]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/netronome/nfp/nfp_net_common.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / netronome / nfp / nfp_net_common.c
1 /*
2 * Copyright (C) 2015-2017 Netronome Systems, Inc.
3 *
4 * This software is dual licensed under the GNU General License Version 2,
5 * June 1991 as shown in the file COPYING in the top-level directory of this
6 * source tree or the BSD 2-Clause License provided below. You have the
7 * option to license this software under the complete terms of either license.
8 *
9 * The BSD 2-Clause License:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * 1. Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * 2. Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 /*
35 * nfp_net_common.c
36 * Netronome network device driver: Common functions between PF and VF
37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
38 * Jason McMullan <jason.mcmullan@netronome.com>
39 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
40 * Brad Petrus <brad.petrus@netronome.com>
41 * Chris Telfer <chris.telfer@netronome.com>
42 */
43
44 #include <linux/bitfield.h>
45 #include <linux/bpf.h>
46 #include <linux/bpf_trace.h>
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/init.h>
50 #include <linux/fs.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/interrupt.h>
54 #include <linux/ip.h>
55 #include <linux/ipv6.h>
56 #include <linux/page_ref.h>
57 #include <linux/pci.h>
58 #include <linux/pci_regs.h>
59 #include <linux/msi.h>
60 #include <linux/ethtool.h>
61 #include <linux/log2.h>
62 #include <linux/if_vlan.h>
63 #include <linux/random.h>
64 #include <linux/vmalloc.h>
65 #include <linux/ktime.h>
66
67 #include <net/switchdev.h>
68 #include <net/vxlan.h>
69
70 #include "nfpcore/nfp_nsp.h"
71 #include "nfp_app.h"
72 #include "nfp_net_ctrl.h"
73 #include "nfp_net.h"
74 #include "nfp_port.h"
75
76 /**
77 * nfp_net_get_fw_version() - Read and parse the FW version
78 * @fw_ver: Output fw_version structure to read to
79 * @ctrl_bar: Mapped address of the control BAR
80 */
81 void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
82 void __iomem *ctrl_bar)
83 {
84 u32 reg;
85
86 reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
87 put_unaligned_le32(reg, fw_ver);
88 }
89
90 static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
91 {
92 return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
93 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
94 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
95 }
96
97 static void
98 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
99 {
100 dma_sync_single_for_device(dp->dev, dma_addr,
101 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
102 dp->rx_dma_dir);
103 }
104
105 static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
106 {
107 dma_unmap_single_attrs(dp->dev, dma_addr,
108 dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
109 dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
110 }
111
112 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
113 unsigned int len)
114 {
115 dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
116 len, dp->rx_dma_dir);
117 }
118
119 /* Firmware reconfig
120 *
121 * Firmware reconfig may take a while so we have two versions of it -
122 * synchronous and asynchronous (posted). All synchronous callers are holding
123 * RTNL so we don't have to worry about serializing them.
124 */
125 static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
126 {
127 nn_writel(nn, NFP_NET_CFG_UPDATE, update);
128 /* ensure update is written before pinging HW */
129 nn_pci_flush(nn);
130 nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
131 }
132
133 /* Pass 0 as update to run posted reconfigs. */
134 static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
135 {
136 update |= nn->reconfig_posted;
137 nn->reconfig_posted = 0;
138
139 nfp_net_reconfig_start(nn, update);
140
141 nn->reconfig_timer_active = true;
142 mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
143 }
144
145 static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
146 {
147 u32 reg;
148
149 reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
150 if (reg == 0)
151 return true;
152 if (reg & NFP_NET_CFG_UPDATE_ERR) {
153 nn_err(nn, "Reconfig error: 0x%08x\n", reg);
154 return true;
155 } else if (last_check) {
156 nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
157 return true;
158 }
159
160 return false;
161 }
162
163 static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
164 {
165 bool timed_out = false;
166
167 /* Poll update field, waiting for NFP to ack the config */
168 while (!nfp_net_reconfig_check_done(nn, timed_out)) {
169 msleep(1);
170 timed_out = time_is_before_eq_jiffies(deadline);
171 }
172
173 if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
174 return -EIO;
175
176 return timed_out ? -EIO : 0;
177 }
178
179 static void nfp_net_reconfig_timer(unsigned long data)
180 {
181 struct nfp_net *nn = (void *)data;
182
183 spin_lock_bh(&nn->reconfig_lock);
184
185 nn->reconfig_timer_active = false;
186
187 /* If sync caller is present it will take over from us */
188 if (nn->reconfig_sync_present)
189 goto done;
190
191 /* Read reconfig status and report errors */
192 nfp_net_reconfig_check_done(nn, true);
193
194 if (nn->reconfig_posted)
195 nfp_net_reconfig_start_async(nn, 0);
196 done:
197 spin_unlock_bh(&nn->reconfig_lock);
198 }
199
200 /**
201 * nfp_net_reconfig_post() - Post async reconfig request
202 * @nn: NFP Net device to reconfigure
203 * @update: The value for the update field in the BAR config
204 *
205 * Record FW reconfiguration request. Reconfiguration will be kicked off
206 * whenever reconfiguration machinery is idle. Multiple requests can be
207 * merged together!
208 */
209 static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
210 {
211 spin_lock_bh(&nn->reconfig_lock);
212
213 /* Sync caller will kick off async reconf when it's done, just post */
214 if (nn->reconfig_sync_present) {
215 nn->reconfig_posted |= update;
216 goto done;
217 }
218
219 /* Opportunistically check if the previous command is done */
220 if (!nn->reconfig_timer_active ||
221 nfp_net_reconfig_check_done(nn, false))
222 nfp_net_reconfig_start_async(nn, update);
223 else
224 nn->reconfig_posted |= update;
225 done:
226 spin_unlock_bh(&nn->reconfig_lock);
227 }
228
229 /**
230 * nfp_net_reconfig() - Reconfigure the firmware
231 * @nn: NFP Net device to reconfigure
232 * @update: The value for the update field in the BAR config
233 *
234 * Write the update word to the BAR and ping the reconfig queue. The
235 * poll until the firmware has acknowledged the update by zeroing the
236 * update word.
237 *
238 * Return: Negative errno on error, 0 on success
239 */
240 int nfp_net_reconfig(struct nfp_net *nn, u32 update)
241 {
242 bool cancelled_timer = false;
243 u32 pre_posted_requests;
244 int ret;
245
246 spin_lock_bh(&nn->reconfig_lock);
247
248 nn->reconfig_sync_present = true;
249
250 if (nn->reconfig_timer_active) {
251 del_timer(&nn->reconfig_timer);
252 nn->reconfig_timer_active = false;
253 cancelled_timer = true;
254 }
255 pre_posted_requests = nn->reconfig_posted;
256 nn->reconfig_posted = 0;
257
258 spin_unlock_bh(&nn->reconfig_lock);
259
260 if (cancelled_timer)
261 nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
262
263 /* Run the posted reconfigs which were issued before we started */
264 if (pre_posted_requests) {
265 nfp_net_reconfig_start(nn, pre_posted_requests);
266 nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
267 }
268
269 nfp_net_reconfig_start(nn, update);
270 ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
271
272 spin_lock_bh(&nn->reconfig_lock);
273
274 if (nn->reconfig_posted)
275 nfp_net_reconfig_start_async(nn, 0);
276
277 nn->reconfig_sync_present = false;
278
279 spin_unlock_bh(&nn->reconfig_lock);
280
281 return ret;
282 }
283
284 /**
285 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox
286 * @nn: NFP Net device to reconfigure
287 * @mbox_cmd: The value for the mailbox command
288 *
289 * Helper function for mailbox updates
290 *
291 * Return: Negative errno on error, 0 on success
292 */
293 static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd)
294 {
295 int ret;
296
297 nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd);
298
299 ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
300 if (ret) {
301 nn_err(nn, "Mailbox update error\n");
302 return ret;
303 }
304
305 return -nn_readl(nn, NFP_NET_CFG_MBOX_RET);
306 }
307
308 /* Interrupt configuration and handling
309 */
310
311 /**
312 * nfp_net_irq_unmask() - Unmask automasked interrupt
313 * @nn: NFP Network structure
314 * @entry_nr: MSI-X table entry
315 *
316 * Clear the ICR for the IRQ entry.
317 */
318 static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
319 {
320 nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
321 nn_pci_flush(nn);
322 }
323
324 /**
325 * nfp_net_irqs_alloc() - allocates MSI-X irqs
326 * @pdev: PCI device structure
327 * @irq_entries: Array to be initialized and used to hold the irq entries
328 * @min_irqs: Minimal acceptable number of interrupts
329 * @wanted_irqs: Target number of interrupts to allocate
330 *
331 * Return: Number of irqs obtained or 0 on error.
332 */
333 unsigned int
334 nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
335 unsigned int min_irqs, unsigned int wanted_irqs)
336 {
337 unsigned int i;
338 int got_irqs;
339
340 for (i = 0; i < wanted_irqs; i++)
341 irq_entries[i].entry = i;
342
343 got_irqs = pci_enable_msix_range(pdev, irq_entries,
344 min_irqs, wanted_irqs);
345 if (got_irqs < 0) {
346 dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
347 min_irqs, wanted_irqs, got_irqs);
348 return 0;
349 }
350
351 if (got_irqs < wanted_irqs)
352 dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
353 wanted_irqs, got_irqs);
354
355 return got_irqs;
356 }
357
358 /**
359 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
360 * @nn: NFP Network structure
361 * @irq_entries: Table of allocated interrupts
362 * @n: Size of @irq_entries (number of entries to grab)
363 *
364 * After interrupts are allocated with nfp_net_irqs_alloc() this function
365 * should be called to assign them to a specific netdev (port).
366 */
367 void
368 nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
369 unsigned int n)
370 {
371 struct nfp_net_dp *dp = &nn->dp;
372
373 nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
374 dp->num_r_vecs = nn->max_r_vecs;
375
376 memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
377
378 if (dp->num_rx_rings > dp->num_r_vecs ||
379 dp->num_tx_rings > dp->num_r_vecs)
380 dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
381 dp->num_rx_rings, dp->num_tx_rings,
382 dp->num_r_vecs);
383
384 dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
385 dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
386 dp->num_stack_tx_rings = dp->num_tx_rings;
387 }
388
389 /**
390 * nfp_net_irqs_disable() - Disable interrupts
391 * @pdev: PCI device structure
392 *
393 * Undoes what @nfp_net_irqs_alloc() does.
394 */
395 void nfp_net_irqs_disable(struct pci_dev *pdev)
396 {
397 pci_disable_msix(pdev);
398 }
399
400 /**
401 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
402 * @irq: Interrupt
403 * @data: Opaque data structure
404 *
405 * Return: Indicate if the interrupt has been handled.
406 */
407 static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
408 {
409 struct nfp_net_r_vector *r_vec = data;
410
411 napi_schedule_irqoff(&r_vec->napi);
412
413 /* The FW auto-masks any interrupt, either via the MASK bit in
414 * the MSI-X table or via the per entry ICR field. So there
415 * is no need to disable interrupts here.
416 */
417 return IRQ_HANDLED;
418 }
419
420 static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
421 {
422 struct nfp_net_r_vector *r_vec = data;
423
424 tasklet_schedule(&r_vec->tasklet);
425
426 return IRQ_HANDLED;
427 }
428
429 /**
430 * nfp_net_read_link_status() - Reread link status from control BAR
431 * @nn: NFP Network structure
432 */
433 static void nfp_net_read_link_status(struct nfp_net *nn)
434 {
435 unsigned long flags;
436 bool link_up;
437 u32 sts;
438
439 spin_lock_irqsave(&nn->link_status_lock, flags);
440
441 sts = nn_readl(nn, NFP_NET_CFG_STS);
442 link_up = !!(sts & NFP_NET_CFG_STS_LINK);
443
444 if (nn->link_up == link_up)
445 goto out;
446
447 nn->link_up = link_up;
448 if (nn->port)
449 set_bit(NFP_PORT_CHANGED, &nn->port->flags);
450
451 if (nn->link_up) {
452 netif_carrier_on(nn->dp.netdev);
453 netdev_info(nn->dp.netdev, "NIC Link is Up\n");
454 } else {
455 netif_carrier_off(nn->dp.netdev);
456 netdev_info(nn->dp.netdev, "NIC Link is Down\n");
457 }
458 out:
459 spin_unlock_irqrestore(&nn->link_status_lock, flags);
460 }
461
462 /**
463 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
464 * @irq: Interrupt
465 * @data: Opaque data structure
466 *
467 * Return: Indicate if the interrupt has been handled.
468 */
469 static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
470 {
471 struct nfp_net *nn = data;
472 struct msix_entry *entry;
473
474 entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
475
476 nfp_net_read_link_status(nn);
477
478 nfp_net_irq_unmask(nn, entry->entry);
479
480 return IRQ_HANDLED;
481 }
482
483 /**
484 * nfp_net_irq_exn() - Interrupt service routine for exceptions
485 * @irq: Interrupt
486 * @data: Opaque data structure
487 *
488 * Return: Indicate if the interrupt has been handled.
489 */
490 static irqreturn_t nfp_net_irq_exn(int irq, void *data)
491 {
492 struct nfp_net *nn = data;
493
494 nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
495 /* XXX TO BE IMPLEMENTED */
496 return IRQ_HANDLED;
497 }
498
499 /**
500 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
501 * @tx_ring: TX ring structure
502 * @r_vec: IRQ vector servicing this ring
503 * @idx: Ring index
504 * @is_xdp: Is this an XDP TX ring?
