]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/qlogic/qed/qed_dev.c
e75c83351d341d8b538d50acbd3146505d5e136f
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / qlogic / qed / qed_dev.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/errno.h>
39 #include <linux/kernel.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/string.h>
44 #include <linux/vmalloc.h>
45 #include <linux/etherdevice.h>
46 #include <linux/qed/qed_chain.h>
47 #include <linux/qed/qed_if.h>
48 #include "qed.h"
49 #include "qed_cxt.h"
50 #include "qed_dcbx.h"
51 #include "qed_dev_api.h"
52 #include "qed_fcoe.h"
53 #include "qed_hsi.h"
54 #include "qed_hw.h"
55 #include "qed_init_ops.h"
56 #include "qed_int.h"
57 #include "qed_iscsi.h"
58 #include "qed_ll2.h"
59 #include "qed_mcp.h"
60 #include "qed_ooo.h"
61 #include "qed_reg_addr.h"
62 #include "qed_sp.h"
63 #include "qed_sriov.h"
64 #include "qed_vf.h"
65 #include "qed_roce.h"
66
67 static DEFINE_SPINLOCK(qm_lock);
68
69 #define QED_MIN_DPIS (4)
70 #define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS)
71
72 /* API common to all protocols */
73 enum BAR_ID {
74 BAR_ID_0, /* used for GRC */
75 BAR_ID_1 /* Used for doorbells */
76 };
77
78 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, enum BAR_ID bar_id)
79 {
80 u32 bar_reg = (bar_id == BAR_ID_0 ?
81 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
82 u32 val;
83
84 if (IS_VF(p_hwfn->cdev))
85 return 1 << 17;
86
87 val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
88 if (val)
89 return 1 << (val + 15);
90
91 /* Old MFW initialized above registered only conditionally */
92 if (p_hwfn->cdev->num_hwfns > 1) {
93 DP_INFO(p_hwfn,
94 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
95 return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
96 } else {
97 DP_INFO(p_hwfn,
98 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
99 return 512 * 1024;
100 }
101 }
102
103 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
104 {
105 u32 i;
106
107 cdev->dp_level = dp_level;
108 cdev->dp_module = dp_module;
109 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
110 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
111
112 p_hwfn->dp_level = dp_level;
113 p_hwfn->dp_module = dp_module;
114 }
115 }
116
117 void qed_init_struct(struct qed_dev *cdev)
118 {
119 u8 i;
120
121 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
122 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
123
124 p_hwfn->cdev = cdev;
125 p_hwfn->my_id = i;
126 p_hwfn->b_active = false;
127
128 mutex_init(&p_hwfn->dmae_info.mutex);
129 }
130
131 /* hwfn 0 is always active */
132 cdev->hwfns[0].b_active = true;
133
134 /* set the default cache alignment to 128 */
135 cdev->cache_shift = 7;
136 }
137
138 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
139 {
140 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
141
142 kfree(qm_info->qm_pq_params);
143 qm_info->qm_pq_params = NULL;
144 kfree(qm_info->qm_vport_params);
145 qm_info->qm_vport_params = NULL;
146 kfree(qm_info->qm_port_params);
147 qm_info->qm_port_params = NULL;
148 kfree(qm_info->wfq_data);
149 qm_info->wfq_data = NULL;
150 }
151
152 void qed_resc_free(struct qed_dev *cdev)
153 {
154 int i;
155
156 if (IS_VF(cdev))
157 return;
158
159 kfree(cdev->fw_data);
160 cdev->fw_data = NULL;
161
162 kfree(cdev->reset_stats);
163
164 for_each_hwfn(cdev, i) {
165 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
166
167 qed_cxt_mngr_free(p_hwfn);
168 qed_qm_info_free(p_hwfn);
169 qed_spq_free(p_hwfn);
170 qed_eq_free(p_hwfn, p_hwfn->p_eq);
171 qed_consq_free(p_hwfn, p_hwfn->p_consq);
172 qed_int_free(p_hwfn);
173 #ifdef CONFIG_QED_LL2
174 qed_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
175 #endif
176 if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
177 qed_fcoe_free(p_hwfn, p_hwfn->p_fcoe_info);
178
179 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
180 qed_iscsi_free(p_hwfn, p_hwfn->p_iscsi_info);
181 qed_ooo_free(p_hwfn, p_hwfn->p_ooo_info);
182 }
183 qed_iov_free(p_hwfn);
184 qed_dmae_info_free(p_hwfn);
185 qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
186 }
187 }
188
189 static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
190 {
191 u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
192 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
193 struct init_qm_port_params *p_qm_port;
194 bool init_rdma_offload_pq = false;
195 bool init_pure_ack_pq = false;
196 bool init_ooo_pq = false;
197 u16 num_pqs, multi_cos_tcs = 1;
198 u8 pf_wfq = qm_info->pf_wfq;
199 u32 pf_rl = qm_info->pf_rl;
200 u16 num_pf_rls = 0;
201 u16 num_vfs = 0;
202
203 #ifdef CONFIG_QED_SRIOV
204 if (p_hwfn->cdev->p_iov_info)
205 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
206 #endif
207 memset(qm_info, 0, sizeof(*qm_info));
208
209 num_pqs = multi_cos_tcs + num_vfs + 1; /* The '1' is for pure-LB */
210 num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
211
212 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
213 num_pqs++; /* for RoCE queue */
214 init_rdma_offload_pq = true;
215 /* we subtract num_vfs because each require a rate limiter,
216 * and one default rate limiter
217 */
218 if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn)
219 num_pf_rls = RESC_NUM(p_hwfn, QED_RL) - num_vfs - 1;
220
221 num_pqs += num_pf_rls;
222 qm_info->num_pf_rls = (u8) num_pf_rls;
223 }
224
225 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
226 num_pqs += 2; /* for iSCSI pure-ACK / OOO queue */
227 init_pure_ack_pq = true;
228 init_ooo_pq = true;
229 }
230
231 /* Sanity checking that setup requires legal number of resources */
232 if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
233 DP_ERR(p_hwfn,
234 "Need too many Physical queues - 0x%04x when only %04x are available\n",
235 num_pqs, RESC_NUM(p_hwfn, QED_PQ));
236 return -EINVAL;
237 }
238
239 /* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
240 */
241 qm_info->qm_pq_params = kcalloc(num_pqs,
242 sizeof(struct init_qm_pq_params),
243 b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
244 if (!qm_info->qm_pq_params)
245 goto alloc_err;
246
247 qm_info->qm_vport_params = kcalloc(num_vports,
248 sizeof(struct init_qm_vport_params),
249 b_sleepable ? GFP_KERNEL
250 : GFP_ATOMIC);
251 if (!qm_info->qm_vport_params)
252 goto alloc_err;
253
254 qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
255 sizeof(struct init_qm_port_params),
256 b_sleepable ? GFP_KERNEL
257 : GFP_ATOMIC);
258 if (!qm_info->qm_port_params)
259 goto alloc_err;
260
261 qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
262 b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
263 if (!qm_info->wfq_data)
264 goto alloc_err;
265
266 vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
267
268 /* First init rate limited queues */
269 for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
270 qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
271 qm_info->qm_pq_params[curr_queue].tc_id =
272 p_hwfn->hw_info.non_offload_tc;
273 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
274 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
275 }
276
277 /* First init per-TC PQs */
278 for (i = 0; i < multi_cos_tcs; i++) {
279 struct init_qm_pq_params *params =
280 &qm_info->qm_pq_params[curr_queue++];
281
282 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE ||
283 p_hwfn->hw_info.personality == QED_PCI_ETH) {
284 params->vport_id = vport_id;
285 params->tc_id = p_hwfn->hw_info.non_offload_tc;
286 params->wrr_group = 1;
287 } else {
288 params->vport_id = vport_id;
289 params->tc_id = p_hwfn->hw_info.offload_tc;
290 params->wrr_group = 1;
291 }
292 }
293
294 /* Then init pure-LB PQ */
295 qm_info->pure_lb_pq = curr_queue;
296 qm_info->qm_pq_params[curr_queue].vport_id =
297 (u8) RESC_START(p_hwfn, QED_VPORT);
298 qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
299 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
300 curr_queue++;
301
302 qm_info->offload_pq = 0;
303 if (init_rdma_offload_pq) {
304 qm_info->offload_pq = curr_queue;
305 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
306 qm_info->qm_pq_params[curr_queue].tc_id =
307 p_hwfn->hw_info.offload_tc;
308 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
309 curr_queue++;
310 }
311
312 if (init_pure_ack_pq) {
313 qm_info->pure_ack_pq = curr_queue;
314 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
315 qm_info->qm_pq_params[curr_queue].tc_id =
316 p_hwfn->hw_info.offload_tc;
317 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
318 curr_queue++;
319 }
320
321 if (init_ooo_pq) {
322 qm_info->ooo_pq = curr_queue;
323 qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
324 qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
325 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
326 curr_queue++;
327 }
328
329 /* Then init per-VF PQs */
330 vf_offset = curr_queue;
331 for (i = 0; i < num_vfs; i++) {
332 /* First vport is used by the PF */
333 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
334 qm_info->qm_pq_params[curr_queue].tc_id =
335 p_hwfn->hw_info.non_offload_tc;
336 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
337 qm_info->qm_pq_params[curr_queue].rl_valid = 1;
338 curr_queue++;
339 }
340
341 qm_info->vf_queues_offset = vf_offset;
342 qm_info->num_pqs = num_pqs;
343 qm_info->num_vports = num_vports;
344
345 /* Initialize qm port parameters */
346 num_ports = p_hwfn->cdev->num_ports_in_engines;
347 for (i = 0; i < num_ports; i++) {
348 p_qm_port = &qm_info->qm_port_params[i];
349 p_qm_port->active = 1;
350 if (num_ports == 4)
351 p_qm_port->active_phys_tcs = 0x7;
352 else
353 p_qm_port->active_phys_tcs = 0x9f;
354 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
355 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
356 }
357
358 qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
359
360 qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
361
362 qm_info->num_vf_pqs = num_vfs;
363 qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
364
365 for (i = 0; i < qm_info->num_vports; i++)
366 qm_info->qm_vport_params[i].vport_wfq = 1;
367
368 qm_info->vport_rl_en = 1;
369 qm_info->vport_wfq_en = 1;
370 qm_info->pf_rl = pf_rl;
371 qm_info->pf_wfq = pf_wfq;
372
373 return 0;
374
375 alloc_err:
376 qed_qm_info_free(p_hwfn);
377 return -ENOMEM;
378 }
379
380 /* This function reconfigures the QM pf on the fly.
381 * For this purpose we:
382 * 1. reconfigure the QM database
383 * 2. set new values to runtime arrat
384 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
385 * 4. activate init tool in QM_PF stage
386 * 5. send an sdm_qm_cmd through rbc interface to release the QM
387 */
388 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
389 {
390 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
391 bool b_rc;
392 int rc;
393
394 /* qm_info is allocated in qed_init_qm_info() which is already called
395 * from qed_resc_alloc() or previous call of qed_qm_reconf().
396 * The allocated size may change each init, so we free it before next
397 * allocation.
398 */
399 qed_qm_info_free(p_hwfn);
400
401 /* initialize qed's qm data structure */
402 rc = qed_init_qm_info(p_hwfn, false);
403 if (rc)
404 return rc;
405
406 /* stop PF's qm queues */
407 spin_lock_bh(&qm_lock);
408 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
409 qm_info->start_pq, qm_info->num_pqs);
410 spin_unlock_bh(&qm_lock);
411 if (!b_rc)
412 return -EINVAL;
413
414 /* clear the QM_PF runtime phase leftovers from previous init */
415 qed_init_clear_rt_data(p_hwfn);
416
417 /* prepare QM portion of runtime array */
418 qed_qm_init_pf(p_hwfn);
419
420 /* activate init tool on runtime array */
421 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
422 p_hwfn->hw_info.hw_mode);
423 if (rc)
424 return rc;
425
426 /* start PF's qm queues */
427 spin_lock_bh(&qm_lock);
428 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
429 qm_info->start_pq, qm_info->num_pqs);
430 spin_unlock_bh(&qm_lock);
431 if (!b_rc)
432 return -EINVAL;
433
434 return 0;
435 }
436
437 int qed_resc_alloc(struct qed_dev *cdev)
438 {
439 struct qed_iscsi_info *p_iscsi_info;
440 struct qed_fcoe_info *p_fcoe_info;
441 struct qed_ooo_info *p_ooo_info;
442 #ifdef CONFIG_QED_LL2
443 struct qed_ll2_info *p_ll2_info;
444 #endif
445 struct qed_consq *p_consq;
446 struct qed_eq *p_eq;
447 int i, rc = 0;
448
449 if (IS_VF(cdev))
450 return rc;
451
452 cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
453 if (!cdev->fw_data)
454 return -ENOMEM;
455
456 for_each_hwfn(cdev, i) {
457 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
458 u32 n_eqes, num_cons;
459
460 /* First allocate the context manager structure */
461 rc = qed_cxt_mngr_alloc(p_hwfn);
462 if (rc)
463 goto alloc_err;
464
465 /* Set the HW cid/tid numbers (in the contest manager)
466 * Must be done prior to any further computations.
