]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/qlogic/qed/qed_int.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / qlogic / qed / qed_int.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/types.h>
10 #include <asm/byteorder.h>
11 #include <linux/io.h>
12 #include <linux/bitops.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/pci.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include "qed.h"
22 #include "qed_hsi.h"
23 #include "qed_hw.h"
24 #include "qed_init_ops.h"
25 #include "qed_int.h"
26 #include "qed_mcp.h"
27 #include "qed_reg_addr.h"
28 #include "qed_sp.h"
29
30 struct qed_pi_info {
31 qed_int_comp_cb_t comp_cb;
32 void *cookie;
33 };
34
35 struct qed_sb_sp_info {
36 struct qed_sb_info sb_info;
37
38 /* per protocol index data */
39 struct qed_pi_info pi_info_arr[PIS_PER_SB];
40 };
41
42 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
43 ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
44
45 #define ATTN_STATE_BITS (0xfff)
46 #define ATTN_BITS_MASKABLE (0x3ff)
47 struct qed_sb_attn_info {
48 /* Virtual & Physical address of the SB */
49 struct atten_status_block *sb_attn;
50 dma_addr_t sb_phys;
51
52 /* Last seen running index */
53 u16 index;
54
55 /* Previously asserted attentions, which are still unasserted */
56 u16 known_attn;
57
58 /* Cleanup address for the link's general hw attention */
59 u32 mfw_attn_addr;
60 };
61
62 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
63 struct qed_sb_attn_info *p_sb_desc)
64 {
65 u16 rc = 0;
66 u16 index;
67
68 /* Make certain HW write took affect */
69 mmiowb();
70
71 index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
72 if (p_sb_desc->index != index) {
73 p_sb_desc->index = index;
74 rc = QED_SB_ATT_IDX;
75 }
76
77 /* Make certain we got a consistent view with HW */
78 mmiowb();
79
80 return rc;
81 }
82
83 /**
84 * @brief qed_int_assertion - handles asserted attention bits
85 *
86 * @param p_hwfn
87 * @param asserted_bits newly asserted bits
88 * @return int
89 */
90 static int qed_int_assertion(struct qed_hwfn *p_hwfn,
91 u16 asserted_bits)
92 {
93 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
94 u32 igu_mask;
95
96 /* Mask the source of the attention in the IGU */
97 igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
98 IGU_REG_ATTENTION_ENABLE);
99 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
100 igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
101 igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
102 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
103
104 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
105 "inner known ATTN state: 0x%04x --> 0x%04x\n",
106 sb_attn_sw->known_attn,
107 sb_attn_sw->known_attn | asserted_bits);
108 sb_attn_sw->known_attn |= asserted_bits;
109
110 /* Handle MCP events */
111 if (asserted_bits & 0x100) {
112 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
113 /* Clean the MCP attention */
114 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
115 sb_attn_sw->mfw_attn_addr, 0);
116 }
117
118 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
119 GTT_BAR0_MAP_REG_IGU_CMD +
120 ((IGU_CMD_ATTN_BIT_SET_UPPER -
121 IGU_CMD_INT_ACK_BASE) << 3),
122 (u32)asserted_bits);
123
124 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
125 asserted_bits);
126
127 return 0;
128 }
129
130 /**
131 * @brief - handles deassertion of previously asserted attentions.