505 */
506 static void
507 nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
508 struct nfp_net_r_vector *r_vec, unsigned int idx,
509 bool is_xdp)
510 {
511 struct nfp_net *nn = r_vec->nfp_net;
512
513 tx_ring->idx = idx;
514 tx_ring->r_vec = r_vec;
515 tx_ring->is_xdp = is_xdp;
516 u64_stats_init(&tx_ring->r_vec->tx_sync);
517
518 tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
519 tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
520 }
521
522 /**
523 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
524 * @rx_ring: RX ring structure
525 * @r_vec: IRQ vector servicing this ring
526 * @idx: Ring index
527 */
528 static void
529 nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
530 struct nfp_net_r_vector *r_vec, unsigned int idx)
531 {
532 struct nfp_net *nn = r_vec->nfp_net;
533
534 rx_ring->idx = idx;
535 rx_ring->r_vec = r_vec;
536 u64_stats_init(&rx_ring->r_vec->rx_sync);
537
538 rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
539 rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
540 }
541
542 /**
543 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
544 * @nn: NFP Network structure
545 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
546 * @format: printf-style format to construct the interrupt name
547 * @name: Pointer to allocated space for interrupt name
548 * @name_sz: Size of space for interrupt name
549 * @vector_idx: Index of MSI-X vector used for this interrupt
550 * @handler: IRQ handler to register for this interrupt
551 */
552 static int
553 nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
554 const char *format, char *name, size_t name_sz,
555 unsigned int vector_idx, irq_handler_t handler)
556 {
557 struct msix_entry *entry;
558 int err;
559
560 entry = &nn->irq_entries[vector_idx];
561
562 snprintf(name, name_sz, format, nfp_net_name(nn));
563 err = request_irq(entry->vector, handler, 0, name, nn);
564 if (err) {
565 nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
566 entry->vector, err);
567 return err;
568 }
569 nn_writeb(nn, ctrl_offset, entry->entry);
570
571 return 0;
572 }
573
574 /**
575 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
576 * @nn: NFP Network structure
577 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
578 * @vector_idx: Index of MSI-X vector used for this interrupt
579 */
580 static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
581 unsigned int vector_idx)
582 {
583 nn_writeb(nn, ctrl_offset, 0xff);
584 free_irq(nn->irq_entries[vector_idx].vector, nn);
585 }
586
587 /* Transmit
588 *
589 * One queue controller peripheral queue is used for transmit. The
590 * driver en-queues packets for transmit by advancing the write
591 * pointer. The device indicates that packets have transmitted by
592 * advancing the read pointer. The driver maintains a local copy of
593 * the read and write pointer in @struct nfp_net_tx_ring. The driver
594 * keeps @wr_p in sync with the queue controller write pointer and can
595 * determine how many packets have been transmitted by comparing its
596 * copy of the read pointer @rd_p with the read pointer maintained by
597 * the queue controller peripheral.
598 */
599
600 /**
601 * nfp_net_tx_full() - Check if the TX ring is full
602 * @tx_ring: TX ring to check
603 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
604 *
605 * This function checks, based on the *host copy* of read/write
606 * pointer if a given TX ring is full. The real TX queue may have
607 * some newly made available slots.
608 *
609 * Return: True if the ring is full.
610 */
611 static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
612 {
613 return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
614 }
615
616 /* Wrappers for deciding when to stop and restart TX queues */
617 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
618 {
619 return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
620 }
621
622 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
623 {
624 return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
625 }
626
627 /**
628 * nfp_net_tx_ring_stop() - stop tx ring
629 * @nd_q: netdev queue
630 * @tx_ring: driver tx queue structure
631 *
632 * Safely stop TX ring. Remember that while we are running .start_xmit()
633 * someone else may be cleaning the TX ring completions so we need to be
634 * extra careful here.
635 */
636 static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
637 struct nfp_net_tx_ring *tx_ring)
638 {
639 netif_tx_stop_queue(nd_q);
640
641 /* We can race with the TX completion out of NAPI so recheck */
642 smp_mb();
643 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
644 netif_tx_start_queue(nd_q);
645 }
646
647 /**
648 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
649 * @r_vec: per-ring structure
650 * @txbuf: Pointer to driver soft TX descriptor
651 * @txd: Pointer to HW TX descriptor
652 * @skb: Pointer to SKB
653 *
654 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
655 * Return error on packet header greater than maximum supported LSO header size.
656 */
657 static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
658 struct nfp_net_tx_buf *txbuf,
659 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
660 {
661 u32 hdrlen;
662 u16 mss;
663
664 if (!skb_is_gso(skb))
665 return;
666
667 if (!skb->encapsulation) {
668 txd->l3_offset = skb_network_offset(skb);
669 txd->l4_offset = skb_transport_offset(skb);
670 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
671 } else {
672 txd->l3_offset = skb_inner_network_offset(skb);
673 txd->l4_offset = skb_inner_transport_offset(skb);
674 hdrlen = skb_inner_transport_header(skb) - skb->data +
675 inner_tcp_hdrlen(skb);
676 }
677
678 txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
679 txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
680
681 mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
682 txd->lso_hdrlen = hdrlen;
683 txd->mss = cpu_to_le16(mss);
684 txd->flags |= PCIE_DESC_TX_LSO;
685
686 u64_stats_update_begin(&r_vec->tx_sync);
687 r_vec->tx_lso++;
688 u64_stats_update_end(&r_vec->tx_sync);
689 }
690
691 /**
692 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
693 * @dp: NFP Net data path struct
694 * @r_vec: per-ring structure
695 * @txbuf: Pointer to driver soft TX descriptor
696 * @txd: Pointer to TX descriptor
697 * @skb: Pointer to SKB
698 *
699 * This function sets the TX checksum flags in the TX descriptor based
700 * on the configuration and the protocol of the packet to be transmitted.
701 */
702 static void nfp_net_tx_csum(struct nfp_net_dp *dp,
703 struct nfp_net_r_vector *r_vec,
704 struct nfp_net_tx_buf *txbuf,
705 struct nfp_net_tx_desc *txd, struct sk_buff *skb)
706 {
707 struct ipv6hdr *ipv6h;
708 struct iphdr *iph;
709 u8 l4_hdr;
710
711 if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
712 return;
713
714 if (skb->ip_summed != CHECKSUM_PARTIAL)
715 return;
716
717 txd->flags |= PCIE_DESC_TX_CSUM;
718 if (skb->encapsulation)
719 txd->flags |= PCIE_DESC_TX_ENCAP;
720
721 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
722 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
723
724 if (iph->version == 4) {
725 txd->flags |= PCIE_DESC_TX_IP4_CSUM;
726 l4_hdr = iph->protocol;
727 } else if (ipv6h->version == 6) {
728 l4_hdr = ipv6h->nexthdr;
729 } else {
730 nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
731 return;
732 }
733
734 switch (l4_hdr) {
735 case IPPROTO_TCP:
736 txd->flags |= PCIE_DESC_TX_TCP_CSUM;
737 break;
738 case IPPROTO_UDP:
739 txd->flags |= PCIE_DESC_TX_UDP_CSUM;
740 break;
741 default:
742 nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
743 return;
744 }
745
746 u64_stats_update_begin(&r_vec->tx_sync);
747 if (skb->encapsulation)
748 r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
749 else
750 r_vec->hw_csum_tx += txbuf->pkt_cnt;
751 u64_stats_update_end(&r_vec->tx_sync);
752 }
753
754 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
755 {
756 wmb();
757 nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
758 tx_ring->wr_ptr_add = 0;
759 }
760
761 static int nfp_net_prep_port_id(struct sk_buff *skb)
762 {
763 struct metadata_dst *md_dst = skb_metadata_dst(skb);
764 unsigned char *data;
765
766 if (likely(!md_dst))
767 return 0;
768 if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
769 return 0;
770
771 if (unlikely(skb_cow_head(skb, 8)))
772 return -ENOMEM;
773
774 data = skb_push(skb, 8);
775 put_unaligned_be32(NFP_NET_META_PORTID, data);
776 put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
777
778 return 8;
779 }
780
781 /**
782 * nfp_net_tx() - Main transmit entry point
783 * @skb: SKB to transmit
784 * @netdev: netdev structure
785 *
786 * Return: NETDEV_TX_OK on success.
787 */
788 static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
789 {
790 struct nfp_net *nn = netdev_priv(netdev);
791 const struct skb_frag_struct *frag;
792 struct nfp_net_tx_desc *txd, txdg;
793 int f, nr_frags, wr_idx, md_bytes;
794 struct nfp_net_tx_ring *tx_ring;
795 struct nfp_net_r_vector *r_vec;
796 struct nfp_net_tx_buf *txbuf;
797 struct netdev_queue *nd_q;
798 struct nfp_net_dp *dp;
799 dma_addr_t dma_addr;
800 unsigned int fsize;
801 u16 qidx;
802
803 dp = &nn->dp;
804 qidx = skb_get_queue_mapping(skb);
805 tx_ring = &dp->tx_rings[qidx];
806 r_vec = tx_ring->r_vec;
807 nd_q = netdev_get_tx_queue(dp->netdev, qidx);
808
809 nr_frags = skb_shinfo(skb)->nr_frags;
810
811 if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
812 nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
813 qidx, tx_ring->wr_p, tx_ring->rd_p);
814 netif_tx_stop_queue(nd_q);
815 nfp_net_tx_xmit_more_flush(tx_ring);
816 u64_stats_update_begin(&r_vec->tx_sync);
817 r_vec->tx_busy++;
818 u64_stats_update_end(&r_vec->tx_sync);
819 return NETDEV_TX_BUSY;
820 }
821
822 md_bytes = nfp_net_prep_port_id(skb);
823 if (unlikely(md_bytes < 0)) {
824 nfp_net_tx_xmit_more_flush(tx_ring);
825 dev_kfree_skb_any(skb);
826 return NETDEV_TX_OK;
827 }
828
829 /* Start with the head skbuf */
830 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
831 DMA_TO_DEVICE);
832 if (dma_mapping_error(dp->dev, dma_addr))
833 goto err_free;
834
835 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
836
837 /* Stash the soft descriptor of the head then initialize it */
838 txbuf = &tx_ring->txbufs[wr_idx];
839 txbuf->skb = skb;
840 txbuf->dma_addr = dma_addr;
841 txbuf->fidx = -1;
842 txbuf->pkt_cnt = 1;
843 txbuf->real_len = skb->len;
844
845 /* Build TX descriptor */
846 txd = &tx_ring->txds[wr_idx];
847 txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
848 txd->dma_len = cpu_to_le16(skb_headlen(skb));
849 nfp_desc_set_dma_addr(txd, dma_addr);
850 txd->data_len = cpu_to_le16(skb->len);
851
852 txd->flags = 0;
853 txd->mss = 0;
854 txd->lso_hdrlen = 0;
855
856 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
857 nfp_net_tx_tso(r_vec, txbuf, txd, skb);
858 nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
859 if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
860 txd->flags |= PCIE_DESC_TX_VLAN;
861 txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
862 }
863
864 /* Gather DMA */
865 if (nr_frags > 0) {
866 /* all descs must match except for in addr, length and eop */
867 txdg = *txd;
868
869 for (f = 0; f < nr_frags; f++) {
870 frag = &skb_shinfo(skb)->frags[f];
871 fsize = skb_frag_size(frag);
872
873 dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
874 fsize, DMA_TO_DEVICE);
875 if (dma_mapping_error(dp->dev, dma_addr))
876 goto err_unmap;
877
878 wr_idx = D_IDX(tx_ring, wr_idx + 1);
879 tx_ring->txbufs[wr_idx].skb = skb;
880 tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
881 tx_ring->txbufs[wr_idx].fidx = f;
882
883 txd = &tx_ring->txds[wr_idx];
884 *txd = txdg;
885 txd->dma_len = cpu_to_le16(fsize);
886 nfp_desc_set_dma_addr(txd, dma_addr);
887 txd->offset_eop |=
888 (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
889 }
890
891 u64_stats_update_begin(&r_vec->tx_sync);
892 r_vec->tx_gather++;
893 u64_stats_update_end(&r_vec->tx_sync);
894 }
895
896 netdev_tx_sent_queue(nd_q, txbuf->real_len);
897
898 tx_ring->wr_p += nr_frags + 1;
899 if (nfp_net_tx_ring_should_stop(tx_ring))
900 nfp_net_tx_ring_stop(nd_q, tx_ring);
901
902 tx_ring->wr_ptr_add += nr_frags + 1;
903 if (!skb->xmit_more || netif_xmit_stopped(nd_q))
904 nfp_net_tx_xmit_more_flush(tx_ring);
905
906 skb_tx_timestamp(skb);
907
908 return NETDEV_TX_OK;
909
910 err_unmap:
911 while (--f >= 0) {
912 frag = &skb_shinfo(skb)->frags[f];
913 dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
914 skb_frag_size(frag), DMA_TO_DEVICE);
915 tx_ring->txbufs[wr_idx].skb = NULL;
916 tx_ring->txbufs[wr_idx].dma_addr = 0;
917 tx_ring->txbufs[wr_idx].fidx = -2;
918 wr_idx = wr_idx - 1;
919 if (wr_idx < 0)
920 wr_idx += tx_ring->cnt;
921 }
922 dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
923 skb_headlen(skb), DMA_TO_DEVICE);
924 tx_ring->txbufs[wr_idx].skb = NULL;
925 tx_ring->txbufs[wr_idx].dma_addr = 0;
926 tx_ring->txbufs[wr_idx].fidx = -2;
927 err_free:
928 nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
929 nfp_net_tx_xmit_more_flush(tx_ring);
930 u64_stats_update_begin(&r_vec->tx_sync);
931 r_vec->tx_errors++;
932 u64_stats_update_end(&r_vec->tx_sync);
933 dev_kfree_skb_any(skb);
934 return NETDEV_TX_OK;
935 }
936
937 /**
938 * nfp_net_tx_complete() - Handled completed TX packets
939 * @tx_ring: TX ring structure
940 *
941 * Return: Number of completed TX descriptors
942 */
943 static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