467 */
468 rc = qed_cxt_set_pf_params(p_hwfn);
469 if (rc)
470 goto alloc_err;
471
472 /* Prepare and process QM requirements */
473 rc = qed_init_qm_info(p_hwfn, true);
474 if (rc)
475 goto alloc_err;
476
477 /* Compute the ILT client partition */
478 rc = qed_cxt_cfg_ilt_compute(p_hwfn);
479 if (rc)
480 goto alloc_err;
481
482 /* CID map / ILT shadow table / T2
483 * The talbes sizes are determined by the computations above
484 */
485 rc = qed_cxt_tables_alloc(p_hwfn);
486 if (rc)
487 goto alloc_err;
488
489 /* SPQ, must follow ILT because initializes SPQ context */
490 rc = qed_spq_alloc(p_hwfn);
491 if (rc)
492 goto alloc_err;
493
494 /* SP status block allocation */
495 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
496 RESERVED_PTT_DPC);
497
498 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
499 if (rc)
500 goto alloc_err;
501
502 rc = qed_iov_alloc(p_hwfn);
503 if (rc)
504 goto alloc_err;
505
506 /* EQ */
507 n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
508 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
509 num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
510 PROTOCOLID_ROCE,
511 NULL) * 2;
512 n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
513 } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
514 num_cons =
515 qed_cxt_get_proto_cid_count(p_hwfn,
516 PROTOCOLID_ISCSI,
517 NULL);
518 n_eqes += 2 * num_cons;
519 }
520
521 if (n_eqes > 0xFFFF) {
522 DP_ERR(p_hwfn,
523 "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
524 n_eqes, 0xFFFF);
525 rc = -EINVAL;
526 goto alloc_err;
527 }
528
529 p_eq = qed_eq_alloc(p_hwfn, (u16) n_eqes);
530 if (!p_eq)
531 goto alloc_no_mem;
532 p_hwfn->p_eq = p_eq;
533
534 p_consq = qed_consq_alloc(p_hwfn);
535 if (!p_consq)
536 goto alloc_no_mem;
537 p_hwfn->p_consq = p_consq;
538
539 #ifdef CONFIG_QED_LL2
540 if (p_hwfn->using_ll2) {
541 p_ll2_info = qed_ll2_alloc(p_hwfn);
542 if (!p_ll2_info)
543 goto alloc_no_mem;
544 p_hwfn->p_ll2_info = p_ll2_info;
545 }
546 #endif
547
548 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
549 p_fcoe_info = qed_fcoe_alloc(p_hwfn);
550 if (!p_fcoe_info)
551 goto alloc_no_mem;
552 p_hwfn->p_fcoe_info = p_fcoe_info;
553 }
554
555 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
556 p_iscsi_info = qed_iscsi_alloc(p_hwfn);
557 if (!p_iscsi_info)
558 goto alloc_no_mem;
559 p_hwfn->p_iscsi_info = p_iscsi_info;
560 p_ooo_info = qed_ooo_alloc(p_hwfn);
561 if (!p_ooo_info)
562 goto alloc_no_mem;
563 p_hwfn->p_ooo_info = p_ooo_info;
564 }
565
566 /* DMA info initialization */
567 rc = qed_dmae_info_alloc(p_hwfn);
568 if (rc)
569 goto alloc_err;
570
571 /* DCBX initialization */
572 rc = qed_dcbx_info_alloc(p_hwfn);
573 if (rc)
574 goto alloc_err;
575 }
576
577 cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
578 if (!cdev->reset_stats)
579 goto alloc_no_mem;
580
581 return 0;
582
583 alloc_no_mem:
584 rc = -ENOMEM;
585 alloc_err:
586 qed_resc_free(cdev);
587 return rc;
588 }
589
590 void qed_resc_setup(struct qed_dev *cdev)
591 {
592 int i;
593
594 if (IS_VF(cdev))
595 return;
596
597 for_each_hwfn(cdev, i) {
598 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
599
600 qed_cxt_mngr_setup(p_hwfn);
601 qed_spq_setup(p_hwfn);
602 qed_eq_setup(p_hwfn, p_hwfn->p_eq);
603 qed_consq_setup(p_hwfn, p_hwfn->p_consq);
604
605 /* Read shadow of current MFW mailbox */
606 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
607 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
608 p_hwfn->mcp_info->mfw_mb_cur,
609 p_hwfn->mcp_info->mfw_mb_length);
610
611 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
612
613 qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
614 #ifdef CONFIG_QED_LL2
615 if (p_hwfn->using_ll2)
616 qed_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
617 #endif
618 if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
619 qed_fcoe_setup(p_hwfn, p_hwfn->p_fcoe_info);
620
621 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
622 qed_iscsi_setup(p_hwfn, p_hwfn->p_iscsi_info);
623 qed_ooo_setup(p_hwfn, p_hwfn->p_ooo_info);
624 }
625 }
626 }
627
628 #define FINAL_CLEANUP_POLL_CNT (100)
629 #define FINAL_CLEANUP_POLL_TIME (10)
630 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
631 struct qed_ptt *p_ptt, u16 id, bool is_vf)
632 {
633 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
634 int rc = -EBUSY;
635
636 addr = GTT_BAR0_MAP_REG_USDM_RAM +
637 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
638
639 if (is_vf)
640 id += 0x10;
641
642 command |= X_FINAL_CLEANUP_AGG_INT <<
643 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
644 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
645 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
646 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
647
648 /* Make sure notification is not set before initiating final cleanup */
649 if (REG_RD(p_hwfn, addr)) {
650 DP_NOTICE(p_hwfn,
651 "Unexpected; Found final cleanup notification before initiating final cleanup\n");
652 REG_WR(p_hwfn, addr, 0);
653 }
654
655 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
656 "Sending final cleanup for PFVF[%d] [Command %08x\n]",
657 id, command);
658
659 qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
660
661 /* Poll until completion */
662 while (!REG_RD(p_hwfn, addr) && count--)
663 msleep(FINAL_CLEANUP_POLL_TIME);
664
665 if (REG_RD(p_hwfn, addr))
666 rc = 0;
667 else
668 DP_NOTICE(p_hwfn,
669 "Failed to receive FW final cleanup notification\n");
670
671 /* Cleanup afterwards */
672 REG_WR(p_hwfn, addr, 0);
673
674 return rc;
675 }
676
677 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
678 {
679 int hw_mode = 0;
680
681 if (QED_IS_BB_B0(p_hwfn->cdev)) {
682 hw_mode |= 1 << MODE_BB;
683 } else if (QED_IS_AH(p_hwfn->cdev)) {
684 hw_mode |= 1 << MODE_K2;
685 } else {
686 DP_NOTICE(p_hwfn, "Unknown chip type %#x\n",
687 p_hwfn->cdev->type);
688 return -EINVAL;
689 }
690
691 switch (p_hwfn->cdev->num_ports_in_engines) {
692 case 1:
693 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
694 break;
695 case 2:
696 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
697 break;
698 case 4:
699 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
700 break;
701 default:
702 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
703 p_hwfn->cdev->num_ports_in_engines);
704 return -EINVAL;
705 }
706
707 switch (p_hwfn->cdev->mf_mode) {
708 case QED_MF_DEFAULT:
709 case QED_MF_NPAR:
710 hw_mode |= 1 << MODE_MF_SI;
711 break;
712 case QED_MF_OVLAN:
713 hw_mode |= 1 << MODE_MF_SD;
714 break;
715 default:
716 DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
717 hw_mode |= 1 << MODE_MF_SI;
718 }
719
720 hw_mode |= 1 << MODE_ASIC;
721
722 if (p_hwfn->cdev->num_hwfns > 1)
723 hw_mode |= 1 << MODE_100G;
724
725 p_hwfn->hw_info.hw_mode = hw_mode;
726
727 DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
728 "Configuring function for hw_mode: 0x%08x\n",
729 p_hwfn->hw_info.hw_mode);
730
731 return 0;
732 }
733
734 /* Init run time data for all PFs on an engine. */
735 static void qed_init_cau_rt_data(struct qed_dev *cdev)
736 {
737 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
738 int i, sb_id;
739
740 for_each_hwfn(cdev, i) {
741 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
742 struct qed_igu_info *p_igu_info;
743 struct qed_igu_block *p_block;
744 struct cau_sb_entry sb_entry;
745
746 p_igu_info = p_hwfn->hw_info.p_igu_info;
747
748 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
749 sb_id++) {
750 p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
751 if (!p_block->is_pf)
752 continue;
753
754 qed_init_cau_sb_entry(p_hwfn, &sb_entry,
755 p_block->function_id, 0, 0);
756 STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
757 }
758 }
759 }
760
761 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
762 struct qed_ptt *p_ptt, int hw_mode)
763 {
764 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
765 struct qed_qm_common_rt_init_params params;
766 struct qed_dev *cdev = p_hwfn->cdev;
767 u8 vf_id, max_num_vfs;
768 u16 num_pfs, pf_id;
769 u32 concrete_fid;
770 int rc = 0;
771
772 qed_init_cau_rt_data(cdev);
773
774 /* Program GTT windows */
775 qed_gtt_init(p_hwfn);
776
777 if (p_hwfn->mcp_info) {
778 if (p_hwfn->mcp_info->func_info.bandwidth_max)
779 qm_info->pf_rl_en = 1;
780 if (p_hwfn->mcp_info->func_info.bandwidth_min)
781 qm_info->pf_wfq_en = 1;
782 }
783
784 memset(&params, 0, sizeof(params));
785 params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
786 params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
787 params.pf_rl_en = qm_info->pf_rl_en;
788 params.pf_wfq_en = qm_info->pf_wfq_en;
789 params.vport_rl_en = qm_info->vport_rl_en;
790 params.vport_wfq_en = qm_info->vport_wfq_en;
791 params.port_params = qm_info->qm_port_params;
792
793 qed_qm_common_rt_init(p_hwfn, &params);
794
795 qed_cxt_hw_init_common(p_hwfn);
796
797 /* Close gate from NIG to BRB/Storm; By default they are open, but
798 * we close them to prevent NIG from passing data to reset blocks.
799 * Should have been done in the ENGINE phase, but init-tool lacks
800 * proper port-pretend capabilities.
801 */
802 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
803 qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
804 qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
805 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
806 qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
807 qed_port_unpretend(p_hwfn, p_ptt);
808
809 rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
810 if (rc)
811 return rc;
812
813 qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
814 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
815
816 if (QED_IS_BB(p_hwfn->cdev)) {
817 num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
818 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
819 qed_fid_pretend(p_hwfn, p_ptt, pf_id);
820 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
821 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
822 }
823 /* pretend to original PF */
824 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
825 }
826
827 max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
828 for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
829 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
830 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
831 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
832 qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
833 qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
834 qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
835 }
836 /* pretend to original PF */
837 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
838
839 return rc;
840 }
841
842 static int
843 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
844 struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
845 {
846 u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
847 u32 dpi_bit_shift, dpi_count;
848 u32 min_dpis;
849
850 /* Calculate DPI size */
851 dpi_page_size_1 = QED_WID_SIZE * n_cpus;
852 dpi_page_size_2 = max_t(u32, QED_WID_SIZE, PAGE_SIZE);
853 dpi_page_size = max_t(u32, dpi_page_size_1, dpi_page_size_2);
854 dpi_page_size = roundup_pow_of_two(dpi_page_size);
855 dpi_bit_shift = ilog2(dpi_page_size / 4096);
856
857 dpi_count = pwm_region_size / dpi_page_size;
858
859 min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
860 min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
861
862 p_hwfn->dpi_size = dpi_page_size;
863 p_hwfn->dpi_count = dpi_count;
864
865 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
866
867 if (dpi_count < min_dpis)
868 return -EINVAL;
869
870 return 0;
871 }
872
873 enum QED_ROCE_EDPM_MODE {
874 QED_ROCE_EDPM_MODE_ENABLE = 0,
875 QED_ROCE_EDPM_MODE_FORCE_ON = 1,
876 QED_ROCE_EDPM_MODE_DISABLE = 2,
877 };
878
879 static int
880 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
881 {
882 u32 pwm_regsize, norm_regsize;
883 u32 non_pwm_conn, min_addr_reg1;
884 u32 db_bar_size, n_cpus;
885 u32 roce_edpm_mode;
886 u32 pf_dems_shift;
887 int rc = 0;
888 u8 cond;
889
890 db_bar_size = qed_hw_bar_size(p_hwfn, BAR_ID_1);
891 if (p_hwfn->cdev->num_hwfns > 1)
892 db_bar_size /= 2;
893
894 /* Calculate doorbell regions */
895 non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
896 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
897 NULL) +
898 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
899 NULL);
900 norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, 4096);
901 min_addr_reg1 = norm_regsize / 4096;
902 pwm_regsize = db_bar_size - norm_regsize;
903
904 /* Check that the normal and PWM sizes are valid */
905 if (db_bar_size < norm_regsize) {
906 DP_ERR(p_hwfn->cdev,
907 "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
908 db_bar_size, norm_regsize);
909 return -EINVAL;
910 }
911
912 if (pwm_regsize < QED_MIN_PWM_REGION) {
913 DP_ERR(p_hwfn->cdev,
914 "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
915 pwm_regsize,
916 QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
917 return -EINVAL;
918 }
919
920 /* Calculate number of DPIs */
921 roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
922 if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
923 ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
924 /* Either EDPM is mandatory, or we are attempting to allocate a
925 * WID per CPU.
