]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/nvidia/forcedeth.c
slip: Fix use-after-free Read in slip_open
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / nvidia / forcedeth.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
4 *
5 * Note: This driver is a cleanroom reimplementation based on reverse
6 * engineered documentation written by Carl-Daniel Hailfinger
7 * and Andrew de Quincey.
8 *
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
12 *
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
18 *
19 * Known bugs:
20 * We suspect that on some hardware no TX done interrupts are generated.
21 * This means recovery from netif_stop_queue only happens if the hw timer
22 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
23 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
24 * If your hardware reliably generates tx done interrupts, then you can remove
25 * DEV_NEED_TIMERIRQ from the driver_data flags.
26 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
27 * superfluous timer interrupts from the nic.
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #define FORCEDETH_VERSION "0.64"
33 #define DRV_NAME "forcedeth"
34
35 #include <linux/module.h>
36 #include <linux/types.h>
37 #include <linux/pci.h>
38 #include <linux/interrupt.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/delay.h>
42 #include <linux/sched.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/timer.h>
46 #include <linux/skbuff.h>
47 #include <linux/mii.h>
48 #include <linux/random.h>
49 #include <linux/if_vlan.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/slab.h>
52 #include <linux/uaccess.h>
53 #include <linux/prefetch.h>
54 #include <linux/u64_stats_sync.h>
55 #include <linux/io.h>
56
57 #include <asm/irq.h>
58
59 #define TX_WORK_PER_LOOP 64
60 #define RX_WORK_PER_LOOP 64
61
62 /*
63 * Hardware access:
64 */
65
66 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
67 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
68 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
69 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
70 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
71 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
72 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
73 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
74 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
75 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
76 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
77 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
78 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
79 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
80 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
81 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
82 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
83 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
84 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
85 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
86 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
87 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
88 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
89 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
90 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
91 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
92 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
93
94 enum {
95 NvRegIrqStatus = 0x000,
96 #define NVREG_IRQSTAT_MIIEVENT 0x040
97 #define NVREG_IRQSTAT_MASK 0x83ff
98 NvRegIrqMask = 0x004,
99 #define NVREG_IRQ_RX_ERROR 0x0001
100 #define NVREG_IRQ_RX 0x0002
101 #define NVREG_IRQ_RX_NOBUF 0x0004
102 #define NVREG_IRQ_TX_ERR 0x0008
103 #define NVREG_IRQ_TX_OK 0x0010
104 #define NVREG_IRQ_TIMER 0x0020
105 #define NVREG_IRQ_LINK 0x0040
106 #define NVREG_IRQ_RX_FORCED 0x0080
107 #define NVREG_IRQ_TX_FORCED 0x0100
108 #define NVREG_IRQ_RECOVER_ERROR 0x8200
109 #define NVREG_IRQMASK_THROUGHPUT 0x00df
110 #define NVREG_IRQMASK_CPU 0x0060
111 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
112 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
113 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
114
115 NvRegUnknownSetupReg6 = 0x008,
116 #define NVREG_UNKSETUP6_VAL 3
117
118 /*
119 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
120 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
121 */
122 NvRegPollingInterval = 0x00c,
123 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
124 #define NVREG_POLL_DEFAULT_CPU 13
125 NvRegMSIMap0 = 0x020,
126 NvRegMSIMap1 = 0x024,
127 NvRegMSIIrqMask = 0x030,
128 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
129 NvRegMisc1 = 0x080,
130 #define NVREG_MISC1_PAUSE_TX 0x01
131 #define NVREG_MISC1_HD 0x02
132 #define NVREG_MISC1_FORCE 0x3b0f3c
133
134 NvRegMacReset = 0x34,
135 #define NVREG_MAC_RESET_ASSERT 0x0F3
136 NvRegTransmitterControl = 0x084,
137 #define NVREG_XMITCTL_START 0x01
138 #define NVREG_XMITCTL_MGMT_ST 0x40000000
139 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
140 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
141 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
142 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
143 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
144 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
145 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
146 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
147 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
148 #define NVREG_XMITCTL_DATA_START 0x00100000
149 #define NVREG_XMITCTL_DATA_READY 0x00010000
150 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
151 NvRegTransmitterStatus = 0x088,
152 #define NVREG_XMITSTAT_BUSY 0x01
153
154 NvRegPacketFilterFlags = 0x8c,
155 #define NVREG_PFF_PAUSE_RX 0x08
156 #define NVREG_PFF_ALWAYS 0x7F0000
157 #define NVREG_PFF_PROMISC 0x80
158 #define NVREG_PFF_MYADDR 0x20
159 #define NVREG_PFF_LOOPBACK 0x10
160
161 NvRegOffloadConfig = 0x90,
162 #define NVREG_OFFLOAD_HOMEPHY 0x601
163 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
164 NvRegReceiverControl = 0x094,
165 #define NVREG_RCVCTL_START 0x01
166 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
167 NvRegReceiverStatus = 0x98,
168 #define NVREG_RCVSTAT_BUSY 0x01
169
170 NvRegSlotTime = 0x9c,
171 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
172 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
173 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
174 #define NVREG_SLOTTIME_HALF 0x0000ff00
175 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
176 #define NVREG_SLOTTIME_MASK 0x000000ff
177
178 NvRegTxDeferral = 0xA0,
179 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
180 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
181 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
182 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
183 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
184 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
185 NvRegRxDeferral = 0xA4,
186 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
187 NvRegMacAddrA = 0xA8,
188 NvRegMacAddrB = 0xAC,
189 NvRegMulticastAddrA = 0xB0,
190 #define NVREG_MCASTADDRA_FORCE 0x01
191 NvRegMulticastAddrB = 0xB4,
192 NvRegMulticastMaskA = 0xB8,
193 #define NVREG_MCASTMASKA_NONE 0xffffffff
194 NvRegMulticastMaskB = 0xBC,
195 #define NVREG_MCASTMASKB_NONE 0xffff
196
197 NvRegPhyInterface = 0xC0,
198 #define PHY_RGMII 0x10000000
199 NvRegBackOffControl = 0xC4,
200 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
201 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
202 #define NVREG_BKOFFCTRL_SELECT 24
203 #define NVREG_BKOFFCTRL_GEAR 12
204
205 NvRegTxRingPhysAddr = 0x100,
206 NvRegRxRingPhysAddr = 0x104,
207 NvRegRingSizes = 0x108,
208 #define NVREG_RINGSZ_TXSHIFT 0
209 #define NVREG_RINGSZ_RXSHIFT 16
210 NvRegTransmitPoll = 0x10c,
211 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
212 NvRegLinkSpeed = 0x110,
213 #define NVREG_LINKSPEED_FORCE 0x10000
214 #define NVREG_LINKSPEED_10 1000
215 #define NVREG_LINKSPEED_100 100
216 #define NVREG_LINKSPEED_1000 50
217 #define NVREG_LINKSPEED_MASK (0xFFF)
218 NvRegUnknownSetupReg5 = 0x130,
219 #define NVREG_UNKSETUP5_BIT31 (1<<31)
220 NvRegTxWatermark = 0x13c,
221 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
222 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
223 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
224 NvRegTxRxControl = 0x144,
225 #define NVREG_TXRXCTL_KICK 0x0001
226 #define NVREG_TXRXCTL_BIT1 0x0002
227 #define NVREG_TXRXCTL_BIT2 0x0004
228 #define NVREG_TXRXCTL_IDLE 0x0008
229 #define NVREG_TXRXCTL_RESET 0x0010
230 #define NVREG_TXRXCTL_RXCHECK 0x0400
231 #define NVREG_TXRXCTL_DESC_1 0
232 #define NVREG_TXRXCTL_DESC_2 0x002100
233 #define NVREG_TXRXCTL_DESC_3 0xc02200
234 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
235 #define NVREG_TXRXCTL_VLANINS 0x00080
236 NvRegTxRingPhysAddrHigh = 0x148,
237 NvRegRxRingPhysAddrHigh = 0x14C,
238 NvRegTxPauseFrame = 0x170,
239 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
240 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
241 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
242 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
243 NvRegTxPauseFrameLimit = 0x174,
244 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
245 NvRegMIIStatus = 0x180,
246 #define NVREG_MIISTAT_ERROR 0x0001
247 #define NVREG_MIISTAT_LINKCHANGE 0x0008
248 #define NVREG_MIISTAT_MASK_RW 0x0007
249 #define NVREG_MIISTAT_MASK_ALL 0x000f
250 NvRegMIIMask = 0x184,
251 #define NVREG_MII_LINKCHANGE 0x0008
252
253 NvRegAdapterControl = 0x188,
254 #define NVREG_ADAPTCTL_START 0x02
255 #define NVREG_ADAPTCTL_LINKUP 0x04
256 #define NVREG_ADAPTCTL_PHYVALID 0x40000
257 #define NVREG_ADAPTCTL_RUNNING 0x100000
258 #define NVREG_ADAPTCTL_PHYSHIFT 24
259 NvRegMIISpeed = 0x18c,
260 #define NVREG_MIISPEED_BIT8 (1<<8)
261 #define NVREG_MIIDELAY 5
262 NvRegMIIControl = 0x190,
263 #define NVREG_MIICTL_INUSE 0x08000
264 #define NVREG_MIICTL_WRITE 0x00400
265 #define NVREG_MIICTL_ADDRSHIFT 5
266 NvRegMIIData = 0x194,
267 NvRegTxUnicast = 0x1a0,
268 NvRegTxMulticast = 0x1a4,
269 NvRegTxBroadcast = 0x1a8,
270 NvRegWakeUpFlags = 0x200,
271 #define NVREG_WAKEUPFLAGS_VAL 0x7770
272 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
273 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
274 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
275 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
276 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
277 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
278 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
279 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
280 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
281 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
282
283 NvRegMgmtUnitGetVersion = 0x204,
284 #define NVREG_MGMTUNITGETVERSION 0x01
285 NvRegMgmtUnitVersion = 0x208,
286 #define NVREG_MGMTUNITVERSION 0x08
287 NvRegPowerCap = 0x268,
288 #define NVREG_POWERCAP_D3SUPP (1<<30)
289 #define NVREG_POWERCAP_D2SUPP (1<<26)
290 #define NVREG_POWERCAP_D1SUPP (1<<25)
291 NvRegPowerState = 0x26c,
292 #define NVREG_POWERSTATE_POWEREDUP 0x8000
293 #define NVREG_POWERSTATE_VALID 0x0100
294 #define NVREG_POWERSTATE_MASK 0x0003
295 #define NVREG_POWERSTATE_D0 0x0000
296 #define NVREG_POWERSTATE_D1 0x0001
297 #define NVREG_POWERSTATE_D2 0x0002
298 #define NVREG_POWERSTATE_D3 0x0003
299 NvRegMgmtUnitControl = 0x278,
300 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
301 NvRegTxCnt = 0x280,
302 NvRegTxZeroReXmt = 0x284,
303 NvRegTxOneReXmt = 0x288,
304 NvRegTxManyReXmt = 0x28c,
305 NvRegTxLateCol = 0x290,
306 NvRegTxUnderflow = 0x294,
307 NvRegTxLossCarrier = 0x298,
308 NvRegTxExcessDef = 0x29c,
309 NvRegTxRetryErr = 0x2a0,
310 NvRegRxFrameErr = 0x2a4,
311 NvRegRxExtraByte = 0x2a8,
312 NvRegRxLateCol = 0x2ac,
313 NvRegRxRunt = 0x2b0,
314 NvRegRxFrameTooLong = 0x2b4,
315 NvRegRxOverflow = 0x2b8,
316 NvRegRxFCSErr = 0x2bc,
317 NvRegRxFrameAlignErr = 0x2c0,
318 NvRegRxLenErr = 0x2c4,
319 NvRegRxUnicast = 0x2c8,
320 NvRegRxMulticast = 0x2cc,
321 NvRegRxBroadcast = 0x2d0,
322 NvRegTxDef = 0x2d4,
323 NvRegTxFrame = 0x2d8,
324 NvRegRxCnt = 0x2dc,
325 NvRegTxPause = 0x2e0,
326 NvRegRxPause = 0x2e4,
327 NvRegRxDropFrame = 0x2e8,
328 NvRegVlanControl = 0x300,
329 #define NVREG_VLANCONTROL_ENABLE 0x2000
330 NvRegMSIXMap0 = 0x3e0,
331 NvRegMSIXMap1 = 0x3e4,
332 NvRegMSIXIrqStatus = 0x3f0,
333
334 NvRegPowerState2 = 0x600,
335 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
336 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
337 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
338 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
339 };
340
341 /* Big endian: should work, but is untested */
342 struct ring_desc {
343 __le32 buf;
344 __le32 flaglen;
345 };
346
347 struct ring_desc_ex {
348 __le32 bufhigh;
349 __le32 buflow;
350 __le32 txvlan;
351 __le32 flaglen;
352 };
353
354 union ring_type {
355 struct ring_desc *orig;
356 struct ring_desc_ex *ex;
357 };
358
359 #define FLAG_MASK_V1 0xffff0000
360 #define FLAG_MASK_V2 0xffffc000
361 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
362 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
363
364 #define NV_TX_LASTPACKET (1<<16)
365 #define NV_TX_RETRYERROR (1<<19)
366 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
367 #define NV_TX_FORCED_INTERRUPT (1<<24)
368 #define NV_TX_DEFERRED (1<<26)
369 #define NV_TX_CARRIERLOST (1<<27)
370 #define NV_TX_LATECOLLISION (1<<28)
371 #define NV_TX_UNDERFLOW (1<<29)
372 #define NV_TX_ERROR (1<<30)
373 #define NV_TX_VALID (1<<31)
374
375 #define NV_TX2_LASTPACKET (1<<29)
376 #define NV_TX2_RETRYERROR (1<<18)
377 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
378 #define NV_TX2_FORCED_INTERRUPT (1<<30)
379 #define NV_TX2_DEFERRED (1<<25)
380 #define NV_TX2_CARRIERLOST (1<<26)
381 #define NV_TX2_LATECOLLISION (1<<27)
382 #define NV_TX2_UNDERFLOW (1<<28)
383 /* error and valid are the same for both */
384 #define NV_TX2_ERROR (1<<30)
385 #define NV_TX2_VALID (1<<31)
386 #define NV_TX2_TSO (1<<28)
387 #define NV_TX2_TSO_SHIFT 14
388 #define NV_TX2_TSO_MAX_SHIFT 14
389 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
390 #define NV_TX2_CHECKSUM_L3 (1<<27)
391 #define NV_TX2_CHECKSUM_L4 (1<<26)
392
393 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
394
395 #define NV_RX_DESCRIPTORVALID (1<<16)
396 #define NV_RX_MISSEDFRAME (1<<17)
397 #define NV_RX_SUBTRACT1 (1<<18)
398 #define NV_RX_ERROR1 (1<<23)
399 #define NV_RX_ERROR2 (1<<24)
400 #define NV_RX_ERROR3 (1<<25)
401 #define NV_RX_ERROR4 (1<<26)
402 #define NV_RX_CRCERR (1<<27)
403 #define NV_RX_OVERFLOW (1<<28)
404 #define NV_RX_FRAMINGERR (1<<29)
405 #define NV_RX_ERROR (1<<30)
406 #define NV_RX_AVAIL (1<<31)
407 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
408
409 #define NV_RX2_CHECKSUMMASK (0x1C000000)
410 #define NV_RX2_CHECKSUM_IP (0x10000000)
411 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
412 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
413 #define NV_RX2_DESCRIPTORVALID (1<<29)
414 #define NV_RX2_SUBTRACT1 (1<<25)
415 #define NV_RX2_ERROR1 (1<<18)
416 #define NV_RX2_ERROR2 (1<<19)
417 #define NV_RX2_ERROR3 (1<<20)
418 #define NV_RX2_ERROR4 (1<<21)
419 #define NV_RX2_CRCERR (1<<22)
420 #define NV_RX2_OVERFLOW (1<<23)
421 #define NV_RX2_FRAMINGERR (1<<24)
422 /* error and avail are the same for both */
423 #define NV_RX2_ERROR (1<<30)
424 #define NV_RX2_AVAIL (1<<31)
425 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
426
427 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
428 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
429
430 /* Miscellaneous hardware related defines: */
431 #define NV_PCI_REGSZ_VER1 0x270
432 #define NV_PCI_REGSZ_VER2 0x2d4
433 #define NV_PCI_REGSZ_VER3 0x604
434 #define NV_PCI_REGSZ_MAX 0x604
435
436 /* various timeout delays: all in usec */
437 #define NV_TXRX_RESET_DELAY 4
438 #define NV_TXSTOP_DELAY1 10
439 #define NV_TXSTOP_DELAY1MAX 500000
440 #define NV_TXSTOP_DELAY2 100
441 #define NV_RXSTOP_DELAY1 10
442 #define NV_RXSTOP_DELAY1MAX 500000
443 #define NV_RXSTOP_DELAY2 100
444 #define NV_SETUP5_DELAY 5
445 #define NV_SETUP5_DELAYMAX 50000
446 #define NV_POWERUP_DELAY 5
447 #define NV_POWERUP_DELAYMAX 5000
448 #define NV_MIIBUSY_DELAY 50
449 #define NV_MIIPHY_DELAY 10
450 #define NV_MIIPHY_DELAYMAX 10000
451 #define NV_MAC_RESET_DELAY 64
452
453 #define NV_WAKEUPPATTERNS 5
454 #define NV_WAKEUPMASKENTRIES 4
455
456 /* General driver defaults */
457 #define NV_WATCHDOG_TIMEO (5*HZ)
458
459 #define RX_RING_DEFAULT 512
460 #define TX_RING_DEFAULT 256
461 #define RX_RING_MIN 128
462 #define TX_RING_MIN 64
463 #define RING_MAX_DESC_VER_1 1024
464 #define RING_MAX_DESC_VER_2_3 16384
465
466 /* rx/tx mac addr + type + vlan + align + slack*/
467 #define NV_RX_HEADERS (64)
468 /* even more slack. */
469 #define NV_RX_ALLOC_PAD (64)
470
471 /* maximum mtu size */
472 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
473 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
474
475 #define OOM_REFILL (1+HZ/20)
476 #define POLL_WAIT (1+HZ/100)
477 #define LINK_TIMEOUT (3*HZ)
478 #define STATS_INTERVAL (10*HZ)
479
480 /*
481 * desc_ver values:
482 * The nic supports three different descriptor types:
483 * - DESC_VER_1: Original
484 * - DESC_VER_2: support for jumbo frames.
485 * - DESC_VER_3: 64-bit format.
486 */
487 #define DESC_VER_1 1
488 #define DESC_VER_2 2
489 #define DESC_VER_3 3
490
491 /* PHY defines */
492 #define PHY_OUI_MARVELL 0x5043
493 #define PHY_OUI_CICADA 0x03f1
494 #define PHY_OUI_VITESSE 0x01c1
495 #define PHY_OUI_REALTEK 0x0732
496 #define PHY_OUI_REALTEK2 0x0020
497 #define PHYID1_OUI_MASK 0x03ff
498 #define PHYID1_OUI_SHFT 6
499 #define PHYID2_OUI_MASK 0xfc00
500 #define PHYID2_OUI_SHFT 10
501 #define PHYID2_MODEL_MASK 0x03f0
502 #define PHY_MODEL_REALTEK_8211 0x0110
503 #define PHY_REV_MASK 0x0001
504 #define PHY_REV_REALTEK_8211B 0x0000
505 #define PHY_REV_REALTEK_8211C 0x0001
506 #define PHY_MODEL_REALTEK_8201 0x0200
507 #define PHY_MODEL_MARVELL_E3016 0x0220
508 #define PHY_MARVELL_E3016_INITMASK 0x0300
509 #define PHY_CICADA_INIT1 0x0f000
510 #define PHY_CICADA_INIT2 0x0e00
511 #define PHY_CICADA_INIT3 0x01000
512 #define PHY_CICADA_INIT4 0x0200
513 #define PHY_CICADA_INIT5 0x0004
514 #define PHY_CICADA_INIT6 0x02000
515 #define PHY_VITESSE_INIT_REG1 0x1f
516 #define PHY_VITESSE_INIT_REG2 0x10
517 #define PHY_VITESSE_INIT_REG3 0x11
518 #define PHY_VITESSE_INIT_REG4 0x12
519 #define PHY_VITESSE_INIT_MSK1 0xc
520 #define PHY_VITESSE_INIT_MSK2 0x0180
521 #define PHY_VITESSE_INIT1 0x52b5
522 #define PHY_VITESSE_INIT2 0xaf8a
523 #define PHY_VITESSE_INIT3 0x8
524 #define PHY_VITESSE_INIT4 0x8f8a
525 #define PHY_VITESSE_INIT5 0xaf86
526 #define PHY_VITESSE_INIT6 0x8f86
527 #define PHY_VITESSE_INIT7 0xaf82
528 #define PHY_VITESSE_INIT8 0x0100
529 #define PHY_VITESSE_INIT9 0x8f82
530 #define PHY_VITESSE_INIT10 0x0
531 #define PHY_REALTEK_INIT_REG1 0x1f
532 #define PHY_REALTEK_INIT_REG2 0x19
533 #define PHY_REALTEK_INIT_REG3 0x13
534 #define PHY_REALTEK_INIT_REG4 0x14
535 #define PHY_REALTEK_INIT_REG5 0x18
536 #define PHY_REALTEK_INIT_REG6 0x11
537 #define PHY_REALTEK_INIT_REG7 0x01
538 #define PHY_REALTEK_INIT1 0x0000
539 #define PHY_REALTEK_INIT2 0x8e00
540 #define PHY_REALTEK_INIT3 0x0001
541 #define PHY_REALTEK_INIT4 0xad17
542 #define PHY_REALTEK_INIT5 0xfb54
543 #define PHY_REALTEK_INIT6 0xf5c7
544 #define PHY_REALTEK_INIT7 0x1000
545 #define PHY_REALTEK_INIT8 0x0003
546 #define PHY_REALTEK_INIT9 0x0008
547 #define PHY_REALTEK_INIT10 0x0005
548 #define PHY_REALTEK_INIT11 0x0200
549 #define PHY_REALTEK_INIT_MSK1 0x0003
550
551 #define PHY_GIGABIT 0x0100
552
553 #define PHY_TIMEOUT 0x1
554 #define PHY_ERROR 0x2
555
556 #define PHY_100 0x1
557 #define PHY_1000 0x2
558 #define PHY_HALF 0x100
559
560 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
561 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
562 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
563 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
564 #define NV_PAUSEFRAME_RX_REQ 0x0010
565 #define NV_PAUSEFRAME_TX_REQ 0x0020
566 #define NV_PAUSEFRAME_AUTONEG 0x0040
567
568 /* MSI/MSI-X defines */
569 #define NV_MSI_X_MAX_VECTORS 8
570 #define NV_MSI_X_VECTORS_MASK 0x000f
571 #define NV_MSI_CAPABLE 0x0010
572 #define NV_MSI_X_CAPABLE 0x0020
573 #define NV_MSI_ENABLED 0x0040
574 #define NV_MSI_X_ENABLED 0x0080
575
576 #define NV_MSI_X_VECTOR_ALL 0x0
577 #define NV_MSI_X_VECTOR_RX 0x0
578 #define NV_MSI_X_VECTOR_TX 0x1
579 #define NV_MSI_X_VECTOR_OTHER 0x2
580
581 #define NV_MSI_PRIV_OFFSET 0x68
582 #define NV_MSI_PRIV_VALUE 0xffffffff
583
584 #define NV_RESTART_TX 0x1
585 #define NV_RESTART_RX 0x2
586
587 #define NV_TX_LIMIT_COUNT 16
588
589 #define NV_DYNAMIC_THRESHOLD 4
590 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
591
592 /* statistics */
593 struct nv_ethtool_str {
594 char name[ETH_GSTRING_LEN];
595 };
596
597 static const struct nv_ethtool_str nv_estats_str[] = {
598 { "tx_bytes" }, /* includes Ethernet FCS CRC */
599 { "tx_zero_rexmt" },
600 { "tx_one_rexmt" },
601 { "tx_many_rexmt" },
602 { "tx_late_collision" },
603 { "tx_fifo_errors" },
604 { "tx_carrier_errors" },
605 { "tx_excess_deferral" },
606 { "tx_retry_error" },
607 { "rx_frame_error" },
608 { "rx_extra_byte" },
609 { "rx_late_collision" },
610 { "rx_runt" },
611 { "rx_frame_too_long" },
612 { "rx_over_errors" },
613 { "rx_crc_errors" },
614 { "rx_frame_align_error" },
615 { "rx_length_error" },
616 { "rx_unicast" },
617 { "rx_multicast" },
618 { "rx_broadcast" },
619 { "rx_packets" },
620 { "rx_errors_total" },
621 { "tx_errors_total" },
622
623 /* version 2 stats */
624 { "tx_deferral" },
625 { "tx_packets" },
626 { "rx_bytes" }, /* includes Ethernet FCS CRC */
627 { "tx_pause" },
628 { "rx_pause" },
629 { "rx_drop_frame" },
630
631 /* version 3 stats */
632 { "tx_unicast" },
633 { "tx_multicast" },
634 { "tx_broadcast" }
635 };
636
637 struct nv_ethtool_stats {
638 u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
639 u64 tx_zero_rexmt;
640 u64 tx_one_rexmt;
641 u64 tx_many_rexmt;
642 u64 tx_late_collision;
643 u64 tx_fifo_errors;
644 u64 tx_carrier_errors;
645 u64 tx_excess_deferral;
646 u64 tx_retry_error;
647 u64 rx_frame_error;
648 u64 rx_extra_byte;
649 u64 rx_late_collision;
650 u64 rx_runt;
651 u64 rx_frame_too_long;
652 u64 rx_over_errors;
653 u64 rx_crc_errors;
654 u64 rx_frame_align_error;
655 u64 rx_length_error;
656 u64 rx_unicast;
657 u64 rx_multicast;
658 u64 rx_broadcast;
659 u64 rx_packets; /* should be ifconfig->rx_packets */
660 u64 rx_errors_total;
661 u64 tx_errors_total;
662
663 /* version 2 stats */
664 u64 tx_deferral;
665 u64 tx_packets; /* should be ifconfig->tx_packets */
666 u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */
667 u64 tx_pause;
668 u64 rx_pause;
669 u64 rx_drop_frame;
670
671 /* version 3 stats */
672 u64 tx_unicast;
673 u64 tx_multicast;
674 u64 tx_broadcast;
675 };
676
677 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
678 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
679 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
680
681 /* diagnostics */
682 #define NV_TEST_COUNT_BASE 3
683 #define NV_TEST_COUNT_EXTENDED 4
684
685 static const struct nv_ethtool_str nv_etests_str[] = {
686 { "link (online/offline)" },
687 { "register (offline) " },
688 { "interrupt (offline) " },
689 { "loopback (offline) " }
690 };
691
692 struct register_test {
693 __u32 reg;
694 __u32 mask;
695 };
696
697 static const struct register_test nv_registers_test[] = {
698 { NvRegUnknownSetupReg6, 0x01 },
699 { NvRegMisc1, 0x03c },
700 { NvRegOffloadConfig, 0x03ff },
701 { NvRegMulticastAddrA, 0xffffffff },
702 { NvRegTxWatermark, 0x0ff },
703 { NvRegWakeUpFlags, 0x07777 },
704 { 0, 0 }
705 };
706
707 struct nv_skb_map {
708 struct sk_buff *skb;
709 dma_addr_t dma;
710 unsigned int dma_len:31;
711 unsigned int dma_single:1;
712 struct ring_desc_ex *first_tx_desc;
713 struct nv_skb_map *next_tx_ctx;
714 };
715
716 struct nv_txrx_stats {
717 u64 stat_rx_packets;
718 u64 stat_rx_bytes; /* not always available in HW */
719 u64 stat_rx_missed_errors;
720 u64 stat_rx_dropped;
721 u64 stat_tx_packets; /* not always available in HW */
722 u64 stat_tx_bytes;
723 u64 stat_tx_dropped;
724 };
725
726 #define nv_txrx_stats_inc(member) \
727 __this_cpu_inc(np->txrx_stats->member)
728 #define nv_txrx_stats_add(member, count) \
729 __this_cpu_add(np->txrx_stats->member, (count))
730
731 /*
732 * SMP locking:
733 * All hardware access under netdev_priv(dev)->lock, except the performance
734 * critical parts:
735 * - rx is (pseudo-) lockless: it relies on the single-threading provided
736 * by the arch code for interrupts.