944 {
945 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
946 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
947 const struct skb_frag_struct *frag;
948 struct netdev_queue *nd_q;
949 u32 done_pkts = 0, done_bytes = 0;
950 struct sk_buff *skb;
951 int todo, nr_frags;
952 u32 qcp_rd_p;
953 int fidx;
954 int idx;
955
956 if (tx_ring->wr_p == tx_ring->rd_p)
957 return;
958
959 /* Work out how many descriptors have been transmitted */
960 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
961
962 if (qcp_rd_p == tx_ring->qcp_rd_p)
963 return;
964
965 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
966
967 while (todo--) {
968 idx = D_IDX(tx_ring, tx_ring->rd_p++);
969
970 skb = tx_ring->txbufs[idx].skb;
971 if (!skb)
972 continue;
973
974 nr_frags = skb_shinfo(skb)->nr_frags;
975 fidx = tx_ring->txbufs[idx].fidx;
976
977 if (fidx == -1) {
978 /* unmap head */
979 dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
980 skb_headlen(skb), DMA_TO_DEVICE);
981
982 done_pkts += tx_ring->txbufs[idx].pkt_cnt;
983 done_bytes += tx_ring->txbufs[idx].real_len;
984 } else {
985 /* unmap fragment */
986 frag = &skb_shinfo(skb)->frags[fidx];
987 dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
988 skb_frag_size(frag), DMA_TO_DEVICE);
989 }
990
991 /* check for last gather fragment */
992 if (fidx == nr_frags - 1)
993 dev_kfree_skb_any(skb);
994
995 tx_ring->txbufs[idx].dma_addr = 0;
996 tx_ring->txbufs[idx].skb = NULL;
997 tx_ring->txbufs[idx].fidx = -2;
998 }
999
1000 tx_ring->qcp_rd_p = qcp_rd_p;
1001
1002 u64_stats_update_begin(&r_vec->tx_sync);
1003 r_vec->tx_bytes += done_bytes;
1004 r_vec->tx_pkts += done_pkts;
1005 u64_stats_update_end(&r_vec->tx_sync);
1006
1007 if (!dp->netdev)
1008 return;
1009
1010 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1011 netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1012 if (nfp_net_tx_ring_should_wake(tx_ring)) {
1013 /* Make sure TX thread will see updated tx_ring->rd_p */
1014 smp_mb();
1015
1016 if (unlikely(netif_tx_queue_stopped(nd_q)))
1017 netif_tx_wake_queue(nd_q);
1018 }
1019
1020 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1021 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1022 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1023 }
1024
1025 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1026 {
1027 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1028 u32 done_pkts = 0, done_bytes = 0;
1029 bool done_all;
1030 int idx, todo;
1031 u32 qcp_rd_p;
1032
1033 /* Work out how many descriptors have been transmitted */
1034 qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1035
1036 if (qcp_rd_p == tx_ring->qcp_rd_p)
1037 return true;
1038
1039 todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1040
1041 done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1042 todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1043
1044 tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1045
1046 done_pkts = todo;
1047 while (todo--) {
1048 idx = D_IDX(tx_ring, tx_ring->rd_p);
1049 tx_ring->rd_p++;
1050
1051 done_bytes += tx_ring->txbufs[idx].real_len;
1052 }
1053
1054 u64_stats_update_begin(&r_vec->tx_sync);
1055 r_vec->tx_bytes += done_bytes;
1056 r_vec->tx_pkts += done_pkts;
1057 u64_stats_update_end(&r_vec->tx_sync);
1058
1059 WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1060 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1061 tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1062
1063 return done_all;
1064 }
1065
1066 /**
1067 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1068 * @dp: NFP Net data path struct
1069 * @tx_ring: TX ring structure
1070 *
1071 * Assumes that the device is stopped
1072 */
1073 static void
1074 nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1075 {
1076 const struct skb_frag_struct *frag;
1077 struct netdev_queue *nd_q;
1078
1079 while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1080 struct nfp_net_tx_buf *tx_buf;
1081 struct sk_buff *skb;
1082 int idx, nr_frags;
1083
1084 idx = D_IDX(tx_ring, tx_ring->rd_p);
1085 tx_buf = &tx_ring->txbufs[idx];
1086
1087 skb = tx_ring->txbufs[idx].skb;
1088 nr_frags = skb_shinfo(skb)->nr_frags;
1089
1090 if (tx_buf->fidx == -1) {
1091 /* unmap head */
1092 dma_unmap_single(dp->dev, tx_buf->dma_addr,
1093 skb_headlen(skb), DMA_TO_DEVICE);
1094 } else {
1095 /* unmap fragment */
1096 frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1097 dma_unmap_page(dp->dev, tx_buf->dma_addr,
1098 skb_frag_size(frag), DMA_TO_DEVICE);
1099 }
1100
1101 /* check for last gather fragment */
1102 if (tx_buf->fidx == nr_frags - 1)
1103 dev_kfree_skb_any(skb);
1104
1105 tx_buf->dma_addr = 0;
1106 tx_buf->skb = NULL;
1107 tx_buf->fidx = -2;
1108
1109 tx_ring->qcp_rd_p++;
1110 tx_ring->rd_p++;
1111 }
1112
1113 memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1114 tx_ring->wr_p = 0;
1115 tx_ring->rd_p = 0;
1116 tx_ring->qcp_rd_p = 0;
1117 tx_ring->wr_ptr_add = 0;
1118
1119 if (tx_ring->is_xdp || !dp->netdev)
1120 return;
1121
1122 nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1123 netdev_tx_reset_queue(nd_q);
1124 }
1125
1126 static void nfp_net_tx_timeout(struct net_device *netdev)
1127 {
1128 struct nfp_net *nn = netdev_priv(netdev);
1129 int i;
1130
1131 for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1132 if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1133 continue;
1134 nn_warn(nn, "TX timeout on ring: %d\n", i);
1135 }
1136 nn_warn(nn, "TX watchdog timeout\n");
1137 }
1138
1139 /* Receive processing
1140 */
1141 static unsigned int
1142 nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1143 {
1144 unsigned int fl_bufsz;
1145
1146 fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1147 fl_bufsz += dp->rx_dma_off;
1148 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1149 fl_bufsz += NFP_NET_MAX_PREPEND;
1150 else
1151 fl_bufsz += dp->rx_offset;
1152 fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1153
1154 fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1155 fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1156
1157 return fl_bufsz;
1158 }
1159
1160 static void
1161 nfp_net_free_frag(void *frag, bool xdp)
1162 {
1163 if (!xdp)
1164 skb_free_frag(frag);
1165 else
1166 __free_page(virt_to_page(frag));
1167 }
1168
1169 /**
1170 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1171 * @dp: NFP Net data path struct
1172 * @dma_addr: Pointer to storage for DMA address (output param)
1173 *
1174 * This function will allcate a new page frag, map it for DMA.
1175 *
1176 * Return: allocated page frag or NULL on failure.
1177 */
1178 static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1179 {
1180 void *frag;
1181
1182 if (!dp->xdp_prog)
1183 frag = netdev_alloc_frag(dp->fl_bufsz);
1184 else
1185 frag = page_address(alloc_page(GFP_KERNEL | __GFP_COLD));
1186 if (!frag) {
1187 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1188 return NULL;
1189 }
1190
1191 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1192 if (dma_mapping_error(dp->dev, *dma_addr)) {
1193 nfp_net_free_frag(frag, dp->xdp_prog);
1194 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1195 return NULL;
1196 }
1197
1198 return frag;
1199 }
1200
1201 static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1202 {
1203 void *frag;
1204
1205 if (!dp->xdp_prog)
1206 frag = napi_alloc_frag(dp->fl_bufsz);
1207 else
1208 frag = page_address(alloc_page(GFP_ATOMIC | __GFP_COLD));
1209 if (!frag) {
1210 nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1211 return NULL;
1212 }
1213
1214 *dma_addr = nfp_net_dma_map_rx(dp, frag);
1215 if (dma_mapping_error(dp->dev, *dma_addr)) {
1216 nfp_net_free_frag(frag, dp->xdp_prog);
1217 nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1218 return NULL;
1219 }
1220
1221 return frag;
1222 }
1223
1224 /**
1225 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1226 * @dp: NFP Net data path struct
1227 * @rx_ring: RX ring structure
1228 * @frag: page fragment buffer
1229 * @dma_addr: DMA address of skb mapping
1230 */
1231 static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1232 struct nfp_net_rx_ring *rx_ring,
1233 void *frag, dma_addr_t dma_addr)
1234 {
1235 unsigned int wr_idx;
1236
1237 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1238
1239 nfp_net_dma_sync_dev_rx(dp, dma_addr);
1240
1241 /* Stash SKB and DMA address away */
1242 rx_ring->rxbufs[wr_idx].frag = frag;
1243 rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1244
1245 /* Fill freelist descriptor */
1246 rx_ring->rxds[wr_idx].fld.reserved = 0;
1247 rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1248 nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1249 dma_addr + dp->rx_dma_off);
1250
1251 rx_ring->wr_p++;
1252 if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1253 /* Update write pointer of the freelist queue. Make
1254 * sure all writes are flushed before telling the hardware.
1255 */
1256 wmb();
1257 nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1258 }
1259 }
1260
1261 /**
1262 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1263 * @rx_ring: RX ring structure
1264 *
1265 * Warning: Do *not* call if ring buffers were never put on the FW freelist
1266 * (i.e. device was not enabled)!
1267 */
1268 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1269 {
1270 unsigned int wr_idx, last_idx;
1271
1272 /* Move the empty entry to the end of the list */
1273 wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1274 last_idx = rx_ring->cnt - 1;
1275 rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1276 rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1277 rx_ring->rxbufs[last_idx].dma_addr = 0;
1278 rx_ring->rxbufs[last_idx].frag = NULL;
1279
1280 memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1281 rx_ring->wr_p = 0;
1282 rx_ring->rd_p = 0;
1283 }
1284
1285 /**
1286 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1287 * @dp: NFP Net data path struct
1288 * @rx_ring: RX ring to remove buffers from
1289 *
1290 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1291 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1292 * to restore required ring geometry.
1293 */
1294 static void
1295 nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1296 struct nfp_net_rx_ring *rx_ring)
1297 {
1298 unsigned int i;
1299
1300 for (i = 0; i < rx_ring->cnt - 1; i++) {
1301 /* NULL skb can only happen when initial filling of the ring
1302 * fails to allocate enough buffers and calls here to free
1303 * already allocated ones.
1304 */
1305 if (!rx_ring->rxbufs[i].frag)
1306 continue;
1307
1308 nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1309 nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1310 rx_ring->rxbufs[i].dma_addr = 0;
1311 rx_ring->rxbufs[i].frag = NULL;
1312 }
1313 }
1314
1315 /**
1316 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1317 * @dp: NFP Net data path struct
1318 * @rx_ring: RX ring to remove buffers from
1319 */
1320 static int
1321 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1322 struct nfp_net_rx_ring *rx_ring)
1323 {
1324 struct nfp_net_rx_buf *rxbufs;
1325 unsigned int i;
1326
1327 rxbufs = rx_ring->rxbufs;
1328
1329 for (i = 0; i < rx_ring->cnt - 1; i++) {
1330 rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1331 if (!rxbufs[i].frag) {
1332 nfp_net_rx_ring_bufs_free(dp, rx_ring);
1333 return -ENOMEM;
1334 }
1335 }
1336
1337 return 0;
1338 }
1339
1340 /**
1341 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1342 * @dp: NFP Net data path struct
1343 * @rx_ring: RX ring to fill
1344 */
1345 static void
1346 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1347 struct nfp_net_rx_ring *rx_ring)
1348 {
1349 unsigned int i;
1350
1351 for (i = 0; i < rx_ring->cnt - 1; i++)
1352 nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1353 rx_ring->rxbufs[i].dma_addr);
1354 }
1355
1356 /**
1357 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1358 * @flags: RX descriptor flags field in CPU byte order
1359 */
1360 static int nfp_net_rx_csum_has_errors(u16 flags)
1361 {
1362 u16 csum_all_checked, csum_all_ok;
1363
1364 csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1365 csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1366
1367 return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1368 }
1369
1370 /**
1371 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1372 * @dp: NFP Net data path struct
1373 * @r_vec: per-ring structure
1374 * @rxd: Pointer to RX descriptor
1375 * @meta: Parsed metadata prepend
1376 * @skb: Pointer to SKB
1377 */
1378 static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1379 struct nfp_net_r_vector *r_vec,
1380 struct nfp_net_rx_desc *rxd,
1381 struct nfp_meta_parsed *meta, struct sk_buff *skb)
1382 {
1383 skb_checksum_none_assert(skb);
1384
1385 if (!(dp->netdev->features & NETIF_F_RXCSUM))
1386 return;
1387
1388 if (meta->csum_type) {
1389 skb->ip_summed = meta->csum_type;
1390 skb->csum = meta->csum;
1391 u64_stats_update_begin(&r_vec->rx_sync);
1392 r_vec->hw_csum_rx_ok++;
1393 u64_stats_update_end(&r_vec->rx_sync);
1394 return;
1395 }
1396
1397 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1398 u64_stats_update_begin(&r_vec->rx_sync);
1399 r_vec->hw_csum_rx_error++;
1400 u64_stats_update_end(&r_vec->rx_sync);
1401 return;
1402 }
1403
1404 /* Assume that the firmware will never report inner CSUM_OK unless outer
1405 * L4 headers were successfully parsed. FW will always report zero UDP
1406 * checksum as CSUM_OK.
