]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/qlogic/qed/qed_hw.c
qed: Revise QM cofiguration
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / qlogic / qed / qed_hw.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/types.h>
34 #include <linux/io.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/errno.h>
38 #include <linux/kernel.h>
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/qed/qed_chain.h>
46 #include "qed.h"
47 #include "qed_hsi.h"
48 #include "qed_hw.h"
49 #include "qed_reg_addr.h"
50 #include "qed_sriov.h"
51
52 #define QED_BAR_ACQUIRE_TIMEOUT 1000
53
54 /* Invalid values */
55 #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1))
56
57 struct qed_ptt {
58 struct list_head list_entry;
59 unsigned int idx;
60 struct pxp_ptt_entry pxp;
61 };
62
63 struct qed_ptt_pool {
64 struct list_head free_list;
65 spinlock_t lock; /* ptt synchronized access */
66 struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
67 };
68
69 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
70 {
71 struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
72 int i;
73
74 if (!p_pool)
75 return -ENOMEM;
76
77 INIT_LIST_HEAD(&p_pool->free_list);
78 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
79 p_pool->ptts[i].idx = i;
80 p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
81 p_pool->ptts[i].pxp.pretend.control = 0;
82 if (i >= RESERVED_PTT_MAX)
83 list_add(&p_pool->ptts[i].list_entry,
84 &p_pool->free_list);
85 }
86
87 p_hwfn->p_ptt_pool = p_pool;
88 spin_lock_init(&p_pool->lock);
89
90 return 0;
91 }
92
93 void qed_ptt_invalidate(struct qed_hwfn *p_hwfn)
94 {
95 struct qed_ptt *p_ptt;
96 int i;
97
98 for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
99 p_ptt = &p_hwfn->p_ptt_pool->ptts[i];
100 p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET;
101 }
102 }
103
104 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
105 {
106 kfree(p_hwfn->p_ptt_pool);
107 p_hwfn->p_ptt_pool = NULL;
108 }
109
110 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
111 {
112 struct qed_ptt *p_ptt;
113 unsigned int i;
114
115 /* Take the free PTT from the list */
116 for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) {
117 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
118
119 if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
120 p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
121 struct qed_ptt, list_entry);
122 list_del(&p_ptt->list_entry);
123
124 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
125
126 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
127 "allocated ptt %d\n", p_ptt->idx);
128 return p_ptt;
129 }
130
131 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
132 usleep_range(1000, 2000);
133 }
134
135 DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
136 return NULL;
137 }
138
139 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
140 {
141 spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
142 list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
143 spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
144 }
145
146 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
147 {
148 /* The HW is using DWORDS and we need to translate it to Bytes */
149 return le32_to_cpu(p_ptt->pxp.offset) << 2;
150 }
151
152 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
153 {
154 return PXP_PF_WINDOW_ADMIN_PER_PF_START +
155 p_ptt->idx * sizeof(struct pxp_ptt_entry);
156 }
157
158 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
159 {
160 return PXP_EXTERNAL_BAR_PF_WINDOW_START +
161 p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
162 }
163
164 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
165 struct qed_ptt *p_ptt, u32 new_hw_addr)
166 {
167 u32 prev_hw_addr;
168
169 prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
170
171 if (new_hw_addr == prev_hw_addr)
172 return;
173
174 /* Update PTT entery in admin window */
175 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
176 "Updating PTT entry %d to offset 0x%x\n",
177 p_ptt->idx, new_hw_addr);
178
179 /* The HW is using DWORDS and the address is in Bytes */
180 p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
181
182 REG_WR(p_hwfn,
183 qed_ptt_config_addr(p_ptt) +
184 offsetof(struct pxp_ptt_entry, offset),
185 le32_to_cpu(p_ptt->pxp.offset));
186 }
187
188 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
189 struct qed_ptt *p_ptt, u32 hw_addr)
190 {
191 u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
192 u32 offset;
193
194 offset = hw_addr - win_hw_addr;
195
196 /* Verify the address is within the window */
197 if (hw_addr < win_hw_addr ||
198 offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
199 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
200 offset = 0;
201 }
202
203 return qed_ptt_get_bar_addr(p_ptt) + offset;
204 }
205
206 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
207 enum reserved_ptts ptt_idx)
208 {
209 if (ptt_idx >= RESERVED_PTT_MAX) {
210 DP_NOTICE(p_hwfn,