926 */
927 n_cpus = num_present_cpus();
928 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
929 }
930
931 cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
932 (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
933 if (cond || p_hwfn->dcbx_no_edpm) {
934 /* Either EDPM is disabled from user configuration, or it is
935 * disabled via DCBx, or it is not mandatory and we failed to
936 * allocated a WID per CPU.
937 */
938 n_cpus = 1;
939 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
940
941 if (cond)
942 qed_rdma_dpm_bar(p_hwfn, p_ptt);
943 }
944
945 DP_INFO(p_hwfn,
946 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
947 norm_regsize,
948 pwm_regsize,
949 p_hwfn->dpi_size,
950 p_hwfn->dpi_count,
951 ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
952 "disabled" : "enabled");
953
954 if (rc) {
955 DP_ERR(p_hwfn,
956 "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
957 p_hwfn->dpi_count,
958 p_hwfn->pf_params.rdma_pf_params.min_dpis);
959 return -EINVAL;
960 }
961
962 p_hwfn->dpi_start_offset = norm_regsize;
963
964 /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
965 pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
966 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
967 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
968
969 return 0;
970 }
971
972 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
973 struct qed_ptt *p_ptt, int hw_mode)
974 {
975 return qed_init_run(p_hwfn, p_ptt, PHASE_PORT,
976 p_hwfn->port_id, hw_mode);
977 }
978
979 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
980 struct qed_ptt *p_ptt,
981 struct qed_tunn_start_params *p_tunn,
982 int hw_mode,
983 bool b_hw_start,
984 enum qed_int_mode int_mode,
985 bool allow_npar_tx_switch)
986 {
987 u8 rel_pf_id = p_hwfn->rel_pf_id;
988 int rc = 0;
989
990 if (p_hwfn->mcp_info) {
991 struct qed_mcp_function_info *p_info;
992
993 p_info = &p_hwfn->mcp_info->func_info;
994 if (p_info->bandwidth_min)
995 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
996
997 /* Update rate limit once we'll actually have a link */
998 p_hwfn->qm_info.pf_rl = 100000;
999 }
1000
1001 qed_cxt_hw_init_pf(p_hwfn);
1002
1003 qed_int_igu_init_rt(p_hwfn);
1004
1005 /* Set VLAN in NIG if needed */
1006 if (hw_mode & BIT(MODE_MF_SD)) {
1007 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
1008 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
1009 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
1010 p_hwfn->hw_info.ovlan);
1011 }
1012
1013 /* Enable classification by MAC if needed */
1014 if (hw_mode & BIT(MODE_MF_SI)) {
1015 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
1016 "Configuring TAGMAC_CLS_TYPE\n");
1017 STORE_RT_REG(p_hwfn,
1018 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
1019 }
1020
1021 /* Protocl Configuration */
1022 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
1023 (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
1024 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
1025 (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0);
1026 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
1027
1028 /* Cleanup chip from previous driver if such remains exist */
1029 rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
1030 if (rc)
1031 return rc;
1032
1033 /* PF Init sequence */
1034 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
1035 if (rc)
1036 return rc;
1037
1038 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
1039 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
1040 if (rc)
1041 return rc;
1042
1043 /* Pure runtime initializations - directly to the HW */
1044 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
1045
1046 rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
1047 if (rc)
1048 return rc;
1049
1050 if (b_hw_start) {
1051 /* enable interrupts */
1052 qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
1053
1054 /* send function start command */
1055 rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
1056 allow_npar_tx_switch);
1057 if (rc) {
1058 DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
1059 return rc;
1060 }
1061 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
1062 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2));
1063 qed_wr(p_hwfn, p_ptt,
1064 PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
1065 0x100);
1066 }
1067 }
1068 return rc;
1069 }
1070
1071 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
1072 struct qed_ptt *p_ptt,
1073 u8 enable)
1074 {
1075 u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
1076
1077 /* Change PF in PXP */
1078 qed_wr(p_hwfn, p_ptt,
1079 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
1080
1081 /* wait until value is set - try for 1 second every 50us */
1082 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
1083 val = qed_rd(p_hwfn, p_ptt,
1084 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1085 if (val == set_val)
1086 break;
1087
1088 usleep_range(50, 60);
1089 }
1090
1091 if (val != set_val) {
1092 DP_NOTICE(p_hwfn,
1093 "PFID_ENABLE_MASTER wasn't changed after a second\n");
1094 return -EAGAIN;
1095 }
1096
1097 return 0;
1098 }
1099
1100 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
1101 struct qed_ptt *p_main_ptt)
1102 {
1103 /* Read shadow of current MFW mailbox */
1104 qed_mcp_read_mb(p_hwfn, p_main_ptt);
1105 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
1106 p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
1107 }
1108
1109 static void
1110 qed_fill_load_req_params(struct qed_load_req_params *p_load_req,
1111 struct qed_drv_load_params *p_drv_load)
1112 {
1113 memset(p_load_req, 0, sizeof(*p_load_req));
1114
1115 p_load_req->drv_role = p_drv_load->is_crash_kernel ?
1116 QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS;
1117 p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
1118 p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
1119 p_load_req->override_force_load = p_drv_load->override_force_load;
1120 }
1121
1122 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params)
1123 {
1124 struct qed_load_req_params load_req_params;
1125 u32 load_code, param, drv_mb_param;
1126 bool b_default_mtu = true;
1127 struct qed_hwfn *p_hwfn;
1128 int rc = 0, mfw_rc, i;
1129
1130 if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
1131 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
1132 return -EINVAL;
1133 }
1134
1135 if (IS_PF(cdev)) {
1136 rc = qed_init_fw_data(cdev, p_params->bin_fw_data);
1137 if (rc)
1138 return rc;
1139 }
1140
1141 for_each_hwfn(cdev, i) {
1142 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1143
1144 /* If management didn't provide a default, set one of our own */
1145 if (!p_hwfn->hw_info.mtu) {
1146 p_hwfn->hw_info.mtu = 1500;
1147 b_default_mtu = false;
1148 }
1149
1150 if (IS_VF(cdev)) {
1151 p_hwfn->b_int_enabled = 1;
1152 continue;
1153 }
1154
1155 /* Enable DMAE in PXP */
1156 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
1157
1158 rc = qed_calc_hw_mode(p_hwfn);
1159 if (rc)
1160 return rc;
1161
1162 qed_fill_load_req_params(&load_req_params,
1163 p_params->p_drv_load_params);
1164 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
1165 &load_req_params);
1166 if (rc) {
1167 DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n");
1168 return rc;
1169 }
1170
1171 load_code = load_req_params.load_code;
1172 DP_VERBOSE(p_hwfn, QED_MSG_SP,
1173 "Load request was sent. Load code: 0x%x\n",
1174 load_code);
1175
1176 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
1177
1178 p_hwfn->first_on_engine = (load_code ==
1179 FW_MSG_CODE_DRV_LOAD_ENGINE);
1180
1181 switch (load_code) {
1182 case FW_MSG_CODE_DRV_LOAD_ENGINE:
1183 rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
1184 p_hwfn->hw_info.hw_mode);
1185 if (rc)
1186 break;
1187 /* Fall into */
1188 case FW_MSG_CODE_DRV_LOAD_PORT:
1189 rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
1190 p_hwfn->hw_info.hw_mode);
1191 if (rc)
1192 break;
1193
1194 /* Fall into */
1195 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1196 rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
1197 p_params->p_tunn,
1198 p_hwfn->hw_info.hw_mode,
1199 p_params->b_hw_start,
1200 p_params->int_mode,
1201 p_params->allow_npar_tx_switch);
1202 break;
1203 default:
1204 DP_NOTICE(p_hwfn,
1205 "Unexpected load code [0x%08x]", load_code);
1206 rc = -EINVAL;
1207 break;
1208 }
1209
1210 if (rc)
1211 DP_NOTICE(p_hwfn,
1212 "init phase failed for loadcode 0x%x (rc %d)\n",
1213 load_code, rc);
1214
1215 /* ACK mfw regardless of success or failure of initialization */
1216 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1217 DRV_MSG_CODE_LOAD_DONE,
1218 0, &load_code, &param);
1219 if (rc)
1220 return rc;
1221 if (mfw_rc) {
1222 DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
1223 return mfw_rc;
1224 }
1225
1226 /* send DCBX attention request command */
1227 DP_VERBOSE(p_hwfn,
1228 QED_MSG_DCB,
1229 "sending phony dcbx set command to trigger DCBx attention handling\n");
1230 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1231 DRV_MSG_CODE_SET_DCBX,
1232 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
1233 &load_code, &param);
1234 if (mfw_rc) {
1235 DP_NOTICE(p_hwfn,
1236 "Failed to send DCBX attention request\n");
1237 return mfw_rc;
1238 }
1239
1240 p_hwfn->hw_init_done = true;
1241 }
1242
1243 if (IS_PF(cdev)) {
1244 p_hwfn = QED_LEADING_HWFN(cdev);
1245 drv_mb_param = STORM_FW_VERSION;
1246 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1247 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
1248 drv_mb_param, &load_code, &param);
1249 if (rc)
1250 DP_INFO(p_hwfn, "Failed to update firmware version\n");
1251
1252 if (!b_default_mtu) {
1253 rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
1254 p_hwfn->hw_info.mtu);
1255 if (rc)
1256 DP_INFO(p_hwfn,
1257 "Failed to update default mtu\n");
1258 }
1259
1260 rc = qed_mcp_ov_update_driver_state(p_hwfn,
1261 p_hwfn->p_main_ptt,
1262 QED_OV_DRIVER_STATE_DISABLED);
1263 if (rc)
1264 DP_INFO(p_hwfn, "Failed to update driver state\n");
1265
1266 rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
1267 QED_OV_ESWITCH_VEB);
1268 if (rc)
1269 DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
1270 }
1271
1272 return 0;
1273 }
1274
1275 #define QED_HW_STOP_RETRY_LIMIT (10)
1276 static void qed_hw_timers_stop(struct qed_dev *cdev,
1277 struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1278 {
1279 int i;
1280
1281 /* close timers */
1282 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
1283 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
1284
1285 for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
1286 if ((!qed_rd(p_hwfn, p_ptt,
1287 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
1288 (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
1289 break;
1290
1291 /* Dependent on number of connection/tasks, possibly
1292 * 1ms sleep is required between polls
1293 */
1294 usleep_range(1000, 2000);
1295 }
1296
1297 if (i < QED_HW_STOP_RETRY_LIMIT)
1298 return;
1299
1300 DP_NOTICE(p_hwfn,
1301 "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
1302 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
1303 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
1304 }
1305
1306 void qed_hw_timers_stop_all(struct qed_dev *cdev)
1307 {
1308 int j;
1309
1310 for_each_hwfn(cdev, j) {
1311 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1312 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1313
1314 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1315 }
1316 }
1317
1318 int qed_hw_stop(struct qed_dev *cdev)
1319 {
1320 struct qed_hwfn *p_hwfn;
1321 struct qed_ptt *p_ptt;
1322 int rc, rc2 = 0;
1323 int j;
1324
1325 for_each_hwfn(cdev, j) {
1326 p_hwfn = &cdev->hwfns[j];
1327 p_ptt = p_hwfn->p_main_ptt;
1328
1329 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
1330
1331 if (IS_VF(cdev)) {
1332 qed_vf_pf_int_cleanup(p_hwfn);
1333 rc = qed_vf_pf_reset(p_hwfn);
1334 if (rc) {
1335 DP_NOTICE(p_hwfn,
1336 "qed_vf_pf_reset failed. rc = %d.\n",
1337 rc);
1338 rc2 = -EINVAL;
1339 }
1340 continue;
1341 }
1342
1343 /* mark the hw as uninitialized... */
1344 p_hwfn->hw_init_done = false;
1345
1346 /* Send unload command to MCP */
1347 rc = qed_mcp_unload_req(p_hwfn, p_ptt);
1348 if (rc) {
1349 DP_NOTICE(p_hwfn,
1350 "Failed sending a UNLOAD_REQ command. rc = %d.\n",
1351 rc);
1352 rc2 = -EINVAL;
1353 }
1354
1355 qed_slowpath_irq_sync(p_hwfn);
1356
1357 /* After this point no MFW attentions are expected, e.g. prevent
1358 * race between pf stop and dcbx pf update.