1407 */
1408 if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1409 rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1410 __skb_incr_checksum_unnecessary(skb);
1411 u64_stats_update_begin(&r_vec->rx_sync);
1412 r_vec->hw_csum_rx_ok++;
1413 u64_stats_update_end(&r_vec->rx_sync);
1414 }
1415
1416 if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1417 rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1418 __skb_incr_checksum_unnecessary(skb);
1419 u64_stats_update_begin(&r_vec->rx_sync);
1420 r_vec->hw_csum_rx_inner_ok++;
1421 u64_stats_update_end(&r_vec->rx_sync);
1422 }
1423 }
1424
1425 static void
1426 nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1427 unsigned int type, __be32 *hash)
1428 {
1429 if (!(netdev->features & NETIF_F_RXHASH))
1430 return;
1431
1432 switch (type) {
1433 case NFP_NET_RSS_IPV4:
1434 case NFP_NET_RSS_IPV6:
1435 case NFP_NET_RSS_IPV6_EX:
1436 meta->hash_type = PKT_HASH_TYPE_L3;
1437 break;
1438 default:
1439 meta->hash_type = PKT_HASH_TYPE_L4;
1440 break;
1441 }
1442
1443 meta->hash = get_unaligned_be32(hash);
1444 }
1445
1446 static void
1447 nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1448 void *data, struct nfp_net_rx_desc *rxd)
1449 {
1450 struct nfp_net_rx_hash *rx_hash = data;
1451
1452 if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1453 return;
1454
1455 nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1456 &rx_hash->hash);
1457 }
1458
1459 static void *
1460 nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1461 void *data, int meta_len)
1462 {
1463 u32 meta_info;
1464
1465 meta_info = get_unaligned_be32(data);
1466 data += 4;
1467
1468 while (meta_info) {
1469 switch (meta_info & NFP_NET_META_FIELD_MASK) {
1470 case NFP_NET_META_HASH:
1471 meta_info >>= NFP_NET_META_FIELD_SIZE;
1472 nfp_net_set_hash(netdev, meta,
1473 meta_info & NFP_NET_META_FIELD_MASK,
1474 (__be32 *)data);
1475 data += 4;
1476 break;
1477 case NFP_NET_META_MARK:
1478 meta->mark = get_unaligned_be32(data);
1479 data += 4;
1480 break;
1481 case NFP_NET_META_PORTID:
1482 meta->portid = get_unaligned_be32(data);
1483 data += 4;
1484 break;
1485 case NFP_NET_META_CSUM:
1486 meta->csum_type = CHECKSUM_COMPLETE;
1487 meta->csum =
1488 (__force __wsum)__get_unaligned_cpu32(data);
1489 data += 4;
1490 break;
1491 default:
1492 return NULL;
1493 }
1494
1495 meta_info >>= NFP_NET_META_FIELD_SIZE;
1496 }
1497
1498 return data;
1499 }
1500
1501 static void
1502 nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1503 struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1504 struct sk_buff *skb)
1505 {
1506 u64_stats_update_begin(&r_vec->rx_sync);
1507 r_vec->rx_drops++;
1508 u64_stats_update_end(&r_vec->rx_sync);
1509
1510 /* skb is build based on the frag, free_skb() would free the frag
1511 * so to be able to reuse it we need an extra ref.
1512 */
1513 if (skb && rxbuf && skb->head == rxbuf->frag)
1514 page_ref_inc(virt_to_head_page(rxbuf->frag));
1515 if (rxbuf)
1516 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1517 if (skb)
1518 dev_kfree_skb_any(skb);
1519 }
1520
1521 static bool
1522 nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1523 struct nfp_net_tx_ring *tx_ring,
1524 struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1525 unsigned int pkt_len, bool *completed)
1526 {
1527 struct nfp_net_tx_buf *txbuf;
1528 struct nfp_net_tx_desc *txd;
1529 int wr_idx;
1530
1531 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1532 if (!*completed) {
1533 nfp_net_xdp_complete(tx_ring);
1534 *completed = true;
1535 }
1536
1537 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1538 nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1539 NULL);
1540 return false;
1541 }
1542 }
1543
1544 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1545
1546 /* Stash the soft descriptor of the head then initialize it */
1547 txbuf = &tx_ring->txbufs[wr_idx];
1548
1549 nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1550
1551 txbuf->frag = rxbuf->frag;
1552 txbuf->dma_addr = rxbuf->dma_addr;
1553 txbuf->fidx = -1;
1554 txbuf->pkt_cnt = 1;
1555 txbuf->real_len = pkt_len;
1556
1557 dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1558 pkt_len, DMA_BIDIRECTIONAL);
1559
1560 /* Build TX descriptor */
1561 txd = &tx_ring->txds[wr_idx];
1562 txd->offset_eop = PCIE_DESC_TX_EOP;
1563 txd->dma_len = cpu_to_le16(pkt_len);
1564 nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1565 txd->data_len = cpu_to_le16(pkt_len);
1566
1567 txd->flags = 0;
1568 txd->mss = 0;
1569 txd->lso_hdrlen = 0;
1570
1571 tx_ring->wr_p++;
1572 tx_ring->wr_ptr_add++;
1573 return true;
1574 }
1575
1576 static int nfp_net_run_xdp(struct bpf_prog *prog, void *data, void *hard_start,
1577 unsigned int *off, unsigned int *len)
1578 {
1579 struct xdp_buff xdp;
1580 void *orig_data;
1581 int ret;
1582
1583 xdp.data_hard_start = hard_start;
1584 xdp.data = data + *off;
1585 xdp.data_end = data + *off + *len;
1586
1587 orig_data = xdp.data;
1588 ret = bpf_prog_run_xdp(prog, &xdp);
1589
1590 *len -= xdp.data - orig_data;
1591 *off += xdp.data - orig_data;
1592
1593 return ret;
1594 }
1595
1596 /**
1597 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1598 * @rx_ring: RX ring to receive from
1599 * @budget: NAPI budget
1600 *
1601 * Note, this function is separated out from the napi poll function to
1602 * more cleanly separate packet receive code from other bookkeeping
1603 * functions performed in the napi poll function.
1604 *
1605 * Return: Number of packets received.
1606 */
1607 static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1608 {
1609 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1610 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1611 struct nfp_net_tx_ring *tx_ring;
1612 struct bpf_prog *xdp_prog;
1613 bool xdp_tx_cmpl = false;
1614 unsigned int true_bufsz;
1615 struct sk_buff *skb;
1616 int pkts_polled = 0;
1617 int idx;
1618
1619 rcu_read_lock();
1620 xdp_prog = READ_ONCE(dp->xdp_prog);
1621 true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1622 tx_ring = r_vec->xdp_ring;
1623
1624 while (pkts_polled < budget) {
1625 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1626 struct nfp_net_rx_buf *rxbuf;
1627 struct nfp_net_rx_desc *rxd;
1628 struct nfp_meta_parsed meta;
1629 struct net_device *netdev;
1630 dma_addr_t new_dma_addr;
1631 void *new_frag;
1632
1633 idx = D_IDX(rx_ring, rx_ring->rd_p);
1634
1635 rxd = &rx_ring->rxds[idx];
1636 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1637 break;
1638
1639 /* Memory barrier to ensure that we won't do other reads
1640 * before the DD bit.
1641 */
1642 dma_rmb();
1643
1644 memset(&meta, 0, sizeof(meta));
1645
1646 rx_ring->rd_p++;
1647 pkts_polled++;
1648
1649 rxbuf = &rx_ring->rxbufs[idx];
1650 /* < meta_len >
1651 * <-- [rx_offset] -->
1652 * ---------------------------------------------------------
1653 * | [XX] | metadata | packet | XXXX |
1654 * ---------------------------------------------------------
1655 * <---------------- data_len --------------->
1656 *
1657 * The rx_offset is fixed for all packets, the meta_len can vary
1658 * on a packet by packet basis. If rx_offset is set to zero
1659 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1660 * buffer and is immediately followed by the packet (no [XX]).
1661 */
1662 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1663 data_len = le16_to_cpu(rxd->rxd.data_len);
1664 pkt_len = data_len - meta_len;
1665
1666 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1667 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1668 pkt_off += meta_len;
1669 else
1670 pkt_off += dp->rx_offset;
1671 meta_off = pkt_off - meta_len;
1672
1673 /* Stats update */
1674 u64_stats_update_begin(&r_vec->rx_sync);
1675 r_vec->rx_pkts++;
1676 r_vec->rx_bytes += pkt_len;
1677 u64_stats_update_end(&r_vec->rx_sync);
1678
1679 if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1680 (dp->rx_offset && meta_len > dp->rx_offset))) {
1681 nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1682 meta_len);
1683 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1684 continue;
1685 }
1686
1687 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1688 data_len);
1689
1690 if (!dp->chained_metadata_format) {
1691 nfp_net_set_hash_desc(dp->netdev, &meta,
1692 rxbuf->frag + meta_off, rxd);
1693 } else if (meta_len) {
1694 void *end;
1695
1696 end = nfp_net_parse_meta(dp->netdev, &meta,
1697 rxbuf->frag + meta_off,
1698 meta_len);
1699 if (unlikely(end != rxbuf->frag + pkt_off)) {
1700 nn_dp_warn(dp, "invalid RX packet metadata\n");
1701 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1702 NULL);
1703 continue;
1704 }
1705 }
1706
1707 if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1708 dp->bpf_offload_xdp) && !meta.portid) {
1709 unsigned int dma_off;
1710 void *hard_start;
1711 int act;
1712
1713 hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1714
1715 act = nfp_net_run_xdp(xdp_prog, rxbuf->frag, hard_start,
1716 &pkt_off, &pkt_len);
1717 switch (act) {
1718 case XDP_PASS:
1719 break;
1720 case XDP_TX:
1721 dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1722 if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1723 tx_ring, rxbuf,
1724 dma_off,
1725 pkt_len,
1726 &xdp_tx_cmpl)))
1727 trace_xdp_exception(dp->netdev,
1728 xdp_prog, act);
1729 continue;
1730 default:
1731 bpf_warn_invalid_xdp_action(act);
1732 /* fall through */
1733 case XDP_ABORTED:
1734 trace_xdp_exception(dp->netdev, xdp_prog, act);
1735 /* fall through */
1736 case XDP_DROP:
1737 nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1738 rxbuf->dma_addr);
1739 continue;
1740 }
1741 }
1742
1743 skb = build_skb(rxbuf->frag, true_bufsz);
1744 if (unlikely(!skb)) {
1745 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1746 continue;
1747 }
1748 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1749 if (unlikely(!new_frag)) {
1750 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1751 continue;
1752 }
1753
1754 if (likely(!meta.portid)) {
1755 netdev = dp->netdev;
1756 } else {
1757 struct nfp_net *nn;
1758
1759 nn = netdev_priv(dp->netdev);
1760 netdev = nfp_app_repr_get(nn->app, meta.portid);
1761 if (unlikely(!netdev)) {
1762 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1763 continue;
1764 }
1765 nfp_repr_inc_rx_stats(netdev, pkt_len);
1766 }
1767
1768 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1769
1770 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1771
1772 skb_reserve(skb, pkt_off);
1773 skb_put(skb, pkt_len);
1774
1775 skb->mark = meta.mark;
1776 skb_set_hash(skb, meta.hash, meta.hash_type);
1777
1778 skb_record_rx_queue(skb, rx_ring->idx);
1779 skb->protocol = eth_type_trans(skb, netdev);
1780
1781 nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1782
1783 if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1784 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1785 le16_to_cpu(rxd->rxd.vlan));
1786
1787 napi_gro_receive(&rx_ring->r_vec->napi, skb);
1788 }
1789
1790 if (xdp_prog) {
1791 if (tx_ring->wr_ptr_add)
1792 nfp_net_tx_xmit_more_flush(tx_ring);
1793 else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1794 !xdp_tx_cmpl)
1795 if (!nfp_net_xdp_complete(tx_ring))
1796 pkts_polled = budget;
1797 }
1798 rcu_read_unlock();
1799
1800 return pkts_polled;
1801 }
1802
1803 /**
1804 * nfp_net_poll() - napi poll function
1805 * @napi: NAPI structure
1806 * @budget: NAPI budget
1807 *
1808 * Return: number of packets polled.