211 "Requested PTT %d is out of range\n", ptt_idx);
212 return NULL;
213 }
214
215 return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
216 }
217
218 void qed_wr(struct qed_hwfn *p_hwfn,
219 struct qed_ptt *p_ptt,
220 u32 hw_addr, u32 val)
221 {
222 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
223
224 REG_WR(p_hwfn, bar_addr, val);
225 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
226 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
227 bar_addr, hw_addr, val);
228 }
229
230 u32 qed_rd(struct qed_hwfn *p_hwfn,
231 struct qed_ptt *p_ptt,
232 u32 hw_addr)
233 {
234 u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
235 u32 val = REG_RD(p_hwfn, bar_addr);
236
237 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
238 "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
239 bar_addr, hw_addr, val);
240
241 return val;
242 }
243
244 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
245 struct qed_ptt *p_ptt,
246 void *addr, u32 hw_addr, size_t n, bool to_device)
247 {
248 u32 dw_count, *host_addr, hw_offset;
249 size_t quota, done = 0;
250 u32 __iomem *reg_addr;
251
252 while (done < n) {
253 quota = min_t(size_t, n - done,
254 PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
255
256 if (IS_PF(p_hwfn->cdev)) {
257 qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
258 hw_offset = qed_ptt_get_bar_addr(p_ptt);
259 } else {
260 hw_offset = hw_addr + done;
261 }
262
263 dw_count = quota / 4;
264 host_addr = (u32 *)((u8 *)addr + done);
265 reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
266 if (to_device)
267 while (dw_count--)
268 DIRECT_REG_WR(reg_addr++, *host_addr++);
269 else
270 while (dw_count--)
271 *host_addr++ = DIRECT_REG_RD(reg_addr++);
272
273 done += quota;
274 }
275 }
276
277 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
278 struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
279 {
280 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
281 "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
282 hw_addr, dest, hw_addr, (unsigned long)n);
283
284 qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
285 }
286
287 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
288 struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
289 {
290 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
291 "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
292 hw_addr, hw_addr, src, (unsigned long)n);
293
294 qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
295 }
296
297 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
298 {
299 u16 control = 0;
300
301 SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
302 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
303
304 /* Every pretend undos previous pretends, including
305 * previous port pretend.
306 */
307 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
308 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
309 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
310
311 if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
312 fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
313
314 p_ptt->pxp.pretend.control = cpu_to_le16(control);
315 p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
316
317 REG_WR(p_hwfn,
318 qed_ptt_config_addr(p_ptt) +
319 offsetof(struct pxp_ptt_entry, pretend),
320 *(u32 *)&p_ptt->pxp.pretend);
321 }
322
323 void qed_port_pretend(struct qed_hwfn *p_hwfn,
324 struct qed_ptt *p_ptt, u8 port_id)
325 {
326 u16 control = 0;
327
328 SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
329 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
330 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
331
332 p_ptt->pxp.pretend.control = cpu_to_le16(control);
333
334 REG_WR(p_hwfn,
335 qed_ptt_config_addr(p_ptt) +
336 offsetof(struct pxp_ptt_entry, pretend),
337 *(u32 *)&p_ptt->pxp.pretend);
338 }
339
340 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
341 {
342 u16 control = 0;
343
344 SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
345 SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
346 SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
347
348 p_ptt->pxp.pretend.control = cpu_to_le16(control);
349
350 REG_WR(p_hwfn,
351 qed_ptt_config_addr(p_ptt) +
352 offsetof(struct pxp_ptt_entry, pretend),
353 *(u32 *)&p_ptt->pxp.pretend);
354 }
355
356 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
357 {
358 u32 concrete_fid = 0;
359
360 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
361 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
362 SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
363
364 return concrete_fid;
365 }
366
367 /* DMAE */
368 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
369 const u8 is_src_type_grc,
370 const u8 is_dst_type_grc,
371 struct qed_dmae_params *p_params)
372 {
373 u16 opcode_b = 0;
374 u32 opcode = 0;
375
376 /* Whether the source is the PCIe or the GRC.
377 * 0- The source is the PCIe
378 * 1- The source is the GRC.