1359 */
1360 rc = qed_sp_pf_stop(p_hwfn);
1361 if (rc) {
1362 DP_NOTICE(p_hwfn,
1363 "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
1364 rc);
1365 rc2 = -EINVAL;
1366 }
1367
1368 qed_wr(p_hwfn, p_ptt,
1369 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1370
1371 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1372 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1373 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1374 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1375 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1376
1377 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1378
1379 /* Disable Attention Generation */
1380 qed_int_igu_disable_int(p_hwfn, p_ptt);
1381
1382 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1383 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1384
1385 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1386
1387 /* Need to wait 1ms to guarantee SBs are cleared */
1388 usleep_range(1000, 2000);
1389
1390 /* Disable PF in HW blocks */
1391 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1392 qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
1393
1394 qed_mcp_unload_done(p_hwfn, p_ptt);
1395 if (rc) {
1396 DP_NOTICE(p_hwfn,
1397 "Failed sending a UNLOAD_DONE command. rc = %d.\n",
1398 rc);
1399 rc2 = -EINVAL;
1400 }
1401 }
1402
1403 if (IS_PF(cdev)) {
1404 p_hwfn = QED_LEADING_HWFN(cdev);
1405 p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt;
1406
1407 /* Disable DMAE in PXP - in CMT, this should only be done for
1408 * first hw-function, and only after all transactions have
1409 * stopped for all active hw-functions.
1410 */
1411 rc = qed_change_pci_hwfn(p_hwfn, p_ptt, false);
1412 if (rc) {
1413 DP_NOTICE(p_hwfn,
1414 "qed_change_pci_hwfn failed. rc = %d.\n", rc);
1415 rc2 = -EINVAL;
1416 }
1417 }
1418
1419 return rc2;
1420 }
1421
1422 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1423 {
1424 int j;
1425
1426 for_each_hwfn(cdev, j) {
1427 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1428 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1429
1430 if (IS_VF(cdev)) {
1431 qed_vf_pf_int_cleanup(p_hwfn);
1432 continue;
1433 }
1434
1435 DP_VERBOSE(p_hwfn,
1436 NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
1437
1438 qed_wr(p_hwfn, p_ptt,
1439 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1440
1441 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1442 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1443 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1444 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1445 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1446
1447 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1448
1449 /* Need to wait 1ms to guarantee SBs are cleared */
1450 usleep_range(1000, 2000);
1451 }
1452 }
1453
1454 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1455 {
1456 if (IS_VF(p_hwfn->cdev))
1457 return;
1458
1459 /* Re-open incoming traffic */
1460 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1461 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1462 }
1463
1464 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1465 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1466 {
1467 qed_ptt_pool_free(p_hwfn);
1468 kfree(p_hwfn->hw_info.p_igu_info);
1469 }
1470
1471 /* Setup bar access */
1472 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1473 {
1474 /* clear indirect access */
1475 if (QED_IS_AH(p_hwfn->cdev)) {
1476 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1477 PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
1478 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1479 PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
1480 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1481 PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
1482 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1483 PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
1484 } else {
1485 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1486 PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
1487 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1488 PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
1489 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1490 PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
1491 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1492 PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
1493 }
1494
1495 /* Clean Previous errors if such exist */
1496 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1497 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
1498
1499 /* enable internal target-read */
1500 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1501 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1502 }
1503
1504 static void get_function_id(struct qed_hwfn *p_hwfn)
1505 {
1506 /* ME Register */
1507 p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
1508 PXP_PF_ME_OPAQUE_ADDR);
1509
1510 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1511
1512 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1513 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1514 PXP_CONCRETE_FID_PFID);
1515 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1516 PXP_CONCRETE_FID_PORT);
1517
1518 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1519 "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
1520 p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
1521 }
1522
1523 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1524 {
1525 u32 *feat_num = p_hwfn->hw_info.feat_num;
1526 struct qed_sb_cnt_info sb_cnt_info;
1527 u32 non_l2_sbs = 0;
1528
1529 if (IS_ENABLED(CONFIG_QED_RDMA) &&
1530 p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) {
1531 /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
1532 * the status blocks equally between L2 / RoCE but with
1533 * consideration as to how many l2 queues / cnqs we have.
1534 */
1535 feat_num[QED_RDMA_CNQ] =
1536 min_t(u32, RESC_NUM(p_hwfn, QED_SB) / 2,
1537 RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
1538
1539 non_l2_sbs = feat_num[QED_RDMA_CNQ];
1540 }
1541
1542 if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE ||
1543 p_hwfn->hw_info.personality == QED_PCI_ETH) {
1544 /* Start by allocating VF queues, then PF's */
1545 memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1546 qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1547 feat_num[QED_VF_L2_QUE] = min_t(u32,
1548 RESC_NUM(p_hwfn, QED_L2_QUEUE),
1549 sb_cnt_info.sb_iov_cnt);
1550 feat_num[QED_PF_L2_QUE] = min_t(u32,
1551 RESC_NUM(p_hwfn, QED_SB) -
1552 non_l2_sbs,
1553 RESC_NUM(p_hwfn,
1554 QED_L2_QUEUE) -
1555 FEAT_NUM(p_hwfn,
1556 QED_VF_L2_QUE));
1557 }
1558
1559 DP_VERBOSE(p_hwfn,
1560 NETIF_MSG_PROBE,
1561 "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d #SBS=%d\n",
1562 (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
1563 (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
1564 (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
1565 RESC_NUM(p_hwfn, QED_SB));
1566 }
1567
1568 const char *qed_hw_get_resc_name(enum qed_resources res_id)
1569 {
1570 switch (res_id) {
1571 case QED_L2_QUEUE:
1572 return "L2_QUEUE";
1573 case QED_VPORT:
1574 return "VPORT";
1575 case QED_RSS_ENG:
1576 return "RSS_ENG";
1577 case QED_PQ:
1578 return "PQ";
1579 case QED_RL:
1580 return "RL";
1581 case QED_MAC:
1582 return "MAC";
1583 case QED_VLAN:
1584 return "VLAN";
1585 case QED_RDMA_CNQ_RAM:
1586 return "RDMA_CNQ_RAM";
1587 case QED_ILT:
1588 return "ILT";
1589 case QED_LL2_QUEUE:
1590 return "LL2_QUEUE";
1591 case QED_CMDQS_CQS:
1592 return "CMDQS_CQS";
1593 case QED_RDMA_STATS_QUEUE:
1594 return "RDMA_STATS_QUEUE";
1595 case QED_BDQ:
1596 return "BDQ";
1597 case QED_SB:
1598 return "SB";
1599 default:
1600 return "UNKNOWN_RESOURCE";
1601 }
1602 }
1603
1604 static int
1605 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn,
1606 struct qed_ptt *p_ptt,
1607 enum qed_resources res_id,
1608 u32 resc_max_val, u32 *p_mcp_resp)
1609 {
1610 int rc;
1611
1612 rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
1613 resc_max_val, p_mcp_resp);
1614 if (rc) {
1615 DP_NOTICE(p_hwfn,
1616 "MFW response failure for a max value setting of resource %d [%s]\n",
1617 res_id, qed_hw_get_resc_name(res_id));
1618 return rc;
1619 }
1620
1621 if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
1622 DP_INFO(p_hwfn,
1623 "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
1624 res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp);
1625
1626 return 0;
1627 }
1628
1629 static int
1630 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1631 {
1632 bool b_ah = QED_IS_AH(p_hwfn->cdev);
1633 u32 resc_max_val, mcp_resp;
1634 u8 res_id;
1635 int rc;
1636
1637 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
1638 switch (res_id) {
1639 case QED_LL2_QUEUE:
1640 resc_max_val = MAX_NUM_LL2_RX_QUEUES;
1641 break;
1642 case QED_RDMA_CNQ_RAM:
1643 /* No need for a case for QED_CMDQS_CQS since
1644 * CNQ/CMDQS are the same resource.
1645 */
1646 resc_max_val = NUM_OF_CMDQS_CQS;
1647 break;
1648 case QED_RDMA_STATS_QUEUE:
1649 resc_max_val = b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2
1650 : RDMA_NUM_STATISTIC_COUNTERS_BB;
1651 break;
1652 case QED_BDQ:
1653 resc_max_val = BDQ_NUM_RESOURCES;
1654 break;
1655 default:
1656 continue;
1657 }
1658
1659 rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
1660 resc_max_val, &mcp_resp);
1661 if (rc)
1662 return rc;
1663
1664 /* There's no point to continue to the next resource if the
1665 * command is not supported by the MFW.
1666 * We do continue if the command is supported but the resource
1667 * is unknown to the MFW. Such a resource will be later
1668 * configured with the default allocation values.
1669 */
1670 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
1671 return -EINVAL;
1672 }
1673
1674 return 0;
1675 }
1676
1677 static
1678 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn,
1679 enum qed_resources res_id,
1680 u32 *p_resc_num, u32 *p_resc_start)
1681 {
1682 u8 num_funcs = p_hwfn->num_funcs_on_engine;
1683 bool b_ah = QED_IS_AH(p_hwfn->cdev);
1684 struct qed_sb_cnt_info sb_cnt_info;
1685
1686 switch (res_id) {
1687 case QED_L2_QUEUE:
1688 *p_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
1689 MAX_NUM_L2_QUEUES_BB) / num_funcs;
1690 break;
1691 case QED_VPORT:
1692 *p_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
1693 MAX_NUM_VPORTS_BB) / num_funcs;
1694 break;
1695 case QED_RSS_ENG:
1696 *p_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
1697 ETH_RSS_ENGINE_NUM_BB) / num_funcs;
1698 break;
1699 case QED_PQ:
1700 *p_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
1701 MAX_QM_TX_QUEUES_BB) / num_funcs;
1702 *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
1703 break;
1704 case QED_RL:
1705 *p_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
1706 break;
1707 case QED_MAC:
1708 case QED_VLAN:
1709 /* Each VFC resource can accommodate both a MAC and a VLAN */
1710 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
1711 break;
1712 case QED_ILT:
1713 *p_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
1714 PXP_NUM_ILT_RECORDS_BB) / num_funcs;
1715 break;
1716 case QED_LL2_QUEUE:
1717 *p_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
1718 break;
1719 case QED_RDMA_CNQ_RAM:
1720 case QED_CMDQS_CQS:
1721 /* CNQ/CMDQS are the same resource */
1722 *p_resc_num = NUM_OF_CMDQS_CQS / num_funcs;
1723 break;
1724 case QED_RDMA_STATS_QUEUE:
1725 *p_resc_num = (b_ah ? RDMA_NUM_STATISTIC_COUNTERS_K2 :
1726 RDMA_NUM_STATISTIC_COUNTERS_BB) / num_funcs;
1727 break;
1728 case QED_BDQ:
1729 if (p_hwfn->hw_info.personality != QED_PCI_ISCSI &&
1730 p_hwfn->hw_info.personality != QED_PCI_FCOE)
1731 *p_resc_num = 0;
1732 else
1733 *p_resc_num = 1;
1734 break;
1735 case QED_SB:
1736 memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1737 qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1738 *p_resc_num = sb_cnt_info.sb_cnt;
1739 break;
1740 default:
1741 return -EINVAL;
1742 }
1743
1744 switch (res_id) {
1745 case QED_BDQ:
1746 if (!*p_resc_num)
1747 *p_resc_start = 0;
1748 else if (p_hwfn->cdev->num_ports_in_engines == 4)
1749 *p_resc_start = p_hwfn->port_id;
1750 else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI)
1751 *p_resc_start = p_hwfn->port_id;
1752 else if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
1753 *p_resc_start = p_hwfn->port_id + 2;
1754 break;
1755 default:
1756 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
1757 break;
1758 }
1759
1760 return 0;
1761 }
1762
1763 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn,
1764 enum qed_resources res_id)
1765 {
1766 u32 dflt_resc_num = 0, dflt_resc_start = 0;
1767 u32 mcp_resp, *p_resc_num, *p_resc_start;
1768 int rc;
1769
1770 p_resc_num = &RESC_NUM(p_hwfn, res_id);
1771 p_resc_start = &RESC_START(p_hwfn, res_id);
1772
1773 rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
1774 &dflt_resc_start);
1775 if (rc) {
1776 DP_ERR(p_hwfn,
1777 "Failed to get default amount for resource %d [%s]\n",
1778 res_id, qed_hw_get_resc_name(res_id));
1779 return rc;
1780 }
1781
1782 rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
1783 &mcp_resp, p_resc_num, p_resc_start);
1784 if (rc) {
1785 DP_NOTICE(p_hwfn,
1786 "MFW response failure for an allocation request for resource %d [%s]\n",
1787 res_id, qed_hw_get_resc_name(res_id));
1788 return rc;
1789 }
1790
1791 /* Default driver values are applied in the following cases:
1792 * - The resource allocation MB command is not supported by the MFW
1793 * - There is an internal error in the MFW while processing the request
1794 * - The resource ID is unknown to the MFW
1795 */
1796 if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
1797 DP_INFO(p_hwfn,
1798 "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
1799 res_id,
1800 qed_hw_get_resc_name(res_id),
1801 mcp_resp, dflt_resc_num, dflt_resc_start);
1802 *p_resc_num = dflt_resc_num;
1803 *p_resc_start = dflt_resc_start;
1804 goto out;
1805 }
1806
1807 /* Special handling for status blocks; Would be revised in future */
1808 if (res_id == QED_SB) {
1809 *p_resc_num -= 1;
1810 *p_resc_start -= p_hwfn->enabled_func_idx;
1811 }
1812 out:
1813 /* PQs have to divide by 8 [that's the HW granularity].