1809 */
1810 static int nfp_net_poll(struct napi_struct *napi, int budget)
1811 {
1812 struct nfp_net_r_vector *r_vec =
1813 container_of(napi, struct nfp_net_r_vector, napi);
1814 unsigned int pkts_polled = 0;
1815
1816 if (r_vec->tx_ring)
1817 nfp_net_tx_complete(r_vec->tx_ring);
1818 if (r_vec->rx_ring)
1819 pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1820
1821 if (pkts_polled < budget)
1822 if (napi_complete_done(napi, pkts_polled))
1823 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1824
1825 return pkts_polled;
1826 }
1827
1828 /* Control device data path
1829 */
1830
1831 static bool
1832 nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1833 struct sk_buff *skb, bool old)
1834 {
1835 unsigned int real_len = skb->len, meta_len = 0;
1836 struct nfp_net_tx_ring *tx_ring;
1837 struct nfp_net_tx_buf *txbuf;
1838 struct nfp_net_tx_desc *txd;
1839 struct nfp_net_dp *dp;
1840 dma_addr_t dma_addr;
1841 int wr_idx;
1842
1843 dp = &r_vec->nfp_net->dp;
1844 tx_ring = r_vec->tx_ring;
1845
1846 if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1847 nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1848 goto err_free;
1849 }
1850
1851 if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1852 u64_stats_update_begin(&r_vec->tx_sync);
1853 r_vec->tx_busy++;
1854 u64_stats_update_end(&r_vec->tx_sync);
1855 if (!old)
1856 __skb_queue_tail(&r_vec->queue, skb);
1857 else
1858 __skb_queue_head(&r_vec->queue, skb);
1859 return true;
1860 }
1861
1862 if (nfp_app_ctrl_has_meta(nn->app)) {
1863 if (unlikely(skb_headroom(skb) < 8)) {
1864 nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1865 goto err_free;
1866 }
1867 meta_len = 8;
1868 put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1869 put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1870 }
1871
1872 /* Start with the head skbuf */
1873 dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1874 DMA_TO_DEVICE);
1875 if (dma_mapping_error(dp->dev, dma_addr))
1876 goto err_dma_warn;
1877
1878 wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1879
1880 /* Stash the soft descriptor of the head then initialize it */
1881 txbuf = &tx_ring->txbufs[wr_idx];
1882 txbuf->skb = skb;
1883 txbuf->dma_addr = dma_addr;
1884 txbuf->fidx = -1;
1885 txbuf->pkt_cnt = 1;
1886 txbuf->real_len = real_len;
1887
1888 /* Build TX descriptor */
1889 txd = &tx_ring->txds[wr_idx];
1890 txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1891 txd->dma_len = cpu_to_le16(skb_headlen(skb));
1892 nfp_desc_set_dma_addr(txd, dma_addr);
1893 txd->data_len = cpu_to_le16(skb->len);
1894
1895 txd->flags = 0;
1896 txd->mss = 0;
1897 txd->lso_hdrlen = 0;
1898
1899 tx_ring->wr_p++;
1900 tx_ring->wr_ptr_add++;
1901 nfp_net_tx_xmit_more_flush(tx_ring);
1902
1903 return false;
1904
1905 err_dma_warn:
1906 nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1907 err_free:
1908 u64_stats_update_begin(&r_vec->tx_sync);
1909 r_vec->tx_errors++;
1910 u64_stats_update_end(&r_vec->tx_sync);
1911 dev_kfree_skb_any(skb);
1912 return false;
1913 }
1914
1915 bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1916 {
1917 struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1918 bool ret;
1919
1920 spin_lock_bh(&r_vec->lock);
1921 ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
1922 spin_unlock_bh(&r_vec->lock);
1923
1924 return ret;
1925 }
1926
1927 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1928 {
1929 struct sk_buff *skb;
1930
1931 while ((skb = __skb_dequeue(&r_vec->queue)))
1932 if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1933 return;
1934 }
1935
1936 static bool
1937 nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1938 {
1939 u32 meta_type, meta_tag;
1940
1941 if (!nfp_app_ctrl_has_meta(nn->app))
1942 return !meta_len;
1943
1944 if (meta_len != 8)
1945 return false;
1946
1947 meta_type = get_unaligned_be32(data);
1948 meta_tag = get_unaligned_be32(data + 4);
1949
1950 return (meta_type == NFP_NET_META_PORTID &&
1951 meta_tag == NFP_META_PORT_ID_CTRL);
1952 }
1953
1954 static bool
1955 nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1956 struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1957 {
1958 unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1959 struct nfp_net_rx_buf *rxbuf;
1960 struct nfp_net_rx_desc *rxd;
1961 dma_addr_t new_dma_addr;
1962 struct sk_buff *skb;
1963 void *new_frag;
1964 int idx;
1965
1966 idx = D_IDX(rx_ring, rx_ring->rd_p);
1967
1968 rxd = &rx_ring->rxds[idx];
1969 if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1970 return false;
1971
1972 /* Memory barrier to ensure that we won't do other reads
1973 * before the DD bit.
1974 */
1975 dma_rmb();
1976
1977 rx_ring->rd_p++;
1978
1979 rxbuf = &rx_ring->rxbufs[idx];
1980 meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1981 data_len = le16_to_cpu(rxd->rxd.data_len);
1982 pkt_len = data_len - meta_len;
1983
1984 pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1985 if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1986 pkt_off += meta_len;
1987 else
1988 pkt_off += dp->rx_offset;
1989 meta_off = pkt_off - meta_len;
1990
1991 /* Stats update */
1992 u64_stats_update_begin(&r_vec->rx_sync);
1993 r_vec->rx_pkts++;
1994 r_vec->rx_bytes += pkt_len;
1995 u64_stats_update_end(&r_vec->rx_sync);
1996
1997 nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
1998
1999 if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2000 nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2001 meta_len);
2002 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2003 return true;
2004 }
2005
2006 skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2007 if (unlikely(!skb)) {
2008 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2009 return true;
2010 }
2011 new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2012 if (unlikely(!new_frag)) {
2013 nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2014 return true;
2015 }
2016
2017 nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2018
2019 nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2020
2021 skb_reserve(skb, pkt_off);
2022 skb_put(skb, pkt_len);
2023
2024 nfp_app_ctrl_rx(nn->app, skb);
2025
2026 return true;
2027 }
2028
2029 static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2030 {
2031 struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2032 struct nfp_net *nn = r_vec->nfp_net;
2033 struct nfp_net_dp *dp = &nn->dp;
2034
2035 while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring))
2036 continue;
2037 }
2038
2039 static void nfp_ctrl_poll(unsigned long arg)
2040 {
2041 struct nfp_net_r_vector *r_vec = (void *)arg;
2042
2043 spin_lock_bh(&r_vec->lock);
2044 nfp_net_tx_complete(r_vec->tx_ring);
2045 __nfp_ctrl_tx_queued(r_vec);
2046 spin_unlock_bh(&r_vec->lock);
2047
2048 nfp_ctrl_rx(r_vec);
2049
2050 nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2051 }
2052
2053 /* Setup and Configuration
2054 */
2055
2056 /**
2057 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2058 * @nn: NFP Network structure
2059 */
2060 static void nfp_net_vecs_init(struct nfp_net *nn)
2061 {
2062 struct nfp_net_r_vector *r_vec;
2063 int r;
2064
2065 nn->lsc_handler = nfp_net_irq_lsc;
2066 nn->exn_handler = nfp_net_irq_exn;
2067
2068 for (r = 0; r < nn->max_r_vecs; r++) {
2069 struct msix_entry *entry;
2070
2071 entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2072
2073 r_vec = &nn->r_vecs[r];
2074 r_vec->nfp_net = nn;
2075 r_vec->irq_entry = entry->entry;
2076 r_vec->irq_vector = entry->vector;
2077
2078 if (nn->dp.netdev) {
2079 r_vec->handler = nfp_net_irq_rxtx;
2080 } else {
2081 r_vec->handler = nfp_ctrl_irq_rxtx;
2082
2083 __skb_queue_head_init(&r_vec->queue);
2084 spin_lock_init(&r_vec->lock);
2085 tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2086 (unsigned long)r_vec);
2087 tasklet_disable(&r_vec->tasklet);
2088 }
2089
2090 cpumask_set_cpu(r, &r_vec->affinity_mask);
2091 }
2092 }
2093
2094 /**
2095 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2096 * @tx_ring: TX ring to free
2097 */
2098 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2099 {
2100 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2101 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2102
2103 kfree(tx_ring->txbufs);
2104
2105 if (tx_ring->txds)
2106 dma_free_coherent(dp->dev, tx_ring->size,
2107 tx_ring->txds, tx_ring->dma);
2108
2109 tx_ring->cnt = 0;
2110 tx_ring->txbufs = NULL;
2111 tx_ring->txds = NULL;
2112 tx_ring->dma = 0;
2113 tx_ring->size = 0;
2114 }
2115
2116 /**
2117 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2118 * @dp: NFP Net data path struct
2119 * @tx_ring: TX Ring structure to allocate
2120 *
2121 * Return: 0 on success, negative errno otherwise.
2122 */
2123 static int
2124 nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2125 {
2126 struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2127 int sz;
2128
2129 tx_ring->cnt = dp->txd_cnt;
2130
2131 tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
2132 tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
2133 &tx_ring->dma, GFP_KERNEL);
2134 if (!tx_ring->txds)
2135 goto err_alloc;
2136
2137 sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
2138 tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
2139 if (!tx_ring->txbufs)
2140 goto err_alloc;
2141
2142 if (!tx_ring->is_xdp && dp->netdev)
2143 netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2144 tx_ring->idx);
2145
2146 return 0;
2147
2148 err_alloc:
2149 nfp_net_tx_ring_free(tx_ring);
2150 return -ENOMEM;
2151 }
2152
2153 static void
2154 nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2155 struct nfp_net_tx_ring *tx_ring)
2156 {
2157 unsigned int i;
2158
2159 if (!tx_ring->is_xdp)
2160 return;
2161
2162 for (i = 0; i < tx_ring->cnt; i++) {
2163 if (!tx_ring->txbufs[i].frag)
2164 return;
2165
2166 nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2167 __free_page(virt_to_page(tx_ring->txbufs[i].frag));
2168 }
2169 }
2170
2171 static int
2172 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2173 struct nfp_net_tx_ring *tx_ring)
2174 {
2175 struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2176 unsigned int i;
2177
2178 if (!tx_ring->is_xdp)
2179 return 0;
2180
2181 for (i = 0; i < tx_ring->cnt; i++) {
2182 txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2183 if (!txbufs[i].frag) {
2184 nfp_net_tx_ring_bufs_free(dp, tx_ring);
2185 return -ENOMEM;
2186 }
2187 }
2188
2189 return 0;
2190 }
2191
2192 static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2193 {
2194 unsigned int r;
2195
2196 dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2197 GFP_KERNEL);
2198 if (!dp->tx_rings)
2199 return -ENOMEM;
2200
2201 for (r = 0; r < dp->num_tx_rings; r++) {
2202 int bias = 0;
2203
2204 if (r >= dp->num_stack_tx_rings)
2205 bias = dp->num_stack_tx_rings;
2206
2207 nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2208 r, bias);
2209
2210 if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2211 goto err_free_prev;
2212
2213 if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2214 goto err_free_ring;
2215 }
2216
2217 return 0;
2218
2219 err_free_prev:
2220 while (r--) {
2221 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2222 err_free_ring:
2223 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2224 }
2225 kfree(dp->tx_rings);
2226 return -ENOMEM;
2227 }
2228
2229 static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2230 {
2231 unsigned int r;
2232
2233 for (r = 0; r < dp->num_tx_rings; r++) {
2234 nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2235 nfp_net_tx_ring_free(&dp->tx_rings[r]);
2236 }
2237
2238 kfree(dp->tx_rings);
2239 }
2240
2241 /**
2242 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2243 * @rx_ring: RX ring to free
2244 */
2245 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2246 {
2247 struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2248 struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2249
2250 kfree(rx_ring->rxbufs);
2251
2252 if (rx_ring->rxds)
2253 dma_free_coherent(dp->dev, rx_ring->size,
2254 rx_ring->rxds, rx_ring->dma);
2255
2256 rx_ring->cnt = 0;
2257 rx_ring->rxbufs = NULL;
2258 rx_ring->rxds = NULL;
2259 rx_ring->dma = 0;
2260 rx_ring->size = 0;
2261 }
2262
2263 /**
2264 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2265 * @dp: NFP Net data path struct
2266 * @rx_ring: RX ring to allocate
2267 *
2268 * Return: 0 on success, negative errno otherwise.
