]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/netronome/nfp/nfp_net_common.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / netronome / nfp / nfp_net_common.c
1 /*
2 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 *
4 * This software is dual licensed under the GNU General License Version 2,
5 * June 1991 as shown in the file COPYING in the top-level directory of this
6 * source tree or the BSD 2-Clause License provided below. You have the
7 * option to license this software under the complete terms of either license.
8 *
9 * The BSD 2-Clause License:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * 1. Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * 2. Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 /*
35 * nfp_net_common.c
36 * Netronome network device driver: Common functions between PF and VF
37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38 * Jason McMullan <jason.mcmullan@netronome.com>
39 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
40 * Brad Petrus <brad.petrus@netronome.com>
41 * Chris Telfer <chris.telfer@netronome.com>
42 */
43
44 #include <linux/bpf.h>
45 #include <linux/bpf_trace.h>
46 #include <linux/module.h>
47 #include <linux/kernel.h>
48 #include <linux/init.h>
49 #include <linux/fs.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/interrupt.h>
53 #include <linux/ip.h>
54 #include <linux/ipv6.h>
55 #include <linux/page_ref.h>
56 #include <linux/pci.h>
57 #include <linux/pci_regs.h>
58 #include <linux/msi.h>
59 #include <linux/ethtool.h>
60 #include <linux/log2.h>
61 #include <linux/if_vlan.h>
62 #include <linux/random.h>
63
64 #include <linux/ktime.h>
65
66 #include <net/pkt_cls.h>
67 #include <net/vxlan.h>
68
69 #include "nfp_net_ctrl.h"
70 #include "nfp_net.h"
71
72 /**
73 * nfp_net_get_fw_version() - Read and parse the FW version
74 * @fw_ver: Output fw_version structure to read to
75 * @ctrl_bar: Mapped address of the control BAR
76 */
77 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
78 void __iomem *ctrl_bar)
79 {
80 u32 reg;
81
82 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
83 put_unaligned_le32(reg, fw_ver);
84 }
85
86 static dma_addr_t
87 nfp_net_dma_map_rx(struct nfp_net *nn, void *frag, unsigned int bufsz,
88 int direction)
89 {
90 return dma_map_single(&nn->pdev->dev, frag + NFP_NET_RX_BUF_HEADROOM,
91 bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
92 }
93
94 static void
95 nfp_net_dma_unmap_rx(struct nfp_net *nn, dma_addr_t dma_addr,
96 unsigned int bufsz, int direction)
97 {
98 dma_unmap_single(&nn->pdev->dev, dma_addr,
99 bufsz - NFP_NET_RX_BUF_NON_DATA, direction);
100 }
101
102 /* Firmware reconfig
103 *
104 * Firmware reconfig may take a while so we have two versions of it -
105 * synchronous and asynchronous (posted). All synchronous callers are holding
106 * RTNL so we don't have to worry about serializing them.
107 */
108 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
109 {
110 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
111 /* ensure update is written before pinging HW */
112 nn_pci_flush(nn);
113 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
114 }
115
116 /* Pass 0 as update to run posted reconfigs. */
117 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
118 {
119 update |= nn->reconfig_posted;
120 nn->reconfig_posted = 0;
121
122 nfp_net_reconfig_start(nn, update);
123
124 nn->reconfig_timer_active = true;
125 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
126 }
127
128 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
129 {
130 u32 reg;
131
132 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
133 if (reg == 0)
134 return true;
135 if (reg & NFP_NET_CFG_UPDATE_ERR) {
136 nn_err(nn, "Reconfig error: 0x%08x\n", reg);
137 return true;
138 } else if (last_check) {
139 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
140 return true;
141 }
142
143 return false;
144 }
145
146 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
147 {
148 bool timed_out = false;
149
150 /* Poll update field, waiting for NFP to ack the config */
151 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
152 msleep(1);
153 timed_out = time_is_before_eq_jiffies(deadline);
154 }
155
156 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
157 return -EIO;
158
159 return timed_out ? -EIO : 0;
160 }
161
162 static void nfp_net_reconfig_timer(unsigned long data)
163 {
164 struct nfp_net *nn = (void *)data;
165
166 spin_lock_bh(&nn->reconfig_lock);
167
168 nn->reconfig_timer_active = false;
169
170 /* If sync caller is present it will take over from us */
171 if (nn->reconfig_sync_present)
172 goto done;
173
174 /* Read reconfig status and report errors */
175 nfp_net_reconfig_check_done(nn, true);
176
177 if (nn->reconfig_posted)
178 nfp_net_reconfig_start_async(nn, 0);
179 done:
180 spin_unlock_bh(&nn->reconfig_lock);
181 }
182
183 /**
184 * nfp_net_reconfig_post() - Post async reconfig request
185 * @nn: NFP Net device to reconfigure
186 * @update: The value for the update field in the BAR config
187 *
188 * Record FW reconfiguration request. Reconfiguration will be kicked off
189 * whenever reconfiguration machinery is idle. Multiple requests can be
190 * merged together!
191 */
192 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
193 {
194 spin_lock_bh(&nn->reconfig_lock);
195
196 /* Sync caller will kick off async reconf when it's done, just post */
197 if (nn->reconfig_sync_present) {
198 nn->reconfig_posted |= update;
199 goto done;
200 }
201
202 /* Opportunistically check if the previous command is done */
203 if (!nn->reconfig_timer_active ||
204 nfp_net_reconfig_check_done(nn, false))
205 nfp_net_reconfig_start_async(nn, update);
206 else
207 nn->reconfig_posted |= update;
208 done:
209 spin_unlock_bh(&nn->reconfig_lock);
210 }
211
212 /**
213 * nfp_net_reconfig() - Reconfigure the firmware
214 * @nn: NFP Net device to reconfigure
215 * @update: The value for the update field in the BAR config
216 *
217 * Write the update word to the BAR and ping the reconfig queue. The
218 * poll until the firmware has acknowledged the update by zeroing the
219 * update word.
220 *
221 * Return: Negative errno on error, 0 on success
222 */
223 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
224 {
225 bool cancelled_timer = false;
226 u32 pre_posted_requests;
227 int ret;
228
229 spin_lock_bh(&nn->reconfig_lock);
230
231 nn->reconfig_sync_present = true;
232
233 if (nn->reconfig_timer_active) {
234 del_timer(&nn->reconfig_timer);
235 nn->reconfig_timer_active = false;
236 cancelled_timer = true;
237 }
238 pre_posted_requests = nn->reconfig_posted;
239 nn->reconfig_posted = 0;
240
241 spin_unlock_bh(&nn->reconfig_lock);
242
243 if (cancelled_timer)
244 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
245
246 /* Run the posted reconfigs which were issued before we started */
247 if (pre_posted_requests) {
248 nfp_net_reconfig_start(nn, pre_posted_requests);
249 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
250 }
251
252 nfp_net_reconfig_start(nn, update);
253 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
254
255 spin_lock_bh(&nn->reconfig_lock);
256
257 if (nn->reconfig_posted)
258 nfp_net_reconfig_start_async(nn, 0);
259
260 nn->reconfig_sync_present = false;
261
262 spin_unlock_bh(&nn->reconfig_lock);
263
264 return ret;
265 }
266
267 /* Interrupt configuration and handling
268 */
269
270 /**
271 * nfp_net_irq_unmask() - Unmask automasked interrupt
272 * @nn: NFP Network structure
273 * @entry_nr: MSI-X table entry
274 *
275 * Clear the ICR for the IRQ entry.
276 */
277 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
278 {
279 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
280 nn_pci_flush(nn);
281 }
282
283 /**
284 * nfp_net_irqs_alloc() - allocates MSI-X irqs
285 * @pdev: PCI device structure
286 * @irq_entries: Array to be initialized and used to hold the irq entries
287 * @min_irqs: Minimal acceptable number of interrupts
288 * @wanted_irqs: Target number of interrupts to allocate
289 *
290 * Return: Number of irqs obtained or 0 on error.
291 */
292 unsigned int
293 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
294 unsigned int min_irqs, unsigned int wanted_irqs)
295 {
296 unsigned int i;
297 int got_irqs;
298
299 for (i = 0; i < wanted_irqs; i++)
300 irq_entries[i].entry = i;
301
302 got_irqs = pci_enable_msix_range(pdev, irq_entries,
303 min_irqs, wanted_irqs);
304 if (got_irqs < 0) {
305 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
306 min_irqs, wanted_irqs, got_irqs);
307 return 0;
308 }
309
310 if (got_irqs < wanted_irqs)
311 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
312 wanted_irqs, got_irqs);
313
314 return got_irqs;
315 }
316
317 /**
318 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
319 * @nn: NFP Network structure
320 * @irq_entries: Table of allocated interrupts
321 * @n: Size of @irq_entries (number of entries to grab)
322 *
323 * After interrupts are allocated with nfp_net_irqs_alloc() this function
324 * should be called to assign them to a specific netdev (port).
325 */
326 void
327 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
328 unsigned int n)
329 {
330 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
331 nn->num_r_vecs = nn->max_r_vecs;
332
333 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
334
335 if (nn->num_rx_rings > nn->num_r_vecs ||
336 nn->num_tx_rings > nn->num_r_vecs)
337 nn_warn(nn, "More rings (%d,%d) than vectors (%d).\n",
338 nn->num_rx_rings, nn->num_tx_rings, nn->num_r_vecs);
339
340 nn->num_rx_rings = min(nn->num_r_vecs, nn->num_rx_rings);
341 nn->num_tx_rings = min(nn->num_r_vecs, nn->num_tx_rings);
342 nn->num_stack_tx_rings = nn->num_tx_rings;
343 }
344
345 /**
346 * nfp_net_irqs_disable() - Disable interrupts
347 * @pdev: PCI device structure
348 *
349 * Undoes what @nfp_net_irqs_alloc() does.
350 */
351 void nfp_net_irqs_disable(struct pci_dev *pdev)
352 {
353 pci_disable_msix(pdev);
354 }
355
356 /**
357 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
358 * @irq: Interrupt
359 * @data: Opaque data structure
360 *
361 * Return: Indicate if the interrupt has been handled.
362 */
363 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
364 {
365 struct nfp_net_r_vector *r_vec = data;
366
367 napi_schedule_irqoff(&r_vec->napi);
368
369 /* The FW auto-masks any interrupt, either via the MASK bit in
370 * the MSI-X table or via the per entry ICR field. So there
371 * is no need to disable interrupts here.
372 */
373 return IRQ_HANDLED;
374 }
375
376 /**
377 * nfp_net_read_link_status() - Reread link status from control BAR
378 * @nn: NFP Network structure
379 */
380 static void nfp_net_read_link_status(struct nfp_net *nn)
381 {
382 unsigned long flags;
383 bool link_up;
384 u32 sts;
385
386 spin_lock_irqsave(&nn->link_status_lock, flags);
387
388 sts = nn_readl(nn, NFP_NET_CFG_STS);
389 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
390
391 if (nn->link_up == link_up)
392 goto out;
393
394 nn->link_up = link_up;
395
396 if (nn->link_up) {
397 netif_carrier_on(nn->netdev);
398 netdev_info(nn->netdev, "NIC Link is Up\n");
399 } else {
400 netif_carrier_off(nn->netdev);
401 netdev_info(nn->netdev, "NIC Link is Down\n");
402 }
403 out:
404 spin_unlock_irqrestore(&nn->link_status_lock, flags);
405 }
406
407 /**
408 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
409 * @irq: Interrupt
410 * @data: Opaque data structure
411 *
412 * Return: Indicate if the interrupt has been handled.
413 */
414 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
415 {
416 struct nfp_net *nn = data;
417 struct msix_entry *entry;
418
419 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
420
421 nfp_net_read_link_status(nn);
422
423 nfp_net_irq_unmask(nn, entry->entry);
424
425 return IRQ_HANDLED;
426 }
427
428 /**
429 * nfp_net_irq_exn() - Interrupt service routine for exceptions
430 * @irq: Interrupt
431 * @data: Opaque data structure
432 *
433 * Return: Indicate if the interrupt has been handled.