737 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
738 * needs netdev_priv(dev)->lock :-(
739 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
740 *
741 * Hardware stats updates are protected by hwstats_lock:
742 * - updated by nv_do_stats_poll (timer). This is meant to avoid
743 * integer wraparound in the NIC stats registers, at low frequency
744 * (0.1 Hz)
745 * - updated by nv_get_ethtool_stats + nv_get_stats64
746 *
747 * Software stats are accessed only through 64b synchronization points
748 * and are not subject to other synchronization techniques (single
749 * update thread on the TX or RX paths).
750 */
751
752 /* in dev: base, irq */
753 struct fe_priv {
754 spinlock_t lock;
755
756 struct net_device *dev;
757 struct napi_struct napi;
758
759 /* hardware stats are updated in syscall and timer */
760 spinlock_t hwstats_lock;
761 struct nv_ethtool_stats estats;
762
763 int in_shutdown;
764 u32 linkspeed;
765 int duplex;
766 int autoneg;
767 int fixed_mode;
768 int phyaddr;
769 int wolenabled;
770 unsigned int phy_oui;
771 unsigned int phy_model;
772 unsigned int phy_rev;
773 u16 gigabit;
774 int intr_test;
775 int recover_error;
776 int quiet_count;
777
778 /* General data: RO fields */
779 dma_addr_t ring_addr;
780 struct pci_dev *pci_dev;
781 u32 orig_mac[2];
782 u32 events;
783 u32 irqmask;
784 u32 desc_ver;
785 u32 txrxctl_bits;
786 u32 vlanctl_bits;
787 u32 driver_data;
788 u32 device_id;
789 u32 register_size;
790 u32 mac_in_use;
791 int mgmt_version;
792 int mgmt_sema;
793
794 void __iomem *base;
795
796 /* rx specific fields.
797 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
798 */
799 union ring_type get_rx, put_rx, last_rx;
800 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
801 struct nv_skb_map *last_rx_ctx;
802 struct nv_skb_map *rx_skb;
803
804 union ring_type rx_ring;
805 unsigned int rx_buf_sz;
806 unsigned int pkt_limit;
807 struct timer_list oom_kick;
808 struct timer_list nic_poll;
809 struct timer_list stats_poll;
810 u32 nic_poll_irq;
811 int rx_ring_size;
812
813 /* RX software stats */
814 struct u64_stats_sync swstats_rx_syncp;
815 struct nv_txrx_stats __percpu *txrx_stats;
816
817 /* media detection workaround.
818 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
819 */
820 int need_linktimer;
821 unsigned long link_timeout;
822 /*
823 * tx specific fields.
824 */
825 union ring_type get_tx, put_tx, last_tx;
826 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
827 struct nv_skb_map *last_tx_ctx;
828 struct nv_skb_map *tx_skb;
829
830 union ring_type tx_ring;
831 u32 tx_flags;
832 int tx_ring_size;
833 int tx_limit;
834 u32 tx_pkts_in_progress;
835 struct nv_skb_map *tx_change_owner;
836 struct nv_skb_map *tx_end_flip;
837 int tx_stop;
838
839 /* TX software stats */
840 struct u64_stats_sync swstats_tx_syncp;
841
842 /* msi/msi-x fields */
843 u32 msi_flags;
844 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
845
846 /* flow control */
847 u32 pause_flags;
848
849 /* power saved state */
850 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
851
852 /* for different msi-x irq type */
853 char name_rx[IFNAMSIZ + 3]; /* -rx */
854 char name_tx[IFNAMSIZ + 3]; /* -tx */
855 char name_other[IFNAMSIZ + 6]; /* -other */
856 };
857
858 /*
859 * Maximum number of loops until we assume that a bit in the irq mask
860 * is stuck. Overridable with module param.
861 */
862 static int max_interrupt_work = 4;
863
864 /*
865 * Optimization can be either throuput mode or cpu mode
866 *
867 * Throughput Mode: Every tx and rx packet will generate an interrupt.
868 * CPU Mode: Interrupts are controlled by a timer.
869 */
870 enum {
871 NV_OPTIMIZATION_MODE_THROUGHPUT,
872 NV_OPTIMIZATION_MODE_CPU,
873 NV_OPTIMIZATION_MODE_DYNAMIC
874 };
875 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
876
877 /*
878 * Poll interval for timer irq
879 *
880 * This interval determines how frequent an interrupt is generated.
881 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
882 * Min = 0, and Max = 65535
883 */
884 static int poll_interval = -1;
885
886 /*
887 * MSI interrupts
888 */
889 enum {
890 NV_MSI_INT_DISABLED,
891 NV_MSI_INT_ENABLED
892 };
893 static int msi = NV_MSI_INT_ENABLED;
894
895 /*
896 * MSIX interrupts
897 */
898 enum {
899 NV_MSIX_INT_DISABLED,
900 NV_MSIX_INT_ENABLED
901 };
902 static int msix = NV_MSIX_INT_ENABLED;
903
904 /*
905 * DMA 64bit
906 */
907 enum {
908 NV_DMA_64BIT_DISABLED,
909 NV_DMA_64BIT_ENABLED
910 };
911 static int dma_64bit = NV_DMA_64BIT_ENABLED;
912
913 /*
914 * Debug output control for tx_timeout
915 */
916 static bool debug_tx_timeout = false;
917
918 /*
919 * Crossover Detection
920 * Realtek 8201 phy + some OEM boards do not work properly.
921 */
922 enum {
923 NV_CROSSOVER_DETECTION_DISABLED,
924 NV_CROSSOVER_DETECTION_ENABLED
925 };
926 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
927
928 /*
929 * Power down phy when interface is down (persists through reboot;
930 * older Linux and other OSes may not power it up again)
931 */
932 static int phy_power_down;
933
934 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
935 {
936 return netdev_priv(dev);
937 }
938
939 static inline u8 __iomem *get_hwbase(struct net_device *dev)
940 {
941 return ((struct fe_priv *)netdev_priv(dev))->base;
942 }
943
944 static inline void pci_push(u8 __iomem *base)
945 {
946 /* force out pending posted writes */
947 readl(base);
948 }
949
950 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
951 {
952 return le32_to_cpu(prd->flaglen)
953 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
954 }
955
956 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
957 {
958 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
959 }
960
961 static bool nv_optimized(struct fe_priv *np)
962 {
963 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
964 return false;
965 return true;
966 }
967
968 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
969 int delay, int delaymax)
970 {
971 u8 __iomem *base = get_hwbase(dev);
972
973 pci_push(base);
974 do {
975 udelay(delay);
976 delaymax -= delay;
977 if (delaymax < 0)
978 return 1;
979 } while ((readl(base + offset) & mask) != target);
980 return 0;
981 }
982
983 #define NV_SETUP_RX_RING 0x01
984 #define NV_SETUP_TX_RING 0x02
985
986 static inline u32 dma_low(dma_addr_t addr)
987 {
988 return addr;
989 }
990
991 static inline u32 dma_high(dma_addr_t addr)
992 {
993 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
994 }
995
996 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
997 {
998 struct fe_priv *np = get_nvpriv(dev);
999 u8 __iomem *base = get_hwbase(dev);
1000
1001 if (!nv_optimized(np)) {
1002 if (rxtx_flags & NV_SETUP_RX_RING)
1003 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1004 if (rxtx_flags & NV_SETUP_TX_RING)
1005 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1006 } else {
1007 if (rxtx_flags & NV_SETUP_RX_RING) {
1008 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
1009 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
1010 }
1011 if (rxtx_flags & NV_SETUP_TX_RING) {
1012 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1013 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
1014 }
1015 }
1016 }
1017
1018 static void free_rings(struct net_device *dev)
1019 {
1020 struct fe_priv *np = get_nvpriv(dev);
1021
1022 if (!nv_optimized(np)) {
1023 if (np->rx_ring.orig)
1024 dma_free_coherent(&np->pci_dev->dev,
1025 sizeof(struct ring_desc) *
1026 (np->rx_ring_size +
1027 np->tx_ring_size),
1028 np->rx_ring.orig, np->ring_addr);
1029 } else {
1030 if (np->rx_ring.ex)
1031 dma_free_coherent(&np->pci_dev->dev,
1032 sizeof(struct ring_desc_ex) *
1033 (np->rx_ring_size +
1034 np->tx_ring_size),
1035 np->rx_ring.ex, np->ring_addr);
1036 }
1037 kfree(np->rx_skb);
1038 kfree(np->tx_skb);
1039 }
1040
1041 static int using_multi_irqs(struct net_device *dev)
1042 {
1043 struct fe_priv *np = get_nvpriv(dev);
1044
1045 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1046 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1047 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1048 return 0;
1049 else
1050 return 1;
1051 }
1052
1053 static void nv_txrx_gate(struct net_device *dev, bool gate)
1054 {
1055 struct fe_priv *np = get_nvpriv(dev);
1056 u8 __iomem *base = get_hwbase(dev);
1057 u32 powerstate;
1058
1059 if (!np->mac_in_use &&
1060 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1061 powerstate = readl(base + NvRegPowerState2);
1062 if (gate)
1063 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1064 else
1065 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1066 writel(powerstate, base + NvRegPowerState2);
1067 }
1068 }
1069
1070 static void nv_enable_irq(struct net_device *dev)
1071 {
1072 struct fe_priv *np = get_nvpriv(dev);
1073
1074 if (!using_multi_irqs(dev)) {
1075 if (np->msi_flags & NV_MSI_X_ENABLED)
1076 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1077 else
1078 enable_irq(np->pci_dev->irq);
1079 } else {
1080 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1081 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1082 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1083 }
1084 }
1085
1086 static void nv_disable_irq(struct net_device *dev)
1087 {
1088 struct fe_priv *np = get_nvpriv(dev);
1089
1090 if (!using_multi_irqs(dev)) {
1091 if (np->msi_flags & NV_MSI_X_ENABLED)
1092 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1093 else
1094 disable_irq(np->pci_dev->irq);
1095 } else {
1096 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1097 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1098 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1099 }
1100 }
1101
1102 /* In MSIX mode, a write to irqmask behaves as XOR */
1103 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1104 {
1105 u8 __iomem *base = get_hwbase(dev);
1106
1107 writel(mask, base + NvRegIrqMask);
1108 }
1109
1110 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1111 {
1112 struct fe_priv *np = get_nvpriv(dev);
1113 u8 __iomem *base = get_hwbase(dev);
1114
1115 if (np->msi_flags & NV_MSI_X_ENABLED) {
1116 writel(mask, base + NvRegIrqMask);
1117 } else {
1118 if (np->msi_flags & NV_MSI_ENABLED)
1119 writel(0, base + NvRegMSIIrqMask);
1120 writel(0, base + NvRegIrqMask);
1121 }
1122 }
1123
1124 static void nv_napi_enable(struct net_device *dev)
1125 {
1126 struct fe_priv *np = get_nvpriv(dev);
1127
1128 napi_enable(&np->napi);
1129 }
1130
1131 static void nv_napi_disable(struct net_device *dev)
1132 {
1133 struct fe_priv *np = get_nvpriv(dev);
1134
1135 napi_disable(&np->napi);
1136 }
1137
1138 #define MII_READ (-1)
1139 /* mii_rw: read/write a register on the PHY.
1140 *
1141 * Caller must guarantee serialization
1142 */
1143 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1144 {
1145 u8 __iomem *base = get_hwbase(dev);
1146 u32 reg;
1147 int retval;
1148
1149 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1150
1151 reg = readl(base + NvRegMIIControl);
1152 if (reg & NVREG_MIICTL_INUSE) {
1153 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1154 udelay(NV_MIIBUSY_DELAY);
1155 }
1156
1157 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1158 if (value != MII_READ) {
1159 writel(value, base + NvRegMIIData);
1160 reg |= NVREG_MIICTL_WRITE;
1161 }
1162 writel(reg, base + NvRegMIIControl);
1163
1164 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1165 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
1166 retval = -1;
1167 } else if (value != MII_READ) {
1168 /* it was a write operation - fewer failures are detectable */
1169 retval = 0;
1170 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1171 retval = -1;
1172 } else {
1173 retval = readl(base + NvRegMIIData);
1174 }
1175
1176 return retval;
1177 }
1178
1179 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1180 {
1181 struct fe_priv *np = netdev_priv(dev);
1182 u32 miicontrol;
1183 unsigned int tries = 0;
1184
1185 miicontrol = BMCR_RESET | bmcr_setup;
1186 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
1187 return -1;
1188
1189 /* wait for 500ms */
1190 msleep(500);
1191
1192 /* must wait till reset is deasserted */
1193 while (miicontrol & BMCR_RESET) {
1194 usleep_range(10000, 20000);
1195 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1196 /* FIXME: 100 tries seem excessive */
1197 if (tries++ > 100)
1198 return -1;
1199 }
1200 return 0;
1201 }
1202
1203 static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
1204 {
1205 static const struct {
1206 int reg;
1207 int init;
1208 } ri[] = {
1209 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
1210 { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 },
1211 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 },
1212 { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 },
1213 { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 },
1214 { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 },
1215 { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
1216 };
1217 int i;
1218
1219 for (i = 0; i < ARRAY_SIZE(ri); i++) {
1220 if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
1221 return PHY_ERROR;
1222 }
1223
1224 return 0;
1225 }
1226
1227 static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
1228 {
1229 u32 reg;
1230 u8 __iomem *base = get_hwbase(dev);
1231 u32 powerstate = readl(base + NvRegPowerState2);
1232
1233 /* need to perform hw phy reset */
1234 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1235 writel(powerstate, base + NvRegPowerState2);
1236 msleep(25);
1237
1238 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1239 writel(powerstate, base + NvRegPowerState2);
1240 msleep(25);
1241
1242 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1243 reg |= PHY_REALTEK_INIT9;
1244 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
1245 return PHY_ERROR;
1246 if (mii_rw(dev, np->phyaddr,
1247 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10))
1248 return PHY_ERROR;
1249 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1250 if (!(reg & PHY_REALTEK_INIT11)) {
1251 reg |= PHY_REALTEK_INIT11;
1252 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
1253 return PHY_ERROR;
1254 }
1255 if (mii_rw(dev, np->phyaddr,
1256 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
1257 return PHY_ERROR;
1258
1259 return 0;
1260 }
1261
1262 static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
1263 {
1264 u32 phy_reserved;
1265
1266 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1267 phy_reserved = mii_rw(dev, np->phyaddr,
1268 PHY_REALTEK_INIT_REG6, MII_READ);
1269 phy_reserved |= PHY_REALTEK_INIT7;
1270 if (mii_rw(dev, np->phyaddr,
1271 PHY_REALTEK_INIT_REG6, phy_reserved))
1272 return PHY_ERROR;
1273 }
1274
1275 return 0;
1276 }
1277
1278 static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
1279 {
1280 u32 phy_reserved;
1281
1282 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1283 if (mii_rw(dev, np->phyaddr,
1284 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3))
1285 return PHY_ERROR;
1286 phy_reserved = mii_rw(dev, np->phyaddr,
1287 PHY_REALTEK_INIT_REG2, MII_READ);
1288 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1289 phy_reserved |= PHY_REALTEK_INIT3;
1290 if (mii_rw(dev, np->phyaddr,
1291 PHY_REALTEK_INIT_REG2, phy_reserved))
1292 return PHY_ERROR;
1293 if (mii_rw(dev, np->phyaddr,
1294 PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
1295 return PHY_ERROR;
1296 }
1297
1298 return 0;
1299 }
1300
1301 static int init_cicada(struct net_device *dev, struct fe_priv *np,
1302 u32 phyinterface)
1303 {
1304 u32 phy_reserved;
1305
1306 if (phyinterface & PHY_RGMII) {
1307 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1308 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1309 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1310 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
1311 return PHY_ERROR;
1312 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1313 phy_reserved |= PHY_CICADA_INIT5;
1314 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
1315 return PHY_ERROR;
1316 }
1317 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1318 phy_reserved |= PHY_CICADA_INIT6;
1319 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
1320 return PHY_ERROR;
1321
1322 return 0;
1323 }
1324
1325 static int init_vitesse(struct net_device *dev, struct fe_priv *np)
1326 {
1327 u32 phy_reserved;
1328
1329 if (mii_rw(dev, np->phyaddr,
1330 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1))
1331 return PHY_ERROR;
1332 if (mii_rw(dev, np->phyaddr,
1333 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2))
1334 return PHY_ERROR;
1335 phy_reserved = mii_rw(dev, np->phyaddr,
1336 PHY_VITESSE_INIT_REG4, MII_READ);
1337 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1338 return PHY_ERROR;
1339 phy_reserved = mii_rw(dev, np->phyaddr,
1340 PHY_VITESSE_INIT_REG3, MII_READ);
1341 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1342 phy_reserved |= PHY_VITESSE_INIT3;
1343 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1344 return PHY_ERROR;
1345 if (mii_rw(dev, np->phyaddr,
1346 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4))
1347 return PHY_ERROR;
1348 if (mii_rw(dev, np->phyaddr,
1349 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5))
1350 return PHY_ERROR;
1351 phy_reserved = mii_rw(dev, np->phyaddr,
1352 PHY_VITESSE_INIT_REG4, MII_READ);
1353 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1354 phy_reserved |= PHY_VITESSE_INIT3;
1355 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1356 return PHY_ERROR;
1357 phy_reserved = mii_rw(dev, np->phyaddr,
1358 PHY_VITESSE_INIT_REG3, MII_READ);
1359 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1360 return PHY_ERROR;
1361 if (mii_rw(dev, np->phyaddr,
1362 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6))
1363 return PHY_ERROR;
1364 if (mii_rw(dev, np->phyaddr,
1365 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7))
1366 return PHY_ERROR;
1367 phy_reserved = mii_rw(dev, np->phyaddr,
1368 PHY_VITESSE_INIT_REG4, MII_READ);
1369 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
1370 return PHY_ERROR;
1371 phy_reserved = mii_rw(dev, np->phyaddr,
1372 PHY_VITESSE_INIT_REG3, MII_READ);
1373 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1374 phy_reserved |= PHY_VITESSE_INIT8;
1375 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
1376 return PHY_ERROR;
1377 if (mii_rw(dev, np->phyaddr,
1378 PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9))
1379 return PHY_ERROR;
1380 if (mii_rw(dev, np->phyaddr,
1381 PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10))
1382 return PHY_ERROR;
1383
1384 return 0;
1385 }
1386
1387 static int phy_init(struct net_device *dev)
1388 {
1389 struct fe_priv *np = get_nvpriv(dev);
1390 u8 __iomem *base = get_hwbase(dev);
1391 u32 phyinterface;
1392 u32 mii_status, mii_control, mii_control_1000, reg;
1393
1394 /* phy errata for E3016 phy */
1395 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1396 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1397 reg &= ~PHY_MARVELL_E3016_INITMASK;
1398 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1399 netdev_info(dev, "%s: phy write to errata reg failed\n",
1400 pci_name(np->pci_dev));
1401 return PHY_ERROR;
1402 }
1403 }
1404 if (np->phy_oui == PHY_OUI_REALTEK) {
1405 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1406 np->phy_rev == PHY_REV_REALTEK_8211B) {
1407 if (init_realtek_8211b(dev, np)) {
1408 netdev_info(dev, "%s: phy init failed\n",
1409 pci_name(np->pci_dev));
1410 return PHY_ERROR;
1411 }
1412 } else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1413 np->phy_rev == PHY_REV_REALTEK_8211C) {
1414 if (init_realtek_8211c(dev, np)) {
1415 netdev_info(dev, "%s: phy init failed\n",
1416 pci_name(np->pci_dev));
1417 return PHY_ERROR;
1418 }
1419 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1420 if (init_realtek_8201(dev, np)) {
1421 netdev_info(dev, "%s: phy init failed\n",
1422 pci_name(np->pci_dev));
1423 return PHY_ERROR;
1424 }
1425 }
1426 }
1427
1428 /* set advertise register */
1429 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1430 reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
1431 ADVERTISE_100HALF | ADVERTISE_100FULL |
1432 ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1433 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1434 netdev_info(dev, "%s: phy write to advertise failed\n",
1435 pci_name(np->pci_dev));
1436 return PHY_ERROR;
1437 }
1438
1439 /* get phy interface type */
1440 phyinterface = readl(base + NvRegPhyInterface);
1441
1442 /* see if gigabit phy */
1443 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1444 if (mii_status & PHY_GIGABIT) {
1445 np->gigabit = PHY_GIGABIT;
1446 mii_control_1000 = mii_rw(dev, np->phyaddr,
1447 MII_CTRL1000, MII_READ);
1448 mii_control_1000 &= ~ADVERTISE_1000HALF;
1449 if (phyinterface & PHY_RGMII)
1450 mii_control_1000 |= ADVERTISE_1000FULL;
1451 else
1452 mii_control_1000 &= ~ADVERTISE_1000FULL;
1453
1454 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1455 netdev_info(dev, "%s: phy init failed\n",
1456 pci_name(np->pci_dev));
1457 return PHY_ERROR;
1458 }
1459 } else
1460 np->gigabit = 0;
1461
1462 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1463 mii_control |= BMCR_ANENABLE;
1464
1465 if (np->phy_oui == PHY_OUI_REALTEK &&
1466 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1467 np->phy_rev == PHY_REV_REALTEK_8211C) {
1468 /* start autoneg since we already performed hw reset above */
1469 mii_control |= BMCR_ANRESTART;
1470 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1471 netdev_info(dev, "%s: phy init failed\n",
1472 pci_name(np->pci_dev));
1473 return PHY_ERROR;
1474 }
1475 } else {
1476 /* reset the phy
1477 * (certain phys need bmcr to be setup with reset)
1478 */
1479 if (phy_reset(dev, mii_control)) {
1480 netdev_info(dev, "%s: phy reset failed\n",
1481 pci_name(np->pci_dev));
1482 return PHY_ERROR;
1483 }
1484 }
1485
1486 /* phy vendor specific configuration */
1487 if (np->phy_oui == PHY_OUI_CICADA) {
1488 if (init_cicada(dev, np, phyinterface)) {
1489 netdev_info(dev, "%s: phy init failed\n",
1490 pci_name(np->pci_dev));
1491 return PHY_ERROR;
1492 }
1493 } else if (np->phy_oui == PHY_OUI_VITESSE) {
1494 if (init_vitesse(dev, np)) {
1495 netdev_info(dev, "%s: phy init failed\n",
1496 pci_name(np->pci_dev));
1497 return PHY_ERROR;
1498 }
1499 } else if (np->phy_oui == PHY_OUI_REALTEK) {
1500 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1501 np->phy_rev == PHY_REV_REALTEK_8211B) {
1502 /* reset could have cleared these out, set them back */
1503 if (init_realtek_8211b(dev, np)) {
1504 netdev_info(dev, "%s: phy init failed\n",
1505 pci_name(np->pci_dev));
1506 return PHY_ERROR;
1507 }
1508 } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1509 if (init_realtek_8201(dev, np) ||
1510 init_realtek_8201_cross(dev, np)) {