2269 */
2270 static int
2271 nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2272 {
2273 int sz;
2274
2275 rx_ring->cnt = dp->rxd_cnt;
2276 rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
2277 rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
2278 &rx_ring->dma, GFP_KERNEL);
2279 if (!rx_ring->rxds)
2280 goto err_alloc;
2281
2282 sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
2283 rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
2284 if (!rx_ring->rxbufs)
2285 goto err_alloc;
2286
2287 return 0;
2288
2289 err_alloc:
2290 nfp_net_rx_ring_free(rx_ring);
2291 return -ENOMEM;
2292 }
2293
2294 static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2295 {
2296 unsigned int r;
2297
2298 dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2299 GFP_KERNEL);
2300 if (!dp->rx_rings)
2301 return -ENOMEM;
2302
2303 for (r = 0; r < dp->num_rx_rings; r++) {
2304 nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2305
2306 if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2307 goto err_free_prev;
2308
2309 if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2310 goto err_free_ring;
2311 }
2312
2313 return 0;
2314
2315 err_free_prev:
2316 while (r--) {
2317 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2318 err_free_ring:
2319 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2320 }
2321 kfree(dp->rx_rings);
2322 return -ENOMEM;
2323 }
2324
2325 static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2326 {
2327 unsigned int r;
2328
2329 for (r = 0; r < dp->num_rx_rings; r++) {
2330 nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2331 nfp_net_rx_ring_free(&dp->rx_rings[r]);
2332 }
2333
2334 kfree(dp->rx_rings);
2335 }
2336
2337 static void
2338 nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2339 struct nfp_net_r_vector *r_vec, int idx)
2340 {
2341 r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2342 r_vec->tx_ring =
2343 idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2344
2345 r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2346 &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2347 }
2348
2349 static int
2350 nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2351 int idx)
2352 {
2353 int err;
2354
2355 /* Setup NAPI */
2356 if (nn->dp.netdev)
2357 netif_napi_add(nn->dp.netdev, &r_vec->napi,
2358 nfp_net_poll, NAPI_POLL_WEIGHT);
2359 else
2360 tasklet_enable(&r_vec->tasklet);
2361
2362 snprintf(r_vec->name, sizeof(r_vec->name),
2363 "%s-rxtx-%d", nfp_net_name(nn), idx);
2364 err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2365 r_vec);
2366 if (err) {
2367 if (nn->dp.netdev)
2368 netif_napi_del(&r_vec->napi);
2369 else
2370 tasklet_disable(&r_vec->tasklet);
2371
2372 nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2373 return err;
2374 }
2375 disable_irq(r_vec->irq_vector);
2376
2377 irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2378
2379 nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2380 r_vec->irq_entry);
2381
2382 return 0;
2383 }
2384
2385 static void
2386 nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2387 {
2388 irq_set_affinity_hint(r_vec->irq_vector, NULL);
2389 if (nn->dp.netdev)
2390 netif_napi_del(&r_vec->napi);
2391 else
2392 tasklet_disable(&r_vec->tasklet);
2393
2394 free_irq(r_vec->irq_vector, r_vec);
2395 }
2396
2397 /**
2398 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2399 * @nn: NFP Net device to reconfigure
2400 */
2401 void nfp_net_rss_write_itbl(struct nfp_net *nn)
2402 {
2403 int i;
2404
2405 for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2406 nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2407 get_unaligned_le32(nn->rss_itbl + i));
2408 }
2409
2410 /**
2411 * nfp_net_rss_write_key() - Write RSS hash key to device
2412 * @nn: NFP Net device to reconfigure
2413 */
2414 void nfp_net_rss_write_key(struct nfp_net *nn)
2415 {
2416 int i;
2417
2418 for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2419 nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2420 get_unaligned_le32(nn->rss_key + i));
2421 }
2422
2423 /**
2424 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2425 * @nn: NFP Net device to reconfigure
2426 */
2427 void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2428 {
2429 u8 i;
2430 u32 factor;
2431 u32 value;
2432
2433 /* Compute factor used to convert coalesce '_usecs' parameters to
2434 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
2435 * count.
2436 */
2437 factor = nn->me_freq_mhz / 16;
2438
2439 /* copy RX interrupt coalesce parameters */
2440 value = (nn->rx_coalesce_max_frames << 16) |
2441 (factor * nn->rx_coalesce_usecs);
2442 for (i = 0; i < nn->dp.num_rx_rings; i++)
2443 nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2444
2445 /* copy TX interrupt coalesce parameters */
2446 value = (nn->tx_coalesce_max_frames << 16) |
2447 (factor * nn->tx_coalesce_usecs);
2448 for (i = 0; i < nn->dp.num_tx_rings; i++)
2449 nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2450 }
2451
2452 /**
2453 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2454 * @nn: NFP Net device to reconfigure
2455 * @addr: MAC address to write
2456 *
2457 * Writes the MAC address from the netdev to the device control BAR. Does not
2458 * perform the required reconfig. We do a bit of byte swapping dance because
2459 * firmware is LE.
2460 */
2461 static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2462 {
2463 nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2464 nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2465 }
2466
2467 static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2468 {
2469 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2470 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2471 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2472
2473 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2474 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2475 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2476 }
2477
2478 /**
2479 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2480 * @nn: NFP Net device to reconfigure
2481 */
2482 static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2483 {
2484 u32 new_ctrl, update;
2485 unsigned int r;
2486 int err;
2487
2488 new_ctrl = nn->dp.ctrl;
2489 new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2490 update = NFP_NET_CFG_UPDATE_GEN;
2491 update |= NFP_NET_CFG_UPDATE_MSIX;
2492 update |= NFP_NET_CFG_UPDATE_RING;
2493
2494 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2495 new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2496
2497 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2498 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2499
2500 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2501 err = nfp_net_reconfig(nn, update);
2502 if (err)
2503 nn_err(nn, "Could not disable device: %d\n", err);
2504
2505 for (r = 0; r < nn->dp.num_rx_rings; r++)
2506 nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2507 for (r = 0; r < nn->dp.num_tx_rings; r++)
2508 nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2509 for (r = 0; r < nn->dp.num_r_vecs; r++)
2510 nfp_net_vec_clear_ring_data(nn, r);
2511
2512 nn->dp.ctrl = new_ctrl;
2513 }
2514
2515 static void
2516 nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2517 struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2518 {
2519 /* Write the DMA address, size and MSI-X info to the device */
2520 nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2521 nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2522 nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2523 }
2524
2525 static void
2526 nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2527 struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2528 {
2529 nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2530 nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2531 nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2532 }
2533
2534 /**
2535 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2536 * @nn: NFP Net device to reconfigure
2537 */
2538 static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2539 {
2540 u32 bufsz, new_ctrl, update = 0;
2541 unsigned int r;
2542 int err;
2543
2544 new_ctrl = nn->dp.ctrl;
2545
2546 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2547 nfp_net_rss_write_key(nn);
2548 nfp_net_rss_write_itbl(nn);
2549 nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2550 update |= NFP_NET_CFG_UPDATE_RSS;
2551 }
2552
2553 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2554 nfp_net_coalesce_write_cfg(nn);
2555 update |= NFP_NET_CFG_UPDATE_IRQMOD;
2556 }
2557
2558 for (r = 0; r < nn->dp.num_tx_rings; r++)
2559 nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2560 for (r = 0; r < nn->dp.num_rx_rings; r++)
2561 nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2562
2563 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2564 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2565
2566 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2567 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2568
2569 if (nn->dp.netdev)
2570 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2571
2572 nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2573
2574 bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2575 nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2576
2577 /* Enable device */
2578 new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2579 update |= NFP_NET_CFG_UPDATE_GEN;
2580 update |= NFP_NET_CFG_UPDATE_MSIX;
2581 update |= NFP_NET_CFG_UPDATE_RING;
2582 if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2583 new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2584
2585 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2586 err = nfp_net_reconfig(nn, update);
2587 if (err) {
2588 nfp_net_clear_config_and_disable(nn);
2589 return err;
2590 }
2591
2592 nn->dp.ctrl = new_ctrl;
2593
2594 for (r = 0; r < nn->dp.num_rx_rings; r++)
2595 nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2596
2597 /* Since reconfiguration requests while NFP is down are ignored we
2598 * have to wipe the entire VXLAN configuration and reinitialize it.
2599 */
2600 if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2601 memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2602 memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2603 udp_tunnel_get_rx_info(nn->dp.netdev);
2604 }
2605
2606 return 0;
2607 }
2608
2609 /**
2610 * nfp_net_close_stack() - Quiesce the stack (part of close)
2611 * @nn: NFP Net device to reconfigure
2612 */
2613 static void nfp_net_close_stack(struct nfp_net *nn)
2614 {
2615 unsigned int r;
2616
2617 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2618 netif_carrier_off(nn->dp.netdev);
2619 nn->link_up = false;
2620
2621 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2622 disable_irq(nn->r_vecs[r].irq_vector);
2623 napi_disable(&nn->r_vecs[r].napi);
2624 }
2625
2626 netif_tx_disable(nn->dp.netdev);
2627 }
2628
2629 /**
2630 * nfp_net_close_free_all() - Free all runtime resources
2631 * @nn: NFP Net device to reconfigure
2632 */
2633 static void nfp_net_close_free_all(struct nfp_net *nn)
2634 {
2635 unsigned int r;
2636
2637 nfp_net_tx_rings_free(&nn->dp);
2638 nfp_net_rx_rings_free(&nn->dp);
2639
2640 for (r = 0; r < nn->dp.num_r_vecs; r++)
2641 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2642
2643 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2644 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2645 }
2646
2647 /**
2648 * nfp_net_netdev_close() - Called when the device is downed
2649 * @netdev: netdev structure
2650 */
2651 static int nfp_net_netdev_close(struct net_device *netdev)
2652 {
2653 struct nfp_net *nn = netdev_priv(netdev);
2654
2655 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2656 */
2657 nfp_net_close_stack(nn);
2658
2659 /* Step 2: Tell NFP
2660 */
2661 nfp_net_clear_config_and_disable(nn);
2662
2663 /* Step 3: Free resources
2664 */
2665 nfp_net_close_free_all(nn);
2666
2667 nn_dbg(nn, "%s down", netdev->name);
2668 return 0;
2669 }
2670
2671 void nfp_ctrl_close(struct nfp_net *nn)
2672 {
2673 int r;
2674
2675 rtnl_lock();
2676
2677 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2678 disable_irq(nn->r_vecs[r].irq_vector);
2679 tasklet_disable(&nn->r_vecs[r].tasklet);
2680 }
2681
2682 nfp_net_clear_config_and_disable(nn);
2683
2684 nfp_net_close_free_all(nn);
2685
2686 rtnl_unlock();
2687 }
2688
2689 /**
2690 * nfp_net_open_stack() - Start the device from stack's perspective
2691 * @nn: NFP Net device to reconfigure
2692 */
2693 static void nfp_net_open_stack(struct nfp_net *nn)
2694 {
2695 unsigned int r;
2696
2697 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2698 napi_enable(&nn->r_vecs[r].napi);
2699 enable_irq(nn->r_vecs[r].irq_vector);
2700 }
2701
2702 netif_tx_wake_all_queues(nn->dp.netdev);
2703
2704 enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2705 nfp_net_read_link_status(nn);
2706 }
2707
2708 static int nfp_net_open_alloc_all(struct nfp_net *nn)
2709 {
2710 int err, r;
2711
2712 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2713 nn->exn_name, sizeof(nn->exn_name),
2714 NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2715 if (err)
2716 return err;
2717 err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2718 nn->lsc_name, sizeof(nn->lsc_name),
2719 NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2720 if (err)
2721 goto err_free_exn;
2722 disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2723
2724 for (r = 0; r < nn->dp.num_r_vecs; r++) {
2725 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2726 if (err)
2727 goto err_cleanup_vec_p;
2728 }
2729
2730 err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2731 if (err)
2732 goto err_cleanup_vec;
2733
2734 err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2735 if (err)
2736 goto err_free_rx_rings;
2737
2738 for (r = 0; r < nn->max_r_vecs; r++)
2739 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2740
2741 return 0;
2742
2743 err_free_rx_rings:
2744 nfp_net_rx_rings_free(&nn->dp);
2745 err_cleanup_vec:
2746 r = nn->dp.num_r_vecs;
2747 err_cleanup_vec_p:
2748 while (r--)
2749 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2750 nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2751 err_free_exn:
2752 nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2753 return err;
2754 }
2755
2756 static int nfp_net_netdev_open(struct net_device *netdev)
2757 {
2758 struct nfp_net *nn = netdev_priv(netdev);
2759 int err;
2760
2761 /* Step 1: Allocate resources for rings and the like
2762 * - Request interrupts
2763 * - Allocate RX and TX ring resources
2764 * - Setup initial RSS table
2765 */
2766 err = nfp_net_open_alloc_all(nn);
2767 if (err)
2768 return err;
2769
2770 err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2771 if (err)
2772 goto err_free_all;
2773
2774 err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2775 if (err)
2776 goto err_free_all;
2777
2778 /* Step 2: Configure the NFP
2779 * - Enable rings from 0 to tx_rings/rx_rings - 1.