434 */
435 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
436 {
437 struct nfp_net *nn = data;
438
439 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
440 /* XXX TO BE IMPLEMENTED */
441 return IRQ_HANDLED;
442 }
443
444 /**
445 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
446 * @tx_ring: TX ring structure
447 * @r_vec: IRQ vector servicing this ring
448 * @idx: Ring index
449 */
450 static void
451 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
452 struct nfp_net_r_vector *r_vec, unsigned int idx)
453 {
454 struct nfp_net *nn = r_vec->nfp_net;
455
456 tx_ring->idx = idx;
457 tx_ring->r_vec = r_vec;
458
459 tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
460 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
461 }
462
463 /**
464 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
465 * @rx_ring: RX ring structure
466 * @r_vec: IRQ vector servicing this ring
467 * @idx: Ring index
468 */
469 static void
470 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
471 struct nfp_net_r_vector *r_vec, unsigned int idx)
472 {
473 struct nfp_net *nn = r_vec->nfp_net;
474
475 rx_ring->idx = idx;
476 rx_ring->r_vec = r_vec;
477
478 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
479 rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1);
480
481 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
482 rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx);
483 }
484
485 /**
486 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
487 * @netdev: netdev structure
488 */
489 static void nfp_net_vecs_init(struct net_device *netdev)
490 {
491 struct nfp_net *nn = netdev_priv(netdev);
492 struct nfp_net_r_vector *r_vec;
493 int r;
494
495 nn->lsc_handler = nfp_net_irq_lsc;
496 nn->exn_handler = nfp_net_irq_exn;
497
498 for (r = 0; r < nn->max_r_vecs; r++) {
499 struct msix_entry *entry;
500
501 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
502
503 r_vec = &nn->r_vecs[r];
504 r_vec->nfp_net = nn;
505 r_vec->handler = nfp_net_irq_rxtx;
506 r_vec->irq_entry = entry->entry;
507 r_vec->irq_vector = entry->vector;
508
509 cpumask_set_cpu(r, &r_vec->affinity_mask);
510 }
511 }
512
513 /**
514 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
515 * @nn: NFP Network structure
516 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
517 * @format: printf-style format to construct the interrupt name
518 * @name: Pointer to allocated space for interrupt name
519 * @name_sz: Size of space for interrupt name
520 * @vector_idx: Index of MSI-X vector used for this interrupt
521 * @handler: IRQ handler to register for this interrupt
522 */
523 static int
524 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
525 const char *format, char *name, size_t name_sz,
526 unsigned int vector_idx, irq_handler_t handler)
527 {
528 struct msix_entry *entry;
529 int err;
530
531 entry = &nn->irq_entries[vector_idx];
532
533 snprintf(name, name_sz, format, netdev_name(nn->netdev));
534 err = request_irq(entry->vector, handler, 0, name, nn);
535 if (err) {
536 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
537 entry->vector, err);
538 return err;
539 }
540 nn_writeb(nn, ctrl_offset, entry->entry);
541
542 return 0;
543 }
544
545 /**
546 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
547 * @nn: NFP Network structure
548 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
549 * @vector_idx: Index of MSI-X vector used for this interrupt
550 */
551 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
552 unsigned int vector_idx)
553 {
554 nn_writeb(nn, ctrl_offset, 0xff);
555 free_irq(nn->irq_entries[vector_idx].vector, nn);
556 }
557
558 /* Transmit
559 *
560 * One queue controller peripheral queue is used for transmit. The
561 * driver en-queues packets for transmit by advancing the write
562 * pointer. The device indicates that packets have transmitted by
563 * advancing the read pointer. The driver maintains a local copy of
564 * the read and write pointer in @struct nfp_net_tx_ring. The driver
565 * keeps @wr_p in sync with the queue controller write pointer and can
566 * determine how many packets have been transmitted by comparing its
567 * copy of the read pointer @rd_p with the read pointer maintained by
568 * the queue controller peripheral.
569 */
570
571 /**
572 * nfp_net_tx_full() - Check if the TX ring is full
573 * @tx_ring: TX ring to check
574 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
575 *
576 * This function checks, based on the *host copy* of read/write
577 * pointer if a given TX ring is full. The real TX queue may have
578 * some newly made available slots.
579 *
580 * Return: True if the ring is full.
581 */
582 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
583 {
584 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
585 }
586
587 /* Wrappers for deciding when to stop and restart TX queues */
588 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
589 {
590 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
591 }
592
593 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
594 {
595 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
596 }
597
598 /**
599 * nfp_net_tx_ring_stop() - stop tx ring
600 * @nd_q: netdev queue
601 * @tx_ring: driver tx queue structure
602 *
603 * Safely stop TX ring. Remember that while we are running .start_xmit()
604 * someone else may be cleaning the TX ring completions so we need to be
605 * extra careful here.
606 */
607 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
608 struct nfp_net_tx_ring *tx_ring)
609 {
610 netif_tx_stop_queue(nd_q);
611
612 /* We can race with the TX completion out of NAPI so recheck */
613 smp_mb();
614 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
615 netif_tx_start_queue(nd_q);
616 }
617
618 /**
619 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
620 * @nn: NFP Net device
621 * @r_vec: per-ring structure
622 * @txbuf: Pointer to driver soft TX descriptor
623 * @txd: Pointer to HW TX descriptor
624 * @skb: Pointer to SKB
625 *
626 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
627 * Return error on packet header greater than maximum supported LSO header size.
628 */
629 static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
630 struct nfp_net_tx_buf *txbuf,
631 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
632 {
633 u32 hdrlen;
634 u16 mss;
635
636 if (!skb_is_gso(skb))
637 return;
638
639 if (!skb->encapsulation)
640 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
641 else
642 hdrlen = skb_inner_transport_header(skb) - skb->data +
643 inner_tcp_hdrlen(skb);
644
645 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
646 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
647
648 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
649 txd->l4_offset = hdrlen;
650 txd->mss = cpu_to_le16(mss);
651 txd->flags |= PCIE_DESC_TX_LSO;
652
653 u64_stats_update_begin(&r_vec->tx_sync);
654 r_vec->tx_lso++;
655 u64_stats_update_end(&r_vec->tx_sync);
656 }
657
658 /**
659 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
660 * @nn: NFP Net device
661 * @r_vec: per-ring structure
662 * @txbuf: Pointer to driver soft TX descriptor
663 * @txd: Pointer to TX descriptor
664 * @skb: Pointer to SKB
665 *
666 * This function sets the TX checksum flags in the TX descriptor based
667 * on the configuration and the protocol of the packet to be transmitted.
668 */
669 static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
670 struct nfp_net_tx_buf *txbuf,
671 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
672 {
673 struct ipv6hdr *ipv6h;
674 struct iphdr *iph;
675 u8 l4_hdr;
676
677 if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
678 return;
679
680 if (skb->ip_summed != CHECKSUM_PARTIAL)
681 return;
682
683 txd->flags |= PCIE_DESC_TX_CSUM;
684 if (skb->encapsulation)
685 txd->flags |= PCIE_DESC_TX_ENCAP;
686
687 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
688 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
689
690 if (iph->version == 4) {
691 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
692 l4_hdr = iph->protocol;
693 } else if (ipv6h->version == 6) {
694 l4_hdr = ipv6h->nexthdr;
695 } else {
696 nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n",
697 iph->version);
698 return;
699 }
700
701 switch (l4_hdr) {
702 case IPPROTO_TCP:
703 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
704 break;
705 case IPPROTO_UDP:
706 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
707 break;
708 default:
709 nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n",
710 l4_hdr);
711 return;
712 }
713
714 u64_stats_update_begin(&r_vec->tx_sync);
715 if (skb->encapsulation)
716 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
717 else
718 r_vec->hw_csum_tx += txbuf->pkt_cnt;
719 u64_stats_update_end(&r_vec->tx_sync);
720 }
721
722 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
723 {
724 wmb();
725 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
726 tx_ring->wr_ptr_add = 0;
727 }
728
729 /**
730 * nfp_net_tx() - Main transmit entry point
731 * @skb: SKB to transmit
732 * @netdev: netdev structure
733 *
734 * Return: NETDEV_TX_OK on success.
735 */
736 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
737 {
738 struct nfp_net *nn = netdev_priv(netdev);
739 const struct skb_frag_struct *frag;
740 struct nfp_net_r_vector *r_vec;
741 struct nfp_net_tx_desc *txd, txdg;
742 struct nfp_net_tx_buf *txbuf;
743 struct nfp_net_tx_ring *tx_ring;
744 struct netdev_queue *nd_q;
745 dma_addr_t dma_addr;
746 unsigned int fsize;
747 int f, nr_frags;
748 int wr_idx;
749 u16 qidx;
750
751 qidx = skb_get_queue_mapping(skb);
752 tx_ring = &nn->tx_rings[qidx];
753 r_vec = tx_ring->r_vec;
754 nd_q = netdev_get_tx_queue(nn->netdev, qidx);
755
756 nr_frags = skb_shinfo(skb)->nr_frags;
757
758 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
759 nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n",
760 qidx, tx_ring->wr_p, tx_ring->rd_p);
761 netif_tx_stop_queue(nd_q);
762 u64_stats_update_begin(&r_vec->tx_sync);
763 r_vec->tx_busy++;
764 u64_stats_update_end(&r_vec->tx_sync);
765 return NETDEV_TX_BUSY;
766 }
767
768 /* Start with the head skbuf */
769 dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb),
770 DMA_TO_DEVICE);
771 if (dma_mapping_error(&nn->pdev->dev, dma_addr))
772 goto err_free;
773
774 wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
775
776 /* Stash the soft descriptor of the head then initialize it */
777 txbuf = &tx_ring->txbufs[wr_idx];
778 txbuf->skb = skb;
779 txbuf->dma_addr = dma_addr;
780 txbuf->fidx = -1;
781 txbuf->pkt_cnt = 1;
782 txbuf->real_len = skb->len;
783
784 /* Build TX descriptor */
785 txd = &tx_ring->txds[wr_idx];
786 txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0;
787 txd->dma_len = cpu_to_le16(skb_headlen(skb));
788 nfp_desc_set_dma_addr(txd, dma_addr);
789 txd->data_len = cpu_to_le16(skb->len);
790
791 txd->flags = 0;
792 txd->mss = 0;
793 txd->l4_offset = 0;
794
795 nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb);
796
797 nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb);
798
799 if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
800 txd->flags |= PCIE_DESC_TX_VLAN;
801 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
802 }
803
804 /* Gather DMA */
805 if (nr_frags > 0) {
806 /* all descs must match except for in addr, length and eop */
807 txdg = *txd;
808
809 for (f = 0; f < nr_frags; f++) {
810 frag = &skb_shinfo(skb)->frags[f];
811 fsize = skb_frag_size(frag);
812
813 dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0,
814 fsize, DMA_TO_DEVICE);
815 if (dma_mapping_error(&nn->pdev->dev, dma_addr))
816 goto err_unmap;
817
818 wr_idx = (wr_idx + 1) & (tx_ring->cnt - 1);
819 tx_ring->txbufs[wr_idx].skb = skb;
820 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
821 tx_ring->txbufs[wr_idx].fidx = f;
822
823 txd = &tx_ring->txds[wr_idx];
824 *txd = txdg;
825 txd->dma_len = cpu_to_le16(fsize);
826 nfp_desc_set_dma_addr(txd, dma_addr);
827 txd->offset_eop =
828 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
829 }
830
831 u64_stats_update_begin(&r_vec->tx_sync);
832 r_vec->tx_gather++;
833 u64_stats_update_end(&r_vec->tx_sync);
834 }
835
836 netdev_tx_sent_queue(nd_q, txbuf->real_len);
837
838 tx_ring->wr_p += nr_frags + 1;
839 if (nfp_net_tx_ring_should_stop(tx_ring))
840 nfp_net_tx_ring_stop(nd_q, tx_ring);
841
842 tx_ring->wr_ptr_add += nr_frags + 1;
843 if (!skb->xmit_more || netif_xmit_stopped(nd_q))
844 nfp_net_tx_xmit_more_flush(tx_ring);
845
846 skb_tx_timestamp(skb);
