]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/neterion/vxge/vxge-main.c
Merge remote-tracking branches 'regulator/topic/s5m8767', 'regulator/topic/st-pwm...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / neterion / vxge / vxge-main.c
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-main.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 *
14 * The module loadable parameters that are supported by the driver and a brief
15 * explanation of all the variables:
16 * vlan_tag_strip:
17 * Strip VLAN Tag enable/disable. Instructs the device to remove
18 * the VLAN tag from all received tagged frames that are not
19 * replicated at the internal L2 switch.
20 * 0 - Do not strip the VLAN tag.
21 * 1 - Strip the VLAN tag.
22 *
23 * addr_learn_en:
24 * Enable learning the mac address of the guest OS interface in
25 * a virtualization environment.
26 * 0 - DISABLE
27 * 1 - ENABLE
28 *
29 * max_config_port:
30 * Maximum number of port to be supported.
31 * MIN -1 and MAX - 2
32 *
33 * max_config_vpath:
34 * This configures the maximum no of VPATH configures for each
35 * device function.
36 * MIN - 1 and MAX - 17
37 *
38 * max_config_dev:
39 * This configures maximum no of Device function to be enabled.
40 * MIN - 1 and MAX - 17
41 *
42 ******************************************************************************/
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/bitops.h>
47 #include <linux/if_vlan.h>
48 #include <linux/interrupt.h>
49 #include <linux/pci.h>
50 #include <linux/slab.h>
51 #include <linux/tcp.h>
52 #include <net/ip.h>
53 #include <linux/netdevice.h>
54 #include <linux/etherdevice.h>
55 #include <linux/firmware.h>
56 #include <linux/net_tstamp.h>
57 #include <linux/prefetch.h>
58 #include <linux/module.h>
59 #include "vxge-main.h"
60 #include "vxge-reg.h"
61
62 MODULE_LICENSE("Dual BSD/GPL");
63 MODULE_DESCRIPTION("Neterion's X3100 Series 10GbE PCIe I/O"
64 "Virtualized Server Adapter");
65
66 static DEFINE_PCI_DEVICE_TABLE(vxge_id_table) = {
67 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_WIN, PCI_ANY_ID,
68 PCI_ANY_ID},
69 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_UNI, PCI_ANY_ID,
70 PCI_ANY_ID},
71 {0}
72 };
73
74 MODULE_DEVICE_TABLE(pci, vxge_id_table);
75
76 VXGE_MODULE_PARAM_INT(vlan_tag_strip, VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE);
77 VXGE_MODULE_PARAM_INT(addr_learn_en, VXGE_HW_MAC_ADDR_LEARN_DEFAULT);
78 VXGE_MODULE_PARAM_INT(max_config_port, VXGE_MAX_CONFIG_PORT);
79 VXGE_MODULE_PARAM_INT(max_config_vpath, VXGE_USE_DEFAULT);
80 VXGE_MODULE_PARAM_INT(max_mac_vpath, VXGE_MAX_MAC_ADDR_COUNT);
81 VXGE_MODULE_PARAM_INT(max_config_dev, VXGE_MAX_CONFIG_DEV);
82
83 static u16 vpath_selector[VXGE_HW_MAX_VIRTUAL_PATHS] =
84 {0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31};
85 static unsigned int bw_percentage[VXGE_HW_MAX_VIRTUAL_PATHS] =
86 {[0 ...(VXGE_HW_MAX_VIRTUAL_PATHS - 1)] = 0xFF};
87 module_param_array(bw_percentage, uint, NULL, 0);
88
89 static struct vxge_drv_config *driver_config;
90 static enum vxge_hw_status vxge_reset_all_vpaths(struct vxgedev *vdev);
91
92 static inline int is_vxge_card_up(struct vxgedev *vdev)
93 {
94 return test_bit(__VXGE_STATE_CARD_UP, &vdev->state);
95 }
96
97 static inline void VXGE_COMPLETE_VPATH_TX(struct vxge_fifo *fifo)
98 {
99 struct sk_buff **skb_ptr = NULL;
100 struct sk_buff **temp;
101 #define NR_SKB_COMPLETED 128
102 struct sk_buff *completed[NR_SKB_COMPLETED];
103 int more;
104
105 do {
106 more = 0;
107 skb_ptr = completed;
108
109 if (__netif_tx_trylock(fifo->txq)) {
110 vxge_hw_vpath_poll_tx(fifo->handle, &skb_ptr,
111 NR_SKB_COMPLETED, &more);
112 __netif_tx_unlock(fifo->txq);
113 }
114
115 /* free SKBs */
116 for (temp = completed; temp != skb_ptr; temp++)
117 dev_kfree_skb_irq(*temp);
118 } while (more);
119 }
120
121 static inline void VXGE_COMPLETE_ALL_TX(struct vxgedev *vdev)
122 {
123 int i;
124
125 /* Complete all transmits */
126 for (i = 0; i < vdev->no_of_vpath; i++)
127 VXGE_COMPLETE_VPATH_TX(&vdev->vpaths[i].fifo);
128 }
129
130 static inline void VXGE_COMPLETE_ALL_RX(struct vxgedev *vdev)
131 {
132 int i;
133 struct vxge_ring *ring;
134
135 /* Complete all receives*/
136 for (i = 0; i < vdev->no_of_vpath; i++) {
137 ring = &vdev->vpaths[i].ring;
138 vxge_hw_vpath_poll_rx(ring->handle);
139 }
140 }
141
142 /*
143 * vxge_callback_link_up
144 *
145 * This function is called during interrupt context to notify link up state
146 * change.
147 */
148 static void vxge_callback_link_up(struct __vxge_hw_device *hldev)
149 {
150 struct net_device *dev = hldev->ndev;
151 struct vxgedev *vdev = netdev_priv(dev);
152
153 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
154 vdev->ndev->name, __func__, __LINE__);
155 netdev_notice(vdev->ndev, "Link Up\n");
156 vdev->stats.link_up++;
157
158 netif_carrier_on(vdev->ndev);
159 netif_tx_wake_all_queues(vdev->ndev);
160
161 vxge_debug_entryexit(VXGE_TRACE,
162 "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__);
163 }
164
165 /*
166 * vxge_callback_link_down
167 *
168 * This function is called during interrupt context to notify link down state
169 * change.
170 */
171 static void vxge_callback_link_down(struct __vxge_hw_device *hldev)
172 {
173 struct net_device *dev = hldev->ndev;
174 struct vxgedev *vdev = netdev_priv(dev);
175
176 vxge_debug_entryexit(VXGE_TRACE,
177 "%s: %s:%d", vdev->ndev->name, __func__, __LINE__);
178 netdev_notice(vdev->ndev, "Link Down\n");
179
180 vdev->stats.link_down++;
181 netif_carrier_off(vdev->ndev);
182 netif_tx_stop_all_queues(vdev->ndev);
183
184 vxge_debug_entryexit(VXGE_TRACE,
185 "%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__);
186 }
187
188 /*
189 * vxge_rx_alloc
190 *
191 * Allocate SKB.
192 */
193 static struct sk_buff *
194 vxge_rx_alloc(void *dtrh, struct vxge_ring *ring, const int skb_size)
195 {
196 struct net_device *dev;
197 struct sk_buff *skb;
198 struct vxge_rx_priv *rx_priv;
199
200 dev = ring->ndev;
201 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
202 ring->ndev->name, __func__, __LINE__);
203
204 rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
205
206 /* try to allocate skb first. this one may fail */
207 skb = netdev_alloc_skb(dev, skb_size +
208 VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
209 if (skb == NULL) {
210 vxge_debug_mem(VXGE_ERR,
211 "%s: out of memory to allocate SKB", dev->name);
212 ring->stats.skb_alloc_fail++;
213 return NULL;
214 }
215
216 vxge_debug_mem(VXGE_TRACE,
217 "%s: %s:%d Skb : 0x%p", ring->ndev->name,
218 __func__, __LINE__, skb);
219
220 skb_reserve(skb, VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
221
222 rx_priv->skb = skb;
223 rx_priv->skb_data = NULL;
224 rx_priv->data_size = skb_size;
225 vxge_debug_entryexit(VXGE_TRACE,
226 "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
227
228 return skb;
229 }
230
231 /*
232 * vxge_rx_map
233 */
234 static int vxge_rx_map(void *dtrh, struct vxge_ring *ring)
235 {
236 struct vxge_rx_priv *rx_priv;
237 dma_addr_t dma_addr;
238
239 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
240 ring->ndev->name, __func__, __LINE__);
241 rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
242
243 rx_priv->skb_data = rx_priv->skb->data;
244 dma_addr = pci_map_single(ring->pdev, rx_priv->skb_data,
245 rx_priv->data_size, PCI_DMA_FROMDEVICE);
246
247 if (unlikely(pci_dma_mapping_error(ring->pdev, dma_addr))) {
248 ring->stats.pci_map_fail++;
249 return -EIO;
250 }
251 vxge_debug_mem(VXGE_TRACE,
252 "%s: %s:%d 1 buffer mode dma_addr = 0x%llx",
253 ring->ndev->name, __func__, __LINE__,
254 (unsigned long long)dma_addr);
255 vxge_hw_ring_rxd_1b_set(dtrh, dma_addr, rx_priv->data_size);
256
257 rx_priv->data_dma = dma_addr;
258 vxge_debug_entryexit(VXGE_TRACE,
259 "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
260
261 return 0;
262 }
263
264 /*
265 * vxge_rx_initial_replenish
266 * Allocation of RxD as an initial replenish procedure.
267 */
268 static enum vxge_hw_status
269 vxge_rx_initial_replenish(void *dtrh, void *userdata)
270 {
271 struct vxge_ring *ring = (struct vxge_ring *)userdata;
272 struct vxge_rx_priv *rx_priv;
273
274 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
275 ring->ndev->name, __func__, __LINE__);
276 if (vxge_rx_alloc(dtrh, ring,
277 VXGE_LL_MAX_FRAME_SIZE(ring->ndev)) == NULL)
278 return VXGE_HW_FAIL;
279
280 if (vxge_rx_map(dtrh, ring)) {
281 rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
282 dev_kfree_skb(rx_priv->skb);
283
284 return VXGE_HW_FAIL;
285 }
286 vxge_debug_entryexit(VXGE_TRACE,
287 "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
288
289 return VXGE_HW_OK;
290 }
291
292 static inline void
293 vxge_rx_complete(struct vxge_ring *ring, struct sk_buff *skb, u16 vlan,
294 int pkt_length, struct vxge_hw_ring_rxd_info *ext_info)
295 {
296
297 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
298 ring->ndev->name, __func__, __LINE__);
299 skb_record_rx_queue(skb, ring->driver_id);
300 skb->protocol = eth_type_trans(skb, ring->ndev);
301
302 u64_stats_update_begin(&ring->stats.syncp);
303 ring->stats.rx_frms++;
304 ring->stats.rx_bytes += pkt_length;
305
306 if (skb->pkt_type == PACKET_MULTICAST)
307 ring->stats.rx_mcast++;
308 u64_stats_update_end(&ring->stats.syncp);
309
310 vxge_debug_rx(VXGE_TRACE,
311 "%s: %s:%d skb protocol = %d",
312 ring->ndev->name, __func__, __LINE__, skb->protocol);
313
314 if (ext_info->vlan &&
315 ring->vlan_tag_strip == VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE)
316 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ext_info->vlan);
317 napi_gro_receive(ring->napi_p, skb);
318
319 vxge_debug_entryexit(VXGE_TRACE,
320 "%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
321 }
322
323 static inline void vxge_re_pre_post(void *dtr, struct vxge_ring *ring,
324 struct vxge_rx_priv *rx_priv)
325 {
326 pci_dma_sync_single_for_device(ring->pdev,
327 rx_priv->data_dma, rx_priv->data_size, PCI_DMA_FROMDEVICE);
328
329 vxge_hw_ring_rxd_1b_set(dtr, rx_priv->data_dma, rx_priv->data_size);
330 vxge_hw_ring_rxd_pre_post(ring->handle, dtr);
331 }
332
333 static inline void vxge_post(int *dtr_cnt, void **first_dtr,
334 void *post_dtr, struct __vxge_hw_ring *ringh)
335 {
336 int dtr_count = *dtr_cnt;
337 if ((*dtr_cnt % VXGE_HW_RXSYNC_FREQ_CNT) == 0) {
338 if (*first_dtr)
339 vxge_hw_ring_rxd_post_post_wmb(ringh, *first_dtr);
340 *first_dtr = post_dtr;
341 } else
342 vxge_hw_ring_rxd_post_post(ringh, post_dtr);
343 dtr_count++;
344 *dtr_cnt = dtr_count;
345 }
346
347 /*
348 * vxge_rx_1b_compl
349 *
350 * If the interrupt is because of a received frame or if the receive ring
351 * contains fresh as yet un-processed frames, this function is called.
352 */
353 static enum vxge_hw_status
354 vxge_rx_1b_compl(struct __vxge_hw_ring *ringh, void *dtr,
355 u8 t_code, void *userdata)
356 {
357 struct vxge_ring *ring = (struct vxge_ring *)userdata;
358 struct net_device *dev = ring->ndev;
359 unsigned int dma_sizes;
360 void *first_dtr = NULL;
361 int dtr_cnt = 0;
362 int data_size;
363 dma_addr_t data_dma;
364 int pkt_length;
365 struct sk_buff *skb;
366 struct vxge_rx_priv *rx_priv;
367 struct vxge_hw_ring_rxd_info ext_info;
368 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
369 ring->ndev->name, __func__, __LINE__);
370
371 do {
372 prefetch((char *)dtr + L1_CACHE_BYTES);
373 rx_priv = vxge_hw_ring_rxd_private_get(dtr);
374 skb = rx_priv->skb;
375 data_size = rx_priv->data_size;
376 data_dma = rx_priv->data_dma;
377 prefetch(rx_priv->skb_data);
378
379 vxge_debug_rx(VXGE_TRACE,
380 "%s: %s:%d skb = 0x%p",
381 ring->ndev->name, __func__, __LINE__, skb);
382
383 vxge_hw_ring_rxd_1b_get(ringh, dtr, &dma_sizes);
384 pkt_length = dma_sizes;
385
386 pkt_length -= ETH_FCS_LEN;
387
388 vxge_debug_rx(VXGE_TRACE,
389 "%s: %s:%d Packet Length = %d",
390 ring->ndev->name, __func__, __LINE__, pkt_length);
391
392 vxge_hw_ring_rxd_1b_info_get(ringh, dtr, &ext_info);
393
394 /* check skb validity */
395 vxge_assert(skb);
396
397 prefetch((char *)skb + L1_CACHE_BYTES);
398 if (unlikely(t_code)) {
399 if (vxge_hw_ring_handle_tcode(ringh, dtr, t_code) !=
400 VXGE_HW_OK) {
401
402 ring->stats.rx_errors++;
403 vxge_debug_rx(VXGE_TRACE,
404 "%s: %s :%d Rx T_code is %d",
405 ring->ndev->name, __func__,
406 __LINE__, t_code);
407
408 /* If the t_code is not supported and if the
409 * t_code is other than 0x5 (unparseable packet
410 * such as unknown UPV6 header), Drop it !!!
411 */
412 vxge_re_pre_post(dtr, ring, rx_priv);
413
414 vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
415 ring->stats.rx_dropped++;
416 continue;
417 }
418 }
419
420 if (pkt_length > VXGE_LL_RX_COPY_THRESHOLD) {
421 if (vxge_rx_alloc(dtr, ring, data_size) != NULL) {
422 if (!vxge_rx_map(dtr, ring)) {
423 skb_put(skb, pkt_length);
424
425 pci_unmap_single(ring->pdev, data_dma,
426 data_size, PCI_DMA_FROMDEVICE);
427
428 vxge_hw_ring_rxd_pre_post(ringh, dtr);
429 vxge_post(&dtr_cnt, &first_dtr, dtr,
430 ringh);
431 } else {
432 dev_kfree_skb(rx_priv->skb);
433 rx_priv->skb = skb;
434 rx_priv->data_size = data_size;
435 vxge_re_pre_post(dtr, ring, rx_priv);
436
437 vxge_post(&dtr_cnt, &first_dtr, dtr,
438 ringh);
439 ring->stats.rx_dropped++;
440 break;
441 }
442 } else {
443 vxge_re_pre_post(dtr, ring, rx_priv);
444
445 vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
446 ring->stats.rx_dropped++;
447 break;
448 }
449 } else {
450 struct sk_buff *skb_up;
451
452 skb_up = netdev_alloc_skb(dev, pkt_length +
453 VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
454 if (skb_up != NULL) {
455 skb_reserve(skb_up,
456 VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
457
458 pci_dma_sync_single_for_cpu(ring->pdev,
459 data_dma, data_size,
460 PCI_DMA_FROMDEVICE);
461
462 vxge_debug_mem(VXGE_TRACE,
463 "%s: %s:%d skb_up = %p",
464 ring->ndev->name, __func__,
465 __LINE__, skb);
466 memcpy(skb_up->data, skb->data, pkt_length);
467
468 vxge_re_pre_post(dtr, ring, rx_priv);
469
470 vxge_post(&dtr_cnt, &first_dtr, dtr,
471 ringh);
472 /* will netif_rx small SKB instead */
473 skb = skb_up;
474 skb_put(skb, pkt_length);
475 } else {
476 vxge_re_pre_post(dtr, ring, rx_priv);
477
478 vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
479 vxge_debug_rx(VXGE_ERR,
480 "%s: vxge_rx_1b_compl: out of "
481 "memory", dev->name);
482 ring->stats.skb_alloc_fail++;
483 break;
484 }
485 }
486
487 if ((ext_info.proto & VXGE_HW_FRAME_PROTO_TCP_OR_UDP) &&
488 !(ext_info.proto & VXGE_HW_FRAME_PROTO_IP_FRAG) &&
489 (dev->features & NETIF_F_RXCSUM) && /* Offload Rx side CSUM */
490 ext_info.l3_cksum == VXGE_HW_L3_CKSUM_OK &&
491 ext_info.l4_cksum == VXGE_HW_L4_CKSUM_OK)
492 skb->ip_summed = CHECKSUM_UNNECESSARY;
493 else
494 skb_checksum_none_assert(skb);
495
496
497 if (ring->rx_hwts) {
498 struct skb_shared_hwtstamps *skb_hwts;
499 u32 ns = *(u32 *)(skb->head + pkt_length);
500
501 skb_hwts = skb_hwtstamps(skb);
502 skb_hwts->hwtstamp = ns_to_ktime(ns);
503 skb_hwts->syststamp.tv64 = 0;
504 }
505
506 /* rth_hash_type and rth_it_hit are non-zero regardless of
507 * whether rss is enabled. Only the rth_value is zero/non-zero
508 * if rss is disabled/enabled, so key off of that.
509 */
510 if (ext_info.rth_value)
511 skb_set_hash(skb, ext_info.rth_value,
512 PKT_HASH_TYPE_L3);
513
514 vxge_rx_complete(ring, skb, ext_info.vlan,
515 pkt_length, &ext_info);
516
517 ring->budget--;
518 ring->pkts_processed++;
519 if (!ring->budget)
520 break;
521
522 } while (vxge_hw_ring_rxd_next_completed(ringh, &dtr,
523 &t_code) == VXGE_HW_OK);
524
525 if (first_dtr)
526 vxge_hw_ring_rxd_post_post_wmb(ringh, first_dtr);
527
528 vxge_debug_entryexit(VXGE_TRACE,
529 "%s:%d Exiting...",
530 __func__, __LINE__);
531 return VXGE_HW_OK;
532 }
533
534 /*
535 * vxge_xmit_compl
536 *
537 * If an interrupt was raised to indicate DMA complete of the Tx packet,
538 * this function is called. It identifies the last TxD whose buffer was
539 * freed and frees all skbs whose data have already DMA'ed into the NICs
540 * internal memory.
