]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/qlogic/qed/qed_dev.c
Merge tag 'devicetree-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/robh...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / qlogic / qed / qed_dev.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/etherdevice.h>
21 #include <linux/qed/qed_chain.h>
22 #include <linux/qed/qed_if.h>
23 #include "qed.h"
24 #include "qed_cxt.h"
25 #include "qed_dcbx.h"
26 #include "qed_dev_api.h"
27 #include "qed_hsi.h"
28 #include "qed_hw.h"
29 #include "qed_init_ops.h"
30 #include "qed_int.h"
31 #include "qed_mcp.h"
32 #include "qed_reg_addr.h"
33 #include "qed_sp.h"
34 #include "qed_sriov.h"
35 #include "qed_vf.h"
36
37 static spinlock_t qm_lock;
38 static bool qm_lock_init = false;
39
40 /* API common to all protocols */
41 enum BAR_ID {
42 BAR_ID_0, /* used for GRC */
43 BAR_ID_1 /* Used for doorbells */
44 };
45
46 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
47 enum BAR_ID bar_id)
48 {
49 u32 bar_reg = (bar_id == BAR_ID_0 ?
50 PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
51 u32 val;
52
53 if (IS_VF(p_hwfn->cdev))
54 return 1 << 17;
55
56 val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
57 if (val)
58 return 1 << (val + 15);
59
60 /* Old MFW initialized above registered only conditionally */
61 if (p_hwfn->cdev->num_hwfns > 1) {
62 DP_INFO(p_hwfn,
63 "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
64 return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
65 } else {
66 DP_INFO(p_hwfn,
67 "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
68 return 512 * 1024;
69 }
70 }
71
72 void qed_init_dp(struct qed_dev *cdev,
73 u32 dp_module, u8 dp_level)
74 {
75 u32 i;
76
77 cdev->dp_level = dp_level;
78 cdev->dp_module = dp_module;
79 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
80 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
81
82 p_hwfn->dp_level = dp_level;
83 p_hwfn->dp_module = dp_module;
84 }
85 }
86
87 void qed_init_struct(struct qed_dev *cdev)
88 {
89 u8 i;
90
91 for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
92 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
93
94 p_hwfn->cdev = cdev;
95 p_hwfn->my_id = i;
96 p_hwfn->b_active = false;
97
98 mutex_init(&p_hwfn->dmae_info.mutex);
99 }
100
101 /* hwfn 0 is always active */
102 cdev->hwfns[0].b_active = true;
103
104 /* set the default cache alignment to 128 */
105 cdev->cache_shift = 7;
106 }
107
108 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
109 {
110 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
111
112 kfree(qm_info->qm_pq_params);
113 qm_info->qm_pq_params = NULL;
114 kfree(qm_info->qm_vport_params);
115 qm_info->qm_vport_params = NULL;
116 kfree(qm_info->qm_port_params);
117 qm_info->qm_port_params = NULL;
118 kfree(qm_info->wfq_data);
119 qm_info->wfq_data = NULL;
120 }
121
122 void qed_resc_free(struct qed_dev *cdev)
123 {
124 int i;
125
126 if (IS_VF(cdev))
127 return;
128
129 kfree(cdev->fw_data);
130 cdev->fw_data = NULL;
131
132 kfree(cdev->reset_stats);
133
134 for_each_hwfn(cdev, i) {
135 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
136
137 kfree(p_hwfn->p_tx_cids);
138 p_hwfn->p_tx_cids = NULL;
139 kfree(p_hwfn->p_rx_cids);
140 p_hwfn->p_rx_cids = NULL;
141 }
142
143 for_each_hwfn(cdev, i) {
144 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
145
146 qed_cxt_mngr_free(p_hwfn);
147 qed_qm_info_free(p_hwfn);
148 qed_spq_free(p_hwfn);
149 qed_eq_free(p_hwfn, p_hwfn->p_eq);
150 qed_consq_free(p_hwfn, p_hwfn->p_consq);
151 qed_int_free(p_hwfn);
152 qed_iov_free(p_hwfn);
153 qed_dmae_info_free(p_hwfn);
154 qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
155 }
156 }
157
158 static int qed_init_qm_info(struct qed_hwfn *p_hwfn)
159 {
160 u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
161 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
162 struct init_qm_port_params *p_qm_port;
163 u16 num_pqs, multi_cos_tcs = 1;
164 u16 num_vfs = 0;
165
166 #ifdef CONFIG_QED_SRIOV
167 if (p_hwfn->cdev->p_iov_info)
168 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
169 #endif
170 memset(qm_info, 0, sizeof(*qm_info));
171
172 num_pqs = multi_cos_tcs + num_vfs + 1; /* The '1' is for pure-LB */
173 num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
174
175 /* Sanity checking that setup requires legal number of resources */
176 if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
177 DP_ERR(p_hwfn,
178 "Need too many Physical queues - 0x%04x when only %04x are available\n",
179 num_pqs, RESC_NUM(p_hwfn, QED_PQ));
180 return -EINVAL;
181 }
182
183 /* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
184 */
185 qm_info->qm_pq_params = kzalloc(sizeof(*qm_info->qm_pq_params) *
186 num_pqs, GFP_KERNEL);
187 if (!qm_info->qm_pq_params)
188 goto alloc_err;
189
190 qm_info->qm_vport_params = kzalloc(sizeof(*qm_info->qm_vport_params) *
191 num_vports, GFP_KERNEL);
192 if (!qm_info->qm_vport_params)
193 goto alloc_err;
194
195 qm_info->qm_port_params = kzalloc(sizeof(*qm_info->qm_port_params) *
196 MAX_NUM_PORTS, GFP_KERNEL);
197 if (!qm_info->qm_port_params)
198 goto alloc_err;
199
200 qm_info->wfq_data = kcalloc(num_vports, sizeof(*qm_info->wfq_data),
201 GFP_KERNEL);
202 if (!qm_info->wfq_data)
203 goto alloc_err;
204
205 vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
206
207 /* First init per-TC PQs */
208 for (i = 0; i < multi_cos_tcs; i++) {
209 struct init_qm_pq_params *params =
210 &qm_info->qm_pq_params[curr_queue++];
211
212 if (p_hwfn->hw_info.personality == QED_PCI_ETH) {
213 params->vport_id = vport_id;
214 params->tc_id = p_hwfn->hw_info.non_offload_tc;
215 params->wrr_group = 1;
216 } else {
217 params->vport_id = vport_id;
218 params->tc_id = p_hwfn->hw_info.offload_tc;
219 params->wrr_group = 1;
220 }
221 }
222
223 /* Then init pure-LB PQ */
224 qm_info->pure_lb_pq = curr_queue;
225 qm_info->qm_pq_params[curr_queue].vport_id =
226 (u8) RESC_START(p_hwfn, QED_VPORT);
227 qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
228 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
229 curr_queue++;
230
231 qm_info->offload_pq = 0;
232 /* Then init per-VF PQs */
233 vf_offset = curr_queue;
234 for (i = 0; i < num_vfs; i++) {
235 /* First vport is used by the PF */
236 qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
237 qm_info->qm_pq_params[curr_queue].tc_id =
238 p_hwfn->hw_info.non_offload_tc;
239 qm_info->qm_pq_params[curr_queue].wrr_group = 1;
240 curr_queue++;
241 }
242
243 qm_info->vf_queues_offset = vf_offset;
244 qm_info->num_pqs = num_pqs;
245 qm_info->num_vports = num_vports;
246
247 /* Initialize qm port parameters */
248 num_ports = p_hwfn->cdev->num_ports_in_engines;
249 for (i = 0; i < num_ports; i++) {
250 p_qm_port = &qm_info->qm_port_params[i];
251 p_qm_port->active = 1;
252 p_qm_port->num_active_phys_tcs = 4;
253 p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
254 p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
255 }
256
257 qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
258
259 qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
260
261 qm_info->num_vf_pqs = num_vfs;
262 qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
263
264 for (i = 0; i < qm_info->num_vports; i++)
265 qm_info->qm_vport_params[i].vport_wfq = 1;
266
267 qm_info->pf_wfq = 0;
268 qm_info->pf_rl = 0;
269 qm_info->vport_rl_en = 1;
270 qm_info->vport_wfq_en = 1;
271
272 return 0;
273
274 alloc_err:
275 DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
276 qed_qm_info_free(p_hwfn);
277 return -ENOMEM;
278 }
279
280 /* This function reconfigures the QM pf on the fly.