1814 * Reduce number so it would fit.
1815 */
1816 if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) {
1817 DP_INFO(p_hwfn,
1818 "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
1819 *p_resc_num,
1820 (*p_resc_num) & ~0x7,
1821 *p_resc_start, (*p_resc_start) & ~0x7);
1822 *p_resc_num &= ~0x7;
1823 *p_resc_start &= ~0x7;
1824 }
1825
1826 return 0;
1827 }
1828
1829 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn)
1830 {
1831 int rc;
1832 u8 res_id;
1833
1834 for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
1835 rc = __qed_hw_set_resc_info(p_hwfn, res_id);
1836 if (rc)
1837 return rc;
1838 }
1839
1840 return 0;
1841 }
1842
1843 #define QED_RESC_ALLOC_LOCK_RETRY_CNT 10
1844 #define QED_RESC_ALLOC_LOCK_RETRY_INTVL_US 10000 /* 10 msec */
1845
1846 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1847 {
1848 struct qed_resc_unlock_params resc_unlock_params;
1849 struct qed_resc_lock_params resc_lock_params;
1850 bool b_ah = QED_IS_AH(p_hwfn->cdev);
1851 u8 res_id;
1852 int rc;
1853
1854 /* Setting the max values of the soft resources and the following
1855 * resources allocation queries should be atomic. Since several PFs can
1856 * run in parallel - a resource lock is needed.
1857 * If either the resource lock or resource set value commands are not
1858 * supported - skip the the max values setting, release the lock if
1859 * needed, and proceed to the queries. Other failures, including a
1860 * failure to acquire the lock, will cause this function to fail.
1861 */
1862 memset(&resc_lock_params, 0, sizeof(resc_lock_params));
1863 resc_lock_params.resource = QED_RESC_LOCK_RESC_ALLOC;
1864 resc_lock_params.retry_num = QED_RESC_ALLOC_LOCK_RETRY_CNT;
1865 resc_lock_params.retry_interval = QED_RESC_ALLOC_LOCK_RETRY_INTVL_US;
1866 resc_lock_params.sleep_b4_retry = true;
1867 memset(&resc_unlock_params, 0, sizeof(resc_unlock_params));
1868 resc_unlock_params.resource = QED_RESC_LOCK_RESC_ALLOC;
1869
1870 rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
1871 if (rc && rc != -EINVAL) {
1872 return rc;
1873 } else if (rc == -EINVAL) {
1874 DP_INFO(p_hwfn,
1875 "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
1876 } else if (!rc && !resc_lock_params.b_granted) {
1877 DP_NOTICE(p_hwfn,
1878 "Failed to acquire the resource lock for the resource allocation commands\n");
1879 return -EBUSY;
1880 } else {
1881 rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt);
1882 if (rc && rc != -EINVAL) {
1883 DP_NOTICE(p_hwfn,
1884 "Failed to set the max values of the soft resources\n");
1885 goto unlock_and_exit;
1886 } else if (rc == -EINVAL) {
1887 DP_INFO(p_hwfn,
1888 "Skip the max values setting of the soft resources since it is not supported by the MFW\n");
1889 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt,
1890 &resc_unlock_params);
1891 if (rc)
1892 DP_INFO(p_hwfn,
1893 "Failed to release the resource lock for the resource allocation commands\n");
1894 }
1895 }
1896
1897 rc = qed_hw_set_resc_info(p_hwfn);
1898 if (rc)
1899 goto unlock_and_exit;
1900
1901 if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
1902 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
1903 if (rc)
1904 DP_INFO(p_hwfn,
1905 "Failed to release the resource lock for the resource allocation commands\n");
1906 }
1907
1908 /* Sanity for ILT */
1909 if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
1910 (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
1911 DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
1912 RESC_START(p_hwfn, QED_ILT),
1913 RESC_END(p_hwfn, QED_ILT) - 1);
1914 return -EINVAL;
1915 }
1916
1917 qed_hw_set_feat(p_hwfn);
1918
1919 for (res_id = 0; res_id < QED_MAX_RESC; res_id++)
1920 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n",
1921 qed_hw_get_resc_name(res_id),
1922 RESC_NUM(p_hwfn, res_id),
1923 RESC_START(p_hwfn, res_id));
1924
1925 return 0;
1926
1927 unlock_and_exit:
1928 if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
1929 qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
1930 return rc;
1931 }
1932
1933 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1934 {
1935 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1936 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1937 struct qed_mcp_link_params *link;
1938
1939 /* Read global nvm_cfg address */
1940 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1941
1942 /* Verify MCP has initialized it */
1943 if (!nvm_cfg_addr) {
1944 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1945 return -EINVAL;
1946 }
1947
1948 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
1949 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1950
1951 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1952 offsetof(struct nvm_cfg1, glob) +
1953 offsetof(struct nvm_cfg1_glob, core_cfg);
1954
1955 core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1956
1957 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1958 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1959 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
1960 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1961 break;
1962 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
1963 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1964 break;
1965 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
1966 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1967 break;
1968 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
1969 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1970 break;
1971 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
1972 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1973 break;
1974 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
1975 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1976 break;
1977 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
1978 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1979 break;
1980 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
1981 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1982 break;
1983 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
1984 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G;
1985 break;
1986 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
1987 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1988 break;
1989 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
1990 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G;
1991 break;
1992 default:
1993 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
1994 break;
1995 }
1996
1997 /* Read default link configuration */
1998 link = &p_hwfn->mcp_info->link_input;
1999 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2000 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2001 link_temp = qed_rd(p_hwfn, p_ptt,
2002 port_cfg_addr +
2003 offsetof(struct nvm_cfg1_port, speed_cap_mask));
2004 link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
2005 link->speed.advertised_speeds = link_temp;
2006
2007 link_temp = link->speed.advertised_speeds;
2008 p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
2009
2010 link_temp = qed_rd(p_hwfn, p_ptt,
2011 port_cfg_addr +
2012 offsetof(struct nvm_cfg1_port, link_settings));
2013 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
2014 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
2015 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
2016 link->speed.autoneg = true;
2017 break;
2018 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
2019 link->speed.forced_speed = 1000;
2020 break;
2021 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
2022 link->speed.forced_speed = 10000;
2023 break;
2024 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
2025 link->speed.forced_speed = 25000;
2026 break;
2027 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
2028 link->speed.forced_speed = 40000;
2029 break;
2030 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
2031 link->speed.forced_speed = 50000;
2032 break;
2033 case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
2034 link->speed.forced_speed = 100000;
2035 break;
2036 default:
2037 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
2038 }
2039
2040 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
2041 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
2042 link->pause.autoneg = !!(link_temp &
2043 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
2044 link->pause.forced_rx = !!(link_temp &
2045 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
2046 link->pause.forced_tx = !!(link_temp &
2047 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
2048 link->loopback_mode = 0;
2049
2050 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2051 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
2052 link->speed.forced_speed, link->speed.advertised_speeds,
2053 link->speed.autoneg, link->pause.autoneg);
2054
2055 /* Read Multi-function information from shmem */
2056 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2057 offsetof(struct nvm_cfg1, glob) +
2058 offsetof(struct nvm_cfg1_glob, generic_cont0);
2059
2060 generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
2061
2062 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
2063 NVM_CFG1_GLOB_MF_MODE_OFFSET;
2064
2065 switch (mf_mode) {
2066 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
2067 p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
2068 break;
2069 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
2070 p_hwfn->cdev->mf_mode = QED_MF_NPAR;
2071 break;
2072 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
2073 p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
2074 break;
2075 }
2076 DP_INFO(p_hwfn, "Multi function mode is %08x\n",
2077 p_hwfn->cdev->mf_mode);
2078
2079 /* Read Multi-function information from shmem */
2080 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2081 offsetof(struct nvm_cfg1, glob) +
2082 offsetof(struct nvm_cfg1_glob, device_capabilities);
2083
2084 device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
2085 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
2086 __set_bit(QED_DEV_CAP_ETH,
2087 &p_hwfn->hw_info.device_capabilities);
2088 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
2089 __set_bit(QED_DEV_CAP_FCOE,
2090 &p_hwfn->hw_info.device_capabilities);
2091 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
2092 __set_bit(QED_DEV_CAP_ISCSI,
2093 &p_hwfn->hw_info.device_capabilities);
2094 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
2095 __set_bit(QED_DEV_CAP_ROCE,
2096 &p_hwfn->hw_info.device_capabilities);
2097
2098 return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
2099 }
2100
2101 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2102 {
2103 u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
2104 u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
2105 struct qed_dev *cdev = p_hwfn->cdev;
2106
2107 num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
2108
2109 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
2110 * in the other bits are selected.
2111 * Bits 1-15 are for functions 1-15, respectively, and their value is
2112 * '0' only for enabled functions (function 0 always exists and
2113 * enabled).
2114 * In case of CMT, only the "even" functions are enabled, and thus the
2115 * number of functions for both hwfns is learnt from the same bits.