541 */
542 static enum vxge_hw_status
543 vxge_xmit_compl(struct __vxge_hw_fifo *fifo_hw, void *dtr,
544 enum vxge_hw_fifo_tcode t_code, void *userdata,
545 struct sk_buff ***skb_ptr, int nr_skb, int *more)
546 {
547 struct vxge_fifo *fifo = (struct vxge_fifo *)userdata;
548 struct sk_buff *skb, **done_skb = *skb_ptr;
549 int pkt_cnt = 0;
550
551 vxge_debug_entryexit(VXGE_TRACE,
552 "%s:%d Entered....", __func__, __LINE__);
553
554 do {
555 int frg_cnt;
556 skb_frag_t *frag;
557 int i = 0, j;
558 struct vxge_tx_priv *txd_priv =
559 vxge_hw_fifo_txdl_private_get(dtr);
560
561 skb = txd_priv->skb;
562 frg_cnt = skb_shinfo(skb)->nr_frags;
563 frag = &skb_shinfo(skb)->frags[0];
564
565 vxge_debug_tx(VXGE_TRACE,
566 "%s: %s:%d fifo_hw = %p dtr = %p "
567 "tcode = 0x%x", fifo->ndev->name, __func__,
568 __LINE__, fifo_hw, dtr, t_code);
569 /* check skb validity */
570 vxge_assert(skb);
571 vxge_debug_tx(VXGE_TRACE,
572 "%s: %s:%d skb = %p itxd_priv = %p frg_cnt = %d",
573 fifo->ndev->name, __func__, __LINE__,
574 skb, txd_priv, frg_cnt);
575 if (unlikely(t_code)) {
576 fifo->stats.tx_errors++;
577 vxge_debug_tx(VXGE_ERR,
578 "%s: tx: dtr %p completed due to "
579 "error t_code %01x", fifo->ndev->name,
580 dtr, t_code);
581 vxge_hw_fifo_handle_tcode(fifo_hw, dtr, t_code);
582 }
583
584 /* for unfragmented skb */
585 pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++],
586 skb_headlen(skb), PCI_DMA_TODEVICE);
587
588 for (j = 0; j < frg_cnt; j++) {
589 pci_unmap_page(fifo->pdev,
590 txd_priv->dma_buffers[i++],
591 skb_frag_size(frag), PCI_DMA_TODEVICE);
592 frag += 1;
593 }
594
595 vxge_hw_fifo_txdl_free(fifo_hw, dtr);
596
597 /* Updating the statistics block */
598 u64_stats_update_begin(&fifo->stats.syncp);
599 fifo->stats.tx_frms++;
600 fifo->stats.tx_bytes += skb->len;
601 u64_stats_update_end(&fifo->stats.syncp);
602
603 *done_skb++ = skb;
604
605 if (--nr_skb <= 0) {
606 *more = 1;
607 break;
608 }
609
610 pkt_cnt++;
611 if (pkt_cnt > fifo->indicate_max_pkts)
612 break;
613
614 } while (vxge_hw_fifo_txdl_next_completed(fifo_hw,
615 &dtr, &t_code) == VXGE_HW_OK);
616
617 *skb_ptr = done_skb;
618 if (netif_tx_queue_stopped(fifo->txq))
619 netif_tx_wake_queue(fifo->txq);
620
621 vxge_debug_entryexit(VXGE_TRACE,
622 "%s: %s:%d Exiting...",
623 fifo->ndev->name, __func__, __LINE__);
624 return VXGE_HW_OK;
625 }
626
627 /* select a vpath to transmit the packet */
628 static u32 vxge_get_vpath_no(struct vxgedev *vdev, struct sk_buff *skb)
629 {
630 u16 queue_len, counter = 0;
631 if (skb->protocol == htons(ETH_P_IP)) {
632 struct iphdr *ip;
633 struct tcphdr *th;
634
635 ip = ip_hdr(skb);
636
637 if (!ip_is_fragment(ip)) {
638 th = (struct tcphdr *)(((unsigned char *)ip) +
639 ip->ihl*4);
640
641 queue_len = vdev->no_of_vpath;
642 counter = (ntohs(th->source) +
643 ntohs(th->dest)) &
644 vdev->vpath_selector[queue_len - 1];
645 if (counter >= queue_len)
646 counter = queue_len - 1;
647 }
648 }
649 return counter;
650 }
651
652 static enum vxge_hw_status vxge_search_mac_addr_in_list(
653 struct vxge_vpath *vpath, u64 del_mac)
654 {
655 struct list_head *entry, *next;
656 list_for_each_safe(entry, next, &vpath->mac_addr_list) {
657 if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac)
658 return TRUE;
659 }
660 return FALSE;
661 }
662
663 static int vxge_mac_list_add(struct vxge_vpath *vpath, struct macInfo *mac)
664 {
665 struct vxge_mac_addrs *new_mac_entry;
666 u8 *mac_address = NULL;
667
668 if (vpath->mac_addr_cnt >= VXGE_MAX_LEARN_MAC_ADDR_CNT)
669 return TRUE;
670
671 new_mac_entry = kzalloc(sizeof(struct vxge_mac_addrs), GFP_ATOMIC);
672 if (!new_mac_entry) {
673 vxge_debug_mem(VXGE_ERR,
674 "%s: memory allocation failed",
675 VXGE_DRIVER_NAME);
676 return FALSE;
677 }
678
679 list_add(&new_mac_entry->item, &vpath->mac_addr_list);
680
681 /* Copy the new mac address to the list */
682 mac_address = (u8 *)&new_mac_entry->macaddr;
683 memcpy(mac_address, mac->macaddr, ETH_ALEN);
684
685 new_mac_entry->state = mac->state;
686 vpath->mac_addr_cnt++;
687
688 if (is_multicast_ether_addr(mac->macaddr))
689 vpath->mcast_addr_cnt++;
690
691 return TRUE;
692 }
693
694 /* Add a mac address to DA table */
695 static enum vxge_hw_status
696 vxge_add_mac_addr(struct vxgedev *vdev, struct macInfo *mac)
697 {
698 enum vxge_hw_status status = VXGE_HW_OK;
699 struct vxge_vpath *vpath;
700 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode;
701
702 if (is_multicast_ether_addr(mac->macaddr))
703 duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE;
704 else
705 duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE;
706
707 vpath = &vdev->vpaths[mac->vpath_no];
708 status = vxge_hw_vpath_mac_addr_add(vpath->handle, mac->macaddr,
709 mac->macmask, duplicate_mode);
710 if (status != VXGE_HW_OK) {
711 vxge_debug_init(VXGE_ERR,
712 "DA config add entry failed for vpath:%d",
713 vpath->device_id);
714 } else
715 if (FALSE == vxge_mac_list_add(vpath, mac))
716 status = -EPERM;
717
718 return status;
719 }
720
721 static int vxge_learn_mac(struct vxgedev *vdev, u8 *mac_header)
722 {
723 struct macInfo mac_info;
724 u8 *mac_address = NULL;
725 u64 mac_addr = 0, vpath_vector = 0;
726 int vpath_idx = 0;
727 enum vxge_hw_status status = VXGE_HW_OK;
728 struct vxge_vpath *vpath = NULL;
729
730 mac_address = (u8 *)&mac_addr;
731 memcpy(mac_address, mac_header, ETH_ALEN);
732
733 /* Is this mac address already in the list? */
734 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
735 vpath = &vdev->vpaths[vpath_idx];
736 if (vxge_search_mac_addr_in_list(vpath, mac_addr))
737 return vpath_idx;
738 }
739
740 memset(&mac_info, 0, sizeof(struct macInfo));
741 memcpy(mac_info.macaddr, mac_header, ETH_ALEN);
742
743 /* Any vpath has room to add mac address to its da table? */
744 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
745 vpath = &vdev->vpaths[vpath_idx];
746 if (vpath->mac_addr_cnt < vpath->max_mac_addr_cnt) {
747 /* Add this mac address to this vpath */
748 mac_info.vpath_no = vpath_idx;
749 mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
750 status = vxge_add_mac_addr(vdev, &mac_info);
751 if (status != VXGE_HW_OK)
752 return -EPERM;
753 return vpath_idx;
754 }
755 }
756
757 mac_info.state = VXGE_LL_MAC_ADDR_IN_LIST;
758 vpath_idx = 0;
759 mac_info.vpath_no = vpath_idx;
760 /* Is the first vpath already selected as catch-basin ? */
761 vpath = &vdev->vpaths[vpath_idx];
762 if (vpath->mac_addr_cnt > vpath->max_mac_addr_cnt) {
763 /* Add this mac address to this vpath */
764 if (FALSE == vxge_mac_list_add(vpath, &mac_info))
765 return -EPERM;
766 return vpath_idx;
767 }
768
769 /* Select first vpath as catch-basin */
770 vpath_vector = vxge_mBIT(vpath->device_id);
771 status = vxge_hw_mgmt_reg_write(vpath->vdev->devh,
772 vxge_hw_mgmt_reg_type_mrpcim,
773 0,
774 (ulong)offsetof(
775 struct vxge_hw_mrpcim_reg,
776 rts_mgr_cbasin_cfg),
777 vpath_vector);
778 if (status != VXGE_HW_OK) {
779 vxge_debug_tx(VXGE_ERR,
780 "%s: Unable to set the vpath-%d in catch-basin mode",
781 VXGE_DRIVER_NAME, vpath->device_id);
782 return -EPERM;
783 }
784
785 if (FALSE == vxge_mac_list_add(vpath, &mac_info))
786 return -EPERM;
787
788 return vpath_idx;
789 }
790
791 /**
792 * vxge_xmit
793 * @skb : the socket buffer containing the Tx data.
794 * @dev : device pointer.
795 *
796 * This function is the Tx entry point of the driver. Neterion NIC supports
797 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
798 */
799 static netdev_tx_t
800 vxge_xmit(struct sk_buff *skb, struct net_device *dev)
801 {
802 struct vxge_fifo *fifo = NULL;
803 void *dtr_priv;
804 void *dtr = NULL;
805 struct vxgedev *vdev = NULL;
806 enum vxge_hw_status status;
807 int frg_cnt, first_frg_len;
808 skb_frag_t *frag;
809 int i = 0, j = 0, avail;
810 u64 dma_pointer;
811 struct vxge_tx_priv *txdl_priv = NULL;
812 struct __vxge_hw_fifo *fifo_hw;
813 int offload_type;
814 int vpath_no = 0;
815
816 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
817 dev->name, __func__, __LINE__);
818
819 /* A buffer with no data will be dropped */
820 if (unlikely(skb->len <= 0)) {
821 vxge_debug_tx(VXGE_ERR,
822 "%s: Buffer has no data..", dev->name);
823 dev_kfree_skb(skb);
824 return NETDEV_TX_OK;
825 }
826
827 vdev = netdev_priv(dev);
828
829 if (unlikely(!is_vxge_card_up(vdev))) {
830 vxge_debug_tx(VXGE_ERR,
831 "%s: vdev not initialized", dev->name);
832 dev_kfree_skb(skb);
833 return NETDEV_TX_OK;
834 }
835
836 if (vdev->config.addr_learn_en) {
837 vpath_no = vxge_learn_mac(vdev, skb->data + ETH_ALEN);
838 if (vpath_no == -EPERM) {
839 vxge_debug_tx(VXGE_ERR,
840 "%s: Failed to store the mac address",
841 dev->name);
842 dev_kfree_skb(skb);
843 return NETDEV_TX_OK;
844 }
845 }
846
847 if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING)
848 vpath_no = skb_get_queue_mapping(skb);
849 else if (vdev->config.tx_steering_type == TX_PORT_STEERING)
850 vpath_no = vxge_get_vpath_no(vdev, skb);
851
852 vxge_debug_tx(VXGE_TRACE, "%s: vpath_no= %d", dev->name, vpath_no);
853
854 if (vpath_no >= vdev->no_of_vpath)
855 vpath_no = 0;
856
857 fifo = &vdev->vpaths[vpath_no].fifo;
858 fifo_hw = fifo->handle;
859
860 if (netif_tx_queue_stopped(fifo->txq))
861 return NETDEV_TX_BUSY;
862
863 avail = vxge_hw_fifo_free_txdl_count_get(fifo_hw);
864 if (avail == 0) {
865 vxge_debug_tx(VXGE_ERR,
866 "%s: No free TXDs available", dev->name);
867 fifo->stats.txd_not_free++;
868 goto _exit0;
869 }
870
871 /* Last TXD? Stop tx queue to avoid dropping packets. TX
872 * completion will resume the queue.
873 */
874 if (avail == 1)
875 netif_tx_stop_queue(fifo->txq);
876
877 status = vxge_hw_fifo_txdl_reserve(fifo_hw, &dtr, &dtr_priv);
878 if (unlikely(status != VXGE_HW_OK)) {
879 vxge_debug_tx(VXGE_ERR,
880 "%s: Out of descriptors .", dev->name);
881 fifo->stats.txd_out_of_desc++;
882 goto _exit0;
883 }
884
885 vxge_debug_tx(VXGE_TRACE,
886 "%s: %s:%d fifo_hw = %p dtr = %p dtr_priv = %p",
887 dev->name, __func__, __LINE__,
888 fifo_hw, dtr, dtr_priv);
889
890 if (vlan_tx_tag_present(skb)) {
891 u16 vlan_tag = vlan_tx_tag_get(skb);
892 vxge_hw_fifo_txdl_vlan_set(dtr, vlan_tag);
893 }
894
895 first_frg_len = skb_headlen(skb);
896
897 dma_pointer = pci_map_single(fifo->pdev, skb->data, first_frg_len,
898 PCI_DMA_TODEVICE);
899
900 if (unlikely(pci_dma_mapping_error(fifo->pdev, dma_pointer))) {
901 vxge_hw_fifo_txdl_free(fifo_hw, dtr);
902 fifo->stats.pci_map_fail++;
903 goto _exit0;
904 }
905
906 txdl_priv = vxge_hw_fifo_txdl_private_get(dtr);
907 txdl_priv->skb = skb;
908 txdl_priv->dma_buffers[j] = dma_pointer;
909
910 frg_cnt = skb_shinfo(skb)->nr_frags;
911 vxge_debug_tx(VXGE_TRACE,
912 "%s: %s:%d skb = %p txdl_priv = %p "
913 "frag_cnt = %d dma_pointer = 0x%llx", dev->name,
914 __func__, __LINE__, skb, txdl_priv,
915 frg_cnt, (unsigned long long)dma_pointer);
916
917 vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer,
918 first_frg_len);
919
920 frag = &skb_shinfo(skb)->frags[0];
921 for (i = 0; i < frg_cnt; i++) {
922 /* ignore 0 length fragment */
923 if (!skb_frag_size(frag))
924 continue;
925
926 dma_pointer = (u64)skb_frag_dma_map(&fifo->pdev->dev, frag,
927 0, skb_frag_size(frag),
928 DMA_TO_DEVICE);
929
930 if (unlikely(dma_mapping_error(&fifo->pdev->dev, dma_pointer)))
931 goto _exit2;
932 vxge_debug_tx(VXGE_TRACE,
933 "%s: %s:%d frag = %d dma_pointer = 0x%llx",
934 dev->name, __func__, __LINE__, i,
935 (unsigned long long)dma_pointer);
936
937 txdl_priv->dma_buffers[j] = dma_pointer;
938 vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer,
939 skb_frag_size(frag));
940 frag += 1;
941 }
942
943 offload_type = vxge_offload_type(skb);
944
945 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
946 int mss = vxge_tcp_mss(skb);
947 if (mss) {
948 vxge_debug_tx(VXGE_TRACE, "%s: %s:%d mss = %d",
949 dev->name, __func__, __LINE__, mss);
950 vxge_hw_fifo_txdl_mss_set(dtr, mss);
951 } else {
952 vxge_assert(skb->len <=
953 dev->mtu + VXGE_HW_MAC_HEADER_MAX_SIZE);
954 vxge_assert(0);
955 goto _exit1;
956 }
957 }
958
959 if (skb->ip_summed == CHECKSUM_PARTIAL)
960 vxge_hw_fifo_txdl_cksum_set_bits(dtr,
961 VXGE_HW_FIFO_TXD_TX_CKO_IPV4_EN |
962 VXGE_HW_FIFO_TXD_TX_CKO_TCP_EN |
963 VXGE_HW_FIFO_TXD_TX_CKO_UDP_EN);
964
965 vxge_hw_fifo_txdl_post(fifo_hw, dtr);
966
967 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...",
968 dev->name, __func__, __LINE__);
969 return NETDEV_TX_OK;
970
971 _exit2:
972 vxge_debug_tx(VXGE_TRACE, "%s: pci_map_page failed", dev->name);
973 _exit1:
974 j = 0;
975 frag = &skb_shinfo(skb)->frags[0];
976
977 pci_unmap_single(fifo->pdev, txdl_priv->dma_buffers[j++],
978 skb_headlen(skb), PCI_DMA_TODEVICE);
979
980 for (; j < i; j++) {
981 pci_unmap_page(fifo->pdev, txdl_priv->dma_buffers[j],
982 skb_frag_size(frag), PCI_DMA_TODEVICE);
983 frag += 1;
984 }
985
986 vxge_hw_fifo_txdl_free(fifo_hw, dtr);
987 _exit0:
988 netif_tx_stop_queue(fifo->txq);
989 dev_kfree_skb(skb);
990
991 return NETDEV_TX_OK;
992 }
993
994 /*
995 * vxge_rx_term
996 *
997 * Function will be called by hw function to abort all outstanding receive
998 * descriptors.
999 */
1000 static void
1001 vxge_rx_term(void *dtrh, enum vxge_hw_rxd_state state, void *userdata)
1002 {
1003 struct vxge_ring *ring = (struct vxge_ring *)userdata;
1004 struct vxge_rx_priv *rx_priv =
1005 vxge_hw_ring_rxd_private_get(dtrh);
1006
1007 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
1008 ring->ndev->name, __func__, __LINE__);
1009 if (state != VXGE_HW_RXD_STATE_POSTED)
1010 return;
1011
1012 pci_unmap_single(ring->pdev, rx_priv->data_dma,
1013 rx_priv->data_size, PCI_DMA_FROMDEVICE);
1014
1015 dev_kfree_skb(rx_priv->skb);
1016 rx_priv->skb_data = NULL;
1017
1018 vxge_debug_entryexit(VXGE_TRACE,
1019 "%s: %s:%d Exiting...",
1020 ring->ndev->name, __func__, __LINE__);
1021 }
1022
1023 /*
1024 * vxge_tx_term
1025 *
1026 * Function will be called to abort all outstanding tx descriptors
1027 */
1028 static void
1029 vxge_tx_term(void *dtrh, enum vxge_hw_txdl_state state, void *userdata)
1030 {
1031 struct vxge_fifo *fifo = (struct vxge_fifo *)userdata;
1032 skb_frag_t *frag;
1033 int i = 0, j, frg_cnt;
1034 struct vxge_tx_priv *txd_priv = vxge_hw_fifo_txdl_private_get(dtrh);
1035 struct sk_buff *skb = txd_priv->skb;
1036
1037 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
1038
1039 if (state != VXGE_HW_TXDL_STATE_POSTED)
1040 return;
1041
1042 /* check skb validity */
1043 vxge_assert(skb);
1044 frg_cnt = skb_shinfo(skb)->nr_frags;
1045 frag = &skb_shinfo(skb)->frags[0];
1046
1047 /* for unfragmented skb */
1048 pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++],
1049 skb_headlen(skb), PCI_DMA_TODEVICE);
1050
1051 for (j = 0; j < frg_cnt; j++) {
1052 pci_unmap_page(fifo->pdev, txd_priv->dma_buffers[i++],
1053 skb_frag_size(frag), PCI_DMA_TODEVICE);
1054 frag += 1;
1055 }
1056
1057 dev_kfree_skb(skb);
1058
1059 vxge_debug_entryexit(VXGE_TRACE,
1060 "%s:%d Exiting...", __func__, __LINE__);
1061 }
1062
1063 static int vxge_mac_list_del(struct vxge_vpath *vpath, struct macInfo *mac)
1064 {
1065 struct list_head *entry, *next;
1066 u64 del_mac = 0;
1067 u8 *mac_address = (u8 *) (&del_mac);
1068
1069 /* Copy the mac address to delete from the list */
1070 memcpy(mac_address, mac->macaddr, ETH_ALEN);
1071
1072 list_for_each_safe(entry, next, &vpath->mac_addr_list) {
1073 if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac) {
1074 list_del(entry);
1075 kfree((struct vxge_mac_addrs *)entry);
1076 vpath->mac_addr_cnt--;
1077
1078 if (is_multicast_ether_addr(mac->macaddr))
1079 vpath->mcast_addr_cnt--;
1080 return TRUE;
1081 }
1082 }
1083
1084 return FALSE;
1085 }
1086
1087 /* delete a mac address from DA table */
1088 static enum vxge_hw_status
1089 vxge_del_mac_addr(struct vxgedev *vdev, struct macInfo *mac)
1090 {
1091 enum vxge_hw_status status = VXGE_HW_OK;
1092 struct vxge_vpath *vpath;
1093
1094 vpath = &vdev->vpaths[mac->vpath_no];
1095 status = vxge_hw_vpath_mac_addr_delete(vpath->handle, mac->macaddr,
1096 mac->macmask);
1097 if (status != VXGE_HW_OK) {
1098 vxge_debug_init(VXGE_ERR,
1099 "DA config delete entry failed for vpath:%d",
1100 vpath->device_id);
1101 } else
1102 vxge_mac_list_del(vpath, mac);
1103 return status;
1104 }
1105
1106 /**
1107 * vxge_set_multicast
1108 * @dev: pointer to the device structure
1109 *
1110 * Entry point for multicast address enable/disable
1111 * This function is a driver entry point which gets called by the kernel
1112 * whenever multicast addresses must be enabled/disabled. This also gets
1113 * called to set/reset promiscuous mode. Depending on the deivce flag, we
1114 * determine, if multicast address must be enabled or if promiscuous mode
1115 * is to be disabled etc.
1116 */
1117 static void vxge_set_multicast(struct net_device *dev)
1118 {
1119 struct netdev_hw_addr *ha;
1120 struct vxgedev *vdev;
1121 int i, mcast_cnt = 0;
1122 struct __vxge_hw_device *hldev;
1123 struct vxge_vpath *vpath;
1124 enum vxge_hw_status status = VXGE_HW_OK;
1125 struct macInfo mac_info;
1126 int vpath_idx = 0;
1127 struct vxge_mac_addrs *mac_entry;
1128 struct list_head *list_head;
1129 struct list_head *entry, *next;
1130 u8 *mac_address = NULL;
1131
1132 vxge_debug_entryexit(VXGE_TRACE,
1133 "%s:%d", __func__, __LINE__);
1134
1135 vdev = netdev_priv(dev);
1136 hldev = vdev->devh;
1137
1138 if (unlikely(!is_vxge_card_up(vdev)))
1139 return;
1140
1141 if ((dev->flags & IFF_ALLMULTI) && (!vdev->all_multi_flg)) {
1142 for (i = 0; i < vdev->no_of_vpath; i++) {
1143 vpath = &vdev->vpaths[i];
1144 vxge_assert(vpath->is_open);
1145 status = vxge_hw_vpath_mcast_enable(vpath->handle);
1146 if (status != VXGE_HW_OK)
1147 vxge_debug_init(VXGE_ERR, "failed to enable "
1148 "multicast, status %d", status);
1149 vdev->all_multi_flg = 1;
1150 }
1151 } else if (!(dev->flags & IFF_ALLMULTI) && (vdev->all_multi_flg)) {
1152 for (i = 0; i < vdev->no_of_vpath; i++) {
1153 vpath = &vdev->vpaths[i];
1154 vxge_assert(vpath->is_open);
1155 status = vxge_hw_vpath_mcast_disable(vpath->handle);
1156 if (status != VXGE_HW_OK)
1157 vxge_debug_init(VXGE_ERR, "failed to disable "
1158 "multicast, status %d", status);
1159 vdev->all_multi_flg = 0;
1160 }
1161 }
1162
1163
1164 if (!vdev->config.addr_learn_en) {
1165 for (i = 0; i < vdev->no_of_vpath; i++) {
1166 vpath = &vdev->vpaths[i];
1167 vxge_assert(vpath->is_open);
1168
1169 if (dev->flags & IFF_PROMISC)
1170 status = vxge_hw_vpath_promisc_enable(
1171 vpath->handle);
1172 else
1173 status = vxge_hw_vpath_promisc_disable(
1174 vpath->handle);
1175 if (status != VXGE_HW_OK)
1176 vxge_debug_init(VXGE_ERR, "failed to %s promisc"
1177 ", status %d", dev->flags&IFF_PROMISC ?