281 * For this purpose we:
282 * 1. reconfigure the QM database
283 * 2. set new values to runtime arrat
284 * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
285 * 4. activate init tool in QM_PF stage
286 * 5. send an sdm_qm_cmd through rbc interface to release the QM
287 */
288 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
289 {
290 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
291 bool b_rc;
292 int rc;
293
294 /* qm_info is allocated in qed_init_qm_info() which is already called
295 * from qed_resc_alloc() or previous call of qed_qm_reconf().
296 * The allocated size may change each init, so we free it before next
297 * allocation.
298 */
299 qed_qm_info_free(p_hwfn);
300
301 /* initialize qed's qm data structure */
302 rc = qed_init_qm_info(p_hwfn);
303 if (rc)
304 return rc;
305
306 /* stop PF's qm queues */
307 spin_lock_bh(&qm_lock);
308 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
309 qm_info->start_pq, qm_info->num_pqs);
310 spin_unlock_bh(&qm_lock);
311 if (!b_rc)
312 return -EINVAL;
313
314 /* clear the QM_PF runtime phase leftovers from previous init */
315 qed_init_clear_rt_data(p_hwfn);
316
317 /* prepare QM portion of runtime array */
318 qed_qm_init_pf(p_hwfn);
319
320 /* activate init tool on runtime array */
321 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
322 p_hwfn->hw_info.hw_mode);
323 if (rc)
324 return rc;
325
326 /* start PF's qm queues */
327 spin_lock_bh(&qm_lock);
328 b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
329 qm_info->start_pq, qm_info->num_pqs);
330 spin_unlock_bh(&qm_lock);
331 if (!b_rc)
332 return -EINVAL;
333
334 return 0;
335 }
336
337 int qed_resc_alloc(struct qed_dev *cdev)
338 {
339 struct qed_consq *p_consq;
340 struct qed_eq *p_eq;
341 int i, rc = 0;
342
343 if (IS_VF(cdev))
344 return rc;
345
346 cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
347 if (!cdev->fw_data)
348 return -ENOMEM;
349
350 /* Allocate Memory for the Queue->CID mapping */
351 for_each_hwfn(cdev, i) {
352 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
353 int tx_size = sizeof(struct qed_hw_cid_data) *
354 RESC_NUM(p_hwfn, QED_L2_QUEUE);
355 int rx_size = sizeof(struct qed_hw_cid_data) *
356 RESC_NUM(p_hwfn, QED_L2_QUEUE);
357
358 p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
359 if (!p_hwfn->p_tx_cids) {
360 DP_NOTICE(p_hwfn,
361 "Failed to allocate memory for Tx Cids\n");
362 rc = -ENOMEM;
363 goto alloc_err;
364 }
365
366 p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
367 if (!p_hwfn->p_rx_cids) {
368 DP_NOTICE(p_hwfn,
369 "Failed to allocate memory for Rx Cids\n");
370 rc = -ENOMEM;
371 goto alloc_err;
372 }
373 }
374
375 for_each_hwfn(cdev, i) {
376 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
377
378 /* First allocate the context manager structure */
379 rc = qed_cxt_mngr_alloc(p_hwfn);
380 if (rc)
381 goto alloc_err;
382
383 /* Set the HW cid/tid numbers (in the contest manager)
384 * Must be done prior to any further computations.
385 */
386 rc = qed_cxt_set_pf_params(p_hwfn);
387 if (rc)
388 goto alloc_err;
389
390 /* Prepare and process QM requirements */
391 rc = qed_init_qm_info(p_hwfn);
392 if (rc)
393 goto alloc_err;
394
395 /* Compute the ILT client partition */
396 rc = qed_cxt_cfg_ilt_compute(p_hwfn);
397 if (rc)
398 goto alloc_err;
399
400 /* CID map / ILT shadow table / T2
401 * The talbes sizes are determined by the computations above
402 */
403 rc = qed_cxt_tables_alloc(p_hwfn);
404 if (rc)
405 goto alloc_err;
406
407 /* SPQ, must follow ILT because initializes SPQ context */
408 rc = qed_spq_alloc(p_hwfn);
409 if (rc)
410 goto alloc_err;
411
412 /* SP status block allocation */
413 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
414 RESERVED_PTT_DPC);
415
416 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
417 if (rc)
418 goto alloc_err;
419
420 rc = qed_iov_alloc(p_hwfn);
421 if (rc)
422 goto alloc_err;
423
424 /* EQ */
425 p_eq = qed_eq_alloc(p_hwfn, 256);
426 if (!p_eq) {
427 rc = -ENOMEM;
428 goto alloc_err;
429 }
430 p_hwfn->p_eq = p_eq;
431
432 p_consq = qed_consq_alloc(p_hwfn);
433 if (!p_consq) {
434 rc = -ENOMEM;
435 goto alloc_err;
436 }
437 p_hwfn->p_consq = p_consq;
438
439 /* DMA info initialization */
440 rc = qed_dmae_info_alloc(p_hwfn);
441 if (rc) {
442 DP_NOTICE(p_hwfn,
443 "Failed to allocate memory for dmae_info structure\n");
444 goto alloc_err;
445 }
446
447 /* DCBX initialization */
448 rc = qed_dcbx_info_alloc(p_hwfn);
449 if (rc) {
450 DP_NOTICE(p_hwfn,
451 "Failed to allocate memory for dcbx structure\n");
452 goto alloc_err;
453 }
454 }
455
456 cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
457 if (!cdev->reset_stats) {
458 DP_NOTICE(cdev, "Failed to allocate reset statistics\n");
459 rc = -ENOMEM;
460 goto alloc_err;
461 }
462
463 return 0;
464
465 alloc_err:
466 qed_resc_free(cdev);
467 return rc;
468 }
469
470 void qed_resc_setup(struct qed_dev *cdev)
471 {
472 int i;
473
474 if (IS_VF(cdev))
475 return;
476
477 for_each_hwfn(cdev, i) {
478 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
479
480 qed_cxt_mngr_setup(p_hwfn);
481 qed_spq_setup(p_hwfn);
482 qed_eq_setup(p_hwfn, p_hwfn->p_eq);
483 qed_consq_setup(p_hwfn, p_hwfn->p_consq);
484
485 /* Read shadow of current MFW mailbox */
486 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
487 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
488 p_hwfn->mcp_info->mfw_mb_cur,
489 p_hwfn->mcp_info->mfw_mb_length);
490
491 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
492
493 qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
494 }
495 }
496
497 #define FINAL_CLEANUP_POLL_CNT (100)
498 #define FINAL_CLEANUP_POLL_TIME (10)
499 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
500 struct qed_ptt *p_ptt, u16 id, bool is_vf)
501 {
502 u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
503 int rc = -EBUSY;
504
505 addr = GTT_BAR0_MAP_REG_USDM_RAM +
506 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
507
508 if (is_vf)
509 id += 0x10;
510
511 command |= X_FINAL_CLEANUP_AGG_INT <<
512 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
513 command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
514 command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
515 command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
516
517 /* Make sure notification is not set before initiating final cleanup */
518 if (REG_RD(p_hwfn, addr)) {
519 DP_NOTICE(
520 p_hwfn,
521 "Unexpected; Found final cleanup notification before initiating final cleanup\n");
522 REG_WR(p_hwfn, addr, 0);
523 }
524
525 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
526 "Sending final cleanup for PFVF[%d] [Command %08x\n]",
527 id, command);
528
529 qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
530
531 /* Poll until completion */
532 while (!REG_RD(p_hwfn, addr) && count--)
533 msleep(FINAL_CLEANUP_POLL_TIME);
534
535 if (REG_RD(p_hwfn, addr))
536 rc = 0;
537 else
538 DP_NOTICE(p_hwfn,
539 "Failed to receive FW final cleanup notification\n");
540
541 /* Cleanup afterwards */
542 REG_WR(p_hwfn, addr, 0);
543
544 return rc;
545 }
546
547 static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
548 {
549 int hw_mode = 0;
550
551 hw_mode = (1 << MODE_BB_B0);
552
553 switch (p_hwfn->cdev->num_ports_in_engines) {
554 case 1:
555 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
556 break;
557 case 2:
558 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
559 break;
560 case 4:
561 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
562 break;
563 default:
564 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
565 p_hwfn->cdev->num_ports_in_engines);
566 return;
567 }
568
569 switch (p_hwfn->cdev->mf_mode) {
570 case QED_MF_DEFAULT:
571 case QED_MF_NPAR:
572 hw_mode |= 1 << MODE_MF_SI;
573 break;
574 case QED_MF_OVLAN:
575 hw_mode |= 1 << MODE_MF_SD;
576 break;
577 default:
578 DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
579 hw_mode |= 1 << MODE_MF_SI;
580 }
581
582 hw_mode |= 1 << MODE_ASIC;
583
584 p_hwfn->hw_info.hw_mode = hw_mode;
585 }
586
587 /* Init run time data for all PFs on an engine. */
588 static void qed_init_cau_rt_data(struct qed_dev *cdev)
589 {
590 u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
591 int i, sb_id;
592
593 for_each_hwfn(cdev, i) {
594 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
595 struct qed_igu_info *p_igu_info;
596 struct qed_igu_block *p_block;
597 struct cau_sb_entry sb_entry;
598
599 p_igu_info = p_hwfn->hw_info.p_igu_info;
600
601 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
602 sb_id++) {