2116 */
2117 reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
2118
2119 if (reg_function_hide & 0x1) {
2120 if (QED_IS_BB(cdev)) {
2121 if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) {
2122 num_funcs = 0;
2123 eng_mask = 0xaaaa;
2124 } else {
2125 num_funcs = 1;
2126 eng_mask = 0x5554;
2127 }
2128 } else {
2129 num_funcs = 1;
2130 eng_mask = 0xfffe;
2131 }
2132
2133 /* Get the number of the enabled functions on the engine */
2134 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
2135 while (tmp) {
2136 if (tmp & 0x1)
2137 num_funcs++;
2138 tmp >>= 0x1;
2139 }
2140
2141 /* Get the PF index within the enabled functions */
2142 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
2143 tmp = reg_function_hide & eng_mask & low_pfs_mask;
2144 while (tmp) {
2145 if (tmp & 0x1)
2146 enabled_func_idx--;
2147 tmp >>= 0x1;
2148 }
2149 }
2150
2151 p_hwfn->num_funcs_on_engine = num_funcs;
2152 p_hwfn->enabled_func_idx = enabled_func_idx;
2153
2154 DP_VERBOSE(p_hwfn,
2155 NETIF_MSG_PROBE,
2156 "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
2157 p_hwfn->rel_pf_id,
2158 p_hwfn->abs_pf_id,
2159 p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
2160 }
2161
2162 static void qed_hw_info_port_num_bb(struct qed_hwfn *p_hwfn,
2163 struct qed_ptt *p_ptt)
2164 {
2165 u32 port_mode;
2166
2167 port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0);
2168
2169 if (port_mode < 3) {
2170 p_hwfn->cdev->num_ports_in_engines = 1;
2171 } else if (port_mode <= 5) {
2172 p_hwfn->cdev->num_ports_in_engines = 2;
2173 } else {
2174 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
2175 p_hwfn->cdev->num_ports_in_engines);
2176
2177 /* Default num_ports_in_engines to something */
2178 p_hwfn->cdev->num_ports_in_engines = 1;
2179 }
2180 }
2181
2182 static void qed_hw_info_port_num_ah(struct qed_hwfn *p_hwfn,
2183 struct qed_ptt *p_ptt)
2184 {
2185 u32 port;
2186 int i;
2187
2188 p_hwfn->cdev->num_ports_in_engines = 0;
2189
2190 for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
2191 port = qed_rd(p_hwfn, p_ptt,
2192 CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
2193 if (port & 1)
2194 p_hwfn->cdev->num_ports_in_engines++;
2195 }
2196
2197 if (!p_hwfn->cdev->num_ports_in_engines) {
2198 DP_NOTICE(p_hwfn, "All NIG ports are inactive\n");
2199
2200 /* Default num_ports_in_engine to something */
2201 p_hwfn->cdev->num_ports_in_engines = 1;
2202 }
2203 }
2204
2205 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2206 {
2207 if (QED_IS_BB(p_hwfn->cdev))
2208 qed_hw_info_port_num_bb(p_hwfn, p_ptt);
2209 else
2210 qed_hw_info_port_num_ah(p_hwfn, p_ptt);
2211 }
2212
2213 static int
2214 qed_get_hw_info(struct qed_hwfn *p_hwfn,
2215 struct qed_ptt *p_ptt,
2216 enum qed_pci_personality personality)
2217 {
2218 int rc;
2219
2220 /* Since all information is common, only first hwfns should do this */
2221 if (IS_LEAD_HWFN(p_hwfn)) {
2222 rc = qed_iov_hw_info(p_hwfn);
2223 if (rc)
2224 return rc;
2225 }
2226
2227 qed_hw_info_port_num(p_hwfn, p_ptt);
2228
2229 qed_hw_get_nvm_info(p_hwfn, p_ptt);
2230
2231 rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
2232 if (rc)
2233 return rc;
2234
2235 if (qed_mcp_is_init(p_hwfn))
2236 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
2237 p_hwfn->mcp_info->func_info.mac);
2238 else
2239 eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
2240
2241 if (qed_mcp_is_init(p_hwfn)) {
2242 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
2243 p_hwfn->hw_info.ovlan =
2244 p_hwfn->mcp_info->func_info.ovlan;
2245
2246 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
2247 }
2248
2249 if (qed_mcp_is_init(p_hwfn)) {
2250 enum qed_pci_personality protocol;
2251
2252 protocol = p_hwfn->mcp_info->func_info.protocol;
2253 p_hwfn->hw_info.personality = protocol;
2254 }
2255
2256 qed_get_num_funcs(p_hwfn, p_ptt);
2257
2258 if (qed_mcp_is_init(p_hwfn))
2259 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
2260
2261 return qed_hw_get_resc(p_hwfn, p_ptt);
2262 }
2263
2264 static int qed_get_dev_info(struct qed_dev *cdev)
2265 {
2266 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2267 u16 device_id_mask;
2268 u32 tmp;
2269
2270 /* Read Vendor Id / Device Id */
2271 pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
2272 pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
2273
2274 /* Determine type */
2275 device_id_mask = cdev->device_id & QED_DEV_ID_MASK;
2276 switch (device_id_mask) {
2277 case QED_DEV_ID_MASK_BB:
2278 cdev->type = QED_DEV_TYPE_BB;
2279 break;
2280 case QED_DEV_ID_MASK_AH:
2281 cdev->type = QED_DEV_TYPE_AH;
2282 break;
2283 default:
2284 DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id);
2285 return -EBUSY;
2286 }
2287
2288 cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
2289 MISCS_REG_CHIP_NUM);
2290 cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
2291 MISCS_REG_CHIP_REV);
2292 MASK_FIELD(CHIP_REV, cdev->chip_rev);
2293
2294 /* Learn number of HW-functions */
2295 tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
2296 MISCS_REG_CMT_ENABLED_FOR_PAIR);
2297
2298 if (tmp & (1 << p_hwfn->rel_pf_id)) {
2299 DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
2300 cdev->num_hwfns = 2;
2301 } else {
2302 cdev->num_hwfns = 1;
2303 }
2304
2305 cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
2306 MISCS_REG_CHIP_TEST_REG) >> 4;
2307 MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
2308 cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
2309 MISCS_REG_CHIP_METAL);
2310 MASK_FIELD(CHIP_METAL, cdev->chip_metal);
2311
2312 DP_INFO(cdev->hwfns,
2313 "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
2314 QED_IS_BB(cdev) ? "BB" : "AH",
2315 'A' + cdev->chip_rev,
2316 (int)cdev->chip_metal,
2317 cdev->chip_num, cdev->chip_rev,
2318 cdev->chip_bond_id, cdev->chip_metal);
2319
2320 if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
2321 DP_NOTICE(cdev->hwfns,
2322 "The chip type/rev (BB A0) is not supported!\n");
2323 return -EINVAL;
2324 }
2325
2326 return 0;
2327 }
2328
2329 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
2330 void __iomem *p_regview,
2331 void __iomem *p_doorbells,
2332 enum qed_pci_personality personality)
2333 {
2334 int rc = 0;
2335
2336 /* Split PCI bars evenly between hwfns */
2337 p_hwfn->regview = p_regview;
2338 p_hwfn->doorbells = p_doorbells;
2339
2340 if (IS_VF(p_hwfn->cdev))
2341 return qed_vf_hw_prepare(p_hwfn);
2342
2343 /* Validate that chip access is feasible */
2344 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
2345 DP_ERR(p_hwfn,
2346 "Reading the ME register returns all Fs; Preventing further chip access\n");
2347 return -EINVAL;
2348 }
2349
2350 get_function_id(p_hwfn);
2351
2352 /* Allocate PTT pool */
2353 rc = qed_ptt_pool_alloc(p_hwfn);
2354 if (rc)
2355 goto err0;
2356
2357 /* Allocate the main PTT */
2358 p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
2359
2360 /* First hwfn learns basic information, e.g., number of hwfns */
2361 if (!p_hwfn->my_id) {
2362 rc = qed_get_dev_info(p_hwfn->cdev);
2363 if (rc)
2364 goto err1;
2365 }
2366
2367 qed_hw_hwfn_prepare(p_hwfn);
2368
2369 /* Initialize MCP structure */
2370 rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
2371 if (rc) {
2372 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
2373 goto err1;
2374 }
2375
2376 /* Read the device configuration information from the HW and SHMEM */
2377 rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
2378 if (rc) {
2379 DP_NOTICE(p_hwfn, "Failed to get HW information\n");
2380 goto err2;
2381 }
2382
2383 /* Sending a mailbox to the MFW should be done after qed_get_hw_info()
2384 * is called as it sets the ports number in an engine.
2385 */
2386 if (IS_LEAD_HWFN(p_hwfn)) {
2387 rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
2388 if (rc)
2389 DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n");
2390 }
2391
2392 /* Allocate the init RT array and initialize the init-ops engine */
2393 rc = qed_init_alloc(p_hwfn);
2394 if (rc)
2395 goto err2;
2396
2397 return rc;
2398 err2:
2399 if (IS_LEAD_HWFN(p_hwfn))
2400 qed_iov_free_hw_info(p_hwfn->cdev);
2401 qed_mcp_free(p_hwfn);
2402 err1:
2403 qed_hw_hwfn_free(p_hwfn);
2404 err0:
2405 return rc;
2406 }
2407
2408 int qed_hw_prepare(struct qed_dev *cdev,
2409 int personality)
2410 {
2411 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2412 int rc;
2413
2414 /* Store the precompiled init data ptrs */
2415 if (IS_PF(cdev))
2416 qed_init_iro_array(cdev);
2417
2418 /* Initialize the first hwfn - will learn number of hwfns */
2419 rc = qed_hw_prepare_single(p_hwfn,
2420 cdev->regview,
2421 cdev->doorbells, personality);
2422 if (rc)
2423 return rc;
2424
2425 personality = p_hwfn->hw_info.personality;
2426
2427 /* Initialize the rest of the hwfns */
2428 if (cdev->num_hwfns > 1) {
2429 void __iomem *p_regview, *p_doorbell;
2430 u8 __iomem *addr;
2431
2432 /* adjust bar offset for second engine */
2433 addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
2434 p_regview = addr;
2435
2436 /* adjust doorbell bar offset for second engine */
2437 addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
2438 p_doorbell = addr;
2439
2440 /* prepare second hw function */
2441 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
2442 p_doorbell, personality);
2443
2444 /* in case of error, need to free the previously
2445 * initiliazed hwfn 0.
2446 */
2447 if (rc) {
2448 if (IS_PF(cdev)) {
2449 qed_init_free(p_hwfn);
2450 qed_mcp_free(p_hwfn);
2451 qed_hw_hwfn_free(p_hwfn);
2452 }
2453 }
2454 }
2455
2456 return rc;
2457 }
2458
2459 void qed_hw_remove(struct qed_dev *cdev)
2460 {
2461 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2462 int i;
2463
2464 if (IS_PF(cdev))
2465 qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
2466 QED_OV_DRIVER_STATE_NOT_LOADED);
2467
2468 for_each_hwfn(cdev, i) {
2469 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2470
2471 if (IS_VF(cdev)) {
2472 qed_vf_pf_release(p_hwfn);
2473 continue;
2474 }
2475
2476 qed_init_free(p_hwfn);
2477 qed_hw_hwfn_free(p_hwfn);
2478 qed_mcp_free(p_hwfn);
2479 }
2480
2481 qed_iov_free_hw_info(cdev);
2482 }
2483
2484 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
2485 struct qed_chain *p_chain)
2486 {
2487 void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
2488 dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
2489 struct qed_chain_next *p_next;
2490 u32 size, i;
2491
2492 if (!p_virt)
2493 return;
2494
2495 size = p_chain->elem_size * p_chain->usable_per_page;
2496
2497 for (i = 0; i < p_chain->page_cnt; i++) {
2498 if (!p_virt)
2499 break;
2500
2501 p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
2502 p_virt_next = p_next->next_virt;
2503 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
2504
2505 dma_free_coherent(&cdev->pdev->dev,
2506 QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
2507
2508 p_virt = p_virt_next;
2509 p_phys = p_phys_next;
2510 }
2511 }
2512
2513 static void qed_chain_free_single(struct qed_dev *cdev,
2514 struct qed_chain *p_chain)
2515 {
2516 if (!p_chain->p_virt_addr)
2517 return;
2518
2519 dma_free_coherent(&cdev->pdev->dev,
2520 QED_CHAIN_PAGE_SIZE,
2521 p_chain->p_virt_addr, p_chain->p_phys_addr);
2522 }
2523
2524 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2525 {
2526 void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
2527 u32 page_cnt = p_chain->page_cnt, i, pbl_size;
2528 u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table;
2529
2530 if (!pp_virt_addr_tbl)
2531 return;
2532
2533 if (!p_pbl_virt)
2534 goto out;
2535
2536 for (i = 0; i < page_cnt; i++) {
2537 if (!pp_virt_addr_tbl[i])
2538 break;
2539
2540 dma_free_coherent(&cdev->pdev->dev,
2541 QED_CHAIN_PAGE_SIZE,
2542 pp_virt_addr_tbl[i],
2543 *(dma_addr_t *)p_pbl_virt);
2544
2545 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2546 }
2547
2548 pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2549 dma_free_coherent(&cdev->pdev->dev,
2550 pbl_size,
2551 p_chain->pbl_sp.p_virt_table,
2552 p_chain->pbl_sp.p_phys_table);
2553 out:
2554 vfree(p_chain->pbl.pp_virt_addr_tbl);
2555 }
2556
2557 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
2558 {
2559 switch (p_chain->mode) {
2560 case QED_CHAIN_MODE_NEXT_PTR:
2561 qed_chain_free_next_ptr(cdev, p_chain);
2562 break;
2563 case QED_CHAIN_MODE_SINGLE:
2564 qed_chain_free_single(cdev, p_chain);
2565 break;
2566 case QED_CHAIN_MODE_PBL:
2567 qed_chain_free_pbl(cdev, p_chain);
2568 break;
2569 }
2570 }
2571
2572 static int
2573 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
2574 enum qed_chain_cnt_type cnt_type,
2575 size_t elem_size, u32 page_cnt)
2576 {
2577 u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
2578
2579 /* The actual chain size can be larger than the maximal possible value
2580 * after rounding up the requested elements number to pages, and after
2581 * taking into acount the unusuable elements (next-ptr elements).
2582 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
2583 * size/capacity fields are of a u32 type.
2584 */
2585 if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
2586 chain_size > ((u32)U16_MAX + 1)) ||
2587 (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) {
2588 DP_NOTICE(cdev,
2589 "The actual chain size (0x%llx) is larger than the maximal possible value\n",
2590 chain_size);
2591 return -EINVAL;
2592 }
2593
2594 return 0;
2595 }
2596
2597 static int
2598 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
2599 {
2600 void *p_virt = NULL, *p_virt_prev = NULL;
2601 dma_addr_t p_phys = 0;
2602 u32 i;
2603
2604 for (i = 0; i < p_chain->page_cnt; i++) {
2605 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2606 QED_CHAIN_PAGE_SIZE,
2607 &p_phys, GFP_KERNEL);
2608 if (!p_virt)
2609 return -ENOMEM;
2610
2611 if (i == 0) {
2612 qed_chain_init_mem(p_chain, p_virt, p_phys);
2613 qed_chain_reset(p_chain);
2614 } else {
2615 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2616 p_virt, p_phys);
2617 }
2618
2619 p_virt_prev = p_virt;
2620 }
2621 /* Last page's next element should point to the beginning of the
2622 * chain.
2623 */
2624 qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
2625 p_chain->p_virt_addr,
2626 p_chain->p_phys_addr);
2627
2628 return 0;
2629 }
2630
2631 static int
2632 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
2633 {
2634 dma_addr_t p_phys = 0;
2635 void *p_virt = NULL;
2636
2637 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2638 QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
2639 if (!p_virt)
2640 return -ENOMEM;
2641
2642 qed_chain_init_mem(p_chain, p_virt, p_phys);
2643 qed_chain_reset(p_chain);
2644
2645 return 0;
2646 }
2647
2648 static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
2649 {
2650 u32 page_cnt = p_chain->page_cnt, size, i;
2651 dma_addr_t p_phys = 0, p_pbl_phys = 0;
2652 void **pp_virt_addr_tbl = NULL;
2653 u8 *p_pbl_virt = NULL;
2654 void *p_virt = NULL;
2655
2656 size = page_cnt * sizeof(*pp_virt_addr_tbl);
2657 pp_virt_addr_tbl = vzalloc(size);
2658 if (!pp_virt_addr_tbl)
2659 return -ENOMEM;
2660
2661 /* The allocation of the PBL table is done with its full size, since it
2662 * is expected to be successive.