1178 "enable" : "disable", status);
1179 }
1180 }
1181
1182 memset(&mac_info, 0, sizeof(struct macInfo));
1183 /* Update individual M_CAST address list */
1184 if ((!vdev->all_multi_flg) && netdev_mc_count(dev)) {
1185 mcast_cnt = vdev->vpaths[0].mcast_addr_cnt;
1186 list_head = &vdev->vpaths[0].mac_addr_list;
1187 if ((netdev_mc_count(dev) +
1188 (vdev->vpaths[0].mac_addr_cnt - mcast_cnt)) >
1189 vdev->vpaths[0].max_mac_addr_cnt)
1190 goto _set_all_mcast;
1191
1192 /* Delete previous MC's */
1193 for (i = 0; i < mcast_cnt; i++) {
1194 list_for_each_safe(entry, next, list_head) {
1195 mac_entry = (struct vxge_mac_addrs *)entry;
1196 /* Copy the mac address to delete */
1197 mac_address = (u8 *)&mac_entry->macaddr;
1198 memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
1199
1200 if (is_multicast_ether_addr(mac_info.macaddr)) {
1201 for (vpath_idx = 0; vpath_idx <
1202 vdev->no_of_vpath;
1203 vpath_idx++) {
1204 mac_info.vpath_no = vpath_idx;
1205 status = vxge_del_mac_addr(
1206 vdev,
1207 &mac_info);
1208 }
1209 }
1210 }
1211 }
1212
1213 /* Add new ones */
1214 netdev_for_each_mc_addr(ha, dev) {
1215 memcpy(mac_info.macaddr, ha->addr, ETH_ALEN);
1216 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath;
1217 vpath_idx++) {
1218 mac_info.vpath_no = vpath_idx;
1219 mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
1220 status = vxge_add_mac_addr(vdev, &mac_info);
1221 if (status != VXGE_HW_OK) {
1222 vxge_debug_init(VXGE_ERR,
1223 "%s:%d Setting individual"
1224 "multicast address failed",
1225 __func__, __LINE__);
1226 goto _set_all_mcast;
1227 }
1228 }
1229 }
1230
1231 return;
1232 _set_all_mcast:
1233 mcast_cnt = vdev->vpaths[0].mcast_addr_cnt;
1234 /* Delete previous MC's */
1235 for (i = 0; i < mcast_cnt; i++) {
1236 list_for_each_safe(entry, next, list_head) {
1237 mac_entry = (struct vxge_mac_addrs *)entry;
1238 /* Copy the mac address to delete */
1239 mac_address = (u8 *)&mac_entry->macaddr;
1240 memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
1241
1242 if (is_multicast_ether_addr(mac_info.macaddr))
1243 break;
1244 }
1245
1246 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath;
1247 vpath_idx++) {
1248 mac_info.vpath_no = vpath_idx;
1249 status = vxge_del_mac_addr(vdev, &mac_info);
1250 }
1251 }
1252
1253 /* Enable all multicast */
1254 for (i = 0; i < vdev->no_of_vpath; i++) {
1255 vpath = &vdev->vpaths[i];
1256 vxge_assert(vpath->is_open);
1257
1258 status = vxge_hw_vpath_mcast_enable(vpath->handle);
1259 if (status != VXGE_HW_OK) {
1260 vxge_debug_init(VXGE_ERR,
1261 "%s:%d Enabling all multicasts failed",
1262 __func__, __LINE__);
1263 }
1264 vdev->all_multi_flg = 1;
1265 }
1266 dev->flags |= IFF_ALLMULTI;
1267 }
1268
1269 vxge_debug_entryexit(VXGE_TRACE,
1270 "%s:%d Exiting...", __func__, __LINE__);
1271 }
1272
1273 /**
1274 * vxge_set_mac_addr
1275 * @dev: pointer to the device structure
1276 *
1277 * Update entry "0" (default MAC addr)
1278 */
1279 static int vxge_set_mac_addr(struct net_device *dev, void *p)
1280 {
1281 struct sockaddr *addr = p;
1282 struct vxgedev *vdev;
1283 struct __vxge_hw_device *hldev;
1284 enum vxge_hw_status status = VXGE_HW_OK;
1285 struct macInfo mac_info_new, mac_info_old;
1286 int vpath_idx = 0;
1287
1288 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
1289
1290 vdev = netdev_priv(dev);
1291 hldev = vdev->devh;
1292
1293 if (!is_valid_ether_addr(addr->sa_data))
1294 return -EINVAL;
1295
1296 memset(&mac_info_new, 0, sizeof(struct macInfo));
1297 memset(&mac_info_old, 0, sizeof(struct macInfo));
1298
1299 vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...",
1300 __func__, __LINE__);
1301
1302 /* Get the old address */
1303 memcpy(mac_info_old.macaddr, dev->dev_addr, dev->addr_len);
1304
1305 /* Copy the new address */
1306 memcpy(mac_info_new.macaddr, addr->sa_data, dev->addr_len);
1307
1308 /* First delete the old mac address from all the vpaths
1309 as we can't specify the index while adding new mac address */
1310 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
1311 struct vxge_vpath *vpath = &vdev->vpaths[vpath_idx];
1312 if (!vpath->is_open) {
1313 /* This can happen when this interface is added/removed
1314 to the bonding interface. Delete this station address
1315 from the linked list */
1316 vxge_mac_list_del(vpath, &mac_info_old);
1317
1318 /* Add this new address to the linked list
1319 for later restoring */
1320 vxge_mac_list_add(vpath, &mac_info_new);
1321
1322 continue;
1323 }
1324 /* Delete the station address */
1325 mac_info_old.vpath_no = vpath_idx;
1326 status = vxge_del_mac_addr(vdev, &mac_info_old);
1327 }
1328
1329 if (unlikely(!is_vxge_card_up(vdev))) {
1330 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1331 return VXGE_HW_OK;
1332 }
1333
1334 /* Set this mac address to all the vpaths */
1335 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
1336 mac_info_new.vpath_no = vpath_idx;
1337 mac_info_new.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
1338 status = vxge_add_mac_addr(vdev, &mac_info_new);
1339 if (status != VXGE_HW_OK)
1340 return -EINVAL;
1341 }
1342
1343 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1344
1345 return status;
1346 }
1347
1348 /*
1349 * vxge_vpath_intr_enable
1350 * @vdev: pointer to vdev
1351 * @vp_id: vpath for which to enable the interrupts
1352 *
1353 * Enables the interrupts for the vpath
1354 */
1355 static void vxge_vpath_intr_enable(struct vxgedev *vdev, int vp_id)
1356 {
1357 struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
1358 int msix_id = 0;
1359 int tim_msix_id[4] = {0, 1, 0, 0};
1360 int alarm_msix_id = VXGE_ALARM_MSIX_ID;
1361
1362 vxge_hw_vpath_intr_enable(vpath->handle);
1363
1364 if (vdev->config.intr_type == INTA)
1365 vxge_hw_vpath_inta_unmask_tx_rx(vpath->handle);
1366 else {
1367 vxge_hw_vpath_msix_set(vpath->handle, tim_msix_id,
1368 alarm_msix_id);
1369
1370 msix_id = vpath->device_id * VXGE_HW_VPATH_MSIX_ACTIVE;
1371 vxge_hw_vpath_msix_unmask(vpath->handle, msix_id);
1372 vxge_hw_vpath_msix_unmask(vpath->handle, msix_id + 1);
1373
1374 /* enable the alarm vector */
1375 msix_id = (vpath->handle->vpath->hldev->first_vp_id *
1376 VXGE_HW_VPATH_MSIX_ACTIVE) + alarm_msix_id;
1377 vxge_hw_vpath_msix_unmask(vpath->handle, msix_id);
1378 }
1379 }
1380
1381 /*
1382 * vxge_vpath_intr_disable
1383 * @vdev: pointer to vdev
1384 * @vp_id: vpath for which to disable the interrupts
1385 *
1386 * Disables the interrupts for the vpath
1387 */
1388 static void vxge_vpath_intr_disable(struct vxgedev *vdev, int vp_id)
1389 {
1390 struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
1391 struct __vxge_hw_device *hldev;
1392 int msix_id;
1393
1394 hldev = pci_get_drvdata(vdev->pdev);
1395
1396 vxge_hw_vpath_wait_receive_idle(hldev, vpath->device_id);
1397
1398 vxge_hw_vpath_intr_disable(vpath->handle);
1399
1400 if (vdev->config.intr_type == INTA)
1401 vxge_hw_vpath_inta_mask_tx_rx(vpath->handle);
1402 else {
1403 msix_id = vpath->device_id * VXGE_HW_VPATH_MSIX_ACTIVE;
1404 vxge_hw_vpath_msix_mask(vpath->handle, msix_id);
1405 vxge_hw_vpath_msix_mask(vpath->handle, msix_id + 1);
1406
1407 /* disable the alarm vector */
1408 msix_id = (vpath->handle->vpath->hldev->first_vp_id *
1409 VXGE_HW_VPATH_MSIX_ACTIVE) + VXGE_ALARM_MSIX_ID;
1410 vxge_hw_vpath_msix_mask(vpath->handle, msix_id);
1411 }
1412 }
1413
1414 /* list all mac addresses from DA table */
1415 static enum vxge_hw_status
1416 vxge_search_mac_addr_in_da_table(struct vxge_vpath *vpath, struct macInfo *mac)
1417 {
1418 enum vxge_hw_status status = VXGE_HW_OK;
1419 unsigned char macmask[ETH_ALEN];
1420 unsigned char macaddr[ETH_ALEN];
1421
1422 status = vxge_hw_vpath_mac_addr_get(vpath->handle,
1423 macaddr, macmask);
1424 if (status != VXGE_HW_OK) {
1425 vxge_debug_init(VXGE_ERR,
1426 "DA config list entry failed for vpath:%d",
1427 vpath->device_id);
1428 return status;
1429 }
1430
1431 while (!ether_addr_equal(mac->macaddr, macaddr)) {
1432 status = vxge_hw_vpath_mac_addr_get_next(vpath->handle,
1433 macaddr, macmask);
1434 if (status != VXGE_HW_OK)
1435 break;
1436 }
1437
1438 return status;
1439 }
1440
1441 /* Store all mac addresses from the list to the DA table */
1442 static enum vxge_hw_status vxge_restore_vpath_mac_addr(struct vxge_vpath *vpath)
1443 {
1444 enum vxge_hw_status status = VXGE_HW_OK;
1445 struct macInfo mac_info;
1446 u8 *mac_address = NULL;
1447 struct list_head *entry, *next;
1448
1449 memset(&mac_info, 0, sizeof(struct macInfo));
1450
1451 if (vpath->is_open) {
1452 list_for_each_safe(entry, next, &vpath->mac_addr_list) {
1453 mac_address =
1454 (u8 *)&
1455 ((struct vxge_mac_addrs *)entry)->macaddr;
1456 memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
1457 ((struct vxge_mac_addrs *)entry)->state =
1458 VXGE_LL_MAC_ADDR_IN_DA_TABLE;
1459 /* does this mac address already exist in da table? */
1460 status = vxge_search_mac_addr_in_da_table(vpath,
1461 &mac_info);
1462 if (status != VXGE_HW_OK) {
1463 /* Add this mac address to the DA table */
1464 status = vxge_hw_vpath_mac_addr_add(
1465 vpath->handle, mac_info.macaddr,
1466 mac_info.macmask,
1467 VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE);
1468 if (status != VXGE_HW_OK) {
1469 vxge_debug_init(VXGE_ERR,
1470 "DA add entry failed for vpath:%d",
1471 vpath->device_id);
1472 ((struct vxge_mac_addrs *)entry)->state
1473 = VXGE_LL_MAC_ADDR_IN_LIST;
1474 }
1475 }
1476 }
1477 }
1478
1479 return status;
1480 }
1481
1482 /* Store all vlan ids from the list to the vid table */
1483 static enum vxge_hw_status
1484 vxge_restore_vpath_vid_table(struct vxge_vpath *vpath)
1485 {
1486 enum vxge_hw_status status = VXGE_HW_OK;
1487 struct vxgedev *vdev = vpath->vdev;
1488 u16 vid;
1489
1490 if (!vpath->is_open)
1491 return status;
1492
1493 for_each_set_bit(vid, vdev->active_vlans, VLAN_N_VID)
1494 status = vxge_hw_vpath_vid_add(vpath->handle, vid);
1495
1496 return status;
1497 }
1498
1499 /*
1500 * vxge_reset_vpath
1501 * @vdev: pointer to vdev
1502 * @vp_id: vpath to reset
1503 *
1504 * Resets the vpath
1505 */
1506 static int vxge_reset_vpath(struct vxgedev *vdev, int vp_id)
1507 {
1508 enum vxge_hw_status status = VXGE_HW_OK;
1509 struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
1510 int ret = 0;
1511
1512 /* check if device is down already */
1513 if (unlikely(!is_vxge_card_up(vdev)))
1514 return 0;
1515
1516 /* is device reset already scheduled */
1517 if (test_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
1518 return 0;
1519
1520 if (vpath->handle) {
1521 if (vxge_hw_vpath_reset(vpath->handle) == VXGE_HW_OK) {
1522 if (is_vxge_card_up(vdev) &&
1523 vxge_hw_vpath_recover_from_reset(vpath->handle)
1524 != VXGE_HW_OK) {
1525 vxge_debug_init(VXGE_ERR,
1526 "vxge_hw_vpath_recover_from_reset"
1527 "failed for vpath:%d", vp_id);
1528 return status;
1529 }
1530 } else {
1531 vxge_debug_init(VXGE_ERR,
1532 "vxge_hw_vpath_reset failed for"
1533 "vpath:%d", vp_id);
1534 return status;
1535 }
1536 } else
1537 return VXGE_HW_FAIL;
1538
1539 vxge_restore_vpath_mac_addr(vpath);
1540 vxge_restore_vpath_vid_table(vpath);
1541
1542 /* Enable all broadcast */
1543 vxge_hw_vpath_bcast_enable(vpath->handle);
1544
1545 /* Enable all multicast */
1546 if (vdev->all_multi_flg) {
1547 status = vxge_hw_vpath_mcast_enable(vpath->handle);
1548 if (status != VXGE_HW_OK)
1549 vxge_debug_init(VXGE_ERR,
1550 "%s:%d Enabling multicast failed",
1551 __func__, __LINE__);
1552 }
1553
1554 /* Enable the interrupts */
1555 vxge_vpath_intr_enable(vdev, vp_id);
1556
1557 smp_wmb();
1558
1559 /* Enable the flow of traffic through the vpath */
1560 vxge_hw_vpath_enable(vpath->handle);
1561
1562 smp_wmb();
1563 vxge_hw_vpath_rx_doorbell_init(vpath->handle);
1564 vpath->ring.last_status = VXGE_HW_OK;
1565
1566 /* Vpath reset done */
1567 clear_bit(vp_id, &vdev->vp_reset);
1568
1569 /* Start the vpath queue */
1570 if (netif_tx_queue_stopped(vpath->fifo.txq))
1571 netif_tx_wake_queue(vpath->fifo.txq);
1572
1573 return ret;
1574 }
1575
1576 /* Configure CI */
1577 static void vxge_config_ci_for_tti_rti(struct vxgedev *vdev)
1578 {
1579 int i = 0;
1580
1581 /* Enable CI for RTI */
1582 if (vdev->config.intr_type == MSI_X) {
1583 for (i = 0; i < vdev->no_of_vpath; i++) {
1584 struct __vxge_hw_ring *hw_ring;
1585
1586 hw_ring = vdev->vpaths[i].ring.handle;
1587 vxge_hw_vpath_dynamic_rti_ci_set(hw_ring);
1588 }
1589 }
1590
1591 /* Enable CI for TTI */
1592 for (i = 0; i < vdev->no_of_vpath; i++) {
1593 struct __vxge_hw_fifo *hw_fifo = vdev->vpaths[i].fifo.handle;
1594 vxge_hw_vpath_tti_ci_set(hw_fifo);
1595 /*
1596 * For Inta (with or without napi), Set CI ON for only one
1597 * vpath. (Have only one free running timer).
1598 */
1599 if ((vdev->config.intr_type == INTA) && (i == 0))
1600 break;
1601 }
1602
1603 return;
1604 }
1605
1606 static int do_vxge_reset(struct vxgedev *vdev, int event)
1607 {
1608 enum vxge_hw_status status;
1609 int ret = 0, vp_id, i;
1610
1611 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
1612
1613 if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET)) {
1614 /* check if device is down already */
1615 if (unlikely(!is_vxge_card_up(vdev)))
1616 return 0;
1617
1618 /* is reset already scheduled */
1619 if (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
1620 return 0;
1621 }
1622
1623 if (event == VXGE_LL_FULL_RESET) {
1624 netif_carrier_off(vdev->ndev);
1625
1626 /* wait for all the vpath reset to complete */
1627 for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
1628 while (test_bit(vp_id, &vdev->vp_reset))
1629 msleep(50);
1630 }
1631
1632 netif_carrier_on(vdev->ndev);
1633
1634 /* if execution mode is set to debug, don't reset the adapter */
1635 if (unlikely(vdev->exec_mode)) {
1636 vxge_debug_init(VXGE_ERR,
1637 "%s: execution mode is debug, returning..",
1638 vdev->ndev->name);
1639 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
1640 netif_tx_stop_all_queues(vdev->ndev);
1641 return 0;
1642 }
1643 }
1644
1645 if (event == VXGE_LL_FULL_RESET) {
1646 vxge_hw_device_wait_receive_idle(vdev->devh);
1647 vxge_hw_device_intr_disable(vdev->devh);
1648
1649 switch (vdev->cric_err_event) {
1650 case VXGE_HW_EVENT_UNKNOWN:
1651 netif_tx_stop_all_queues(vdev->ndev);
1652 vxge_debug_init(VXGE_ERR,
1653 "fatal: %s: Disabling device due to"
1654 "unknown error",
1655 vdev->ndev->name);
1656 ret = -EPERM;
1657 goto out;
1658 case VXGE_HW_EVENT_RESET_START:
1659 break;
1660 case VXGE_HW_EVENT_RESET_COMPLETE:
1661 case VXGE_HW_EVENT_LINK_DOWN:
1662 case VXGE_HW_EVENT_LINK_UP:
1663 case VXGE_HW_EVENT_ALARM_CLEARED:
1664 case VXGE_HW_EVENT_ECCERR:
1665 case VXGE_HW_EVENT_MRPCIM_ECCERR:
1666 ret = -EPERM;
1667 goto out;
1668 case VXGE_HW_EVENT_FIFO_ERR:
1669 case VXGE_HW_EVENT_VPATH_ERR:
1670 break;
1671 case VXGE_HW_EVENT_CRITICAL_ERR:
1672 netif_tx_stop_all_queues(vdev->ndev);
1673 vxge_debug_init(VXGE_ERR,
1674 "fatal: %s: Disabling device due to"
1675 "serious error",
1676 vdev->ndev->name);
1677 /* SOP or device reset required */
1678 /* This event is not currently used */
1679 ret = -EPERM;
1680 goto out;
1681 case VXGE_HW_EVENT_SERR:
1682 netif_tx_stop_all_queues(vdev->ndev);
1683 vxge_debug_init(VXGE_ERR,
1684 "fatal: %s: Disabling device due to"
1685 "serious error",
1686 vdev->ndev->name);
1687 ret = -EPERM;
1688 goto out;
1689 case VXGE_HW_EVENT_SRPCIM_SERR:
1690 case VXGE_HW_EVENT_MRPCIM_SERR:
1691 ret = -EPERM;
1692 goto out;
1693 case VXGE_HW_EVENT_SLOT_FREEZE:
1694 netif_tx_stop_all_queues(vdev->ndev);
1695 vxge_debug_init(VXGE_ERR,
1696 "fatal: %s: Disabling device due to"
1697 "slot freeze",
1698 vdev->ndev->name);
1699 ret = -EPERM;
1700 goto out;
1701 default:
1702 break;
1703
1704 }
1705 }
1706
1707 if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET))
1708 netif_tx_stop_all_queues(vdev->ndev);
1709
1710 if (event == VXGE_LL_FULL_RESET) {
1711 status = vxge_reset_all_vpaths(vdev);
1712 if (status != VXGE_HW_OK) {
1713 vxge_debug_init(VXGE_ERR,
1714 "fatal: %s: can not reset vpaths",
1715 vdev->ndev->name);
1716 ret = -EPERM;
1717 goto out;
1718 }
1719 }
1720
1721 if (event == VXGE_LL_COMPL_RESET) {
1722 for (i = 0; i < vdev->no_of_vpath; i++)
1723 if (vdev->vpaths[i].handle) {
1724 if (vxge_hw_vpath_recover_from_reset(
1725 vdev->vpaths[i].handle)
1726 != VXGE_HW_OK) {
1727 vxge_debug_init(VXGE_ERR,
1728 "vxge_hw_vpath_recover_"
1729 "from_reset failed for vpath: "
1730 "%d", i);
1731 ret = -EPERM;
1732 goto out;
1733 }
1734 } else {
1735 vxge_debug_init(VXGE_ERR,
1736 "vxge_hw_vpath_reset failed for "
1737 "vpath:%d", i);
1738 ret = -EPERM;
1739 goto out;
1740 }
1741 }
1742
1743 if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET)) {
1744 /* Reprogram the DA table with populated mac addresses */
1745 for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
1746 vxge_restore_vpath_mac_addr(&vdev->vpaths[vp_id]);
1747 vxge_restore_vpath_vid_table(&vdev->vpaths[vp_id]);
1748 }
1749
1750 /* enable vpath interrupts */
1751 for (i = 0; i < vdev->no_of_vpath; i++)
1752 vxge_vpath_intr_enable(vdev, i);
1753
1754 vxge_hw_device_intr_enable(vdev->devh);
1755
1756 smp_wmb();
1757
1758 /* Indicate card up */
1759 set_bit(__VXGE_STATE_CARD_UP, &vdev->state);
1760
1761 /* Get the traffic to flow through the vpaths */
1762 for (i = 0; i < vdev->no_of_vpath; i++) {
1763 vxge_hw_vpath_enable(vdev->vpaths[i].handle);
1764 smp_wmb();
1765 vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[i].handle);
1766 }
1767
1768 netif_tx_wake_all_queues(vdev->ndev);
1769 }
1770
1771 /* configure CI */
1772 vxge_config_ci_for_tti_rti(vdev);
1773
1774 out:
1775 vxge_debug_entryexit(VXGE_TRACE,
1776 "%s:%d Exiting...", __func__, __LINE__);
1777
1778 /* Indicate reset done */
1779 if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET))
1780 clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state);
1781 return ret;
1782 }
1783
1784 /*
1785 * vxge_reset
1786 * @vdev: pointer to ll device
1787 *
1788 * driver may reset the chip on events of serr, eccerr, etc
1789 */
1790 static void vxge_reset(struct work_struct *work)
1791 {
1792 struct vxgedev *vdev = container_of(work, struct vxgedev, reset_task);
1793
1794 if (!netif_running(vdev->ndev))
1795 return;
1796
1797 do_vxge_reset(vdev, VXGE_LL_FULL_RESET);
1798 }
1799
1800 /**
1801 * vxge_poll - Receive handler when Receive Polling is used.
1802 * @dev: pointer to the device structure.
1803 * @budget: Number of packets budgeted to be processed in this iteration.
1804 *
1805 * This function comes into picture only if Receive side is being handled
1806 * through polling (called NAPI in linux). It mostly does what the normal
1807 * Rx interrupt handler does in terms of descriptor and packet processing
1808 * but not in an interrupt context. Also it will process a specified number
1809 * of packets at most in one iteration. This value is passed down by the
1810 * kernel as the function argument 'budget'.
1811 */
1812 static int vxge_poll_msix(struct napi_struct *napi, int budget)
1813 {
1814 struct vxge_ring *ring = container_of(napi, struct vxge_ring, napi);
1815 int pkts_processed;
1816 int budget_org = budget;
1817
1818 ring->budget = budget;
1819 ring->pkts_processed = 0;
1820 vxge_hw_vpath_poll_rx(ring->handle);
1821 pkts_processed = ring->pkts_processed;
1822
1823 if (ring->pkts_processed < budget_org) {
1824 napi_complete(napi);
1825
1826 /* Re enable the Rx interrupts for the vpath */
1827 vxge_hw_channel_msix_unmask(
1828 (struct __vxge_hw_channel *)ring->handle,
1829 ring->rx_vector_no);
1830 mmiowb();
1831 }
1832
1833 /* We are copying and returning the local variable, in case if after
1834 * clearing the msix interrupt above, if the interrupt fires right
1835 * away which can preempt this NAPI thread */
1836 return pkts_processed;
1837 }
1838
1839 static int vxge_poll_inta(struct napi_struct *napi, int budget)
1840 {
1841 struct vxgedev *vdev = container_of(napi, struct vxgedev, napi);
1842 int pkts_processed = 0;
1843 int i;
1844 int budget_org = budget;
1845 struct vxge_ring *ring;
1846
1847 struct __vxge_hw_device *hldev = pci_get_drvdata(vdev->pdev);
1848
1849 for (i = 0; i < vdev->no_of_vpath; i++) {
1850 ring = &vdev->vpaths[i].ring;
1851 ring->budget = budget;
1852 ring->pkts_processed = 0;
1853 vxge_hw_vpath_poll_rx(ring->handle);
1854 pkts_processed += ring->pkts_processed;
1855 budget -= ring->pkts_processed;
1856 if (budget <= 0)
1857 break;
1858 }
1859
1860 VXGE_COMPLETE_ALL_TX(vdev);
1861
1862 if (pkts_processed < budget_org) {
1863 napi_complete(napi);
1864 /* Re enable the Rx interrupts for the ring */
1865 vxge_hw_device_unmask_all(hldev);
1866 vxge_hw_device_flush_io(hldev);
1867 }
1868
1869 return pkts_processed;
1870 }
1871
1872 #ifdef CONFIG_NET_POLL_CONTROLLER
1873 /**
1874 * vxge_netpoll - netpoll event handler entry point
1875 * @dev : pointer to the device structure.
1876 * Description:
1877 * This function will be called by upper layer to check for events on the
1878 * interface in situations where interrupts are disabled. It is used for
1879 * specific in-kernel networking tasks, such as remote consoles and kernel
1880 * debugging over the network (example netdump in RedHat).