132 *
133 * @param p_hwfn
134 * @param deasserted_bits - newly deasserted bits
135 * @return int
136 *
137 */
138 static int qed_int_deassertion(struct qed_hwfn *p_hwfn,
139 u16 deasserted_bits)
140 {
141 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
142 u32 aeu_mask;
143
144 if (deasserted_bits != 0x100)
145 DP_ERR(p_hwfn, "Unexpected - non-link deassertion\n");
146
147 /* Clear IGU indication for the deasserted bits */
148 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
149 GTT_BAR0_MAP_REG_IGU_CMD +
150 ((IGU_CMD_ATTN_BIT_CLR_UPPER -
151 IGU_CMD_INT_ACK_BASE) << 3),
152 ~((u32)deasserted_bits));
153
154 /* Unmask deasserted attentions in IGU */
155 aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
156 IGU_REG_ATTENTION_ENABLE);
157 aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
158 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
159
160 /* Clear deassertion from inner state */
161 sb_attn_sw->known_attn &= ~deasserted_bits;
162
163 return 0;
164 }
165
166 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
167 {
168 struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
169 struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
170 u32 attn_bits = 0, attn_acks = 0;
171 u16 asserted_bits, deasserted_bits;
172 __le16 index;
173 int rc = 0;
174
175 /* Read current attention bits/acks - safeguard against attentions
176 * by guaranting work on a synchronized timeframe
177 */
178 do {
179 index = p_sb_attn->sb_index;
180 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
181 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
182 } while (index != p_sb_attn->sb_index);
183 p_sb_attn->sb_index = index;
184
185 /* Attention / Deassertion are meaningful (and in correct state)
186 * only when they differ and consistent with known state - deassertion
187 * when previous attention & current ack, and assertion when current
188 * attention with no previous attention
189 */
190 asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
191 ~p_sb_attn_sw->known_attn;
192 deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
193 p_sb_attn_sw->known_attn;
194
195 if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
196 DP_INFO(p_hwfn,
197 "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
198 index, attn_bits, attn_acks, asserted_bits,
199 deasserted_bits, p_sb_attn_sw->known_attn);
200 } else if (asserted_bits == 0x100) {
201 DP_INFO(p_hwfn,
202 "MFW indication via attention\n");
203 } else {
204 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
205 "MFW indication [deassertion]\n");
206 }
207
208 if (asserted_bits) {
209 rc = qed_int_assertion(p_hwfn, asserted_bits);
210 if (rc)
211 return rc;
212 }
213
214 if (deasserted_bits) {
215 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
216 if (rc)
217 return rc;
218 }
219
220 return rc;
221 }
222
223 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
224 void __iomem *igu_addr,
225 u32 ack_cons)
226 {
227 struct igu_prod_cons_update igu_ack = { 0 };
228
229 igu_ack.sb_id_and_flags =
230 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
231 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
232 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
233 (IGU_SEG_ACCESS_ATTN <<
234 IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
235
236 DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
237
238 /* Both segments (interrupts & acks) are written to same place address;
239 * Need to guarantee all commands will be received (in-order) by HW.
240 */
241 mmiowb();
242 barrier();
243 }
244
245 void qed_int_sp_dpc(unsigned long hwfn_cookie)
246 {
247 struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
248 struct qed_pi_info *pi_info = NULL;
249 struct qed_sb_attn_info *sb_attn;
250 struct qed_sb_info *sb_info;
251 int arr_size;
252 u16 rc = 0;
253
254 if (!p_hwfn) {
255 DP_ERR(p_hwfn->cdev, "DPC called - no hwfn!\n");
256 return;
257 }
258
259 if (!p_hwfn->p_sp_sb) {
260 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
261 return;
262 }
263
264 sb_info = &p_hwfn->p_sp_sb->sb_info;
265 arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
266 if (!sb_info) {
267 DP_ERR(p_hwfn->cdev,
268 "Status block is NULL - cannot ack interrupts\n");
269 return;
270 }
271
272 if (!p_hwfn->p_sb_attn) {
273 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
274 return;
275 }
276 sb_attn = p_hwfn->p_sb_attn;
277
278 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
279 p_hwfn, p_hwfn->my_id);
280
281 /* Disable ack for def status block. Required both for msix +
282 * inta in non-mask mode, in inta does no harm.
283 */
284 qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
285
286 /* Gather Interrupts/Attentions information */
287 if (!sb_info->sb_virt) {
288 DP_ERR(
289 p_hwfn->cdev,
290 "Interrupt Status block is NULL - cannot check for new interrupts!\n");
291 } else {
292 u32 tmp_index = sb_info->sb_ack;
293
294 rc = qed_sb_update_sb_idx(sb_info);
295 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
296 "Interrupt indices: 0x%08x --> 0x%08x\n",
297 tmp_index, sb_info->sb_ack);
298 }
299
300 if (!sb_attn || !sb_attn->sb_attn) {
301 DP_ERR(
302 p_hwfn->cdev,
303 "Attentions Status block is NULL - cannot check for new attentions!\n");
304 } else {
305 u16 tmp_index = sb_attn->index;
306
307 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
308 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
309 "Attention indices: 0x%08x --> 0x%08x\n",
310 tmp_index, sb_attn->index);
311 }
312
313 /* Check if we expect interrupts at this time. if not just ack them */
314 if (!(rc & QED_SB_EVENT_MASK)) {
315 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
316 return;
317 }
318
319 /* Check the validity of the DPC ptt. If not ack interrupts and fail */
320 if (!p_hwfn->p_dpc_ptt) {
321 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
322 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
323 return;
324 }
325
326 if (rc & QED_SB_ATT_IDX)
327 qed_int_attentions(p_hwfn);
328
329 if (rc & QED_SB_IDX) {
330 int pi;
331
332 /* Look for a free index */
333 for (pi = 0; pi < arr_size; pi++) {
334 pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
335 if (pi_info->comp_cb)
336 pi_info->comp_cb(p_hwfn, pi_info->cookie);
337 }
338 }
339
340 if (sb_attn && (rc & QED_SB_ATT_IDX))
341 /* This should be done before the interrupts are enabled,
342 * since otherwise a new attention will be generated.