603 p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
604 if (!p_block->is_pf)
605 continue;
606
607 qed_init_cau_sb_entry(p_hwfn, &sb_entry,
608 p_block->function_id,
609 0, 0);
610 STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2,
611 sb_entry);
612 }
613 }
614 }
615
616 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
617 struct qed_ptt *p_ptt,
618 int hw_mode)
619 {
620 struct qed_qm_info *qm_info = &p_hwfn->qm_info;
621 struct qed_qm_common_rt_init_params params;
622 struct qed_dev *cdev = p_hwfn->cdev;
623 u32 concrete_fid;
624 int rc = 0;
625 u8 vf_id;
626
627 qed_init_cau_rt_data(cdev);
628
629 /* Program GTT windows */
630 qed_gtt_init(p_hwfn);
631
632 if (p_hwfn->mcp_info) {
633 if (p_hwfn->mcp_info->func_info.bandwidth_max)
634 qm_info->pf_rl_en = 1;
635 if (p_hwfn->mcp_info->func_info.bandwidth_min)
636 qm_info->pf_wfq_en = 1;
637 }
638
639 memset(&params, 0, sizeof(params));
640 params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
641 params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
642 params.pf_rl_en = qm_info->pf_rl_en;
643 params.pf_wfq_en = qm_info->pf_wfq_en;
644 params.vport_rl_en = qm_info->vport_rl_en;
645 params.vport_wfq_en = qm_info->vport_wfq_en;
646 params.port_params = qm_info->qm_port_params;
647
648 qed_qm_common_rt_init(p_hwfn, &params);
649
650 qed_cxt_hw_init_common(p_hwfn);
651
652 /* Close gate from NIG to BRB/Storm; By default they are open, but
653 * we close them to prevent NIG from passing data to reset blocks.
654 * Should have been done in the ENGINE phase, but init-tool lacks
655 * proper port-pretend capabilities.
656 */
657 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
658 qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
659 qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
660 qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
661 qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
662 qed_port_unpretend(p_hwfn, p_ptt);
663
664 rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
665 if (rc != 0)
666 return rc;
667
668 qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
669 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
670
671 /* Disable relaxed ordering in the PCI config space */
672 qed_wr(p_hwfn, p_ptt, 0x20b4,
673 qed_rd(p_hwfn, p_ptt, 0x20b4) & ~0x10);
674
675 for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
676 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
677 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
678 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
679 }
680 /* pretend to original PF */
681 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
682
683 return rc;
684 }
685
686 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
687 struct qed_ptt *p_ptt,
688 int hw_mode)
689 {
690 int rc = 0;
691
692 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
693 hw_mode);
694 return rc;
695 }
696
697 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
698 struct qed_ptt *p_ptt,
699 struct qed_tunn_start_params *p_tunn,
700 int hw_mode,
701 bool b_hw_start,
702 enum qed_int_mode int_mode,
703 bool allow_npar_tx_switch)
704 {
705 u8 rel_pf_id = p_hwfn->rel_pf_id;
706 int rc = 0;
707
708 if (p_hwfn->mcp_info) {
709 struct qed_mcp_function_info *p_info;
710
711 p_info = &p_hwfn->mcp_info->func_info;
712 if (p_info->bandwidth_min)
713 p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
714
715 /* Update rate limit once we'll actually have a link */
716 p_hwfn->qm_info.pf_rl = 100000;
717 }
718
719 qed_cxt_hw_init_pf(p_hwfn);
720
721 qed_int_igu_init_rt(p_hwfn);
722
723 /* Set VLAN in NIG if needed */
724 if (hw_mode & (1 << MODE_MF_SD)) {
725 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
726 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
727 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
728 p_hwfn->hw_info.ovlan);
729 }
730
731 /* Enable classification by MAC if needed */
732 if (hw_mode & (1 << MODE_MF_SI)) {
733 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
734 "Configuring TAGMAC_CLS_TYPE\n");
735 STORE_RT_REG(p_hwfn,
736 NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
737 }
738
739 /* Protocl Configuration */
740 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 0);
741 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
742 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
743
744 /* Cleanup chip from previous driver if such remains exist */
745 rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
746 if (rc != 0)
747 return rc;
748
749 /* PF Init sequence */
750 rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
751 if (rc)
752 return rc;
753
754 /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
755 rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
756 if (rc)
757 return rc;
758
759 /* Pure runtime initializations - directly to the HW */
760 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
761
762 if (b_hw_start) {
763 /* enable interrupts */
764 qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
765
766 /* send function start command */
767 rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
768 allow_npar_tx_switch);
769 if (rc)
770 DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
771 }
772 return rc;
773 }
774
775 static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
776 struct qed_ptt *p_ptt,
777 u8 enable)
778 {
779 u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
780
781 /* Change PF in PXP */
782 qed_wr(p_hwfn, p_ptt,
783 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
784
785 /* wait until value is set - try for 1 second every 50us */
786 for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
787 val = qed_rd(p_hwfn, p_ptt,
788 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
789 if (val == set_val)
790 break;
791
792 usleep_range(50, 60);
793 }
794
795 if (val != set_val) {
796 DP_NOTICE(p_hwfn,
797 "PFID_ENABLE_MASTER wasn't changed after a second\n");
798 return -EAGAIN;
799 }
800
801 return 0;
802 }
803
804 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
805 struct qed_ptt *p_main_ptt)
806 {
807 /* Read shadow of current MFW mailbox */
808 qed_mcp_read_mb(p_hwfn, p_main_ptt);
809 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
810 p_hwfn->mcp_info->mfw_mb_cur,
811 p_hwfn->mcp_info->mfw_mb_length);
812 }
813
814 int qed_hw_init(struct qed_dev *cdev,
815 struct qed_tunn_start_params *p_tunn,
816 bool b_hw_start,
817 enum qed_int_mode int_mode,
818 bool allow_npar_tx_switch,
819 const u8 *bin_fw_data)
820 {
821 u32 load_code, param;
822 int rc, mfw_rc, i;
823
824 if (IS_PF(cdev)) {
825 rc = qed_init_fw_data(cdev, bin_fw_data);
826 if (rc != 0)
827 return rc;
828 }
829
830 for_each_hwfn(cdev, i) {
831 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
832
833 if (IS_VF(cdev)) {
834 p_hwfn->b_int_enabled = 1;
835 continue;
836 }
837
838 /* Enable DMAE in PXP */
839 rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
840
841 qed_calc_hw_mode(p_hwfn);
842
843 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
844 &load_code);
845 if (rc) {
846 DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
847 return rc;
848 }
849
850 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
851
852 DP_VERBOSE(p_hwfn, QED_MSG_SP,
853 "Load request was sent. Resp:0x%x, Load code: 0x%x\n",
854 rc, load_code);
855
856 p_hwfn->first_on_engine = (load_code ==
857 FW_MSG_CODE_DRV_LOAD_ENGINE);
858
859 if (!qm_lock_init) {
860 spin_lock_init(&qm_lock);
861 qm_lock_init = true;
862 }
863
864 switch (load_code) {
865 case FW_MSG_CODE_DRV_LOAD_ENGINE:
866 rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
867 p_hwfn->hw_info.hw_mode);
868 if (rc)
869 break;
870 /* Fall into */
871 case FW_MSG_CODE_DRV_LOAD_PORT:
872 rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
873 p_hwfn->hw_info.hw_mode);
874 if (rc)
875 break;
876
877 /* Fall into */
878 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
879 rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
880 p_tunn, p_hwfn->hw_info.hw_mode,
881 b_hw_start, int_mode,
882 allow_npar_tx_switch);
883 break;
884 default:
885 rc = -EINVAL;
886 break;
887 }
888
889 if (rc)
890 DP_NOTICE(p_hwfn,
891 "init phase failed for loadcode 0x%x (rc %d)\n",
892 load_code, rc);
893
894 /* ACK mfw regardless of success or failure of initialization */
895 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
896 DRV_MSG_CODE_LOAD_DONE,
897 0, &load_code, &param);
898 if (rc)
899 return rc;
900 if (mfw_rc) {
901 DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
902 return mfw_rc;
903 }
904
905 /* send DCBX attention request command */