2663 * qed_chain_init_pbl_mem() is called even in a case of an allocation
2664 * failure, since pp_virt_addr_tbl was previously allocated, and it
2665 * should be saved to allow its freeing during the error flow.
2666 */
2667 size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
2668 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
2669 size, &p_pbl_phys, GFP_KERNEL);
2670 qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
2671 pp_virt_addr_tbl);
2672 if (!p_pbl_virt)
2673 return -ENOMEM;
2674
2675 for (i = 0; i < page_cnt; i++) {
2676 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2677 QED_CHAIN_PAGE_SIZE,
2678 &p_phys, GFP_KERNEL);
2679 if (!p_virt)
2680 return -ENOMEM;
2681
2682 if (i == 0) {
2683 qed_chain_init_mem(p_chain, p_virt, p_phys);
2684 qed_chain_reset(p_chain);
2685 }
2686
2687 /* Fill the PBL table with the physical address of the page */
2688 *(dma_addr_t *)p_pbl_virt = p_phys;
2689 /* Keep the virtual address of the page */
2690 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
2691
2692 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
2693 }
2694
2695 return 0;
2696 }
2697
2698 int qed_chain_alloc(struct qed_dev *cdev,
2699 enum qed_chain_use_mode intended_use,
2700 enum qed_chain_mode mode,
2701 enum qed_chain_cnt_type cnt_type,
2702 u32 num_elems, size_t elem_size, struct qed_chain *p_chain)
2703 {
2704 u32 page_cnt;
2705 int rc = 0;
2706
2707 if (mode == QED_CHAIN_MODE_SINGLE)
2708 page_cnt = 1;
2709 else
2710 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
2711
2712 rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
2713 if (rc) {
2714 DP_NOTICE(cdev,
2715 "Cannot allocate a chain with the given arguments:\n");
2716 DP_NOTICE(cdev,
2717 "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
2718 intended_use, mode, cnt_type, num_elems, elem_size);
2719 return rc;
2720 }
2721
2722 qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
2723 mode, cnt_type);
2724
2725 switch (mode) {
2726 case QED_CHAIN_MODE_NEXT_PTR:
2727 rc = qed_chain_alloc_next_ptr(cdev, p_chain);
2728 break;
2729 case QED_CHAIN_MODE_SINGLE:
2730 rc = qed_chain_alloc_single(cdev, p_chain);
2731 break;
2732 case QED_CHAIN_MODE_PBL:
2733 rc = qed_chain_alloc_pbl(cdev, p_chain);
2734 break;
2735 }
2736 if (rc)
2737 goto nomem;
2738
2739 return 0;
2740
2741 nomem:
2742 qed_chain_free(cdev, p_chain);
2743 return rc;
2744 }
2745
2746 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
2747 {
2748 if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
2749 u16 min, max;
2750
2751 min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
2752 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
2753 DP_NOTICE(p_hwfn,
2754 "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
2755 src_id, min, max);
2756
2757 return -EINVAL;
2758 }
2759
2760 *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
2761
2762 return 0;
2763 }
2764
2765 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
2766 {
2767 if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
2768 u8 min, max;
2769
2770 min = (u8)RESC_START(p_hwfn, QED_VPORT);
2771 max = min + RESC_NUM(p_hwfn, QED_VPORT);
2772 DP_NOTICE(p_hwfn,
2773 "vport id [%d] is not valid, available indices [%d - %d]\n",
2774 src_id, min, max);
2775
2776 return -EINVAL;
2777 }
2778
2779 *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
2780
2781 return 0;
2782 }
2783
2784 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
2785 {
2786 if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
2787 u8 min, max;
2788
2789 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
2790 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
2791 DP_NOTICE(p_hwfn,
2792 "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
2793 src_id, min, max);
2794
2795 return -EINVAL;
2796 }
2797
2798 *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
2799
2800 return 0;
2801 }
2802
2803 static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low,
2804 u8 *p_filter)
2805 {
2806 *p_high = p_filter[1] | (p_filter[0] << 8);
2807 *p_low = p_filter[5] | (p_filter[4] << 8) |
2808 (p_filter[3] << 16) | (p_filter[2] << 24);
2809 }
2810
2811 int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn,
2812 struct qed_ptt *p_ptt, u8 *p_filter)
2813 {
2814 u32 high = 0, low = 0, en;
2815 int i;
2816
2817 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
2818 return 0;
2819
2820 qed_llh_mac_to_filter(&high, &low, p_filter);
2821
2822 /* Find a free entry and utilize it */
2823 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
2824 en = qed_rd(p_hwfn, p_ptt,
2825 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
2826 if (en)
2827 continue;
2828 qed_wr(p_hwfn, p_ptt,
2829 NIG_REG_LLH_FUNC_FILTER_VALUE +
2830 2 * i * sizeof(u32), low);
2831 qed_wr(p_hwfn, p_ptt,
2832 NIG_REG_LLH_FUNC_FILTER_VALUE +
2833 (2 * i + 1) * sizeof(u32), high);
2834 qed_wr(p_hwfn, p_ptt,
2835 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
2836 qed_wr(p_hwfn, p_ptt,
2837 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
2838 i * sizeof(u32), 0);
2839 qed_wr(p_hwfn, p_ptt,
2840 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
2841 break;
2842 }
2843 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
2844 DP_NOTICE(p_hwfn,
2845 "Failed to find an empty LLH filter to utilize\n");
2846 return -EINVAL;
2847 }
2848
2849 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2850 "mac: %pM is added at %d\n",
2851 p_filter, i);
2852
2853 return 0;
2854 }
2855
2856 void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn,
2857 struct qed_ptt *p_ptt, u8 *p_filter)
2858 {
2859 u32 high = 0, low = 0;
2860 int i;
2861
2862 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
2863 return;
2864
2865 qed_llh_mac_to_filter(&high, &low, p_filter);
2866
2867 /* Find the entry and clean it */
2868 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
2869 if (qed_rd(p_hwfn, p_ptt,
2870 NIG_REG_LLH_FUNC_FILTER_VALUE +
2871 2 * i * sizeof(u32)) != low)
2872 continue;
2873 if (qed_rd(p_hwfn, p_ptt,
2874 NIG_REG_LLH_FUNC_FILTER_VALUE +
2875 (2 * i + 1) * sizeof(u32)) != high)
2876 continue;
2877
2878 qed_wr(p_hwfn, p_ptt,
2879 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
2880 qed_wr(p_hwfn, p_ptt,
2881 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
2882 qed_wr(p_hwfn, p_ptt,
2883 NIG_REG_LLH_FUNC_FILTER_VALUE +
2884 (2 * i + 1) * sizeof(u32), 0);
2885
2886 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2887 "mac: %pM is removed from %d\n",
2888 p_filter, i);
2889 break;
2890 }
2891 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
2892 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
2893 }
2894
2895 int
2896 qed_llh_add_protocol_filter(struct qed_hwfn *p_hwfn,
2897 struct qed_ptt *p_ptt,
2898 u16 source_port_or_eth_type,
2899 u16 dest_port, enum qed_llh_port_filter_type_t type)
2900 {
2901 u32 high = 0, low = 0, en;
2902 int i;
2903
2904 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
2905 return 0;
2906
2907 switch (type) {
2908 case QED_LLH_FILTER_ETHERTYPE:
2909 high = source_port_or_eth_type;
2910 break;
2911 case QED_LLH_FILTER_TCP_SRC_PORT:
2912 case QED_LLH_FILTER_UDP_SRC_PORT:
2913 low = source_port_or_eth_type << 16;
2914 break;
2915 case QED_LLH_FILTER_TCP_DEST_PORT:
2916 case QED_LLH_FILTER_UDP_DEST_PORT:
2917 low = dest_port;
2918 break;
2919 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
2920 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
2921 low = (source_port_or_eth_type << 16) | dest_port;
2922 break;
2923 default:
2924 DP_NOTICE(p_hwfn,
2925 "Non valid LLH protocol filter type %d\n", type);
2926 return -EINVAL;
2927 }
2928 /* Find a free entry and utilize it */
2929 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
2930 en = qed_rd(p_hwfn, p_ptt,
2931 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
2932 if (en)
2933 continue;
2934 qed_wr(p_hwfn, p_ptt,
2935 NIG_REG_LLH_FUNC_FILTER_VALUE +
2936 2 * i * sizeof(u32), low);
2937 qed_wr(p_hwfn, p_ptt,
2938 NIG_REG_LLH_FUNC_FILTER_VALUE +
2939 (2 * i + 1) * sizeof(u32), high);
2940 qed_wr(p_hwfn, p_ptt,
2941 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
2942 qed_wr(p_hwfn, p_ptt,
2943 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
2944 i * sizeof(u32), 1 << type);
2945 qed_wr(p_hwfn, p_ptt,
2946 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
2947 break;
2948 }
2949 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
2950 DP_NOTICE(p_hwfn,
2951 "Failed to find an empty LLH filter to utilize\n");
2952 return -EINVAL;
2953 }
2954 switch (type) {
2955 case QED_LLH_FILTER_ETHERTYPE:
2956 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2957 "ETH type %x is added at %d\n",
2958 source_port_or_eth_type, i);
2959 break;
2960 case QED_LLH_FILTER_TCP_SRC_PORT:
2961 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2962 "TCP src port %x is added at %d\n",
2963 source_port_or_eth_type, i);
2964 break;
2965 case QED_LLH_FILTER_UDP_SRC_PORT:
2966 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2967 "UDP src port %x is added at %d\n",
2968 source_port_or_eth_type, i);
2969 break;
2970 case QED_LLH_FILTER_TCP_DEST_PORT:
2971 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2972 "TCP dst port %x is added at %d\n", dest_port, i);
2973 break;
2974 case QED_LLH_FILTER_UDP_DEST_PORT:
2975 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2976 "UDP dst port %x is added at %d\n", dest_port, i);
2977 break;
2978 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
2979 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2980 "TCP src/dst ports %x/%x are added at %d\n",
2981 source_port_or_eth_type, dest_port, i);
2982 break;
2983 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
2984 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2985 "UDP src/dst ports %x/%x are added at %d\n",
2986 source_port_or_eth_type, dest_port, i);
2987 break;
2988 }
2989 return 0;
2990 }
2991
2992 void
2993 qed_llh_remove_protocol_filter(struct qed_hwfn *p_hwfn,
2994 struct qed_ptt *p_ptt,
2995 u16 source_port_or_eth_type,
2996 u16 dest_port,
2997 enum qed_llh_port_filter_type_t type)
2998 {
2999 u32 high = 0, low = 0;
3000 int i;
3001
3002 if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
3003 return;
3004
3005 switch (type) {
3006 case QED_LLH_FILTER_ETHERTYPE:
3007 high = source_port_or_eth_type;
3008 break;
3009 case QED_LLH_FILTER_TCP_SRC_PORT:
3010 case QED_LLH_FILTER_UDP_SRC_PORT:
3011 low = source_port_or_eth_type << 16;
3012 break;
3013 case QED_LLH_FILTER_TCP_DEST_PORT:
3014 case QED_LLH_FILTER_UDP_DEST_PORT:
3015 low = dest_port;
3016 break;
3017 case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
3018 case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
3019 low = (source_port_or_eth_type << 16) | dest_port;
3020 break;
3021 default:
3022 DP_NOTICE(p_hwfn,
3023 "Non valid LLH protocol filter type %d\n", type);
3024 return;
3025 }
3026
3027 for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
3028 if (!qed_rd(p_hwfn, p_ptt,
3029 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
3030 continue;
3031 if (!qed_rd(p_hwfn, p_ptt,
3032 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
3033 continue;
3034 if (!(qed_rd(p_hwfn, p_ptt,
3035 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3036 i * sizeof(u32)) & BIT(type)))
3037 continue;
3038 if (qed_rd(p_hwfn, p_ptt,
3039 NIG_REG_LLH_FUNC_FILTER_VALUE +
3040 2 * i * sizeof(u32)) != low)
3041 continue;
3042 if (qed_rd(p_hwfn, p_ptt,
3043 NIG_REG_LLH_FUNC_FILTER_VALUE +
3044 (2 * i + 1) * sizeof(u32)) != high)
3045 continue;
3046
3047 qed_wr(p_hwfn, p_ptt,
3048 NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
3049 qed_wr(p_hwfn, p_ptt,
3050 NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
3051 qed_wr(p_hwfn, p_ptt,
3052 NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
3053 i * sizeof(u32), 0);
3054 qed_wr(p_hwfn, p_ptt,
3055 NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0);
3056 qed_wr(p_hwfn, p_ptt,
3057 NIG_REG_LLH_FUNC_FILTER_VALUE +
3058 (2 * i + 1) * sizeof(u32), 0);
3059 break;
3060 }
3061
3062 if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
3063 DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n");
3064 }
3065
3066 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
3067 u32 hw_addr, void *p_eth_qzone,
3068 size_t eth_qzone_size, u8 timeset)
3069 {
3070 struct coalescing_timeset *p_coal_timeset;
3071
3072 if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
3073 DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
3074 return -EINVAL;
3075 }
3076
3077 p_coal_timeset = p_eth_qzone;
3078 memset(p_coal_timeset, 0, eth_qzone_size);
3079 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
3080 SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
3081 qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
3082
3083 return 0;
3084 }
3085
3086 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
3087 u16 coalesce, u8 qid, u16 sb_id)
3088 {
3089 struct ustorm_eth_queue_zone eth_qzone;
3090 u8 timeset, timer_res;
3091 u16 fw_qid = 0;
3092 u32 address;
3093 int rc;
3094
3095 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3096 if (coalesce <= 0x7F) {
3097 timer_res = 0;
3098 } else if (coalesce <= 0xFF) {
3099 timer_res = 1;
3100 } else if (coalesce <= 0x1FF) {
3101 timer_res = 2;
3102 } else {
3103 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3104 return -EINVAL;
3105 }
3106 timeset = (u8)(coalesce >> timer_res);
3107
3108 rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3109 if (rc)
3110 return rc;
3111
3112 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
3113 if (rc)
3114 goto out;
3115
3116 address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3117
3118 rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3119 sizeof(struct ustorm_eth_queue_zone), timeset);
3120 if (rc)
3121 goto out;
3122
3123 p_hwfn->cdev->rx_coalesce_usecs = coalesce;
3124 out:
3125 return rc;
3126 }
3127
3128 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
3129 u16 coalesce, u8 qid, u16 sb_id)
3130 {
3131 struct xstorm_eth_queue_zone eth_qzone;
3132 u8 timeset, timer_res;
3133 u16 fw_qid = 0;
3134 u32 address;
3135 int rc;
3136
3137 /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
3138 if (coalesce <= 0x7F) {
3139 timer_res = 0;
3140 } else if (coalesce <= 0xFF) {
3141 timer_res = 1;
3142 } else if (coalesce <= 0x1FF) {
3143 timer_res = 2;
3144 } else {
3145 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
3146 return -EINVAL;
3147 }
3148 timeset = (u8)(coalesce >> timer_res);
3149
3150 rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
3151 if (rc)
3152 return rc;
3153
3154 rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
3155 if (rc)
3156 goto out;
3157
3158 address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
3159
3160 rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
3161 sizeof(struct xstorm_eth_queue_zone), timeset);
3162 if (rc)
3163 goto out;
3164
3165 p_hwfn->cdev->tx_coalesce_usecs = coalesce;
3166 out:
3167 return rc;
3168 }
3169
3170 /* Calculate final WFQ values for all vports and configure them.