1881 */
1882 static void vxge_netpoll(struct net_device *dev)
1883 {
1884 struct vxgedev *vdev = netdev_priv(dev);
1885 struct pci_dev *pdev = vdev->pdev;
1886 struct __vxge_hw_device *hldev = pci_get_drvdata(pdev);
1887 const int irq = pdev->irq;
1888
1889 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
1890
1891 if (pci_channel_offline(pdev))
1892 return;
1893
1894 disable_irq(irq);
1895 vxge_hw_device_clear_tx_rx(hldev);
1896
1897 vxge_hw_device_clear_tx_rx(hldev);
1898 VXGE_COMPLETE_ALL_RX(vdev);
1899 VXGE_COMPLETE_ALL_TX(vdev);
1900
1901 enable_irq(irq);
1902
1903 vxge_debug_entryexit(VXGE_TRACE,
1904 "%s:%d Exiting...", __func__, __LINE__);
1905 }
1906 #endif
1907
1908 /* RTH configuration */
1909 static enum vxge_hw_status vxge_rth_configure(struct vxgedev *vdev)
1910 {
1911 enum vxge_hw_status status = VXGE_HW_OK;
1912 struct vxge_hw_rth_hash_types hash_types;
1913 u8 itable[256] = {0}; /* indirection table */
1914 u8 mtable[256] = {0}; /* CPU to vpath mapping */
1915 int index;
1916
1917 /*
1918 * Filling
1919 * - itable with bucket numbers
1920 * - mtable with bucket-to-vpath mapping
1921 */
1922 for (index = 0; index < (1 << vdev->config.rth_bkt_sz); index++) {
1923 itable[index] = index;
1924 mtable[index] = index % vdev->no_of_vpath;
1925 }
1926
1927 /* set indirection table, bucket-to-vpath mapping */
1928 status = vxge_hw_vpath_rts_rth_itable_set(vdev->vp_handles,
1929 vdev->no_of_vpath,
1930 mtable, itable,
1931 vdev->config.rth_bkt_sz);
1932 if (status != VXGE_HW_OK) {
1933 vxge_debug_init(VXGE_ERR,
1934 "RTH indirection table configuration failed "
1935 "for vpath:%d", vdev->vpaths[0].device_id);
1936 return status;
1937 }
1938
1939 /* Fill RTH hash types */
1940 hash_types.hash_type_tcpipv4_en = vdev->config.rth_hash_type_tcpipv4;
1941 hash_types.hash_type_ipv4_en = vdev->config.rth_hash_type_ipv4;
1942 hash_types.hash_type_tcpipv6_en = vdev->config.rth_hash_type_tcpipv6;
1943 hash_types.hash_type_ipv6_en = vdev->config.rth_hash_type_ipv6;
1944 hash_types.hash_type_tcpipv6ex_en =
1945 vdev->config.rth_hash_type_tcpipv6ex;
1946 hash_types.hash_type_ipv6ex_en = vdev->config.rth_hash_type_ipv6ex;
1947
1948 /*
1949 * Because the itable_set() method uses the active_table field
1950 * for the target virtual path the RTH config should be updated
1951 * for all VPATHs. The h/w only uses the lowest numbered VPATH
1952 * when steering frames.
1953 */
1954 for (index = 0; index < vdev->no_of_vpath; index++) {
1955 status = vxge_hw_vpath_rts_rth_set(
1956 vdev->vpaths[index].handle,
1957 vdev->config.rth_algorithm,
1958 &hash_types,
1959 vdev->config.rth_bkt_sz);
1960 if (status != VXGE_HW_OK) {
1961 vxge_debug_init(VXGE_ERR,
1962 "RTH configuration failed for vpath:%d",
1963 vdev->vpaths[index].device_id);
1964 return status;
1965 }
1966 }
1967
1968 return status;
1969 }
1970
1971 /* reset vpaths */
1972 static enum vxge_hw_status vxge_reset_all_vpaths(struct vxgedev *vdev)
1973 {
1974 enum vxge_hw_status status = VXGE_HW_OK;
1975 struct vxge_vpath *vpath;
1976 int i;
1977
1978 for (i = 0; i < vdev->no_of_vpath; i++) {
1979 vpath = &vdev->vpaths[i];
1980 if (vpath->handle) {
1981 if (vxge_hw_vpath_reset(vpath->handle) == VXGE_HW_OK) {
1982 if (is_vxge_card_up(vdev) &&
1983 vxge_hw_vpath_recover_from_reset(
1984 vpath->handle) != VXGE_HW_OK) {
1985 vxge_debug_init(VXGE_ERR,
1986 "vxge_hw_vpath_recover_"
1987 "from_reset failed for vpath: "
1988 "%d", i);
1989 return status;
1990 }
1991 } else {
1992 vxge_debug_init(VXGE_ERR,
1993 "vxge_hw_vpath_reset failed for "
1994 "vpath:%d", i);
1995 return status;
1996 }
1997 }
1998 }
1999
2000 return status;
2001 }
2002
2003 /* close vpaths */
2004 static void vxge_close_vpaths(struct vxgedev *vdev, int index)
2005 {
2006 struct vxge_vpath *vpath;
2007 int i;
2008
2009 for (i = index; i < vdev->no_of_vpath; i++) {
2010 vpath = &vdev->vpaths[i];
2011
2012 if (vpath->handle && vpath->is_open) {
2013 vxge_hw_vpath_close(vpath->handle);
2014 vdev->stats.vpaths_open--;
2015 }
2016 vpath->is_open = 0;
2017 vpath->handle = NULL;
2018 }
2019 }
2020
2021 /* open vpaths */
2022 static int vxge_open_vpaths(struct vxgedev *vdev)
2023 {
2024 struct vxge_hw_vpath_attr attr;
2025 enum vxge_hw_status status;
2026 struct vxge_vpath *vpath;
2027 u32 vp_id = 0;
2028 int i;
2029
2030 for (i = 0; i < vdev->no_of_vpath; i++) {
2031 vpath = &vdev->vpaths[i];
2032 vxge_assert(vpath->is_configured);
2033
2034 if (!vdev->titan1) {
2035 struct vxge_hw_vp_config *vcfg;
2036 vcfg = &vdev->devh->config.vp_config[vpath->device_id];
2037
2038 vcfg->rti.urange_a = RTI_T1A_RX_URANGE_A;
2039 vcfg->rti.urange_b = RTI_T1A_RX_URANGE_B;
2040 vcfg->rti.urange_c = RTI_T1A_RX_URANGE_C;
2041 vcfg->tti.uec_a = TTI_T1A_TX_UFC_A;
2042 vcfg->tti.uec_b = TTI_T1A_TX_UFC_B;
2043 vcfg->tti.uec_c = TTI_T1A_TX_UFC_C(vdev->mtu);
2044 vcfg->tti.uec_d = TTI_T1A_TX_UFC_D(vdev->mtu);
2045 vcfg->tti.ltimer_val = VXGE_T1A_TTI_LTIMER_VAL;
2046 vcfg->tti.rtimer_val = VXGE_T1A_TTI_RTIMER_VAL;
2047 }
2048
2049 attr.vp_id = vpath->device_id;
2050 attr.fifo_attr.callback = vxge_xmit_compl;
2051 attr.fifo_attr.txdl_term = vxge_tx_term;
2052 attr.fifo_attr.per_txdl_space = sizeof(struct vxge_tx_priv);
2053 attr.fifo_attr.userdata = &vpath->fifo;
2054
2055 attr.ring_attr.callback = vxge_rx_1b_compl;
2056 attr.ring_attr.rxd_init = vxge_rx_initial_replenish;
2057 attr.ring_attr.rxd_term = vxge_rx_term;
2058 attr.ring_attr.per_rxd_space = sizeof(struct vxge_rx_priv);
2059 attr.ring_attr.userdata = &vpath->ring;
2060
2061 vpath->ring.ndev = vdev->ndev;
2062 vpath->ring.pdev = vdev->pdev;
2063
2064 status = vxge_hw_vpath_open(vdev->devh, &attr, &vpath->handle);
2065 if (status == VXGE_HW_OK) {
2066 vpath->fifo.handle =
2067 (struct __vxge_hw_fifo *)attr.fifo_attr.userdata;
2068 vpath->ring.handle =
2069 (struct __vxge_hw_ring *)attr.ring_attr.userdata;
2070 vpath->fifo.tx_steering_type =
2071 vdev->config.tx_steering_type;
2072 vpath->fifo.ndev = vdev->ndev;
2073 vpath->fifo.pdev = vdev->pdev;
2074
2075 u64_stats_init(&vpath->fifo.stats.syncp);
2076 u64_stats_init(&vpath->ring.stats.syncp);
2077
2078 if (vdev->config.tx_steering_type)
2079 vpath->fifo.txq =
2080 netdev_get_tx_queue(vdev->ndev, i);
2081 else
2082 vpath->fifo.txq =
2083 netdev_get_tx_queue(vdev->ndev, 0);
2084 vpath->fifo.indicate_max_pkts =
2085 vdev->config.fifo_indicate_max_pkts;
2086 vpath->fifo.tx_vector_no = 0;
2087 vpath->ring.rx_vector_no = 0;
2088 vpath->ring.rx_hwts = vdev->rx_hwts;
2089 vpath->is_open = 1;
2090 vdev->vp_handles[i] = vpath->handle;
2091 vpath->ring.vlan_tag_strip = vdev->vlan_tag_strip;
2092 vdev->stats.vpaths_open++;
2093 } else {
2094 vdev->stats.vpath_open_fail++;
2095 vxge_debug_init(VXGE_ERR, "%s: vpath: %d failed to "
2096 "open with status: %d",
2097 vdev->ndev->name, vpath->device_id,
2098 status);
2099 vxge_close_vpaths(vdev, 0);
2100 return -EPERM;
2101 }
2102
2103 vp_id = vpath->handle->vpath->vp_id;
2104 vdev->vpaths_deployed |= vxge_mBIT(vp_id);
2105 }
2106
2107 return VXGE_HW_OK;
2108 }
2109
2110 /**
2111 * adaptive_coalesce_tx_interrupts - Changes the interrupt coalescing
2112 * if the interrupts are not within a range
2113 * @fifo: pointer to transmit fifo structure
2114 * Description: The function changes boundary timer and restriction timer
2115 * value depends on the traffic
2116 * Return Value: None
2117 */
2118 static void adaptive_coalesce_tx_interrupts(struct vxge_fifo *fifo)
2119 {
2120 fifo->interrupt_count++;
2121 if (jiffies > fifo->jiffies + HZ / 100) {
2122 struct __vxge_hw_fifo *hw_fifo = fifo->handle;
2123
2124 fifo->jiffies = jiffies;
2125 if (fifo->interrupt_count > VXGE_T1A_MAX_TX_INTERRUPT_COUNT &&
2126 hw_fifo->rtimer != VXGE_TTI_RTIMER_ADAPT_VAL) {
2127 hw_fifo->rtimer = VXGE_TTI_RTIMER_ADAPT_VAL;
2128 vxge_hw_vpath_dynamic_tti_rtimer_set(hw_fifo);
2129 } else if (hw_fifo->rtimer != 0) {
2130 hw_fifo->rtimer = 0;
2131 vxge_hw_vpath_dynamic_tti_rtimer_set(hw_fifo);
2132 }
2133 fifo->interrupt_count = 0;
2134 }
2135 }
2136
2137 /**
2138 * adaptive_coalesce_rx_interrupts - Changes the interrupt coalescing
2139 * if the interrupts are not within a range
2140 * @ring: pointer to receive ring structure
2141 * Description: The function increases of decreases the packet counts within
2142 * the ranges of traffic utilization, if the interrupts due to this ring are
2143 * not within a fixed range.
2144 * Return Value: Nothing
2145 */
2146 static void adaptive_coalesce_rx_interrupts(struct vxge_ring *ring)
2147 {
2148 ring->interrupt_count++;
2149 if (jiffies > ring->jiffies + HZ / 100) {
2150 struct __vxge_hw_ring *hw_ring = ring->handle;
2151
2152 ring->jiffies = jiffies;
2153 if (ring->interrupt_count > VXGE_T1A_MAX_INTERRUPT_COUNT &&
2154 hw_ring->rtimer != VXGE_RTI_RTIMER_ADAPT_VAL) {
2155 hw_ring->rtimer = VXGE_RTI_RTIMER_ADAPT_VAL;
2156 vxge_hw_vpath_dynamic_rti_rtimer_set(hw_ring);
2157 } else if (hw_ring->rtimer != 0) {
2158 hw_ring->rtimer = 0;
2159 vxge_hw_vpath_dynamic_rti_rtimer_set(hw_ring);
2160 }
2161 ring->interrupt_count = 0;
2162 }
2163 }
2164
2165 /*
2166 * vxge_isr_napi
2167 * @irq: the irq of the device.
2168 * @dev_id: a void pointer to the hldev structure of the Titan device
2169 * @ptregs: pointer to the registers pushed on the stack.
2170 *
2171 * This function is the ISR handler of the device when napi is enabled. It
2172 * identifies the reason for the interrupt and calls the relevant service
2173 * routines.
2174 */
2175 static irqreturn_t vxge_isr_napi(int irq, void *dev_id)
2176 {
2177 struct net_device *dev;
2178 struct __vxge_hw_device *hldev;
2179 u64 reason;
2180 enum vxge_hw_status status;
2181 struct vxgedev *vdev = (struct vxgedev *)dev_id;
2182
2183 vxge_debug_intr(VXGE_TRACE, "%s:%d", __func__, __LINE__);
2184
2185 dev = vdev->ndev;
2186 hldev = pci_get_drvdata(vdev->pdev);
2187
2188 if (pci_channel_offline(vdev->pdev))
2189 return IRQ_NONE;
2190
2191 if (unlikely(!is_vxge_card_up(vdev)))
2192 return IRQ_HANDLED;
2193
2194 status = vxge_hw_device_begin_irq(hldev, vdev->exec_mode, &reason);
2195 if (status == VXGE_HW_OK) {
2196 vxge_hw_device_mask_all(hldev);
2197
2198 if (reason &
2199 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(
2200 vdev->vpaths_deployed >>
2201 (64 - VXGE_HW_MAX_VIRTUAL_PATHS))) {
2202
2203 vxge_hw_device_clear_tx_rx(hldev);
2204 napi_schedule(&vdev->napi);
2205 vxge_debug_intr(VXGE_TRACE,
2206 "%s:%d Exiting...", __func__, __LINE__);
2207 return IRQ_HANDLED;
2208 } else
2209 vxge_hw_device_unmask_all(hldev);
2210 } else if (unlikely((status == VXGE_HW_ERR_VPATH) ||
2211 (status == VXGE_HW_ERR_CRITICAL) ||
2212 (status == VXGE_HW_ERR_FIFO))) {
2213 vxge_hw_device_mask_all(hldev);
2214 vxge_hw_device_flush_io(hldev);
2215 return IRQ_HANDLED;
2216 } else if (unlikely(status == VXGE_HW_ERR_SLOT_FREEZE))
2217 return IRQ_HANDLED;
2218
2219 vxge_debug_intr(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__);
2220 return IRQ_NONE;
2221 }
2222
2223 #ifdef CONFIG_PCI_MSI
2224
2225 static irqreturn_t vxge_tx_msix_handle(int irq, void *dev_id)
2226 {
2227 struct vxge_fifo *fifo = (struct vxge_fifo *)dev_id;
2228
2229 adaptive_coalesce_tx_interrupts(fifo);
2230
2231 vxge_hw_channel_msix_mask((struct __vxge_hw_channel *)fifo->handle,
2232 fifo->tx_vector_no);
2233
2234 vxge_hw_channel_msix_clear((struct __vxge_hw_channel *)fifo->handle,
2235 fifo->tx_vector_no);
2236
2237 VXGE_COMPLETE_VPATH_TX(fifo);
2238
2239 vxge_hw_channel_msix_unmask((struct __vxge_hw_channel *)fifo->handle,
2240 fifo->tx_vector_no);
2241
2242 mmiowb();
2243
2244 return IRQ_HANDLED;
2245 }
2246
2247 static irqreturn_t vxge_rx_msix_napi_handle(int irq, void *dev_id)
2248 {
2249 struct vxge_ring *ring = (struct vxge_ring *)dev_id;
2250
2251 adaptive_coalesce_rx_interrupts(ring);
2252
2253 vxge_hw_channel_msix_mask((struct __vxge_hw_channel *)ring->handle,
2254 ring->rx_vector_no);
2255
2256 vxge_hw_channel_msix_clear((struct __vxge_hw_channel *)ring->handle,
2257 ring->rx_vector_no);
2258
2259 napi_schedule(&ring->napi);
2260 return IRQ_HANDLED;
2261 }
2262
2263 static irqreturn_t
2264 vxge_alarm_msix_handle(int irq, void *dev_id)
2265 {
2266 int i;
2267 enum vxge_hw_status status;
2268 struct vxge_vpath *vpath = (struct vxge_vpath *)dev_id;
2269 struct vxgedev *vdev = vpath->vdev;
2270 int msix_id = (vpath->handle->vpath->vp_id *
2271 VXGE_HW_VPATH_MSIX_ACTIVE) + VXGE_ALARM_MSIX_ID;
2272
2273 for (i = 0; i < vdev->no_of_vpath; i++) {
2274 /* Reduce the chance of losing alarm interrupts by masking
2275 * the vector. A pending bit will be set if an alarm is
2276 * generated and on unmask the interrupt will be fired.
2277 */
2278 vxge_hw_vpath_msix_mask(vdev->vpaths[i].handle, msix_id);
2279 vxge_hw_vpath_msix_clear(vdev->vpaths[i].handle, msix_id);
2280 mmiowb();
2281
2282 status = vxge_hw_vpath_alarm_process(vdev->vpaths[i].handle,
2283 vdev->exec_mode);
2284 if (status == VXGE_HW_OK) {
2285 vxge_hw_vpath_msix_unmask(vdev->vpaths[i].handle,
2286 msix_id);
2287 mmiowb();
2288 continue;
2289 }
2290 vxge_debug_intr(VXGE_ERR,
2291 "%s: vxge_hw_vpath_alarm_process failed %x ",
2292 VXGE_DRIVER_NAME, status);
2293 }
2294 return IRQ_HANDLED;
2295 }
2296
2297 static int vxge_alloc_msix(struct vxgedev *vdev)
2298 {
2299 int j, i, ret = 0;
2300 int msix_intr_vect = 0, temp;
2301 vdev->intr_cnt = 0;
2302
2303 start:
2304 /* Tx/Rx MSIX Vectors count */
2305 vdev->intr_cnt = vdev->no_of_vpath * 2;
2306
2307 /* Alarm MSIX Vectors count */
2308 vdev->intr_cnt++;
2309
2310 vdev->entries = kcalloc(vdev->intr_cnt, sizeof(struct msix_entry),
2311 GFP_KERNEL);
2312 if (!vdev->entries) {
2313 vxge_debug_init(VXGE_ERR,
2314 "%s: memory allocation failed",
2315 VXGE_DRIVER_NAME);
2316 ret = -ENOMEM;
2317 goto alloc_entries_failed;
2318 }
2319
2320 vdev->vxge_entries = kcalloc(vdev->intr_cnt,
2321 sizeof(struct vxge_msix_entry),
2322 GFP_KERNEL);
2323 if (!vdev->vxge_entries) {
2324 vxge_debug_init(VXGE_ERR, "%s: memory allocation failed",
2325 VXGE_DRIVER_NAME);
2326 ret = -ENOMEM;
2327 goto alloc_vxge_entries_failed;
2328 }
2329
2330 for (i = 0, j = 0; i < vdev->no_of_vpath; i++) {
2331
2332 msix_intr_vect = i * VXGE_HW_VPATH_MSIX_ACTIVE;
2333
2334 /* Initialize the fifo vector */
2335 vdev->entries[j].entry = msix_intr_vect;
2336 vdev->vxge_entries[j].entry = msix_intr_vect;
2337 vdev->vxge_entries[j].in_use = 0;
2338 j++;
2339
2340 /* Initialize the ring vector */
2341 vdev->entries[j].entry = msix_intr_vect + 1;
2342 vdev->vxge_entries[j].entry = msix_intr_vect + 1;
2343 vdev->vxge_entries[j].in_use = 0;
2344 j++;
2345 }
2346
2347 /* Initialize the alarm vector */
2348 vdev->entries[j].entry = VXGE_ALARM_MSIX_ID;
2349 vdev->vxge_entries[j].entry = VXGE_ALARM_MSIX_ID;
2350 vdev->vxge_entries[j].in_use = 0;
2351
2352 ret = pci_enable_msix(vdev->pdev, vdev->entries, vdev->intr_cnt);
2353 if (ret > 0) {
2354 vxge_debug_init(VXGE_ERR,
2355 "%s: MSI-X enable failed for %d vectors, ret: %d",
2356 VXGE_DRIVER_NAME, vdev->intr_cnt, ret);
2357 if ((max_config_vpath != VXGE_USE_DEFAULT) || (ret < 3)) {
2358 ret = -ENODEV;
2359 goto enable_msix_failed;
2360 }
2361
2362 kfree(vdev->entries);
2363 kfree(vdev->vxge_entries);
2364 vdev->entries = NULL;
2365 vdev->vxge_entries = NULL;
2366 /* Try with less no of vector by reducing no of vpaths count */
2367 temp = (ret - 1)/2;
2368 vxge_close_vpaths(vdev, temp);
2369 vdev->no_of_vpath = temp;
2370 goto start;
2371 } else if (ret < 0) {
2372 ret = -ENODEV;
2373 goto enable_msix_failed;
2374 }
2375 return 0;
2376
2377 enable_msix_failed:
2378 kfree(vdev->vxge_entries);
2379 alloc_vxge_entries_failed:
2380 kfree(vdev->entries);
2381 alloc_entries_failed:
2382 return ret;
2383 }
2384
2385 static int vxge_enable_msix(struct vxgedev *vdev)
2386 {
2387
2388 int i, ret = 0;
2389 /* 0 - Tx, 1 - Rx */
2390 int tim_msix_id[4] = {0, 1, 0, 0};
2391
2392 vdev->intr_cnt = 0;
2393
2394 /* allocate msix vectors */
2395 ret = vxge_alloc_msix(vdev);
2396 if (!ret) {
2397 for (i = 0; i < vdev->no_of_vpath; i++) {
2398 struct vxge_vpath *vpath = &vdev->vpaths[i];
2399
2400 /* If fifo or ring are not enabled, the MSIX vector for
2401 * it should be set to 0.