906 DP_VERBOSE(p_hwfn,
907 QED_MSG_DCB,
908 "sending phony dcbx set command to trigger DCBx attention handling\n");
909 mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
910 DRV_MSG_CODE_SET_DCBX,
911 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
912 &load_code, &param);
913 if (mfw_rc) {
914 DP_NOTICE(p_hwfn,
915 "Failed to send DCBX attention request\n");
916 return mfw_rc;
917 }
918
919 p_hwfn->hw_init_done = true;
920 }
921
922 return 0;
923 }
924
925 #define QED_HW_STOP_RETRY_LIMIT (10)
926 static inline void qed_hw_timers_stop(struct qed_dev *cdev,
927 struct qed_hwfn *p_hwfn,
928 struct qed_ptt *p_ptt)
929 {
930 int i;
931
932 /* close timers */
933 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
934 qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
935
936 for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
937 if ((!qed_rd(p_hwfn, p_ptt,
938 TM_REG_PF_SCAN_ACTIVE_CONN)) &&
939 (!qed_rd(p_hwfn, p_ptt,
940 TM_REG_PF_SCAN_ACTIVE_TASK)))
941 break;
942
943 /* Dependent on number of connection/tasks, possibly
944 * 1ms sleep is required between polls
945 */
946 usleep_range(1000, 2000);
947 }
948
949 if (i < QED_HW_STOP_RETRY_LIMIT)
950 return;
951
952 DP_NOTICE(p_hwfn,
953 "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
954 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
955 (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
956 }
957
958 void qed_hw_timers_stop_all(struct qed_dev *cdev)
959 {
960 int j;
961
962 for_each_hwfn(cdev, j) {
963 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
964 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
965
966 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
967 }
968 }
969
970 int qed_hw_stop(struct qed_dev *cdev)
971 {
972 int rc = 0, t_rc;
973 int j;
974
975 for_each_hwfn(cdev, j) {
976 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
977 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
978
979 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
980
981 if (IS_VF(cdev)) {
982 qed_vf_pf_int_cleanup(p_hwfn);
983 continue;
984 }
985
986 /* mark the hw as uninitialized... */
987 p_hwfn->hw_init_done = false;
988
989 rc = qed_sp_pf_stop(p_hwfn);
990 if (rc)
991 DP_NOTICE(p_hwfn,
992 "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
993
994 qed_wr(p_hwfn, p_ptt,
995 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
996
997 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
998 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
999 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1000 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1001 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1002
1003 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
1004
1005 /* Disable Attention Generation */
1006 qed_int_igu_disable_int(p_hwfn, p_ptt);
1007
1008 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
1009 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
1010
1011 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
1012
1013 /* Need to wait 1ms to guarantee SBs are cleared */
1014 usleep_range(1000, 2000);
1015 }
1016
1017 if (IS_PF(cdev)) {
1018 /* Disable DMAE in PXP - in CMT, this should only be done for
1019 * first hw-function, and only after all transactions have
1020 * stopped for all active hw-functions.
1021 */
1022 t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
1023 cdev->hwfns[0].p_main_ptt, false);
1024 if (t_rc != 0)
1025 rc = t_rc;
1026 }
1027
1028 return rc;
1029 }
1030
1031 void qed_hw_stop_fastpath(struct qed_dev *cdev)
1032 {
1033 int j;
1034
1035 for_each_hwfn(cdev, j) {
1036 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
1037 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
1038
1039 if (IS_VF(cdev)) {
1040 qed_vf_pf_int_cleanup(p_hwfn);
1041 continue;
1042 }
1043
1044 DP_VERBOSE(p_hwfn,
1045 NETIF_MSG_IFDOWN,
1046 "Shutting down the fastpath\n");
1047
1048 qed_wr(p_hwfn, p_ptt,
1049 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
1050
1051 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
1052 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
1053 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
1054 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
1055 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
1056
1057 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
1058
1059 /* Need to wait 1ms to guarantee SBs are cleared */
1060 usleep_range(1000, 2000);
1061 }
1062 }
1063
1064 void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
1065 {
1066 if (IS_VF(p_hwfn->cdev))
1067 return;
1068
1069 /* Re-open incoming traffic */
1070 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1071 NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
1072 }
1073
1074 static int qed_reg_assert(struct qed_hwfn *hwfn,
1075 struct qed_ptt *ptt, u32 reg,
1076 bool expected)
1077 {
1078 u32 assert_val = qed_rd(hwfn, ptt, reg);
1079
1080 if (assert_val != expected) {
1081 DP_NOTICE(hwfn, "Value at address 0x%x != 0x%08x\n",
1082 reg, expected);
1083 return -EINVAL;
1084 }
1085
1086 return 0;
1087 }
1088
1089 int qed_hw_reset(struct qed_dev *cdev)
1090 {
1091 int rc = 0;
1092 u32 unload_resp, unload_param;
1093 int i;
1094
1095 for_each_hwfn(cdev, i) {
1096 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1097
1098 if (IS_VF(cdev)) {
1099 rc = qed_vf_pf_reset(p_hwfn);
1100 if (rc)
1101 return rc;
1102 continue;
1103 }
1104
1105 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
1106
1107 /* Check for incorrect states */
1108 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1109 QM_REG_USG_CNT_PF_TX, 0);
1110 qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
1111 QM_REG_USG_CNT_PF_OTHER, 0);
1112
1113 /* Disable PF in HW blocks */
1114 qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
1115 qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
1116 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1117 TCFC_REG_STRONG_ENABLE_PF, 0);
1118 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1119 CCFC_REG_STRONG_ENABLE_PF, 0);
1120
1121 /* Send unload command to MCP */
1122 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1123 DRV_MSG_CODE_UNLOAD_REQ,
1124 DRV_MB_PARAM_UNLOAD_WOL_MCP,
1125 &unload_resp, &unload_param);
1126 if (rc) {
1127 DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
1128 unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
1129 }
1130
1131 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
1132 DRV_MSG_CODE_UNLOAD_DONE,
1133 0, &unload_resp, &unload_param);
1134 if (rc) {
1135 DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
1136 return rc;
1137 }
1138 }
1139
1140 return rc;
1141 }
1142
1143 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
1144 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
1145 {
1146 qed_ptt_pool_free(p_hwfn);
1147 kfree(p_hwfn->hw_info.p_igu_info);
1148 }
1149
1150 /* Setup bar access */
1151 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
1152 {
1153 /* clear indirect access */
1154 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
1155 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
1156 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
1157 qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
1158
1159 /* Clean Previous errors if such exist */
1160 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1161 PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
1162 1 << p_hwfn->abs_pf_id);
1163
1164 /* enable internal target-read */
1165 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
1166 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1167 }
1168
1169 static void get_function_id(struct qed_hwfn *p_hwfn)
1170 {
1171 /* ME Register */
1172 p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR);
1173
1174 p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
1175
1176 p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
1177 p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1178 PXP_CONCRETE_FID_PFID);
1179 p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
1180 PXP_CONCRETE_FID_PORT);
1181 }
1182
1183 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
1184 {
1185 u32 *feat_num = p_hwfn->hw_info.feat_num;
1186 int num_features = 1;
1187
1188 feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
1189 num_features,
1190 RESC_NUM(p_hwfn, QED_L2_QUEUE));
1191 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1192 "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
1193 feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB),
1194 num_features);
1195 }
1196