343 */
344 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
345
346 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
347 }
348
349 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
350 {
351 struct qed_dev *cdev = p_hwfn->cdev;
352 struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
353
354 if (p_sb) {
355 if (p_sb->sb_attn)
356 dma_free_coherent(&cdev->pdev->dev,
357 SB_ATTN_ALIGNED_SIZE(p_hwfn),
358 p_sb->sb_attn,
359 p_sb->sb_phys);
360 kfree(p_sb);
361 }
362 }
363
364 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
365 struct qed_ptt *p_ptt)
366 {
367 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
368
369 memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
370
371 sb_info->index = 0;
372 sb_info->known_attn = 0;
373
374 /* Configure Attention Status Block in IGU */
375 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
376 lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
377 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
378 upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
379 }
380
381 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
382 struct qed_ptt *p_ptt,
383 void *sb_virt_addr,
384 dma_addr_t sb_phy_addr)
385 {
386 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
387
388 sb_info->sb_attn = sb_virt_addr;
389 sb_info->sb_phys = sb_phy_addr;
390
391 /* Set the address of cleanup for the mcp attention */
392 sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
393 MISC_REG_AEU_GENERAL_ATTN_0;
394
395 qed_int_sb_attn_setup(p_hwfn, p_ptt);
396 }
397
398 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
399 struct qed_ptt *p_ptt)
400 {
401 struct qed_dev *cdev = p_hwfn->cdev;
402 struct qed_sb_attn_info *p_sb;
403 void *p_virt;
404 dma_addr_t p_phys = 0;
405
406 /* SB struct */
407 p_sb = kmalloc(sizeof(*p_sb), GFP_ATOMIC);
408 if (!p_sb) {
409 DP_NOTICE(cdev, "Failed to allocate `struct qed_sb_attn_info'\n");
410 return -ENOMEM;
411 }
412
413 /* SB ring */
414 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
415 SB_ATTN_ALIGNED_SIZE(p_hwfn),
416 &p_phys, GFP_KERNEL);
417
418 if (!p_virt) {
419 DP_NOTICE(cdev, "Failed to allocate status block (attentions)\n");
420 kfree(p_sb);
421 return -ENOMEM;
422 }
423
424 /* Attention setup */
425 p_hwfn->p_sb_attn = p_sb;
426 qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
427
428 return 0;
429 }
430
431 /* coalescing timeout = timeset << (timer_res + 1) */
432 #define QED_CAU_DEF_RX_USECS 24
433 #define QED_CAU_DEF_TX_USECS 48
434
435 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
436 struct cau_sb_entry *p_sb_entry,
437 u8 pf_id,
438 u16 vf_number,
439 u8 vf_valid)
440 {
441 u32 cau_state;
442
443 memset(p_sb_entry, 0, sizeof(*p_sb_entry));
444
445 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
446 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
447 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
448 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
449 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
450
451 /* setting the time resultion to a fixed value ( = 1) */
452 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0,
453 QED_CAU_DEF_RX_TIMER_RES);
454 SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1,
455 QED_CAU_DEF_TX_TIMER_RES);
456
457 cau_state = CAU_HC_DISABLE_STATE;
458
459 if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
460 cau_state = CAU_HC_ENABLE_STATE;
461 if (!p_hwfn->cdev->rx_coalesce_usecs)
462 p_hwfn->cdev->rx_coalesce_usecs =
463 QED_CAU_DEF_RX_USECS;
464 if (!p_hwfn->cdev->tx_coalesce_usecs)
465 p_hwfn->cdev->tx_coalesce_usecs =
466 QED_CAU_DEF_TX_USECS;
467 }
468
469 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
470 SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
471 }
472
473 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
474 struct qed_ptt *p_ptt,
475 dma_addr_t sb_phys,
476 u16 igu_sb_id,
477 u16 vf_number,
478 u8 vf_valid)
479 {
480 struct cau_sb_entry sb_entry;
481 u32 val;
482
483 qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
484 vf_number, vf_valid);
485