2402 */
2403 vpath->ring.rx_vector_no = (vpath->device_id *
2404 VXGE_HW_VPATH_MSIX_ACTIVE) + 1;
2405
2406 vpath->fifo.tx_vector_no = (vpath->device_id *
2407 VXGE_HW_VPATH_MSIX_ACTIVE);
2408
2409 vxge_hw_vpath_msix_set(vpath->handle, tim_msix_id,
2410 VXGE_ALARM_MSIX_ID);
2411 }
2412 }
2413
2414 return ret;
2415 }
2416
2417 static void vxge_rem_msix_isr(struct vxgedev *vdev)
2418 {
2419 int intr_cnt;
2420
2421 for (intr_cnt = 0; intr_cnt < (vdev->no_of_vpath * 2 + 1);
2422 intr_cnt++) {
2423 if (vdev->vxge_entries[intr_cnt].in_use) {
2424 synchronize_irq(vdev->entries[intr_cnt].vector);
2425 free_irq(vdev->entries[intr_cnt].vector,
2426 vdev->vxge_entries[intr_cnt].arg);
2427 vdev->vxge_entries[intr_cnt].in_use = 0;
2428 }
2429 }
2430
2431 kfree(vdev->entries);
2432 kfree(vdev->vxge_entries);
2433 vdev->entries = NULL;
2434 vdev->vxge_entries = NULL;
2435
2436 if (vdev->config.intr_type == MSI_X)
2437 pci_disable_msix(vdev->pdev);
2438 }
2439 #endif
2440
2441 static void vxge_rem_isr(struct vxgedev *vdev)
2442 {
2443 #ifdef CONFIG_PCI_MSI
2444 if (vdev->config.intr_type == MSI_X) {
2445 vxge_rem_msix_isr(vdev);
2446 } else
2447 #endif
2448 if (vdev->config.intr_type == INTA) {
2449 synchronize_irq(vdev->pdev->irq);
2450 free_irq(vdev->pdev->irq, vdev);
2451 }
2452 }
2453
2454 static int vxge_add_isr(struct vxgedev *vdev)
2455 {
2456 int ret = 0;
2457 #ifdef CONFIG_PCI_MSI
2458 int vp_idx = 0, intr_idx = 0, intr_cnt = 0, msix_idx = 0, irq_req = 0;
2459 int pci_fun = PCI_FUNC(vdev->pdev->devfn);
2460
2461 if (vdev->config.intr_type == MSI_X)
2462 ret = vxge_enable_msix(vdev);
2463
2464 if (ret) {
2465 vxge_debug_init(VXGE_ERR,
2466 "%s: Enabling MSI-X Failed", VXGE_DRIVER_NAME);
2467 vxge_debug_init(VXGE_ERR,
2468 "%s: Defaulting to INTA", VXGE_DRIVER_NAME);
2469 vdev->config.intr_type = INTA;
2470 }
2471
2472 if (vdev->config.intr_type == MSI_X) {
2473 for (intr_idx = 0;
2474 intr_idx < (vdev->no_of_vpath *
2475 VXGE_HW_VPATH_MSIX_ACTIVE); intr_idx++) {
2476
2477 msix_idx = intr_idx % VXGE_HW_VPATH_MSIX_ACTIVE;
2478 irq_req = 0;
2479
2480 switch (msix_idx) {
2481 case 0:
2482 snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
2483 "%s:vxge:MSI-X %d - Tx - fn:%d vpath:%d",
2484 vdev->ndev->name,
2485 vdev->entries[intr_cnt].entry,
2486 pci_fun, vp_idx);
2487 ret = request_irq(
2488 vdev->entries[intr_cnt].vector,
2489 vxge_tx_msix_handle, 0,
2490 vdev->desc[intr_cnt],
2491 &vdev->vpaths[vp_idx].fifo);
2492 vdev->vxge_entries[intr_cnt].arg =
2493 &vdev->vpaths[vp_idx].fifo;
2494 irq_req = 1;
2495 break;
2496 case 1:
2497 snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
2498 "%s:vxge:MSI-X %d - Rx - fn:%d vpath:%d",
2499 vdev->ndev->name,
2500 vdev->entries[intr_cnt].entry,
2501 pci_fun, vp_idx);
2502 ret = request_irq(
2503 vdev->entries[intr_cnt].vector,
2504 vxge_rx_msix_napi_handle,
2505 0,
2506 vdev->desc[intr_cnt],
2507 &vdev->vpaths[vp_idx].ring);
2508 vdev->vxge_entries[intr_cnt].arg =
2509 &vdev->vpaths[vp_idx].ring;
2510 irq_req = 1;
2511 break;
2512 }
2513
2514 if (ret) {
2515 vxge_debug_init(VXGE_ERR,
2516 "%s: MSIX - %d Registration failed",
2517 vdev->ndev->name, intr_cnt);
2518 vxge_rem_msix_isr(vdev);
2519 vdev->config.intr_type = INTA;
2520 vxge_debug_init(VXGE_ERR,
2521 "%s: Defaulting to INTA"
2522 , vdev->ndev->name);
2523 goto INTA_MODE;
2524 }
2525
2526 if (irq_req) {
2527 /* We requested for this msix interrupt */
2528 vdev->vxge_entries[intr_cnt].in_use = 1;
2529 msix_idx += vdev->vpaths[vp_idx].device_id *
2530 VXGE_HW_VPATH_MSIX_ACTIVE;
2531 vxge_hw_vpath_msix_unmask(
2532 vdev->vpaths[vp_idx].handle,
2533 msix_idx);
2534 intr_cnt++;
2535 }
2536
2537 /* Point to next vpath handler */
2538 if (((intr_idx + 1) % VXGE_HW_VPATH_MSIX_ACTIVE == 0) &&
2539 (vp_idx < (vdev->no_of_vpath - 1)))
2540 vp_idx++;
2541 }
2542
2543 intr_cnt = vdev->no_of_vpath * 2;
2544 snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
2545 "%s:vxge:MSI-X %d - Alarm - fn:%d",
2546 vdev->ndev->name,
2547 vdev->entries[intr_cnt].entry,
2548 pci_fun);
2549 /* For Alarm interrupts */
2550 ret = request_irq(vdev->entries[intr_cnt].vector,
2551 vxge_alarm_msix_handle, 0,
2552 vdev->desc[intr_cnt],
2553 &vdev->vpaths[0]);
2554 if (ret) {
2555 vxge_debug_init(VXGE_ERR,
2556 "%s: MSIX - %d Registration failed",
2557 vdev->ndev->name, intr_cnt);
2558 vxge_rem_msix_isr(vdev);
2559 vdev->config.intr_type = INTA;
2560 vxge_debug_init(VXGE_ERR,
2561 "%s: Defaulting to INTA",
2562 vdev->ndev->name);
2563 goto INTA_MODE;
2564 }
2565
2566 msix_idx = (vdev->vpaths[0].handle->vpath->vp_id *
2567 VXGE_HW_VPATH_MSIX_ACTIVE) + VXGE_ALARM_MSIX_ID;
2568 vxge_hw_vpath_msix_unmask(vdev->vpaths[vp_idx].handle,
2569 msix_idx);
2570 vdev->vxge_entries[intr_cnt].in_use = 1;
2571 vdev->vxge_entries[intr_cnt].arg = &vdev->vpaths[0];
2572 }
2573 INTA_MODE:
2574 #endif
2575
2576 if (vdev->config.intr_type == INTA) {
2577 snprintf(vdev->desc[0], VXGE_INTR_STRLEN,
2578 "%s:vxge:INTA", vdev->ndev->name);
2579 vxge_hw_device_set_intr_type(vdev->devh,
2580 VXGE_HW_INTR_MODE_IRQLINE);
2581
2582 vxge_hw_vpath_tti_ci_set(vdev->vpaths[0].fifo.handle);
2583
2584 ret = request_irq((int) vdev->pdev->irq,
2585 vxge_isr_napi,
2586 IRQF_SHARED, vdev->desc[0], vdev);
2587 if (ret) {
2588 vxge_debug_init(VXGE_ERR,
2589 "%s %s-%d: ISR registration failed",
2590 VXGE_DRIVER_NAME, "IRQ", vdev->pdev->irq);
2591 return -ENODEV;
2592 }
2593 vxge_debug_init(VXGE_TRACE,
2594 "new %s-%d line allocated",
2595 "IRQ", vdev->pdev->irq);
2596 }
2597
2598 return VXGE_HW_OK;
2599 }
2600
2601 static void vxge_poll_vp_reset(unsigned long data)
2602 {
2603 struct vxgedev *vdev = (struct vxgedev *)data;
2604 int i, j = 0;
2605
2606 for (i = 0; i < vdev->no_of_vpath; i++) {
2607 if (test_bit(i, &vdev->vp_reset)) {
2608 vxge_reset_vpath(vdev, i);
2609 j++;
2610 }
2611 }
2612 if (j && (vdev->config.intr_type != MSI_X)) {
2613 vxge_hw_device_unmask_all(vdev->devh);
2614 vxge_hw_device_flush_io(vdev->devh);
2615 }
2616
2617 mod_timer(&vdev->vp_reset_timer, jiffies + HZ / 2);
2618 }
2619
2620 static void vxge_poll_vp_lockup(unsigned long data)
2621 {
2622 struct vxgedev *vdev = (struct vxgedev *)data;
2623 enum vxge_hw_status status = VXGE_HW_OK;
2624 struct vxge_vpath *vpath;
2625 struct vxge_ring *ring;
2626 int i;
2627 unsigned long rx_frms;
2628
2629 for (i = 0; i < vdev->no_of_vpath; i++) {
2630 ring = &vdev->vpaths[i].ring;
2631
2632 /* Truncated to machine word size number of frames */
2633 rx_frms = ACCESS_ONCE(ring->stats.rx_frms);
2634
2635 /* Did this vpath received any packets */
2636 if (ring->stats.prev_rx_frms == rx_frms) {
2637 status = vxge_hw_vpath_check_leak(ring->handle);
2638
2639 /* Did it received any packets last time */
2640 if ((VXGE_HW_FAIL == status) &&
2641 (VXGE_HW_FAIL == ring->last_status)) {
2642
2643 /* schedule vpath reset */
2644 if (!test_and_set_bit(i, &vdev->vp_reset)) {
2645 vpath = &vdev->vpaths[i];
2646
2647 /* disable interrupts for this vpath */
2648 vxge_vpath_intr_disable(vdev, i);
2649
2650 /* stop the queue for this vpath */
2651 netif_tx_stop_queue(vpath->fifo.txq);
2652 continue;
2653 }
2654 }
2655 }
2656 ring->stats.prev_rx_frms = rx_frms;
2657 ring->last_status = status;
2658 }
2659
2660 /* Check every 1 milli second */
2661 mod_timer(&vdev->vp_lockup_timer, jiffies + HZ / 1000);
2662 }
2663
2664 static netdev_features_t vxge_fix_features(struct net_device *dev,
2665 netdev_features_t features)
2666 {
2667 netdev_features_t changed = dev->features ^ features;
2668
2669 /* Enabling RTH requires some of the logic in vxge_device_register and a
2670 * vpath reset. Due to these restrictions, only allow modification
2671 * while the interface is down.
2672 */
2673 if ((changed & NETIF_F_RXHASH) && netif_running(dev))
2674 features ^= NETIF_F_RXHASH;
2675
2676 return features;
2677 }
2678
2679 static int vxge_set_features(struct net_device *dev, netdev_features_t features)
2680 {
2681 struct vxgedev *vdev = netdev_priv(dev);
2682 netdev_features_t changed = dev->features ^ features;
2683
2684 if (!(changed & NETIF_F_RXHASH))
2685 return 0;
2686
2687 /* !netif_running() ensured by vxge_fix_features() */
2688
2689 vdev->devh->config.rth_en = !!(features & NETIF_F_RXHASH);
2690 if (vxge_reset_all_vpaths(vdev) != VXGE_HW_OK) {
2691 dev->features = features ^ NETIF_F_RXHASH;
2692 vdev->devh->config.rth_en = !!(dev->features & NETIF_F_RXHASH);
2693 return -EIO;
2694 }
2695
2696 return 0;
2697 }
2698
2699 /**
2700 * vxge_open
2701 * @dev: pointer to the device structure.
2702 *
2703 * This function is the open entry point of the driver. It mainly calls a
2704 * function to allocate Rx buffers and inserts them into the buffer
2705 * descriptors and then enables the Rx part of the NIC.
2706 * Return value: '0' on success and an appropriate (-)ve integer as
2707 * defined in errno.h file on failure.
2708 */
2709 static int vxge_open(struct net_device *dev)
2710 {
2711 enum vxge_hw_status status;
2712 struct vxgedev *vdev;
2713 struct __vxge_hw_device *hldev;
2714 struct vxge_vpath *vpath;
2715 int ret = 0;
2716 int i;
2717 u64 val64, function_mode;
2718
2719 vxge_debug_entryexit(VXGE_TRACE,
2720 "%s: %s:%d", dev->name, __func__, __LINE__);
2721
2722 vdev = netdev_priv(dev);
2723 hldev = pci_get_drvdata(vdev->pdev);
2724 function_mode = vdev->config.device_hw_info.function_mode;
2725
2726 /* make sure you have link off by default every time Nic is
2727 * initialized */
2728 netif_carrier_off(dev);
2729
2730 /* Open VPATHs */
2731 status = vxge_open_vpaths(vdev);
2732 if (status != VXGE_HW_OK) {
2733 vxge_debug_init(VXGE_ERR,
2734 "%s: fatal: Vpath open failed", vdev->ndev->name);
2735 ret = -EPERM;
2736 goto out0;
2737 }
2738
2739 vdev->mtu = dev->mtu;
2740
2741 status = vxge_add_isr(vdev);
2742 if (status != VXGE_HW_OK) {
2743 vxge_debug_init(VXGE_ERR,
2744 "%s: fatal: ISR add failed", dev->name);
2745 ret = -EPERM;
2746 goto out1;
2747 }
2748
2749 if (vdev->config.intr_type != MSI_X) {
2750 netif_napi_add(dev, &vdev->napi, vxge_poll_inta,
2751 vdev->config.napi_weight);
2752 napi_enable(&vdev->napi);
2753 for (i = 0; i < vdev->no_of_vpath; i++) {
2754 vpath = &vdev->vpaths[i];
2755 vpath->ring.napi_p = &vdev->napi;
2756 }
2757 } else {
2758 for (i = 0; i < vdev->no_of_vpath; i++) {
2759 vpath = &vdev->vpaths[i];
2760 netif_napi_add(dev, &vpath->ring.napi,
2761 vxge_poll_msix, vdev->config.napi_weight);
2762 napi_enable(&vpath->ring.napi);
2763 vpath->ring.napi_p = &vpath->ring.napi;
2764 }
2765 }
2766
2767 /* configure RTH */
2768 if (vdev->config.rth_steering) {
2769 status = vxge_rth_configure(vdev);
2770 if (status != VXGE_HW_OK) {
2771 vxge_debug_init(VXGE_ERR,
2772 "%s: fatal: RTH configuration failed",
2773 dev->name);
2774 ret = -EPERM;
2775 goto out2;
2776 }
2777 }
2778 printk(KERN_INFO "%s: Receive Hashing Offload %s\n", dev->name,
2779 hldev->config.rth_en ? "enabled" : "disabled");
2780
2781 for (i = 0; i < vdev->no_of_vpath; i++) {
2782 vpath = &vdev->vpaths[i];
2783
2784 /* set initial mtu before enabling the device */
2785 status = vxge_hw_vpath_mtu_set(vpath->handle, vdev->mtu);
2786 if (status != VXGE_HW_OK) {
2787 vxge_debug_init(VXGE_ERR,
2788 "%s: fatal: can not set new MTU", dev->name);
2789 ret = -EPERM;
2790 goto out2;
2791 }
2792 }
2793
2794 VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_TRACE, VXGE_COMPONENT_LL, vdev);
2795 vxge_debug_init(vdev->level_trace,
2796 "%s: MTU is %d", vdev->ndev->name, vdev->mtu);
2797 VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_ERR, VXGE_COMPONENT_LL, vdev);
2798
2799 /* Restore the DA, VID table and also multicast and promiscuous mode
2800 * states
2801 */
2802 if (vdev->all_multi_flg) {
2803 for (i = 0; i < vdev->no_of_vpath; i++) {
2804 vpath = &vdev->vpaths[i];
2805 vxge_restore_vpath_mac_addr(vpath);
2806 vxge_restore_vpath_vid_table(vpath);
2807
2808 status = vxge_hw_vpath_mcast_enable(vpath->handle);
2809 if (status != VXGE_HW_OK)
2810 vxge_debug_init(VXGE_ERR,
2811 "%s:%d Enabling multicast failed",
2812 __func__, __LINE__);
2813 }
2814 }
2815
2816 /* Enable vpath to sniff all unicast/multicast traffic that not
2817 * addressed to them. We allow promiscuous mode for PF only
2818 */
2819
2820 val64 = 0;
2821 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
2822 val64 |= VXGE_HW_RXMAC_AUTHORIZE_ALL_ADDR_VP(i);
2823
2824 vxge_hw_mgmt_reg_write(vdev->devh,
2825 vxge_hw_mgmt_reg_type_mrpcim,
2826 0,
2827 (ulong)offsetof(struct vxge_hw_mrpcim_reg,
2828 rxmac_authorize_all_addr),
2829 val64);
2830
2831 vxge_hw_mgmt_reg_write(vdev->devh,
2832 vxge_hw_mgmt_reg_type_mrpcim,
2833 0,
2834 (ulong)offsetof(struct vxge_hw_mrpcim_reg,
2835 rxmac_authorize_all_vid),
2836 val64);
2837
2838 vxge_set_multicast(dev);
2839
2840 /* Enabling Bcast and mcast for all vpath */
2841 for (i = 0; i < vdev->no_of_vpath; i++) {
2842 vpath = &vdev->vpaths[i];
2843 status = vxge_hw_vpath_bcast_enable(vpath->handle);
2844 if (status != VXGE_HW_OK)
2845 vxge_debug_init(VXGE_ERR,
2846 "%s : Can not enable bcast for vpath "
2847 "id %d", dev->name, i);
2848 if (vdev->config.addr_learn_en) {
2849 status = vxge_hw_vpath_mcast_enable(vpath->handle);
2850 if (status != VXGE_HW_OK)
2851 vxge_debug_init(VXGE_ERR,
2852 "%s : Can not enable mcast for vpath "
2853 "id %d", dev->name, i);
2854 }
2855 }
2856
2857 vxge_hw_device_setpause_data(vdev->devh, 0,
2858 vdev->config.tx_pause_enable,
2859 vdev->config.rx_pause_enable);
2860
2861 if (vdev->vp_reset_timer.function == NULL)
2862 vxge_os_timer(&vdev->vp_reset_timer, vxge_poll_vp_reset, vdev,
2863 HZ / 2);
2864
2865 /* There is no need to check for RxD leak and RxD lookup on Titan1A */
2866 if (vdev->titan1 && vdev->vp_lockup_timer.function == NULL)
2867 vxge_os_timer(&vdev->vp_lockup_timer, vxge_poll_vp_lockup, vdev,
2868 HZ / 2);
2869
2870 set_bit(__VXGE_STATE_CARD_UP, &vdev->state);
2871
2872 smp_wmb();
2873
2874 if (vxge_hw_device_link_state_get(vdev->devh) == VXGE_HW_LINK_UP) {
2875 netif_carrier_on(vdev->ndev);
2876 netdev_notice(vdev->ndev, "Link Up\n");
2877 vdev->stats.link_up++;
2878 }
2879
2880 vxge_hw_device_intr_enable(vdev->devh);
2881
2882 smp_wmb();
2883
2884 for (i = 0; i < vdev->no_of_vpath; i++) {
2885 vpath = &vdev->vpaths[i];
2886
2887 vxge_hw_vpath_enable(vpath->handle);
2888 smp_wmb();
2889 vxge_hw_vpath_rx_doorbell_init(vpath->handle);
2890 }
2891
2892 netif_tx_start_all_queues(vdev->ndev);
2893
2894 /* configure CI */
2895 vxge_config_ci_for_tti_rti(vdev);
2896
2897 goto out0;
2898
2899 out2:
2900 vxge_rem_isr(vdev);
2901
2902 /* Disable napi */
2903 if (vdev->config.intr_type != MSI_X)
2904 napi_disable(&vdev->napi);
2905 else {
2906 for (i = 0; i < vdev->no_of_vpath; i++)
2907 napi_disable(&vdev->vpaths[i].ring.napi);
2908 }
2909
2910 out1:
2911 vxge_close_vpaths(vdev, 0);
2912 out0:
2913 vxge_debug_entryexit(VXGE_TRACE,
2914 "%s: %s:%d Exiting...",
2915 dev->name, __func__, __LINE__);
2916 return ret;
2917 }
2918
2919 /* Loop through the mac address list and delete all the entries */
2920 static void vxge_free_mac_add_list(struct vxge_vpath *vpath)
2921 {
2922
2923 struct list_head *entry, *next;
2924 if (list_empty(&vpath->mac_addr_list))
2925 return;
2926
2927 list_for_each_safe(entry, next, &vpath->mac_addr_list) {
2928 list_del(entry);
2929 kfree((struct vxge_mac_addrs *)entry);
2930 }
2931 }
2932
2933 static void vxge_napi_del_all(struct vxgedev *vdev)
2934 {
2935 int i;
2936 if (vdev->config.intr_type != MSI_X)
2937 netif_napi_del(&vdev->napi);
2938 else {
2939 for (i = 0; i < vdev->no_of_vpath; i++)
2940 netif_napi_del(&vdev->vpaths[i].ring.napi);
2941 }
2942 }
2943
2944 static int do_vxge_close(struct net_device *dev, int do_io)
2945 {
2946 enum vxge_hw_status status;
2947 struct vxgedev *vdev;
2948 struct __vxge_hw_device *hldev;
2949 int i;
2950 u64 val64, vpath_vector;
2951 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
2952 dev->name, __func__, __LINE__);
2953
2954 vdev = netdev_priv(dev);
2955 hldev = pci_get_drvdata(vdev->pdev);
2956
2957 if (unlikely(!is_vxge_card_up(vdev)))
2958 return 0;
2959
2960 /* If vxge_handle_crit_err task is executing,
2961 * wait till it completes. */
2962 while (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
2963 msleep(50);
2964
2965 if (do_io) {
2966 /* Put the vpath back in normal mode */
2967 vpath_vector = vxge_mBIT(vdev->vpaths[0].device_id);
2968 status = vxge_hw_mgmt_reg_read(vdev->devh,
2969 vxge_hw_mgmt_reg_type_mrpcim,
2970 0,
2971 (ulong)offsetof(
2972 struct vxge_hw_mrpcim_reg,
2973 rts_mgr_cbasin_cfg),
2974 &val64);
2975 if (status == VXGE_HW_OK) {
2976 val64 &= ~vpath_vector;
2977 status = vxge_hw_mgmt_reg_write(vdev->devh,
2978 vxge_hw_mgmt_reg_type_mrpcim,
2979 0,
2980 (ulong)offsetof(
2981 struct vxge_hw_mrpcim_reg,
2982 rts_mgr_cbasin_cfg),
2983 val64);
2984 }
2985
2986 /* Remove the function 0 from promiscuous mode */
2987 vxge_hw_mgmt_reg_write(vdev->devh,
2988 vxge_hw_mgmt_reg_type_mrpcim,
2989 0,
2990 (ulong)offsetof(struct vxge_hw_mrpcim_reg,
2991 rxmac_authorize_all_addr),
2992 0);
2993
2994 vxge_hw_mgmt_reg_write(vdev->devh,
2995 vxge_hw_mgmt_reg_type_mrpcim,
2996 0,
2997 (ulong)offsetof(struct vxge_hw_mrpcim_reg,
2998 rxmac_authorize_all_vid),
2999 0);
3000
3001 smp_wmb();
3002 }
3003
3004 if (vdev->titan1)
3005 del_timer_sync(&vdev->vp_lockup_timer);
3006
3007 del_timer_sync(&vdev->vp_reset_timer);
3008
3009 if (do_io)
3010 vxge_hw_device_wait_receive_idle(hldev);
3011
3012 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
3013
3014 /* Disable napi */
3015 if (vdev->config.intr_type != MSI_X)
3016 napi_disable(&vdev->napi);
3017 else {
3018 for (i = 0; i < vdev->no_of_vpath; i++)
3019 napi_disable(&vdev->vpaths[i].ring.napi);
3020 }
3021
3022 netif_carrier_off(vdev->ndev);
3023 netdev_notice(vdev->ndev, "Link Down\n");
3024 netif_tx_stop_all_queues(vdev->ndev);
3025
3026 /* Note that at this point xmit() is stopped by upper layer */
3027 if (do_io)
3028 vxge_hw_device_intr_disable(vdev->devh);
3029
3030 vxge_rem_isr(vdev);
3031
3032 vxge_napi_del_all(vdev);
3033
3034 if (do_io)
3035 vxge_reset_all_vpaths(vdev);
3036
3037 vxge_close_vpaths(vdev, 0);
3038
3039 vxge_debug_entryexit(VXGE_TRACE,
3040 "%s: %s:%d Exiting...", dev->name, __func__, __LINE__);
3041
3042 clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state);
3043
3044 return 0;
3045 }
3046
3047 /**
3048 * vxge_close
3049 * @dev: device pointer.