1197 static void qed_hw_get_resc(struct qed_hwfn *p_hwfn)
1198 {
1199 u32 *resc_start = p_hwfn->hw_info.resc_start;
1200 u8 num_funcs = p_hwfn->num_funcs_on_engine;
1201 u32 *resc_num = p_hwfn->hw_info.resc_num;
1202 struct qed_sb_cnt_info sb_cnt_info;
1203 int i, max_vf_vlan_filters;
1204
1205 memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
1206
1207 #ifdef CONFIG_QED_SRIOV
1208 max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
1209 #else
1210 max_vf_vlan_filters = 0;
1211 #endif
1212
1213 qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
1214
1215 resc_num[QED_SB] = min_t(u32,
1216 (MAX_SB_PER_PATH_BB / num_funcs),
1217 sb_cnt_info.sb_cnt);
1218 resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
1219 resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
1220 resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
1221 resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
1222 resc_num[QED_RL] = 8;
1223 resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
1224 resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
1225 num_funcs;
1226 resc_num[QED_ILT] = 950;
1227
1228 for (i = 0; i < QED_MAX_RESC; i++)
1229 resc_start[i] = resc_num[i] * p_hwfn->rel_pf_id;
1230
1231 qed_hw_set_feat(p_hwfn);
1232
1233 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
1234 "The numbers for each resource are:\n"
1235 "SB = %d start = %d\n"
1236 "L2_QUEUE = %d start = %d\n"
1237 "VPORT = %d start = %d\n"
1238 "PQ = %d start = %d\n"
1239 "RL = %d start = %d\n"
1240 "MAC = %d start = %d\n"
1241 "VLAN = %d start = %d\n"
1242 "ILT = %d start = %d\n",
1243 p_hwfn->hw_info.resc_num[QED_SB],
1244 p_hwfn->hw_info.resc_start[QED_SB],
1245 p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
1246 p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
1247 p_hwfn->hw_info.resc_num[QED_VPORT],
1248 p_hwfn->hw_info.resc_start[QED_VPORT],
1249 p_hwfn->hw_info.resc_num[QED_PQ],
1250 p_hwfn->hw_info.resc_start[QED_PQ],
1251 p_hwfn->hw_info.resc_num[QED_RL],
1252 p_hwfn->hw_info.resc_start[QED_RL],
1253 p_hwfn->hw_info.resc_num[QED_MAC],
1254 p_hwfn->hw_info.resc_start[QED_MAC],
1255 p_hwfn->hw_info.resc_num[QED_VLAN],
1256 p_hwfn->hw_info.resc_start[QED_VLAN],
1257 p_hwfn->hw_info.resc_num[QED_ILT],
1258 p_hwfn->hw_info.resc_start[QED_ILT]);
1259 }
1260
1261 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn,
1262 struct qed_ptt *p_ptt)
1263 {
1264 u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
1265 u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
1266 struct qed_mcp_link_params *link;
1267
1268 /* Read global nvm_cfg address */
1269 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1270
1271 /* Verify MCP has initialized it */
1272 if (!nvm_cfg_addr) {
1273 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1274 return -EINVAL;
1275 }
1276
1277 /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
1278 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1279
1280 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1281 offsetof(struct nvm_cfg1, glob) +
1282 offsetof(struct nvm_cfg1_glob, core_cfg);
1283
1284 core_cfg = qed_rd(p_hwfn, p_ptt, addr);
1285
1286 switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
1287 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
1288 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X40G:
1289 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
1290 break;
1291 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X50G:
1292 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
1293 break;
1294 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X100G:
1295 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
1296 break;
1297 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_F:
1298 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
1299 break;
1300 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_E:
1301 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
1302 break;
1303 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X20G:
1304 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
1305 break;
1306 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X40G:
1307 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
1308 break;
1309 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X25G:
1310 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
1311 break;
1312 case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X25G:
1313 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
1314 break;
1315 default:
1316 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n",
1317 core_cfg);
1318 break;
1319 }
1320
1321 /* Read default link configuration */
1322 link = &p_hwfn->mcp_info->link_input;
1323 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1324 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
1325 link_temp = qed_rd(p_hwfn, p_ptt,
1326 port_cfg_addr +
1327 offsetof(struct nvm_cfg1_port, speed_cap_mask));
1328 link->speed.advertised_speeds =
1329 link_temp & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
1330
1331 p_hwfn->mcp_info->link_capabilities.speed_capabilities =
1332 link->speed.advertised_speeds;
1333
1334 link_temp = qed_rd(p_hwfn, p_ptt,
1335 port_cfg_addr +
1336 offsetof(struct nvm_cfg1_port, link_settings));
1337 switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
1338 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
1339 case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
1340 link->speed.autoneg = true;
1341 break;
1342 case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
1343 link->speed.forced_speed = 1000;
1344 break;
1345 case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
1346 link->speed.forced_speed = 10000;
1347 break;
1348 case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
1349 link->speed.forced_speed = 25000;
1350 break;
1351 case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
1352 link->speed.forced_speed = 40000;
1353 break;
1354 case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
1355 link->speed.forced_speed = 50000;
1356 break;
1357 case NVM_CFG1_PORT_DRV_LINK_SPEED_100G:
1358 link->speed.forced_speed = 100000;
1359 break;
1360 default:
1361 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n",
1362 link_temp);
1363 }
1364
1365 link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
1366 link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
1367 link->pause.autoneg = !!(link_temp &
1368 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
1369 link->pause.forced_rx = !!(link_temp &
1370 NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
1371 link->pause.forced_tx = !!(link_temp &
1372 NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
1373 link->loopback_mode = 0;
1374
1375 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1376 "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
1377 link->speed.forced_speed, link->speed.advertised_speeds,
1378 link->speed.autoneg, link->pause.autoneg);
1379
1380 /* Read Multi-function information from shmem */
1381 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1382 offsetof(struct nvm_cfg1, glob) +
1383 offsetof(struct nvm_cfg1_glob, generic_cont0);
1384
1385 generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
1386
1387 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
1388 NVM_CFG1_GLOB_MF_MODE_OFFSET;
1389
1390 switch (mf_mode) {
1391 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
1392 p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
1393 break;
1394 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
1395 p_hwfn->cdev->mf_mode = QED_MF_NPAR;
1396 break;
1397 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
1398 p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
1399 break;
1400 }
1401 DP_INFO(p_hwfn, "Multi function mode is %08x\n",
1402 p_hwfn->cdev->mf_mode);
1403
1404 /* Read Multi-function information from shmem */
1405 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1406 offsetof(struct nvm_cfg1, glob) +
1407 offsetof(struct nvm_cfg1_glob, device_capabilities);
1408
1409 device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
1410 if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
1411 __set_bit(QED_DEV_CAP_ETH,
1412 &p_hwfn->hw_info.device_capabilities);
1413
1414 return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
1415 }
1416
1417 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1418 {
1419 u32 reg_function_hide, tmp, eng_mask;
1420 u8 num_funcs;
1421
1422 num_funcs = MAX_NUM_PFS_BB;
1423
1424 /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
1425 * in the other bits are selected.
