdev[i];
7217
7218 if (netif_running(dev)) {
7219 netif_device_detach(dev);
7220 netdev_close(dev);
7221 }
7222 }
7223 }
7224 if (hw_priv->wol_enable) {
7225 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7226 hw_cfg_wol_pme(hw, 1);
7227 }
7228
7229 pci_save_state(pdev);
7230 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7231 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7232 return 0;
7233 }
7234 #endif
7235
7236 static char pcidev_name[] = "ksz884xp";
7237
7238 static struct pci_device_id pcidev_table[] = {
7239 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7241 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7243 { 0 }
7244 };
7245
7246 MODULE_DEVICE_TABLE(pci, pcidev_table);
7247
7248 static struct pci_driver pci_device_driver = {
7249 #ifdef CONFIG_PM
7250 .suspend = pcidev_suspend,
7251 .resume = pcidev_resume,
7252 #endif
7253 .name = pcidev_name,
7254 .id_table = pcidev_table,
7255 .probe = pcidev_init,
7256 .remove = pcidev_exit
7257 };
7258
7259 static int __init ksz884x_init_module(void)
7260 {
7261 return pci_register_driver(&pci_device_driver);
7262 }
7263
7264 static void __exit ksz884x_cleanup_module(void)
7265 {
7266 pci_unregister_driver(&pci_device_driver);
7267 }
7268
7269 module_init(ksz884x_init_module);
7270 module_exit(ksz884x_cleanup_module);
7271
7272 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7273 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7274 MODULE_LICENSE("GPL");
7275
7276 module_param_named(message, msg_enable, int, 0);
7277 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7278
7279 module_param(macaddr, charp, 0);
7280 module_param(mac1addr, charp, 0);
7281 module_param(fast_aging, int, 0);
7282 module_param(multi_dev, int, 0);
7283 module_param(stp, int, 0);
7284 MODULE_PARM_DESC(macaddr, "MAC address");
7285 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7286 MODULE_PARM_DESC(fast_aging, "Fast aging");
7287 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7288 MODULE_PARM_DESC(stp, "STP support");