3050 *
3051 * This is the stop entry point of the driver. It needs to undo exactly
3052 * whatever was done by the open entry point, thus it's usually referred to
3053 * as the close function.Among other things this function mainly stops the
3054 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3055 * Return value: '0' on success and an appropriate (-)ve integer as
3056 * defined in errno.h file on failure.
3057 */
3058 static int vxge_close(struct net_device *dev)
3059 {
3060 do_vxge_close(dev, 1);
3061 return 0;
3062 }
3063
3064 /**
3065 * vxge_change_mtu
3066 * @dev: net device pointer.
3067 * @new_mtu :the new MTU size for the device.
3068 *
3069 * A driver entry point to change MTU size for the device. Before changing
3070 * the MTU the device must be stopped.
3071 */
3072 static int vxge_change_mtu(struct net_device *dev, int new_mtu)
3073 {
3074 struct vxgedev *vdev = netdev_priv(dev);
3075
3076 vxge_debug_entryexit(vdev->level_trace,
3077 "%s:%d", __func__, __LINE__);
3078 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > VXGE_HW_MAX_MTU)) {
3079 vxge_debug_init(vdev->level_err,
3080 "%s: mtu size is invalid", dev->name);
3081 return -EPERM;
3082 }
3083
3084 /* check if device is down already */
3085 if (unlikely(!is_vxge_card_up(vdev))) {
3086 /* just store new value, will use later on open() */
3087 dev->mtu = new_mtu;
3088 vxge_debug_init(vdev->level_err,
3089 "%s", "device is down on MTU change");
3090 return 0;
3091 }
3092
3093 vxge_debug_init(vdev->level_trace,
3094 "trying to apply new MTU %d", new_mtu);
3095
3096 if (vxge_close(dev))
3097 return -EIO;
3098
3099 dev->mtu = new_mtu;
3100 vdev->mtu = new_mtu;
3101
3102 if (vxge_open(dev))
3103 return -EIO;
3104
3105 vxge_debug_init(vdev->level_trace,
3106 "%s: MTU changed to %d", vdev->ndev->name, new_mtu);
3107
3108 vxge_debug_entryexit(vdev->level_trace,
3109 "%s:%d Exiting...", __func__, __LINE__);
3110
3111 return 0;
3112 }
3113
3114 /**
3115 * vxge_get_stats64
3116 * @dev: pointer to the device structure
3117 * @stats: pointer to struct rtnl_link_stats64
3118 *
3119 */
3120 static struct rtnl_link_stats64 *
3121 vxge_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
3122 {
3123 struct vxgedev *vdev = netdev_priv(dev);
3124 int k;
3125
3126 /* net_stats already zeroed by caller */
3127 for (k = 0; k < vdev->no_of_vpath; k++) {
3128 struct vxge_ring_stats *rxstats = &vdev->vpaths[k].ring.stats;
3129 struct vxge_fifo_stats *txstats = &vdev->vpaths[k].fifo.stats;
3130 unsigned int start;
3131 u64 packets, bytes, multicast;
3132
3133 do {
3134 start = u64_stats_fetch_begin_bh(&rxstats->syncp);
3135
3136 packets = rxstats->rx_frms;
3137 multicast = rxstats->rx_mcast;
3138 bytes = rxstats->rx_bytes;
3139 } while (u64_stats_fetch_retry_bh(&rxstats->syncp, start));
3140
3141 net_stats->rx_packets += packets;
3142 net_stats->rx_bytes += bytes;
3143 net_stats->multicast += multicast;
3144
3145 net_stats->rx_errors += rxstats->rx_errors;
3146 net_stats->rx_dropped += rxstats->rx_dropped;
3147
3148 do {
3149 start = u64_stats_fetch_begin_bh(&txstats->syncp);
3150
3151 packets = txstats->tx_frms;
3152 bytes = txstats->tx_bytes;
3153 } while (u64_stats_fetch_retry_bh(&txstats->syncp, start));
3154
3155 net_stats->tx_packets += packets;
3156 net_stats->tx_bytes += bytes;
3157 net_stats->tx_errors += txstats->tx_errors;
3158 }
3159
3160 return net_stats;
3161 }
3162
3163 static enum vxge_hw_status vxge_timestamp_config(struct __vxge_hw_device *devh)
3164 {
3165 enum vxge_hw_status status;
3166 u64 val64;
3167
3168 /* Timestamp is passed to the driver via the FCS, therefore we
3169 * must disable the FCS stripping by the adapter. Since this is
3170 * required for the driver to load (due to a hardware bug),
3171 * there is no need to do anything special here.
3172 */
3173 val64 = VXGE_HW_XMAC_TIMESTAMP_EN |
3174 VXGE_HW_XMAC_TIMESTAMP_USE_LINK_ID(0) |
3175 VXGE_HW_XMAC_TIMESTAMP_INTERVAL(0);
3176
3177 status = vxge_hw_mgmt_reg_write(devh,
3178 vxge_hw_mgmt_reg_type_mrpcim,
3179 0,
3180 offsetof(struct vxge_hw_mrpcim_reg,
3181 xmac_timestamp),
3182 val64);
3183 vxge_hw_device_flush_io(devh);
3184 devh->config.hwts_en = VXGE_HW_HWTS_ENABLE;
3185 return status;
3186 }
3187
3188 static int vxge_hwtstamp_set(struct vxgedev *vdev, void __user *data)
3189 {
3190 struct hwtstamp_config config;
3191 int i;
3192
3193 if (copy_from_user(&config, data, sizeof(config)))
3194 return -EFAULT;
3195
3196 /* reserved for future extensions */
3197 if (config.flags)
3198 return -EINVAL;
3199
3200 /* Transmit HW Timestamp not supported */
3201 switch (config.tx_type) {
3202 case HWTSTAMP_TX_OFF:
3203 break;
3204 case HWTSTAMP_TX_ON:
3205 default:
3206 return -ERANGE;
3207 }
3208
3209 switch (config.rx_filter) {
3210 case HWTSTAMP_FILTER_NONE:
3211 vdev->rx_hwts = 0;
3212 config.rx_filter = HWTSTAMP_FILTER_NONE;
3213 break;
3214
3215 case HWTSTAMP_FILTER_ALL:
3216 case HWTSTAMP_FILTER_SOME:
3217 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3218 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3219 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3220 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3221 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3222 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3223 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3224 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3225 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3226 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3227 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3228 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3229 if (vdev->devh->config.hwts_en != VXGE_HW_HWTS_ENABLE)
3230 return -EFAULT;
3231
3232 vdev->rx_hwts = 1;
3233 config.rx_filter = HWTSTAMP_FILTER_ALL;
3234 break;
3235
3236 default:
3237 return -ERANGE;
3238 }
3239
3240 for (i = 0; i < vdev->no_of_vpath; i++)
3241 vdev->vpaths[i].ring.rx_hwts = vdev->rx_hwts;
3242
3243 if (copy_to_user(data, &config, sizeof(config)))
3244 return -EFAULT;
3245
3246 return 0;
3247 }
3248
3249 static int vxge_hwtstamp_get(struct vxgedev *vdev, void __user *data)
3250 {
3251 struct hwtstamp_config config;
3252
3253 config.flags = 0;
3254 config.tx_type = HWTSTAMP_TX_OFF;
3255 config.rx_filter = (vdev->rx_hwts ?
3256 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
3257
3258 if (copy_to_user(data, &config, sizeof(config)))
3259 return -EFAULT;
3260
3261 return 0;
3262 }
3263
3264 /**
3265 * vxge_ioctl
3266 * @dev: Device pointer.
3267 * @ifr: An IOCTL specific structure, that can contain a pointer to
3268 * a proprietary structure used to pass information to the driver.
3269 * @cmd: This is used to distinguish between the different commands that
3270 * can be passed to the IOCTL functions.
3271 *
3272 * Entry point for the Ioctl.
3273 */
3274 static int vxge_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3275 {
3276 struct vxgedev *vdev = netdev_priv(dev);
3277
3278 switch (cmd) {
3279 case SIOCSHWTSTAMP:
3280 return vxge_hwtstamp_set(vdev, rq->ifr_data);
3281 case SIOCGHWTSTAMP:
3282 return vxge_hwtstamp_get(vdev, rq->ifr_data);
3283 default:
3284 return -EOPNOTSUPP;
3285 }
3286 }
3287
3288 /**
3289 * vxge_tx_watchdog
3290 * @dev: pointer to net device structure
3291 *
3292 * Watchdog for transmit side.
3293 * This function is triggered if the Tx Queue is stopped
3294 * for a pre-defined amount of time when the Interface is still up.
3295 */
3296 static void vxge_tx_watchdog(struct net_device *dev)
3297 {
3298 struct vxgedev *vdev;
3299
3300 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
3301
3302 vdev = netdev_priv(dev);
3303
3304 vdev->cric_err_event = VXGE_HW_EVENT_RESET_START;
3305
3306 schedule_work(&vdev->reset_task);
3307 vxge_debug_entryexit(VXGE_TRACE,
3308 "%s:%d Exiting...", __func__, __LINE__);
3309 }
3310
3311 /**
3312 * vxge_vlan_rx_add_vid
3313 * @dev: net device pointer.
3314 * @proto: vlan protocol
3315 * @vid: vid
3316 *
3317 * Add the vlan id to the devices vlan id table
3318 */
3319 static int
3320 vxge_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
3321 {
3322 struct vxgedev *vdev = netdev_priv(dev);
3323 struct vxge_vpath *vpath;
3324 int vp_id;
3325
3326 /* Add these vlan to the vid table */
3327 for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
3328 vpath = &vdev->vpaths[vp_id];
3329 if (!vpath->is_open)
3330 continue;
3331 vxge_hw_vpath_vid_add(vpath->handle, vid);
3332 }
3333 set_bit(vid, vdev->active_vlans);
3334 return 0;
3335 }
3336
3337 /**
3338 * vxge_vlan_rx_kill_vid
3339 * @dev: net device pointer.
3340 * @proto: vlan protocol
3341 * @vid: vid
3342 *
3343 * Remove the vlan id from the device's vlan id table
3344 */
3345 static int
3346 vxge_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
3347 {
3348 struct vxgedev *vdev = netdev_priv(dev);
3349 struct vxge_vpath *vpath;
3350 int vp_id;
3351
3352 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
3353
3354 /* Delete this vlan from the vid table */
3355 for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
3356 vpath = &vdev->vpaths[vp_id];
3357 if (!vpath->is_open)
3358 continue;
3359 vxge_hw_vpath_vid_delete(vpath->handle, vid);
3360 }
3361 vxge_debug_entryexit(VXGE_TRACE,
3362 "%s:%d Exiting...", __func__, __LINE__);
3363 clear_bit(vid, vdev->active_vlans);
3364 return 0;
3365 }
3366
3367 static const struct net_device_ops vxge_netdev_ops = {
3368 .ndo_open = vxge_open,
3369 .ndo_stop = vxge_close,
3370 .ndo_get_stats64 = vxge_get_stats64,
3371 .ndo_start_xmit = vxge_xmit,
3372 .ndo_validate_addr = eth_validate_addr,
3373 .ndo_set_rx_mode = vxge_set_multicast,
3374 .ndo_do_ioctl = vxge_ioctl,
3375 .ndo_set_mac_address = vxge_set_mac_addr,
3376 .ndo_change_mtu = vxge_change_mtu,
3377 .ndo_fix_features = vxge_fix_features,
3378 .ndo_set_features = vxge_set_features,
3379 .ndo_vlan_rx_kill_vid = vxge_vlan_rx_kill_vid,
3380 .ndo_vlan_rx_add_vid = vxge_vlan_rx_add_vid,
3381 .ndo_tx_timeout = vxge_tx_watchdog,
3382 #ifdef CONFIG_NET_POLL_CONTROLLER
3383 .ndo_poll_controller = vxge_netpoll,
3384 #endif
3385 };
3386
3387 static int vxge_device_register(struct __vxge_hw_device *hldev,
3388 struct vxge_config *config, int high_dma,
3389 int no_of_vpath, struct vxgedev **vdev_out)
3390 {
3391 struct net_device *ndev;
3392 enum vxge_hw_status status = VXGE_HW_OK;
3393 struct vxgedev *vdev;
3394 int ret = 0, no_of_queue = 1;
3395 u64 stat;
3396
3397 *vdev_out = NULL;
3398 if (config->tx_steering_type)
3399 no_of_queue = no_of_vpath;
3400
3401 ndev = alloc_etherdev_mq(sizeof(struct vxgedev),
3402 no_of_queue);
3403 if (ndev == NULL) {
3404 vxge_debug_init(
3405 vxge_hw_device_trace_level_get(hldev),
3406 "%s : device allocation failed", __func__);
3407 ret = -ENODEV;
3408 goto _out0;
3409 }
3410
3411 vxge_debug_entryexit(
3412 vxge_hw_device_trace_level_get(hldev),
3413 "%s: %s:%d Entering...",
3414 ndev->name, __func__, __LINE__);
3415
3416 vdev = netdev_priv(ndev);
3417 memset(vdev, 0, sizeof(struct vxgedev));
3418
3419 vdev->ndev = ndev;
3420 vdev->devh = hldev;
3421 vdev->pdev = hldev->pdev;
3422 memcpy(&vdev->config, config, sizeof(struct vxge_config));
3423 vdev->rx_hwts = 0;
3424 vdev->titan1 = (vdev->pdev->revision == VXGE_HW_TITAN1_PCI_REVISION);
3425
3426 SET_NETDEV_DEV(ndev, &vdev->pdev->dev);
3427
3428 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_SG |
3429 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3430 NETIF_F_TSO | NETIF_F_TSO6 |
3431 NETIF_F_HW_VLAN_CTAG_TX;
3432 if (vdev->config.rth_steering != NO_STEERING)
3433 ndev->hw_features |= NETIF_F_RXHASH;
3434
3435 ndev->features |= ndev->hw_features |
3436 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
3437
3438
3439 ndev->netdev_ops = &vxge_netdev_ops;
3440
3441 ndev->watchdog_timeo = VXGE_LL_WATCH_DOG_TIMEOUT;
3442 INIT_WORK(&vdev->reset_task, vxge_reset);
3443
3444 vxge_initialize_ethtool_ops(ndev);
3445
3446 /* Allocate memory for vpath */
3447 vdev->vpaths = kzalloc((sizeof(struct vxge_vpath)) *
3448 no_of_vpath, GFP_KERNEL);
3449 if (!vdev->vpaths) {
3450 vxge_debug_init(VXGE_ERR,
3451 "%s: vpath memory allocation failed",
3452 vdev->ndev->name);
3453 ret = -ENOMEM;
3454 goto _out1;
3455 }
3456
3457 vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
3458 "%s : checksumming enabled", __func__);
3459
3460 if (high_dma) {
3461 ndev->features |= NETIF_F_HIGHDMA;
3462 vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
3463 "%s : using High DMA", __func__);
3464 }
3465
3466 ret = register_netdev(ndev);
3467 if (ret) {
3468 vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
3469 "%s: %s : device registration failed!",
3470 ndev->name, __func__);
3471 goto _out2;
3472 }
3473
3474 /* Set the factory defined MAC address initially */
3475 ndev->addr_len = ETH_ALEN;
3476
3477 /* Make Link state as off at this point, when the Link change
3478 * interrupt comes the state will be automatically changed to
3479 * the right state.
3480 */
3481 netif_carrier_off(ndev);
3482
3483 vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
3484 "%s: Ethernet device registered",
3485 ndev->name);
3486
3487 hldev->ndev = ndev;
3488 *vdev_out = vdev;
3489
3490 /* Resetting the Device stats */
3491 status = vxge_hw_mrpcim_stats_access(
3492 hldev,
3493 VXGE_HW_STATS_OP_CLEAR_ALL_STATS,
3494 0,
3495 0,
3496 &stat);
3497
3498 if (status == VXGE_HW_ERR_PRIVILAGED_OPEARATION)
3499 vxge_debug_init(
3500 vxge_hw_device_trace_level_get(hldev),
3501 "%s: device stats clear returns"
3502 "VXGE_HW_ERR_PRIVILAGED_OPEARATION", ndev->name);
3503
3504 vxge_debug_entryexit(vxge_hw_device_trace_level_get(hldev),
3505 "%s: %s:%d Exiting...",
3506 ndev->name, __func__, __LINE__);
3507
3508 return ret;
3509 _out2:
3510 kfree(vdev->vpaths);
3511 _out1:
3512 free_netdev(ndev);
3513 _out0:
3514 return ret;
3515 }
3516
3517 /*
3518 * vxge_device_unregister
3519 *
3520 * This function will unregister and free network device
3521 */
3522 static void vxge_device_unregister(struct __vxge_hw_device *hldev)
3523 {
3524 struct vxgedev *vdev;
3525 struct net_device *dev;
3526 char buf[IFNAMSIZ];
3527
3528 dev = hldev->ndev;
3529 vdev = netdev_priv(dev);
3530
3531 vxge_debug_entryexit(vdev->level_trace, "%s: %s:%d", vdev->ndev->name,
3532 __func__, __LINE__);
3533
3534 strncpy(buf, dev->name, IFNAMSIZ);
3535
3536 flush_work(&vdev->reset_task);
3537
3538 /* in 2.6 will call stop() if device is up */
3539 unregister_netdev(dev);
3540
3541 kfree(vdev->vpaths);
3542
3543 /* we are safe to free it now */
3544 free_netdev(dev);
3545
3546 vxge_debug_init(vdev->level_trace, "%s: ethernet device unregistered",
3547 buf);
3548 vxge_debug_entryexit(vdev->level_trace, "%s: %s:%d Exiting...", buf,
3549 __func__, __LINE__);
3550 }
3551
3552 /*
3553 * vxge_callback_crit_err
3554 *
3555 * This function is called by the alarm handler in interrupt context.
3556 * Driver must analyze it based on the event type.