486 if (p_hwfn->hw_init_done) {
487 val = CAU_REG_SB_ADDR_MEMORY + igu_sb_id * sizeof(u64);
488 qed_wr(p_hwfn, p_ptt, val, lower_32_bits(sb_phys));
489 qed_wr(p_hwfn, p_ptt, val + sizeof(u32),
490 upper_32_bits(sb_phys));
491
492 val = CAU_REG_SB_VAR_MEMORY + igu_sb_id * sizeof(u64);
493 qed_wr(p_hwfn, p_ptt, val, sb_entry.data);
494 qed_wr(p_hwfn, p_ptt, val + sizeof(u32), sb_entry.params);
495 } else {
496 /* Initialize Status Block Address */
497 STORE_RT_REG_AGG(p_hwfn,
498 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
499 igu_sb_id * 2,
500 sb_phys);
501
502 STORE_RT_REG_AGG(p_hwfn,
503 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
504 igu_sb_id * 2,
505 sb_entry);
506 }
507
508 /* Configure pi coalescing if set */
509 if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
510 u8 timeset = p_hwfn->cdev->rx_coalesce_usecs >>
511 (QED_CAU_DEF_RX_TIMER_RES + 1);
512 u8 num_tc = 1, i;
513
514 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
515 QED_COAL_RX_STATE_MACHINE,
516 timeset);
517
518 timeset = p_hwfn->cdev->tx_coalesce_usecs >>
519 (QED_CAU_DEF_TX_TIMER_RES + 1);
520
521 for (i = 0; i < num_tc; i++) {
522 qed_int_cau_conf_pi(p_hwfn, p_ptt,
523 igu_sb_id, TX_PI(i),
524 QED_COAL_TX_STATE_MACHINE,
525 timeset);
526 }
527 }
528 }
529
530 void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
531 struct qed_ptt *p_ptt,
532 u16 igu_sb_id,
533 u32 pi_index,
534 enum qed_coalescing_fsm coalescing_fsm,
535 u8 timeset)
536 {
537 struct cau_pi_entry pi_entry;
538 u32 sb_offset;
539 u32 pi_offset;
540
541 sb_offset = igu_sb_id * PIS_PER_SB;
542 memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
543
544 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
545 if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
546 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
547 else
548 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
549
550 pi_offset = sb_offset + pi_index;
551 if (p_hwfn->hw_init_done) {
552 qed_wr(p_hwfn, p_ptt,
553 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
554 *((u32 *)&(pi_entry)));
555 } else {
556 STORE_RT_REG(p_hwfn,
557 CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
558 *((u32 *)&(pi_entry)));
559 }
560 }
561
562 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
563 struct qed_ptt *p_ptt,
564 struct qed_sb_info *sb_info)
565 {
566 /* zero status block and ack counter */
567 sb_info->sb_ack = 0;
568 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
569
570 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
571 sb_info->igu_sb_id, 0, 0);
572 }
573
574 /**
575 * @brief qed_get_igu_sb_id - given a sw sb_id return the
576 * igu_sb_id
577 *
578 * @param p_hwfn
579 * @param sb_id
580 *
581 * @return u16
582 */
583 static u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn,
584 u16 sb_id)
585 {
586 u16 igu_sb_id;
587
588 /* Assuming continuous set of IGU SBs dedicated for given PF */
589 if (sb_id == QED_SP_SB_ID)
590 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
591 else
592 igu_sb_id = sb_id + p_hwfn->hw_info.p_igu_info->igu_base_sb;
593
594 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "SB [%s] index is 0x%04x\n",
595 (sb_id == QED_SP_SB_ID) ? "DSB" : "non-DSB", igu_sb_id);
596
597 return igu_sb_id;
598 }
599
600 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
601 struct qed_ptt *p_ptt,
602 struct qed_sb_info *sb_info,
603 void *sb_virt_addr,
604 dma_addr_t sb_phy_addr,
605 u16 sb_id)
606 {
607 sb_info->sb_virt = sb_virt_addr;
608 sb_info->sb_phys = sb_phy_addr;
609
610 sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
611
612 if (sb_id != QED_SP_SB_ID) {
613 p_hwfn->sbs_info[sb_id] = sb_info;
614 p_hwfn->num_sbs++;
615 }
616
617 sb_info->cdev = p_hwfn->cdev;
618
619 /* The igu address will hold the absolute address that needs to be
620 * written to for a specific status block
621 */
622 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
623 GTT_BAR0_MAP_REG_IGU_CMD +
624 (sb_info->igu_sb_id << 3);
625
626 sb_info->flags |= QED_SB_INFO_INIT;
627
628 qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