847
848 return NETDEV_TX_OK;
849
850 err_unmap:
851 --f;
852 while (f >= 0) {
853 frag = &skb_shinfo(skb)->frags[f];
854 dma_unmap_page(&nn->pdev->dev,
855 tx_ring->txbufs[wr_idx].dma_addr,
856 skb_frag_size(frag), DMA_TO_DEVICE);
857 tx_ring->txbufs[wr_idx].skb = NULL;
858 tx_ring->txbufs[wr_idx].dma_addr = 0;
859 tx_ring->txbufs[wr_idx].fidx = -2;
860 wr_idx = wr_idx - 1;
861 if (wr_idx < 0)
862 wr_idx += tx_ring->cnt;
863 }
864 dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr,
865 skb_headlen(skb), DMA_TO_DEVICE);
866 tx_ring->txbufs[wr_idx].skb = NULL;
867 tx_ring->txbufs[wr_idx].dma_addr = 0;
868 tx_ring->txbufs[wr_idx].fidx = -2;
869 err_free:
870 nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n");
871 u64_stats_update_begin(&r_vec->tx_sync);
872 r_vec->tx_errors++;
873 u64_stats_update_end(&r_vec->tx_sync);
874 dev_kfree_skb_any(skb);
875 return NETDEV_TX_OK;
876 }
877
878 /**
879 * nfp_net_tx_complete() - Handled completed TX packets
880 * @tx_ring: TX ring structure
881 *
882 * Return: Number of completed TX descriptors
883 */
884 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
885 {
886 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
887 struct nfp_net *nn = r_vec->nfp_net;
888 const struct skb_frag_struct *frag;
889 struct netdev_queue *nd_q;
890 u32 done_pkts = 0, done_bytes = 0;
891 struct sk_buff *skb;
892 int todo, nr_frags;
893 u32 qcp_rd_p;
894 int fidx;
895 int idx;
896
897 /* Work out how many descriptors have been transmitted */
898 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
899
900 if (qcp_rd_p == tx_ring->qcp_rd_p)
901 return;
902
903 if (qcp_rd_p > tx_ring->qcp_rd_p)
904 todo = qcp_rd_p - tx_ring->qcp_rd_p;
905 else
906 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;
907
908 while (todo--) {
909 idx = tx_ring->rd_p & (tx_ring->cnt - 1);
910 tx_ring->rd_p++;
911
912 skb = tx_ring->txbufs[idx].skb;
913 if (!skb)
914 continue;
915
916 nr_frags = skb_shinfo(skb)->nr_frags;
917 fidx = tx_ring->txbufs[idx].fidx;
918
919 if (fidx == -1) {
920 /* unmap head */
921 dma_unmap_single(&nn->pdev->dev,
922 tx_ring->txbufs[idx].dma_addr,
923 skb_headlen(skb), DMA_TO_DEVICE);
924
925 done_pkts += tx_ring->txbufs[idx].pkt_cnt;
926 done_bytes += tx_ring->txbufs[idx].real_len;
927 } else {
928 /* unmap fragment */
929 frag = &skb_shinfo(skb)->frags[fidx];
930 dma_unmap_page(&nn->pdev->dev,
931 tx_ring->txbufs[idx].dma_addr,
932 skb_frag_size(frag), DMA_TO_DEVICE);
933 }
934
935 /* check for last gather fragment */
936 if (fidx == nr_frags - 1)
937 dev_kfree_skb_any(skb);
938
939 tx_ring->txbufs[idx].dma_addr = 0;
940 tx_ring->txbufs[idx].skb = NULL;
941 tx_ring->txbufs[idx].fidx = -2;
942 }
943
944 tx_ring->qcp_rd_p = qcp_rd_p;
945
946 u64_stats_update_begin(&r_vec->tx_sync);
947 r_vec->tx_bytes += done_bytes;
948 r_vec->tx_pkts += done_pkts;
949 u64_stats_update_end(&r_vec->tx_sync);
950
951 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
952 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
953 if (nfp_net_tx_ring_should_wake(tx_ring)) {
954 /* Make sure TX thread will see updated tx_ring->rd_p */
955 smp_mb();
956
957 if (unlikely(netif_tx_queue_stopped(nd_q)))
958 netif_tx_wake_queue(nd_q);
959 }
960
961 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
962 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
963 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
964 }
965
966 static void nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
967 {
968 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
969 struct nfp_net *nn = r_vec->nfp_net;
970 u32 done_pkts = 0, done_bytes = 0;
971 int idx, todo;
972 u32 qcp_rd_p;
973
974 /* Work out how many descriptors have been transmitted */
975 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
976
977 if (qcp_rd_p == tx_ring->qcp_rd_p)
978 return;
979
980 if (qcp_rd_p > tx_ring->qcp_rd_p)
981 todo = qcp_rd_p - tx_ring->qcp_rd_p;
982 else
983 todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p;
984
985 while (todo--) {
986 idx = tx_ring->rd_p & (tx_ring->cnt - 1);
987 tx_ring->rd_p++;
988
989 if (!tx_ring->txbufs[idx].frag)
990 continue;
991
992 nfp_net_dma_unmap_rx(nn, tx_ring->txbufs[idx].dma_addr,
993 nn->fl_bufsz, DMA_BIDIRECTIONAL);
994 __free_page(virt_to_page(tx_ring->txbufs[idx].frag));
995
996 done_pkts++;
997 done_bytes += tx_ring->txbufs[idx].real_len;
998
999 tx_ring->txbufs[idx].dma_addr = 0;
1000 tx_ring->txbufs[idx].frag = NULL;
1001 tx_ring->txbufs[idx].fidx = -2;
1002 }
1003
1004 tx_ring->qcp_rd_p = qcp_rd_p;
1005
1006 u64_stats_update_begin(&r_vec->tx_sync);
1007 r_vec->tx_bytes += done_bytes;
1008 r_vec->tx_pkts += done_pkts;
1009 u64_stats_update_end(&r_vec->tx_sync);
1010
1011 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1012 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1013 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1014 }
1015
1016 /**
1017 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1018 * @nn: NFP Net device
1019 * @tx_ring: TX ring structure
1020 *
1021 * Assumes that the device is stopped
1022 */
1023 static void
1024 nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring)
1025 {
1026 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1027 const struct skb_frag_struct *frag;
1028 struct pci_dev *pdev = nn->pdev;
1029 struct netdev_queue *nd_q;
1030
1031 while (tx_ring->rd_p != tx_ring->wr_p) {
1032 struct nfp_net_tx_buf *tx_buf;
1033 int idx;
1034
1035 idx = tx_ring->rd_p & (tx_ring->cnt - 1);
1036 tx_buf = &tx_ring->txbufs[idx];
1037
1038 if (tx_ring == r_vec->xdp_ring) {
1039 nfp_net_dma_unmap_rx(nn, tx_buf->dma_addr,
1040 nn->fl_bufsz, DMA_BIDIRECTIONAL);
1041 __free_page(virt_to_page(tx_ring->txbufs[idx].frag));
1042 } else {
1043 struct sk_buff *skb = tx_ring->txbufs[idx].skb;
1044 int nr_frags = skb_shinfo(skb)->nr_frags;
1045
1046 if (tx_buf->fidx == -1) {
1047 /* unmap head */
1048 dma_unmap_single(&pdev->dev, tx_buf->dma_addr,
1049 skb_headlen(skb),
1050 DMA_TO_DEVICE);
1051 } else {
1052 /* unmap fragment */
1053 frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1054 dma_unmap_page(&pdev->dev, tx_buf->dma_addr,
1055 skb_frag_size(frag),
1056 DMA_TO_DEVICE);
1057 }
1058
1059 /* check for last gather fragment */
1060 if (tx_buf->fidx == nr_frags - 1)
1061 dev_kfree_skb_any(skb);
1062 }
1063
1064 tx_buf->dma_addr = 0;
1065 tx_buf->skb = NULL;
1066 tx_buf->fidx = -2;
1067
1068 tx_ring->qcp_rd_p++;
1069 tx_ring->rd_p++;
1070 }
1071
1072 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1073 tx_ring->wr_p = 0;
1074 tx_ring->rd_p = 0;
1075 tx_ring->qcp_rd_p = 0;
1076 tx_ring->wr_ptr_add = 0;
1077
1078 if (tx_ring == r_vec->xdp_ring)
1079 return;
1080
1081 nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx);
1082 netdev_tx_reset_queue(nd_q);
1083 }
1084
1085 static void nfp_net_tx_timeout(struct net_device *netdev)
1086 {
1087 struct nfp_net *nn = netdev_priv(netdev);
1088 int i;
1089
1090 for (i = 0; i < nn->netdev->real_num_tx_queues; i++) {
1091 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1092 continue;
1093 nn_warn(nn, "TX timeout on ring: %d\n", i);
1094 }
1095 nn_warn(nn, "TX watchdog timeout\n");
1096 }
1097
1098 /* Receive processing
1099 */
1100 static unsigned int
1101 nfp_net_calc_fl_bufsz(struct nfp_net *nn, unsigned int mtu)
1102 {
1103 unsigned int fl_bufsz;
1104
1105 fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1106 if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1107 fl_bufsz += NFP_NET_MAX_PREPEND;
1108 else
1109 fl_bufsz += nn->rx_offset;
1110 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + mtu;
1111
1112 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1113 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1114
1115 return fl_bufsz;
1116 }
1117
1118 static void
1119 nfp_net_free_frag(void *frag, bool xdp)
1120 {
1121 if (!xdp)
1122 skb_free_frag(frag);
1123 else
1124 __free_page(virt_to_page(frag));
1125 }
1126
1127 /**
1128 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1129 * @rx_ring: RX ring structure of the skb
1130 * @dma_addr: Pointer to storage for DMA address (output param)
1131 * @fl_bufsz: size of freelist buffers
1132 * @xdp: Whether XDP is enabled
1133 *
1134 * This function will allcate a new page frag, map it for DMA.
1135 *
1136 * Return: allocated page frag or NULL on failure.
1137 */
1138 static void *
1139 nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr,
1140 unsigned int fl_bufsz, bool xdp)
1141 {
1142 struct nfp_net *nn = rx_ring->r_vec->nfp_net;
1143 int direction;
1144 void *frag;
1145
1146 if (!xdp)
1147 frag = netdev_alloc_frag(fl_bufsz);
1148 else
1149 frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1150 if (!frag) {
1151 nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
1152 return NULL;
1153 }
1154
1155 direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1156
1157 *dma_addr = nfp_net_dma_map_rx(nn, frag, fl_bufsz, direction);
1158 if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
1159 nfp_net_free_frag(frag, xdp);
1160 nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
1161 return NULL;
1162 }
1163
1164 return frag;
1165 }
1166
1167 static void *
1168 nfp_net_napi_alloc_one(struct nfp_net *nn, int direction, dma_addr_t *dma_addr)
1169 {
1170 void *frag;
1171
1172 if (!nn->xdp_prog)
1173 frag = napi_alloc_frag(nn->fl_bufsz);
1174 else
1175 frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1176 if (!frag) {
1177 nn_warn_ratelimit(nn, "Failed to alloc receive page frag\n");
1178 return NULL;
1179 }
1180
1181 *dma_addr = nfp_net_dma_map_rx(nn, frag, nn->fl_bufsz, direction);
1182 if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) {
1183 nfp_net_free_frag(frag, nn->xdp_prog);
1184 nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n");
1185 return NULL;
1186 }
1187
1188 return frag;
1189 }
1190
1191 /**
1192 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1193 * @rx_ring: RX ring structure
1194 * @frag: page fragment buffer
1195 * @dma_addr: DMA address of skb mapping
1196 */
1197 static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring,
1198 void *frag, dma_addr_t dma_addr)
1199 {
1200 unsigned int wr_idx;
1201
1202 wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1203
1204 /* Stash SKB and DMA address away */
1205 rx_ring->rxbufs[wr_idx].frag = frag;
1206 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1207
1208 /* Fill freelist descriptor */
1209 rx_ring->rxds[wr_idx].fld.reserved = 0;
1210 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1211 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr);
1212
1213 rx_ring->wr_p++;
1214 rx_ring->wr_ptr_add++;
1215 if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) {
1216 /* Update write pointer of the freelist queue. Make
1217 * sure all writes are flushed before telling the hardware.
1218 */
1219 wmb();
1220 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add);
1221 rx_ring->wr_ptr_add = 0;
1222 }
1223 }
1224
1225 /**
1226 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1227 * @rx_ring: RX ring structure
1228 *
1229 * Warning: Do *not* call if ring buffers were never put on the FW freelist
1230 * (i.e. device was not enabled)!
1231 */
1232 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1233 {
1234 unsigned int wr_idx, last_idx;
1235
1236 /* Move the empty entry to the end of the list */
1237 wr_idx = rx_ring->wr_p & (rx_ring->cnt - 1);
1238 last_idx = rx_ring->cnt - 1;
1239 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1240 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1241 rx_ring->rxbufs[last_idx].dma_addr = 0;
1242 rx_ring->rxbufs[last_idx].frag = NULL;
1243
1244 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1245 rx_ring->wr_p = 0;
1246 rx_ring->rd_p = 0;
1247 rx_ring->wr_ptr_add = 0;
1248 }
1249
1250 /**
1251 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1252 * @nn: NFP Net device
1253 * @rx_ring: RX ring to remove buffers from
1254 * @xdp: Whether XDP is enabled
1255 *
1256 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1257 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1258 * to restore required ring geometry.
1259 */
1260 static void
1261 nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
1262 bool xdp)
1263 {
1264 int direction = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1265 unsigned int i;
1266
1267 for (i = 0; i < rx_ring->cnt - 1; i++) {
1268 /* NULL skb can only happen when initial filling of the ring
1269 * fails to allocate enough buffers and calls here to free
1270 * already allocated ones.
