]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/qlogic/qed/qed_init_fw_funcs.c
qed*: Update to dual-license
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / qlogic / qed / qed_init_fw_funcs.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/types.h>
34 #include <linux/delay.h>
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/string.h>
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_reg_addr.h"
42
43 enum cminterface {
44 MCM_SEC,
45 MCM_PRI,
46 UCM_SEC,
47 UCM_PRI,
48 TCM_SEC,
49 TCM_PRI,
50 YCM_SEC,
51 YCM_PRI,
52 XCM_SEC,
53 XCM_PRI,
54 NUM_OF_CM_INTERFACES
55 };
56
57 /* general constants */
58 #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
59 QM_PQ_ELEMENT_SIZE, \
60 0x1000) : 0)
61 #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \
62 0x100) - 1 : 0)
63 #define QM_INVALID_PQ_ID 0xffff
64 /* feature enable */
65 #define QM_BYPASS_EN 1
66 #define QM_BYTE_CRD_EN 1
67 /* other PQ constants */
68 #define QM_OTHER_PQS_PER_PF 4
69 /* WFQ constants */
70 #define QM_WFQ_UPPER_BOUND 62500000
71 #define QM_WFQ_VP_PQ_VOQ_SHIFT 0
72 #define QM_WFQ_VP_PQ_PF_SHIFT 5
73 #define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
74 #define QM_WFQ_MAX_INC_VAL 43750000
75
76 /* RL constants */
77 #define QM_RL_UPPER_BOUND 62500000
78 #define QM_RL_PERIOD 5 /* in us */
79 #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
80 #define QM_RL_MAX_INC_VAL 43750000
81 #define QM_RL_INC_VAL(rate) max_t(u32, \
82 (u32)(((rate ? rate : \
83 1000000) * \
84 QM_RL_PERIOD * \
85 101) / (8 * 100)), 1)
86 /* AFullOprtnstcCrdMask constants */
87 #define QM_OPPOR_LINE_VOQ_DEF 1
88 #define QM_OPPOR_FW_STOP_DEF 0
89 #define QM_OPPOR_PQ_EMPTY_DEF 1
90 /* Command Queue constants */
91 #define PBF_CMDQ_PURE_LB_LINES 150
92 #define PBF_CMDQ_LINES_RT_OFFSET(voq) ( \
93 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + voq * \
94 (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
95 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
96 #define PBF_BTB_GUARANTEED_RT_OFFSET(voq) ( \
97 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + voq * \
98 (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
99 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
100 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) ((((pbf_cmd_lines) - \
101 4) * \
102 2) | QM_LINE_CRD_REG_SIGN_BIT)
103 /* BTB: blocks constants (block size = 256B) */
104 #define BTB_JUMBO_PKT_BLOCKS 38
105 #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
106 #define BTB_PURE_LB_FACTOR 10
107 #define BTB_PURE_LB_RATIO 7
108 /* QM stop command constants */
109 #define QM_STOP_PQ_MASK_WIDTH 32
110 #define QM_STOP_CMD_ADDR 0x2
111 #define QM_STOP_CMD_STRUCT_SIZE 2
112 #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
113 #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
114 #define QM_STOP_CMD_PAUSE_MASK_MASK -1
115 #define QM_STOP_CMD_GROUP_ID_OFFSET 1
116 #define QM_STOP_CMD_GROUP_ID_SHIFT 16
117 #define QM_STOP_CMD_GROUP_ID_MASK 15
118 #define QM_STOP_CMD_PQ_TYPE_OFFSET 1
119 #define QM_STOP_CMD_PQ_TYPE_SHIFT 24
120 #define QM_STOP_CMD_PQ_TYPE_MASK 1
121 #define QM_STOP_CMD_MAX_POLL_COUNT 100
122 #define QM_STOP_CMD_POLL_PERIOD_US 500
123 /* QM command macros */
124 #define QM_CMD_STRUCT_SIZE(cmd) cmd ## \
125 _STRUCT_SIZE
126 #define QM_CMD_SET_FIELD(var, cmd, field, \
127 value) SET_FIELD(var[cmd ## _ ## field ## \
128 _OFFSET], \
129 cmd ## _ ## field, \
130 value)
131 /* QM: VOQ macros */
132 #define PHYS_VOQ(port, tc, max_phys_tcs_per_port) ((port) * \
133 (max_phys_tcs_per_port) + \
134 (tc))
135 #define LB_VOQ(port) ( \
136 MAX_PHYS_VOQS + (port))
137 #define VOQ(port, tc, max_phy_tcs_pr_port) \
138 ((tc) < \
139 LB_TC ? PHYS_VOQ(port, \
140 tc, \
141 max_phy_tcs_pr_port) \