379 */
380 opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC
381 : DMAE_CMD_SRC_MASK_PCIE) <<
382 DMAE_CMD_SRC_SHIFT;
383 opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) <<
384 DMAE_CMD_SRC_PF_ID_SHIFT);
385
386 /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
387 opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC
388 : DMAE_CMD_DST_MASK_PCIE) <<
389 DMAE_CMD_DST_SHIFT;
390 opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) <<
391 DMAE_CMD_DST_PF_ID_SHIFT);
392
393 /* Whether to write a completion word to the completion destination:
394 * 0-Do not write a completion word
395 * 1-Write the completion word
396 */
397 opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT);
398 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
399 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
400
401 if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST)
402 opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT);
403
404 opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT);
405
406 opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT);
407
408 /* reset source address in next go */
409 opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK <<
410 DMAE_CMD_SRC_ADDR_RESET_SHIFT);
411
412 /* reset dest address in next go */
413 opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK <<
414 DMAE_CMD_DST_ADDR_RESET_SHIFT);
415
416 /* SRC/DST VFID: all 1's - pf, otherwise VF id */
417 if (p_params->flags & QED_DMAE_FLAG_VF_SRC) {
418 opcode |= 1 << DMAE_CMD_SRC_VF_ID_VALID_SHIFT;
419 opcode_b |= p_params->src_vfid << DMAE_CMD_SRC_VF_ID_SHIFT;
420 } else {
421 opcode_b |= DMAE_CMD_SRC_VF_ID_MASK <<
422 DMAE_CMD_SRC_VF_ID_SHIFT;
423 }
424
425 if (p_params->flags & QED_DMAE_FLAG_VF_DST) {
426 opcode |= 1 << DMAE_CMD_DST_VF_ID_VALID_SHIFT;
427 opcode_b |= p_params->dst_vfid << DMAE_CMD_DST_VF_ID_SHIFT;
428 } else {
429 opcode_b |= DMAE_CMD_DST_VF_ID_MASK << DMAE_CMD_DST_VF_ID_SHIFT;
430 }
431
432 p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
433 p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
434 }
435
436 u32 qed_dmae_idx_to_go_cmd(u8 idx)
437 {
438 /* All the DMAE 'go' registers form an array in internal memory */
439 return DMAE_REG_GO_C0 + (idx << 2);
440 }
441
442 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
443 struct qed_ptt *p_ptt)
444 {
445 struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
446 u8 idx_cmd = p_hwfn->dmae_info.channel, i;
447 int qed_status = 0;
448
449 /* verify address is not NULL */
450 if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
451 ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
452 DP_NOTICE(p_hwfn,
453 "source or destination address 0 idx_cmd=%d\n"
454 "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
455 idx_cmd,
456 le32_to_cpu(p_command->opcode),
457 le16_to_cpu(p_command->opcode_b),
458 le16_to_cpu(p_command->length_dw),
459 le32_to_cpu(p_command->src_addr_hi),
460 le32_to_cpu(p_command->src_addr_lo),
461 le32_to_cpu(p_command->dst_addr_hi),
462 le32_to_cpu(p_command->dst_addr_lo));
463
464 return -EINVAL;
465 }
466
467 DP_VERBOSE(p_hwfn,
468 NETIF_MSG_HW,
469 "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
470 idx_cmd,
471 le32_to_cpu(p_command->opcode),
472 le16_to_cpu(p_command->opcode_b),
473 le16_to_cpu(p_command->length_dw),
474 le32_to_cpu(p_command->src_addr_hi),
475 le32_to_cpu(p_command->src_addr_lo),
476 le32_to_cpu(p_command->dst_addr_hi),
477 le32_to_cpu(p_command->dst_addr_lo));
478
479 /* Copy the command to DMAE - need to do it before every call
480 * for source/dest address no reset.
481 * The first 9 DWs are the command registers, the 10 DW is the
482 * GO register, and the rest are result registers
483 * (which are read only by the client).