3171 * After this configuration each vport will have
3172 * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
3173 */
3174 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
3175 struct qed_ptt *p_ptt,
3176 u32 min_pf_rate)
3177 {
3178 struct init_qm_vport_params *vport_params;
3179 int i;
3180
3181 vport_params = p_hwfn->qm_info.qm_vport_params;
3182
3183 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3184 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3185
3186 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
3187 min_pf_rate;
3188 qed_init_vport_wfq(p_hwfn, p_ptt,
3189 vport_params[i].first_tx_pq_id,
3190 vport_params[i].vport_wfq);
3191 }
3192 }
3193
3194 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
3195 u32 min_pf_rate)
3196
3197 {
3198 int i;
3199
3200 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
3201 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
3202 }
3203
3204 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
3205 struct qed_ptt *p_ptt,
3206 u32 min_pf_rate)
3207 {
3208 struct init_qm_vport_params *vport_params;
3209 int i;
3210
3211 vport_params = p_hwfn->qm_info.qm_vport_params;
3212
3213 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3214 qed_init_wfq_default_param(p_hwfn, min_pf_rate);
3215 qed_init_vport_wfq(p_hwfn, p_ptt,
3216 vport_params[i].first_tx_pq_id,
3217 vport_params[i].vport_wfq);
3218 }
3219 }
3220
3221 /* This function performs several validations for WFQ
3222 * configuration and required min rate for a given vport
3223 * 1. req_rate must be greater than one percent of min_pf_rate.
3224 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
3225 * rates to get less than one percent of min_pf_rate.
3226 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
3227 */
3228 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
3229 u16 vport_id, u32 req_rate, u32 min_pf_rate)
3230 {
3231 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
3232 int non_requested_count = 0, req_count = 0, i, num_vports;
3233
3234 num_vports = p_hwfn->qm_info.num_vports;
3235
3236 /* Accounting for the vports which are configured for WFQ explicitly */
3237 for (i = 0; i < num_vports; i++) {
3238 u32 tmp_speed;
3239
3240 if ((i != vport_id) &&
3241 p_hwfn->qm_info.wfq_data[i].configured) {
3242 req_count++;
3243 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
3244 total_req_min_rate += tmp_speed;
3245 }
3246 }
3247
3248 /* Include current vport data as well */
3249 req_count++;
3250 total_req_min_rate += req_rate;
3251 non_requested_count = num_vports - req_count;
3252
3253 if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
3254 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3255 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3256 vport_id, req_rate, min_pf_rate);
3257 return -EINVAL;
3258 }
3259
3260 if (num_vports > QED_WFQ_UNIT) {
3261 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3262 "Number of vports is greater than %d\n",
3263 QED_WFQ_UNIT);
3264 return -EINVAL;
3265 }
3266
3267 if (total_req_min_rate > min_pf_rate) {
3268 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3269 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
3270 total_req_min_rate, min_pf_rate);
3271 return -EINVAL;
3272 }
3273
3274 total_left_rate = min_pf_rate - total_req_min_rate;
3275
3276 left_rate_per_vp = total_left_rate / non_requested_count;
3277 if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) {
3278 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3279 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
3280 left_rate_per_vp, min_pf_rate);
3281 return -EINVAL;
3282 }
3283
3284 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
3285 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
3286
3287 for (i = 0; i < num_vports; i++) {
3288 if (p_hwfn->qm_info.wfq_data[i].configured)
3289 continue;
3290
3291 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
3292 }
3293
3294 return 0;
3295 }
3296
3297 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
3298 struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
3299 {
3300 struct qed_mcp_link_state *p_link;
3301 int rc = 0;
3302
3303 p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
3304
3305 if (!p_link->min_pf_rate) {
3306 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
3307 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
3308 return rc;
3309 }
3310
3311 rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
3312
3313 if (!rc)
3314 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
3315 p_link->min_pf_rate);
3316 else
3317 DP_NOTICE(p_hwfn,
3318 "Validation failed while configuring min rate\n");
3319
3320 return rc;
3321 }
3322
3323 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
3324 struct qed_ptt *p_ptt,
3325 u32 min_pf_rate)
3326 {
3327 bool use_wfq = false;
3328 int rc = 0;
3329 u16 i;
3330
3331 /* Validate all pre configured vports for wfq */
3332 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
3333 u32 rate;
3334
3335 if (!p_hwfn->qm_info.wfq_data[i].configured)
3336 continue;
3337
3338 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
3339 use_wfq = true;
3340
3341 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
3342 if (rc) {
3343 DP_NOTICE(p_hwfn,
3344 "WFQ validation failed while configuring min rate\n");
3345 break;
3346 }
3347 }
3348
3349 if (!rc && use_wfq)
3350 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
3351 else
3352 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
3353
3354 return rc;
3355 }
3356
3357 /* Main API for qed clients to configure vport min rate.
3358 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
3359 * rate - Speed in Mbps needs to be assigned to a given vport.
3360 */
3361 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
3362 {
3363 int i, rc = -EINVAL;
3364
3365 /* Currently not supported; Might change in future */
3366 if (cdev->num_hwfns > 1) {
3367 DP_NOTICE(cdev,
3368 "WFQ configuration is not supported for this device\n");
3369 return rc;
3370 }
3371
3372 for_each_hwfn(cdev, i) {
3373 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3374 struct qed_ptt *p_ptt;
3375
3376 p_ptt = qed_ptt_acquire(p_hwfn);
3377 if (!p_ptt)
3378 return -EBUSY;
3379
3380 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
3381
3382 if (rc) {
3383 qed_ptt_release(p_hwfn, p_ptt);
3384 return rc;
3385 }
3386
3387 qed_ptt_release(p_hwfn, p_ptt);
3388 }
3389
3390 return rc;
3391 }
3392
3393 /* API to configure WFQ from mcp link change */
3394 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev,
3395 struct qed_ptt *p_ptt, u32 min_pf_rate)
3396 {
3397 int i;
3398
3399 if (cdev->num_hwfns > 1) {
3400 DP_VERBOSE(cdev,
3401 NETIF_MSG_LINK,
3402 "WFQ configuration is not supported for this device\n");
3403 return;
3404 }
3405
3406 for_each_hwfn(cdev, i) {
3407 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3408
3409 __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
3410 min_pf_rate);
3411 }
3412 }
3413
3414 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
3415 struct qed_ptt *p_ptt,
3416 struct qed_mcp_link_state *p_link,
3417 u8 max_bw)
3418 {
3419 int rc = 0;
3420
3421 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
3422
3423 if (!p_link->line_speed && (max_bw != 100))
3424 return rc;
3425
3426 p_link->speed = (p_link->line_speed * max_bw) / 100;
3427 p_hwfn->qm_info.pf_rl = p_link->speed;
3428
3429 /* Since the limiter also affects Tx-switched traffic, we don't want it
3430 * to limit such traffic in case there's no actual limit.
3431 * In that case, set limit to imaginary high boundary.
3432 */
3433 if (max_bw == 100)
3434 p_hwfn->qm_info.pf_rl = 100000;
3435
3436 rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
3437 p_hwfn->qm_info.pf_rl);
3438
3439 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3440 "Configured MAX bandwidth to be %08x Mb/sec\n",
3441 p_link->speed);
3442
3443 return rc;
3444 }
3445
3446 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
3447 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
3448 {
3449 int i, rc = -EINVAL;
3450
3451 if (max_bw < 1 || max_bw > 100) {
3452 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
3453 return rc;
3454 }
3455
3456 for_each_hwfn(cdev, i) {
3457 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3458 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
3459 struct qed_mcp_link_state *p_link;
3460 struct qed_ptt *p_ptt;
3461
3462 p_link = &p_lead->mcp_info->link_output;
3463
3464 p_ptt = qed_ptt_acquire(p_hwfn);
3465 if (!p_ptt)
3466 return -EBUSY;
3467
3468 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
3469 p_link, max_bw);
3470
3471 qed_ptt_release(p_hwfn, p_ptt);
3472
3473 if (rc)
3474 break;
3475 }
3476
3477 return rc;
3478 }
3479
3480 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
3481 struct qed_ptt *p_ptt,
3482 struct qed_mcp_link_state *p_link,
3483 u8 min_bw)
3484 {
3485 int rc = 0;
3486
3487 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
3488 p_hwfn->qm_info.pf_wfq = min_bw;
3489
3490 if (!p_link->line_speed)
3491 return rc;
3492
3493 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
3494
3495 rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
3496
3497 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
3498 "Configured MIN bandwidth to be %d Mb/sec\n",
3499 p_link->min_pf_rate);
3500
3501 return rc;
3502 }
3503
3504 /* Main API to configure PF min bandwidth where bw range is [1-100] */
3505 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
3506 {
3507 int i, rc = -EINVAL;
3508
3509 if (min_bw < 1 || min_bw > 100) {
3510 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
3511 return rc;
3512 }
3513
3514 for_each_hwfn(cdev, i) {
3515 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3516 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
3517 struct qed_mcp_link_state *p_link;
3518 struct qed_ptt *p_ptt;
3519
3520 p_link = &p_lead->mcp_info->link_output;
3521
3522 p_ptt = qed_ptt_acquire(p_hwfn);
3523 if (!p_ptt)
3524 return -EBUSY;
3525
3526 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
3527 p_link, min_bw);
3528 if (rc) {
3529 qed_ptt_release(p_hwfn, p_ptt);
3530 return rc;
3531 }
3532
3533 if (p_link->min_pf_rate) {
3534 u32 min_rate = p_link->min_pf_rate;
3535
3536 rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
3537 p_ptt,
3538 min_rate);
3539 }
3540
3541 qed_ptt_release(p_hwfn, p_ptt);
3542 }
3543
3544 return rc;
3545 }
3546
3547 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3548 {
3549 struct qed_mcp_link_state *p_link;
3550
3551 p_link = &p_hwfn->mcp_info->link_output;
3552
3553 if (p_link->min_pf_rate)
3554 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
3555 p_link->min_pf_rate);
3556
3557 memset(p_hwfn->qm_info.wfq_data, 0,
3558 sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
3559 }
3560
3561 int qed_device_num_engines(struct qed_dev *cdev)
3562 {
3563 return QED_IS_BB(cdev) ? 2 : 1;
3564 }