629
630 return 0;
631 }
632
633 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
634 struct qed_sb_info *sb_info,
635 u16 sb_id)
636 {
637 if (sb_id == QED_SP_SB_ID) {
638 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
639 return -EINVAL;
640 }
641
642 /* zero status block and ack counter */
643 sb_info->sb_ack = 0;
644 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
645
646 p_hwfn->sbs_info[sb_id] = NULL;
647 p_hwfn->num_sbs--;
648
649 return 0;
650 }
651
652 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
653 {
654 struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
655
656 if (p_sb) {
657 if (p_sb->sb_info.sb_virt)
658 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
659 SB_ALIGNED_SIZE(p_hwfn),
660 p_sb->sb_info.sb_virt,
661 p_sb->sb_info.sb_phys);
662 kfree(p_sb);
663 }
664 }
665
666 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn,
667 struct qed_ptt *p_ptt)
668 {
669 struct qed_sb_sp_info *p_sb;
670 dma_addr_t p_phys = 0;
671 void *p_virt;
672
673 /* SB struct */
674 p_sb = kmalloc(sizeof(*p_sb), GFP_ATOMIC);
675 if (!p_sb) {
676 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_sb_info'\n");
677 return -ENOMEM;
678 }
679
680 /* SB ring */
681 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
682 SB_ALIGNED_SIZE(p_hwfn),
683 &p_phys, GFP_KERNEL);
684 if (!p_virt) {
685 DP_NOTICE(p_hwfn, "Failed to allocate status block\n");
686 kfree(p_sb);
687 return -ENOMEM;
688 }
689
690 /* Status Block setup */
691 p_hwfn->p_sp_sb = p_sb;
692 qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
693 p_phys, QED_SP_SB_ID);
694
695 memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
696
697 return 0;
698 }
699
700 static void qed_int_sp_sb_setup(struct qed_hwfn *p_hwfn,
701 struct qed_ptt *p_ptt)
702 {
703 if (!p_hwfn)
704 return;
705
706 if (p_hwfn->p_sp_sb)
707 qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
708 else
709 DP_NOTICE(p_hwfn->cdev,
710 "Failed to setup Slow path status block - NULL pointer\n");
711
712 if (p_hwfn->p_sb_attn)
713 qed_int_sb_attn_setup(p_hwfn, p_ptt);
714 else
715 DP_NOTICE(p_hwfn->cdev,
716 "Failed to setup attentions status block - NULL pointer\n");
717 }
718
719 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
720 qed_int_comp_cb_t comp_cb,
721 void *cookie,
722 u8 *sb_idx,
723 __le16 **p_fw_cons)
724 {
725 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
726 int qed_status = -ENOMEM;
727 u8 pi;
728
729 /* Look for a free index */
730 for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
731 if (!p_sp_sb->pi_info_arr[pi].comp_cb) {
732 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
733 p_sp_sb->pi_info_arr[pi].cookie = cookie;
734 *sb_idx = pi;
735 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
736 qed_status = 0;
737 break;
738 }
739 }
740
741 return qed_status;
742 }
743
744 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
745 {
746 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
747 int qed_status = -ENOMEM;
748
749 if (p_sp_sb->pi_info_arr[pi].comp_cb) {
750 p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
751 p_sp_sb->pi_info_arr[pi].cookie = NULL;
752 qed_status = 0;
753 }
754
755 return qed_status;
756 }
757
758 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
759 {
760 return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
761 }
762
763 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
764 struct qed_ptt *p_ptt,
765 enum qed_int_mode int_mode)
766 {
767 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
768
769 p_hwfn->cdev->int_mode = int_mode;
770 switch (p_hwfn->cdev->int_mode) {
771 case QED_INT_MODE_INTA:
772 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
773 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
774 break;
775
776 case QED_INT_MODE_MSI:
777 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
778 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
779 break;
780
781 case QED_INT_MODE_MSIX:
782 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
783 break;
784 case QED_INT_MODE_POLL:
785 break;