142 : LB_VOQ(port))
143 /******************** INTERNAL IMPLEMENTATION *********************/
144 /* Prepare PF RL enable/disable runtime init values */
145 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
146 {
147 STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
148 if (pf_rl_en) {
149 /* enable RLs for all VOQs */
150 STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET,
151 (1 << MAX_NUM_VOQS) - 1);
152 /* write RL period */
153 STORE_RT_REG(p_hwfn,
154 QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
155 STORE_RT_REG(p_hwfn,
156 QM_REG_RLPFPERIODTIMER_RT_OFFSET,
157 QM_RL_PERIOD_CLK_25M);
158 /* set credit threshold for QM bypass flow */
159 if (QM_BYPASS_EN)
160 STORE_RT_REG(p_hwfn,
161 QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
162 QM_RL_UPPER_BOUND);
163 }
164 }
165
166 /* Prepare PF WFQ enable/disable runtime init values */
167 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
168 {
169 STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
170 /* set credit threshold for QM bypass flow */
171 if (pf_wfq_en && QM_BYPASS_EN)
172 STORE_RT_REG(p_hwfn,
173 QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
174 QM_WFQ_UPPER_BOUND);
175 }
176
177 /* Prepare VPORT RL enable/disable runtime init values */
178 static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en)
179 {
180 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
181 vport_rl_en ? 1 : 0);
182 if (vport_rl_en) {
183 /* write RL period (use timer 0 only) */
184 STORE_RT_REG(p_hwfn,
185 QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
186 QM_RL_PERIOD_CLK_25M);
187 STORE_RT_REG(p_hwfn,
188 QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
189 QM_RL_PERIOD_CLK_25M);
190 /* set credit threshold for QM bypass flow */
191 if (QM_BYPASS_EN)
192 STORE_RT_REG(p_hwfn,
193 QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
194 QM_RL_UPPER_BOUND);
195 }
196 }
197
198 /* Prepare VPORT WFQ enable/disable runtime init values */
199 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
200 {
201 STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
202 vport_wfq_en ? 1 : 0);
203 /* set credit threshold for QM bypass flow */
204 if (vport_wfq_en && QM_BYPASS_EN)
205 STORE_RT_REG(p_hwfn,
206 QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
207 QM_WFQ_UPPER_BOUND);
208 }
209
210 /* Prepare runtime init values to allocate PBF command queue lines for
211 * the specified VOQ
212 */
213 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
214 u8 voq, u16 cmdq_lines)
215 {
216 u32 qm_line_crd;
217
218 /* In A0 - Limit the size of pbf queue so that only 511 commands with
219 * the minimum size of 4 (FCoE minimum size)
220 */
221 bool is_bb_a0 = QED_IS_BB_A0(p_hwfn->cdev);
222
223 if (is_bb_a0)
224 cmdq_lines = min_t(u32, cmdq_lines, 1022);
225 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
226 OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq),
227 (u32)cmdq_lines);
228 STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + voq, qm_line_crd);
229 STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + voq,
230 qm_line_crd);
231 }
232
233 /* Prepare runtime init values to allocate PBF command queue lines. */
234 static void qed_cmdq_lines_rt_init(
235 struct qed_hwfn *p_hwfn,
236 u8 max_ports_per_engine,
237 u8 max_phys_tcs_per_port,
238 struct init_qm_port_params port_params[MAX_NUM_PORTS])
239 {
240 u8 tc, voq, port_id, num_tcs_in_port;
241
242 /* clear PBF lines for all VOQs */
243 for (voq = 0; voq < MAX_NUM_VOQS; voq++)
244 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(voq), 0);
245 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
246 if (port_params[port_id].active) {
247 u16 phys_lines, phys_lines_per_tc;
248
249 /* find #lines to divide between active phys TCs */