1271 */
1272 if (!rx_ring->rxbufs[i].frag)
1273 continue;
1274
1275 nfp_net_dma_unmap_rx(nn, rx_ring->rxbufs[i].dma_addr,
1276 rx_ring->bufsz, direction);
1277 nfp_net_free_frag(rx_ring->rxbufs[i].frag, xdp);
1278 rx_ring->rxbufs[i].dma_addr = 0;
1279 rx_ring->rxbufs[i].frag = NULL;
1280 }
1281 }
1282
1283 /**
1284 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1285 * @nn: NFP Net device
1286 * @rx_ring: RX ring to remove buffers from
1287 * @xdp: Whether XDP is enabled
1288 */
1289 static int
1290 nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
1291 bool xdp)
1292 {
1293 struct nfp_net_rx_buf *rxbufs;
1294 unsigned int i;
1295
1296 rxbufs = rx_ring->rxbufs;
1297
1298 for (i = 0; i < rx_ring->cnt - 1; i++) {
1299 rxbufs[i].frag =
1300 nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr,
1301 rx_ring->bufsz, xdp);
1302 if (!rxbufs[i].frag) {
1303 nfp_net_rx_ring_bufs_free(nn, rx_ring, xdp);
1304 return -ENOMEM;
1305 }
1306 }
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1313 * @rx_ring: RX ring to fill
1314 */
1315 static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring)
1316 {
1317 unsigned int i;
1318
1319 for (i = 0; i < rx_ring->cnt - 1; i++)
1320 nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].frag,
1321 rx_ring->rxbufs[i].dma_addr);
1322 }
1323
1324 /**
1325 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1326 * @flags: RX descriptor flags field in CPU byte order
1327 */
1328 static int nfp_net_rx_csum_has_errors(u16 flags)
1329 {
1330 u16 csum_all_checked, csum_all_ok;
1331
1332 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1333 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1334
1335 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1336 }
1337
1338 /**
1339 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1340 * @nn: NFP Net device
1341 * @r_vec: per-ring structure
1342 * @rxd: Pointer to RX descriptor
1343 * @skb: Pointer to SKB
1344 */
1345 static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1346 struct nfp_net_rx_desc *rxd, struct sk_buff *skb)
1347 {
1348 skb_checksum_none_assert(skb);
1349
1350 if (!(nn->netdev->features & NETIF_F_RXCSUM))
1351 return;
1352
1353 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1354 u64_stats_update_begin(&r_vec->rx_sync);
1355 r_vec->hw_csum_rx_error++;
1356 u64_stats_update_end(&r_vec->rx_sync);
1357 return;
1358 }
1359
1360 /* Assume that the firmware will never report inner CSUM_OK unless outer
1361 * L4 headers were successfully parsed. FW will always report zero UDP
1362 * checksum as CSUM_OK.
1363 */
1364 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1365 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1366 __skb_incr_checksum_unnecessary(skb);
1367 u64_stats_update_begin(&r_vec->rx_sync);
1368 r_vec->hw_csum_rx_ok++;
1369 u64_stats_update_end(&r_vec->rx_sync);
1370 }
1371
1372 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1373 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1374 __skb_incr_checksum_unnecessary(skb);
1375 u64_stats_update_begin(&r_vec->rx_sync);
1376 r_vec->hw_csum_rx_inner_ok++;
1377 u64_stats_update_end(&r_vec->rx_sync);
1378 }
1379 }
1380
1381 static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb,
1382 unsigned int type, __be32 *hash)
1383 {
1384 if (!(netdev->features & NETIF_F_RXHASH))
1385 return;
1386
1387 switch (type) {
1388 case NFP_NET_RSS_IPV4:
1389 case NFP_NET_RSS_IPV6:
1390 case NFP_NET_RSS_IPV6_EX:
1391 skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3);
1392 break;
1393 default:
1394 skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4);
1395 break;
1396 }
1397 }
1398
1399 static void
1400 nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb,
1401 struct nfp_net_rx_desc *rxd)
1402 {
1403 struct nfp_net_rx_hash *rx_hash;
1404
1405 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1406 return;
1407
1408 rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash));
1409
1410 nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type),
1411 &rx_hash->hash);
1412 }
1413
1414 static void *
1415 nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb,
1416 int meta_len)
1417 {
1418 u8 *data = skb->data - meta_len;
1419 u32 meta_info;
1420
1421 meta_info = get_unaligned_be32(data);
1422 data += 4;
1423
1424 while (meta_info) {
1425 switch (meta_info & NFP_NET_META_FIELD_MASK) {
1426 case NFP_NET_META_HASH:
1427 meta_info >>= NFP_NET_META_FIELD_SIZE;
1428 nfp_net_set_hash(netdev, skb,
1429 meta_info & NFP_NET_META_FIELD_MASK,
1430 (__be32 *)data);
1431 data += 4;
1432 break;
1433 case NFP_NET_META_MARK:
1434 skb->mark = get_unaligned_be32(data);
1435 data += 4;
1436 break;
1437 default:
1438 return NULL;
1439 }
1440
1441 meta_info >>= NFP_NET_META_FIELD_SIZE;
1442 }
1443
1444 return data;
1445 }
1446
1447 static void
1448 nfp_net_rx_drop(struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring,
1449 struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb)
1450 {
1451 u64_stats_update_begin(&r_vec->rx_sync);
1452 r_vec->rx_drops++;
1453 u64_stats_update_end(&r_vec->rx_sync);
1454
1455 /* skb is build based on the frag, free_skb() would free the frag
1456 * so to be able to reuse it we need an extra ref.
1457 */
1458 if (skb && rxbuf && skb->head == rxbuf->frag)
1459 page_ref_inc(virt_to_head_page(rxbuf->frag));
1460 if (rxbuf)
1461 nfp_net_rx_give_one(rx_ring, rxbuf->frag, rxbuf->dma_addr);
1462 if (skb)
1463 dev_kfree_skb_any(skb);
1464 }
1465
1466 static bool
1467 nfp_net_tx_xdp_buf(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring,
1468 struct nfp_net_tx_ring *tx_ring,
1469 struct nfp_net_rx_buf *rxbuf, unsigned int pkt_off,
1470 unsigned int pkt_len)
1471 {
1472 struct nfp_net_tx_buf *txbuf;
1473 struct nfp_net_tx_desc *txd;
1474 dma_addr_t new_dma_addr;
1475 void *new_frag;
1476 int wr_idx;
1477
1478 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1479 nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1480 return false;
1481 }
1482
1483 new_frag = nfp_net_napi_alloc_one(nn, DMA_BIDIRECTIONAL, &new_dma_addr);
1484 if (unlikely(!new_frag)) {
1485 nfp_net_rx_drop(rx_ring->r_vec, rx_ring, rxbuf, NULL);
1486 return false;
1487 }
1488 nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);
1489
1490 wr_idx = tx_ring->wr_p & (tx_ring->cnt - 1);
1491
1492 /* Stash the soft descriptor of the head then initialize it */
1493 txbuf = &tx_ring->txbufs[wr_idx];
1494 txbuf->frag = rxbuf->frag;
1495 txbuf->dma_addr = rxbuf->dma_addr;
1496 txbuf->fidx = -1;
1497 txbuf->pkt_cnt = 1;
1498 txbuf->real_len = pkt_len;
1499
1500 dma_sync_single_for_device(&nn->pdev->dev, rxbuf->dma_addr + pkt_off,
1501 pkt_len, DMA_BIDIRECTIONAL);
1502
1503 /* Build TX descriptor */
1504 txd = &tx_ring->txds[wr_idx];
1505 txd->offset_eop = PCIE_DESC_TX_EOP;
1506 txd->dma_len = cpu_to_le16(pkt_len);
1507 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + pkt_off);
1508 txd->data_len = cpu_to_le16(pkt_len);
1509
1510 txd->flags = 0;
1511 txd->mss = 0;
1512 txd->l4_offset = 0;
1513
1514 tx_ring->wr_p++;
1515 tx_ring->wr_ptr_add++;
1516 return true;
1517 }
1518
1519 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, unsigned int len)
1520 {
1521 struct xdp_buff xdp;
1522
1523 xdp.data = data;
1524 xdp.data_end = data + len;
1525
1526 return bpf_prog_run_xdp(prog, &xdp);
1527 }
1528
1529 /**
1530 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1531 * @rx_ring: RX ring to receive from
1532 * @budget: NAPI budget
1533 *
1534 * Note, this function is separated out from the napi poll function to
1535 * more cleanly separate packet receive code from other bookkeeping
1536 * functions performed in the napi poll function.
1537 *
1538 * Return: Number of packets received.
1539 */
1540 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1541 {
1542 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1543 struct nfp_net *nn = r_vec->nfp_net;
1544 struct nfp_net_tx_ring *tx_ring;
1545 struct bpf_prog *xdp_prog;
1546 unsigned int true_bufsz;
1547 struct sk_buff *skb;
1548 int pkts_polled = 0;
1549 int rx_dma_map_dir;
1550 int idx;
1551
1552 rcu_read_lock();
1553 xdp_prog = READ_ONCE(nn->xdp_prog);
1554 rx_dma_map_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1555 true_bufsz = xdp_prog ? PAGE_SIZE : nn->fl_bufsz;
1556 tx_ring = r_vec->xdp_ring;
1557
1558 while (pkts_polled < budget) {
1559 unsigned int meta_len, data_len, data_off, pkt_len, pkt_off;
1560 struct nfp_net_rx_buf *rxbuf;
1561 struct nfp_net_rx_desc *rxd;
1562 dma_addr_t new_dma_addr;
1563 void *new_frag;
1564
1565 idx = rx_ring->rd_p & (rx_ring->cnt - 1);
1566
1567 rxd = &rx_ring->rxds[idx];
1568 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1569 break;
1570
1571 /* Memory barrier to ensure that we won't do other reads
1572 * before the DD bit.
1573 */
1574 dma_rmb();
1575
1576 rx_ring->rd_p++;
1577 pkts_polled++;
1578
1579 rxbuf = &rx_ring->rxbufs[idx];
1580 /* < meta_len >
1581 * <-- [rx_offset] -->
1582 * ---------------------------------------------------------
1583 * | [XX] | metadata | packet | XXXX |
1584 * ---------------------------------------------------------
1585 * <---------------- data_len --------------->
1586 *
1587 * The rx_offset is fixed for all packets, the meta_len can vary
1588 * on a packet by packet basis. If rx_offset is set to zero
1589 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1590 * buffer and is immediately followed by the packet (no [XX]).
1591 */
1592 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1593 data_len = le16_to_cpu(rxd->rxd.data_len);
1594 pkt_len = data_len - meta_len;
1595
1596 if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1597 pkt_off = meta_len;
1598 else
1599 pkt_off = nn->rx_offset;
1600 data_off = NFP_NET_RX_BUF_HEADROOM + pkt_off;
1601
1602 /* Stats update */
1603 u64_stats_update_begin(&r_vec->rx_sync);
1604 r_vec->rx_pkts++;
1605 r_vec->rx_bytes += pkt_len;
1606 u64_stats_update_end(&r_vec->rx_sync);
1607
1608 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1609 nn->bpf_offload_xdp)) {
1610 int act;
1611
1612 dma_sync_single_for_cpu(&nn->pdev->dev,
1613 rxbuf->dma_addr + pkt_off,
1614 pkt_len, DMA_BIDIRECTIONAL);
1615 act = nfp_net_run_xdp(xdp_prog, rxbuf->frag + data_off,
1616 pkt_len);
1617 switch (act) {
1618 case XDP_PASS:
1619 break;
1620 case XDP_TX:
1621 if (unlikely(!nfp_net_tx_xdp_buf(nn, rx_ring,
1622 tx_ring, rxbuf,
1623 pkt_off, pkt_len)))
1624 trace_xdp_exception(nn->netdev, xdp_prog, act);
1625 continue;
1626 default:
1627 bpf_warn_invalid_xdp_action(act);
1628 case XDP_ABORTED:
1629 trace_xdp_exception(nn->netdev, xdp_prog, act);
1630 case XDP_DROP:
1631 nfp_net_rx_give_one(rx_ring, rxbuf->frag,
1632 rxbuf->dma_addr);
1633 continue;
1634 }
1635 }
1636
1637 skb = build_skb(rxbuf->frag, true_bufsz);
1638 if (unlikely(!skb)) {
1639 nfp_net_rx_drop(r_vec, rx_ring, rxbuf, NULL);
1640 continue;
1641 }
1642 new_frag = nfp_net_napi_alloc_one(nn, rx_dma_map_dir,
1643 &new_dma_addr);
1644 if (unlikely(!new_frag)) {
1645 nfp_net_rx_drop(r_vec, rx_ring, rxbuf, skb);
1646 continue;
1647 }
1648
1649 nfp_net_dma_unmap_rx(nn, rxbuf->dma_addr, nn->fl_bufsz,
1650 rx_dma_map_dir);
1651
1652 nfp_net_rx_give_one(rx_ring, new_frag, new_dma_addr);
1653
1654 skb_reserve(skb, data_off);
1655 skb_put(skb, pkt_len);
1656
1657 if (nn->fw_ver.major <= 3) {
1658 nfp_net_set_hash_desc(nn->netdev, skb, rxd);
1659 } else if (meta_len) {
1660 void *end;
1661
1662 end = nfp_net_parse_meta(nn->netdev, skb, meta_len);
1663 if (unlikely(end != skb->data)) {
1664 nn_warn_ratelimit(nn, "invalid RX packet metadata\n");
1665 nfp_net_rx_drop(r_vec, rx_ring, NULL, skb);
1666 continue;
1667 }
1668 }
1669
1670 skb_record_rx_queue(skb, rx_ring->idx);
1671 skb->protocol = eth_type_trans(skb, nn->netdev);
1672
1673 nfp_net_rx_csum(nn, r_vec, rxd, skb);
1674
1675 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1676 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1677 le16_to_cpu(rxd->rxd.vlan));
1678
1679 napi_gro_receive(&rx_ring->r_vec->napi, skb);
1680 }
1681
1682 if (xdp_prog && tx_ring->wr_ptr_add)
1683 nfp_net_tx_xmit_more_flush(tx_ring);
1684 rcu_read_unlock();
1685
1686 return pkts_polled;
1687 }
1688
1689 /**
1690 * nfp_net_poll() - napi poll function
1691 * @napi: NAPI structure
1692 * @budget: NAPI budget
1693 *
1694 * Return: number of packets polled.