484 */
485 for (i = 0; i < DMAE_CMD_SIZE; i++) {
486 u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
487 *(((u32 *)p_command) + i) : 0;
488
489 qed_wr(p_hwfn, p_ptt,
490 DMAE_REG_CMD_MEM +
491 (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
492 (i * sizeof(u32)), data);
493 }
494
495 qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
496
497 return qed_status;
498 }
499
500 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
501 {
502 dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
503 struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
504 u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
505 u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
506
507 *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
508 sizeof(u32), p_addr, GFP_KERNEL);
509 if (!*p_comp)
510 goto err;
511
512 p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
513 *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
514 sizeof(struct dmae_cmd),
515 p_addr, GFP_KERNEL);
516 if (!*p_cmd)
517 goto err;
518
519 p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
520 *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
521 sizeof(u32) * DMAE_MAX_RW_SIZE,
522 p_addr, GFP_KERNEL);
523 if (!*p_buff)
524 goto err;
525
526 p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
527
528 return 0;
529 err:
530 qed_dmae_info_free(p_hwfn);
531 return -ENOMEM;
532 }
533
534 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
535 {
536 dma_addr_t p_phys;
537
538 /* Just make sure no one is in the middle */
539 mutex_lock(&p_hwfn->dmae_info.mutex);
540
541 if (p_hwfn->dmae_info.p_completion_word) {
542 p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
543 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
544 sizeof(u32),
545 p_hwfn->dmae_info.p_completion_word, p_phys);
546 p_hwfn->dmae_info.p_completion_word = NULL;
547 }
548
549 if (p_hwfn->dmae_info.p_dmae_cmd) {
550 p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
551 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
552 sizeof(struct dmae_cmd),
553 p_hwfn->dmae_info.p_dmae_cmd, p_phys);
554 p_hwfn->dmae_info.p_dmae_cmd = NULL;
555 }
556
557 if (p_hwfn->dmae_info.p_intermediate_buffer) {
558 p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
559 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
560 sizeof(u32) * DMAE_MAX_RW_SIZE,
561 p_hwfn->dmae_info.p_intermediate_buffer,
562 p_phys);
563 p_hwfn->dmae_info.p_intermediate_buffer = NULL;
564 }
565
566 mutex_unlock(&p_hwfn->dmae_info.mutex);
567 }
568
569 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
570 {
571 u32 wait_cnt_limit = 10000, wait_cnt = 0;
572 int qed_status = 0;
573
574 barrier();
575 while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
576 udelay(DMAE_MIN_WAIT_TIME);
577 if (++wait_cnt > wait_cnt_limit) {
578 DP_NOTICE(p_hwfn->cdev,
579 "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
580 *p_hwfn->dmae_info.p_completion_word,
581 DMAE_COMPLETION_VAL);
582 qed_status = -EBUSY;
583 break;
584 }
585
586 /* to sync the completion_word since we are not
587 * using the volatile keyword for p_completion_word
588 */
589 barrier();
590 }
591
592 if (qed_status == 0)
593 *p_hwfn->dmae_info.p_completion_word = 0;
594
595 return qed_status;
596 }
597
598 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
599 struct qed_ptt *p_ptt,
600 u64 src_addr,
601 u64 dst_addr,
602 u8 src_type,
603 u8 dst_type,
604 u32 length_dw)
605 {
606 dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
607 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
608 int qed_status = 0;
609
610 switch (src_type) {
611 case QED_DMAE_ADDRESS_GRC:
612 case QED_DMAE_ADDRESS_HOST_PHYS:
613 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
614 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
615 break;
616 /* for virtual source addresses we use the intermediate buffer. */
617 case QED_DMAE_ADDRESS_HOST_VIRT:
618 cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
619 cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
620 memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
621 (void *)(uintptr_t)src_addr,
622 length_dw * sizeof(u32));
623 break;
624 default:
625 return -EINVAL;
626 }
627
628 switch (dst_type) {
629 case QED_DMAE_ADDRESS_GRC:
630 case QED_DMAE_ADDRESS_HOST_PHYS:
631 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
632 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
633 break;
634 /* for virtual source addresses we use the intermediate buffer. */