1511 netdev_info(dev, "%s: phy init failed\n",
1512 pci_name(np->pci_dev));
1513 return PHY_ERROR;
1514 }
1515 }
1516 }
1517
1518 /* some phys clear out pause advertisement on reset, set it back */
1519 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1520
1521 /* restart auto negotiation, power down phy */
1522 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1523 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1524 if (phy_power_down)
1525 mii_control |= BMCR_PDOWN;
1526 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
1527 return PHY_ERROR;
1528
1529 return 0;
1530 }
1531
1532 static void nv_start_rx(struct net_device *dev)
1533 {
1534 struct fe_priv *np = netdev_priv(dev);
1535 u8 __iomem *base = get_hwbase(dev);
1536 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1537
1538 /* Already running? Stop it. */
1539 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1540 rx_ctrl &= ~NVREG_RCVCTL_START;
1541 writel(rx_ctrl, base + NvRegReceiverControl);
1542 pci_push(base);
1543 }
1544 writel(np->linkspeed, base + NvRegLinkSpeed);
1545 pci_push(base);
1546 rx_ctrl |= NVREG_RCVCTL_START;
1547 if (np->mac_in_use)
1548 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1549 writel(rx_ctrl, base + NvRegReceiverControl);
1550 pci_push(base);
1551 }
1552
1553 static void nv_stop_rx(struct net_device *dev)
1554 {
1555 struct fe_priv *np = netdev_priv(dev);
1556 u8 __iomem *base = get_hwbase(dev);
1557 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1558
1559 if (!np->mac_in_use)
1560 rx_ctrl &= ~NVREG_RCVCTL_START;
1561 else
1562 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1563 writel(rx_ctrl, base + NvRegReceiverControl);
1564 if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1565 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
1566 netdev_info(dev, "%s: ReceiverStatus remained busy\n",
1567 __func__);
1568
1569 udelay(NV_RXSTOP_DELAY2);
1570 if (!np->mac_in_use)
1571 writel(0, base + NvRegLinkSpeed);
1572 }
1573
1574 static void nv_start_tx(struct net_device *dev)
1575 {
1576 struct fe_priv *np = netdev_priv(dev);
1577 u8 __iomem *base = get_hwbase(dev);
1578 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1579
1580 tx_ctrl |= NVREG_XMITCTL_START;
1581 if (np->mac_in_use)
1582 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1583 writel(tx_ctrl, base + NvRegTransmitterControl);
1584 pci_push(base);
1585 }
1586
1587 static void nv_stop_tx(struct net_device *dev)
1588 {
1589 struct fe_priv *np = netdev_priv(dev);
1590 u8 __iomem *base = get_hwbase(dev);
1591 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1592
1593 if (!np->mac_in_use)
1594 tx_ctrl &= ~NVREG_XMITCTL_START;
1595 else
1596 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1597 writel(tx_ctrl, base + NvRegTransmitterControl);
1598 if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1599 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
1600 netdev_info(dev, "%s: TransmitterStatus remained busy\n",
1601 __func__);
1602
1603 udelay(NV_TXSTOP_DELAY2);
1604 if (!np->mac_in_use)
1605 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1606 base + NvRegTransmitPoll);
1607 }
1608
1609 static void nv_start_rxtx(struct net_device *dev)
1610 {
1611 nv_start_rx(dev);
1612 nv_start_tx(dev);
1613 }
1614
1615 static void nv_stop_rxtx(struct net_device *dev)
1616 {
1617 nv_stop_rx(dev);
1618 nv_stop_tx(dev);
1619 }
1620
1621 static void nv_txrx_reset(struct net_device *dev)
1622 {
1623 struct fe_priv *np = netdev_priv(dev);
1624 u8 __iomem *base = get_hwbase(dev);
1625
1626 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1627 pci_push(base);
1628 udelay(NV_TXRX_RESET_DELAY);
1629 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1630 pci_push(base);
1631 }
1632
1633 static void nv_mac_reset(struct net_device *dev)
1634 {
1635 struct fe_priv *np = netdev_priv(dev);
1636 u8 __iomem *base = get_hwbase(dev);
1637 u32 temp1, temp2, temp3;
1638
1639 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1640 pci_push(base);
1641
1642 /* save registers since they will be cleared on reset */
1643 temp1 = readl(base + NvRegMacAddrA);
1644 temp2 = readl(base + NvRegMacAddrB);
1645 temp3 = readl(base + NvRegTransmitPoll);
1646
1647 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1648 pci_push(base);
1649 udelay(NV_MAC_RESET_DELAY);
1650 writel(0, base + NvRegMacReset);
1651 pci_push(base);
1652 udelay(NV_MAC_RESET_DELAY);
1653
1654 /* restore saved registers */
1655 writel(temp1, base + NvRegMacAddrA);
1656 writel(temp2, base + NvRegMacAddrB);
1657 writel(temp3, base + NvRegTransmitPoll);
1658
1659 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1660 pci_push(base);
1661 }
1662
1663 /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */
1664 static void nv_update_stats(struct net_device *dev)
1665 {
1666 struct fe_priv *np = netdev_priv(dev);
1667 u8 __iomem *base = get_hwbase(dev);
1668
1669 /* If it happens that this is run in top-half context, then
1670 * replace the spin_lock of hwstats_lock with
1671 * spin_lock_irqsave() in calling functions. */
1672 WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half");
1673 assert_spin_locked(&np->hwstats_lock);
1674
1675 /* query hardware */
1676 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1677 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1678 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1679 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1680 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1681 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1682 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1683 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1684 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1685 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1686 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1687 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1688 np->estats.rx_runt += readl(base + NvRegRxRunt);
1689 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1690 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1691 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1692 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1693 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1694 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1695 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1696 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1697 np->estats.rx_packets =
1698 np->estats.rx_unicast +
1699 np->estats.rx_multicast +
1700 np->estats.rx_broadcast;
1701 np->estats.rx_errors_total =
1702 np->estats.rx_crc_errors +
1703 np->estats.rx_over_errors +
1704 np->estats.rx_frame_error +
1705 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1706 np->estats.rx_late_collision +
1707 np->estats.rx_runt +
1708 np->estats.rx_frame_too_long;
1709 np->estats.tx_errors_total =
1710 np->estats.tx_late_collision +
1711 np->estats.tx_fifo_errors +
1712 np->estats.tx_carrier_errors +
1713 np->estats.tx_excess_deferral +
1714 np->estats.tx_retry_error;
1715
1716 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1717 np->estats.tx_deferral += readl(base + NvRegTxDef);
1718 np->estats.tx_packets += readl(base + NvRegTxFrame);
1719 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1720 np->estats.tx_pause += readl(base + NvRegTxPause);
1721 np->estats.rx_pause += readl(base + NvRegRxPause);
1722 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1723 np->estats.rx_errors_total += np->estats.rx_drop_frame;
1724 }
1725
1726 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1727 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1728 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1729 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1730 }
1731 }
1732
1733 static void nv_get_stats(int cpu, struct fe_priv *np,
1734 struct rtnl_link_stats64 *storage)
1735 {
1736 struct nv_txrx_stats *src = per_cpu_ptr(np->txrx_stats, cpu);
1737 unsigned int syncp_start;
1738 u64 rx_packets, rx_bytes, rx_dropped, rx_missed_errors;
1739 u64 tx_packets, tx_bytes, tx_dropped;
1740
1741 do {
1742 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_rx_syncp);
1743 rx_packets = src->stat_rx_packets;
1744 rx_bytes = src->stat_rx_bytes;
1745 rx_dropped = src->stat_rx_dropped;
1746 rx_missed_errors = src->stat_rx_missed_errors;
1747 } while (u64_stats_fetch_retry_irq(&np->swstats_rx_syncp, syncp_start));
1748
1749 storage->rx_packets += rx_packets;
1750 storage->rx_bytes += rx_bytes;
1751 storage->rx_dropped += rx_dropped;
1752 storage->rx_missed_errors += rx_missed_errors;
1753
1754 do {
1755 syncp_start = u64_stats_fetch_begin_irq(&np->swstats_tx_syncp);
1756 tx_packets = src->stat_tx_packets;
1757 tx_bytes = src->stat_tx_bytes;
1758 tx_dropped = src->stat_tx_dropped;
1759 } while (u64_stats_fetch_retry_irq(&np->swstats_tx_syncp, syncp_start));
1760
1761 storage->tx_packets += tx_packets;
1762 storage->tx_bytes += tx_bytes;
1763 storage->tx_dropped += tx_dropped;
1764 }
1765
1766 /*
1767 * nv_get_stats64: dev->ndo_get_stats64 function
1768 * Get latest stats value from the nic.
1769 * Called with read_lock(&dev_base_lock) held for read -
1770 * only synchronized against unregister_netdevice.
1771 */
1772 static void
1773 nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
1774 __acquires(&netdev_priv(dev)->hwstats_lock)
1775 __releases(&netdev_priv(dev)->hwstats_lock)
1776 {
1777 struct fe_priv *np = netdev_priv(dev);
1778 int cpu;
1779
1780 /*
1781 * Note: because HW stats are not always available and for
1782 * consistency reasons, the following ifconfig stats are
1783 * managed by software: rx_bytes, tx_bytes, rx_packets and
1784 * tx_packets. The related hardware stats reported by ethtool
1785 * should be equivalent to these ifconfig stats, with 4
1786 * additional bytes per packet (Ethernet FCS CRC), except for
1787 * tx_packets when TSO kicks in.
1788 */
1789
1790 /* software stats */
1791 for_each_online_cpu(cpu)
1792 nv_get_stats(cpu, np, storage);
1793
1794 /* If the nic supports hw counters then retrieve latest values */
1795 if (np->driver_data & DEV_HAS_STATISTICS_V123) {
1796 spin_lock_bh(&np->hwstats_lock);
1797
1798 nv_update_stats(dev);
1799
1800 /* generic stats */
1801 storage->rx_errors = np->estats.rx_errors_total;
1802 storage->tx_errors = np->estats.tx_errors_total;
1803
1804 /* meaningful only when NIC supports stats v3 */
1805 storage->multicast = np->estats.rx_multicast;
1806
1807 /* detailed rx_errors */
1808 storage->rx_length_errors = np->estats.rx_length_error;
1809 storage->rx_over_errors = np->estats.rx_over_errors;
1810 storage->rx_crc_errors = np->estats.rx_crc_errors;
1811 storage->rx_frame_errors = np->estats.rx_frame_align_error;
1812 storage->rx_fifo_errors = np->estats.rx_drop_frame;
1813
1814 /* detailed tx_errors */
1815 storage->tx_carrier_errors = np->estats.tx_carrier_errors;
1816 storage->tx_fifo_errors = np->estats.tx_fifo_errors;
1817
1818 spin_unlock_bh(&np->hwstats_lock);
1819 }
1820 }
1821
1822 /*
1823 * nv_alloc_rx: fill rx ring entries.
1824 * Return 1 if the allocations for the skbs failed and the
1825 * rx engine is without Available descriptors
1826 */
1827 static int nv_alloc_rx(struct net_device *dev)
1828 {
1829 struct fe_priv *np = netdev_priv(dev);
1830 struct ring_desc *less_rx;
1831
1832 less_rx = np->get_rx.orig;
1833 if (less_rx-- == np->rx_ring.orig)
1834 less_rx = np->last_rx.orig;
1835
1836 while (np->put_rx.orig != less_rx) {
1837 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1838 if (likely(skb)) {
1839 np->put_rx_ctx->skb = skb;
1840 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
1841 skb->data,
1842 skb_tailroom(skb),
1843 DMA_FROM_DEVICE);
1844 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
1845 np->put_rx_ctx->dma))) {
1846 kfree_skb(skb);
1847 goto packet_dropped;
1848 }
1849 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1850 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1851 wmb();
1852 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1853 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1854 np->put_rx.orig = np->rx_ring.orig;
1855 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1856 np->put_rx_ctx = np->rx_skb;
1857 } else {
1858 packet_dropped:
1859 u64_stats_update_begin(&np->swstats_rx_syncp);
1860 nv_txrx_stats_inc(stat_rx_dropped);
1861 u64_stats_update_end(&np->swstats_rx_syncp);
1862 return 1;
1863 }
1864 }
1865 return 0;
1866 }
1867
1868 static int nv_alloc_rx_optimized(struct net_device *dev)
1869 {
1870 struct fe_priv *np = netdev_priv(dev);
1871 struct ring_desc_ex *less_rx;
1872
1873 less_rx = np->get_rx.ex;
1874 if (less_rx-- == np->rx_ring.ex)
1875 less_rx = np->last_rx.ex;
1876
1877 while (np->put_rx.ex != less_rx) {
1878 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
1879 if (likely(skb)) {
1880 np->put_rx_ctx->skb = skb;
1881 np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
1882 skb->data,
1883 skb_tailroom(skb),
1884 DMA_FROM_DEVICE);
1885 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
1886 np->put_rx_ctx->dma))) {
1887 kfree_skb(skb);
1888 goto packet_dropped;
1889 }
1890 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1891 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1892 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1893 wmb();
1894 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1895 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1896 np->put_rx.ex = np->rx_ring.ex;
1897 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1898 np->put_rx_ctx = np->rx_skb;
1899 } else {
1900 packet_dropped:
1901 u64_stats_update_begin(&np->swstats_rx_syncp);
1902 nv_txrx_stats_inc(stat_rx_dropped);
1903 u64_stats_update_end(&np->swstats_rx_syncp);
1904 return 1;
1905 }
1906 }
1907 return 0;
1908 }
1909
1910 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1911 static void nv_do_rx_refill(struct timer_list *t)
1912 {
1913 struct fe_priv *np = from_timer(np, t, oom_kick);
1914
1915 /* Just reschedule NAPI rx processing */
1916 napi_schedule(&np->napi);
1917 }
1918
1919 static void nv_init_rx(struct net_device *dev)
1920 {
1921 struct fe_priv *np = netdev_priv(dev);
1922 int i;
1923
1924 np->get_rx = np->rx_ring;
1925 np->put_rx = np->rx_ring;
1926
1927 if (!nv_optimized(np))
1928 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1929 else
1930 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1931 np->get_rx_ctx = np->rx_skb;
1932 np->put_rx_ctx = np->rx_skb;
1933 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1934
1935 for (i = 0; i < np->rx_ring_size; i++) {
1936 if (!nv_optimized(np)) {
1937 np->rx_ring.orig[i].flaglen = 0;
1938 np->rx_ring.orig[i].buf = 0;
1939 } else {
1940 np->rx_ring.ex[i].flaglen = 0;
1941 np->rx_ring.ex[i].txvlan = 0;
1942 np->rx_ring.ex[i].bufhigh = 0;
1943 np->rx_ring.ex[i].buflow = 0;
1944 }
1945 np->rx_skb[i].skb = NULL;
1946 np->rx_skb[i].dma = 0;
1947 }
1948 }
1949
1950 static void nv_init_tx(struct net_device *dev)
1951 {
1952 struct fe_priv *np = netdev_priv(dev);
1953 int i;
1954
1955 np->get_tx = np->tx_ring;
1956 np->put_tx = np->tx_ring;
1957
1958 if (!nv_optimized(np))
1959 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1960 else
1961 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1962 np->get_tx_ctx = np->tx_skb;
1963 np->put_tx_ctx = np->tx_skb;
1964 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1965 netdev_reset_queue(np->dev);
1966 np->tx_pkts_in_progress = 0;
1967 np->tx_change_owner = NULL;
1968 np->tx_end_flip = NULL;
1969 np->tx_stop = 0;
1970
1971 for (i = 0; i < np->tx_ring_size; i++) {
1972 if (!nv_optimized(np)) {
1973 np->tx_ring.orig[i].flaglen = 0;
1974 np->tx_ring.orig[i].buf = 0;
1975 } else {
1976 np->tx_ring.ex[i].flaglen = 0;
1977 np->tx_ring.ex[i].txvlan = 0;
1978 np->tx_ring.ex[i].bufhigh = 0;
1979 np->tx_ring.ex[i].buflow = 0;
1980 }
1981 np->tx_skb[i].skb = NULL;
1982 np->tx_skb[i].dma = 0;
1983 np->tx_skb[i].dma_len = 0;
1984 np->tx_skb[i].dma_single = 0;
1985 np->tx_skb[i].first_tx_desc = NULL;
1986 np->tx_skb[i].next_tx_ctx = NULL;
1987 }
1988 }
1989
1990 static int nv_init_ring(struct net_device *dev)
1991 {
1992 struct fe_priv *np = netdev_priv(dev);
1993
1994 nv_init_tx(dev);
1995 nv_init_rx(dev);
1996
1997 if (!nv_optimized(np))
1998 return nv_alloc_rx(dev);
1999 else
2000 return nv_alloc_rx_optimized(dev);
2001 }
2002
2003 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
2004 {
2005 if (tx_skb->dma) {
2006 if (tx_skb->dma_single)
2007 dma_unmap_single(&np->pci_dev->dev, tx_skb->dma,
2008 tx_skb->dma_len,
2009 DMA_TO_DEVICE);
2010 else
2011 dma_unmap_page(&np->pci_dev->dev, tx_skb->dma,
2012 tx_skb->dma_len,
2013 DMA_TO_DEVICE);
2014 tx_skb->dma = 0;
2015 }
2016 }
2017
2018 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
2019 {
2020 nv_unmap_txskb(np, tx_skb);
2021 if (tx_skb->skb) {
2022 dev_kfree_skb_any(tx_skb->skb);
2023 tx_skb->skb = NULL;
2024 return 1;
2025 }
2026 return 0;
2027 }
2028
2029 static void nv_drain_tx(struct net_device *dev)
2030 {
2031 struct fe_priv *np = netdev_priv(dev);
2032 unsigned int i;
2033
2034 for (i = 0; i < np->tx_ring_size; i++) {
2035 if (!nv_optimized(np)) {
2036 np->tx_ring.orig[i].flaglen = 0;
2037 np->tx_ring.orig[i].buf = 0;
2038 } else {
2039 np->tx_ring.ex[i].flaglen = 0;
2040 np->tx_ring.ex[i].txvlan = 0;
2041 np->tx_ring.ex[i].bufhigh = 0;
2042 np->tx_ring.ex[i].buflow = 0;
2043 }
2044 if (nv_release_txskb(np, &np->tx_skb[i])) {
2045 u64_stats_update_begin(&np->swstats_tx_syncp);
2046 nv_txrx_stats_inc(stat_tx_dropped);
2047 u64_stats_update_end(&np->swstats_tx_syncp);
2048 }
2049 np->tx_skb[i].dma = 0;
2050 np->tx_skb[i].dma_len = 0;
2051 np->tx_skb[i].dma_single = 0;
2052 np->tx_skb[i].first_tx_desc = NULL;
2053 np->tx_skb[i].next_tx_ctx = NULL;
2054 }
2055 np->tx_pkts_in_progress = 0;
2056 np->tx_change_owner = NULL;
2057 np->tx_end_flip = NULL;
2058 }
2059
2060 static void nv_drain_rx(struct net_device *dev)
2061 {
2062 struct fe_priv *np = netdev_priv(dev);
2063 int i;
2064
2065 for (i = 0; i < np->rx_ring_size; i++) {
2066 if (!nv_optimized(np)) {
2067 np->rx_ring.orig[i].flaglen = 0;
2068 np->rx_ring.orig[i].buf = 0;
2069 } else {
2070 np->rx_ring.ex[i].flaglen = 0;
2071 np->rx_ring.ex[i].txvlan = 0;
2072 np->rx_ring.ex[i].bufhigh = 0;
2073 np->rx_ring.ex[i].buflow = 0;
2074 }
2075 wmb();
2076 if (np->rx_skb[i].skb) {
2077 dma_unmap_single(&np->pci_dev->dev, np->rx_skb[i].dma,
2078 (skb_end_pointer(np->rx_skb[i].skb) -
2079 np->rx_skb[i].skb->data),
2080 DMA_FROM_DEVICE);
2081 dev_kfree_skb(np->rx_skb[i].skb);
2082 np->rx_skb[i].skb = NULL;
2083 }
2084 }
2085 }
2086
2087 static void nv_drain_rxtx(struct net_device *dev)
2088 {
2089 nv_drain_tx(dev);
2090 nv_drain_rx(dev);
2091 }
2092
2093 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2094 {
2095 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2096 }
2097
2098 static void nv_legacybackoff_reseed(struct net_device *dev)
2099 {
2100 u8 __iomem *base = get_hwbase(dev);
2101 u32 reg;
2102 u32 low;
2103 int tx_status = 0;
2104
2105 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2106 get_random_bytes(&low, sizeof(low));
2107 reg |= low & NVREG_SLOTTIME_MASK;
2108
2109 /* Need to stop tx before change takes effect.
2110 * Caller has already gained np->lock.
2111 */
2112 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2113 if (tx_status)
2114 nv_stop_tx(dev);
2115 nv_stop_rx(dev);
2116 writel(reg, base + NvRegSlotTime);
2117 if (tx_status)
2118 nv_start_tx(dev);
2119 nv_start_rx(dev);
2120 }
2121
2122 /* Gear Backoff Seeds */
2123 #define BACKOFF_SEEDSET_ROWS 8
2124 #define BACKOFF_SEEDSET_LFSRS 15
2125
2126 /* Known Good seed sets */
2127 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2128 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2129 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2130 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2131 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2132 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2133 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2134 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2135 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
2136
2137 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2138 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2139 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2140 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2141 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2142 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2143 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2144 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2145 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
2146
2147 static void nv_gear_backoff_reseed(struct net_device *dev)
2148 {
2149 u8 __iomem *base = get_hwbase(dev);
2150 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2151 u32 temp, seedset, combinedSeed;
2152 int i;
2153
2154 /* Setup seed for free running LFSR */
2155 /* We are going to read the time stamp counter 3 times
2156 and swizzle bits around to increase randomness */
2157 get_random_bytes(&miniseed1, sizeof(miniseed1));
2158 miniseed1 &= 0x0fff;
2159 if (miniseed1 == 0)
2160 miniseed1 = 0xabc;
2161
2162 get_random_bytes(&miniseed2, sizeof(miniseed2));
2163 miniseed2 &= 0x0fff;
2164 if (miniseed2 == 0)
2165 miniseed2 = 0xabc;
2166 miniseed2_reversed =
2167 ((miniseed2 & 0xF00) >> 8) |
2168 (miniseed2 & 0x0F0) |
2169 ((miniseed2 & 0x00F) << 8);
2170
2171 get_random_bytes(&miniseed3, sizeof(miniseed3));
2172 miniseed3 &= 0x0fff;
2173 if (miniseed3 == 0)
2174 miniseed3 = 0xabc;
2175 miniseed3_reversed =
2176 ((miniseed3 & 0xF00) >> 8) |
2177 (miniseed3 & 0x0F0) |
2178 ((miniseed3 & 0x00F) << 8);
2179
2180 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2181 (miniseed2 ^ miniseed3_reversed);
2182
2183 /* Seeds can not be zero */
2184 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2185 combinedSeed |= 0x08;
2186 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2187 combinedSeed |= 0x8000;
2188
2189 /* No need to disable tx here */
2190 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2191 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2192 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2193 writel(temp, base + NvRegBackOffControl);
2194
2195 /* Setup seeds for all gear LFSRs. */
2196 get_random_bytes(&seedset, sizeof(seedset));
2197 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2198 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
2199 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2200 temp |= main_seedset[seedset][i-1] & 0x3ff;
2201 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2202 writel(temp, base + NvRegBackOffControl);
2203 }
2204 }
2205
2206 /*
2207 * nv_start_xmit: dev->hard_start_xmit function
2208 * Called with netif_tx_lock held.