1426 * Bits 1-15 are for functions 1-15, respectively, and their value is
1427 * '0' only for enabled functions (function 0 always exists and
1428 * enabled).
1429 * In case of CMT, only the "even" functions are enabled, and thus the
1430 * number of functions for both hwfns is learnt from the same bits.
1431 */
1432 reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
1433
1434 if (reg_function_hide & 0x1) {
1435 if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
1436 num_funcs = 0;
1437 eng_mask = 0xaaaa;
1438 } else {
1439 num_funcs = 1;
1440 eng_mask = 0x5554;
1441 }
1442
1443 /* Get the number of the enabled functions on the engine */
1444 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
1445 while (tmp) {
1446 if (tmp & 0x1)
1447 num_funcs++;
1448 tmp >>= 0x1;
1449 }
1450 }
1451
1452 p_hwfn->num_funcs_on_engine = num_funcs;
1453
1454 DP_VERBOSE(p_hwfn,
1455 NETIF_MSG_PROBE,
1456 "PF [rel_id %d, abs_id %d] within the %d enabled functions on the engine\n",
1457 p_hwfn->rel_pf_id,
1458 p_hwfn->abs_pf_id,
1459 p_hwfn->num_funcs_on_engine);
1460 }
1461
1462 static int
1463 qed_get_hw_info(struct qed_hwfn *p_hwfn,
1464 struct qed_ptt *p_ptt,
1465 enum qed_pci_personality personality)
1466 {
1467 u32 port_mode;
1468 int rc;
1469
1470 /* Since all information is common, only first hwfns should do this */
1471 if (IS_LEAD_HWFN(p_hwfn)) {
1472 rc = qed_iov_hw_info(p_hwfn);
1473 if (rc)
1474 return rc;
1475 }
1476
1477 /* Read the port mode */
1478 port_mode = qed_rd(p_hwfn, p_ptt,
1479 CNIG_REG_NW_PORT_MODE_BB_B0);
1480
1481 if (port_mode < 3) {
1482 p_hwfn->cdev->num_ports_in_engines = 1;
1483 } else if (port_mode <= 5) {
1484 p_hwfn->cdev->num_ports_in_engines = 2;
1485 } else {
1486 DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
1487 p_hwfn->cdev->num_ports_in_engines);
1488
1489 /* Default num_ports_in_engines to something */
1490 p_hwfn->cdev->num_ports_in_engines = 1;
1491 }
1492
1493 qed_hw_get_nvm_info(p_hwfn, p_ptt);
1494
1495 rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
1496 if (rc)
1497 return rc;
1498
1499 if (qed_mcp_is_init(p_hwfn))
1500 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
1501 p_hwfn->mcp_info->func_info.mac);
1502 else
1503 eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
1504
1505 if (qed_mcp_is_init(p_hwfn)) {
1506 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
1507 p_hwfn->hw_info.ovlan =
1508 p_hwfn->mcp_info->func_info.ovlan;
1509
1510 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
1511 }
1512
1513 if (qed_mcp_is_init(p_hwfn)) {
1514 enum qed_pci_personality protocol;
1515
1516 protocol = p_hwfn->mcp_info->func_info.protocol;
1517 p_hwfn->hw_info.personality = protocol;
1518 }
1519
1520 qed_get_num_funcs(p_hwfn, p_ptt);
1521
1522 qed_hw_get_resc(p_hwfn);
1523
1524 return rc;
1525 }
1526
1527 static int qed_get_dev_info(struct qed_dev *cdev)
1528 {
1529 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1530 u32 tmp;
1531
1532 /* Read Vendor Id / Device Id */
1533 pci_read_config_word(cdev->pdev, PCI_VENDOR_ID,
1534 &cdev->vendor_id);
1535 pci_read_config_word(cdev->pdev, PCI_DEVICE_ID,
1536 &cdev->device_id);
1537 cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1538 MISCS_REG_CHIP_NUM);
1539 cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1540 MISCS_REG_CHIP_REV);
1541 MASK_FIELD(CHIP_REV, cdev->chip_rev);
1542
1543 cdev->type = QED_DEV_TYPE_BB;
1544 /* Learn number of HW-functions */
1545 tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1546 MISCS_REG_CMT_ENABLED_FOR_PAIR);
1547
1548 if (tmp & (1 << p_hwfn->rel_pf_id)) {
1549 DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
1550 cdev->num_hwfns = 2;
1551 } else {
1552 cdev->num_hwfns = 1;
1553 }
1554
1555 cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1556 MISCS_REG_CHIP_TEST_REG) >> 4;
1557 MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
1558 cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
1559 MISCS_REG_CHIP_METAL);
1560 MASK_FIELD(CHIP_METAL, cdev->chip_metal);
1561
1562 DP_INFO(cdev->hwfns,
1563 "Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
1564 cdev->chip_num, cdev->chip_rev,
1565 cdev->chip_bond_id, cdev->chip_metal);
1566
1567 if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
1568 DP_NOTICE(cdev->hwfns,
1569 "The chip type/rev (BB A0) is not supported!\n");
1570 return -EINVAL;
1571 }
1572
1573 return 0;
1574 }
1575
1576 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
1577 void __iomem *p_regview,
1578 void __iomem *p_doorbells,
1579 enum qed_pci_personality personality)
1580 {
1581 int rc = 0;
1582
1583 /* Split PCI bars evenly between hwfns */
1584 p_hwfn->regview = p_regview;
1585 p_hwfn->doorbells = p_doorbells;
1586
1587 if (IS_VF(p_hwfn->cdev))
1588 return qed_vf_hw_prepare(p_hwfn);
1589
1590 /* Validate that chip access is feasible */
1591 if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
1592 DP_ERR(p_hwfn,
1593 "Reading the ME register returns all Fs; Preventing further chip access\n");
1594 return -EINVAL;
1595 }
1596
1597 get_function_id(p_hwfn);
1598
1599 /* Allocate PTT pool */
1600 rc = qed_ptt_pool_alloc(p_hwfn);
1601 if (rc) {
1602 DP_NOTICE(p_hwfn, "Failed to prepare hwfn's hw\n");
1603 goto err0;
1604 }
1605
1606 /* Allocate the main PTT */
1607 p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
1608
1609 /* First hwfn learns basic information, e.g., number of hwfns */
1610 if (!p_hwfn->my_id) {
1611 rc = qed_get_dev_info(p_hwfn->cdev);
1612 if (rc != 0)
1613 goto err1;
1614 }
1615
1616 qed_hw_hwfn_prepare(p_hwfn);
1617
1618 /* Initialize MCP structure */
1619 rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
1620 if (rc) {
1621 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
1622 goto err1;
1623 }
1624
1625 /* Read the device configuration information from the HW and SHMEM */
1626 rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
1627 if (rc) {
1628 DP_NOTICE(p_hwfn, "Failed to get HW information\n");
1629 goto err2;
1630 }
1631
1632 /* Allocate the init RT array and initialize the init-ops engine */
1633 rc = qed_init_alloc(p_hwfn);
1634 if (rc) {
1635 DP_NOTICE(p_hwfn, "Failed to allocate the init array\n");
1636 goto err2;
1637 }
1638
1639 return rc;
1640 err2:
1641 if (IS_LEAD_HWFN(p_hwfn))
1642 qed_iov_free_hw_info(p_hwfn->cdev);
1643 qed_mcp_free(p_hwfn);
1644 err1:
1645 qed_hw_hwfn_free(p_hwfn);
1646 err0:
1647 return rc;
1648 }
1649
1650 int qed_hw_prepare(struct qed_dev *cdev,
1651 int personality)
1652 {
1653 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1654 int rc;
1655
1656 /* Store the precompiled init data ptrs */
1657 if (IS_PF(cdev))
1658 qed_init_iro_array(cdev);
1659
1660 /* Initialize the first hwfn - will learn number of hwfns */
1661 rc = qed_hw_prepare_single(p_hwfn,
1662 cdev->regview,
1663 cdev->doorbells, personality);
1664 if (rc)
1665 return rc;
1666
1667 personality = p_hwfn->hw_info.personality;
1668
1669 /* Initialize the rest of the hwfns */
1670 if (cdev->num_hwfns > 1) {
1671 void __iomem *p_regview, *p_doorbell;
1672 u8 __iomem *addr;
1673
1674 /* adjust bar offset for second engine */
1675 addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
1676 p_regview = addr;
1677
1678 /* adjust doorbell bar offset for second engine */
1679 addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
1680 p_doorbell = addr;
1681
1682 /* prepare second hw function */
1683 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
1684 p_doorbell, personality);
1685
1686 /* in case of error, need to free the previously
1687 * initiliazed hwfn 0.