635 case QED_DMAE_ADDRESS_HOST_VIRT:
636 cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
637 cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
638 break;
639 default:
640 return -EINVAL;
641 }
642
643 cmd->length_dw = cpu_to_le16((u16)length_dw);
644
645 qed_dmae_post_command(p_hwfn, p_ptt);
646
647 qed_status = qed_dmae_operation_wait(p_hwfn);
648
649 if (qed_status) {
650 DP_NOTICE(p_hwfn,
651 "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
652 src_addr, dst_addr, length_dw);
653 return qed_status;
654 }
655
656 if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
657 memcpy((void *)(uintptr_t)(dst_addr),
658 &p_hwfn->dmae_info.p_intermediate_buffer[0],
659 length_dw * sizeof(u32));
660
661 return 0;
662 }
663
664 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
665 struct qed_ptt *p_ptt,
666 u64 src_addr, u64 dst_addr,
667 u8 src_type, u8 dst_type,
668 u32 size_in_dwords,
669 struct qed_dmae_params *p_params)
670 {
671 dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
672 u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
673 struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
674 u64 src_addr_split = 0, dst_addr_split = 0;
675 u16 length_limit = DMAE_MAX_RW_SIZE;
676 int qed_status = 0;
677 u32 offset = 0;
678
679 qed_dmae_opcode(p_hwfn,
680 (src_type == QED_DMAE_ADDRESS_GRC),
681 (dst_type == QED_DMAE_ADDRESS_GRC),
682 p_params);
683
684 cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
685 cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
686 cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
687
688 /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
689 cnt_split = size_in_dwords / length_limit;
690 length_mod = size_in_dwords % length_limit;
691
692 src_addr_split = src_addr;
693 dst_addr_split = dst_addr;
694
695 for (i = 0; i <= cnt_split; i++) {
696 offset = length_limit * i;
697
698 if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) {
699 if (src_type == QED_DMAE_ADDRESS_GRC)
700 src_addr_split = src_addr + offset;
701 else
702 src_addr_split = src_addr + (offset * 4);
703 }
704
705 if (dst_type == QED_DMAE_ADDRESS_GRC)
706 dst_addr_split = dst_addr + offset;
707 else
708 dst_addr_split = dst_addr + (offset * 4);
709
710 length_cur = (cnt_split == i) ? length_mod : length_limit;
711
712 /* might be zero on last iteration */
713 if (!length_cur)
714 continue;
715
716 qed_status = qed_dmae_execute_sub_operation(p_hwfn,
717 p_ptt,
718 src_addr_split,
719 dst_addr_split,
720 src_type,
721 dst_type,
722 length_cur);
723 if (qed_status) {
724 DP_NOTICE(p_hwfn,
725 "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
726 qed_status, src_addr, dst_addr, length_cur);
727 break;
728 }
729 }
730
731 return qed_status;
732 }
733
734 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
735 struct qed_ptt *p_ptt,
736 u64 source_addr, u32 grc_addr, u32 size_in_dwords, u32 flags)
737 {
738 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
739 struct qed_dmae_params params;
740 int rc;
741
742 memset(&params, 0, sizeof(struct qed_dmae_params));
743 params.flags = flags;
744
745 mutex_lock(&p_hwfn->dmae_info.mutex);
746
747 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
748 grc_addr_in_dw,
749 QED_DMAE_ADDRESS_HOST_VIRT,
750 QED_DMAE_ADDRESS_GRC,
751 size_in_dwords, &params);
752
753 mutex_unlock(&p_hwfn->dmae_info.mutex);
754
755 return rc;
756 }
757
758 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
759 struct qed_ptt *p_ptt,
760 u32 grc_addr,
761 dma_addr_t dest_addr, u32 size_in_dwords, u32 flags)
762 {
763 u32 grc_addr_in_dw = grc_addr / sizeof(u32);
764 struct qed_dmae_params params;
765 int rc;
766
767 memset(&params, 0, sizeof(struct qed_dmae_params));
768 params.flags = flags;
769
770 mutex_lock(&p_hwfn->dmae_info.mutex);
771
772 rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
773 dest_addr, QED_DMAE_ADDRESS_GRC,
774 QED_DMAE_ADDRESS_HOST_VIRT,
775 size_in_dwords, &params);
776
777 mutex_unlock(&p_hwfn->dmae_info.mutex);
778
779 return rc;
780 }
781
782 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
783 struct qed_ptt *p_ptt,
784 dma_addr_t source_addr,
785 dma_addr_t dest_addr,
786 u32 size_in_dwords, struct qed_dmae_params *p_params)
787 {
788 int rc;
789
790 mutex_lock(&(p_hwfn->dmae_info.mutex));
791
792 rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
793 dest_addr,
794 QED_DMAE_ADDRESS_HOST_PHYS,
795 QED_DMAE_ADDRESS_HOST_PHYS,
796 size_in_dwords, p_params);
797
798 mutex_unlock(&(p_hwfn->dmae_info.mutex));
799
800 return rc;
801 }
802