2209 */
2210 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2211 {
2212 struct fe_priv *np = netdev_priv(dev);
2213 u32 tx_flags = 0;
2214 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2215 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2216 unsigned int i;
2217 u32 offset = 0;
2218 u32 bcnt;
2219 u32 size = skb_headlen(skb);
2220 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2221 u32 empty_slots;
2222 struct ring_desc *put_tx;
2223 struct ring_desc *start_tx;
2224 struct ring_desc *prev_tx;
2225 struct nv_skb_map *prev_tx_ctx;
2226 struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL;
2227 unsigned long flags;
2228
2229 /* add fragments to entries count */
2230 for (i = 0; i < fragments; i++) {
2231 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2232
2233 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2234 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2235 }
2236
2237 spin_lock_irqsave(&np->lock, flags);
2238 empty_slots = nv_get_empty_tx_slots(np);
2239 if (unlikely(empty_slots <= entries)) {
2240 netif_stop_queue(dev);
2241 np->tx_stop = 1;
2242 spin_unlock_irqrestore(&np->lock, flags);
2243 return NETDEV_TX_BUSY;
2244 }
2245 spin_unlock_irqrestore(&np->lock, flags);
2246
2247 start_tx = put_tx = np->put_tx.orig;
2248
2249 /* setup the header buffer */
2250 do {
2251 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2252 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
2253 skb->data + offset, bcnt,
2254 DMA_TO_DEVICE);
2255 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2256 np->put_tx_ctx->dma))) {
2257 /* on DMA mapping error - drop the packet */
2258 dev_kfree_skb_any(skb);
2259 u64_stats_update_begin(&np->swstats_tx_syncp);
2260 nv_txrx_stats_inc(stat_tx_dropped);
2261 u64_stats_update_end(&np->swstats_tx_syncp);
2262 return NETDEV_TX_OK;
2263 }
2264 np->put_tx_ctx->dma_len = bcnt;
2265 np->put_tx_ctx->dma_single = 1;
2266 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2267 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2268
2269 tx_flags = np->tx_flags;
2270 offset += bcnt;
2271 size -= bcnt;
2272 if (unlikely(put_tx++ == np->last_tx.orig))
2273 put_tx = np->tx_ring.orig;
2274 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2275 np->put_tx_ctx = np->tx_skb;
2276 } while (size);
2277
2278 /* setup the fragments */
2279 for (i = 0; i < fragments; i++) {
2280 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2281 u32 frag_size = skb_frag_size(frag);
2282 offset = 0;
2283
2284 do {
2285 if (!start_tx_ctx)
2286 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
2287
2288 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2289 np->put_tx_ctx->dma = skb_frag_dma_map(
2290 &np->pci_dev->dev,
2291 frag, offset,
2292 bcnt,
2293 DMA_TO_DEVICE);
2294 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2295 np->put_tx_ctx->dma))) {
2296
2297 /* Unwind the mapped fragments */
2298 do {
2299 nv_unmap_txskb(np, start_tx_ctx);
2300 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
2301 tmp_tx_ctx = np->tx_skb;
2302 } while (tmp_tx_ctx != np->put_tx_ctx);
2303 dev_kfree_skb_any(skb);
2304 np->put_tx_ctx = start_tx_ctx;
2305 u64_stats_update_begin(&np->swstats_tx_syncp);
2306 nv_txrx_stats_inc(stat_tx_dropped);
2307 u64_stats_update_end(&np->swstats_tx_syncp);
2308 return NETDEV_TX_OK;
2309 }
2310
2311 np->put_tx_ctx->dma_len = bcnt;
2312 np->put_tx_ctx->dma_single = 0;
2313 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2314 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2315
2316 offset += bcnt;
2317 frag_size -= bcnt;
2318 if (unlikely(put_tx++ == np->last_tx.orig))
2319 put_tx = np->tx_ring.orig;
2320 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2321 np->put_tx_ctx = np->tx_skb;
2322 } while (frag_size);
2323 }
2324
2325 if (unlikely(put_tx == np->tx_ring.orig))
2326 prev_tx = np->last_tx.orig;
2327 else
2328 prev_tx = put_tx - 1;
2329
2330 if (unlikely(np->put_tx_ctx == np->tx_skb))
2331 prev_tx_ctx = np->last_tx_ctx;
2332 else
2333 prev_tx_ctx = np->put_tx_ctx - 1;
2334
2335 /* set last fragment flag */
2336 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2337
2338 /* save skb in this slot's context area */
2339 prev_tx_ctx->skb = skb;
2340
2341 if (skb_is_gso(skb))
2342 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2343 else
2344 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2345 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2346
2347 spin_lock_irqsave(&np->lock, flags);
2348
2349 /* set tx flags */
2350 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2351
2352 netdev_sent_queue(np->dev, skb->len);
2353
2354 skb_tx_timestamp(skb);
2355
2356 np->put_tx.orig = put_tx;
2357
2358 spin_unlock_irqrestore(&np->lock, flags);
2359
2360 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2361 return NETDEV_TX_OK;
2362 }
2363
2364 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
2365 struct net_device *dev)
2366 {
2367 struct fe_priv *np = netdev_priv(dev);
2368 u32 tx_flags = 0;
2369 u32 tx_flags_extra;
2370 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2371 unsigned int i;
2372 u32 offset = 0;
2373 u32 bcnt;
2374 u32 size = skb_headlen(skb);
2375 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2376 u32 empty_slots;
2377 struct ring_desc_ex *put_tx;
2378 struct ring_desc_ex *start_tx;
2379 struct ring_desc_ex *prev_tx;
2380 struct nv_skb_map *prev_tx_ctx;
2381 struct nv_skb_map *start_tx_ctx = NULL;
2382 struct nv_skb_map *tmp_tx_ctx = NULL;
2383 unsigned long flags;
2384
2385 /* add fragments to entries count */
2386 for (i = 0; i < fragments; i++) {
2387 u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2388
2389 entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
2390 ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2391 }
2392
2393 spin_lock_irqsave(&np->lock, flags);
2394 empty_slots = nv_get_empty_tx_slots(np);
2395 if (unlikely(empty_slots <= entries)) {
2396 netif_stop_queue(dev);
2397 np->tx_stop = 1;
2398 spin_unlock_irqrestore(&np->lock, flags);
2399 return NETDEV_TX_BUSY;
2400 }
2401 spin_unlock_irqrestore(&np->lock, flags);
2402
2403 start_tx = put_tx = np->put_tx.ex;
2404 start_tx_ctx = np->put_tx_ctx;
2405
2406 /* setup the header buffer */
2407 do {
2408 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2409 np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
2410 skb->data + offset, bcnt,
2411 DMA_TO_DEVICE);
2412 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2413 np->put_tx_ctx->dma))) {
2414 /* on DMA mapping error - drop the packet */
2415 dev_kfree_skb_any(skb);
2416 u64_stats_update_begin(&np->swstats_tx_syncp);
2417 nv_txrx_stats_inc(stat_tx_dropped);
2418 u64_stats_update_end(&np->swstats_tx_syncp);
2419 return NETDEV_TX_OK;
2420 }
2421 np->put_tx_ctx->dma_len = bcnt;
2422 np->put_tx_ctx->dma_single = 1;
2423 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2424 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2425 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2426
2427 tx_flags = NV_TX2_VALID;
2428 offset += bcnt;
2429 size -= bcnt;
2430 if (unlikely(put_tx++ == np->last_tx.ex))
2431 put_tx = np->tx_ring.ex;
2432 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2433 np->put_tx_ctx = np->tx_skb;
2434 } while (size);
2435
2436 /* setup the fragments */
2437 for (i = 0; i < fragments; i++) {
2438 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2439 u32 frag_size = skb_frag_size(frag);
2440 offset = 0;
2441
2442 do {
2443 bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
2444 if (!start_tx_ctx)
2445 start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
2446 np->put_tx_ctx->dma = skb_frag_dma_map(
2447 &np->pci_dev->dev,
2448 frag, offset,
2449 bcnt,
2450 DMA_TO_DEVICE);
2451
2452 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
2453 np->put_tx_ctx->dma))) {
2454
2455 /* Unwind the mapped fragments */
2456 do {
2457 nv_unmap_txskb(np, start_tx_ctx);
2458 if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
2459 tmp_tx_ctx = np->tx_skb;
2460 } while (tmp_tx_ctx != np->put_tx_ctx);
2461 dev_kfree_skb_any(skb);
2462 np->put_tx_ctx = start_tx_ctx;
2463 u64_stats_update_begin(&np->swstats_tx_syncp);
2464 nv_txrx_stats_inc(stat_tx_dropped);
2465 u64_stats_update_end(&np->swstats_tx_syncp);
2466 return NETDEV_TX_OK;
2467 }
2468 np->put_tx_ctx->dma_len = bcnt;
2469 np->put_tx_ctx->dma_single = 0;
2470 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2471 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2472 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2473
2474 offset += bcnt;
2475 frag_size -= bcnt;
2476 if (unlikely(put_tx++ == np->last_tx.ex))
2477 put_tx = np->tx_ring.ex;
2478 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2479 np->put_tx_ctx = np->tx_skb;
2480 } while (frag_size);
2481 }
2482
2483 if (unlikely(put_tx == np->tx_ring.ex))
2484 prev_tx = np->last_tx.ex;
2485 else
2486 prev_tx = put_tx - 1;
2487
2488 if (unlikely(np->put_tx_ctx == np->tx_skb))
2489 prev_tx_ctx = np->last_tx_ctx;
2490 else
2491 prev_tx_ctx = np->put_tx_ctx - 1;
2492
2493 /* set last fragment flag */
2494 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2495
2496 /* save skb in this slot's context area */
2497 prev_tx_ctx->skb = skb;
2498
2499 if (skb_is_gso(skb))
2500 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2501 else
2502 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2503 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2504
2505 /* vlan tag */
2506 if (skb_vlan_tag_present(skb))
2507 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
2508 skb_vlan_tag_get(skb));
2509 else
2510 start_tx->txvlan = 0;
2511
2512 spin_lock_irqsave(&np->lock, flags);
2513
2514 if (np->tx_limit) {
2515 /* Limit the number of outstanding tx. Setup all fragments, but
2516 * do not set the VALID bit on the first descriptor. Save a pointer
2517 * to that descriptor and also for next skb_map element.
2518 */
2519
2520 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2521 if (!np->tx_change_owner)
2522 np->tx_change_owner = start_tx_ctx;
2523
2524 /* remove VALID bit */
2525 tx_flags &= ~NV_TX2_VALID;
2526 start_tx_ctx->first_tx_desc = start_tx;
2527 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2528 np->tx_end_flip = np->put_tx_ctx;
2529 } else {
2530 np->tx_pkts_in_progress++;
2531 }
2532 }
2533
2534 /* set tx flags */
2535 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2536
2537 netdev_sent_queue(np->dev, skb->len);
2538
2539 skb_tx_timestamp(skb);
2540
2541 np->put_tx.ex = put_tx;
2542
2543 spin_unlock_irqrestore(&np->lock, flags);
2544
2545 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2546 return NETDEV_TX_OK;
2547 }
2548
2549 static inline void nv_tx_flip_ownership(struct net_device *dev)
2550 {
2551 struct fe_priv *np = netdev_priv(dev);
2552
2553 np->tx_pkts_in_progress--;
2554 if (np->tx_change_owner) {
2555 np->tx_change_owner->first_tx_desc->flaglen |=
2556 cpu_to_le32(NV_TX2_VALID);
2557 np->tx_pkts_in_progress++;
2558
2559 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2560 if (np->tx_change_owner == np->tx_end_flip)
2561 np->tx_change_owner = NULL;
2562
2563 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2564 }
2565 }
2566
2567 /*
2568 * nv_tx_done: check for completed packets, release the skbs.
2569 *
2570 * Caller must own np->lock.
2571 */
2572 static int nv_tx_done(struct net_device *dev, int limit)
2573 {
2574 struct fe_priv *np = netdev_priv(dev);
2575 u32 flags;
2576 int tx_work = 0;
2577 struct ring_desc *orig_get_tx = np->get_tx.orig;
2578 unsigned int bytes_compl = 0;
2579
2580 while ((np->get_tx.orig != np->put_tx.orig) &&
2581 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2582 (tx_work < limit)) {
2583
2584 nv_unmap_txskb(np, np->get_tx_ctx);
2585
2586 if (np->desc_ver == DESC_VER_1) {
2587 if (flags & NV_TX_LASTPACKET) {
2588 if (unlikely(flags & NV_TX_ERROR)) {
2589 if ((flags & NV_TX_RETRYERROR)
2590 && !(flags & NV_TX_RETRYCOUNT_MASK))
2591 nv_legacybackoff_reseed(dev);
2592 } else {
2593 unsigned int len;
2594
2595 u64_stats_update_begin(&np->swstats_tx_syncp);
2596 nv_txrx_stats_inc(stat_tx_packets);
2597 len = np->get_tx_ctx->skb->len;
2598 nv_txrx_stats_add(stat_tx_bytes, len);
2599 u64_stats_update_end(&np->swstats_tx_syncp);
2600 }
2601 bytes_compl += np->get_tx_ctx->skb->len;
2602 dev_kfree_skb_any(np->get_tx_ctx->skb);
2603 np->get_tx_ctx->skb = NULL;
2604 tx_work++;
2605 }
2606 } else {
2607 if (flags & NV_TX2_LASTPACKET) {
2608 if (unlikely(flags & NV_TX2_ERROR)) {
2609 if ((flags & NV_TX2_RETRYERROR)
2610 && !(flags & NV_TX2_RETRYCOUNT_MASK))
2611 nv_legacybackoff_reseed(dev);
2612 } else {
2613 unsigned int len;
2614
2615 u64_stats_update_begin(&np->swstats_tx_syncp);
2616 nv_txrx_stats_inc(stat_tx_packets);
2617 len = np->get_tx_ctx->skb->len;
2618 nv_txrx_stats_add(stat_tx_bytes, len);
2619 u64_stats_update_end(&np->swstats_tx_syncp);
2620 }
2621 bytes_compl += np->get_tx_ctx->skb->len;
2622 dev_kfree_skb_any(np->get_tx_ctx->skb);
2623 np->get_tx_ctx->skb = NULL;
2624 tx_work++;
2625 }
2626 }
2627 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2628 np->get_tx.orig = np->tx_ring.orig;
2629 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2630 np->get_tx_ctx = np->tx_skb;
2631 }
2632
2633 netdev_completed_queue(np->dev, tx_work, bytes_compl);
2634
2635 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2636 np->tx_stop = 0;
2637 netif_wake_queue(dev);
2638 }
2639 return tx_work;
2640 }
2641
2642 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2643 {
2644 struct fe_priv *np = netdev_priv(dev);
2645 u32 flags;
2646 int tx_work = 0;
2647 struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
2648 unsigned long bytes_cleaned = 0;
2649
2650 while ((np->get_tx.ex != np->put_tx.ex) &&
2651 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
2652 (tx_work < limit)) {
2653
2654 nv_unmap_txskb(np, np->get_tx_ctx);
2655
2656 if (flags & NV_TX2_LASTPACKET) {
2657 if (unlikely(flags & NV_TX2_ERROR)) {
2658 if ((flags & NV_TX2_RETRYERROR)
2659 && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2660 if (np->driver_data & DEV_HAS_GEAR_MODE)
2661 nv_gear_backoff_reseed(dev);
2662 else
2663 nv_legacybackoff_reseed(dev);
2664 }
2665 } else {
2666 unsigned int len;
2667
2668 u64_stats_update_begin(&np->swstats_tx_syncp);
2669 nv_txrx_stats_inc(stat_tx_packets);
2670 len = np->get_tx_ctx->skb->len;
2671 nv_txrx_stats_add(stat_tx_bytes, len);
2672 u64_stats_update_end(&np->swstats_tx_syncp);
2673 }
2674
2675 bytes_cleaned += np->get_tx_ctx->skb->len;
2676 dev_kfree_skb_any(np->get_tx_ctx->skb);
2677 np->get_tx_ctx->skb = NULL;
2678 tx_work++;
2679
2680 if (np->tx_limit)
2681 nv_tx_flip_ownership(dev);
2682 }
2683
2684 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2685 np->get_tx.ex = np->tx_ring.ex;
2686 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2687 np->get_tx_ctx = np->tx_skb;
2688 }
2689
2690 netdev_completed_queue(np->dev, tx_work, bytes_cleaned);
2691
2692 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2693 np->tx_stop = 0;
2694 netif_wake_queue(dev);
2695 }
2696 return tx_work;
2697 }
2698
2699 /*
2700 * nv_tx_timeout: dev->tx_timeout function
2701 * Called with netif_tx_lock held.
2702 */
2703 static void nv_tx_timeout(struct net_device *dev)
2704 {
2705 struct fe_priv *np = netdev_priv(dev);
2706 u8 __iomem *base = get_hwbase(dev);
2707 u32 status;
2708 union ring_type put_tx;
2709 int saved_tx_limit;
2710
2711 if (np->msi_flags & NV_MSI_X_ENABLED)
2712 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2713 else
2714 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2715
2716 netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);
2717
2718 if (unlikely(debug_tx_timeout)) {
2719 int i;
2720
2721 netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
2722 netdev_info(dev, "Dumping tx registers\n");
2723 for (i = 0; i <= np->register_size; i += 32) {
2724 netdev_info(dev,
2725 "%3x: %08x %08x %08x %08x "
2726 "%08x %08x %08x %08x\n",
2727 i,
2728 readl(base + i + 0), readl(base + i + 4),
2729 readl(base + i + 8), readl(base + i + 12),
2730 readl(base + i + 16), readl(base + i + 20),
2731 readl(base + i + 24), readl(base + i + 28));
2732 }
2733 netdev_info(dev, "Dumping tx ring\n");
2734 for (i = 0; i < np->tx_ring_size; i += 4) {
2735 if (!nv_optimized(np)) {
2736 netdev_info(dev,
2737 "%03x: %08x %08x // %08x %08x "
2738 "// %08x %08x // %08x %08x\n",
2739 i,
2740 le32_to_cpu(np->tx_ring.orig[i].buf),
2741 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2742 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2743 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2744 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2745 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2746 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2747 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2748 } else {
2749 netdev_info(dev,
2750 "%03x: %08x %08x %08x "
2751 "// %08x %08x %08x "
2752 "// %08x %08x %08x "
2753 "// %08x %08x %08x\n",
2754 i,
2755 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2756 le32_to_cpu(np->tx_ring.ex[i].buflow),
2757 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2758 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2759 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2760 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2761 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2762 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2763 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2764 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2765 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2766 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2767 }
2768 }
2769 }
2770
2771 spin_lock_irq(&np->lock);
2772
2773 /* 1) stop tx engine */
2774 nv_stop_tx(dev);
2775
2776 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2777 saved_tx_limit = np->tx_limit;
2778 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2779 np->tx_stop = 0; /* prevent waking tx queue */
2780 if (!nv_optimized(np))
2781 nv_tx_done(dev, np->tx_ring_size);
2782 else
2783 nv_tx_done_optimized(dev, np->tx_ring_size);
2784
2785 /* save current HW position */
2786 if (np->tx_change_owner)
2787 put_tx.ex = np->tx_change_owner->first_tx_desc;
2788 else
2789 put_tx = np->put_tx;
2790
2791 /* 3) clear all tx state */
2792 nv_drain_tx(dev);
2793 nv_init_tx(dev);
2794
2795 /* 4) restore state to current HW position */
2796 np->get_tx = np->put_tx = put_tx;
2797 np->tx_limit = saved_tx_limit;
2798
2799 /* 5) restart tx engine */
2800 nv_start_tx(dev);
2801 netif_wake_queue(dev);
2802 spin_unlock_irq(&np->lock);
2803 }
2804
2805 /*
2806 * Called when the nic notices a mismatch between the actual data len on the
2807 * wire and the len indicated in the 802 header
2808 */
2809 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2810 {
2811 int hdrlen; /* length of the 802 header */
2812 int protolen; /* length as stored in the proto field */
2813
2814 /* 1) calculate len according to header */
2815 if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2816 protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
2817 hdrlen = VLAN_HLEN;
2818 } else {
2819 protolen = ntohs(((struct ethhdr *)packet)->h_proto);
2820 hdrlen = ETH_HLEN;
2821 }
2822 if (protolen > ETH_DATA_LEN)
2823 return datalen; /* Value in proto field not a len, no checks possible */
2824
2825 protolen += hdrlen;
2826 /* consistency checks: */
2827 if (datalen > ETH_ZLEN) {
2828 if (datalen >= protolen) {
2829 /* more data on wire than in 802 header, trim of
2830 * additional data.
2831 */
2832 return protolen;
2833 } else {
2834 /* less data on wire than mentioned in header.
2835 * Discard the packet.
2836 */
2837 return -1;
2838 }
2839 } else {
2840 /* short packet. Accept only if 802 values are also short */
2841 if (protolen > ETH_ZLEN) {
2842 return -1;
2843 }
2844 return datalen;
2845 }
2846 }
2847
2848 static void rx_missing_handler(u32 flags, struct fe_priv *np)
2849 {
2850 if (flags & NV_RX_MISSEDFRAME) {
2851 u64_stats_update_begin(&np->swstats_rx_syncp);
2852 nv_txrx_stats_inc(stat_rx_missed_errors);
2853 u64_stats_update_end(&np->swstats_rx_syncp);
2854 }
2855 }
2856
2857 static int nv_rx_process(struct net_device *dev, int limit)
2858 {
2859 struct fe_priv *np = netdev_priv(dev);
2860 u32 flags;
2861 int rx_work = 0;
2862 struct sk_buff *skb;
2863 int len;
2864
2865 while ((np->get_rx.orig != np->put_rx.orig) &&
2866 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2867 (rx_work < limit)) {
2868
2869 /*
2870 * the packet is for us - immediately tear down the pci mapping.
2871 * TODO: check if a prefetch of the first cacheline improves
2872 * the performance.
2873 */
2874 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
2875 np->get_rx_ctx->dma_len,
2876 DMA_FROM_DEVICE);
2877 skb = np->get_rx_ctx->skb;
2878 np->get_rx_ctx->skb = NULL;
2879
2880 /* look at what we actually got: */
2881 if (np->desc_ver == DESC_VER_1) {
2882 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2883 len = flags & LEN_MASK_V1;
2884 if (unlikely(flags & NV_RX_ERROR)) {
2885 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2886 len = nv_getlen(dev, skb->data, len);
2887 if (len < 0) {
2888 dev_kfree_skb(skb);
2889 goto next_pkt;
2890 }
2891 }
2892 /* framing errors are soft errors */
2893 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2894 if (flags & NV_RX_SUBTRACT1)
2895 len--;
2896 }
2897 /* the rest are hard errors */
2898 else {
2899 rx_missing_handler(flags, np);
2900 dev_kfree_skb(skb);
2901 goto next_pkt;
2902 }
2903 }
2904 } else {
2905 dev_kfree_skb(skb);
2906 goto next_pkt;
2907 }
2908 } else {
2909 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2910 len = flags & LEN_MASK_V2;
2911 if (unlikely(flags & NV_RX2_ERROR)) {
2912 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2913 len = nv_getlen(dev, skb->data, len);
2914 if (len < 0) {
2915 dev_kfree_skb(skb);
2916 goto next_pkt;
2917 }
2918 }
2919 /* framing errors are soft errors */
2920 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2921 if (flags & NV_RX2_SUBTRACT1)
2922 len--;
2923 }
2924 /* the rest are hard errors */
2925 else {
2926 dev_kfree_skb(skb);
2927 goto next_pkt;
2928 }
2929 }
2930 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2931 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2932 skb->ip_summed = CHECKSUM_UNNECESSARY;
2933 } else {
2934 dev_kfree_skb(skb);
2935 goto next_pkt;
2936 }
2937 }
2938 /* got a valid packet - forward it to the network core */
2939 skb_put(skb, len);
2940 skb->protocol = eth_type_trans(skb, dev);
2941 napi_gro_receive(&np->napi, skb);
2942 u64_stats_update_begin(&np->swstats_rx_syncp);
2943 nv_txrx_stats_inc(stat_rx_packets);
2944 nv_txrx_stats_add(stat_rx_bytes, len);
2945 u64_stats_update_end(&np->swstats_rx_syncp);
2946 next_pkt:
2947 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2948 np->get_rx.orig = np->rx_ring.orig;
2949 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2950 np->get_rx_ctx = np->rx_skb;
2951
2952 rx_work++;
2953 }
2954
2955 return rx_work;
2956 }
2957
2958 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2959 {
2960 struct fe_priv *np = netdev_priv(dev);
2961 u32 flags;
2962 u32 vlanflags = 0;
2963 int rx_work = 0;
2964 struct sk_buff *skb;
2965 int len;
2966
2967 while ((np->get_rx.ex != np->put_rx.ex) &&
2968 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2969 (rx_work < limit)) {
2970
2971 /*
2972 * the packet is for us - immediately tear down the pci mapping.
2973 * TODO: check if a prefetch of the first cacheline improves
2974 * the performance.
2975 */
2976 dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
2977 np->get_rx_ctx->dma_len,
2978 DMA_FROM_DEVICE);
2979 skb = np->get_rx_ctx->skb;
2980 np->get_rx_ctx->skb = NULL;
2981
2982 /* look at what we actually got: */
2983 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2984 len = flags & LEN_MASK_V2;
2985 if (unlikely(flags & NV_RX2_ERROR)) {
2986 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2987 len = nv_getlen(dev, skb->data, len);
2988 if (len < 0) {
2989 dev_kfree_skb(skb);
2990 goto next_pkt;
2991 }
2992 }
2993 /* framing errors are soft errors */
2994 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2995 if (flags & NV_RX2_SUBTRACT1)
2996 len--;
2997 }
2998 /* the rest are hard errors */
2999 else {
3000 dev_kfree_skb(skb);
3001 goto next_pkt;
3002 }
3003 }
3004
3005 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
3006 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
3007 skb->ip_summed = CHECKSUM_UNNECESSARY;
3008
3009 /* got a valid packet - forward it to the network core */
3010 skb_put(skb, len);
3011 skb->protocol = eth_type_trans(skb, dev);
3012 prefetch(skb->data);
3013
3014 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
3015
3016 /*
3017 * There's need to check for NETIF_F_HW_VLAN_CTAG_RX
3018 * here. Even if vlan rx accel is disabled,
3019 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
3020 */
3021 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3022 vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
3023 u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;
3024
3025 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3026 }
3027 napi_gro_receive(&np->napi, skb);
3028 u64_stats_update_begin(&np->swstats_rx_syncp);
3029 nv_txrx_stats_inc(stat_rx_packets);
3030 nv_txrx_stats_add(stat_rx_bytes, len);
3031 u64_stats_update_end(&np->swstats_rx_syncp);
3032 } else {
3033 dev_kfree_skb(skb);
3034 }
3035 next_pkt:
3036 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
3037 np->get_rx.ex = np->rx_ring.ex;
3038 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
3039 np->get_rx_ctx = np->rx_skb;
3040
3041 rx_work++;
3042 }
3043
3044 return rx_work;
3045 }
3046
3047 static void set_bufsize(struct net_device *dev)
3048 {
3049 struct fe_priv *np = netdev_priv(dev);
3050
3051 if (dev->mtu <= ETH_DATA_LEN)
3052 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
3053 else
3054 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
3055 }
3056
3057 /*
3058 * nv_change_mtu: dev->change_mtu function
3059 * Called with dev_base_lock held for read.
3060 */
3061 static int nv_change_mtu(struct net_device *dev, int new_mtu)
3062 {
3063 struct fe_priv *np = netdev_priv(dev);
3064 int old_mtu;
3065
3066 old_mtu = dev->mtu;
3067 dev->mtu = new_mtu;
3068
3069 /* return early if the buffer sizes will not change */
3070 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
3071 return 0;
3072
3073 /* synchronized against open : rtnl_lock() held by caller */
3074 if (netif_running(dev)) {
3075 u8 __iomem *base = get_hwbase(dev);
3076 /*
3077 * It seems that the nic preloads valid ring entries into an
3078 * internal buffer. The procedure for flushing everything is
3079 * guessed, there is probably a simpler approach.
3080 * Changing the MTU is a rare event, it shouldn't matter.