250 phys_lines = port_params[port_id].num_pbf_cmd_lines -
251 PBF_CMDQ_PURE_LB_LINES;
252 /* find #lines per active physical TC */
253 num_tcs_in_port = 0;
254 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
255 if (((port_params[port_id].active_phys_tcs >>
256 tc) & 0x1) == 1)
257 num_tcs_in_port++;
258 }
259
260 phys_lines_per_tc = phys_lines / num_tcs_in_port;
261 /* init registers per active TC */
262 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
263 if (((port_params[port_id].active_phys_tcs >>
264 tc) & 0x1) != 1)
265 continue;
266
267 voq = PHYS_VOQ(port_id, tc,
268 max_phys_tcs_per_port);
269 qed_cmdq_lines_voq_rt_init(p_hwfn, voq,
270 phys_lines_per_tc);
271 }
272
273 /* init registers for pure LB TC */
274 qed_cmdq_lines_voq_rt_init(p_hwfn, LB_VOQ(port_id),
275 PBF_CMDQ_PURE_LB_LINES);
276 }
277 }
278 }
279
280 static void qed_btb_blocks_rt_init(
281 struct qed_hwfn *p_hwfn,
282 u8 max_ports_per_engine,
283 u8 max_phys_tcs_per_port,
284 struct init_qm_port_params port_params[MAX_NUM_PORTS])
285 {
286 u32 usable_blocks, pure_lb_blocks, phys_blocks;
287 u8 tc, voq, port_id, num_tcs_in_port;
288
289 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
290 u32 temp;
291
292 if (!port_params[port_id].active)
293 continue;
294
295 /* subtract headroom blocks */
296 usable_blocks = port_params[port_id].num_btb_blocks -
297 BTB_HEADROOM_BLOCKS;
298
299 /* find blocks per physical TC */
300 num_tcs_in_port = 0;
301 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
302 if (((port_params[port_id].active_phys_tcs >>
303 tc) & 0x1) == 1)
304 num_tcs_in_port++;
305 }
306
307 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
308 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
309 BTB_PURE_LB_RATIO);
310 pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
311 pure_lb_blocks / BTB_PURE_LB_FACTOR);
312 phys_blocks = (usable_blocks - pure_lb_blocks) /
313 num_tcs_in_port;
314
315 /* init physical TCs */
316 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
317 if (((port_params[port_id].active_phys_tcs >>
318 tc) & 0x1) != 1)
319 continue;
320
321 voq = PHYS_VOQ(port_id, tc,
322 max_phys_tcs_per_port);
323 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(voq),
324 phys_blocks);
325 }
326
327 /* init pure LB TC */
328 temp = LB_VOQ(port_id);
329 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(temp),
330 pure_lb_blocks);
331 }
332 }
333
334 /* Prepare Tx PQ mapping runtime init values for the specified PF */
335 static void qed_tx_pq_map_rt_init(
336 struct qed_hwfn *p_hwfn,
337 struct qed_ptt *p_ptt,
338 struct qed_qm_pf_rt_init_params *p_params,
339 u32 base_mem_addr_4kb)
340 {
341 struct init_qm_vport_params *vport_params = p_params->vport_params;
342 u16 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
343 u16 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
344 u16 last_pq_group = (p_params->start_pq + num_pqs - 1) /
345 QM_PF_QUEUE_GROUP_SIZE;
346 bool is_bb_a0 = QED_IS_BB_A0(p_hwfn->cdev);
347 u16 i, pq_id, pq_group;
348
349 /* a bit per Tx PQ indicating if the PQ is associated with a VF */
350 u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
351 u32 tx_pq_vf_mask_width = is_bb_a0 ? 32 : QM_PF_QUEUE_GROUP_SIZE;
352 u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / tx_pq_vf_mask_width;
353 u32 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
354 u32 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
355 u32 mem_addr_4kb = base_mem_addr_4kb;
356
357 /* set mapping from PQ group to PF */
358 for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
359 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
360 (u32)(p_params->pf_id));
361 /* set PQ sizes */
362 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