2780 * - Write MAC address (in case it changed)
2781 * - Set the MTU
2782 * - Set the Freelist buffer size
2783 * - Enable the FW
2784 */
2785 err = nfp_net_set_config_and_enable(nn);
2786 if (err)
2787 goto err_free_all;
2788
2789 /* Step 3: Enable for kernel
2790 * - put some freelist descriptors on each RX ring
2791 * - enable NAPI on each ring
2792 * - enable all TX queues
2793 * - set link state
2794 */
2795 nfp_net_open_stack(nn);
2796
2797 return 0;
2798
2799 err_free_all:
2800 nfp_net_close_free_all(nn);
2801 return err;
2802 }
2803
2804 int nfp_ctrl_open(struct nfp_net *nn)
2805 {
2806 int err, r;
2807
2808 /* ring dumping depends on vNICs being opened/closed under rtnl */
2809 rtnl_lock();
2810
2811 err = nfp_net_open_alloc_all(nn);
2812 if (err)
2813 goto err_unlock;
2814
2815 err = nfp_net_set_config_and_enable(nn);
2816 if (err)
2817 goto err_free_all;
2818
2819 for (r = 0; r < nn->dp.num_r_vecs; r++)
2820 enable_irq(nn->r_vecs[r].irq_vector);
2821
2822 rtnl_unlock();
2823
2824 return 0;
2825
2826 err_free_all:
2827 nfp_net_close_free_all(nn);
2828 err_unlock:
2829 rtnl_unlock();
2830 return err;
2831 }
2832
2833 static void nfp_net_set_rx_mode(struct net_device *netdev)
2834 {
2835 struct nfp_net *nn = netdev_priv(netdev);
2836 u32 new_ctrl;
2837
2838 new_ctrl = nn->dp.ctrl;
2839
2840 if (netdev->flags & IFF_PROMISC) {
2841 if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2842 new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2843 else
2844 nn_warn(nn, "FW does not support promiscuous mode\n");
2845 } else {
2846 new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2847 }
2848
2849 if (new_ctrl == nn->dp.ctrl)
2850 return;
2851
2852 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2853 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2854
2855 nn->dp.ctrl = new_ctrl;
2856 }
2857
2858 static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2859 {
2860 int i;
2861
2862 for (i = 0; i < sizeof(nn->rss_itbl); i++)
2863 nn->rss_itbl[i] =
2864 ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2865 }
2866
2867 static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2868 {
2869 struct nfp_net_dp new_dp = *dp;
2870
2871 *dp = nn->dp;
2872 nn->dp = new_dp;
2873
2874 nn->dp.netdev->mtu = new_dp.mtu;
2875
2876 if (!netif_is_rxfh_configured(nn->dp.netdev))
2877 nfp_net_rss_init_itbl(nn);
2878 }
2879
2880 static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2881 {
2882 unsigned int r;
2883 int err;
2884
2885 nfp_net_dp_swap(nn, dp);
2886
2887 for (r = 0; r < nn->max_r_vecs; r++)
2888 nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2889
2890 err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2891 if (err)
2892 return err;
2893
2894 if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
2895 err = netif_set_real_num_tx_queues(nn->dp.netdev,
2896 nn->dp.num_stack_tx_rings);
2897 if (err)
2898 return err;
2899 }
2900
2901 return nfp_net_set_config_and_enable(nn);
2902 }
2903
2904 struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
2905 {
2906 struct nfp_net_dp *new;
2907
2908 new = kmalloc(sizeof(*new), GFP_KERNEL);
2909 if (!new)
2910 return NULL;
2911
2912 *new = nn->dp;
2913
2914 /* Clear things which need to be recomputed */
2915 new->fl_bufsz = 0;
2916 new->tx_rings = NULL;
2917 new->rx_rings = NULL;
2918 new->num_r_vecs = 0;
2919 new->num_stack_tx_rings = 0;
2920
2921 return new;
2922 }
2923
2924 static int
2925 nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
2926 struct netlink_ext_ack *extack)
2927 {
2928 /* XDP-enabled tests */
2929 if (!dp->xdp_prog)
2930 return 0;
2931 if (dp->fl_bufsz > PAGE_SIZE) {
2932 NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2933 return -EINVAL;
2934 }
2935 if (dp->num_tx_rings > nn->max_tx_rings) {
2936 NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2937 return -EINVAL;
2938 }
2939
2940 return 0;
2941 }
2942
2943 int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
2944 struct netlink_ext_ack *extack)
2945 {
2946 int r, err;
2947
2948 dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2949
2950 dp->num_stack_tx_rings = dp->num_tx_rings;
2951 if (dp->xdp_prog)
2952 dp->num_stack_tx_rings -= dp->num_rx_rings;
2953
2954 dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2955
2956 err = nfp_net_check_config(nn, dp, extack);
2957 if (err)
2958 goto exit_free_dp;
2959
2960 if (!netif_running(dp->netdev)) {
2961 nfp_net_dp_swap(nn, dp);
2962 err = 0;
2963 goto exit_free_dp;
2964 }
2965
2966 /* Prepare new rings */
2967 for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2968 err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2969 if (err) {
2970 dp->num_r_vecs = r;
2971 goto err_cleanup_vecs;
2972 }
2973 }
2974
2975 err = nfp_net_rx_rings_prepare(nn, dp);
2976 if (err)
2977 goto err_cleanup_vecs;
2978
2979 err = nfp_net_tx_rings_prepare(nn, dp);
2980 if (err)
2981 goto err_free_rx;
2982
2983 /* Stop device, swap in new rings, try to start the firmware */
2984 nfp_net_close_stack(nn);
2985 nfp_net_clear_config_and_disable(nn);
2986
2987 err = nfp_net_dp_swap_enable(nn, dp);
2988 if (err) {
2989 int err2;
2990
2991 nfp_net_clear_config_and_disable(nn);
2992
2993 /* Try with old configuration and old rings */
2994 err2 = nfp_net_dp_swap_enable(nn, dp);
2995 if (err2)
2996 nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
2997 err, err2);
2998 }
2999 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3000 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3001
3002 nfp_net_rx_rings_free(dp);
3003 nfp_net_tx_rings_free(dp);
3004
3005 nfp_net_open_stack(nn);
3006 exit_free_dp:
3007 kfree(dp);
3008
3009 return err;
3010
3011 err_free_rx:
3012 nfp_net_rx_rings_free(dp);
3013 err_cleanup_vecs:
3014 for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3015 nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3016 kfree(dp);
3017 return err;
3018 }
3019
3020 static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3021 {
3022 struct nfp_net *nn = netdev_priv(netdev);
3023 struct nfp_net_dp *dp;
3024
3025 dp = nfp_net_clone_dp(nn);
3026 if (!dp)
3027 return -ENOMEM;
3028
3029 dp->mtu = new_mtu;
3030
3031 return nfp_net_ring_reconfig(nn, dp, NULL);
3032 }
3033
3034 static int
3035 nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3036 {
3037 struct nfp_net *nn = netdev_priv(netdev);
3038
3039 /* Priority tagged packets with vlan id 0 are processed by the
3040 * NFP as untagged packets
3041 */
3042 if (!vid)
3043 return 0;
3044
3045 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3046 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3047
3048 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD);
3049 }
3050
3051 static int
3052 nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3053 {
3054 struct nfp_net *nn = netdev_priv(netdev);
3055
3056 /* Priority tagged packets with vlan id 0 are processed by the
3057 * NFP as untagged packets
3058 */
3059 if (!vid)
3060 return 0;
3061
3062 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3063 nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3064
3065 return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL);
3066 }
3067
3068 static void nfp_net_stat64(struct net_device *netdev,
3069 struct rtnl_link_stats64 *stats)
3070 {
3071 struct nfp_net *nn = netdev_priv(netdev);
3072 int r;
3073
3074 for (r = 0; r < nn->dp.num_r_vecs; r++) {
3075 struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3076 u64 data[3];
3077 unsigned int start;
3078
3079 do {
3080 start = u64_stats_fetch_begin(&r_vec->rx_sync);
3081 data[0] = r_vec->rx_pkts;
3082 data[1] = r_vec->rx_bytes;
3083 data[2] = r_vec->rx_drops;
3084 } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3085 stats->rx_packets += data[0];
3086 stats->rx_bytes += data[1];
3087 stats->rx_dropped += data[2];
3088
3089 do {
3090 start = u64_stats_fetch_begin(&r_vec->tx_sync);
3091 data[0] = r_vec->tx_pkts;
3092 data[1] = r_vec->tx_bytes;
3093 data[2] = r_vec->tx_errors;
3094 } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3095 stats->tx_packets += data[0];
3096 stats->tx_bytes += data[1];
3097 stats->tx_errors += data[2];
3098 }
3099 }
3100
3101 static int nfp_net_set_features(struct net_device *netdev,
3102 netdev_features_t features)
3103 {
3104 netdev_features_t changed = netdev->features ^ features;
3105 struct nfp_net *nn = netdev_priv(netdev);
3106 u32 new_ctrl;
3107 int err;
3108
3109 /* Assume this is not called with features we have not advertised */
3110
3111 new_ctrl = nn->dp.ctrl;
3112
3113 if (changed & NETIF_F_RXCSUM) {
3114 if (features & NETIF_F_RXCSUM)
3115 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3116 else
3117 new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3118 }
3119
3120 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3121 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3122 new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3123 else
3124 new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3125 }
3126
3127 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3128 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3129 new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3130 NFP_NET_CFG_CTRL_LSO;
3131 else
3132 new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3133 }
3134
3135 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3136 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3137 new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3138 else
3139 new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3140 }
3141
3142 if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3143 if (features & NETIF_F_HW_VLAN_CTAG_TX)
3144 new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3145 else
3146 new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3147 }
3148
3149 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3150 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3151 new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3152 else
3153 new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3154 }
3155
3156 if (changed & NETIF_F_SG) {
3157 if (features & NETIF_F_SG)
3158 new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3159 else
3160 new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3161 }
3162
3163 if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) {
3164 nn_err(nn, "Cannot disable HW TC offload while in use\n");
3165 return -EBUSY;
3166 }
3167
3168 nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3169 netdev->features, features, changed);
3170
3171 if (new_ctrl == nn->dp.ctrl)
3172 return 0;
3173
3174 nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3175 nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3176 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3177 if (err)
3178 return err;
3179
3180 nn->dp.ctrl = new_ctrl;
3181
3182 return 0;
3183 }
3184
3185 static netdev_features_t
3186 nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3187 netdev_features_t features)
3188 {
3189 u8 l4_hdr;
3190
3191 /* We can't do TSO over double tagged packets (802.1AD) */
3192 features &= vlan_features_check(skb, features);
3193
3194 if (!skb->encapsulation)
3195 return features;
3196
3197 /* Ensure that inner L4 header offset fits into TX descriptor field */
3198 if (skb_is_gso(skb)) {
3199 u32 hdrlen;
3200
3201 hdrlen = skb_inner_transport_header(skb) - skb->data +
3202 inner_tcp_hdrlen(skb);
3203
3204 if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
3205 features &= ~NETIF_F_GSO_MASK;
3206 }
3207
3208 /* VXLAN/GRE check */
3209 switch (vlan_get_protocol(skb)) {
3210 case htons(ETH_P_IP):
3211 l4_hdr = ip_hdr(skb)->protocol;
3212 break;
3213 case htons(ETH_P_IPV6):
3214 l4_hdr = ipv6_hdr(skb)->nexthdr;
3215 break;
3216 default:
3217 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3218 }
3219
3220 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3221 skb->inner_protocol != htons(ETH_P_TEB) ||
3222 (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3223 (l4_hdr == IPPROTO_UDP &&
3224 (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3225 sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3226 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3227
3228 return features;
3229 }
3230
3231 /**
3232 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3233 * @nn: NFP Net device to reconfigure
3234 * @idx: Index into the port table where new port should be written
3235 * @port: UDP port to configure (pass zero to remove VXLAN port)
3236 */
3237 static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3238 {
3239 int i;
3240
3241 nn->vxlan_ports[idx] = port;
3242
3243 if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3244 return;
3245
3246 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3247 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3248 nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3249 be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3250 be16_to_cpu(nn->vxlan_ports[i]));
3251
3252 nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3253 }
3254
3255 /**
3256 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3257 * @nn: NFP Network structure
3258 * @port: UDP port to look for
3259 *
3260 * Return: if the port is already in the table -- it's position;
3261 * if the port is not in the table -- free position to use;
3262 * if the table is full -- -ENOSPC.
3263 */
3264 static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3265 {
3266 int i, free_idx = -ENOSPC;
3267
3268 for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3269 if (nn->vxlan_ports[i] == port)
3270 return i;
3271 if (!nn->vxlan_usecnt[i])
3272 free_idx = i;
3273 }
3274
3275 return free_idx;
3276 }
3277
3278 static void nfp_net_add_vxlan_port(struct net_device *netdev,
3279 struct udp_tunnel_info *ti)
3280 {
3281 struct nfp_net *nn = netdev_priv(netdev);
3282 int idx;
3283
3284 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3285 return;
3286
3287 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3288 if (idx == -ENOSPC)
3289 return;
3290
3291 if (!nn->vxlan_usecnt[idx]++)
3292 nfp_net_set_vxlan_port(nn, idx, ti->port);
3293 }
3294
3295 static void nfp_net_del_vxlan_port(struct net_device *netdev,
3296 struct udp_tunnel_info *ti)
3297 {
3298 struct nfp_net *nn = netdev_priv(netdev);
3299 int idx;
3300
3301 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3302 return;
3303
3304 idx = nfp_net_find_vxlan_idx(nn, ti->port);
3305 if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3306 return;
3307
3308 if (!--nn->vxlan_usecnt[idx])
3309 nfp_net_set_vxlan_port(nn, idx, 0);
3310 }
3311
3312 static int
3313 nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog,
3314 struct netlink_ext_ack *extack)
3315 {
3316 struct nfp_net_dp *dp;
3317
3318 if (!prog == !nn->dp.xdp_prog) {
3319 WRITE_ONCE(nn->dp.xdp_prog, prog);
3320 return 0;
3321 }
3322
3323 dp = nfp_net_clone_dp(nn);
3324 if (!dp)
3325 return -ENOMEM;
3326
3327 dp->xdp_prog = prog;
3328 dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3329 dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3330 dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3331
3332 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3333 return nfp_net_ring_reconfig(nn, dp, extack);
3334 }
3335
3336 static int
3337 nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags,
3338 struct netlink_ext_ack *extack)
3339 {
3340 struct bpf_prog *drv_prog, *offload_prog;
3341 int err;
3342
3343 if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES)
3344 return -EBUSY;
3345
3346 /* Load both when no flags set to allow easy activation of driver path
3347 * when program is replaced by one which can't be offloaded.