3081 */
3082 nv_disable_irq(dev);
3083 nv_napi_disable(dev);
3084 netif_tx_lock_bh(dev);
3085 netif_addr_lock(dev);
3086 spin_lock(&np->lock);
3087 /* stop engines */
3088 nv_stop_rxtx(dev);
3089 nv_txrx_reset(dev);
3090 /* drain rx queue */
3091 nv_drain_rxtx(dev);
3092 /* reinit driver view of the rx queue */
3093 set_bufsize(dev);
3094 if (nv_init_ring(dev)) {
3095 if (!np->in_shutdown)
3096 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3097 }
3098 /* reinit nic view of the rx queue */
3099 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3100 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3101 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3102 base + NvRegRingSizes);
3103 pci_push(base);
3104 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3105 pci_push(base);
3106
3107 /* restart rx engine */
3108 nv_start_rxtx(dev);
3109 spin_unlock(&np->lock);
3110 netif_addr_unlock(dev);
3111 netif_tx_unlock_bh(dev);
3112 nv_napi_enable(dev);
3113 nv_enable_irq(dev);
3114 }
3115 return 0;
3116 }
3117
3118 static void nv_copy_mac_to_hw(struct net_device *dev)
3119 {
3120 u8 __iomem *base = get_hwbase(dev);
3121 u32 mac[2];
3122
3123 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3124 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3125 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3126
3127 writel(mac[0], base + NvRegMacAddrA);
3128 writel(mac[1], base + NvRegMacAddrB);
3129 }
3130
3131 /*
3132 * nv_set_mac_address: dev->set_mac_address function
3133 * Called with rtnl_lock() held.
3134 */
3135 static int nv_set_mac_address(struct net_device *dev, void *addr)
3136 {
3137 struct fe_priv *np = netdev_priv(dev);
3138 struct sockaddr *macaddr = (struct sockaddr *)addr;
3139
3140 if (!is_valid_ether_addr(macaddr->sa_data))
3141 return -EADDRNOTAVAIL;
3142
3143 /* synchronized against open : rtnl_lock() held by caller */
3144 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3145
3146 if (netif_running(dev)) {
3147 netif_tx_lock_bh(dev);
3148 netif_addr_lock(dev);
3149 spin_lock_irq(&np->lock);
3150
3151 /* stop rx engine */
3152 nv_stop_rx(dev);
3153
3154 /* set mac address */
3155 nv_copy_mac_to_hw(dev);
3156
3157 /* restart rx engine */
3158 nv_start_rx(dev);
3159 spin_unlock_irq(&np->lock);
3160 netif_addr_unlock(dev);
3161 netif_tx_unlock_bh(dev);
3162 } else {
3163 nv_copy_mac_to_hw(dev);
3164 }
3165 return 0;
3166 }
3167
3168 /*
3169 * nv_set_multicast: dev->set_multicast function
3170 * Called with netif_tx_lock held.
3171 */
3172 static void nv_set_multicast(struct net_device *dev)
3173 {
3174 struct fe_priv *np = netdev_priv(dev);
3175 u8 __iomem *base = get_hwbase(dev);
3176 u32 addr[2];
3177 u32 mask[2];
3178 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3179
3180 memset(addr, 0, sizeof(addr));
3181 memset(mask, 0, sizeof(mask));
3182
3183 if (dev->flags & IFF_PROMISC) {
3184 pff |= NVREG_PFF_PROMISC;
3185 } else {
3186 pff |= NVREG_PFF_MYADDR;
3187
3188 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
3189 u32 alwaysOff[2];
3190 u32 alwaysOn[2];
3191
3192 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3193 if (dev->flags & IFF_ALLMULTI) {
3194 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3195 } else {
3196 struct netdev_hw_addr *ha;
3197
3198 netdev_for_each_mc_addr(ha, dev) {
3199 unsigned char *hw_addr = ha->addr;
3200 u32 a, b;
3201
3202 a = le32_to_cpu(*(__le32 *) hw_addr);
3203 b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
3204 alwaysOn[0] &= a;
3205 alwaysOff[0] &= ~a;
3206 alwaysOn[1] &= b;
3207 alwaysOff[1] &= ~b;
3208 }
3209 }
3210 addr[0] = alwaysOn[0];
3211 addr[1] = alwaysOn[1];
3212 mask[0] = alwaysOn[0] | alwaysOff[0];
3213 mask[1] = alwaysOn[1] | alwaysOff[1];
3214 } else {
3215 mask[0] = NVREG_MCASTMASKA_NONE;
3216 mask[1] = NVREG_MCASTMASKB_NONE;
3217 }
3218 }
3219 addr[0] |= NVREG_MCASTADDRA_FORCE;
3220 pff |= NVREG_PFF_ALWAYS;
3221 spin_lock_irq(&np->lock);
3222 nv_stop_rx(dev);
3223 writel(addr[0], base + NvRegMulticastAddrA);
3224 writel(addr[1], base + NvRegMulticastAddrB);
3225 writel(mask[0], base + NvRegMulticastMaskA);
3226 writel(mask[1], base + NvRegMulticastMaskB);
3227 writel(pff, base + NvRegPacketFilterFlags);
3228 nv_start_rx(dev);
3229 spin_unlock_irq(&np->lock);
3230 }
3231
3232 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3233 {
3234 struct fe_priv *np = netdev_priv(dev);
3235 u8 __iomem *base = get_hwbase(dev);
3236
3237 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3238
3239 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3240 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3241 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3242 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3243 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3244 } else {
3245 writel(pff, base + NvRegPacketFilterFlags);
3246 }
3247 }
3248 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3249 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3250 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3251 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3252 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3253 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3254 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3255 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3256 /* limit the number of tx pause frames to a default of 8 */
3257 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3258 }
3259 writel(pause_enable, base + NvRegTxPauseFrame);
3260 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3261 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3262 } else {
3263 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3264 writel(regmisc, base + NvRegMisc1);
3265 }
3266 }
3267 }
3268
3269 static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
3270 {
3271 struct fe_priv *np = netdev_priv(dev);
3272 u8 __iomem *base = get_hwbase(dev);
3273 u32 phyreg, txreg;
3274 int mii_status;
3275
3276 np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
3277 np->duplex = duplex;
3278
3279 /* see if gigabit phy */
3280 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3281 if (mii_status & PHY_GIGABIT) {
3282 np->gigabit = PHY_GIGABIT;
3283 phyreg = readl(base + NvRegSlotTime);
3284 phyreg &= ~(0x3FF00);
3285 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
3286 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3287 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
3288 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3289 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3290 phyreg |= NVREG_SLOTTIME_1000_FULL;
3291 writel(phyreg, base + NvRegSlotTime);
3292 }
3293
3294 phyreg = readl(base + NvRegPhyInterface);
3295 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3296 if (np->duplex == 0)
3297 phyreg |= PHY_HALF;
3298 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3299 phyreg |= PHY_100;
3300 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3301 NVREG_LINKSPEED_1000)
3302 phyreg |= PHY_1000;
3303 writel(phyreg, base + NvRegPhyInterface);
3304
3305 if (phyreg & PHY_RGMII) {
3306 if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3307 NVREG_LINKSPEED_1000)
3308 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3309 else
3310 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3311 } else {
3312 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3313 }
3314 writel(txreg, base + NvRegTxDeferral);
3315
3316 if (np->desc_ver == DESC_VER_1) {
3317 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3318 } else {
3319 if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
3320 NVREG_LINKSPEED_1000)
3321 txreg = NVREG_TX_WM_DESC2_3_1000;
3322 else
3323 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3324 }
3325 writel(txreg, base + NvRegTxWatermark);
3326
3327 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
3328 base + NvRegMisc1);
3329 pci_push(base);
3330 writel(np->linkspeed, base + NvRegLinkSpeed);
3331 pci_push(base);
3332 }
3333
3334 /**
3335 * nv_update_linkspeed - Setup the MAC according to the link partner
3336 * @dev: Network device to be configured
3337 *
3338 * The function queries the PHY and checks if there is a link partner.
3339 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3340 * set to 10 MBit HD.
3341 *
3342 * The function returns 0 if there is no link partner and 1 if there is
3343 * a good link partner.
3344 */
3345 static int nv_update_linkspeed(struct net_device *dev)
3346 {
3347 struct fe_priv *np = netdev_priv(dev);
3348 u8 __iomem *base = get_hwbase(dev);
3349 int adv = 0;
3350 int lpa = 0;
3351 int adv_lpa, adv_pause, lpa_pause;
3352 int newls = np->linkspeed;
3353 int newdup = np->duplex;
3354 int mii_status;
3355 u32 bmcr;
3356 int retval = 0;
3357 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3358 u32 txrxFlags = 0;
3359 u32 phy_exp;
3360
3361 /* If device loopback is enabled, set carrier on and enable max link
3362 * speed.
3363 */
3364 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3365 if (bmcr & BMCR_LOOPBACK) {
3366 if (netif_running(dev)) {
3367 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
3368 if (!netif_carrier_ok(dev))
3369 netif_carrier_on(dev);
3370 }
3371 return 1;
3372 }
3373
3374 /* BMSR_LSTATUS is latched, read it twice:
3375 * we want the current value.
3376 */
3377 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3378 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3379
3380 if (!(mii_status & BMSR_LSTATUS)) {
3381 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3382 newdup = 0;
3383 retval = 0;
3384 goto set_speed;
3385 }
3386
3387 if (np->autoneg == 0) {
3388 if (np->fixed_mode & LPA_100FULL) {
3389 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3390 newdup = 1;
3391 } else if (np->fixed_mode & LPA_100HALF) {
3392 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3393 newdup = 0;
3394 } else if (np->fixed_mode & LPA_10FULL) {
3395 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3396 newdup = 1;
3397 } else {
3398 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3399 newdup = 0;
3400 }
3401 retval = 1;
3402 goto set_speed;
3403 }
3404 /* check auto negotiation is complete */
3405 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3406 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3407 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3408 newdup = 0;
3409 retval = 0;
3410 goto set_speed;
3411 }
3412
3413 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3414 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3415
3416 retval = 1;
3417 if (np->gigabit == PHY_GIGABIT) {
3418 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3419 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3420
3421 if ((control_1000 & ADVERTISE_1000FULL) &&
3422 (status_1000 & LPA_1000FULL)) {
3423 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3424 newdup = 1;
3425 goto set_speed;
3426 }
3427 }
3428
3429 /* FIXME: handle parallel detection properly */
3430 adv_lpa = lpa & adv;
3431 if (adv_lpa & LPA_100FULL) {
3432 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3433 newdup = 1;
3434 } else if (adv_lpa & LPA_100HALF) {
3435 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3436 newdup = 0;
3437 } else if (adv_lpa & LPA_10FULL) {
3438 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3439 newdup = 1;
3440 } else if (adv_lpa & LPA_10HALF) {
3441 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3442 newdup = 0;
3443 } else {
3444 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3445 newdup = 0;
3446 }
3447
3448 set_speed:
3449 if (np->duplex == newdup && np->linkspeed == newls)
3450 return retval;
3451
3452 np->duplex = newdup;
3453 np->linkspeed = newls;
3454
3455 /* The transmitter and receiver must be restarted for safe update */
3456 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3457 txrxFlags |= NV_RESTART_TX;
3458 nv_stop_tx(dev);
3459 }
3460 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3461 txrxFlags |= NV_RESTART_RX;
3462 nv_stop_rx(dev);
3463 }
3464
3465 if (np->gigabit == PHY_GIGABIT) {
3466 phyreg = readl(base + NvRegSlotTime);
3467 phyreg &= ~(0x3FF00);
3468 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3469 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3470 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3471 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3472 phyreg |= NVREG_SLOTTIME_1000_FULL;
3473 writel(phyreg, base + NvRegSlotTime);
3474 }
3475
3476 phyreg = readl(base + NvRegPhyInterface);
3477 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3478 if (np->duplex == 0)
3479 phyreg |= PHY_HALF;
3480 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3481 phyreg |= PHY_100;
3482 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3483 phyreg |= PHY_1000;
3484 writel(phyreg, base + NvRegPhyInterface);
3485
3486 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3487 if (phyreg & PHY_RGMII) {
3488 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3489 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3490 } else {
3491 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3492 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3493 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3494 else
3495 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3496 } else {
3497 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3498 }
3499 }
3500 } else {
3501 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3502 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3503 else
3504 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3505 }
3506 writel(txreg, base + NvRegTxDeferral);
3507
3508 if (np->desc_ver == DESC_VER_1) {
3509 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3510 } else {
3511 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3512 txreg = NVREG_TX_WM_DESC2_3_1000;
3513 else
3514 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3515 }
3516 writel(txreg, base + NvRegTxWatermark);
3517
3518 writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
3519 base + NvRegMisc1);
3520 pci_push(base);
3521 writel(np->linkspeed, base + NvRegLinkSpeed);
3522 pci_push(base);
3523
3524 pause_flags = 0;
3525 /* setup pause frame */
3526 if (netif_running(dev) && (np->duplex != 0)) {
3527 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3528 adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3529 lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
3530
3531 switch (adv_pause) {
3532 case ADVERTISE_PAUSE_CAP:
3533 if (lpa_pause & LPA_PAUSE_CAP) {
3534 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3535 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3536 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3537 }
3538 break;
3539 case ADVERTISE_PAUSE_ASYM:
3540 if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
3541 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3542 break;
3543 case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
3544 if (lpa_pause & LPA_PAUSE_CAP) {
3545 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3546 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3547 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3548 }
3549 if (lpa_pause == LPA_PAUSE_ASYM)
3550 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3551 break;
3552 }
3553 } else {
3554 pause_flags = np->pause_flags;
3555 }
3556 }
3557 nv_update_pause(dev, pause_flags);
3558
3559 if (txrxFlags & NV_RESTART_TX)
3560 nv_start_tx(dev);
3561 if (txrxFlags & NV_RESTART_RX)
3562 nv_start_rx(dev);
3563
3564 return retval;
3565 }
3566
3567 static void nv_linkchange(struct net_device *dev)
3568 {
3569 if (nv_update_linkspeed(dev)) {
3570 if (!netif_carrier_ok(dev)) {
3571 netif_carrier_on(dev);
3572 netdev_info(dev, "link up\n");
3573 nv_txrx_gate(dev, false);
3574 nv_start_rx(dev);
3575 }
3576 } else {
3577 if (netif_carrier_ok(dev)) {
3578 netif_carrier_off(dev);
3579 netdev_info(dev, "link down\n");
3580 nv_txrx_gate(dev, true);
3581 nv_stop_rx(dev);
3582 }
3583 }
3584 }
3585
3586 static void nv_link_irq(struct net_device *dev)
3587 {
3588 u8 __iomem *base = get_hwbase(dev);
3589 u32 miistat;
3590
3591 miistat = readl(base + NvRegMIIStatus);
3592 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3593
3594 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3595 nv_linkchange(dev);
3596 }
3597
3598 static void nv_msi_workaround(struct fe_priv *np)
3599 {
3600
3601 /* Need to toggle the msi irq mask within the ethernet device,
3602 * otherwise, future interrupts will not be detected.
3603 */
3604 if (np->msi_flags & NV_MSI_ENABLED) {
3605 u8 __iomem *base = np->base;
3606
3607 writel(0, base + NvRegMSIIrqMask);
3608 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3609 }
3610 }
3611
3612 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3613 {
3614 struct fe_priv *np = netdev_priv(dev);
3615
3616 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3617 if (total_work > NV_DYNAMIC_THRESHOLD) {
3618 /* transition to poll based interrupts */
3619 np->quiet_count = 0;
3620 if (np->irqmask != NVREG_IRQMASK_CPU) {
3621 np->irqmask = NVREG_IRQMASK_CPU;
3622 return 1;
3623 }
3624 } else {
3625 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3626 np->quiet_count++;
3627 } else {
3628 /* reached a period of low activity, switch
3629 to per tx/rx packet interrupts */
3630 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3631 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3632 return 1;
3633 }
3634 }
3635 }
3636 }
3637 return 0;
3638 }
3639
3640 static irqreturn_t nv_nic_irq(int foo, void *data)
3641 {
3642 struct net_device *dev = (struct net_device *) data;
3643 struct fe_priv *np = netdev_priv(dev);
3644 u8 __iomem *base = get_hwbase(dev);
3645
3646 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3647 np->events = readl(base + NvRegIrqStatus);
3648 writel(np->events, base + NvRegIrqStatus);
3649 } else {
3650 np->events = readl(base + NvRegMSIXIrqStatus);
3651 writel(np->events, base + NvRegMSIXIrqStatus);
3652 }
3653 if (!(np->events & np->irqmask))
3654 return IRQ_NONE;
3655
3656 nv_msi_workaround(np);
3657
3658 if (napi_schedule_prep(&np->napi)) {
3659 /*
3660 * Disable further irq's (msix not enabled with napi)
3661 */
3662 writel(0, base + NvRegIrqMask);
3663 __napi_schedule(&np->napi);
3664 }
3665
3666 return IRQ_HANDLED;
3667 }
3668
3669 /* All _optimized functions are used to help increase performance
3670 * (reduce CPU and increase throughput). They use descripter version 3,
3671 * compiler directives, and reduce memory accesses.
3672 */
3673 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3674 {
3675 struct net_device *dev = (struct net_device *) data;
3676 struct fe_priv *np = netdev_priv(dev);
3677 u8 __iomem *base = get_hwbase(dev);
3678
3679 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3680 np->events = readl(base + NvRegIrqStatus);
3681 writel(np->events, base + NvRegIrqStatus);
3682 } else {
3683 np->events = readl(base + NvRegMSIXIrqStatus);
3684 writel(np->events, base + NvRegMSIXIrqStatus);
3685 }
3686 if (!(np->events & np->irqmask))
3687 return IRQ_NONE;
3688
3689 nv_msi_workaround(np);
3690
3691 if (napi_schedule_prep(&np->napi)) {
3692 /*
3693 * Disable further irq's (msix not enabled with napi)
3694 */
3695 writel(0, base + NvRegIrqMask);
3696 __napi_schedule(&np->napi);
3697 }
3698
3699 return IRQ_HANDLED;
3700 }
3701
3702 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3703 {
3704 struct net_device *dev = (struct net_device *) data;
3705 struct fe_priv *np = netdev_priv(dev);
3706 u8 __iomem *base = get_hwbase(dev);
3707 u32 events;
3708 int i;
3709 unsigned long flags;
3710
3711 for (i = 0;; i++) {
3712 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3713 writel(events, base + NvRegMSIXIrqStatus);
3714 netdev_dbg(dev, "tx irq events: %08x\n", events);
3715 if (!(events & np->irqmask))
3716 break;
3717
3718 spin_lock_irqsave(&np->lock, flags);
3719 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3720 spin_unlock_irqrestore(&np->lock, flags);
3721
3722 if (unlikely(i > max_interrupt_work)) {
3723 spin_lock_irqsave(&np->lock, flags);
3724 /* disable interrupts on the nic */
3725 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3726 pci_push(base);
3727
3728 if (!np->in_shutdown) {
3729 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3730 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3731 }
3732 spin_unlock_irqrestore(&np->lock, flags);
3733 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3734 __func__, i);
3735 break;
3736 }
3737
3738 }
3739
3740 return IRQ_RETVAL(i);
3741 }
3742
3743 static int nv_napi_poll(struct napi_struct *napi, int budget)
3744 {
3745 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3746 struct net_device *dev = np->dev;
3747 u8 __iomem *base = get_hwbase(dev);
3748 unsigned long flags;
3749 int retcode;
3750 int rx_count, tx_work = 0, rx_work = 0;
3751
3752 do {
3753 if (!nv_optimized(np)) {
3754 spin_lock_irqsave(&np->lock, flags);
3755 tx_work += nv_tx_done(dev, np->tx_ring_size);
3756 spin_unlock_irqrestore(&np->lock, flags);
3757
3758 rx_count = nv_rx_process(dev, budget - rx_work);
3759 retcode = nv_alloc_rx(dev);
3760 } else {
3761 spin_lock_irqsave(&np->lock, flags);
3762 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
3763 spin_unlock_irqrestore(&np->lock, flags);
3764
3765 rx_count = nv_rx_process_optimized(dev,
3766 budget - rx_work);
3767 retcode = nv_alloc_rx_optimized(dev);
3768 }
3769 } while (retcode == 0 &&
3770 rx_count > 0 && (rx_work += rx_count) < budget);
3771
3772 if (retcode) {
3773 spin_lock_irqsave(&np->lock, flags);
3774 if (!np->in_shutdown)
3775 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3776 spin_unlock_irqrestore(&np->lock, flags);
3777 }
3778
3779 nv_change_interrupt_mode(dev, tx_work + rx_work);
3780
3781 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3782 spin_lock_irqsave(&np->lock, flags);
3783 nv_link_irq(dev);
3784 spin_unlock_irqrestore(&np->lock, flags);
3785 }
3786 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3787 spin_lock_irqsave(&np->lock, flags);
3788 nv_linkchange(dev);
3789 spin_unlock_irqrestore(&np->lock, flags);
3790 np->link_timeout = jiffies + LINK_TIMEOUT;
3791 }
3792 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3793 spin_lock_irqsave(&np->lock, flags);
3794 if (!np->in_shutdown) {
3795 np->nic_poll_irq = np->irqmask;
3796 np->recover_error = 1;
3797 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3798 }
3799 spin_unlock_irqrestore(&np->lock, flags);
3800 napi_complete(napi);
3801 return rx_work;
3802 }
3803
3804 if (rx_work < budget) {
3805 /* re-enable interrupts
3806 (msix not enabled in napi) */
3807 napi_complete_done(napi, rx_work);
3808
3809 writel(np->irqmask, base + NvRegIrqMask);
3810 }
3811 return rx_work;
3812 }
3813
3814 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3815 {
3816 struct net_device *dev = (struct net_device *) data;
3817 struct fe_priv *np = netdev_priv(dev);
3818 u8 __iomem *base = get_hwbase(dev);
3819 u32 events;
3820 int i;
3821 unsigned long flags;
3822
3823 for (i = 0;; i++) {
3824 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3825 writel(events, base + NvRegMSIXIrqStatus);
3826 netdev_dbg(dev, "rx irq events: %08x\n", events);
3827 if (!(events & np->irqmask))
3828 break;
3829
3830 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3831 if (unlikely(nv_alloc_rx_optimized(dev))) {
3832 spin_lock_irqsave(&np->lock, flags);
3833 if (!np->in_shutdown)
3834 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3835 spin_unlock_irqrestore(&np->lock, flags);
3836 }
3837 }
3838
3839 if (unlikely(i > max_interrupt_work)) {
3840 spin_lock_irqsave(&np->lock, flags);
3841 /* disable interrupts on the nic */
3842 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3843 pci_push(base);
3844
3845 if (!np->in_shutdown) {
3846 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3847 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3848 }
3849 spin_unlock_irqrestore(&np->lock, flags);
3850 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3851 __func__, i);
3852 break;
3853 }
3854 }
3855
3856 return IRQ_RETVAL(i);
3857 }
3858
3859 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3860 {
3861 struct net_device *dev = (struct net_device *) data;
3862 struct fe_priv *np = netdev_priv(dev);
3863 u8 __iomem *base = get_hwbase(dev);
3864 u32 events;
3865 int i;
3866 unsigned long flags;
3867
3868 for (i = 0;; i++) {
3869 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3870 writel(events, base + NvRegMSIXIrqStatus);
3871 netdev_dbg(dev, "irq events: %08x\n", events);
3872 if (!(events & np->irqmask))
3873 break;
3874
3875 /* check tx in case we reached max loop limit in tx isr */
3876 spin_lock_irqsave(&np->lock, flags);
3877 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3878 spin_unlock_irqrestore(&np->lock, flags);
3879
3880 if (events & NVREG_IRQ_LINK) {
3881 spin_lock_irqsave(&np->lock, flags);
3882 nv_link_irq(dev);
3883 spin_unlock_irqrestore(&np->lock, flags);
3884 }
3885 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3886 spin_lock_irqsave(&np->lock, flags);
3887 nv_linkchange(dev);
3888 spin_unlock_irqrestore(&np->lock, flags);
3889 np->link_timeout = jiffies + LINK_TIMEOUT;
3890 }
3891 if (events & NVREG_IRQ_RECOVER_ERROR) {
3892 spin_lock_irqsave(&np->lock, flags);
3893 /* disable interrupts on the nic */
3894 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3895 pci_push(base);
3896
3897 if (!np->in_shutdown) {
3898 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3899 np->recover_error = 1;
3900 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3901 }
3902 spin_unlock_irqrestore(&np->lock, flags);
3903 break;
3904 }
3905 if (unlikely(i > max_interrupt_work)) {
3906 spin_lock_irqsave(&np->lock, flags);
3907 /* disable interrupts on the nic */
3908 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3909 pci_push(base);
3910
3911 if (!np->in_shutdown) {
3912 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3913 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3914 }
3915 spin_unlock_irqrestore(&np->lock, flags);
3916 netdev_dbg(dev, "%s: too many iterations (%d)\n",
3917 __func__, i);
3918 break;
3919 }
3920
3921 }
3922
3923 return IRQ_RETVAL(i);
3924 }
3925
3926 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3927 {
3928 struct net_device *dev = (struct net_device *) data;
3929 struct fe_priv *np = netdev_priv(dev);
3930 u8 __iomem *base = get_hwbase(dev);
3931 u32 events;
3932
3933 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3934 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3935 writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3936 } else {
3937 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3938 writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3939 }
3940 pci_push(base);
3941 if (!(events & NVREG_IRQ_TIMER))
3942 return IRQ_RETVAL(0);
3943
3944 nv_msi_workaround(np);
3945
3946 spin_lock(&np->lock);
3947 np->intr_test = 1;
3948 spin_unlock(&np->lock);
3949
3950 return IRQ_RETVAL(1);
3951 }
3952
3953 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3954 {
3955 u8 __iomem *base = get_hwbase(dev);
3956 int i;
3957 u32 msixmap = 0;
3958
3959 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3960 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3961 * the remaining 8 interrupts.