1695 */
1696 static int nfp_net_poll(struct napi_struct *napi, int budget)
1697 {
1698 struct nfp_net_r_vector *r_vec =
1699 container_of(napi, struct nfp_net_r_vector, napi);
1700 unsigned int pkts_polled = 0;
1701
1702 if (r_vec->tx_ring)
1703 nfp_net_tx_complete(r_vec->tx_ring);
1704 if (r_vec->rx_ring) {
1705 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1706 if (r_vec->xdp_ring)
1707 nfp_net_xdp_complete(r_vec->xdp_ring);
1708 }
1709
1710 if (pkts_polled < budget) {
1711 napi_complete_done(napi, pkts_polled);
1712 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1713 }
1714
1715 return pkts_polled;
1716 }
1717
1718 /* Setup and Configuration
1719 */
1720
1721 /**
1722 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
1723 * @tx_ring: TX ring to free
1724 */
1725 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
1726 {
1727 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1728 struct nfp_net *nn = r_vec->nfp_net;
1729 struct pci_dev *pdev = nn->pdev;
1730
1731 kfree(tx_ring->txbufs);
1732
1733 if (tx_ring->txds)
1734 dma_free_coherent(&pdev->dev, tx_ring->size,
1735 tx_ring->txds, tx_ring->dma);
1736
1737 tx_ring->cnt = 0;
1738 tx_ring->txbufs = NULL;
1739 tx_ring->txds = NULL;
1740 tx_ring->dma = 0;
1741 tx_ring->size = 0;
1742 }
1743
1744 /**
1745 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
1746 * @tx_ring: TX Ring structure to allocate
1747 * @cnt: Ring buffer count
1748 * @is_xdp: True if ring will be used for XDP
1749 *
1750 * Return: 0 on success, negative errno otherwise.
1751 */
1752 static int
1753 nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt, bool is_xdp)
1754 {
1755 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1756 struct nfp_net *nn = r_vec->nfp_net;
1757 struct pci_dev *pdev = nn->pdev;
1758 int sz;
1759
1760 tx_ring->cnt = cnt;
1761
1762 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
1763 tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size,
1764 &tx_ring->dma, GFP_KERNEL);
1765 if (!tx_ring->txds)
1766 goto err_alloc;
1767
1768 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
1769 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
1770 if (!tx_ring->txbufs)
1771 goto err_alloc;
1772
1773 if (!is_xdp)
1774 netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask,
1775 tx_ring->idx);
1776
1777 nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p %s\n",
1778 tx_ring->idx, tx_ring->qcidx,
1779 tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds,
1780 is_xdp ? "XDP" : "");
1781
1782 return 0;
1783
1784 err_alloc:
1785 nfp_net_tx_ring_free(tx_ring);
1786 return -ENOMEM;
1787 }
1788
1789 static struct nfp_net_tx_ring *
1790 nfp_net_tx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s,
1791 unsigned int num_stack_tx_rings)
1792 {
1793 struct nfp_net_tx_ring *rings;
1794 unsigned int r;
1795
1796 rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1797 if (!rings)
1798 return NULL;
1799
1800 for (r = 0; r < s->n_rings; r++) {
1801 int bias = 0;
1802
1803 if (r >= num_stack_tx_rings)
1804 bias = num_stack_tx_rings;
1805
1806 nfp_net_tx_ring_init(&rings[r], &nn->r_vecs[r - bias], r);
1807
1808 if (nfp_net_tx_ring_alloc(&rings[r], s->dcnt, bias))
1809 goto err_free_prev;
1810 }
1811
1812 return s->rings = rings;
1813
1814 err_free_prev:
1815 while (r--)
1816 nfp_net_tx_ring_free(&rings[r]);
1817 kfree(rings);
1818 return NULL;
1819 }
1820
1821 static void
1822 nfp_net_tx_ring_set_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1823 {
1824 struct nfp_net_ring_set new = *s;
1825
1826 s->dcnt = nn->txd_cnt;
1827 s->rings = nn->tx_rings;
1828 s->n_rings = nn->num_tx_rings;
1829
1830 nn->txd_cnt = new.dcnt;
1831 nn->tx_rings = new.rings;
1832 nn->num_tx_rings = new.n_rings;
1833 }
1834
1835 static void
1836 nfp_net_tx_ring_set_free(struct nfp_net *nn, struct nfp_net_ring_set *s)
1837 {
1838 struct nfp_net_tx_ring *rings = s->rings;
1839 unsigned int r;
1840
1841 for (r = 0; r < s->n_rings; r++)
1842 nfp_net_tx_ring_free(&rings[r]);
1843
1844 kfree(rings);
1845 }
1846
1847 /**
1848 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
1849 * @rx_ring: RX ring to free
1850 */
1851 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
1852 {
1853 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1854 struct nfp_net *nn = r_vec->nfp_net;
1855 struct pci_dev *pdev = nn->pdev;
1856
1857 kfree(rx_ring->rxbufs);
1858
1859 if (rx_ring->rxds)
1860 dma_free_coherent(&pdev->dev, rx_ring->size,
1861 rx_ring->rxds, rx_ring->dma);
1862
1863 rx_ring->cnt = 0;
1864 rx_ring->rxbufs = NULL;
1865 rx_ring->rxds = NULL;
1866 rx_ring->dma = 0;
1867 rx_ring->size = 0;
1868 }
1869
1870 /**
1871 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
1872 * @rx_ring: RX ring to allocate
1873 * @fl_bufsz: Size of buffers to allocate
1874 * @cnt: Ring buffer count
1875 *
1876 * Return: 0 on success, negative errno otherwise.
1877 */
1878 static int
1879 nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz,
1880 u32 cnt)
1881 {
1882 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1883 struct nfp_net *nn = r_vec->nfp_net;
1884 struct pci_dev *pdev = nn->pdev;
1885 int sz;
1886
1887 rx_ring->cnt = cnt;
1888 rx_ring->bufsz = fl_bufsz;
1889
1890 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
1891 rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size,
1892 &rx_ring->dma, GFP_KERNEL);
1893 if (!rx_ring->rxds)
1894 goto err_alloc;
1895
1896 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
1897 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
1898 if (!rx_ring->rxbufs)
1899 goto err_alloc;
1900
1901 nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n",
1902 rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx,
1903 rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds);
1904
1905 return 0;
1906
1907 err_alloc:
1908 nfp_net_rx_ring_free(rx_ring);
1909 return -ENOMEM;
1910 }
1911
1912 static struct nfp_net_rx_ring *
1913 nfp_net_rx_ring_set_prepare(struct nfp_net *nn, struct nfp_net_ring_set *s,
1914 bool xdp)
1915 {
1916 unsigned int fl_bufsz = nfp_net_calc_fl_bufsz(nn, s->mtu);
1917 struct nfp_net_rx_ring *rings;
1918 unsigned int r;
1919
1920 rings = kcalloc(s->n_rings, sizeof(*rings), GFP_KERNEL);
1921 if (!rings)
1922 return NULL;
1923
1924 for (r = 0; r < s->n_rings; r++) {
1925 nfp_net_rx_ring_init(&rings[r], &nn->r_vecs[r], r);
1926
1927 if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, s->dcnt))
1928 goto err_free_prev;
1929
1930 if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r], xdp))
1931 goto err_free_ring;
1932 }
1933
1934 return s->rings = rings;
1935
1936 err_free_prev:
1937 while (r--) {
1938 nfp_net_rx_ring_bufs_free(nn, &rings[r], xdp);
1939 err_free_ring:
1940 nfp_net_rx_ring_free(&rings[r]);
1941 }
1942 kfree(rings);
1943 return NULL;
1944 }
1945
1946 static void
1947 nfp_net_rx_ring_set_swap(struct nfp_net *nn, struct nfp_net_ring_set *s)
1948 {
1949 struct nfp_net_ring_set new = *s;
1950
1951 s->mtu = nn->netdev->mtu;
1952 s->dcnt = nn->rxd_cnt;
1953 s->rings = nn->rx_rings;
1954 s->n_rings = nn->num_rx_rings;
1955
1956 nn->netdev->mtu = new.mtu;
1957 nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, new.mtu);
1958 nn->rxd_cnt = new.dcnt;
1959 nn->rx_rings = new.rings;
1960 nn->num_rx_rings = new.n_rings;
1961 }
1962
1963 static void
1964 nfp_net_rx_ring_set_free(struct nfp_net *nn, struct nfp_net_ring_set *s,
1965 bool xdp)
1966 {
1967 struct nfp_net_rx_ring *rings = s->rings;
1968 unsigned int r;
1969
1970 for (r = 0; r < s->n_rings; r++) {
1971 nfp_net_rx_ring_bufs_free(nn, &rings[r], xdp);
1972 nfp_net_rx_ring_free(&rings[r]);
1973 }
1974
1975 kfree(rings);
1976 }
1977
1978 static void
1979 nfp_net_vector_assign_rings(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1980 int idx)
1981 {
1982 r_vec->rx_ring = idx < nn->num_rx_rings ? &nn->rx_rings[idx] : NULL;
1983 r_vec->tx_ring =
1984 idx < nn->num_stack_tx_rings ? &nn->tx_rings[idx] : NULL;
1985
1986 r_vec->xdp_ring = idx < nn->num_tx_rings - nn->num_stack_tx_rings ?
1987 &nn->tx_rings[nn->num_stack_tx_rings + idx] : NULL;
1988 }
1989
1990 static int
1991 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1992 int idx)
1993 {
1994 int err;
1995
1996 /* Setup NAPI */
1997 netif_napi_add(nn->netdev, &r_vec->napi,
1998 nfp_net_poll, NAPI_POLL_WEIGHT);
1999
2000 snprintf(r_vec->name, sizeof(r_vec->name),
2001 "%s-rxtx-%d", nn->netdev->name, idx);
2002 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2003 r_vec);
2004 if (err) {
2005 netif_napi_del(&r_vec->napi);
2006 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2007 return err;
2008 }
2009 disable_irq(r_vec->irq_vector);
2010
2011 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2012
2013 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2014 r_vec->irq_entry);
2015
2016 return 0;
2017 }
2018
2019 static void
2020 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2021 {
2022 irq_set_affinity_hint(r_vec->irq_vector, NULL);
2023 netif_napi_del(&r_vec->napi);
2024 free_irq(r_vec->irq_vector, r_vec);
2025 }
2026
2027 /**
2028 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2029 * @nn: NFP Net device to reconfigure
2030 */
2031 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2032 {
2033 int i;
2034
2035 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2036 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2037 get_unaligned_le32(nn->rss_itbl + i));
2038 }
2039
2040 /**
2041 * nfp_net_rss_write_key() - Write RSS hash key to device
2042 * @nn: NFP Net device to reconfigure
2043 */
2044 void nfp_net_rss_write_key(struct nfp_net *nn)
2045 {
2046 int i;
2047
2048 for (i = 0; i < NFP_NET_CFG_RSS_KEY_SZ; i += 4)
2049 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2050 get_unaligned_le32(nn->rss_key + i));
2051 }
2052
2053 /**
2054 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2055 * @nn: NFP Net device to reconfigure
2056 */
2057 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2058 {
2059 u8 i;
2060 u32 factor;
2061 u32 value;
2062
2063 /* Compute factor used to convert coalesce '_usecs' parameters to
2064 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
2065 * count.
2066 */
2067 factor = nn->me_freq_mhz / 16;
2068
2069 /* copy RX interrupt coalesce parameters */
2070 value = (nn->rx_coalesce_max_frames << 16) |
2071 (factor * nn->rx_coalesce_usecs);
2072 for (i = 0; i < nn->num_rx_rings; i++)
2073 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2074
2075 /* copy TX interrupt coalesce parameters */
2076 value = (nn->tx_coalesce_max_frames << 16) |
2077 (factor * nn->tx_coalesce_usecs);
2078 for (i = 0; i < nn->num_tx_rings; i++)
2079 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2080 }
2081
2082 /**
2083 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2084 * @nn: NFP Net device to reconfigure
2085 *
2086 * Writes the MAC address from the netdev to the device control BAR. Does not
2087 * perform the required reconfig. We do a bit of byte swapping dance because
2088 * firmware is LE.