1688 */
1689 if (rc) {
1690 if (IS_PF(cdev)) {
1691 qed_init_free(p_hwfn);
1692 qed_mcp_free(p_hwfn);
1693 qed_hw_hwfn_free(p_hwfn);
1694 }
1695 }
1696 }
1697
1698 return rc;
1699 }
1700
1701 void qed_hw_remove(struct qed_dev *cdev)
1702 {
1703 int i;
1704
1705 for_each_hwfn(cdev, i) {
1706 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1707
1708 if (IS_VF(cdev)) {
1709 qed_vf_pf_release(p_hwfn);
1710 continue;
1711 }
1712
1713 qed_init_free(p_hwfn);
1714 qed_hw_hwfn_free(p_hwfn);
1715 qed_mcp_free(p_hwfn);
1716 }
1717
1718 qed_iov_free_hw_info(cdev);
1719 }
1720
1721 int qed_chain_alloc(struct qed_dev *cdev,
1722 enum qed_chain_use_mode intended_use,
1723 enum qed_chain_mode mode,
1724 u16 num_elems,
1725 size_t elem_size,
1726 struct qed_chain *p_chain)
1727 {
1728 dma_addr_t p_pbl_phys = 0;
1729 void *p_pbl_virt = NULL;
1730 dma_addr_t p_phys = 0;
1731 void *p_virt = NULL;
1732 u16 page_cnt = 0;
1733 size_t size;
1734
1735 if (mode == QED_CHAIN_MODE_SINGLE)
1736 page_cnt = 1;
1737 else
1738 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
1739
1740 size = page_cnt * QED_CHAIN_PAGE_SIZE;
1741 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1742 size, &p_phys, GFP_KERNEL);
1743 if (!p_virt) {
1744 DP_NOTICE(cdev, "Failed to allocate chain mem\n");
1745 goto nomem;
1746 }
1747
1748 if (mode == QED_CHAIN_MODE_PBL) {
1749 size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1750 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
1751 size, &p_pbl_phys,
1752 GFP_KERNEL);
1753 if (!p_pbl_virt) {
1754 DP_NOTICE(cdev, "Failed to allocate chain pbl mem\n");
1755 goto nomem;
1756 }
1757
1758 qed_chain_pbl_init(p_chain, p_virt, p_phys, page_cnt,
1759 (u8)elem_size, intended_use,
1760 p_pbl_phys, p_pbl_virt);
1761 } else {
1762 qed_chain_init(p_chain, p_virt, p_phys, page_cnt,
1763 (u8)elem_size, intended_use, mode);
1764 }
1765
1766 return 0;
1767
1768 nomem:
1769 dma_free_coherent(&cdev->pdev->dev,
1770 page_cnt * QED_CHAIN_PAGE_SIZE,
1771 p_virt, p_phys);
1772 dma_free_coherent(&cdev->pdev->dev,
1773 page_cnt * QED_CHAIN_PBL_ENTRY_SIZE,
1774 p_pbl_virt, p_pbl_phys);
1775
1776 return -ENOMEM;
1777 }
1778
1779 void qed_chain_free(struct qed_dev *cdev,
1780 struct qed_chain *p_chain)
1781 {
1782 size_t size;
1783
1784 if (!p_chain->p_virt_addr)
1785 return;
1786
1787 if (p_chain->mode == QED_CHAIN_MODE_PBL) {
1788 size = p_chain->page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
1789 dma_free_coherent(&cdev->pdev->dev, size,
1790 p_chain->pbl.p_virt_table,
1791 p_chain->pbl.p_phys_table);
1792 }
1793
1794 size = p_chain->page_cnt * QED_CHAIN_PAGE_SIZE;
1795 dma_free_coherent(&cdev->pdev->dev, size,
1796 p_chain->p_virt_addr,
1797 p_chain->p_phys_addr);
1798 }
1799
1800 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn,
1801 u16 src_id, u16 *dst_id)
1802 {
1803 if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
1804 u16 min, max;
1805
1806 min = (u16)RESC_START(p_hwfn, QED_L2_QUEUE);
1807 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
1808 DP_NOTICE(p_hwfn,
1809 "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
1810 src_id, min, max);
1811
1812 return -EINVAL;
1813 }
1814
1815 *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
1816
1817 return 0;
1818 }
1819
1820 int qed_fw_vport(struct qed_hwfn *p_hwfn,
1821 u8 src_id, u8 *dst_id)
1822 {
1823 if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
1824 u8 min, max;
1825
1826 min = (u8)RESC_START(p_hwfn, QED_VPORT);
1827 max = min + RESC_NUM(p_hwfn, QED_VPORT);
1828 DP_NOTICE(p_hwfn,
1829 "vport id [%d] is not valid, available indices [%d - %d]\n",
1830 src_id, min, max);
1831
1832 return -EINVAL;
1833 }
1834
1835 *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
1836
1837 return 0;
1838 }
1839
1840 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn,
1841 u8 src_id, u8 *dst_id)
1842 {
1843 if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
1844 u8 min, max;
1845
1846 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
1847 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
1848 DP_NOTICE(p_hwfn,
1849 "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
1850 src_id, min, max);
1851
1852 return -EINVAL;
1853 }
1854
1855 *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
1856
1857 return 0;
1858 }
1859
1860 /* Calculate final WFQ values for all vports and configure them.
1861 * After this configuration each vport will have
1862 * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
1863 */
1864 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
1865 struct qed_ptt *p_ptt,
1866 u32 min_pf_rate)
1867 {
1868 struct init_qm_vport_params *vport_params;
1869 int i;
1870
1871 vport_params = p_hwfn->qm_info.qm_vport_params;
1872
1873 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
1874 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
1875
1876 vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
1877 min_pf_rate;
1878 qed_init_vport_wfq(p_hwfn, p_ptt,
1879 vport_params[i].first_tx_pq_id,
1880 vport_params[i].vport_wfq);
1881 }
1882 }
1883
1884 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
1885 u32 min_pf_rate)
1886
1887 {
1888 int i;
1889
1890 for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
1891 p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
1892 }
1893
1894 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
1895 struct qed_ptt *p_ptt,
1896 u32 min_pf_rate)
1897 {
1898 struct init_qm_vport_params *vport_params;
1899 int i;
1900
1901 vport_params = p_hwfn->qm_info.qm_vport_params;
1902
1903 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
1904 qed_init_wfq_default_param(p_hwfn, min_pf_rate);
1905 qed_init_vport_wfq(p_hwfn, p_ptt,
1906 vport_params[i].first_tx_pq_id,
1907 vport_params[i].vport_wfq);
1908 }
1909 }
1910
1911 /* This function performs several validations for WFQ
1912 * configuration and required min rate for a given vport
1913 * 1. req_rate must be greater than one percent of min_pf_rate.
1914 * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
1915 * rates to get less than one percent of min_pf_rate.