3557 */
3558 static void
3559 vxge_callback_crit_err(struct __vxge_hw_device *hldev,
3560 enum vxge_hw_event type, u64 vp_id)
3561 {
3562 struct net_device *dev = hldev->ndev;
3563 struct vxgedev *vdev = netdev_priv(dev);
3564 struct vxge_vpath *vpath = NULL;
3565 int vpath_idx;
3566
3567 vxge_debug_entryexit(vdev->level_trace,
3568 "%s: %s:%d", vdev->ndev->name, __func__, __LINE__);
3569
3570 /* Note: This event type should be used for device wide
3571 * indications only - Serious errors, Slot freeze and critical errors
3572 */
3573 vdev->cric_err_event = type;
3574
3575 for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
3576 vpath = &vdev->vpaths[vpath_idx];
3577 if (vpath->device_id == vp_id)
3578 break;
3579 }
3580
3581 if (!test_bit(__VXGE_STATE_RESET_CARD, &vdev->state)) {
3582 if (type == VXGE_HW_EVENT_SLOT_FREEZE) {
3583 vxge_debug_init(VXGE_ERR,
3584 "%s: Slot is frozen", vdev->ndev->name);
3585 } else if (type == VXGE_HW_EVENT_SERR) {
3586 vxge_debug_init(VXGE_ERR,
3587 "%s: Encountered Serious Error",
3588 vdev->ndev->name);
3589 } else if (type == VXGE_HW_EVENT_CRITICAL_ERR)
3590 vxge_debug_init(VXGE_ERR,
3591 "%s: Encountered Critical Error",
3592 vdev->ndev->name);
3593 }
3594
3595 if ((type == VXGE_HW_EVENT_SERR) ||
3596 (type == VXGE_HW_EVENT_SLOT_FREEZE)) {
3597 if (unlikely(vdev->exec_mode))
3598 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
3599 } else if (type == VXGE_HW_EVENT_CRITICAL_ERR) {
3600 vxge_hw_device_mask_all(hldev);
3601 if (unlikely(vdev->exec_mode))
3602 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
3603 } else if ((type == VXGE_HW_EVENT_FIFO_ERR) ||
3604 (type == VXGE_HW_EVENT_VPATH_ERR)) {
3605
3606 if (unlikely(vdev->exec_mode))
3607 clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
3608 else {
3609 /* check if this vpath is already set for reset */
3610 if (!test_and_set_bit(vpath_idx, &vdev->vp_reset)) {
3611
3612 /* disable interrupts for this vpath */
3613 vxge_vpath_intr_disable(vdev, vpath_idx);
3614
3615 /* stop the queue for this vpath */
3616 netif_tx_stop_queue(vpath->fifo.txq);
3617 }
3618 }
3619 }
3620
3621 vxge_debug_entryexit(vdev->level_trace,
3622 "%s: %s:%d Exiting...",
3623 vdev->ndev->name, __func__, __LINE__);
3624 }
3625
3626 static void verify_bandwidth(void)
3627 {
3628 int i, band_width, total = 0, equal_priority = 0;
3629
3630 /* 1. If user enters 0 for some fifo, give equal priority to all */
3631 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3632 if (bw_percentage[i] == 0) {
3633 equal_priority = 1;
3634 break;
3635 }
3636 }
3637
3638 if (!equal_priority) {
3639 /* 2. If sum exceeds 100, give equal priority to all */
3640 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3641 if (bw_percentage[i] == 0xFF)
3642 break;
3643
3644 total += bw_percentage[i];
3645 if (total > VXGE_HW_VPATH_BANDWIDTH_MAX) {
3646 equal_priority = 1;
3647 break;
3648 }
3649 }
3650 }
3651
3652 if (!equal_priority) {
3653 /* Is all the bandwidth consumed? */
3654 if (total < VXGE_HW_VPATH_BANDWIDTH_MAX) {
3655 if (i < VXGE_HW_MAX_VIRTUAL_PATHS) {
3656 /* Split rest of bw equally among next VPs*/
3657 band_width =
3658 (VXGE_HW_VPATH_BANDWIDTH_MAX - total) /
3659 (VXGE_HW_MAX_VIRTUAL_PATHS - i);
3660 if (band_width < 2) /* min of 2% */
3661 equal_priority = 1;
3662 else {
3663 for (; i < VXGE_HW_MAX_VIRTUAL_PATHS;
3664 i++)
3665 bw_percentage[i] =
3666 band_width;
3667 }
3668 }
3669 } else if (i < VXGE_HW_MAX_VIRTUAL_PATHS)
3670 equal_priority = 1;
3671 }
3672
3673 if (equal_priority) {
3674 vxge_debug_init(VXGE_ERR,
3675 "%s: Assigning equal bandwidth to all the vpaths",
3676 VXGE_DRIVER_NAME);
3677 bw_percentage[0] = VXGE_HW_VPATH_BANDWIDTH_MAX /
3678 VXGE_HW_MAX_VIRTUAL_PATHS;
3679 for (i = 1; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
3680 bw_percentage[i] = bw_percentage[0];
3681 }
3682 }
3683
3684 /*
3685 * Vpath configuration
3686 */
3687 static int vxge_config_vpaths(struct vxge_hw_device_config *device_config,
3688 u64 vpath_mask, struct vxge_config *config_param)
3689 {
3690 int i, no_of_vpaths = 0, default_no_vpath = 0, temp;
3691 u32 txdl_size, txdl_per_memblock;
3692
3693 temp = driver_config->vpath_per_dev;
3694 if ((driver_config->vpath_per_dev == VXGE_USE_DEFAULT) &&
3695 (max_config_dev == VXGE_MAX_CONFIG_DEV)) {
3696 /* No more CPU. Return vpath number as zero.*/
3697 if (driver_config->g_no_cpus == -1)
3698 return 0;
3699
3700 if (!driver_config->g_no_cpus)
3701 driver_config->g_no_cpus =
3702 netif_get_num_default_rss_queues();
3703
3704 driver_config->vpath_per_dev = driver_config->g_no_cpus >> 1;
3705 if (!driver_config->vpath_per_dev)
3706 driver_config->vpath_per_dev = 1;
3707
3708 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
3709 if (!vxge_bVALn(vpath_mask, i, 1))
3710 continue;
3711 else
3712 default_no_vpath++;
3713 if (default_no_vpath < driver_config->vpath_per_dev)
3714 driver_config->vpath_per_dev = default_no_vpath;
3715
3716 driver_config->g_no_cpus = driver_config->g_no_cpus -
3717 (driver_config->vpath_per_dev * 2);
3718 if (driver_config->g_no_cpus <= 0)
3719 driver_config->g_no_cpus = -1;
3720 }
3721
3722 if (driver_config->vpath_per_dev == 1) {
3723 vxge_debug_ll_config(VXGE_TRACE,
3724 "%s: Disable tx and rx steering, "
3725 "as single vpath is configured", VXGE_DRIVER_NAME);
3726 config_param->rth_steering = NO_STEERING;
3727 config_param->tx_steering_type = NO_STEERING;
3728 device_config->rth_en = 0;
3729 }
3730
3731 /* configure bandwidth */
3732 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
3733 device_config->vp_config[i].min_bandwidth = bw_percentage[i];
3734
3735 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3736 device_config->vp_config[i].vp_id = i;
3737 device_config->vp_config[i].mtu = VXGE_HW_DEFAULT_MTU;
3738 if (no_of_vpaths < driver_config->vpath_per_dev) {
3739 if (!vxge_bVALn(vpath_mask, i, 1)) {
3740 vxge_debug_ll_config(VXGE_TRACE,
3741 "%s: vpath: %d is not available",
3742 VXGE_DRIVER_NAME, i);
3743 continue;
3744 } else {
3745 vxge_debug_ll_config(VXGE_TRACE,
3746 "%s: vpath: %d available",
3747 VXGE_DRIVER_NAME, i);
3748 no_of_vpaths++;
3749 }
3750 } else {
3751 vxge_debug_ll_config(VXGE_TRACE,
3752 "%s: vpath: %d is not configured, "
3753 "max_config_vpath exceeded",
3754 VXGE_DRIVER_NAME, i);
3755 break;
3756 }
3757
3758 /* Configure Tx fifo's */
3759 device_config->vp_config[i].fifo.enable =
3760 VXGE_HW_FIFO_ENABLE;
3761 device_config->vp_config[i].fifo.max_frags =
3762 MAX_SKB_FRAGS + 1;
3763 device_config->vp_config[i].fifo.memblock_size =
3764 VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE;
3765
3766 txdl_size = device_config->vp_config[i].fifo.max_frags *
3767 sizeof(struct vxge_hw_fifo_txd);
3768 txdl_per_memblock = VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE / txdl_size;
3769
3770 device_config->vp_config[i].fifo.fifo_blocks =
3771 ((VXGE_DEF_FIFO_LENGTH - 1) / txdl_per_memblock) + 1;
3772
3773 device_config->vp_config[i].fifo.intr =
3774 VXGE_HW_FIFO_QUEUE_INTR_DISABLE;
3775
3776 /* Configure tti properties */
3777 device_config->vp_config[i].tti.intr_enable =
3778 VXGE_HW_TIM_INTR_ENABLE;
3779
3780 device_config->vp_config[i].tti.btimer_val =
3781 (VXGE_TTI_BTIMER_VAL * 1000) / 272;
3782
3783 device_config->vp_config[i].tti.timer_ac_en =
3784 VXGE_HW_TIM_TIMER_AC_ENABLE;
3785
3786 /* For msi-x with napi (each vector has a handler of its own) -
3787 * Set CI to OFF for all vpaths
3788 */
3789 device_config->vp_config[i].tti.timer_ci_en =
3790 VXGE_HW_TIM_TIMER_CI_DISABLE;
3791
3792 device_config->vp_config[i].tti.timer_ri_en =
3793 VXGE_HW_TIM_TIMER_RI_DISABLE;
3794
3795 device_config->vp_config[i].tti.util_sel =
3796 VXGE_HW_TIM_UTIL_SEL_LEGACY_TX_NET_UTIL;
3797
3798 device_config->vp_config[i].tti.ltimer_val =
3799 (VXGE_TTI_LTIMER_VAL * 1000) / 272;
3800
3801 device_config->vp_config[i].tti.rtimer_val =
3802 (VXGE_TTI_RTIMER_VAL * 1000) / 272;
3803
3804 device_config->vp_config[i].tti.urange_a = TTI_TX_URANGE_A;
3805 device_config->vp_config[i].tti.urange_b = TTI_TX_URANGE_B;
3806 device_config->vp_config[i].tti.urange_c = TTI_TX_URANGE_C;
3807 device_config->vp_config[i].tti.uec_a = TTI_TX_UFC_A;
3808 device_config->vp_config[i].tti.uec_b = TTI_TX_UFC_B;
3809 device_config->vp_config[i].tti.uec_c = TTI_TX_UFC_C;
3810 device_config->vp_config[i].tti.uec_d = TTI_TX_UFC_D;
3811
3812 /* Configure Rx rings */
3813 device_config->vp_config[i].ring.enable =
3814 VXGE_HW_RING_ENABLE;
3815
3816 device_config->vp_config[i].ring.ring_blocks =
3817 VXGE_HW_DEF_RING_BLOCKS;
3818
3819 device_config->vp_config[i].ring.buffer_mode =
3820 VXGE_HW_RING_RXD_BUFFER_MODE_1;
3821
3822 device_config->vp_config[i].ring.rxds_limit =
3823 VXGE_HW_DEF_RING_RXDS_LIMIT;
3824
3825 device_config->vp_config[i].ring.scatter_mode =
3826 VXGE_HW_RING_SCATTER_MODE_A;
3827
3828 /* Configure rti properties */
3829 device_config->vp_config[i].rti.intr_enable =
3830 VXGE_HW_TIM_INTR_ENABLE;
3831
3832 device_config->vp_config[i].rti.btimer_val =
3833 (VXGE_RTI_BTIMER_VAL * 1000)/272;
3834
3835 device_config->vp_config[i].rti.timer_ac_en =
3836 VXGE_HW_TIM_TIMER_AC_ENABLE;
3837
3838 device_config->vp_config[i].rti.timer_ci_en =
3839 VXGE_HW_TIM_TIMER_CI_DISABLE;
3840
3841 device_config->vp_config[i].rti.timer_ri_en =
3842 VXGE_HW_TIM_TIMER_RI_DISABLE;
3843
3844 device_config->vp_config[i].rti.util_sel =
3845 VXGE_HW_TIM_UTIL_SEL_LEGACY_RX_NET_UTIL;
3846
3847 device_config->vp_config[i].rti.urange_a =
3848 RTI_RX_URANGE_A;
3849 device_config->vp_config[i].rti.urange_b =
3850 RTI_RX_URANGE_B;
3851 device_config->vp_config[i].rti.urange_c =
3852 RTI_RX_URANGE_C;
3853 device_config->vp_config[i].rti.uec_a = RTI_RX_UFC_A;
3854 device_config->vp_config[i].rti.uec_b = RTI_RX_UFC_B;
3855 device_config->vp_config[i].rti.uec_c = RTI_RX_UFC_C;
3856 device_config->vp_config[i].rti.uec_d = RTI_RX_UFC_D;
3857
3858 device_config->vp_config[i].rti.rtimer_val =
3859 (VXGE_RTI_RTIMER_VAL * 1000) / 272;
3860
3861 device_config->vp_config[i].rti.ltimer_val =
3862 (VXGE_RTI_LTIMER_VAL * 1000) / 272;
3863
3864 device_config->vp_config[i].rpa_strip_vlan_tag =
3865 vlan_tag_strip;
3866 }
3867
3868 driver_config->vpath_per_dev = temp;
3869 return no_of_vpaths;
3870 }
3871
3872 /* initialize device configuratrions */
3873 static void vxge_device_config_init(struct vxge_hw_device_config *device_config,
3874 int *intr_type)
3875 {
3876 /* Used for CQRQ/SRQ. */
3877 device_config->dma_blockpool_initial =
3878 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
3879
3880 device_config->dma_blockpool_max =
3881 VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
3882
3883 if (max_mac_vpath > VXGE_MAX_MAC_ADDR_COUNT)
3884 max_mac_vpath = VXGE_MAX_MAC_ADDR_COUNT;
3885
3886 #ifndef CONFIG_PCI_MSI
3887 vxge_debug_init(VXGE_ERR,
3888 "%s: This Kernel does not support "
3889 "MSI-X. Defaulting to INTA", VXGE_DRIVER_NAME);
3890 *intr_type = INTA;
3891 #endif
3892
3893 /* Configure whether MSI-X or IRQL. */
3894 switch (*intr_type) {
3895 case INTA:
3896 device_config->intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
3897 break;
3898
3899 case MSI_X:
3900 device_config->intr_mode = VXGE_HW_INTR_MODE_MSIX_ONE_SHOT;
3901 break;
3902 }
3903
3904 /* Timer period between device poll */
3905 device_config->device_poll_millis = VXGE_TIMER_DELAY;
3906
3907 /* Configure mac based steering. */
3908 device_config->rts_mac_en = addr_learn_en;
3909
3910 /* Configure Vpaths */
3911 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_MULTI_IT;
3912
3913 vxge_debug_ll_config(VXGE_TRACE, "%s : Device Config Params ",
3914 __func__);
3915 vxge_debug_ll_config(VXGE_TRACE, "intr_mode : %d",
3916 device_config->intr_mode);
3917 vxge_debug_ll_config(VXGE_TRACE, "device_poll_millis : %d",
3918 device_config->device_poll_millis);
3919 vxge_debug_ll_config(VXGE_TRACE, "rth_en : %d",
3920 device_config->rth_en);
3921 vxge_debug_ll_config(VXGE_TRACE, "rth_it_type : %d",
3922 device_config->rth_it_type);
3923 }
3924
3925 static void vxge_print_parm(struct vxgedev *vdev, u64 vpath_mask)
3926 {
3927 int i;
3928
3929 vxge_debug_init(VXGE_TRACE,
3930 "%s: %d Vpath(s) opened",
3931 vdev->ndev->name, vdev->no_of_vpath);
3932
3933 switch (vdev->config.intr_type) {
3934 case INTA:
3935 vxge_debug_init(VXGE_TRACE,
3936 "%s: Interrupt type INTA", vdev->ndev->name);
3937 break;
3938
3939 case MSI_X:
3940 vxge_debug_init(VXGE_TRACE,
3941 "%s: Interrupt type MSI-X", vdev->ndev->name);
3942 break;
3943 }
3944
3945 if (vdev->config.rth_steering) {
3946 vxge_debug_init(VXGE_TRACE,
3947 "%s: RTH steering enabled for TCP_IPV4",
3948 vdev->ndev->name);
3949 } else {
3950 vxge_debug_init(VXGE_TRACE,
3951 "%s: RTH steering disabled", vdev->ndev->name);
3952 }
3953
3954 switch (vdev->config.tx_steering_type) {
3955 case NO_STEERING:
3956 vxge_debug_init(VXGE_TRACE,
3957 "%s: Tx steering disabled", vdev->ndev->name);
3958 break;
3959 case TX_PRIORITY_STEERING:
3960 vxge_debug_init(VXGE_TRACE,
3961 "%s: Unsupported tx steering option",
3962 vdev->ndev->name);
3963 vxge_debug_init(VXGE_TRACE,
3964 "%s: Tx steering disabled", vdev->ndev->name);
3965 vdev->config.tx_steering_type = 0;
3966 break;
3967 case TX_VLAN_STEERING:
3968 vxge_debug_init(VXGE_TRACE,
3969 "%s: Unsupported tx steering option",
3970 vdev->ndev->name);
3971 vxge_debug_init(VXGE_TRACE,
3972 "%s: Tx steering disabled", vdev->ndev->name);
3973 vdev->config.tx_steering_type = 0;
3974 break;
3975 case TX_MULTIQ_STEERING:
3976 vxge_debug_init(VXGE_TRACE,
3977 "%s: Tx multiqueue steering enabled",
3978 vdev->ndev->name);
3979 break;
3980 case TX_PORT_STEERING:
3981 vxge_debug_init(VXGE_TRACE,
3982 "%s: Tx port steering enabled",
3983 vdev->ndev->name);
3984 break;
3985 default:
3986 vxge_debug_init(VXGE_ERR,
3987 "%s: Unsupported tx steering type",
3988 vdev->ndev->name);
3989 vxge_debug_init(VXGE_TRACE,
3990 "%s: Tx steering disabled", vdev->ndev->name);
3991 vdev->config.tx_steering_type = 0;
3992 }
3993
3994 if (vdev->config.addr_learn_en)
3995 vxge_debug_init(VXGE_TRACE,
3996 "%s: MAC Address learning enabled", vdev->ndev->name);
3997
3998 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3999 if (!vxge_bVALn(vpath_mask, i, 1))
4000 continue;
4001 vxge_debug_ll_config(VXGE_TRACE,
4002 "%s: MTU size - %d", vdev->ndev->name,
4003 ((vdev->devh))->
4004 config.vp_config[i].mtu);
4005 vxge_debug_init(VXGE_TRACE,
4006 "%s: VLAN tag stripping %s", vdev->ndev->name,
4007 ((vdev->devh))->
4008 config.vp_config[i].rpa_strip_vlan_tag
4009 ? "Enabled" : "Disabled");
4010 vxge_debug_ll_config(VXGE_TRACE,
4011 "%s: Max frags : %d", vdev->ndev->name,
4012 ((vdev->devh))->
4013 config.vp_config[i].fifo.max_frags);
4014 break;
4015 }
4016 }
4017
4018 #ifdef CONFIG_PM
4019 /**
4020 * vxge_pm_suspend - vxge power management suspend entry point
4021 *
4022 */
4023 static int vxge_pm_suspend(struct pci_dev *pdev, pm_message_t state)
4024 {
4025 return -ENOSYS;
4026 }
4027 /**
4028 * vxge_pm_resume - vxge power management resume entry point
4029 *
4030 */
4031 static int vxge_pm_resume(struct pci_dev *pdev)
4032 {
4033 return -ENOSYS;
4034 }
4035
4036 #endif
4037
4038 /**
4039 * vxge_io_error_detected - called when PCI error is detected
4040 * @pdev: Pointer to PCI device
4041 * @state: The current pci connection state
4042 *
4043 * This function is called after a PCI bus error affecting
4044 * this device has been detected.
4045 */
4046 static pci_ers_result_t vxge_io_error_detected(struct pci_dev *pdev,
4047 pci_channel_state_t state)
4048 {
4049 struct __vxge_hw_device *hldev = pci_get_drvdata(pdev);
4050 struct net_device *netdev = hldev->ndev;
4051
4052 netif_device_detach(netdev);
4053
4054 if (state == pci_channel_io_perm_failure)
4055 return PCI_ERS_RESULT_DISCONNECT;
4056
4057 if (netif_running(netdev)) {
4058 /* Bring down the card, while avoiding PCI I/O */
4059 do_vxge_close(netdev, 0);
4060 }
4061
4062 pci_disable_device(pdev);
4063
4064 return PCI_ERS_RESULT_NEED_RESET;
4065 }
4066
4067 /**
4068 * vxge_io_slot_reset - called after the pci bus has been reset.
4069 * @pdev: Pointer to PCI device
4070 *
4071 * Restart the card from scratch, as if from a cold-boot.
4072 * At this point, the card has exprienced a hard reset,
4073 * followed by fixups by BIOS, and has its config space
4074 * set up identically to what it was at cold boot.
4075 */
4076 static pci_ers_result_t vxge_io_slot_reset(struct pci_dev *pdev)
4077 {
4078 struct __vxge_hw_device *hldev = pci_get_drvdata(pdev);
4079 struct net_device *netdev = hldev->ndev;
4080
4081 struct vxgedev *vdev = netdev_priv(netdev);
4082
4083 if (pci_enable_device(pdev)) {
4084 netdev_err(netdev, "Cannot re-enable device after reset\n");
4085 return PCI_ERS_RESULT_DISCONNECT;
4086 }
4087
4088 pci_set_master(pdev);
4089 do_vxge_reset(vdev, VXGE_LL_FULL_RESET);
4090
4091 return PCI_ERS_RESULT_RECOVERED;
4092 }
4093
4094 /**
4095 * vxge_io_resume - called when traffic can start flowing again.
4096 * @pdev: Pointer to PCI device
4097 *
4098 * This callback is called when the error recovery driver tells
4099 * us that its OK to resume normal operation.
4100 */
4101 static void vxge_io_resume(struct pci_dev *pdev)
4102 {
4103 struct __vxge_hw_device *hldev = pci_get_drvdata(pdev);
4104 struct net_device *netdev = hldev->ndev;
4105
4106 if (netif_running(netdev)) {
4107 if (vxge_open(netdev)) {
4108 netdev_err(netdev,
4109 "Can't bring device back up after reset\n");
4110 return;
4111 }
4112 }
4113
4114 netif_device_attach(netdev);
4115 }
4116
4117 static inline u32 vxge_get_num_vfs(u64 function_mode)
4118 {
4119 u32 num_functions = 0;
4120
4121 switch (function_mode) {
4122 case VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION:
4123 case VXGE_HW_FUNCTION_MODE_SRIOV_8:
4124 num_functions = 8;
4125 break;
4126 case VXGE_HW_FUNCTION_MODE_SINGLE_FUNCTION:
4127 num_functions = 1;
4128 break;
4129 case VXGE_HW_FUNCTION_MODE_SRIOV:
4130 case VXGE_HW_FUNCTION_MODE_MRIOV:
4131 case VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_17:
4132 num_functions = 17;
4133 break;
4134 case VXGE_HW_FUNCTION_MODE_SRIOV_4:
4135 num_functions = 4;
4136 break;
4137 case VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION_2:
4138 num_functions = 2;
4139 break;
4140 case VXGE_HW_FUNCTION_MODE_MRIOV_8:
4141 num_functions = 8; /* TODO */
4142 break;
4143 }
4144 return num_functions;
4145 }
4146
4147 int vxge_fw_upgrade(struct vxgedev *vdev, char *fw_name, int override)
4148 {
4149 struct __vxge_hw_device *hldev = vdev->devh;
4150 u32 maj, min, bld, cmaj, cmin, cbld;
4151 enum vxge_hw_status status;
4152 const struct firmware *fw;
4153 int ret;
4154
4155 ret = request_firmware(&fw, fw_name, &vdev->pdev->dev);
4156 if (ret) {
4157 vxge_debug_init(VXGE_ERR, "%s: Firmware file '%s' not found",
4158 VXGE_DRIVER_NAME, fw_name);
4159 goto out;
4160 }
4161
4162 /* Load the new firmware onto the adapter */
4163 status = vxge_update_fw_image(hldev, fw->data, fw->size);
4164 if (status != VXGE_HW_OK) {
4165 vxge_debug_init(VXGE_ERR,
4166 "%s: FW image download to adapter failed '%s'.",
4167 VXGE_DRIVER_NAME, fw_name);
4168 ret = -EIO;
4169 goto out;
4170 }
4171
4172 /* Read the version of the new firmware */
4173 status = vxge_hw_upgrade_read_version(hldev, &maj, &min, &bld);
4174 if (status != VXGE_HW_OK) {
4175 vxge_debug_init(VXGE_ERR,
4176 "%s: Upgrade read version failed '%s'.",
4177 VXGE_DRIVER_NAME, fw_name);
4178 ret = -EIO;
4179 goto out;
4180 }
4181
4182 cmaj = vdev->config.device_hw_info.fw_version.major;
4183 cmin = vdev->config.device_hw_info.fw_version.minor;
4184 cbld = vdev->config.device_hw_info.fw_version.build;
4185 /* It's possible the version in /lib/firmware is not the latest version.
4186 * If so, we could get into a loop of trying to upgrade to the latest
4187 * and flashing the older version.
4188 */
4189 if (VXGE_FW_VER(maj, min, bld) == VXGE_FW_VER(cmaj, cmin, cbld) &&
4190 !override) {
4191 ret = -EINVAL;
4192 goto out;
4193 }
4194
4195 printk(KERN_NOTICE "Upgrade to firmware version %d.%d.%d commencing\n",
4196 maj, min, bld);
4197
4198 /* Flash the adapter with the new firmware */
4199 status = vxge_hw_flash_fw(hldev);
4200 if (status != VXGE_HW_OK) {
4201 vxge_debug_init(VXGE_ERR, "%s: Upgrade commit failed '%s'.",
4202 VXGE_DRIVER_NAME, fw_name);
4203 ret = -EIO;
4204 goto out;
4205 }
4206
4207 printk(KERN_NOTICE "Upgrade of firmware successful! Adapter must be "
4208 "hard reset before using, thus requiring a system reboot or a "
4209 "hotplug event.\n");
4210
4211 out:
4212 release_firmware(fw);
4213 return ret;
4214 }
4215
4216 static int vxge_probe_fw_update(struct vxgedev *vdev)
4217 {
4218 u32 maj, min, bld;
4219 int ret, gpxe = 0;
4220 char *fw_name;
4221
4222 maj = vdev->config.device_hw_info.fw_version.major;
4223 min = vdev->config.device_hw_info.fw_version.minor;
4224 bld = vdev->config.device_hw_info.fw_version.build;
4225
4226 if (VXGE_FW_VER(maj, min, bld) == VXGE_CERT_FW_VER)
4227 return 0;
4228
4229 /* Ignore the build number when determining if the current firmware is
4230 * "too new" to load the driver
4231 */
4232 if (VXGE_FW_VER(maj, min, 0) > VXGE_CERT_FW_VER) {
4233 vxge_debug_init(VXGE_ERR, "%s: Firmware newer than last known "
4234 "version, unable to load driver\n",
4235 VXGE_DRIVER_NAME);
4236 return -EINVAL;
4237 }
4238
4239 /* Firmware 1.4.4 and older cannot be upgraded, and is too ancient to
4240 * work with this driver.
4241 */
4242 if (VXGE_FW_VER(maj, min, bld) <= VXGE_FW_DEAD_VER) {
4243 vxge_debug_init(VXGE_ERR, "%s: Firmware %d.%d.%d cannot be "
4244 "upgraded\n", VXGE_DRIVER_NAME, maj, min, bld);
4245 return -EINVAL;
4246 }
4247
4248 /* If file not specified, determine gPXE or not */
4249 if (VXGE_FW_VER(maj, min, bld) >= VXGE_EPROM_FW_VER) {
4250 int i;
4251 for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++)
4252 if (vdev->devh->eprom_versions[i]) {
4253 gpxe = 1;
4254 break;
4255 }
4256 }
4257 if (gpxe)
4258 fw_name = "vxge/X3fw-pxe.ncf";
4259 else
4260 fw_name = "vxge/X3fw.ncf";
4261
4262 ret = vxge_fw_upgrade(vdev, fw_name, 0);
4263 /* -EINVAL and -ENOENT are not fatal errors for flashing firmware on
4264 * probe, so ignore them
4265 */
4266 if (ret != -EINVAL && ret != -ENOENT)
4267 return -EIO;
4268 else
4269 ret = 0;
4270
4271 if (VXGE_FW_VER(VXGE_CERT_FW_VER_MAJOR, VXGE_CERT_FW_VER_MINOR, 0) >
4272 VXGE_FW_VER(maj, min, 0)) {
4273 vxge_debug_init(VXGE_ERR, "%s: Firmware %d.%d.%d is too old to"
4274 " be used with this driver.",
4275 VXGE_DRIVER_NAME, maj, min, bld);
4276 return -EINVAL;
4277 }
4278
4279 return ret;
4280 }
4281
4282 static int is_sriov_initialized(struct pci_dev *pdev)
4283 {
4284 int pos;
4285 u16 ctrl;
4286
4287 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4288 if (pos) {
4289 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &ctrl);
4290 if (ctrl & PCI_SRIOV_CTRL_VFE)
4291 return 1;
4292 }
4293 return 0;
4294 }
4295
4296 static const struct vxge_hw_uld_cbs vxge_callbacks = {
4297 .link_up = vxge_callback_link_up,
4298 .link_down = vxge_callback_link_down,
4299 .crit_err = vxge_callback_crit_err,
4300 };
4301
4302 /**
4303 * vxge_probe
4304 * @pdev : structure containing the PCI related information of the device.