2089 */
2090 static void nfp_net_write_mac_addr(struct nfp_net *nn)
2091 {
2092 nn_writel(nn, NFP_NET_CFG_MACADDR + 0,
2093 get_unaligned_be32(nn->netdev->dev_addr));
2094 nn_writew(nn, NFP_NET_CFG_MACADDR + 6,
2095 get_unaligned_be16(nn->netdev->dev_addr + 4));
2096 }
2097
2098 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2099 {
2100 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2101 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2102 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2103
2104 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2105 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2106 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2107 }
2108
2109 /**
2110 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2111 * @nn: NFP Net device to reconfigure
2112 */
2113 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2114 {
2115 u32 new_ctrl, update;
2116 unsigned int r;
2117 int err;
2118
2119 new_ctrl = nn->ctrl;
2120 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2121 update = NFP_NET_CFG_UPDATE_GEN;
2122 update |= NFP_NET_CFG_UPDATE_MSIX;
2123 update |= NFP_NET_CFG_UPDATE_RING;
2124
2125 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2126 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2127
2128 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2129 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2130
2131 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2132 err = nfp_net_reconfig(nn, update);
2133 if (err)
2134 nn_err(nn, "Could not disable device: %d\n", err);
2135
2136 for (r = 0; r < nn->num_rx_rings; r++)
2137 nfp_net_rx_ring_reset(&nn->rx_rings[r]);
2138 for (r = 0; r < nn->num_tx_rings; r++)
2139 nfp_net_tx_ring_reset(nn, &nn->tx_rings[r]);
2140 for (r = 0; r < nn->num_r_vecs; r++)
2141 nfp_net_vec_clear_ring_data(nn, r);
2142
2143 nn->ctrl = new_ctrl;
2144 }
2145
2146 static void
2147 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2148 struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2149 {
2150 /* Write the DMA address, size and MSI-X info to the device */
2151 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2152 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2153 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2154 }
2155
2156 static void
2157 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2158 struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2159 {
2160 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2161 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2162 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2163 }
2164
2165 static int __nfp_net_set_config_and_enable(struct nfp_net *nn)
2166 {
2167 u32 new_ctrl, update = 0;
2168 unsigned int r;
2169 int err;
2170
2171 new_ctrl = nn->ctrl;
2172
2173 if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
2174 nfp_net_rss_write_key(nn);
2175 nfp_net_rss_write_itbl(nn);
2176 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2177 update |= NFP_NET_CFG_UPDATE_RSS;
2178 }
2179
2180 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
2181 nfp_net_coalesce_write_cfg(nn);
2182
2183 new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
2184 update |= NFP_NET_CFG_UPDATE_IRQMOD;
2185 }
2186
2187 for (r = 0; r < nn->num_tx_rings; r++)
2188 nfp_net_tx_ring_hw_cfg_write(nn, &nn->tx_rings[r], r);
2189 for (r = 0; r < nn->num_rx_rings; r++)
2190 nfp_net_rx_ring_hw_cfg_write(nn, &nn->rx_rings[r], r);
2191
2192 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ?
2193 0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1);
2194
2195 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ?
2196 0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1);
2197
2198 nfp_net_write_mac_addr(nn);
2199
2200 nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu);
2201 nn_writel(nn, NFP_NET_CFG_FLBUFSZ,
2202 nn->fl_bufsz - NFP_NET_RX_BUF_NON_DATA);
2203
2204 /* Enable device */
2205 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2206 update |= NFP_NET_CFG_UPDATE_GEN;
2207 update |= NFP_NET_CFG_UPDATE_MSIX;
2208 update |= NFP_NET_CFG_UPDATE_RING;
2209 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2210 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2211
2212 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2213 err = nfp_net_reconfig(nn, update);
2214
2215 nn->ctrl = new_ctrl;
2216
2217 for (r = 0; r < nn->num_rx_rings; r++)
2218 nfp_net_rx_ring_fill_freelist(&nn->rx_rings[r]);
2219
2220 /* Since reconfiguration requests while NFP is down are ignored we
2221 * have to wipe the entire VXLAN configuration and reinitialize it.
2222 */
2223 if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2224 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2225 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2226 udp_tunnel_get_rx_info(nn->netdev);
2227 }
2228
2229 return err;
2230 }
2231
2232 /**
2233 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2234 * @nn: NFP Net device to reconfigure
2235 */
2236 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2237 {
2238 int err;
2239
2240 err = __nfp_net_set_config_and_enable(nn);
2241 if (err)
2242 nfp_net_clear_config_and_disable(nn);
2243
2244 return err;
2245 }
2246
2247 /**
2248 * nfp_net_open_stack() - Start the device from stack's perspective
2249 * @nn: NFP Net device to reconfigure
2250 */
2251 static void nfp_net_open_stack(struct nfp_net *nn)
2252 {
2253 unsigned int r;
2254
2255 for (r = 0; r < nn->num_r_vecs; r++) {
2256 napi_enable(&nn->r_vecs[r].napi);
2257 enable_irq(nn->r_vecs[r].irq_vector);
2258 }
2259
2260 netif_tx_wake_all_queues(nn->netdev);
2261
2262 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2263 nfp_net_read_link_status(nn);
2264 }
2265
2266 static int nfp_net_netdev_open(struct net_device *netdev)
2267 {
2268 struct nfp_net *nn = netdev_priv(netdev);
2269 struct nfp_net_ring_set rx = {
2270 .n_rings = nn->num_rx_rings,
2271 .mtu = nn->netdev->mtu,
2272 .dcnt = nn->rxd_cnt,
2273 };
2274 struct nfp_net_ring_set tx = {
2275 .n_rings = nn->num_tx_rings,
2276 .dcnt = nn->txd_cnt,
2277 };
2278 int err, r;
2279
2280 if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) {
2281 nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl);
2282 return -EBUSY;
2283 }
2284
2285 /* Step 1: Allocate resources for rings and the like
2286 * - Request interrupts
2287 * - Allocate RX and TX ring resources
2288 * - Setup initial RSS table
2289 */
2290 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2291 nn->exn_name, sizeof(nn->exn_name),
2292 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2293 if (err)
2294 return err;
2295 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2296 nn->lsc_name, sizeof(nn->lsc_name),
2297 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2298 if (err)
2299 goto err_free_exn;
2300 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2301
2302 for (r = 0; r < nn->num_r_vecs; r++) {
2303 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2304 if (err)
2305 goto err_cleanup_vec_p;
2306 }
2307
2308 nn->rx_rings = nfp_net_rx_ring_set_prepare(nn, &rx, nn->xdp_prog);
2309 if (!nn->rx_rings) {
2310 err = -ENOMEM;
2311 goto err_cleanup_vec;
2312 }
2313
2314 nn->tx_rings = nfp_net_tx_ring_set_prepare(nn, &tx,
2315 nn->num_stack_tx_rings);
2316 if (!nn->tx_rings) {
2317 err = -ENOMEM;
2318 goto err_free_rx_rings;
2319 }
2320
2321 for (r = 0; r < nn->max_r_vecs; r++)
2322 nfp_net_vector_assign_rings(nn, &nn->r_vecs[r], r);
2323
2324 err = netif_set_real_num_tx_queues(netdev, nn->num_stack_tx_rings);
2325 if (err)
2326 goto err_free_rings;
2327
2328 err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings);
2329 if (err)
2330 goto err_free_rings;
2331
2332 /* Step 2: Configure the NFP
2333 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2334 * - Write MAC address (in case it changed)
2335 * - Set the MTU
2336 * - Set the Freelist buffer size
2337 * - Enable the FW
2338 */
2339 err = nfp_net_set_config_and_enable(nn);
2340 if (err)
2341 goto err_free_rings;
2342
2343 /* Step 3: Enable for kernel
2344 * - put some freelist descriptors on each RX ring
2345 * - enable NAPI on each ring
2346 * - enable all TX queues
2347 * - set link state
2348 */
2349 nfp_net_open_stack(nn);
2350
2351 return 0;
2352
2353 err_free_rings:
2354 nfp_net_tx_ring_set_free(nn, &tx);
2355 err_free_rx_rings:
2356 nfp_net_rx_ring_set_free(nn, &rx, nn->xdp_prog);
2357 err_cleanup_vec:
2358 r = nn->num_r_vecs;
2359 err_cleanup_vec_p:
2360 while (r--)
2361 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2362 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2363 err_free_exn:
2364 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2365 return err;
2366 }
2367
2368 /**
2369 * nfp_net_close_stack() - Quiescent the stack (part of close)
2370 * @nn: NFP Net device to reconfigure
2371 */
2372 static void nfp_net_close_stack(struct nfp_net *nn)
2373 {
2374 unsigned int r;
2375
2376 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2377 netif_carrier_off(nn->netdev);
2378 nn->link_up = false;
2379
2380 for (r = 0; r < nn->num_r_vecs; r++) {
2381 disable_irq(nn->r_vecs[r].irq_vector);
2382 napi_disable(&nn->r_vecs[r].napi);
2383 }
2384
2385 netif_tx_disable(nn->netdev);
2386 }
2387
2388 /**
2389 * nfp_net_close_free_all() - Free all runtime resources
2390 * @nn: NFP Net device to reconfigure
2391 */
2392 static void nfp_net_close_free_all(struct nfp_net *nn)
2393 {
2394 unsigned int r;
2395
2396 for (r = 0; r < nn->num_rx_rings; r++) {
2397 nfp_net_rx_ring_bufs_free(nn, &nn->rx_rings[r], nn->xdp_prog);
2398 nfp_net_rx_ring_free(&nn->rx_rings[r]);
2399 }
2400 for (r = 0; r < nn->num_tx_rings; r++)
2401 nfp_net_tx_ring_free(&nn->tx_rings[r]);
2402 for (r = 0; r < nn->num_r_vecs; r++)
2403 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2404
2405 kfree(nn->rx_rings);
2406 kfree(nn->tx_rings);
2407
2408 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2409 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2410 }
2411
2412 /**
2413 * nfp_net_netdev_close() - Called when the device is downed
2414 * @netdev: netdev structure
2415 */
2416 static int nfp_net_netdev_close(struct net_device *netdev)
2417 {
2418 struct nfp_net *nn = netdev_priv(netdev);
2419
2420 if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) {
2421 nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl);
2422 return 0;
2423 }
2424
2425 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2426 */
2427 nfp_net_close_stack(nn);
2428
2429 /* Step 2: Tell NFP
2430 */
2431 nfp_net_clear_config_and_disable(nn);
2432
2433 /* Step 3: Free resources
2434 */
2435 nfp_net_close_free_all(nn);
2436
2437 nn_dbg(nn, "%s down", netdev->name);
2438 return 0;
2439 }
2440
2441 static void nfp_net_set_rx_mode(struct net_device *netdev)
2442 {
2443 struct nfp_net *nn = netdev_priv(netdev);
2444 u32 new_ctrl;
2445
2446 new_ctrl = nn->ctrl;
2447
2448 if (netdev->flags & IFF_PROMISC) {
2449 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2450 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2451 else
2452 nn_warn(nn, "FW does not support promiscuous mode\n");
2453 } else {
2454 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2455 }
2456
2457 if (new_ctrl == nn->ctrl)
2458 return;
2459
2460 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2461 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2462
2463 nn->ctrl = new_ctrl;
2464 }
2465
2466 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2467 {
2468 int i;
2469
2470 for (i = 0; i < sizeof(nn->rss_itbl); i++)
2471 nn->rss_itbl[i] =
2472 ethtool_rxfh_indir_default(i, nn->num_rx_rings);
2473 }
2474
2475 static int