3348 */
3349 drv_prog = flags & XDP_FLAGS_HW_MODE ? NULL : prog;
3350 offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog;
3351
3352 err = nfp_net_xdp_setup_drv(nn, drv_prog, extack);
3353 if (err)
3354 return err;
3355
3356 err = nfp_app_xdp_offload(nn->app, nn, offload_prog);
3357 if (err && flags & XDP_FLAGS_HW_MODE)
3358 return err;
3359
3360 if (nn->xdp_prog)
3361 bpf_prog_put(nn->xdp_prog);
3362 nn->xdp_prog = prog;
3363 nn->xdp_flags = flags;
3364
3365 return 0;
3366 }
3367
3368 static int nfp_net_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
3369 {
3370 struct nfp_net *nn = netdev_priv(netdev);
3371
3372 switch (xdp->command) {
3373 case XDP_SETUP_PROG:
3374 case XDP_SETUP_PROG_HW:
3375 return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags,
3376 xdp->extack);
3377 case XDP_QUERY_PROG:
3378 xdp->prog_attached = !!nn->xdp_prog;
3379 if (nn->dp.bpf_offload_xdp)
3380 xdp->prog_attached = XDP_ATTACHED_HW;
3381 xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0;
3382 return 0;
3383 default:
3384 return -EINVAL;
3385 }
3386 }
3387
3388 static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3389 {
3390 struct nfp_net *nn = netdev_priv(netdev);
3391 struct sockaddr *saddr = addr;
3392 int err;
3393
3394 err = eth_prepare_mac_addr_change(netdev, addr);
3395 if (err)
3396 return err;
3397
3398 nfp_net_write_mac_addr(nn, saddr->sa_data);
3399
3400 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3401 if (err)
3402 return err;
3403
3404 eth_commit_mac_addr_change(netdev, addr);
3405
3406 return 0;
3407 }
3408
3409 const struct net_device_ops nfp_net_netdev_ops = {
3410 .ndo_open = nfp_net_netdev_open,
3411 .ndo_stop = nfp_net_netdev_close,
3412 .ndo_start_xmit = nfp_net_tx,
3413 .ndo_get_stats64 = nfp_net_stat64,
3414 .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid,
3415 .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid,
3416 .ndo_setup_tc = nfp_port_setup_tc,
3417 .ndo_tx_timeout = nfp_net_tx_timeout,
3418 .ndo_set_rx_mode = nfp_net_set_rx_mode,
3419 .ndo_change_mtu = nfp_net_change_mtu,
3420 .ndo_set_mac_address = nfp_net_set_mac_address,
3421 .ndo_set_features = nfp_net_set_features,
3422 .ndo_features_check = nfp_net_features_check,
3423 .ndo_get_phys_port_name = nfp_port_get_phys_port_name,
3424 .ndo_udp_tunnel_add = nfp_net_add_vxlan_port,
3425 .ndo_udp_tunnel_del = nfp_net_del_vxlan_port,
3426 .ndo_xdp = nfp_net_xdp,
3427 };
3428
3429 /**
3430 * nfp_net_info() - Print general info about the NIC
3431 * @nn: NFP Net device to reconfigure
3432 */
3433 void nfp_net_info(struct nfp_net *nn)
3434 {
3435 nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3436 nn->dp.is_vf ? "VF " : "",
3437 nn->dp.num_tx_rings, nn->max_tx_rings,
3438 nn->dp.num_rx_rings, nn->max_rx_rings);
3439 nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3440 nn->fw_ver.resv, nn->fw_ver.class,
3441 nn->fw_ver.major, nn->fw_ver.minor,
3442 nn->max_mtu);
3443 nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3444 nn->cap,
3445 nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "",
3446 nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "",
3447 nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "",
3448 nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "",
3449 nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "",
3450 nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "",
3451 nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "",
3452 nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "",
3453 nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "",
3454 nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "",
3455 nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "",
3456 nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "",
3457 nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "",
3458 nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3459 nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3460 nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3461 nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "",
3462 nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "",
3463 nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "",
3464 nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3465 "RXCSUM_COMPLETE " : "",
3466 nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3467 nfp_app_extra_cap(nn->app, nn));
3468 }
3469
3470 /**
3471 * nfp_net_alloc() - Allocate netdev and related structure
3472 * @pdev: PCI device
3473 * @needs_netdev: Whether to allocate a netdev for this vNIC
3474 * @max_tx_rings: Maximum number of TX rings supported by device
3475 * @max_rx_rings: Maximum number of RX rings supported by device
3476 *
3477 * This function allocates a netdev device and fills in the initial
3478 * part of the @struct nfp_net structure. In case of control device
3479 * nfp_net structure is allocated without the netdev.
3480 *
3481 * Return: NFP Net device structure, or ERR_PTR on error.
3482 */
3483 struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev,
3484 unsigned int max_tx_rings,
3485 unsigned int max_rx_rings)
3486 {
3487 struct nfp_net *nn;
3488
3489 if (needs_netdev) {
3490 struct net_device *netdev;
3491
3492 netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3493 max_tx_rings, max_rx_rings);
3494 if (!netdev)
3495 return ERR_PTR(-ENOMEM);
3496
3497 SET_NETDEV_DEV(netdev, &pdev->dev);
3498 nn = netdev_priv(netdev);
3499 nn->dp.netdev = netdev;
3500 } else {
3501 nn = vzalloc(sizeof(*nn));
3502 if (!nn)
3503 return ERR_PTR(-ENOMEM);
3504 }
3505
3506 nn->dp.dev = &pdev->dev;
3507 nn->pdev = pdev;
3508
3509 nn->max_tx_rings = max_tx_rings;
3510 nn->max_rx_rings = max_rx_rings;
3511
3512 nn->dp.num_tx_rings = min_t(unsigned int,
3513 max_tx_rings, num_online_cpus());
3514 nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3515 netif_get_num_default_rss_queues());
3516
3517 nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3518 nn->dp.num_r_vecs = min_t(unsigned int,
3519 nn->dp.num_r_vecs, num_online_cpus());
3520
3521 nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3522 nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3523
3524 spin_lock_init(&nn->reconfig_lock);
3525 spin_lock_init(&nn->link_status_lock);
3526
3527 setup_timer(&nn->reconfig_timer,
3528 nfp_net_reconfig_timer, (unsigned long)nn);
3529
3530 return nn;
3531 }
3532
3533 /**
3534 * nfp_net_free() - Undo what @nfp_net_alloc() did
3535 * @nn: NFP Net device to reconfigure
3536 */
3537 void nfp_net_free(struct nfp_net *nn)
3538 {
3539 if (nn->xdp_prog)
3540 bpf_prog_put(nn->xdp_prog);
3541
3542 if (nn->dp.netdev)
3543 free_netdev(nn->dp.netdev);
3544 else
3545 vfree(nn);
3546 }
3547
3548 /**
3549 * nfp_net_rss_key_sz() - Get current size of the RSS key
3550 * @nn: NFP Net device instance
3551 *
3552 * Return: size of the RSS key for currently selected hash function.
3553 */
3554 unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3555 {
3556 switch (nn->rss_hfunc) {
3557 case ETH_RSS_HASH_TOP:
3558 return NFP_NET_CFG_RSS_KEY_SZ;
3559 case ETH_RSS_HASH_XOR:
3560 return 0;
3561 case ETH_RSS_HASH_CRC32:
3562 return 4;
3563 }
3564
3565 nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3566 return 0;
3567 }
3568
3569 /**
3570 * nfp_net_rss_init() - Set the initial RSS parameters
3571 * @nn: NFP Net device to reconfigure
3572 */
3573 static void nfp_net_rss_init(struct nfp_net *nn)
3574 {
3575 unsigned long func_bit, rss_cap_hfunc;
3576 u32 reg;
3577
3578 /* Read the RSS function capability and select first supported func */
3579 reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3580 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3581 if (!rss_cap_hfunc)
3582 rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3583 NFP_NET_CFG_RSS_TOEPLITZ);
3584
3585 func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3586 if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3587 dev_warn(nn->dp.dev,
3588 "Bad RSS config, defaulting to Toeplitz hash\n");
3589 func_bit = ETH_RSS_HASH_TOP_BIT;
3590 }
3591 nn->rss_hfunc = 1 << func_bit;
3592
3593 netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3594
3595 nfp_net_rss_init_itbl(nn);
3596
3597 /* Enable IPv4/IPv6 TCP by default */
3598 nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3599 NFP_NET_CFG_RSS_IPV6_TCP |
3600 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3601 NFP_NET_CFG_RSS_MASK;
3602 }
3603
3604 /**
3605 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3606 * @nn: NFP Net device to reconfigure
3607 */
3608 static void nfp_net_irqmod_init(struct nfp_net *nn)
3609 {
3610 nn->rx_coalesce_usecs = 50;
3611 nn->rx_coalesce_max_frames = 64;
3612 nn->tx_coalesce_usecs = 50;
3613 nn->tx_coalesce_max_frames = 64;
3614 }
3615
3616 static void nfp_net_netdev_init(struct nfp_net *nn)
3617 {
3618 struct net_device *netdev = nn->dp.netdev;
3619
3620 nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3621
3622 netdev->mtu = nn->dp.mtu;
3623
3624 /* Advertise/enable offloads based on capabilities
3625 *
3626 * Note: netdev->features show the currently enabled features
3627 * and netdev->hw_features advertises which features are
3628 * supported. By default we enable most features.
3629 */
3630 if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3631 netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3632
3633 netdev->hw_features = NETIF_F_HIGHDMA;
3634 if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3635 netdev->hw_features |= NETIF_F_RXCSUM;
3636 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3637 }
3638 if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3639 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3640 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3641 }
3642 if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3643 netdev->hw_features |= NETIF_F_SG;
3644 nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3645 }
3646 if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3647 nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3648 netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3649 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3650 NFP_NET_CFG_CTRL_LSO;
3651 }
3652 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3653 netdev->hw_features |= NETIF_F_RXHASH;
3654 if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
3655 nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3656 if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3657 netdev->hw_features |= NETIF_F_GSO_GRE |
3658 NETIF_F_GSO_UDP_TUNNEL;
3659 nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3660
3661 netdev->hw_enc_features = netdev->hw_features;
3662 }
3663
3664 netdev->vlan_features = netdev->hw_features;
3665
3666 if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3667 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3668 nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3669 }
3670 if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3671 if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3672 nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3673 } else {
3674 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3675 nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3676 }
3677 }
3678 if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3679 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3680 nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3681 }
3682
3683 netdev->features = netdev->hw_features;
3684
3685 if (nfp_app_has_tc(nn->app))
3686 netdev->hw_features |= NETIF_F_HW_TC;
3687
3688 /* Advertise but disable TSO by default. */
3689 netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3690 nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3691
3692 /* Finalise the netdev setup */
3693 netdev->netdev_ops = &nfp_net_netdev_ops;
3694 netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3695
3696 SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops);
3697
3698 /* MTU range: 68 - hw-specific max */
3699 netdev->min_mtu = ETH_MIN_MTU;
3700 netdev->max_mtu = nn->max_mtu;
3701
3702 netif_carrier_off(netdev);
3703
3704 nfp_net_set_ethtool_ops(netdev);
3705 }
3706
3707 /**
3708 * nfp_net_init() - Initialise/finalise the nfp_net structure
3709 * @nn: NFP Net device structure
3710 *
3711 * Return: 0 on success or negative errno on error.
3712 */
3713 int nfp_net_init(struct nfp_net *nn)
3714 {
3715 int err;
3716
3717 nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3718
3719 /* Get some of the read-only fields from the BAR */
3720 nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3721 nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3722
3723 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3724 * we allow use of non-chained metadata if RSS(v1) is the only
3725 * advertised capability requiring metadata.
3726 */
3727 nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3728 !nn->dp.netdev ||
3729 !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3730 nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3731 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3732 * it has the same meaning as RSSv2.
3733 */
3734 if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3735 nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3736
3737 /* Determine RX packet/metadata boundary offset */
3738 if (nn->fw_ver.major >= 2) {
3739 u32 reg;
3740
3741 reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3742 if (reg > NFP_NET_MAX_PREPEND) {
3743 nn_err(nn, "Invalid rx offset: %d\n", reg);
3744 return -EINVAL;
3745 }
3746 nn->dp.rx_offset = reg;
3747 } else {
3748 nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3749 }
3750
3751 /* Set default MTU and Freelist buffer size */
3752 if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
3753 nn->dp.mtu = nn->max_mtu;
3754 else
3755 nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3756 nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3757
3758 if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3759 nfp_net_rss_init(nn);
3760 nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3761 NFP_NET_CFG_CTRL_RSS;
3762 }
3763
3764 /* Allow L2 Broadcast and Multicast through by default, if supported */
3765 if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3766 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3767 if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3768 nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3769
3770 /* Allow IRQ moderation, if supported */
3771 if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3772 nfp_net_irqmod_init(nn);
3773 nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3774 }
3775
3776 if (nn->dp.netdev)
3777 nfp_net_netdev_init(nn);
3778
3779 /* Stash the re-configuration queue away. First odd queue in TX Bar */
3780 nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3781
3782 /* Make sure the FW knows the netdev is supposed to be disabled here */
3783 nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3784 nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3785 nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3786 err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3787 NFP_NET_CFG_UPDATE_GEN);
3788 if (err)
3789 return err;
3790
3791 nfp_net_vecs_init(nn);
3792
3793 if (!nn->dp.netdev)
3794 return 0;
3795 return register_netdev(nn->dp.netdev);
3796 }
3797
3798 /**
3799 * nfp_net_clean() - Undo what nfp_net_init() did.
3800 * @nn: NFP Net device structure
3801 */
3802 void nfp_net_clean(struct nfp_net *nn)
3803 {
3804 if (!nn->dp.netdev)
3805 return;
3806
3807 unregister_netdev(nn->dp.netdev);
3808 }