363 QM_PQ_SIZE_256B(p_params->num_pf_cids));
364 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
365 QM_PQ_SIZE_256B(p_params->num_vf_cids));
366
367 /* go over all Tx PQs */
368 for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
369 u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
370 p_params->max_phys_tcs_per_port);
371 bool is_vf_pq = (i >= p_params->num_pf_pqs);
372 struct qm_rf_pq_map tx_pq_map;
373
374 /* update first Tx PQ of VPORT/TC */
375 u8 vport_id_in_pf = p_params->pq_params[i].vport_id -
376 p_params->start_vport;
377 u16 *pq_ids = &vport_params[vport_id_in_pf].first_tx_pq_id[0];
378 u16 first_tx_pq_id = pq_ids[p_params->pq_params[i].tc_id];
379
380 if (first_tx_pq_id == QM_INVALID_PQ_ID) {
381 /* create new VP PQ */
382 pq_ids[p_params->pq_params[i].tc_id] = pq_id;
383 first_tx_pq_id = pq_id;
384 /* map VP PQ to VOQ and PF */
385 STORE_RT_REG(p_hwfn,
386 QM_REG_WFQVPMAP_RT_OFFSET +
387 first_tx_pq_id,
388 (voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
389 (p_params->pf_id <<
390 QM_WFQ_VP_PQ_PF_SHIFT));
391 }
392 /* fill PQ map entry */
393 memset(&tx_pq_map, 0, sizeof(tx_pq_map));
394 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_PQ_VALID, 1);
395 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_VALID,
396 p_params->pq_params[i].rl_valid ? 1 : 0);
397 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VP_PQ_ID, first_tx_pq_id);
398 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_RL_ID,
399 p_params->pq_params[i].rl_valid ?
400 p_params->pq_params[i].vport_id : 0);
401 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_VOQ, voq);
402 SET_FIELD(tx_pq_map.reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,
403 p_params->pq_params[i].wrr_group);
404 /* write PQ map entry to CAM */
405 STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id,
406 *((u32 *)&tx_pq_map));
407 /* set base address */
408 STORE_RT_REG(p_hwfn,
409 QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
410 mem_addr_4kb);
411 /* check if VF PQ */
412 if (is_vf_pq) {
413 /* if PQ is associated with a VF, add indication
414 * to PQ VF mask
415 */
416 tx_pq_vf_mask[pq_id / tx_pq_vf_mask_width] |=
417 (1 << (pq_id % tx_pq_vf_mask_width));
418 mem_addr_4kb += vport_pq_mem_4kb;
419 } else {
420 mem_addr_4kb += pq_mem_4kb;
421 }
422 }
423
424 /* store Tx PQ VF mask to size select register */
425 for (i = 0; i < num_tx_pq_vf_masks; i++) {
426 if (tx_pq_vf_mask[i]) {
427 u32 addr;
428
429 addr = QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i;
430 STORE_RT_REG(p_hwfn, addr,
431 tx_pq_vf_mask[i]);
432 }
433 }
434 }
435
436 /* Prepare Other PQ mapping runtime init values for the specified PF */
437 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
438 u8 port_id,
439 u8 pf_id,
440 u32 num_pf_cids,
441 u32 num_tids, u32 base_mem_addr_4kb)
442 {
443 u16 i, pq_id;
444
445 /* a single other PQ group is used in each PF,
446 * where PQ group i is used in PF i.
447 */
448 u16 pq_group = pf_id;
449 u32 pq_size = num_pf_cids + num_tids;
450 u32 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
451 u32 mem_addr_4kb = base_mem_addr_4kb;
452
453 /* map PQ group to PF */
454 STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
455 (u32)(pf_id));
456 /* set PQ sizes */
457 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
458 QM_PQ_SIZE_256B(pq_size));
459 /* set base address */
460 for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
461 i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
462 STORE_RT_REG(p_hwfn,
463 QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
464 mem_addr_4kb);
465 mem_addr_4kb += pq_mem_4kb;
466 }
467 }
468
469 /* Prepare PF WFQ runtime init values for the specified PF.
470 * Return -1 on error.