3962 */
3963 for (i = 0; i < 8; i++) {
3964 if ((irqmask >> i) & 0x1)
3965 msixmap |= vector << (i << 2);
3966 }
3967 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3968
3969 msixmap = 0;
3970 for (i = 0; i < 8; i++) {
3971 if ((irqmask >> (i + 8)) & 0x1)
3972 msixmap |= vector << (i << 2);
3973 }
3974 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3975 }
3976
3977 static int nv_request_irq(struct net_device *dev, int intr_test)
3978 {
3979 struct fe_priv *np = get_nvpriv(dev);
3980 u8 __iomem *base = get_hwbase(dev);
3981 int ret;
3982 int i;
3983 irqreturn_t (*handler)(int foo, void *data);
3984
3985 if (intr_test) {
3986 handler = nv_nic_irq_test;
3987 } else {
3988 if (nv_optimized(np))
3989 handler = nv_nic_irq_optimized;
3990 else
3991 handler = nv_nic_irq;
3992 }
3993
3994 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3995 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
3996 np->msi_x_entry[i].entry = i;
3997 ret = pci_enable_msix_range(np->pci_dev,
3998 np->msi_x_entry,
3999 np->msi_flags & NV_MSI_X_VECTORS_MASK,
4000 np->msi_flags & NV_MSI_X_VECTORS_MASK);
4001 if (ret > 0) {
4002 np->msi_flags |= NV_MSI_X_ENABLED;
4003 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
4004 /* Request irq for rx handling */
4005 sprintf(np->name_rx, "%s-rx", dev->name);
4006 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
4007 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev);
4008 if (ret) {
4009 netdev_info(dev,
4010 "request_irq failed for rx %d\n",
4011 ret);
4012 pci_disable_msix(np->pci_dev);
4013 np->msi_flags &= ~NV_MSI_X_ENABLED;
4014 goto out_err;
4015 }
4016 /* Request irq for tx handling */
4017 sprintf(np->name_tx, "%s-tx", dev->name);
4018 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
4019 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev);
4020 if (ret) {
4021 netdev_info(dev,
4022 "request_irq failed for tx %d\n",
4023 ret);
4024 pci_disable_msix(np->pci_dev);
4025 np->msi_flags &= ~NV_MSI_X_ENABLED;
4026 goto out_free_rx;
4027 }
4028 /* Request irq for link and timer handling */
4029 sprintf(np->name_other, "%s-other", dev->name);
4030 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
4031 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev);
4032 if (ret) {
4033 netdev_info(dev,
4034 "request_irq failed for link %d\n",
4035 ret);
4036 pci_disable_msix(np->pci_dev);
4037 np->msi_flags &= ~NV_MSI_X_ENABLED;
4038 goto out_free_tx;
4039 }
4040 /* map interrupts to their respective vector */
4041 writel(0, base + NvRegMSIXMap0);
4042 writel(0, base + NvRegMSIXMap1);
4043 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
4044 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
4045 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
4046 } else {
4047 /* Request irq for all interrupts */
4048 ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector,
4049 handler, IRQF_SHARED, dev->name, dev);
4050 if (ret) {
4051 netdev_info(dev,
4052 "request_irq failed %d\n",
4053 ret);
4054 pci_disable_msix(np->pci_dev);
4055 np->msi_flags &= ~NV_MSI_X_ENABLED;
4056 goto out_err;
4057 }
4058
4059 /* map interrupts to vector 0 */
4060 writel(0, base + NvRegMSIXMap0);
4061 writel(0, base + NvRegMSIXMap1);
4062 }
4063 netdev_info(dev, "MSI-X enabled\n");
4064 return 0;
4065 }
4066 }
4067 if (np->msi_flags & NV_MSI_CAPABLE) {
4068 ret = pci_enable_msi(np->pci_dev);
4069 if (ret == 0) {
4070 np->msi_flags |= NV_MSI_ENABLED;
4071 ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev);
4072 if (ret) {
4073 netdev_info(dev, "request_irq failed %d\n",
4074 ret);
4075 pci_disable_msi(np->pci_dev);
4076 np->msi_flags &= ~NV_MSI_ENABLED;
4077 goto out_err;
4078 }
4079
4080 /* map interrupts to vector 0 */
4081 writel(0, base + NvRegMSIMap0);
4082 writel(0, base + NvRegMSIMap1);
4083 /* enable msi vector 0 */
4084 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4085 netdev_info(dev, "MSI enabled\n");
4086 return 0;
4087 }
4088 }
4089
4090 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4091 goto out_err;
4092
4093 return 0;
4094 out_free_tx:
4095 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4096 out_free_rx:
4097 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4098 out_err:
4099 return 1;
4100 }
4101
4102 static void nv_free_irq(struct net_device *dev)
4103 {
4104 struct fe_priv *np = get_nvpriv(dev);
4105 int i;
4106
4107 if (np->msi_flags & NV_MSI_X_ENABLED) {
4108 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
4109 free_irq(np->msi_x_entry[i].vector, dev);
4110 pci_disable_msix(np->pci_dev);
4111 np->msi_flags &= ~NV_MSI_X_ENABLED;
4112 } else {
4113 free_irq(np->pci_dev->irq, dev);
4114 if (np->msi_flags & NV_MSI_ENABLED) {
4115 pci_disable_msi(np->pci_dev);
4116 np->msi_flags &= ~NV_MSI_ENABLED;
4117 }
4118 }
4119 }
4120
4121 static void nv_do_nic_poll(struct timer_list *t)
4122 {
4123 struct fe_priv *np = from_timer(np, t, nic_poll);
4124 struct net_device *dev = np->dev;
4125 u8 __iomem *base = get_hwbase(dev);
4126 u32 mask = 0;
4127 unsigned long flags;
4128 unsigned int irq = 0;
4129
4130 /*
4131 * First disable irq(s) and then
4132 * reenable interrupts on the nic, we have to do this before calling
4133 * nv_nic_irq because that may decide to do otherwise
4134 */
4135
4136 if (!using_multi_irqs(dev)) {
4137 if (np->msi_flags & NV_MSI_X_ENABLED)
4138 irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector;
4139 else
4140 irq = np->pci_dev->irq;
4141 mask = np->irqmask;
4142 } else {
4143 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4144 irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector;
4145 mask |= NVREG_IRQ_RX_ALL;
4146 }
4147 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4148 irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector;
4149 mask |= NVREG_IRQ_TX_ALL;
4150 }
4151 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4152 irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector;
4153 mask |= NVREG_IRQ_OTHER;
4154 }
4155 }
4156
4157 disable_irq_nosync_lockdep_irqsave(irq, &flags);
4158 synchronize_irq(irq);
4159
4160 if (np->recover_error) {
4161 np->recover_error = 0;
4162 netdev_info(dev, "MAC in recoverable error state\n");
4163 if (netif_running(dev)) {
4164 netif_tx_lock_bh(dev);
4165 netif_addr_lock(dev);
4166 spin_lock(&np->lock);
4167 /* stop engines */
4168 nv_stop_rxtx(dev);
4169 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4170 nv_mac_reset(dev);
4171 nv_txrx_reset(dev);
4172 /* drain rx queue */
4173 nv_drain_rxtx(dev);
4174 /* reinit driver view of the rx queue */
4175 set_bufsize(dev);
4176 if (nv_init_ring(dev)) {
4177 if (!np->in_shutdown)
4178 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4179 }
4180 /* reinit nic view of the rx queue */
4181 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4182 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4183 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4184 base + NvRegRingSizes);
4185 pci_push(base);
4186 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4187 pci_push(base);
4188 /* clear interrupts */
4189 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4190 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4191 else
4192 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4193
4194 /* restart rx engine */
4195 nv_start_rxtx(dev);
4196 spin_unlock(&np->lock);
4197 netif_addr_unlock(dev);
4198 netif_tx_unlock_bh(dev);
4199 }
4200 }
4201
4202 writel(mask, base + NvRegIrqMask);
4203 pci_push(base);
4204
4205 if (!using_multi_irqs(dev)) {
4206 np->nic_poll_irq = 0;
4207 if (nv_optimized(np))
4208 nv_nic_irq_optimized(0, dev);
4209 else
4210 nv_nic_irq(0, dev);
4211 } else {
4212 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4213 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4214 nv_nic_irq_rx(0, dev);
4215 }
4216 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4217 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4218 nv_nic_irq_tx(0, dev);
4219 }
4220 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4221 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4222 nv_nic_irq_other(0, dev);
4223 }
4224 }
4225
4226 enable_irq_lockdep_irqrestore(irq, &flags);
4227 }
4228
4229 #ifdef CONFIG_NET_POLL_CONTROLLER
4230 static void nv_poll_controller(struct net_device *dev)
4231 {
4232 struct fe_priv *np = netdev_priv(dev);
4233
4234 nv_do_nic_poll(&np->nic_poll);
4235 }
4236 #endif
4237
4238 static void nv_do_stats_poll(struct timer_list *t)
4239 __acquires(&netdev_priv(dev)->hwstats_lock)
4240 __releases(&netdev_priv(dev)->hwstats_lock)
4241 {
4242 struct fe_priv *np = from_timer(np, t, stats_poll);
4243 struct net_device *dev = np->dev;
4244
4245 /* If lock is currently taken, the stats are being refreshed
4246 * and hence fresh enough */
4247 if (spin_trylock(&np->hwstats_lock)) {
4248 nv_update_stats(dev);
4249 spin_unlock(&np->hwstats_lock);
4250 }
4251
4252 if (!np->in_shutdown)
4253 mod_timer(&np->stats_poll,
4254 round_jiffies(jiffies + STATS_INTERVAL));
4255 }
4256
4257 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4258 {
4259 struct fe_priv *np = netdev_priv(dev);
4260 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
4261 strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
4262 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
4263 }
4264
4265 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4266 {
4267 struct fe_priv *np = netdev_priv(dev);
4268 wolinfo->supported = WAKE_MAGIC;
4269
4270 spin_lock_irq(&np->lock);
4271 if (np->wolenabled)
4272 wolinfo->wolopts = WAKE_MAGIC;
4273 spin_unlock_irq(&np->lock);
4274 }
4275
4276 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4277 {
4278 struct fe_priv *np = netdev_priv(dev);
4279 u8 __iomem *base = get_hwbase(dev);
4280 u32 flags = 0;
4281
4282 if (wolinfo->wolopts == 0) {
4283 np->wolenabled = 0;
4284 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4285 np->wolenabled = 1;
4286 flags = NVREG_WAKEUPFLAGS_ENABLE;
4287 }
4288 if (netif_running(dev)) {
4289 spin_lock_irq(&np->lock);
4290 writel(flags, base + NvRegWakeUpFlags);
4291 spin_unlock_irq(&np->lock);
4292 }
4293 device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled);
4294 return 0;
4295 }
4296
4297 static int nv_get_link_ksettings(struct net_device *dev,
4298 struct ethtool_link_ksettings *cmd)
4299 {
4300 struct fe_priv *np = netdev_priv(dev);
4301 u32 speed, supported, advertising;
4302 int adv;
4303
4304 spin_lock_irq(&np->lock);
4305 cmd->base.port = PORT_MII;
4306 if (!netif_running(dev)) {
4307 /* We do not track link speed / duplex setting if the
4308 * interface is disabled. Force a link check */
4309 if (nv_update_linkspeed(dev)) {
4310 netif_carrier_on(dev);
4311 } else {
4312 netif_carrier_off(dev);
4313 }
4314 }
4315
4316 if (netif_carrier_ok(dev)) {
4317 switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4318 case NVREG_LINKSPEED_10:
4319 speed = SPEED_10;
4320 break;
4321 case NVREG_LINKSPEED_100:
4322 speed = SPEED_100;
4323 break;
4324 case NVREG_LINKSPEED_1000:
4325 speed = SPEED_1000;
4326 break;
4327 default:
4328 speed = -1;
4329 break;
4330 }
4331 cmd->base.duplex = DUPLEX_HALF;
4332 if (np->duplex)
4333 cmd->base.duplex = DUPLEX_FULL;
4334 } else {
4335 speed = SPEED_UNKNOWN;
4336 cmd->base.duplex = DUPLEX_UNKNOWN;
4337 }
4338 cmd->base.speed = speed;
4339 cmd->base.autoneg = np->autoneg;
4340
4341 advertising = ADVERTISED_MII;
4342 if (np->autoneg) {
4343 advertising |= ADVERTISED_Autoneg;
4344 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4345 if (adv & ADVERTISE_10HALF)
4346 advertising |= ADVERTISED_10baseT_Half;
4347 if (adv & ADVERTISE_10FULL)
4348 advertising |= ADVERTISED_10baseT_Full;
4349 if (adv & ADVERTISE_100HALF)
4350 advertising |= ADVERTISED_100baseT_Half;
4351 if (adv & ADVERTISE_100FULL)
4352 advertising |= ADVERTISED_100baseT_Full;
4353 if (np->gigabit == PHY_GIGABIT) {
4354 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4355 if (adv & ADVERTISE_1000FULL)
4356 advertising |= ADVERTISED_1000baseT_Full;
4357 }
4358 }
4359 supported = (SUPPORTED_Autoneg |
4360 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4361 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4362 SUPPORTED_MII);
4363 if (np->gigabit == PHY_GIGABIT)
4364 supported |= SUPPORTED_1000baseT_Full;
4365
4366 cmd->base.phy_address = np->phyaddr;
4367
4368 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4369 supported);
4370 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4371 advertising);
4372
4373 /* ignore maxtxpkt, maxrxpkt for now */
4374 spin_unlock_irq(&np->lock);
4375 return 0;
4376 }
4377
4378 static int nv_set_link_ksettings(struct net_device *dev,
4379 const struct ethtool_link_ksettings *cmd)
4380 {
4381 struct fe_priv *np = netdev_priv(dev);
4382 u32 speed = cmd->base.speed;
4383 u32 advertising;
4384
4385 ethtool_convert_link_mode_to_legacy_u32(&advertising,
4386 cmd->link_modes.advertising);
4387
4388 if (cmd->base.port != PORT_MII)
4389 return -EINVAL;
4390 if (cmd->base.phy_address != np->phyaddr) {
4391 /* TODO: support switching between multiple phys. Should be
4392 * trivial, but not enabled due to lack of test hardware. */
4393 return -EINVAL;
4394 }
4395 if (cmd->base.autoneg == AUTONEG_ENABLE) {
4396 u32 mask;
4397
4398 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4399 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4400 if (np->gigabit == PHY_GIGABIT)
4401 mask |= ADVERTISED_1000baseT_Full;
4402
4403 if ((advertising & mask) == 0)
4404 return -EINVAL;
4405
4406 } else if (cmd->base.autoneg == AUTONEG_DISABLE) {
4407 /* Note: autonegotiation disable, speed 1000 intentionally
4408 * forbidden - no one should need that. */
4409
4410 if (speed != SPEED_10 && speed != SPEED_100)
4411 return -EINVAL;
4412 if (cmd->base.duplex != DUPLEX_HALF &&
4413 cmd->base.duplex != DUPLEX_FULL)
4414 return -EINVAL;
4415 } else {
4416 return -EINVAL;
4417 }
4418
4419 netif_carrier_off(dev);
4420 if (netif_running(dev)) {
4421 unsigned long flags;
4422
4423 nv_disable_irq(dev);
4424 netif_tx_lock_bh(dev);
4425 netif_addr_lock(dev);
4426 /* with plain spinlock lockdep complains */
4427 spin_lock_irqsave(&np->lock, flags);
4428 /* stop engines */
4429 /* FIXME:
4430 * this can take some time, and interrupts are disabled
4431 * due to spin_lock_irqsave, but let's hope no daemon
4432 * is going to change the settings very often...
4433 * Worst case:
4434 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4435 * + some minor delays, which is up to a second approximately
4436 */
4437 nv_stop_rxtx(dev);
4438 spin_unlock_irqrestore(&np->lock, flags);
4439 netif_addr_unlock(dev);
4440 netif_tx_unlock_bh(dev);
4441 }
4442
4443 if (cmd->base.autoneg == AUTONEG_ENABLE) {
4444 int adv, bmcr;
4445
4446 np->autoneg = 1;
4447
4448 /* advertise only what has been requested */
4449 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4450 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4451 if (advertising & ADVERTISED_10baseT_Half)
4452 adv |= ADVERTISE_10HALF;
4453 if (advertising & ADVERTISED_10baseT_Full)
4454 adv |= ADVERTISE_10FULL;
4455 if (advertising & ADVERTISED_100baseT_Half)
4456 adv |= ADVERTISE_100HALF;
4457 if (advertising & ADVERTISED_100baseT_Full)
4458 adv |= ADVERTISE_100FULL;
4459 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4460 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4461 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4462 adv |= ADVERTISE_PAUSE_ASYM;
4463 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4464
4465 if (np->gigabit == PHY_GIGABIT) {
4466 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4467 adv &= ~ADVERTISE_1000FULL;
4468 if (advertising & ADVERTISED_1000baseT_Full)
4469 adv |= ADVERTISE_1000FULL;
4470 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4471 }
4472
4473 if (netif_running(dev))
4474 netdev_info(dev, "link down\n");
4475 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4476 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4477 bmcr |= BMCR_ANENABLE;
4478 /* reset the phy in order for settings to stick,
4479 * and cause autoneg to start */
4480 if (phy_reset(dev, bmcr)) {
4481 netdev_info(dev, "phy reset failed\n");
4482 return -EINVAL;
4483 }
4484 } else {
4485 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4486 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4487 }
4488 } else {
4489 int adv, bmcr;
4490
4491 np->autoneg = 0;
4492
4493 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4494 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4495 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_HALF)
4496 adv |= ADVERTISE_10HALF;
4497 if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_FULL)
4498 adv |= ADVERTISE_10FULL;
4499 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_HALF)
4500 adv |= ADVERTISE_100HALF;
4501 if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_FULL)
4502 adv |= ADVERTISE_100FULL;
4503 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4504 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
4505 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4506 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4507 }
4508 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4509 adv |= ADVERTISE_PAUSE_ASYM;
4510 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4511 }
4512 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4513 np->fixed_mode = adv;
4514
4515 if (np->gigabit == PHY_GIGABIT) {
4516 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4517 adv &= ~ADVERTISE_1000FULL;
4518 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4519 }
4520
4521 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4522 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4523 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4524 bmcr |= BMCR_FULLDPLX;
4525 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4526 bmcr |= BMCR_SPEED100;
4527 if (np->phy_oui == PHY_OUI_MARVELL) {
4528 /* reset the phy in order for forced mode settings to stick */
4529 if (phy_reset(dev, bmcr)) {
4530 netdev_info(dev, "phy reset failed\n");
4531 return -EINVAL;
4532 }
4533 } else {
4534 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4535 if (netif_running(dev)) {
4536 /* Wait a bit and then reconfigure the nic. */
4537 udelay(10);
4538 nv_linkchange(dev);
4539 }
4540 }
4541 }
4542
4543 if (netif_running(dev)) {
4544 nv_start_rxtx(dev);
4545 nv_enable_irq(dev);
4546 }
4547
4548 return 0;
4549 }
4550
4551 #define FORCEDETH_REGS_VER 1
4552
4553 static int nv_get_regs_len(struct net_device *dev)
4554 {
4555 struct fe_priv *np = netdev_priv(dev);
4556 return np->register_size;
4557 }
4558
4559 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4560 {
4561 struct fe_priv *np = netdev_priv(dev);
4562 u8 __iomem *base = get_hwbase(dev);
4563 u32 *rbuf = buf;
4564 int i;
4565
4566 regs->version = FORCEDETH_REGS_VER;
4567 spin_lock_irq(&np->lock);
4568 for (i = 0; i < np->register_size/sizeof(u32); i++)
4569 rbuf[i] = readl(base + i*sizeof(u32));
4570 spin_unlock_irq(&np->lock);
4571 }
4572
4573 static int nv_nway_reset(struct net_device *dev)
4574 {
4575 struct fe_priv *np = netdev_priv(dev);
4576 int ret;
4577
4578 if (np->autoneg) {
4579 int bmcr;
4580
4581 netif_carrier_off(dev);
4582 if (netif_running(dev)) {
4583 nv_disable_irq(dev);
4584 netif_tx_lock_bh(dev);
4585 netif_addr_lock(dev);
4586 spin_lock(&np->lock);
4587 /* stop engines */
4588 nv_stop_rxtx(dev);
4589 spin_unlock(&np->lock);
4590 netif_addr_unlock(dev);
4591 netif_tx_unlock_bh(dev);
4592 netdev_info(dev, "link down\n");
4593 }
4594
4595 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4596 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4597 bmcr |= BMCR_ANENABLE;
4598 /* reset the phy in order for settings to stick*/
4599 if (phy_reset(dev, bmcr)) {
4600 netdev_info(dev, "phy reset failed\n");
4601 return -EINVAL;
4602 }
4603 } else {
4604 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4605 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4606 }
4607
4608 if (netif_running(dev)) {
4609 nv_start_rxtx(dev);
4610 nv_enable_irq(dev);
4611 }
4612 ret = 0;
4613 } else {
4614 ret = -EINVAL;
4615 }
4616
4617 return ret;
4618 }
4619
4620 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4621 {
4622 struct fe_priv *np = netdev_priv(dev);
4623
4624 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4625 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4626
4627 ring->rx_pending = np->rx_ring_size;
4628 ring->tx_pending = np->tx_ring_size;
4629 }
4630
4631 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4632 {
4633 struct fe_priv *np = netdev_priv(dev);
4634 u8 __iomem *base = get_hwbase(dev);
4635 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4636 dma_addr_t ring_addr;
4637
4638 if (ring->rx_pending < RX_RING_MIN ||
4639 ring->tx_pending < TX_RING_MIN ||
4640 ring->rx_mini_pending != 0 ||
4641 ring->rx_jumbo_pending != 0 ||
4642 (np->desc_ver == DESC_VER_1 &&
4643 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4644 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4645 (np->desc_ver != DESC_VER_1 &&
4646 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4647 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4648 return -EINVAL;
4649 }
4650
4651 /* allocate new rings */
4652 if (!nv_optimized(np)) {
4653 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
4654 sizeof(struct ring_desc) *
4655 (ring->rx_pending +
4656 ring->tx_pending),
4657 &ring_addr, GFP_ATOMIC);
4658 } else {
4659 rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
4660 sizeof(struct ring_desc_ex) *
4661 (ring->rx_pending +
4662 ring->tx_pending),
4663 &ring_addr, GFP_ATOMIC);
4664 }
4665 rx_skbuff = kmalloc_array(ring->rx_pending, sizeof(struct nv_skb_map),
4666 GFP_KERNEL);
4667 tx_skbuff = kmalloc_array(ring->tx_pending, sizeof(struct nv_skb_map),
4668 GFP_KERNEL);
4669 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4670 /* fall back to old rings */
4671 if (!nv_optimized(np)) {
4672 if (rxtx_ring)
4673 dma_free_coherent(&np->pci_dev->dev,
4674 sizeof(struct ring_desc) *
4675 (ring->rx_pending +
4676 ring->tx_pending),
4677 rxtx_ring, ring_addr);
4678 } else {
4679 if (rxtx_ring)
4680 dma_free_coherent(&np->pci_dev->dev,
4681 sizeof(struct ring_desc_ex) *
4682 (ring->rx_pending +
4683 ring->tx_pending),
4684 rxtx_ring, ring_addr);
4685 }
4686
4687 kfree(rx_skbuff);
4688 kfree(tx_skbuff);
4689 goto exit;
4690 }
4691
4692 if (netif_running(dev)) {
4693 nv_disable_irq(dev);
4694 nv_napi_disable(dev);
4695 netif_tx_lock_bh(dev);
4696 netif_addr_lock(dev);
4697 spin_lock(&np->lock);
4698 /* stop engines */
4699 nv_stop_rxtx(dev);
4700 nv_txrx_reset(dev);
4701 /* drain queues */
4702 nv_drain_rxtx(dev);
4703 /* delete queues */
4704 free_rings(dev);
4705 }
4706
4707 /* set new values */
4708 np->rx_ring_size = ring->rx_pending;
4709 np->tx_ring_size = ring->tx_pending;
4710
4711 if (!nv_optimized(np)) {
4712 np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
4713 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4714 } else {
4715 np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
4716 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4717 }
4718 np->rx_skb = (struct nv_skb_map *)rx_skbuff;
4719 np->tx_skb = (struct nv_skb_map *)tx_skbuff;
4720 np->ring_addr = ring_addr;
4721
4722 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4723 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4724
4725 if (netif_running(dev)) {
4726 /* reinit driver view of the queues */
4727 set_bufsize(dev);
4728 if (nv_init_ring(dev)) {
4729 if (!np->in_shutdown)
4730 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4731 }
4732
4733 /* reinit nic view of the queues */
4734 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4735 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4736 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4737 base + NvRegRingSizes);
4738 pci_push(base);
4739 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4740 pci_push(base);
4741
4742 /* restart engines */
4743 nv_start_rxtx(dev);
4744 spin_unlock(&np->lock);
4745 netif_addr_unlock(dev);
4746 netif_tx_unlock_bh(dev);
4747 nv_napi_enable(dev);
4748 nv_enable_irq(dev);
4749 }
4750 return 0;
4751 exit:
4752 return -ENOMEM;
4753 }
4754
4755 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4756 {
4757 struct fe_priv *np = netdev_priv(dev);
4758
4759 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4760 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4761 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4762 }
4763
4764 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4765 {
4766 struct fe_priv *np = netdev_priv(dev);