4305 * @pre: List of PCI devices supported by the driver listed in vxge_id_table.
4306 * Description:
4307 * This function is called when a new PCI device gets detected and initializes
4308 * it.
4309 * Return value:
4310 * returns 0 on success and negative on failure.
4311 *
4312 */
4313 static int
4314 vxge_probe(struct pci_dev *pdev, const struct pci_device_id *pre)
4315 {
4316 struct __vxge_hw_device *hldev;
4317 enum vxge_hw_status status;
4318 int ret;
4319 int high_dma = 0;
4320 u64 vpath_mask = 0;
4321 struct vxgedev *vdev;
4322 struct vxge_config *ll_config = NULL;
4323 struct vxge_hw_device_config *device_config = NULL;
4324 struct vxge_hw_device_attr attr;
4325 int i, j, no_of_vpath = 0, max_vpath_supported = 0;
4326 u8 *macaddr;
4327 struct vxge_mac_addrs *entry;
4328 static int bus = -1, device = -1;
4329 u32 host_type;
4330 u8 new_device = 0;
4331 enum vxge_hw_status is_privileged;
4332 u32 function_mode;
4333 u32 num_vfs = 0;
4334
4335 vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
4336 attr.pdev = pdev;
4337
4338 /* In SRIOV-17 mode, functions of the same adapter
4339 * can be deployed on different buses
4340 */
4341 if (((bus != pdev->bus->number) || (device != PCI_SLOT(pdev->devfn))) &&
4342 !pdev->is_virtfn)
4343 new_device = 1;
4344
4345 bus = pdev->bus->number;
4346 device = PCI_SLOT(pdev->devfn);
4347
4348 if (new_device) {
4349 if (driver_config->config_dev_cnt &&
4350 (driver_config->config_dev_cnt !=
4351 driver_config->total_dev_cnt))
4352 vxge_debug_init(VXGE_ERR,
4353 "%s: Configured %d of %d devices",
4354 VXGE_DRIVER_NAME,
4355 driver_config->config_dev_cnt,
4356 driver_config->total_dev_cnt);
4357 driver_config->config_dev_cnt = 0;
4358 driver_config->total_dev_cnt = 0;
4359 }
4360
4361 /* Now making the CPU based no of vpath calculation
4362 * applicable for individual functions as well.
4363 */
4364 driver_config->g_no_cpus = 0;
4365 driver_config->vpath_per_dev = max_config_vpath;
4366
4367 driver_config->total_dev_cnt++;
4368 if (++driver_config->config_dev_cnt > max_config_dev) {
4369 ret = 0;
4370 goto _exit0;
4371 }
4372
4373 device_config = kzalloc(sizeof(struct vxge_hw_device_config),
4374 GFP_KERNEL);
4375 if (!device_config) {
4376 ret = -ENOMEM;
4377 vxge_debug_init(VXGE_ERR,
4378 "device_config : malloc failed %s %d",
4379 __FILE__, __LINE__);
4380 goto _exit0;
4381 }
4382
4383 ll_config = kzalloc(sizeof(struct vxge_config), GFP_KERNEL);
4384 if (!ll_config) {
4385 ret = -ENOMEM;
4386 vxge_debug_init(VXGE_ERR,
4387 "device_config : malloc failed %s %d",
4388 __FILE__, __LINE__);
4389 goto _exit0;
4390 }
4391 ll_config->tx_steering_type = TX_MULTIQ_STEERING;
4392 ll_config->intr_type = MSI_X;
4393 ll_config->napi_weight = NEW_NAPI_WEIGHT;
4394 ll_config->rth_steering = RTH_STEERING;
4395
4396 /* get the default configuration parameters */
4397 vxge_hw_device_config_default_get(device_config);
4398
4399 /* initialize configuration parameters */
4400 vxge_device_config_init(device_config, &ll_config->intr_type);
4401
4402 ret = pci_enable_device(pdev);
4403 if (ret) {
4404 vxge_debug_init(VXGE_ERR,
4405 "%s : can not enable PCI device", __func__);
4406 goto _exit0;
4407 }
4408
4409 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4410 vxge_debug_ll_config(VXGE_TRACE,
4411 "%s : using 64bit DMA", __func__);
4412
4413 high_dma = 1;
4414
4415 if (pci_set_consistent_dma_mask(pdev,
4416 DMA_BIT_MASK(64))) {
4417 vxge_debug_init(VXGE_ERR,
4418 "%s : unable to obtain 64bit DMA for "
4419 "consistent allocations", __func__);
4420 ret = -ENOMEM;
4421 goto _exit1;
4422 }
4423 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
4424 vxge_debug_ll_config(VXGE_TRACE,
4425 "%s : using 32bit DMA", __func__);
4426 } else {
4427 ret = -ENOMEM;
4428 goto _exit1;
4429 }
4430
4431 ret = pci_request_region(pdev, 0, VXGE_DRIVER_NAME);
4432 if (ret) {
4433 vxge_debug_init(VXGE_ERR,
4434 "%s : request regions failed", __func__);
4435 goto _exit1;
4436 }
4437
4438 pci_set_master(pdev);
4439
4440 attr.bar0 = pci_ioremap_bar(pdev, 0);
4441 if (!attr.bar0) {
4442 vxge_debug_init(VXGE_ERR,
4443 "%s : cannot remap io memory bar0", __func__);
4444 ret = -ENODEV;
4445 goto _exit2;
4446 }
4447 vxge_debug_ll_config(VXGE_TRACE,
4448 "pci ioremap bar0: %p:0x%llx",
4449 attr.bar0,
4450 (unsigned long long)pci_resource_start(pdev, 0));
4451
4452 status = vxge_hw_device_hw_info_get(attr.bar0,
4453 &ll_config->device_hw_info);
4454 if (status != VXGE_HW_OK) {
4455 vxge_debug_init(VXGE_ERR,
4456 "%s: Reading of hardware info failed."
4457 "Please try upgrading the firmware.", VXGE_DRIVER_NAME);
4458 ret = -EINVAL;
4459 goto _exit3;
4460 }
4461
4462 vpath_mask = ll_config->device_hw_info.vpath_mask;
4463 if (vpath_mask == 0) {
4464 vxge_debug_ll_config(VXGE_TRACE,
4465 "%s: No vpaths available in device", VXGE_DRIVER_NAME);
4466 ret = -EINVAL;
4467 goto _exit3;
4468 }
4469
4470 vxge_debug_ll_config(VXGE_TRACE,
4471 "%s:%d Vpath mask = %llx", __func__, __LINE__,
4472 (unsigned long long)vpath_mask);
4473
4474 function_mode = ll_config->device_hw_info.function_mode;
4475 host_type = ll_config->device_hw_info.host_type;
4476 is_privileged = __vxge_hw_device_is_privilaged(host_type,
4477 ll_config->device_hw_info.func_id);
4478
4479 /* Check how many vpaths are available */
4480 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
4481 if (!((vpath_mask) & vxge_mBIT(i)))
4482 continue;
4483 max_vpath_supported++;
4484 }
4485
4486 if (new_device)
4487 num_vfs = vxge_get_num_vfs(function_mode) - 1;
4488
4489 /* Enable SRIOV mode, if firmware has SRIOV support and if it is a PF */
4490 if (is_sriov(function_mode) && !is_sriov_initialized(pdev) &&
4491 (ll_config->intr_type != INTA)) {
4492 ret = pci_enable_sriov(pdev, num_vfs);
4493 if (ret)
4494 vxge_debug_ll_config(VXGE_ERR,
4495 "Failed in enabling SRIOV mode: %d\n", ret);
4496 /* No need to fail out, as an error here is non-fatal */
4497 }
4498
4499 /*
4500 * Configure vpaths and get driver configured number of vpaths
4501 * which is less than or equal to the maximum vpaths per function.
4502 */
4503 no_of_vpath = vxge_config_vpaths(device_config, vpath_mask, ll_config);
4504 if (!no_of_vpath) {
4505 vxge_debug_ll_config(VXGE_ERR,
4506 "%s: No more vpaths to configure", VXGE_DRIVER_NAME);
4507 ret = 0;
4508 goto _exit3;
4509 }
4510
4511 /* Setting driver callbacks */
4512 attr.uld_callbacks = &vxge_callbacks;
4513
4514 status = vxge_hw_device_initialize(&hldev, &attr, device_config);
4515 if (status != VXGE_HW_OK) {
4516 vxge_debug_init(VXGE_ERR,
4517 "Failed to initialize device (%d)", status);
4518 ret = -EINVAL;
4519 goto _exit3;
4520 }
4521
4522 if (VXGE_FW_VER(ll_config->device_hw_info.fw_version.major,
4523 ll_config->device_hw_info.fw_version.minor,
4524 ll_config->device_hw_info.fw_version.build) >=
4525 VXGE_EPROM_FW_VER) {
4526 struct eprom_image img[VXGE_HW_MAX_ROM_IMAGES];
4527
4528 status = vxge_hw_vpath_eprom_img_ver_get(hldev, img);
4529 if (status != VXGE_HW_OK) {
4530 vxge_debug_init(VXGE_ERR, "%s: Reading of EPROM failed",
4531 VXGE_DRIVER_NAME);
4532 /* This is a non-fatal error, continue */
4533 }
4534
4535 for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
4536 hldev->eprom_versions[i] = img[i].version;
4537 if (!img[i].is_valid)
4538 break;
4539 vxge_debug_init(VXGE_TRACE, "%s: EPROM %d, version "
4540 "%d.%d.%d.%d", VXGE_DRIVER_NAME, i,
4541 VXGE_EPROM_IMG_MAJOR(img[i].version),
4542 VXGE_EPROM_IMG_MINOR(img[i].version),
4543 VXGE_EPROM_IMG_FIX(img[i].version),
4544 VXGE_EPROM_IMG_BUILD(img[i].version));
4545 }
4546 }
4547
4548 /* if FCS stripping is not disabled in MAC fail driver load */
4549 status = vxge_hw_vpath_strip_fcs_check(hldev, vpath_mask);
4550 if (status != VXGE_HW_OK) {
4551 vxge_debug_init(VXGE_ERR, "%s: FCS stripping is enabled in MAC"
4552 " failing driver load", VXGE_DRIVER_NAME);
4553 ret = -EINVAL;
4554 goto _exit4;
4555 }
4556
4557 /* Always enable HWTS. This will always cause the FCS to be invalid,
4558 * due to the fact that HWTS is using the FCS as the location of the
4559 * timestamp. The HW FCS checking will still correctly determine if
4560 * there is a valid checksum, and the FCS is being removed by the driver
4561 * anyway. So no fucntionality is being lost. Since it is always
4562 * enabled, we now simply use the ioctl call to set whether or not the
4563 * driver should be paying attention to the HWTS.
4564 */
4565 if (is_privileged == VXGE_HW_OK) {
4566 status = vxge_timestamp_config(hldev);
4567 if (status != VXGE_HW_OK) {
4568 vxge_debug_init(VXGE_ERR, "%s: HWTS enable failed",
4569 VXGE_DRIVER_NAME);
4570 ret = -EFAULT;
4571 goto _exit4;
4572 }
4573 }
4574
4575 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL);
4576
4577 /* set private device info */
4578 pci_set_drvdata(pdev, hldev);
4579
4580 ll_config->fifo_indicate_max_pkts = VXGE_FIFO_INDICATE_MAX_PKTS;
4581 ll_config->addr_learn_en = addr_learn_en;
4582 ll_config->rth_algorithm = RTH_ALG_JENKINS;
4583 ll_config->rth_hash_type_tcpipv4 = 1;
4584 ll_config->rth_hash_type_ipv4 = 0;
4585 ll_config->rth_hash_type_tcpipv6 = 0;
4586 ll_config->rth_hash_type_ipv6 = 0;
4587 ll_config->rth_hash_type_tcpipv6ex = 0;
4588 ll_config->rth_hash_type_ipv6ex = 0;
4589 ll_config->rth_bkt_sz = RTH_BUCKET_SIZE;
4590 ll_config->tx_pause_enable = VXGE_PAUSE_CTRL_ENABLE;
4591 ll_config->rx_pause_enable = VXGE_PAUSE_CTRL_ENABLE;
4592
4593 ret = vxge_device_register(hldev, ll_config, high_dma, no_of_vpath,
4594 &vdev);
4595 if (ret) {
4596 ret = -EINVAL;
4597 goto _exit4;
4598 }
4599
4600 ret = vxge_probe_fw_update(vdev);
4601 if (ret)
4602 goto _exit5;
4603
4604 vxge_hw_device_debug_set(hldev, VXGE_TRACE, VXGE_COMPONENT_LL);
4605 VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev),
4606 vxge_hw_device_trace_level_get(hldev));
4607
4608 /* set private HW device info */
4609 vdev->mtu = VXGE_HW_DEFAULT_MTU;
4610 vdev->bar0 = attr.bar0;
4611 vdev->max_vpath_supported = max_vpath_supported;
4612 vdev->no_of_vpath = no_of_vpath;
4613
4614 /* Virtual Path count */
4615 for (i = 0, j = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
4616 if (!vxge_bVALn(vpath_mask, i, 1))
4617 continue;
4618 if (j >= vdev->no_of_vpath)
4619 break;
4620
4621 vdev->vpaths[j].is_configured = 1;
4622 vdev->vpaths[j].device_id = i;
4623 vdev->vpaths[j].ring.driver_id = j;
4624 vdev->vpaths[j].vdev = vdev;
4625 vdev->vpaths[j].max_mac_addr_cnt = max_mac_vpath;
4626 memcpy((u8 *)vdev->vpaths[j].macaddr,
4627 ll_config->device_hw_info.mac_addrs[i],
4628 ETH_ALEN);
4629
4630 /* Initialize the mac address list header */
4631 INIT_LIST_HEAD(&vdev->vpaths[j].mac_addr_list);
4632
4633 vdev->vpaths[j].mac_addr_cnt = 0;
4634 vdev->vpaths[j].mcast_addr_cnt = 0;
4635 j++;
4636 }
4637 vdev->exec_mode = VXGE_EXEC_MODE_DISABLE;
4638 vdev->max_config_port = max_config_port;
4639
4640 vdev->vlan_tag_strip = vlan_tag_strip;
4641
4642 /* map the hashing selector table to the configured vpaths */
4643 for (i = 0; i < vdev->no_of_vpath; i++)
4644 vdev->vpath_selector[i] = vpath_selector[i];
4645
4646 macaddr = (u8 *)vdev->vpaths[0].macaddr;
4647
4648 ll_config->device_hw_info.serial_number[VXGE_HW_INFO_LEN - 1] = '\0';
4649 ll_config->device_hw_info.product_desc[VXGE_HW_INFO_LEN - 1] = '\0';
4650 ll_config->device_hw_info.part_number[VXGE_HW_INFO_LEN - 1] = '\0';
4651
4652 vxge_debug_init(VXGE_TRACE, "%s: SERIAL NUMBER: %s",
4653 vdev->ndev->name, ll_config->device_hw_info.serial_number);
4654
4655 vxge_debug_init(VXGE_TRACE, "%s: PART NUMBER: %s",
4656 vdev->ndev->name, ll_config->device_hw_info.part_number);
4657
4658 vxge_debug_init(VXGE_TRACE, "%s: Neterion %s Server Adapter",
4659 vdev->ndev->name, ll_config->device_hw_info.product_desc);
4660
4661 vxge_debug_init(VXGE_TRACE, "%s: MAC ADDR: %pM",
4662 vdev->ndev->name, macaddr);
4663
4664 vxge_debug_init(VXGE_TRACE, "%s: Link Width x%d",
4665 vdev->ndev->name, vxge_hw_device_link_width_get(hldev));
4666
4667 vxge_debug_init(VXGE_TRACE,
4668 "%s: Firmware version : %s Date : %s", vdev->ndev->name,
4669 ll_config->device_hw_info.fw_version.version,
4670 ll_config->device_hw_info.fw_date.date);
4671
4672 if (new_device) {
4673 switch (ll_config->device_hw_info.function_mode) {
4674 case VXGE_HW_FUNCTION_MODE_SINGLE_FUNCTION:
4675 vxge_debug_init(VXGE_TRACE,
4676 "%s: Single Function Mode Enabled", vdev->ndev->name);
4677 break;
4678 case VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION:
4679 vxge_debug_init(VXGE_TRACE,
4680 "%s: Multi Function Mode Enabled", vdev->ndev->name);
4681 break;
4682 case VXGE_HW_FUNCTION_MODE_SRIOV:
4683 vxge_debug_init(VXGE_TRACE,
4684 "%s: Single Root IOV Mode Enabled", vdev->ndev->name);
4685 break;
4686 case VXGE_HW_FUNCTION_MODE_MRIOV:
4687 vxge_debug_init(VXGE_TRACE,
4688 "%s: Multi Root IOV Mode Enabled", vdev->ndev->name);
4689 break;
4690 }
4691 }
4692
4693 vxge_print_parm(vdev, vpath_mask);
4694
4695 /* Store the fw version for ethttool option */
4696 strcpy(vdev->fw_version, ll_config->device_hw_info.fw_version.version);
4697 memcpy(vdev->ndev->dev_addr, (u8 *)vdev->vpaths[0].macaddr, ETH_ALEN);
4698
4699 /* Copy the station mac address to the list */
4700 for (i = 0; i < vdev->no_of_vpath; i++) {
4701 entry = kzalloc(sizeof(struct vxge_mac_addrs), GFP_KERNEL);
4702 if (NULL == entry) {
4703 vxge_debug_init(VXGE_ERR,
4704 "%s: mac_addr_list : memory allocation failed",
4705 vdev->ndev->name);
4706 ret = -EPERM;
4707 goto _exit6;
4708 }
4709 macaddr = (u8 *)&entry->macaddr;
4710 memcpy(macaddr, vdev->ndev->dev_addr, ETH_ALEN);
4711 list_add(&entry->item, &vdev->vpaths[i].mac_addr_list);
4712 vdev->vpaths[i].mac_addr_cnt = 1;
4713 }
4714
4715 kfree(device_config);
4716
4717 /*
4718 * INTA is shared in multi-function mode. This is unlike the INTA
4719 * implementation in MR mode, where each VH has its own INTA message.
4720 * - INTA is masked (disabled) as long as at least one function sets
4721 * its TITAN_MASK_ALL_INT.ALARM bit.
4722 * - INTA is unmasked (enabled) when all enabled functions have cleared
4723 * their own TITAN_MASK_ALL_INT.ALARM bit.
4724 * The TITAN_MASK_ALL_INT ALARM & TRAFFIC bits are cleared on power up.
4725 * Though this driver leaves the top level interrupts unmasked while
4726 * leaving the required module interrupt bits masked on exit, there
4727 * could be a rougue driver around that does not follow this procedure
4728 * resulting in a failure to generate interrupts. The following code is
4729 * present to prevent such a failure.
4730 */
4731
4732 if (ll_config->device_hw_info.function_mode ==
4733 VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION)
4734 if (vdev->config.intr_type == INTA)
4735 vxge_hw_device_unmask_all(hldev);
4736
4737 vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...",
4738 vdev->ndev->name, __func__, __LINE__);
4739
4740 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL);
4741 VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev),
4742 vxge_hw_device_trace_level_get(hldev));
4743
4744 kfree(ll_config);
4745 return 0;
4746
4747 _exit6:
4748 for (i = 0; i < vdev->no_of_vpath; i++)
4749 vxge_free_mac_add_list(&vdev->vpaths[i]);
4750 _exit5:
4751 vxge_device_unregister(hldev);
4752 _exit4:
4753 vxge_hw_device_terminate(hldev);
4754 pci_disable_sriov(pdev);
4755 _exit3:
4756 iounmap(attr.bar0);
4757 _exit2:
4758 pci_release_region(pdev, 0);
4759 _exit1:
4760 pci_disable_device(pdev);
4761 _exit0:
4762 kfree(ll_config);
4763 kfree(device_config);
4764 driver_config->config_dev_cnt--;
4765 driver_config->total_dev_cnt--;
4766 return ret;
4767 }
4768
4769 /**
4770 * vxge_rem_nic - Free the PCI device
4771 * @pdev: structure containing the PCI related information of the device.
4772 * Description: This function is called by the Pci subsystem to release a
4773 * PCI device and free up all resource held up by the device.
4774 */
4775 static void vxge_remove(struct pci_dev *pdev)
4776 {
4777 struct __vxge_hw_device *hldev;
4778 struct vxgedev *vdev;
4779 int i;
4780
4781 hldev = pci_get_drvdata(pdev);
4782 if (hldev == NULL)
4783 return;
4784
4785 vdev = netdev_priv(hldev->ndev);
4786
4787 vxge_debug_entryexit(vdev->level_trace, "%s:%d", __func__, __LINE__);
4788 vxge_debug_init(vdev->level_trace, "%s : removing PCI device...",
4789 __func__);
4790
4791 for (i = 0; i < vdev->no_of_vpath; i++)
4792 vxge_free_mac_add_list(&vdev->vpaths[i]);
4793
4794 vxge_device_unregister(hldev);
4795 /* Do not call pci_disable_sriov here, as it will break child devices */
4796 vxge_hw_device_terminate(hldev);
4797 iounmap(vdev->bar0);
4798 pci_release_region(pdev, 0);
4799 pci_disable_device(pdev);
4800 driver_config->config_dev_cnt--;
4801 driver_config->total_dev_cnt--;
4802
4803 vxge_debug_init(vdev->level_trace, "%s:%d Device unregistered",
4804 __func__, __LINE__);
4805 vxge_debug_entryexit(vdev->level_trace, "%s:%d Exiting...", __func__,
4806 __LINE__);
4807 }
4808
4809 static const struct pci_error_handlers vxge_err_handler = {
4810 .error_detected = vxge_io_error_detected,
4811 .slot_reset = vxge_io_slot_reset,
4812 .resume = vxge_io_resume,
4813 };
4814
4815 static struct pci_driver vxge_driver = {
4816 .name = VXGE_DRIVER_NAME,
4817 .id_table = vxge_id_table,
4818 .probe = vxge_probe,
4819 .remove = vxge_remove,
4820 #ifdef CONFIG_PM
4821 .suspend = vxge_pm_suspend,
4822 .resume = vxge_pm_resume,
4823 #endif
4824 .err_handler = &vxge_err_handler,
4825 };
4826
4827 static int __init
4828 vxge_starter(void)
4829 {
4830 int ret = 0;
4831
4832 pr_info("Copyright(c) 2002-2010 Exar Corp.\n");
4833 pr_info("Driver version: %s\n", DRV_VERSION);
4834
4835 verify_bandwidth();
4836
4837 driver_config = kzalloc(sizeof(struct vxge_drv_config), GFP_KERNEL);
4838 if (!driver_config)
4839 return -ENOMEM;
4840
4841 ret = pci_register_driver(&vxge_driver);
4842 if (ret) {
4843 kfree(driver_config);
4844 goto err;
4845 }
4846
4847 if (driver_config->config_dev_cnt &&
4848 (driver_config->config_dev_cnt != driver_config->total_dev_cnt))
4849 vxge_debug_init(VXGE_ERR,
4850 "%s: Configured %d of %d devices",
4851 VXGE_DRIVER_NAME, driver_config->config_dev_cnt,
4852 driver_config->total_dev_cnt);
4853 err:
4854 return ret;
4855 }
4856
4857 static void __exit
4858 vxge_closer(void)
4859 {
4860 pci_unregister_driver(&vxge_driver);
4861 kfree(driver_config);
4862 }
4863 module_init(vxge_starter);
4864 module_exit(vxge_closer);