471 */
472 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
473 struct qed_qm_pf_rt_init_params *p_params)
474 {
475 u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
476 u32 crd_reg_offset;
477 u32 inc_val;
478 u16 i;
479
480 if (p_params->pf_id < MAX_NUM_PFS_BB)
481 crd_reg_offset = QM_REG_WFQPFCRD_RT_OFFSET;
482 else
483 crd_reg_offset = QM_REG_WFQPFCRD_MSB_RT_OFFSET +
484 (p_params->pf_id % MAX_NUM_PFS_BB);
485
486 inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
487 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
488 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration");
489 return -1;
490 }
491
492 for (i = 0; i < num_tx_pqs; i++) {
493 u8 voq = VOQ(p_params->port_id, p_params->pq_params[i].tc_id,
494 p_params->max_phys_tcs_per_port);
495
496 OVERWRITE_RT_REG(p_hwfn,
497 crd_reg_offset + voq * MAX_NUM_PFS_BB,
498 QM_WFQ_CRD_REG_SIGN_BIT);
499 }
500
501 STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
502 inc_val);
503 STORE_RT_REG(p_hwfn,
504 QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
505 QM_WFQ_UPPER_BOUND | QM_WFQ_CRD_REG_SIGN_BIT);
506 return 0;
507 }
508
509 /* Prepare PF RL runtime init values for the specified PF.
510 * Return -1 on error.
511 */
512 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
513 {
514 u32 inc_val = QM_RL_INC_VAL(pf_rl);
515
516 if (inc_val > QM_RL_MAX_INC_VAL) {
517 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
518 return -1;
519 }
520 STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id,
521 QM_RL_CRD_REG_SIGN_BIT);
522 STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
523 QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
524 STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
525 return 0;
526 }
527
528 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
529 * Return -1 on error.
530 */
531 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
532 u8 num_vports,
533 struct init_qm_vport_params *vport_params)
534 {
535 u32 inc_val;
536 u8 tc, i;
537
538 /* go over all PF VPORTs */
539 for (i = 0; i < num_vports; i++) {
540
541 if (!vport_params[i].vport_wfq)
542 continue;
543
544 inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
545 if (inc_val > QM_WFQ_MAX_INC_VAL) {
546 DP_NOTICE(p_hwfn,
547 "Invalid VPORT WFQ weight configuration");
548 return -1;
549 }
550
551 /* each VPORT can have several VPORT PQ IDs for
552 * different TCs
553 */
554 for (tc = 0; tc < NUM_OF_TCS; tc++) {
555 u16 vport_pq_id = vport_params[i].first_tx_pq_id[tc];
556
557 if (vport_pq_id != QM_INVALID_PQ_ID) {
558 STORE_RT_REG(p_hwfn,
559 QM_REG_WFQVPCRD_RT_OFFSET +
560 vport_pq_id,
561 QM_WFQ_CRD_REG_SIGN_BIT);
562 STORE_RT_REG(p_hwfn,
563 QM_REG_WFQVPWEIGHT_RT_OFFSET +
564 vport_pq_id, inc_val);
565 }
566 }
567 }
568
569 return 0;
570 }
571
572 static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
573 u8 start_vport,
574 u8 num_vports,
575 struct init_qm_vport_params *vport_params)
576 {
577 u8 i, vport_id;
578
579 /* go over all PF VPORTs */
580 for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
581 u32 inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl);
582
583 if (inc_val > QM_RL_MAX_INC_VAL) {
584 DP_NOTICE(p_hwfn,
585 "Invalid VPORT rate-limit configuration");
586 return -1;
587 }
588
589 STORE_RT_REG(p_hwfn,
590 QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
591 QM_RL_CRD_REG_SIGN_BIT);
592 STORE_RT_REG(p_hwfn,
593 QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
594 QM_RL_UPPER_BOUND | QM_RL_CRD_REG_SIGN_BIT);
595 STORE_RT_REG(p_hwfn,
596 QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
597 inc_val);
598 }
599
600 return 0;
601 }
602
603 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
604 struct qed_ptt *p_ptt)
605 {
606 u32 reg_val, i;
607
608 for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && reg_val == 0;
609 i++) {
610 udelay(QM_STOP_CMD_POLL_PERIOD_US);
611 reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
612 }
613
614 /* check if timeout while waiting for SDM command ready */
615 if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
616 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
617 "Timeout when waiting for QM SDM command ready signal\n");
618 return false;
619 }
620
621 return true;
622 }
623
624 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
625 struct qed_ptt *p_ptt,
626 u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
627 {
628 if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
629 return false;
630
631 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
632 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
633 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
634 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
635 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
636
637 return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
638 }
639
640 /******************** INTERFACE IMPLEMENTATION *********************/
641 u32 qed_qm_pf_mem_size(u8 pf_id,
642 u32 num_pf_cids,
643 u32 num_vf_cids,
644 u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
645 {
646 return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