2476 nfp_net_ring_swap_enable(struct nfp_net *nn, unsigned int *num_vecs,
2477 unsigned int *stack_tx_rings,
2478 struct bpf_prog **xdp_prog,
2479 struct nfp_net_ring_set *rx,
2480 struct nfp_net_ring_set *tx)
2481 {
2482 unsigned int r;
2483 int err;
2484
2485 if (rx)
2486 nfp_net_rx_ring_set_swap(nn, rx);
2487 if (tx)
2488 nfp_net_tx_ring_set_swap(nn, tx);
2489
2490 swap(*num_vecs, nn->num_r_vecs);
2491 swap(*stack_tx_rings, nn->num_stack_tx_rings);
2492 *xdp_prog = xchg(&nn->xdp_prog, *xdp_prog);
2493
2494 for (r = 0; r < nn->max_r_vecs; r++)
2495 nfp_net_vector_assign_rings(nn, &nn->r_vecs[r], r);
2496
2497 if (!netif_is_rxfh_configured(nn->netdev))
2498 nfp_net_rss_init_itbl(nn);
2499
2500 err = netif_set_real_num_rx_queues(nn->netdev,
2501 nn->num_rx_rings);
2502 if (err)
2503 return err;
2504
2505 if (nn->netdev->real_num_tx_queues != nn->num_stack_tx_rings) {
2506 err = netif_set_real_num_tx_queues(nn->netdev,
2507 nn->num_stack_tx_rings);
2508 if (err)
2509 return err;
2510 }
2511
2512 return __nfp_net_set_config_and_enable(nn);
2513 }
2514
2515 static int
2516 nfp_net_check_config(struct nfp_net *nn, struct bpf_prog *xdp_prog,
2517 struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
2518 {
2519 /* XDP-enabled tests */
2520 if (!xdp_prog)
2521 return 0;
2522 if (rx && nfp_net_calc_fl_bufsz(nn, rx->mtu) > PAGE_SIZE) {
2523 nn_warn(nn, "MTU too large w/ XDP enabled\n");
2524 return -EINVAL;
2525 }
2526 if (tx && tx->n_rings > nn->max_tx_rings) {
2527 nn_warn(nn, "Insufficient number of TX rings w/ XDP enabled\n");
2528 return -EINVAL;
2529 }
2530
2531 return 0;
2532 }
2533
2534 static void
2535 nfp_net_ring_reconfig_down(struct nfp_net *nn, struct bpf_prog **xdp_prog,
2536 struct nfp_net_ring_set *rx,
2537 struct nfp_net_ring_set *tx,
2538 unsigned int stack_tx_rings, unsigned int num_vecs)
2539 {
2540 nn->netdev->mtu = rx ? rx->mtu : nn->netdev->mtu;
2541 nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, nn->netdev->mtu);
2542 nn->rxd_cnt = rx ? rx->dcnt : nn->rxd_cnt;
2543 nn->txd_cnt = tx ? tx->dcnt : nn->txd_cnt;
2544 nn->num_rx_rings = rx ? rx->n_rings : nn->num_rx_rings;
2545 nn->num_tx_rings = tx ? tx->n_rings : nn->num_tx_rings;
2546 nn->num_stack_tx_rings = stack_tx_rings;
2547 nn->num_r_vecs = num_vecs;
2548 *xdp_prog = xchg(&nn->xdp_prog, *xdp_prog);
2549
2550 if (!netif_is_rxfh_configured(nn->netdev))
2551 nfp_net_rss_init_itbl(nn);
2552 }
2553
2554 int
2555 nfp_net_ring_reconfig(struct nfp_net *nn, struct bpf_prog **xdp_prog,
2556 struct nfp_net_ring_set *rx, struct nfp_net_ring_set *tx)
2557 {
2558 unsigned int stack_tx_rings, num_vecs, r;
2559 int err;
2560
2561 stack_tx_rings = tx ? tx->n_rings : nn->num_tx_rings;
2562 if (*xdp_prog)
2563 stack_tx_rings -= rx ? rx->n_rings : nn->num_rx_rings;
2564
2565 num_vecs = max(rx ? rx->n_rings : nn->num_rx_rings, stack_tx_rings);
2566
2567 err = nfp_net_check_config(nn, *xdp_prog, rx, tx);
2568 if (err)
2569 return err;
2570
2571 if (!netif_running(nn->netdev)) {
2572 nfp_net_ring_reconfig_down(nn, xdp_prog, rx, tx,
2573 stack_tx_rings, num_vecs);
2574 return 0;
2575 }
2576
2577 /* Prepare new rings */
2578 for (r = nn->num_r_vecs; r < num_vecs; r++) {
2579 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2580 if (err) {
2581 num_vecs = r;
2582 goto err_cleanup_vecs;
2583 }
2584 }
2585 if (rx) {
2586 if (!nfp_net_rx_ring_set_prepare(nn, rx, *xdp_prog)) {
2587 err = -ENOMEM;
2588 goto err_cleanup_vecs;
2589 }
2590 }
2591 if (tx) {
2592 if (!nfp_net_tx_ring_set_prepare(nn, tx, stack_tx_rings)) {
2593 err = -ENOMEM;
2594 goto err_free_rx;
2595 }
2596 }
2597
2598 /* Stop device, swap in new rings, try to start the firmware */
2599 nfp_net_close_stack(nn);
2600 nfp_net_clear_config_and_disable(nn);
2601
2602 err = nfp_net_ring_swap_enable(nn, &num_vecs, &stack_tx_rings,
2603 xdp_prog, rx, tx);
2604 if (err) {
2605 int err2;
2606
2607 nfp_net_clear_config_and_disable(nn);
2608
2609 /* Try with old configuration and old rings */
2610 err2 = nfp_net_ring_swap_enable(nn, &num_vecs, &stack_tx_rings,
2611 xdp_prog, rx, tx);
2612 if (err2)
2613 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2614 err, err2);
2615 }
2616 for (r = num_vecs - 1; r >= nn->num_r_vecs; r--)
2617 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2618
2619 if (rx)
2620 nfp_net_rx_ring_set_free(nn, rx, *xdp_prog);
2621 if (tx)
2622 nfp_net_tx_ring_set_free(nn, tx);
2623
2624 nfp_net_open_stack(nn);
2625
2626 return err;
2627
2628 err_free_rx:
2629 if (rx)
2630 nfp_net_rx_ring_set_free(nn, rx, *xdp_prog);
2631 err_cleanup_vecs:
2632 for (r = num_vecs - 1; r >= nn->num_r_vecs; r--)
2633 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2634 return err;
2635 }
2636
2637 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
2638 {
2639 struct nfp_net *nn = netdev_priv(netdev);
2640 struct nfp_net_ring_set rx = {
2641 .n_rings = nn->num_rx_rings,
2642 .mtu = new_mtu,
2643 .dcnt = nn->rxd_cnt,
2644 };
2645
2646 return nfp_net_ring_reconfig(nn, &nn->xdp_prog, &rx, NULL);
2647 }
2648
2649 static void nfp_net_stat64(struct net_device *netdev,
2650 struct rtnl_link_stats64 *stats)
2651 {
2652 struct nfp_net *nn = netdev_priv(netdev);
2653 int r;
2654
2655 for (r = 0; r < nn->num_r_vecs; r++) {
2656 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
2657 u64 data[3];
2658 unsigned int start;
2659
2660 do {
2661 start = u64_stats_fetch_begin(&r_vec->rx_sync);
2662 data[0] = r_vec->rx_pkts;
2663 data[1] = r_vec->rx_bytes;
2664 data[2] = r_vec->rx_drops;
2665 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
2666 stats->rx_packets += data[0];
2667 stats->rx_bytes += data[1];
2668 stats->rx_dropped += data[2];
2669
2670 do {
2671 start = u64_stats_fetch_begin(&r_vec->tx_sync);
2672 data[0] = r_vec->tx_pkts;
2673 data[1] = r_vec->tx_bytes;
2674 data[2] = r_vec->tx_errors;
2675 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
2676 stats->tx_packets += data[0];
2677 stats->tx_bytes += data[1];
2678 stats->tx_errors += data[2];
2679 }
2680 }
2681
2682 static bool nfp_net_ebpf_capable(struct nfp_net *nn)
2683 {
2684 if (nn->cap & NFP_NET_CFG_CTRL_BPF &&
2685 nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI)
2686 return true;
2687 return false;
2688 }
2689
2690 static int
2691 nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto,
2692 struct tc_to_netdev *tc)
2693 {
2694 struct nfp_net *nn = netdev_priv(netdev);
2695
2696 if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS))
2697 return -ENOTSUPP;
2698 if (proto != htons(ETH_P_ALL))
2699 return -ENOTSUPP;
2700
2701 if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) {
2702 if (!nn->bpf_offload_xdp)
2703 return nfp_net_bpf_offload(nn, tc->cls_bpf);
2704 else
2705 return -EBUSY;
2706 }
2707
2708 return -EINVAL;
2709 }
2710
2711 static int nfp_net_set_features(struct net_device *netdev,
2712 netdev_features_t features)
2713 {
2714 netdev_features_t changed = netdev->features ^ features;
2715 struct nfp_net *nn = netdev_priv(netdev);
2716 u32 new_ctrl;
2717 int err;
2718
2719 /* Assume this is not called with features we have not advertised */
2720
2721 new_ctrl = nn->ctrl;
2722
2723 if (changed & NETIF_F_RXCSUM) {
2724 if (features & NETIF_F_RXCSUM)
2725 new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
2726 else
2727 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM;
2728 }
2729
2730 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
2731 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
2732 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
2733 else
2734 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
2735 }
2736
2737 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
2738 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
2739 new_ctrl |= NFP_NET_CFG_CTRL_LSO;
2740 else
2741 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO;
2742 }
2743
2744 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
2745 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2746 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
2747 else
2748 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
2749 }
2750
2751 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
2752 if (features & NETIF_F_HW_VLAN_CTAG_TX)
2753 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
2754 else
2755 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
2756 }
2757
2758 if (changed & NETIF_F_SG) {
2759 if (features & NETIF_F_SG)
2760 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
2761 else
2762 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
2763 }
2764
2765 if (changed & NETIF_F_HW_TC && nn->ctrl & NFP_NET_CFG_CTRL_BPF) {
2766 nn_err(nn, "Cannot disable HW TC offload while in use\n");
2767 return -EBUSY;
2768 }
2769
2770 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
2771 netdev->features, features, changed);
2772
2773 if (new_ctrl == nn->ctrl)
2774 return 0;
2775
2776 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl);
2777 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2778 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
2779 if (err)
2780 return err;
2781
2782 nn->ctrl = new_ctrl;
2783
2784 return 0;
2785 }
2786
2787 static netdev_features_t
2788 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
2789 netdev_features_t features)
2790 {
2791 u8 l4_hdr;
2792
2793 /* We can't do TSO over double tagged packets (802.1AD) */
2794 features &= vlan_features_check(skb, features);
2795
2796 if (!skb->encapsulation)
2797 return features;
2798
2799 /* Ensure that inner L4 header offset fits into TX descriptor field */
2800 if (skb_is_gso(skb)) {
2801 u32 hdrlen;
2802
2803 hdrlen = skb_inner_transport_header(skb) - skb->data +
2804 inner_tcp_hdrlen(skb);
2805
2806 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
2807 features &= ~NETIF_F_GSO_MASK;
2808 }
2809
2810 /* VXLAN/GRE check */
2811 switch (vlan_get_protocol(skb)) {
2812 case htons(ETH_P_IP):
2813 l4_hdr = ip_hdr(skb)->protocol;
2814 break;
2815 case htons(ETH_P_IPV6):
2816 l4_hdr = ipv6_hdr(skb)->nexthdr;
2817 break;
2818 default:
2819 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2820 }
2821
2822 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
2823 skb->inner_protocol != htons(ETH_P_TEB) ||
2824 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
2825 (l4_hdr == IPPROTO_UDP &&
2826 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
2827 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
2828 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2829
2830 return features;
2831 }
2832
2833 /**
2834 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
2835 * @nn: NFP Net device to reconfigure
2836 * @idx: Index into the port table where new port should be written
2837 * @port: UDP port to configure (pass zero to remove VXLAN port)
2838 */
2839 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
2840 {
2841 int i;
2842
2843 nn->vxlan_ports[idx] = port;
2844
2845 if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN))
2846 return;
2847
2848 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
2849 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
2850 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
2851 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
2852 be16_to_cpu(nn->vxlan_ports[i]));
2853
2854 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
2855 }
2856
2857 /**
2858 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
2859 * @nn: NFP Network structure
2860 * @port: UDP port to look for
2861 *
2862 * Return: if the port is already in the table -- it's position;
2863 * if the port is not in the table -- free position to use;
2864 * if the table is full -- -ENOSPC.