4767 int adv, bmcr;
4768
4769 if ((!np->autoneg && np->duplex == 0) ||
4770 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4771 netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
4772 return -EINVAL;
4773 }
4774 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4775 netdev_info(dev, "hardware does not support tx pause frames\n");
4776 return -EINVAL;
4777 }
4778
4779 netif_carrier_off(dev);
4780 if (netif_running(dev)) {
4781 nv_disable_irq(dev);
4782 netif_tx_lock_bh(dev);
4783 netif_addr_lock(dev);
4784 spin_lock(&np->lock);
4785 /* stop engines */
4786 nv_stop_rxtx(dev);
4787 spin_unlock(&np->lock);
4788 netif_addr_unlock(dev);
4789 netif_tx_unlock_bh(dev);
4790 }
4791
4792 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4793 if (pause->rx_pause)
4794 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4795 if (pause->tx_pause)
4796 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4797
4798 if (np->autoneg && pause->autoneg) {
4799 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4800
4801 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4802 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4803 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
4804 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4805 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4806 adv |= ADVERTISE_PAUSE_ASYM;
4807 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4808
4809 if (netif_running(dev))
4810 netdev_info(dev, "link down\n");
4811 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4812 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4813 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4814 } else {
4815 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4816 if (pause->rx_pause)
4817 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4818 if (pause->tx_pause)
4819 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4820
4821 if (!netif_running(dev))
4822 nv_update_linkspeed(dev);
4823 else
4824 nv_update_pause(dev, np->pause_flags);
4825 }
4826
4827 if (netif_running(dev)) {
4828 nv_start_rxtx(dev);
4829 nv_enable_irq(dev);
4830 }
4831 return 0;
4832 }
4833
4834 static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
4835 {
4836 struct fe_priv *np = netdev_priv(dev);
4837 unsigned long flags;
4838 u32 miicontrol;
4839 int err, retval = 0;
4840
4841 spin_lock_irqsave(&np->lock, flags);
4842 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4843 if (features & NETIF_F_LOOPBACK) {
4844 if (miicontrol & BMCR_LOOPBACK) {
4845 spin_unlock_irqrestore(&np->lock, flags);
4846 netdev_info(dev, "Loopback already enabled\n");
4847 return 0;
4848 }
4849 nv_disable_irq(dev);
4850 /* Turn on loopback mode */
4851 miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
4852 err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
4853 if (err) {
4854 retval = PHY_ERROR;
4855 spin_unlock_irqrestore(&np->lock, flags);
4856 phy_init(dev);
4857 } else {
4858 if (netif_running(dev)) {
4859 /* Force 1000 Mbps full-duplex */
4860 nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
4861 1);
4862 /* Force link up */
4863 netif_carrier_on(dev);
4864 }
4865 spin_unlock_irqrestore(&np->lock, flags);
4866 netdev_info(dev,
4867 "Internal PHY loopback mode enabled.\n");
4868 }
4869 } else {
4870 if (!(miicontrol & BMCR_LOOPBACK)) {
4871 spin_unlock_irqrestore(&np->lock, flags);
4872 netdev_info(dev, "Loopback already disabled\n");
4873 return 0;
4874 }
4875 nv_disable_irq(dev);
4876 /* Turn off loopback */
4877 spin_unlock_irqrestore(&np->lock, flags);
4878 netdev_info(dev, "Internal PHY loopback mode disabled.\n");
4879 phy_init(dev);
4880 }
4881 msleep(500);
4882 spin_lock_irqsave(&np->lock, flags);
4883 nv_enable_irq(dev);
4884 spin_unlock_irqrestore(&np->lock, flags);
4885
4886 return retval;
4887 }
4888
4889 static netdev_features_t nv_fix_features(struct net_device *dev,
4890 netdev_features_t features)
4891 {
4892 /* vlan is dependent on rx checksum offload */
4893 if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX))
4894 features |= NETIF_F_RXCSUM;
4895
4896 return features;
4897 }
4898
4899 static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
4900 {
4901 struct fe_priv *np = get_nvpriv(dev);
4902
4903 spin_lock_irq(&np->lock);
4904
4905 if (features & NETIF_F_HW_VLAN_CTAG_RX)
4906 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP;
4907 else
4908 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4909
4910 if (features & NETIF_F_HW_VLAN_CTAG_TX)
4911 np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS;
4912 else
4913 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4914
4915 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4916
4917 spin_unlock_irq(&np->lock);
4918 }
4919
4920 static int nv_set_features(struct net_device *dev, netdev_features_t features)
4921 {
4922 struct fe_priv *np = netdev_priv(dev);
4923 u8 __iomem *base = get_hwbase(dev);
4924 netdev_features_t changed = dev->features ^ features;
4925 int retval;
4926
4927 if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
4928 retval = nv_set_loopback(dev, features);
4929 if (retval != 0)
4930 return retval;
4931 }
4932
4933 if (changed & NETIF_F_RXCSUM) {
4934 spin_lock_irq(&np->lock);
4935
4936 if (features & NETIF_F_RXCSUM)
4937 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4938 else
4939 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4940
4941 if (netif_running(dev))
4942 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4943
4944 spin_unlock_irq(&np->lock);
4945 }
4946
4947 if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX))
4948 nv_vlan_mode(dev, features);
4949
4950 return 0;
4951 }
4952
4953 static int nv_get_sset_count(struct net_device *dev, int sset)
4954 {
4955 struct fe_priv *np = netdev_priv(dev);
4956
4957 switch (sset) {
4958 case ETH_SS_TEST:
4959 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4960 return NV_TEST_COUNT_EXTENDED;
4961 else
4962 return NV_TEST_COUNT_BASE;
4963 case ETH_SS_STATS:
4964 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4965 return NV_DEV_STATISTICS_V3_COUNT;
4966 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4967 return NV_DEV_STATISTICS_V2_COUNT;
4968 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4969 return NV_DEV_STATISTICS_V1_COUNT;
4970 else
4971 return 0;
4972 default:
4973 return -EOPNOTSUPP;
4974 }
4975 }
4976
4977 static void nv_get_ethtool_stats(struct net_device *dev,
4978 struct ethtool_stats *estats, u64 *buffer)
4979 __acquires(&netdev_priv(dev)->hwstats_lock)
4980 __releases(&netdev_priv(dev)->hwstats_lock)
4981 {
4982 struct fe_priv *np = netdev_priv(dev);
4983
4984 spin_lock_bh(&np->hwstats_lock);
4985 nv_update_stats(dev);
4986 memcpy(buffer, &np->estats,
4987 nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4988 spin_unlock_bh(&np->hwstats_lock);
4989 }
4990
4991 static int nv_link_test(struct net_device *dev)
4992 {
4993 struct fe_priv *np = netdev_priv(dev);
4994 int mii_status;
4995
4996 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4997 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4998
4999 /* check phy link status */
5000 if (!(mii_status & BMSR_LSTATUS))
5001 return 0;
5002 else
5003 return 1;
5004 }
5005
5006 static int nv_register_test(struct net_device *dev)
5007 {
5008 u8 __iomem *base = get_hwbase(dev);
5009 int i = 0;
5010 u32 orig_read, new_read;
5011
5012 do {
5013 orig_read = readl(base + nv_registers_test[i].reg);
5014
5015 /* xor with mask to toggle bits */
5016 orig_read ^= nv_registers_test[i].mask;
5017
5018 writel(orig_read, base + nv_registers_test[i].reg);
5019
5020 new_read = readl(base + nv_registers_test[i].reg);
5021
5022 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
5023 return 0;
5024
5025 /* restore original value */
5026 orig_read ^= nv_registers_test[i].mask;
5027 writel(orig_read, base + nv_registers_test[i].reg);
5028
5029 } while (nv_registers_test[++i].reg != 0);
5030
5031 return 1;
5032 }
5033
5034 static int nv_interrupt_test(struct net_device *dev)
5035 {
5036 struct fe_priv *np = netdev_priv(dev);
5037 u8 __iomem *base = get_hwbase(dev);
5038 int ret = 1;
5039 int testcnt;
5040 u32 save_msi_flags, save_poll_interval = 0;
5041
5042 if (netif_running(dev)) {
5043 /* free current irq */
5044 nv_free_irq(dev);
5045 save_poll_interval = readl(base+NvRegPollingInterval);
5046 }
5047
5048 /* flag to test interrupt handler */
5049 np->intr_test = 0;
5050
5051 /* setup test irq */
5052 save_msi_flags = np->msi_flags;
5053 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
5054 np->msi_flags |= 0x001; /* setup 1 vector */
5055 if (nv_request_irq(dev, 1))
5056 return 0;
5057
5058 /* setup timer interrupt */
5059 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5060 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5061
5062 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
5063
5064 /* wait for at least one interrupt */
5065 msleep(100);
5066
5067 spin_lock_irq(&np->lock);
5068
5069 /* flag should be set within ISR */
5070 testcnt = np->intr_test;
5071 if (!testcnt)
5072 ret = 2;
5073
5074 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
5075 if (!(np->msi_flags & NV_MSI_X_ENABLED))
5076 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5077 else
5078 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5079
5080 spin_unlock_irq(&np->lock);
5081
5082 nv_free_irq(dev);
5083
5084 np->msi_flags = save_msi_flags;
5085
5086 if (netif_running(dev)) {
5087 writel(save_poll_interval, base + NvRegPollingInterval);
5088 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5089 /* restore original irq */
5090 if (nv_request_irq(dev, 0))
5091 return 0;
5092 }
5093
5094 return ret;
5095 }
5096
5097 static int nv_loopback_test(struct net_device *dev)
5098 {
5099 struct fe_priv *np = netdev_priv(dev);
5100 u8 __iomem *base = get_hwbase(dev);
5101 struct sk_buff *tx_skb, *rx_skb;
5102 dma_addr_t test_dma_addr;
5103 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
5104 u32 flags;
5105 int len, i, pkt_len;
5106 u8 *pkt_data;
5107 u32 filter_flags = 0;
5108 u32 misc1_flags = 0;
5109 int ret = 1;
5110
5111 if (netif_running(dev)) {
5112 nv_disable_irq(dev);
5113 filter_flags = readl(base + NvRegPacketFilterFlags);
5114 misc1_flags = readl(base + NvRegMisc1);
5115 } else {
5116 nv_txrx_reset(dev);
5117 }
5118
5119 /* reinit driver view of the rx queue */
5120 set_bufsize(dev);
5121 nv_init_ring(dev);
5122
5123 /* setup hardware for loopback */
5124 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
5125 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
5126
5127 /* reinit nic view of the rx queue */
5128 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5129 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5130 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5131 base + NvRegRingSizes);
5132 pci_push(base);
5133
5134 /* restart rx engine */
5135 nv_start_rxtx(dev);
5136
5137 /* setup packet for tx */
5138 pkt_len = ETH_DATA_LEN;
5139 tx_skb = netdev_alloc_skb(dev, pkt_len);
5140 if (!tx_skb) {
5141 ret = 0;
5142 goto out;
5143 }
5144 test_dma_addr = dma_map_single(&np->pci_dev->dev, tx_skb->data,
5145 skb_tailroom(tx_skb),
5146 DMA_FROM_DEVICE);
5147 if (unlikely(dma_mapping_error(&np->pci_dev->dev,
5148 test_dma_addr))) {
5149 dev_kfree_skb_any(tx_skb);
5150 goto out;
5151 }
5152 pkt_data = skb_put(tx_skb, pkt_len);
5153 for (i = 0; i < pkt_len; i++)
5154 pkt_data[i] = (u8)(i & 0xff);
5155
5156 if (!nv_optimized(np)) {
5157 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5158 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5159 } else {
5160 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5161 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5162 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5163 }
5164 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5165 pci_push(get_hwbase(dev));
5166
5167 msleep(500);
5168
5169 /* check for rx of the packet */
5170 if (!nv_optimized(np)) {
5171 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5172 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5173
5174 } else {
5175 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5176 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5177 }
5178
5179 if (flags & NV_RX_AVAIL) {
5180 ret = 0;
5181 } else if (np->desc_ver == DESC_VER_1) {
5182 if (flags & NV_RX_ERROR)
5183 ret = 0;
5184 } else {
5185 if (flags & NV_RX2_ERROR)
5186 ret = 0;
5187 }
5188
5189 if (ret) {
5190 if (len != pkt_len) {
5191 ret = 0;
5192 } else {
5193 rx_skb = np->rx_skb[0].skb;
5194 for (i = 0; i < pkt_len; i++) {
5195 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5196 ret = 0;
5197 break;
5198 }
5199 }
5200 }
5201 }
5202
5203 dma_unmap_single(&np->pci_dev->dev, test_dma_addr,
5204 (skb_end_pointer(tx_skb) - tx_skb->data),
5205 DMA_TO_DEVICE);
5206 dev_kfree_skb_any(tx_skb);
5207 out:
5208 /* stop engines */
5209 nv_stop_rxtx(dev);
5210 nv_txrx_reset(dev);
5211 /* drain rx queue */
5212 nv_drain_rxtx(dev);
5213
5214 if (netif_running(dev)) {
5215 writel(misc1_flags, base + NvRegMisc1);
5216 writel(filter_flags, base + NvRegPacketFilterFlags);
5217 nv_enable_irq(dev);
5218 }
5219
5220 return ret;
5221 }
5222
5223 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5224 {
5225 struct fe_priv *np = netdev_priv(dev);
5226 u8 __iomem *base = get_hwbase(dev);
5227 int result, count;
5228
5229 count = nv_get_sset_count(dev, ETH_SS_TEST);
5230 memset(buffer, 0, count * sizeof(u64));
5231
5232 if (!nv_link_test(dev)) {
5233 test->flags |= ETH_TEST_FL_FAILED;
5234 buffer[0] = 1;
5235 }
5236
5237 if (test->flags & ETH_TEST_FL_OFFLINE) {
5238 if (netif_running(dev)) {
5239 netif_stop_queue(dev);
5240 nv_napi_disable(dev);
5241 netif_tx_lock_bh(dev);
5242 netif_addr_lock(dev);
5243 spin_lock_irq(&np->lock);
5244 nv_disable_hw_interrupts(dev, np->irqmask);
5245 if (!(np->msi_flags & NV_MSI_X_ENABLED))
5246 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5247 else
5248 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5249 /* stop engines */
5250 nv_stop_rxtx(dev);
5251 nv_txrx_reset(dev);
5252 /* drain rx queue */
5253 nv_drain_rxtx(dev);
5254 spin_unlock_irq(&np->lock);
5255 netif_addr_unlock(dev);
5256 netif_tx_unlock_bh(dev);
5257 }
5258
5259 if (!nv_register_test(dev)) {
5260 test->flags |= ETH_TEST_FL_FAILED;
5261 buffer[1] = 1;
5262 }
5263
5264 result = nv_interrupt_test(dev);
5265 if (result != 1) {
5266 test->flags |= ETH_TEST_FL_FAILED;
5267 buffer[2] = 1;
5268 }
5269 if (result == 0) {
5270 /* bail out */
5271 return;
5272 }
5273
5274 if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) {
5275 test->flags |= ETH_TEST_FL_FAILED;
5276 buffer[3] = 1;
5277 }
5278
5279 if (netif_running(dev)) {
5280 /* reinit driver view of the rx queue */
5281 set_bufsize(dev);
5282 if (nv_init_ring(dev)) {
5283 if (!np->in_shutdown)
5284 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5285 }
5286 /* reinit nic view of the rx queue */
5287 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5288 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5289 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5290 base + NvRegRingSizes);
5291 pci_push(base);
5292 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5293 pci_push(base);
5294 /* restart rx engine */
5295 nv_start_rxtx(dev);
5296 netif_start_queue(dev);
5297 nv_napi_enable(dev);
5298 nv_enable_hw_interrupts(dev, np->irqmask);
5299 }
5300 }
5301 }
5302
5303 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5304 {
5305 switch (stringset) {
5306 case ETH_SS_STATS:
5307 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5308 break;
5309 case ETH_SS_TEST:
5310 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5311 break;
5312 }
5313 }
5314
5315 static const struct ethtool_ops ops = {
5316 .get_drvinfo = nv_get_drvinfo,
5317 .get_link = ethtool_op_get_link,
5318 .get_wol = nv_get_wol,
5319 .set_wol = nv_set_wol,
5320 .get_regs_len = nv_get_regs_len,
5321 .get_regs = nv_get_regs,
5322 .nway_reset = nv_nway_reset,
5323 .get_ringparam = nv_get_ringparam,
5324 .set_ringparam = nv_set_ringparam,
5325 .get_pauseparam = nv_get_pauseparam,
5326 .set_pauseparam = nv_set_pauseparam,
5327 .get_strings = nv_get_strings,
5328 .get_ethtool_stats = nv_get_ethtool_stats,
5329 .get_sset_count = nv_get_sset_count,
5330 .self_test = nv_self_test,
5331 .get_ts_info = ethtool_op_get_ts_info,
5332 .get_link_ksettings = nv_get_link_ksettings,
5333 .set_link_ksettings = nv_set_link_ksettings,
5334 };
5335
5336 /* The mgmt unit and driver use a semaphore to access the phy during init */
5337 static int nv_mgmt_acquire_sema(struct net_device *dev)
5338 {
5339 struct fe_priv *np = netdev_priv(dev);
5340 u8 __iomem *base = get_hwbase(dev);
5341 int i;
5342 u32 tx_ctrl, mgmt_sema;
5343
5344 for (i = 0; i < 10; i++) {
5345 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5346 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5347 break;
5348 msleep(500);
5349 }
5350
5351 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5352 return 0;
5353
5354 for (i = 0; i < 2; i++) {
5355 tx_ctrl = readl(base + NvRegTransmitterControl);
5356 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5357 writel(tx_ctrl, base + NvRegTransmitterControl);
5358
5359 /* verify that semaphore was acquired */
5360 tx_ctrl = readl(base + NvRegTransmitterControl);
5361 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5362 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5363 np->mgmt_sema = 1;
5364 return 1;
5365 } else
5366 udelay(50);
5367 }
5368
5369 return 0;
5370 }
5371
5372 static void nv_mgmt_release_sema(struct net_device *dev)
5373 {
5374 struct fe_priv *np = netdev_priv(dev);
5375 u8 __iomem *base = get_hwbase(dev);
5376 u32 tx_ctrl;
5377
5378 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5379 if (np->mgmt_sema) {
5380 tx_ctrl = readl(base + NvRegTransmitterControl);
5381 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5382 writel(tx_ctrl, base + NvRegTransmitterControl);
5383 }
5384 }
5385 }
5386
5387
5388 static int nv_mgmt_get_version(struct net_device *dev)
5389 {
5390 struct fe_priv *np = netdev_priv(dev);
5391 u8 __iomem *base = get_hwbase(dev);
5392 u32 data_ready = readl(base + NvRegTransmitterControl);
5393 u32 data_ready2 = 0;
5394 unsigned long start;
5395 int ready = 0;
5396
5397 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5398 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5399 start = jiffies;
5400 while (time_before(jiffies, start + 5*HZ)) {
5401 data_ready2 = readl(base + NvRegTransmitterControl);
5402 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5403 ready = 1;
5404 break;
5405 }
5406 schedule_timeout_uninterruptible(1);
5407 }
5408
5409 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5410 return 0;
5411
5412 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5413
5414 return 1;
5415 }
5416
5417 static int nv_open(struct net_device *dev)
5418 {
5419 struct fe_priv *np = netdev_priv(dev);
5420 u8 __iomem *base = get_hwbase(dev);
5421 int ret = 1;
5422 int oom, i;
5423 u32 low;
5424
5425 /* power up phy */
5426 mii_rw(dev, np->phyaddr, MII_BMCR,
5427 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5428
5429 nv_txrx_gate(dev, false);
5430 /* erase previous misconfiguration */
5431 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5432 nv_mac_reset(dev);
5433 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5434 writel(0, base + NvRegMulticastAddrB);
5435 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5436 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5437 writel(0, base + NvRegPacketFilterFlags);
5438
5439 writel(0, base + NvRegTransmitterControl);
5440 writel(0, base + NvRegReceiverControl);
5441
5442 writel(0, base + NvRegAdapterControl);
5443
5444 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5445 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5446
5447 /* initialize descriptor rings */
5448 set_bufsize(dev);
5449 oom = nv_init_ring(dev);
5450
5451 writel(0, base + NvRegLinkSpeed);
5452 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5453 nv_txrx_reset(dev);
5454 writel(0, base + NvRegUnknownSetupReg6);
5455
5456 np->in_shutdown = 0;
5457
5458 /* give hw rings */
5459 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5460 writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5461 base + NvRegRingSizes);
5462
5463 writel(np->linkspeed, base + NvRegLinkSpeed);
5464 if (np->desc_ver == DESC_VER_1)
5465 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5466 else
5467 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5468 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5469 writel(np->vlanctl_bits, base + NvRegVlanControl);
5470 pci_push(base);
5471 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5472 if (reg_delay(dev, NvRegUnknownSetupReg5,
5473 NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5474 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
5475 netdev_info(dev,
5476 "%s: SetupReg5, Bit 31 remained off\n", __func__);
5477
5478 writel(0, base + NvRegMIIMask);
5479 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5480 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5481
5482 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5483 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5484 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5485 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5486
5487 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5488
5489 get_random_bytes(&low, sizeof(low));
5490 low &= NVREG_SLOTTIME_MASK;
5491 if (np->desc_ver == DESC_VER_1) {
5492 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5493 } else {
5494 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5495 /* setup legacy backoff */
5496 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5497 } else {
5498 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5499 nv_gear_backoff_reseed(dev);
5500 }
5501 }
5502 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5503 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5504 if (poll_interval == -1) {
5505 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5506 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5507 else
5508 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5509 } else
5510 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5511 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5512 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5513 base + NvRegAdapterControl);
5514 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5515 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5516 if (np->wolenabled)
5517 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5518
5519 i = readl(base + NvRegPowerState);
5520 if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
5521 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5522
5523 pci_push(base);
5524 udelay(10);
5525 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5526
5527 nv_disable_hw_interrupts(dev, np->irqmask);
5528 pci_push(base);
5529 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5530 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5531 pci_push(base);
5532
5533 if (nv_request_irq(dev, 0))
5534 goto out_drain;
5535
5536 /* ask for interrupts */
5537 nv_enable_hw_interrupts(dev, np->irqmask);
5538
5539 spin_lock_irq(&np->lock);
5540 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5541 writel(0, base + NvRegMulticastAddrB);
5542 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5543 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5544 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5545 /* One manual link speed update: Interrupts are enabled, future link
5546 * speed changes cause interrupts and are handled by nv_link_irq().
5547 */
5548 readl(base + NvRegMIIStatus);
5549 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5550
5551 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5552 * to init hw */
5553 np->linkspeed = 0;
5554 ret = nv_update_linkspeed(dev);
5555 nv_start_rxtx(dev);
5556 netif_start_queue(dev);
5557 nv_napi_enable(dev);
5558
5559 if (ret) {
5560 netif_carrier_on(dev);
5561 } else {
5562 netdev_info(dev, "no link during initialization\n");
5563 netif_carrier_off(dev);
5564 }
5565 if (oom)
5566 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5567
5568 /* start statistics timer */
5569 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5570 mod_timer(&np->stats_poll,
5571 round_jiffies(jiffies + STATS_INTERVAL));
5572
5573 spin_unlock_irq(&np->lock);
5574
5575 /* If the loopback feature was set while the device was down, make sure
5576 * that it's set correctly now.