786 }
787
788 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
789 }
790
791 void qed_int_igu_enable(struct qed_hwfn *p_hwfn,
792 struct qed_ptt *p_ptt,
793 enum qed_int_mode int_mode)
794 {
795 int i;
796
797 p_hwfn->b_int_enabled = 1;
798
799 /* Mask non-link attentions */
800 for (i = 0; i < 9; i++)
801 qed_wr(p_hwfn, p_ptt,
802 MISC_REG_AEU_ENABLE1_IGU_OUT_0 + (i << 2), 0);
803
804 /* Enable interrupt Generation */
805 qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
806
807 /* Configure AEU signal change to produce attentions for link */
808 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
809 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
810
811 /* Flush the writes to IGU */
812 mmiowb();
813
814 /* Unmask AEU signals toward IGU */
815 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
816 }
817
818 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn,
819 struct qed_ptt *p_ptt)
820 {
821 p_hwfn->b_int_enabled = 0;
822
823 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
824 }
825
826 #define IGU_CLEANUP_SLEEP_LENGTH (1000)
827 void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
828 struct qed_ptt *p_ptt,
829 u32 sb_id,
830 bool cleanup_set,
831 u16 opaque_fid
832 )
833 {
834 u32 pxp_addr = IGU_CMD_INT_ACK_BASE + sb_id;
835 u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
836 u32 data = 0;
837 u32 cmd_ctrl = 0;
838 u32 val = 0;
839 u32 sb_bit = 0;
840 u32 sb_bit_addr = 0;
841
842 /* Set the data field */
843 SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
844 SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
845 SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
846
847 /* Set the control register */
848 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
849 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
850 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
851
852 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
853
854 barrier();
855
856 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
857
858 /* Flush the write to IGU */
859 mmiowb();
860
861 /* calculate where to read the status bit from */
862 sb_bit = 1 << (sb_id % 32);
863 sb_bit_addr = sb_id / 32 * sizeof(u32);
864
865 sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
866
867 /* Now wait for the command to complete */
868 do {
869 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
870
871 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
872 break;
873
874 usleep_range(5000, 10000);
875 } while (--sleep_cnt);
876
877 if (!sleep_cnt)
878 DP_NOTICE(p_hwfn,
879 "Timeout waiting for clear status 0x%08x [for sb %d]\n",
880 val, sb_id);
881 }
882
883 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
884 struct qed_ptt *p_ptt,
885 u32 sb_id,
886 u16 opaque,
887 bool b_set)
888 {
889 int pi;
890
891 /* Set */
892 if (b_set)
893 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 1, opaque);
894
895 /* Clear */
896 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 0, opaque);
897
898 /* Clear the CAU for the SB */
899 for (pi = 0; pi < 12; pi++)
900 qed_wr(p_hwfn, p_ptt,
901 CAU_REG_PI_MEMORY + (sb_id * 12 + pi) * 4, 0);
902 }
903
904 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
905 struct qed_ptt *p_ptt,
906 bool b_set,
907 bool b_slowpath)
908 {
909 u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
910 u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
911 u32 sb_id = 0;
912 u32 val = 0;
913
914 val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
915 val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
916 val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
917 qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
918
919 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
920 "IGU cleaning SBs [%d,...,%d]\n",
921 igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
922
923 for (sb_id = igu_base_sb; sb_id < igu_base_sb + igu_sb_cnt; sb_id++)
924 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
925 p_hwfn->hw_info.opaque_fid,
926 b_set);
927
928 if (b_slowpath) {