2865 */
2866 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
2867 {
2868 int i, free_idx = -ENOSPC;
2869
2870 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
2871 if (nn->vxlan_ports[i] == port)
2872 return i;
2873 if (!nn->vxlan_usecnt[i])
2874 free_idx = i;
2875 }
2876
2877 return free_idx;
2878 }
2879
2880 static void nfp_net_add_vxlan_port(struct net_device *netdev,
2881 struct udp_tunnel_info *ti)
2882 {
2883 struct nfp_net *nn = netdev_priv(netdev);
2884 int idx;
2885
2886 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2887 return;
2888
2889 idx = nfp_net_find_vxlan_idx(nn, ti->port);
2890 if (idx == -ENOSPC)
2891 return;
2892
2893 if (!nn->vxlan_usecnt[idx]++)
2894 nfp_net_set_vxlan_port(nn, idx, ti->port);
2895 }
2896
2897 static void nfp_net_del_vxlan_port(struct net_device *netdev,
2898 struct udp_tunnel_info *ti)
2899 {
2900 struct nfp_net *nn = netdev_priv(netdev);
2901 int idx;
2902
2903 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2904 return;
2905
2906 idx = nfp_net_find_vxlan_idx(nn, ti->port);
2907 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
2908 return;
2909
2910 if (!--nn->vxlan_usecnt[idx])
2911 nfp_net_set_vxlan_port(nn, idx, 0);
2912 }
2913
2914 static int nfp_net_xdp_offload(struct nfp_net *nn, struct bpf_prog *prog)
2915 {
2916 struct tc_cls_bpf_offload cmd = {
2917 .prog = prog,
2918 };
2919 int ret;
2920
2921 if (!nfp_net_ebpf_capable(nn))
2922 return -EINVAL;
2923
2924 if (nn->ctrl & NFP_NET_CFG_CTRL_BPF) {
2925 if (!nn->bpf_offload_xdp)
2926 return prog ? -EBUSY : 0;
2927 cmd.command = prog ? TC_CLSBPF_REPLACE : TC_CLSBPF_DESTROY;
2928 } else {
2929 if (!prog)
2930 return 0;
2931 cmd.command = TC_CLSBPF_ADD;
2932 }
2933
2934 ret = nfp_net_bpf_offload(nn, &cmd);
2935 /* Stop offload if replace not possible */
2936 if (ret && cmd.command == TC_CLSBPF_REPLACE)
2937 nfp_net_xdp_offload(nn, NULL);
2938 nn->bpf_offload_xdp = prog && !ret;
2939 return ret;
2940 }
2941
2942 static int nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog)
2943 {
2944 struct nfp_net_ring_set rx = {
2945 .n_rings = nn->num_rx_rings,
2946 .mtu = nn->netdev->mtu,
2947 .dcnt = nn->rxd_cnt,
2948 };
2949 struct nfp_net_ring_set tx = {
2950 .n_rings = nn->num_tx_rings,
2951 .dcnt = nn->txd_cnt,
2952 };
2953 int err;
2954
2955 if (prog && prog->xdp_adjust_head) {
2956 nn_err(nn, "Does not support bpf_xdp_adjust_head()\n");
2957 return -EOPNOTSUPP;
2958 }
2959 if (!prog && !nn->xdp_prog)
2960 return 0;
2961 if (prog && nn->xdp_prog) {
2962 prog = xchg(&nn->xdp_prog, prog);
2963 bpf_prog_put(prog);
2964 nfp_net_xdp_offload(nn, nn->xdp_prog);
2965 return 0;
2966 }
2967
2968 tx.n_rings += prog ? nn->num_rx_rings : -nn->num_rx_rings;
2969
2970 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
2971 err = nfp_net_ring_reconfig(nn, &prog, &rx, &tx);
2972 if (err)
2973 return err;
2974
2975 /* @prog got swapped and is now the old one */
2976 if (prog)
2977 bpf_prog_put(prog);
2978
2979 nfp_net_xdp_offload(nn, nn->xdp_prog);
2980
2981 return 0;
2982 }
2983
2984 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
2985 {
2986 struct nfp_net *nn = netdev_priv(netdev);
2987
2988 switch (xdp->command) {
2989 case XDP_SETUP_PROG:
2990 return nfp_net_xdp_setup(nn, xdp->prog);
2991 case XDP_QUERY_PROG:
2992 xdp->prog_attached = !!nn->xdp_prog;
2993 return 0;
2994 default:
2995 return -EINVAL;
2996 }
2997 }
2998
2999 static const struct net_device_ops nfp_net_netdev_ops = {
3000 .ndo_open = nfp_net_netdev_open,
3001 .ndo_stop = nfp_net_netdev_close,
3002 .ndo_start_xmit = nfp_net_tx,
3003 .ndo_get_stats64 = nfp_net_stat64,
3004 .ndo_setup_tc = nfp_net_setup_tc,
3005 .ndo_tx_timeout = nfp_net_tx_timeout,
3006 .ndo_set_rx_mode = nfp_net_set_rx_mode,
3007 .ndo_change_mtu = nfp_net_change_mtu,
3008 .ndo_set_mac_address = eth_mac_addr,
3009 .ndo_set_features = nfp_net_set_features,
3010 .ndo_features_check = nfp_net_features_check,
3011 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port,
3012 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port,
3013 .ndo_xdp = nfp_net_xdp,
3014 };
3015
3016 /**
3017 * nfp_net_info() - Print general info about the NIC
3018 * @nn: NFP Net device to reconfigure
3019 */
3020 void nfp_net_info(struct nfp_net *nn)
3021 {
3022 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3023 nn->is_vf ? "VF " : "",
3024 nn->num_tx_rings, nn->max_tx_rings,
3025 nn->num_rx_rings, nn->max_rx_rings);
3026 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3027 nn->fw_ver.resv, nn->fw_ver.class,
3028 nn->fw_ver.major, nn->fw_ver.minor,
3029 nn->max_mtu);
3030 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3031 nn->cap,
3032 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
3033 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
3034 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
3035 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
3036 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
3037 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
3038 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
3039 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
3040 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
3041 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "",
3042 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "",
3043 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3044 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3045 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
3046 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
3047 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "",
3048 nfp_net_ebpf_capable(nn) ? "BPF " : "");
3049 }
3050
3051 /**
3052 * nfp_net_netdev_alloc() - Allocate netdev and related structure
3053 * @pdev: PCI device
3054 * @max_tx_rings: Maximum number of TX rings supported by device
3055 * @max_rx_rings: Maximum number of RX rings supported by device
3056 *
3057 * This function allocates a netdev device and fills in the initial
3058 * part of the @struct nfp_net structure.
3059 *
3060 * Return: NFP Net device structure, or ERR_PTR on error.
3061 */
3062 struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev,
3063 unsigned int max_tx_rings,
3064 unsigned int max_rx_rings)
3065 {
3066 struct net_device *netdev;
3067 struct nfp_net *nn;
3068
3069 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3070 max_tx_rings, max_rx_rings);
3071 if (!netdev)
3072 return ERR_PTR(-ENOMEM);
3073
3074 SET_NETDEV_DEV(netdev, &pdev->dev);
3075 nn = netdev_priv(netdev);
3076
3077 nn->netdev = netdev;
3078 nn->pdev = pdev;
3079
3080 nn->max_tx_rings = max_tx_rings;
3081 nn->max_rx_rings = max_rx_rings;
3082
3083 nn->num_tx_rings = min_t(unsigned int, max_tx_rings, num_online_cpus());
3084 nn->num_rx_rings = min_t(unsigned int, max_rx_rings,
3085 netif_get_num_default_rss_queues());
3086
3087 nn->num_r_vecs = max(nn->num_tx_rings, nn->num_rx_rings);
3088 nn->num_r_vecs = min_t(unsigned int, nn->num_r_vecs, num_online_cpus());
3089
3090 nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3091 nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3092
3093 spin_lock_init(&nn->reconfig_lock);
3094 spin_lock_init(&nn->rx_filter_lock);
3095 spin_lock_init(&nn->link_status_lock);
3096
3097 setup_timer(&nn->reconfig_timer,
3098 nfp_net_reconfig_timer, (unsigned long)nn);
3099 setup_timer(&nn->rx_filter_stats_timer,
3100 nfp_net_filter_stats_timer, (unsigned long)nn);
3101
3102 return nn;
3103 }
3104
3105 /**
3106 * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did
3107 * @nn: NFP Net device to reconfigure
3108 */
3109 void nfp_net_netdev_free(struct nfp_net *nn)
3110 {
3111 free_netdev(nn->netdev);
3112 }
3113
3114 /**
3115 * nfp_net_rss_init() - Set the initial RSS parameters
3116 * @nn: NFP Net device to reconfigure
3117 */
3118 static void nfp_net_rss_init(struct nfp_net *nn)
3119 {
3120 netdev_rss_key_fill(nn->rss_key, NFP_NET_CFG_RSS_KEY_SZ);
3121
3122 nfp_net_rss_init_itbl(nn);
3123
3124 /* Enable IPv4/IPv6 TCP by default */
3125 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3126 NFP_NET_CFG_RSS_IPV6_TCP |
3127 NFP_NET_CFG_RSS_TOEPLITZ |
3128 NFP_NET_CFG_RSS_MASK;
3129 }
3130
3131 /**
3132 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3133 * @nn: NFP Net device to reconfigure
3134 */
3135 static void nfp_net_irqmod_init(struct nfp_net *nn)
3136 {
3137 nn->rx_coalesce_usecs = 50;
3138 nn->rx_coalesce_max_frames = 64;
3139 nn->tx_coalesce_usecs = 50;
3140 nn->tx_coalesce_max_frames = 64;
3141 }
3142
3143 /**
3144 * nfp_net_netdev_init() - Initialise/finalise the netdev structure
3145 * @netdev: netdev structure
3146 *
3147 * Return: 0 on success or negative errno on error.
3148 */
3149 int nfp_net_netdev_init(struct net_device *netdev)
3150 {
3151 struct nfp_net *nn = netdev_priv(netdev);
3152 int err;
3153
3154 /* Get some of the read-only fields from the BAR */
3155 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3156 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3157
3158 nfp_net_write_mac_addr(nn);
3159
3160 /* Determine RX packet/metadata boundary offset */
3161 if (nn->fw_ver.major >= 2)
3162 nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3163 else
3164 nn->rx_offset = NFP_NET_RX_OFFSET;
3165
3166 /* Set default MTU and Freelist buffer size */
3167 if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
3168 netdev->mtu = nn->max_mtu;
3169 else
3170 netdev->mtu = NFP_NET_DEFAULT_MTU;
3171 nn->fl_bufsz = nfp_net_calc_fl_bufsz(nn, netdev->mtu);
3172
3173 /* Advertise/enable offloads based on capabilities
3174 *
3175 * Note: netdev->features show the currently enabled features
3176 * and netdev->hw_features advertises which features are
3177 * supported. By default we enable most features.
3178 */
3179 netdev->hw_features = NETIF_F_HIGHDMA;
3180 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) {
3181 netdev->hw_features |= NETIF_F_RXCSUM;
3182 nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM;
3183 }
3184 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3185 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3186 nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3187 }
3188 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3189 netdev->hw_features |= NETIF_F_SG;
3190 nn->ctrl |= NFP_NET_CFG_CTRL_GATHER;
3191 }
3192 if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) {
3193 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3194 nn->ctrl |= NFP_NET_CFG_CTRL_LSO;
3195 }
3196 if (nn->cap & NFP_NET_CFG_CTRL_RSS) {
3197 netdev->hw_features |= NETIF_F_RXHASH;
3198 nfp_net_rss_init(nn);
3199 nn->ctrl |= NFP_NET_CFG_CTRL_RSS;
3200 }
3201 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
3202 nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3203 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3204 netdev->hw_features |= NETIF_F_GSO_GRE |
3205 NETIF_F_GSO_UDP_TUNNEL;
3206 nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3207
3208 netdev->hw_enc_features = netdev->hw_features;
3209 }
3210
3211 netdev->vlan_features = netdev->hw_features;
3212
3213 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3214 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3215 nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3216 }
3217 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3218 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3219 nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3220 }
3221
3222 netdev->features = netdev->hw_features;
3223
3224 if (nfp_net_ebpf_capable(nn))
3225 netdev->hw_features |= NETIF_F_HW_TC;
3226
3227 /* Advertise but disable TSO by default. */
3228 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3229
3230 /* Allow L2 Broadcast and Multicast through by default, if supported */
3231 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3232 nn->ctrl |= NFP_NET_CFG_CTRL_L2BC;
3233 if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3234 nn->ctrl |= NFP_NET_CFG_CTRL_L2MC;
3235
3236 /* Allow IRQ moderation, if supported */
3237 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3238 nfp_net_irqmod_init(nn);
3239 nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3240 }
3241
3242 /* Stash the re-configuration queue away. First odd queue in TX Bar */
3243 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3244
3245 /* Make sure the FW knows the netdev is supposed to be disabled here */
3246 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3247 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3248 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3249 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3250 NFP_NET_CFG_UPDATE_GEN);
3251 if (err)
3252 return err;
3253
3254 /* Finalise the netdev setup */
3255 netdev->netdev_ops = &nfp_net_netdev_ops;
3256 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3257
3258 /* MTU range: 68 - hw-specific max */
3259 netdev->min_mtu = ETH_MIN_MTU;
3260 netdev->max_mtu = nn->max_mtu;
3261
3262 netif_carrier_off(netdev);
3263
3264 nfp_net_set_ethtool_ops(netdev);
3265 nfp_net_vecs_init(netdev);
3266
3267 return register_netdev(netdev);
3268 }
3269
3270 /**
3271 * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did.
3272 * @netdev: netdev structure
3273 */
3274 void nfp_net_netdev_clean(struct net_device *netdev)
3275 {
3276 struct nfp_net *nn = netdev_priv(netdev);
3277
3278 if (nn->xdp_prog)
3279 bpf_prog_put(nn->xdp_prog);
3280 if (nn->bpf_offload_xdp)
3281 nfp_net_xdp_offload(nn, NULL);
3282 unregister_netdev(nn->netdev);
3283 }