647 QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
648 QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
649 }
650
651 int qed_qm_common_rt_init(
652 struct qed_hwfn *p_hwfn,
653 struct qed_qm_common_rt_init_params *p_params)
654 {
655 /* init AFullOprtnstcCrdMask */
656 u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
657 QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
658 (QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
659 (p_params->pf_wfq_en <<
660 QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
661 (p_params->vport_wfq_en <<
662 QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
663 (p_params->pf_rl_en <<
664 QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
665 (p_params->vport_rl_en <<
666 QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
667 (QM_OPPOR_FW_STOP_DEF <<
668 QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
669 (QM_OPPOR_PQ_EMPTY_DEF <<
670 QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
671
672 STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
673 qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
674 qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
675 qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
676 qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
677 qed_cmdq_lines_rt_init(p_hwfn,
678 p_params->max_ports_per_engine,
679 p_params->max_phys_tcs_per_port,
680 p_params->port_params);
681 qed_btb_blocks_rt_init(p_hwfn,
682 p_params->max_ports_per_engine,
683 p_params->max_phys_tcs_per_port,
684 p_params->port_params);
685 return 0;
686 }
687
688 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
689 struct qed_ptt *p_ptt,
690 struct qed_qm_pf_rt_init_params *p_params)
691 {
692 struct init_qm_vport_params *vport_params = p_params->vport_params;
693 u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
694 p_params->num_tids) *
695 QM_OTHER_PQS_PER_PF;
696 u8 tc, i;
697
698 /* clear first Tx PQ ID array for each VPORT */
699 for (i = 0; i < p_params->num_vports; i++)
700 for (tc = 0; tc < NUM_OF_TCS; tc++)
701 vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
702
703 /* map Other PQs (if any) */
704 qed_other_pq_map_rt_init(p_hwfn, p_params->port_id, p_params->pf_id,
705 p_params->num_pf_cids, p_params->num_tids, 0);
706
707 /* map Tx PQs */
708 qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
709
710 if (p_params->pf_wfq)
711 if (qed_pf_wfq_rt_init(p_hwfn, p_params))
712 return -1;
713
714 if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
715 return -1;
716
717 if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
718 return -1;
719
720 if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
721 p_params->num_vports, vport_params))
722 return -1;
723
724 return 0;
725 }
726
727 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
728 struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
729 {
730 u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
731
732 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
733 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration");
734 return -1;
735 }
736
737 qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
738 return 0;
739 }
740
741 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
742 struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
743 {
744 u32 inc_val = QM_RL_INC_VAL(pf_rl);
745
746 if (inc_val > QM_RL_MAX_INC_VAL) {
747 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration");
748 return -1;
749 }
750
751 qed_wr(p_hwfn, p_ptt,
752 QM_REG_RLPFCRD + pf_id * 4,
753 QM_RL_CRD_REG_SIGN_BIT);
754 qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
755
756 return 0;
757 }
758
759 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
760 struct qed_ptt *p_ptt,
761 u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
762 {
763 u32 inc_val = QM_WFQ_INC_VAL(vport_wfq);
764 u8 tc;
765
766 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
767 DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration");
768 return -1;
769 }
770
771 for (tc = 0; tc < NUM_OF_TCS; tc++) {
772 u16 vport_pq_id = first_tx_pq_id[tc];
773
774 if (vport_pq_id != QM_INVALID_PQ_ID)
775 qed_wr(p_hwfn, p_ptt,
776 QM_REG_WFQVPWEIGHT + vport_pq_id * 4,
777 inc_val);
778 }
779
780 return 0;
781 }
782
783 int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
784 struct qed_ptt *p_ptt, u8 vport_id, u32 vport_rl)
785 {
786 u32 inc_val = QM_RL_INC_VAL(vport_rl);
787
788 if (inc_val > QM_RL_MAX_INC_VAL) {
789 DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration");
790 return -1;
791 }
792
793 qed_wr(p_hwfn, p_ptt,
794 QM_REG_RLGLBLCRD + vport_id * 4,
795 QM_RL_CRD_REG_SIGN_BIT);
796 qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
797
798 return 0;
799 }
800
801 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
802 struct qed_ptt *p_ptt,
803 bool is_release_cmd,
804 bool is_tx_pq, u16 start_pq, u16 num_pqs)
805 {
806 u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
807 u32 pq_mask = 0, last_pq = start_pq + num_pqs - 1, pq_id;
808
809 /* set command's PQ type */