1916 * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
1917 */
1918 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
1919 u16 vport_id, u32 req_rate,
1920 u32 min_pf_rate)
1921 {
1922 u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
1923 int non_requested_count = 0, req_count = 0, i, num_vports;
1924
1925 num_vports = p_hwfn->qm_info.num_vports;
1926
1927 /* Accounting for the vports which are configured for WFQ explicitly */
1928 for (i = 0; i < num_vports; i++) {
1929 u32 tmp_speed;
1930
1931 if ((i != vport_id) &&
1932 p_hwfn->qm_info.wfq_data[i].configured) {
1933 req_count++;
1934 tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
1935 total_req_min_rate += tmp_speed;
1936 }
1937 }
1938
1939 /* Include current vport data as well */
1940 req_count++;
1941 total_req_min_rate += req_rate;
1942 non_requested_count = num_vports - req_count;
1943
1944 if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
1945 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1946 "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
1947 vport_id, req_rate, min_pf_rate);
1948 return -EINVAL;
1949 }
1950
1951 if (num_vports > QED_WFQ_UNIT) {
1952 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1953 "Number of vports is greater than %d\n",
1954 QED_WFQ_UNIT);
1955 return -EINVAL;
1956 }
1957
1958 if (total_req_min_rate > min_pf_rate) {
1959 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1960 "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
1961 total_req_min_rate, min_pf_rate);
1962 return -EINVAL;
1963 }
1964
1965 total_left_rate = min_pf_rate - total_req_min_rate;
1966
1967 left_rate_per_vp = total_left_rate / non_requested_count;
1968 if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) {
1969 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1970 "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
1971 left_rate_per_vp, min_pf_rate);
1972 return -EINVAL;
1973 }
1974
1975 p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
1976 p_hwfn->qm_info.wfq_data[vport_id].configured = true;
1977
1978 for (i = 0; i < num_vports; i++) {
1979 if (p_hwfn->qm_info.wfq_data[i].configured)
1980 continue;
1981
1982 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
1983 }
1984
1985 return 0;
1986 }
1987
1988 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
1989 struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
1990 {
1991 struct qed_mcp_link_state *p_link;
1992 int rc = 0;
1993
1994 p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
1995
1996 if (!p_link->min_pf_rate) {
1997 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
1998 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
1999 return rc;
2000 }
2001
2002 rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
2003
2004 if (rc == 0)
2005 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
2006 p_link->min_pf_rate);
2007 else
2008 DP_NOTICE(p_hwfn,
2009 "Validation failed while configuring min rate\n");
2010
2011 return rc;
2012 }
2013
2014 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
2015 struct qed_ptt *p_ptt,
2016 u32 min_pf_rate)
2017 {
2018 bool use_wfq = false;
2019 int rc = 0;
2020 u16 i;
2021
2022 /* Validate all pre configured vports for wfq */
2023 for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
2024 u32 rate;
2025
2026 if (!p_hwfn->qm_info.wfq_data[i].configured)
2027 continue;
2028
2029 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
2030 use_wfq = true;
2031
2032 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
2033 if (rc) {
2034 DP_NOTICE(p_hwfn,
2035 "WFQ validation failed while configuring min rate\n");
2036 break;
2037 }
2038 }
2039
2040 if (!rc && use_wfq)
2041 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2042 else
2043 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
2044
2045 return rc;
2046 }
2047
2048 /* Main API for qed clients to configure vport min rate.
2049 * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
2050 * rate - Speed in Mbps needs to be assigned to a given vport.
2051 */
2052 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
2053 {
2054 int i, rc = -EINVAL;
2055
2056 /* Currently not supported; Might change in future */
2057 if (cdev->num_hwfns > 1) {
2058 DP_NOTICE(cdev,
2059 "WFQ configuration is not supported for this device\n");
2060 return rc;
2061 }
2062
2063 for_each_hwfn(cdev, i) {
2064 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2065 struct qed_ptt *p_ptt;
2066
2067 p_ptt = qed_ptt_acquire(p_hwfn);
2068 if (!p_ptt)
2069 return -EBUSY;
2070
2071 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
2072
2073 if (!rc) {
2074 qed_ptt_release(p_hwfn, p_ptt);
2075 return rc;
2076 }
2077
2078 qed_ptt_release(p_hwfn, p_ptt);
2079 }
2080
2081 return rc;
2082 }
2083
2084 /* API to configure WFQ from mcp link change */
2085 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
2086 {
2087 int i;
2088
2089 for_each_hwfn(cdev, i) {
2090 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2091
2092 __qed_configure_vp_wfq_on_link_change(p_hwfn,
2093 p_hwfn->p_dpc_ptt,
2094 min_pf_rate);
2095 }
2096 }
2097
2098 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
2099 struct qed_ptt *p_ptt,
2100 struct qed_mcp_link_state *p_link,
2101 u8 max_bw)
2102 {
2103 int rc = 0;
2104
2105 p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
2106
2107 if (!p_link->line_speed && (max_bw != 100))
2108 return rc;
2109
2110 p_link->speed = (p_link->line_speed * max_bw) / 100;
2111 p_hwfn->qm_info.pf_rl = p_link->speed;
2112
2113 /* Since the limiter also affects Tx-switched traffic, we don't want it
2114 * to limit such traffic in case there's no actual limit.
2115 * In that case, set limit to imaginary high boundary.
2116 */
2117 if (max_bw == 100)
2118 p_hwfn->qm_info.pf_rl = 100000;
2119
2120 rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
2121 p_hwfn->qm_info.pf_rl);
2122
2123 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2124 "Configured MAX bandwidth to be %08x Mb/sec\n",
2125 p_link->speed);
2126
2127 return rc;
2128 }
2129
2130 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
2131 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
2132 {
2133 int i, rc = -EINVAL;
2134
2135 if (max_bw < 1 || max_bw > 100) {
2136 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
2137 return rc;
2138 }
2139
2140 for_each_hwfn(cdev, i) {
2141 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2142 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2143 struct qed_mcp_link_state *p_link;
2144 struct qed_ptt *p_ptt;
2145
2146 p_link = &p_lead->mcp_info->link_output;
2147
2148 p_ptt = qed_ptt_acquire(p_hwfn);
2149 if (!p_ptt)
2150 return -EBUSY;
2151
2152 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
2153 p_link, max_bw);
2154
2155 qed_ptt_release(p_hwfn, p_ptt);
2156
2157 if (rc)
2158 break;
2159 }
2160
2161 return rc;
2162 }
2163
2164 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
2165 struct qed_ptt *p_ptt,
2166 struct qed_mcp_link_state *p_link,
2167 u8 min_bw)
2168 {
2169 int rc = 0;
2170
2171 p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
2172 p_hwfn->qm_info.pf_wfq = min_bw;
2173
2174 if (!p_link->line_speed)
2175 return rc;
2176
2177 p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
2178
2179 rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
2180
2181 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
2182 "Configured MIN bandwidth to be %d Mb/sec\n",
2183 p_link->min_pf_rate);
2184
2185 return rc;
2186 }
2187
2188 /* Main API to configure PF min bandwidth where bw range is [1-100] */
2189 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
2190 {
2191 int i, rc = -EINVAL;
2192
2193 if (min_bw < 1 || min_bw > 100) {
2194 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
2195 return rc;
2196 }
2197
2198 for_each_hwfn(cdev, i) {
2199 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2200 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
2201 struct qed_mcp_link_state *p_link;
2202 struct qed_ptt *p_ptt;
2203
2204 p_link = &p_lead->mcp_info->link_output;
2205
2206 p_ptt = qed_ptt_acquire(p_hwfn);
2207 if (!p_ptt)
2208 return -EBUSY;
2209
2210 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
2211 p_link, min_bw);
2212 if (rc) {
2213 qed_ptt_release(p_hwfn, p_ptt);
2214 return rc;
2215 }
2216
2217 if (p_link->min_pf_rate) {
2218 u32 min_rate = p_link->min_pf_rate;
2219
2220 rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
2221 p_ptt,
2222 min_rate);
2223 }
2224
2225 qed_ptt_release(p_hwfn, p_ptt);
2226 }
2227
2228 return rc;
2229 }
2230
2231 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2232 {
2233 struct qed_mcp_link_state *p_link;
2234
2235 p_link = &p_hwfn->mcp_info->link_output;
2236
2237 if (p_link->min_pf_rate)
2238 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
2239 p_link->min_pf_rate);
2240
2241 memset(p_hwfn->qm_info.wfq_data, 0,
2242 sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
2243 }