5577 */
5578 if (dev->features & NETIF_F_LOOPBACK)
5579 nv_set_loopback(dev, dev->features);
5580
5581 return 0;
5582 out_drain:
5583 nv_drain_rxtx(dev);
5584 return ret;
5585 }
5586
5587 static int nv_close(struct net_device *dev)
5588 {
5589 struct fe_priv *np = netdev_priv(dev);
5590 u8 __iomem *base;
5591
5592 spin_lock_irq(&np->lock);
5593 np->in_shutdown = 1;
5594 spin_unlock_irq(&np->lock);
5595 nv_napi_disable(dev);
5596 synchronize_irq(np->pci_dev->irq);
5597
5598 del_timer_sync(&np->oom_kick);
5599 del_timer_sync(&np->nic_poll);
5600 del_timer_sync(&np->stats_poll);
5601
5602 netif_stop_queue(dev);
5603 spin_lock_irq(&np->lock);
5604 nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */
5605 nv_stop_rxtx(dev);
5606 nv_txrx_reset(dev);
5607
5608 /* disable interrupts on the nic or we will lock up */
5609 base = get_hwbase(dev);
5610 nv_disable_hw_interrupts(dev, np->irqmask);
5611 pci_push(base);
5612
5613 spin_unlock_irq(&np->lock);
5614
5615 nv_free_irq(dev);
5616
5617 nv_drain_rxtx(dev);
5618
5619 if (np->wolenabled || !phy_power_down) {
5620 nv_txrx_gate(dev, false);
5621 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5622 nv_start_rx(dev);
5623 } else {
5624 /* power down phy */
5625 mii_rw(dev, np->phyaddr, MII_BMCR,
5626 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5627 nv_txrx_gate(dev, true);
5628 }
5629
5630 /* FIXME: power down nic */
5631
5632 return 0;
5633 }
5634
5635 static const struct net_device_ops nv_netdev_ops = {
5636 .ndo_open = nv_open,
5637 .ndo_stop = nv_close,
5638 .ndo_get_stats64 = nv_get_stats64,
5639 .ndo_start_xmit = nv_start_xmit,
5640 .ndo_tx_timeout = nv_tx_timeout,
5641 .ndo_change_mtu = nv_change_mtu,
5642 .ndo_fix_features = nv_fix_features,
5643 .ndo_set_features = nv_set_features,
5644 .ndo_validate_addr = eth_validate_addr,
5645 .ndo_set_mac_address = nv_set_mac_address,
5646 .ndo_set_rx_mode = nv_set_multicast,
5647 #ifdef CONFIG_NET_POLL_CONTROLLER
5648 .ndo_poll_controller = nv_poll_controller,
5649 #endif
5650 };
5651
5652 static const struct net_device_ops nv_netdev_ops_optimized = {
5653 .ndo_open = nv_open,
5654 .ndo_stop = nv_close,
5655 .ndo_get_stats64 = nv_get_stats64,
5656 .ndo_start_xmit = nv_start_xmit_optimized,
5657 .ndo_tx_timeout = nv_tx_timeout,
5658 .ndo_change_mtu = nv_change_mtu,
5659 .ndo_fix_features = nv_fix_features,
5660 .ndo_set_features = nv_set_features,
5661 .ndo_validate_addr = eth_validate_addr,
5662 .ndo_set_mac_address = nv_set_mac_address,
5663 .ndo_set_rx_mode = nv_set_multicast,
5664 #ifdef CONFIG_NET_POLL_CONTROLLER
5665 .ndo_poll_controller = nv_poll_controller,
5666 #endif
5667 };
5668
5669 static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5670 {
5671 struct net_device *dev;
5672 struct fe_priv *np;
5673 unsigned long addr;
5674 u8 __iomem *base;
5675 int err, i;
5676 u32 powerstate, txreg;
5677 u32 phystate_orig = 0, phystate;
5678 int phyinitialized = 0;
5679 static int printed_version;
5680
5681 if (!printed_version++)
5682 pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
5683 FORCEDETH_VERSION);
5684
5685 dev = alloc_etherdev(sizeof(struct fe_priv));
5686 err = -ENOMEM;
5687 if (!dev)
5688 goto out;
5689
5690 np = netdev_priv(dev);
5691 np->dev = dev;
5692 np->pci_dev = pci_dev;
5693 spin_lock_init(&np->lock);
5694 spin_lock_init(&np->hwstats_lock);
5695 SET_NETDEV_DEV(dev, &pci_dev->dev);
5696 u64_stats_init(&np->swstats_rx_syncp);
5697 u64_stats_init(&np->swstats_tx_syncp);
5698 np->txrx_stats = alloc_percpu(struct nv_txrx_stats);
5699 if (!np->txrx_stats) {
5700 pr_err("np->txrx_stats, alloc memory error.\n");
5701 err = -ENOMEM;
5702 goto out_alloc_percpu;
5703 }
5704
5705 timer_setup(&np->oom_kick, nv_do_rx_refill, 0);
5706 timer_setup(&np->nic_poll, nv_do_nic_poll, 0);
5707 timer_setup(&np->stats_poll, nv_do_stats_poll, TIMER_DEFERRABLE);
5708
5709 err = pci_enable_device(pci_dev);
5710 if (err)
5711 goto out_free;
5712
5713 pci_set_master(pci_dev);
5714
5715 err = pci_request_regions(pci_dev, DRV_NAME);
5716 if (err < 0)
5717 goto out_disable;
5718
5719 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5720 np->register_size = NV_PCI_REGSZ_VER3;
5721 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5722 np->register_size = NV_PCI_REGSZ_VER2;
5723 else
5724 np->register_size = NV_PCI_REGSZ_VER1;
5725
5726 err = -EINVAL;
5727 addr = 0;
5728 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5729 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5730 pci_resource_len(pci_dev, i) >= np->register_size) {
5731 addr = pci_resource_start(pci_dev, i);
5732 break;
5733 }
5734 }
5735 if (i == DEVICE_COUNT_RESOURCE) {
5736 dev_info(&pci_dev->dev, "Couldn't find register window\n");
5737 goto out_relreg;
5738 }
5739
5740 /* copy of driver data */
5741 np->driver_data = id->driver_data;
5742 /* copy of device id */
5743 np->device_id = id->device;
5744
5745 /* handle different descriptor versions */
5746 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5747 /* packet format 3: supports 40-bit addressing */
5748 np->desc_ver = DESC_VER_3;
5749 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5750 if (dma_64bit) {
5751 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5752 dev_info(&pci_dev->dev,
5753 "64-bit DMA failed, using 32-bit addressing\n");
5754 else
5755 dev->features |= NETIF_F_HIGHDMA;
5756 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5757 dev_info(&pci_dev->dev,
5758 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5759 }
5760 }
5761 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5762 /* packet format 2: supports jumbo frames */
5763 np->desc_ver = DESC_VER_2;
5764 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5765 } else {
5766 /* original packet format */
5767 np->desc_ver = DESC_VER_1;
5768 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5769 }
5770
5771 np->pkt_limit = NV_PKTLIMIT_1;
5772 if (id->driver_data & DEV_HAS_LARGEDESC)
5773 np->pkt_limit = NV_PKTLIMIT_2;
5774
5775 if (id->driver_data & DEV_HAS_CHECKSUM) {
5776 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5777 dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG |
5778 NETIF_F_TSO | NETIF_F_RXCSUM;
5779 }
5780
5781 np->vlanctl_bits = 0;
5782 if (id->driver_data & DEV_HAS_VLAN) {
5783 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5784 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX |
5785 NETIF_F_HW_VLAN_CTAG_TX;
5786 }
5787
5788 dev->features |= dev->hw_features;
5789
5790 /* Add loopback capability to the device. */
5791 dev->hw_features |= NETIF_F_LOOPBACK;
5792
5793 /* MTU range: 64 - 1500 or 9100 */
5794 dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
5795 dev->max_mtu = np->pkt_limit;
5796
5797 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5798 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5799 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5800 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5801 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5802 }
5803
5804 err = -ENOMEM;
5805 np->base = ioremap(addr, np->register_size);
5806 if (!np->base)
5807 goto out_relreg;
5808
5809 np->rx_ring_size = RX_RING_DEFAULT;
5810 np->tx_ring_size = TX_RING_DEFAULT;
5811
5812 if (!nv_optimized(np)) {
5813 np->rx_ring.orig = dma_alloc_coherent(&pci_dev->dev,
5814 sizeof(struct ring_desc) *
5815 (np->rx_ring_size +
5816 np->tx_ring_size),
5817 &np->ring_addr,
5818 GFP_KERNEL);
5819 if (!np->rx_ring.orig)
5820 goto out_unmap;
5821 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5822 } else {
5823 np->rx_ring.ex = dma_alloc_coherent(&pci_dev->dev,
5824 sizeof(struct ring_desc_ex) *
5825 (np->rx_ring_size +
5826 np->tx_ring_size),
5827 &np->ring_addr, GFP_KERNEL);
5828 if (!np->rx_ring.ex)
5829 goto out_unmap;
5830 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5831 }
5832 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5833 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5834 if (!np->rx_skb || !np->tx_skb)
5835 goto out_freering;
5836
5837 if (!nv_optimized(np))
5838 dev->netdev_ops = &nv_netdev_ops;
5839 else
5840 dev->netdev_ops = &nv_netdev_ops_optimized;
5841
5842 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5843 dev->ethtool_ops = &ops;
5844 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5845
5846 pci_set_drvdata(pci_dev, dev);
5847
5848 /* read the mac address */
5849 base = get_hwbase(dev);
5850 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5851 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5852
5853 /* check the workaround bit for correct mac address order */
5854 txreg = readl(base + NvRegTransmitPoll);
5855 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5856 /* mac address is already in correct order */
5857 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5858 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5859 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5860 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5861 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5862 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5863 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5864 /* mac address is already in correct order */
5865 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5866 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5867 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5868 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5869 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5870 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5871 /*
5872 * Set orig mac address back to the reversed version.
5873 * This flag will be cleared during low power transition.
5874 * Therefore, we should always put back the reversed address.
5875 */
5876 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5877 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5878 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5879 } else {
5880 /* need to reverse mac address to correct order */
5881 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5882 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5883 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5884 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5885 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5886 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5887 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5888 dev_dbg(&pci_dev->dev,
5889 "%s: set workaround bit for reversed mac addr\n",
5890 __func__);
5891 }
5892
5893 if (!is_valid_ether_addr(dev->dev_addr)) {
5894 /*
5895 * Bad mac address. At least one bios sets the mac address
5896 * to 01:23:45:67:89:ab
5897 */
5898 dev_err(&pci_dev->dev,
5899 "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
5900 dev->dev_addr);
5901 eth_hw_addr_random(dev);
5902 dev_err(&pci_dev->dev,
5903 "Using random MAC address: %pM\n", dev->dev_addr);
5904 }
5905
5906 /* set mac address */
5907 nv_copy_mac_to_hw(dev);
5908
5909 /* disable WOL */
5910 writel(0, base + NvRegWakeUpFlags);
5911 np->wolenabled = 0;
5912 device_set_wakeup_enable(&pci_dev->dev, false);
5913
5914 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5915
5916 /* take phy and nic out of low power mode */
5917 powerstate = readl(base + NvRegPowerState2);
5918 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5919 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5920 pci_dev->revision >= 0xA3)
5921 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5922 writel(powerstate, base + NvRegPowerState2);
5923 }
5924
5925 if (np->desc_ver == DESC_VER_1)
5926 np->tx_flags = NV_TX_VALID;
5927 else
5928 np->tx_flags = NV_TX2_VALID;
5929
5930 np->msi_flags = 0;
5931 if ((id->driver_data & DEV_HAS_MSI) && msi)
5932 np->msi_flags |= NV_MSI_CAPABLE;
5933
5934 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5935 /* msix has had reported issues when modifying irqmask
5936 as in the case of napi, therefore, disable for now
5937 */
5938 #if 0
5939 np->msi_flags |= NV_MSI_X_CAPABLE;
5940 #endif
5941 }
5942
5943 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5944 np->irqmask = NVREG_IRQMASK_CPU;
5945 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5946 np->msi_flags |= 0x0001;
5947 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5948 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5949 /* start off in throughput mode */
5950 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5951 /* remove support for msix mode */
5952 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5953 } else {
5954 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5955 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5956 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5957 np->msi_flags |= 0x0003;
5958 }
5959
5960 if (id->driver_data & DEV_NEED_TIMERIRQ)
5961 np->irqmask |= NVREG_IRQ_TIMER;
5962 if (id->driver_data & DEV_NEED_LINKTIMER) {
5963 np->need_linktimer = 1;
5964 np->link_timeout = jiffies + LINK_TIMEOUT;
5965 } else {
5966 np->need_linktimer = 0;
5967 }
5968
5969 /* Limit the number of tx's outstanding for hw bug */
5970 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5971 np->tx_limit = 1;
5972 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
5973 pci_dev->revision >= 0xA2)
5974 np->tx_limit = 0;
5975 }
5976
5977 /* clear phy state and temporarily halt phy interrupts */
5978 writel(0, base + NvRegMIIMask);
5979 phystate = readl(base + NvRegAdapterControl);
5980 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5981 phystate_orig = 1;
5982 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5983 writel(phystate, base + NvRegAdapterControl);
5984 }
5985 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5986
5987 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5988 /* management unit running on the mac? */
5989 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5990 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5991 nv_mgmt_acquire_sema(dev) &&
5992 nv_mgmt_get_version(dev)) {
5993 np->mac_in_use = 1;
5994 if (np->mgmt_version > 0)
5995 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5996 /* management unit setup the phy already? */
5997 if (np->mac_in_use &&
5998 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5999 NVREG_XMITCTL_SYNC_PHY_INIT)) {
6000 /* phy is inited by mgmt unit */
6001 phyinitialized = 1;
6002 } else {
6003 /* we need to init the phy */
6004 }
6005 }
6006 }
6007
6008 /* find a suitable phy */
6009 for (i = 1; i <= 32; i++) {
6010 int id1, id2;
6011 int phyaddr = i & 0x1F;
6012
6013 spin_lock_irq(&np->lock);
6014 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
6015 spin_unlock_irq(&np->lock);
6016 if (id1 < 0 || id1 == 0xffff)
6017 continue;
6018 spin_lock_irq(&np->lock);
6019 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
6020 spin_unlock_irq(&np->lock);
6021 if (id2 < 0 || id2 == 0xffff)
6022 continue;
6023
6024 np->phy_model = id2 & PHYID2_MODEL_MASK;
6025 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
6026 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
6027 np->phyaddr = phyaddr;
6028 np->phy_oui = id1 | id2;
6029
6030 /* Realtek hardcoded phy id1 to all zero's on certain phys */
6031 if (np->phy_oui == PHY_OUI_REALTEK2)
6032 np->phy_oui = PHY_OUI_REALTEK;
6033 /* Setup phy revision for Realtek */
6034 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
6035 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
6036
6037 break;
6038 }
6039 if (i == 33) {
6040 dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
6041 goto out_error;
6042 }
6043
6044 if (!phyinitialized) {
6045 /* reset it */
6046 phy_init(dev);
6047 } else {
6048 /* see if it is a gigabit phy */
6049 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
6050 if (mii_status & PHY_GIGABIT)
6051 np->gigabit = PHY_GIGABIT;
6052 }
6053
6054 /* set default link speed settings */
6055 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
6056 np->duplex = 0;
6057 np->autoneg = 1;
6058
6059 err = register_netdev(dev);
6060 if (err) {
6061 dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
6062 goto out_error;
6063 }
6064
6065 netif_carrier_off(dev);
6066
6067 /* Some NICs freeze when TX pause is enabled while NIC is
6068 * down, and this stays across warm reboots. The sequence
6069 * below should be enough to recover from that state.
6070 */
6071 nv_update_pause(dev, 0);
6072 nv_start_tx(dev);
6073 nv_stop_tx(dev);
6074
6075 if (id->driver_data & DEV_HAS_VLAN)
6076 nv_vlan_mode(dev, dev->features);
6077
6078 dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
6079 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);
6080
6081 dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
6082 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
6083 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
6084 "csum " : "",
6085 dev->features & (NETIF_F_HW_VLAN_CTAG_RX |
6086 NETIF_F_HW_VLAN_CTAG_TX) ?
6087 "vlan " : "",
6088 dev->features & (NETIF_F_LOOPBACK) ?
6089 "loopback " : "",
6090 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
6091 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
6092 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
6093 np->gigabit == PHY_GIGABIT ? "gbit " : "",
6094 np->need_linktimer ? "lnktim " : "",
6095 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
6096 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
6097 np->desc_ver);
6098
6099 return 0;
6100
6101 out_error:
6102 if (phystate_orig)
6103 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
6104 out_freering:
6105 free_rings(dev);
6106 out_unmap:
6107 iounmap(get_hwbase(dev));
6108 out_relreg:
6109 pci_release_regions(pci_dev);
6110 out_disable:
6111 pci_disable_device(pci_dev);
6112 out_free:
6113 free_percpu(np->txrx_stats);
6114 out_alloc_percpu:
6115 free_netdev(dev);
6116 out:
6117 return err;
6118 }
6119
6120 static void nv_restore_phy(struct net_device *dev)
6121 {
6122 struct fe_priv *np = netdev_priv(dev);
6123 u16 phy_reserved, mii_control;
6124
6125 if (np->phy_oui == PHY_OUI_REALTEK &&
6126 np->phy_model == PHY_MODEL_REALTEK_8201 &&
6127 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
6128 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
6129 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
6130 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
6131 phy_reserved |= PHY_REALTEK_INIT8;
6132 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
6133 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
6134
6135 /* restart auto negotiation */
6136 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
6137 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
6138 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
6139 }
6140 }
6141
6142 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
6143 {
6144 struct net_device *dev = pci_get_drvdata(pci_dev);
6145 struct fe_priv *np = netdev_priv(dev);
6146 u8 __iomem *base = get_hwbase(dev);
6147
6148 /* special op: write back the misordered MAC address - otherwise
6149 * the next nv_probe would see a wrong address.
6150 */
6151 writel(np->orig_mac[0], base + NvRegMacAddrA);
6152 writel(np->orig_mac[1], base + NvRegMacAddrB);
6153 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
6154 base + NvRegTransmitPoll);
6155 }
6156
6157 static void nv_remove(struct pci_dev *pci_dev)
6158 {
6159 struct net_device *dev = pci_get_drvdata(pci_dev);
6160 struct fe_priv *np = netdev_priv(dev);
6161
6162 free_percpu(np->txrx_stats);
6163
6164 unregister_netdev(dev);
6165
6166 nv_restore_mac_addr(pci_dev);
6167
6168 /* restore any phy related changes */
6169 nv_restore_phy(dev);
6170
6171 nv_mgmt_release_sema(dev);
6172
6173 /* free all structures */
6174 free_rings(dev);
6175 iounmap(get_hwbase(dev));
6176 pci_release_regions(pci_dev);
6177 pci_disable_device(pci_dev);
6178 free_netdev(dev);
6179 }
6180
6181 #ifdef CONFIG_PM_SLEEP
6182 static int nv_suspend(struct device *device)
6183 {
6184 struct net_device *dev = dev_get_drvdata(device);
6185 struct fe_priv *np = netdev_priv(dev);
6186 u8 __iomem *base = get_hwbase(dev);
6187 int i;
6188
6189 if (netif_running(dev)) {
6190 /* Gross. */
6191 nv_close(dev);
6192 }
6193 netif_device_detach(dev);
6194
6195 /* save non-pci configuration space */
6196 for (i = 0; i <= np->register_size/sizeof(u32); i++)
6197 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6198
6199 return 0;
6200 }
6201
6202 static int nv_resume(struct device *device)
6203 {
6204 struct pci_dev *pdev = to_pci_dev(device);
6205 struct net_device *dev = pci_get_drvdata(pdev);
6206 struct fe_priv *np = netdev_priv(dev);
6207 u8 __iomem *base = get_hwbase(dev);
6208 int i, rc = 0;
6209
6210 /* restore non-pci configuration space */
6211 for (i = 0; i <= np->register_size/sizeof(u32); i++)
6212 writel(np->saved_config_space[i], base+i*sizeof(u32));
6213
6214 if (np->driver_data & DEV_NEED_MSI_FIX)
6215 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6216
6217 /* restore phy state, including autoneg */
6218 phy_init(dev);
6219
6220 netif_device_attach(dev);
6221 if (netif_running(dev)) {
6222 rc = nv_open(dev);
6223 nv_set_multicast(dev);
6224 }
6225 return rc;
6226 }
6227
6228 static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
6229 #define NV_PM_OPS (&nv_pm_ops)
6230
6231 #else
6232 #define NV_PM_OPS NULL
6233 #endif /* CONFIG_PM_SLEEP */
6234
6235 #ifdef CONFIG_PM
6236 static void nv_shutdown(struct pci_dev *pdev)
6237 {
6238 struct net_device *dev = pci_get_drvdata(pdev);
6239 struct fe_priv *np = netdev_priv(dev);
6240
6241 if (netif_running(dev))
6242 nv_close(dev);
6243
6244 /*
6245 * Restore the MAC so a kernel started by kexec won't get confused.
6246 * If we really go for poweroff, we must not restore the MAC,
6247 * otherwise the MAC for WOL will be reversed at least on some boards.
6248 */
6249 if (system_state != SYSTEM_POWER_OFF)
6250 nv_restore_mac_addr(pdev);
6251
6252 pci_disable_device(pdev);
6253 /*
6254 * Apparently it is not possible to reinitialise from D3 hot,
6255 * only put the device into D3 if we really go for poweroff.
6256 */
6257 if (system_state == SYSTEM_POWER_OFF) {
6258 pci_wake_from_d3(pdev, np->wolenabled);
6259 pci_set_power_state(pdev, PCI_D3hot);
6260 }
6261 }
6262 #else
6263 #define nv_shutdown NULL
6264 #endif /* CONFIG_PM */
6265
6266 static const struct pci_device_id pci_tbl[] = {
6267 { /* nForce Ethernet Controller */
6268 PCI_DEVICE(0x10DE, 0x01C3),
6269 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6270 },
6271 { /* nForce2 Ethernet Controller */
6272 PCI_DEVICE(0x10DE, 0x0066),
6273 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6274 },
6275 { /* nForce3 Ethernet Controller */
6276 PCI_DEVICE(0x10DE, 0x00D6),
6277 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6278 },
6279 { /* nForce3 Ethernet Controller */
6280 PCI_DEVICE(0x10DE, 0x0086),
6281 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6282 },
6283 { /* nForce3 Ethernet Controller */
6284 PCI_DEVICE(0x10DE, 0x008C),
6285 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6286 },
6287 { /* nForce3 Ethernet Controller */
6288 PCI_DEVICE(0x10DE, 0x00E6),
6289 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6290 },
6291 { /* nForce3 Ethernet Controller */
6292 PCI_DEVICE(0x10DE, 0x00DF),
6293 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6294 },
6295 { /* CK804 Ethernet Controller */
6296 PCI_DEVICE(0x10DE, 0x0056),
6297 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6298 },
6299 { /* CK804 Ethernet Controller */
6300 PCI_DEVICE(0x10DE, 0x0057),
6301 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6302 },
6303 { /* MCP04 Ethernet Controller */
6304 PCI_DEVICE(0x10DE, 0x0037),
6305 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6306 },
6307 { /* MCP04 Ethernet Controller */
6308 PCI_DEVICE(0x10DE, 0x0038),
6309 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6310 },
6311 { /* MCP51 Ethernet Controller */
6312 PCI_DEVICE(0x10DE, 0x0268),
6313 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6314 },
6315 { /* MCP51 Ethernet Controller */
6316 PCI_DEVICE(0x10DE, 0x0269),
6317 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6318 },
6319 { /* MCP55 Ethernet Controller */
6320 PCI_DEVICE(0x10DE, 0x0372),
6321 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6322 },
6323 { /* MCP55 Ethernet Controller */
6324 PCI_DEVICE(0x10DE, 0x0373),
6325 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6326 },
6327 { /* MCP61 Ethernet Controller */
6328 PCI_DEVICE(0x10DE, 0x03E5),
6329 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6330 },
6331 { /* MCP61 Ethernet Controller */
6332 PCI_DEVICE(0x10DE, 0x03E6),
6333 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6334 },
6335 { /* MCP61 Ethernet Controller */
6336 PCI_DEVICE(0x10DE, 0x03EE),
6337 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6338 },
6339 { /* MCP61 Ethernet Controller */
6340 PCI_DEVICE(0x10DE, 0x03EF),
6341 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6342 },
6343 { /* MCP65 Ethernet Controller */
6344 PCI_DEVICE(0x10DE, 0x0450),
6345 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6346 },
6347 { /* MCP65 Ethernet Controller */
6348 PCI_DEVICE(0x10DE, 0x0451),
6349 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6350 },
6351 { /* MCP65 Ethernet Controller */
6352 PCI_DEVICE(0x10DE, 0x0452),
6353 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6354 },
6355 { /* MCP65 Ethernet Controller */
6356 PCI_DEVICE(0x10DE, 0x0453),
6357 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6358 },
6359 { /* MCP67 Ethernet Controller */
6360 PCI_DEVICE(0x10DE, 0x054C),
6361 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6362 },
6363 { /* MCP67 Ethernet Controller */
6364 PCI_DEVICE(0x10DE, 0x054D),
6365 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6366 },
6367 { /* MCP67 Ethernet Controller */
6368 PCI_DEVICE(0x10DE, 0x054E),
6369 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6370 },
6371 { /* MCP67 Ethernet Controller */
6372 PCI_DEVICE(0x10DE, 0x054F),
6373 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6374 },
6375 { /* MCP73 Ethernet Controller */
6376 PCI_DEVICE(0x10DE, 0x07DC),
6377 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6378 },
6379 { /* MCP73 Ethernet Controller */
6380 PCI_DEVICE(0x10DE, 0x07DD),
6381 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6382 },
6383 { /* MCP73 Ethernet Controller */
6384 PCI_DEVICE(0x10DE, 0x07DE),
6385 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6386 },
6387 { /* MCP73 Ethernet Controller */
6388 PCI_DEVICE(0x10DE, 0x07DF),
6389 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6390 },
6391 { /* MCP77 Ethernet Controller */
6392 PCI_DEVICE(0x10DE, 0x0760),
6393 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6394 },
6395 { /* MCP77 Ethernet Controller */
6396 PCI_DEVICE(0x10DE, 0x0761),
6397 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6398 },
6399 { /* MCP77 Ethernet Controller */
6400 PCI_DEVICE(0x10DE, 0x0762),
6401 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6402 },
6403 { /* MCP77 Ethernet Controller */
6404 PCI_DEVICE(0x10DE, 0x0763),
6405 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6406 },
6407 { /* MCP79 Ethernet Controller */
6408 PCI_DEVICE(0x10DE, 0x0AB0),
6409 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6410 },
6411 { /* MCP79 Ethernet Controller */
6412 PCI_DEVICE(0x10DE, 0x0AB1),
6413 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6414 },
6415 { /* MCP79 Ethernet Controller */
6416 PCI_DEVICE(0x10DE, 0x0AB2),
6417 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6418 },
6419 { /* MCP79 Ethernet Controller */
6420 PCI_DEVICE(0x10DE, 0x0AB3),
6421 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6422 },
6423 { /* MCP89 Ethernet Controller */
6424 PCI_DEVICE(0x10DE, 0x0D7D),
6425 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
6426 },
6427 {0,},
6428 };
6429
6430 static struct pci_driver forcedeth_pci_driver = {
6431 .name = DRV_NAME,
6432 .id_table = pci_tbl,
6433 .probe = nv_probe,
6434 .remove = nv_remove,
6435 .shutdown = nv_shutdown,
6436 .driver.pm = NV_PM_OPS,
6437 };
6438
6439 module_param(max_interrupt_work, int, 0);
6440 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6441 module_param(optimization_mode, int, 0);
6442 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6443 module_param(poll_interval, int, 0);
6444 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6445 module_param(msi, int, 0);
6446 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6447 module_param(msix, int, 0);
6448 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6449 module_param(dma_64bit, int, 0);
6450 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6451 module_param(phy_cross, int, 0);
6452 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6453 module_param(phy_power_down, int, 0);
6454 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6455 module_param(debug_tx_timeout, bool, 0);
6456 MODULE_PARM_DESC(debug_tx_timeout,
6457 "Dump tx related registers and ring when tx_timeout happens");
6458
6459 module_pci_driver(forcedeth_pci_driver);
6460 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6461 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6462 MODULE_LICENSE("GPL");
6463 MODULE_DEVICE_TABLE(pci, pci_tbl);