810 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
811
812 for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
813 /* set PQ bit in mask (stop command only) */
814 if (!is_release_cmd)
815 pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
816
817 /* if last PQ or end of PQ mask, write command */
818 if ((pq_id == last_pq) ||
819 (pq_id % QM_STOP_PQ_MASK_WIDTH ==
820 (QM_STOP_PQ_MASK_WIDTH - 1))) {
821 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
822 PAUSE_MASK, pq_mask);
823 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD,
824 GROUP_ID,
825 pq_id / QM_STOP_PQ_MASK_WIDTH);
826 if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
827 cmd_arr[0], cmd_arr[1]))
828 return false;
829 pq_mask = 0;
830 }
831 }
832
833 return true;
834 }
835
836 static void
837 qed_set_tunnel_type_enable_bit(unsigned long *var, int bit, bool enable)
838 {
839 if (enable)
840 set_bit(bit, var);
841 else
842 clear_bit(bit, var);
843 }
844
845 #define PRS_ETH_TUNN_FIC_FORMAT -188897008
846
847 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
848 struct qed_ptt *p_ptt, u16 dest_port)
849 {
850 qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
851 qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
852 qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
853 }
854
855 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
856 struct qed_ptt *p_ptt, bool vxlan_enable)
857 {
858 unsigned long reg_val = 0;
859 u8 shift;
860
861 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
862 shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
863 qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
864
865 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
866
867 if (reg_val)
868 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
869 PRS_ETH_TUNN_FIC_FORMAT);
870
871 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
872 shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
873 qed_set_tunnel_type_enable_bit(&reg_val, shift, vxlan_enable);
874
875 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
876
877 qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN,
878 vxlan_enable ? 1 : 0);
879 }
880
881 void qed_set_gre_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
882 bool eth_gre_enable, bool ip_gre_enable)
883 {
884 unsigned long reg_val = 0;
885 u8 shift;
886
887 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
888 shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
889 qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
890
891 shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
892 qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
893 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
894 if (reg_val)
895 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
896 PRS_ETH_TUNN_FIC_FORMAT);
897
898 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
899 shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
900 qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_gre_enable);
901
902 shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
903 qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_gre_enable);
904 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
905
906 qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN,
907 eth_gre_enable ? 1 : 0);
908 qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN,
909 ip_gre_enable ? 1 : 0);
910 }
911
912 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
913 struct qed_ptt *p_ptt, u16 dest_port)
914 {
915 qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
916 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
917 qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
918 }
919
920 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
921 struct qed_ptt *p_ptt,
922 bool eth_geneve_enable, bool ip_geneve_enable)
923 {
924 unsigned long reg_val = 0;
925 u8 shift;
926
927 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
928 shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
929 qed_set_tunnel_type_enable_bit(&reg_val, shift, eth_geneve_enable);
930
931 shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
932 qed_set_tunnel_type_enable_bit(&reg_val, shift, ip_geneve_enable);
933
934 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
935 if (reg_val)
936 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
937 PRS_ETH_TUNN_FIC_FORMAT);
938
939 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
940 eth_geneve_enable ? 1 : 0);
941 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
942
943 /* comp ver */
944 reg_val = (ip_geneve_enable || eth_geneve_enable) ? 1 : 0;
945 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_COMP_VER, reg_val);
946 qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_COMP_VER, reg_val);
947 qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_COMP_VER, reg_val);
948
949 /* EDPM with geneve tunnel not supported in BB_B0 */
950 if (QED_IS_BB_B0(p_hwfn->cdev))
951 return;
952
953 qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN,
954 eth_geneve_enable ? 1 : 0);
955 qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN,
956 ip_geneve_enable ? 1 : 0);
957 }