929 sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
930 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
931 "IGU cleaning slowpath SB [%d]\n", sb_id);
932 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
933 p_hwfn->hw_info.opaque_fid,
934 b_set);
935 }
936 }
937
938 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn,
939 struct qed_ptt *p_ptt)
940 {
941 struct qed_igu_info *p_igu_info;
942 struct qed_igu_block *blk;
943 u32 val;
944 u16 sb_id;
945 u16 prev_sb_id = 0xFF;
946
947 p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_ATOMIC);
948
949 if (!p_hwfn->hw_info.p_igu_info)
950 return -ENOMEM;
951
952 p_igu_info = p_hwfn->hw_info.p_igu_info;
953
954 /* Initialize base sb / sb cnt for PFs */
955 p_igu_info->igu_base_sb = 0xffff;
956 p_igu_info->igu_sb_cnt = 0;
957 p_igu_info->igu_dsb_id = 0xffff;
958 p_igu_info->igu_base_sb_iov = 0xffff;
959
960 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
961 sb_id++) {
962 blk = &p_igu_info->igu_map.igu_blocks[sb_id];
963
964 val = qed_rd(p_hwfn, p_ptt,
965 IGU_REG_MAPPING_MEMORY + sizeof(u32) * sb_id);
966
967 /* stop scanning when hit first invalid PF entry */
968 if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
969 GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
970 break;
971
972 blk->status = QED_IGU_STATUS_VALID;
973 blk->function_id = GET_FIELD(val,
974 IGU_MAPPING_LINE_FUNCTION_NUMBER);
975 blk->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
976 blk->vector_number = GET_FIELD(val,
977 IGU_MAPPING_LINE_VECTOR_NUMBER);
978
979 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
980 "IGU_BLOCK[sb_id]:%x:func_id = %d is_pf = %d vector_num = 0x%x\n",
981 val, blk->function_id, blk->is_pf,
982 blk->vector_number);
983
984 if (blk->is_pf) {
985 if (blk->function_id == p_hwfn->rel_pf_id) {
986 blk->status |= QED_IGU_STATUS_PF;
987
988 if (blk->vector_number == 0) {
989 if (p_igu_info->igu_dsb_id == 0xffff)
990 p_igu_info->igu_dsb_id = sb_id;
991 } else {
992 if (p_igu_info->igu_base_sb ==
993 0xffff) {
994 p_igu_info->igu_base_sb = sb_id;
995 } else if (prev_sb_id != sb_id - 1) {
996 DP_NOTICE(p_hwfn->cdev,
997 "consecutive igu vectors for HWFN %x broken",
998 p_hwfn->rel_pf_id);
999 break;
1000 }
1001 prev_sb_id = sb_id;
1002 /* we don't count the default */
1003 (p_igu_info->igu_sb_cnt)++;
1004 }
1005 }
1006 }
1007 }
1008
1009 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1010 "IGU igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
1011 p_igu_info->igu_base_sb,
1012 p_igu_info->igu_sb_cnt,
1013 p_igu_info->igu_dsb_id);
1014
1015 if (p_igu_info->igu_base_sb == 0xffff ||
1016 p_igu_info->igu_dsb_id == 0xffff ||
1017 p_igu_info->igu_sb_cnt == 0) {
1018 DP_NOTICE(p_hwfn,
1019 "IGU CAM returned invalid values igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
1020 p_igu_info->igu_base_sb,
1021 p_igu_info->igu_sb_cnt,
1022 p_igu_info->igu_dsb_id);
1023 return -EINVAL;
1024 }
1025
1026 return 0;
1027 }
1028
1029 /**
1030 * @brief Initialize igu runtime registers
1031 *
1032 * @param p_hwfn
1033 */
1034 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
1035 {
1036 u32 igu_pf_conf = 0;
1037
1038 igu_pf_conf |= IGU_PF_CONF_FUNC_EN;
1039
1040 STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
1041 }
1042
1043 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
1044 {
1045 u64 intr_status = 0;
1046 u32 intr_status_lo = 0;
1047 u32 intr_status_hi = 0;
1048 u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
1049 IGU_CMD_INT_ACK_BASE;
1050 u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
1051 IGU_CMD_INT_ACK_BASE;
1052
1053 intr_status_lo = REG_RD(p_hwfn,
1054 GTT_BAR0_MAP_REG_IGU_CMD +
1055 lsb_igu_cmd_addr * 8);
1056 intr_status_hi = REG_RD(p_hwfn,
1057 GTT_BAR0_MAP_REG_IGU_CMD +
1058 msb_igu_cmd_addr * 8);
1059 intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
1060
1061 return intr_status;
1062 }
1063
1064 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
1065 {
1066 tasklet_init(p_hwfn->sp_dpc,
1067 qed_int_sp_dpc, (unsigned long)p_hwfn);
1068 p_hwfn->b_sp_dpc_enabled = true;
1069 }
1070
1071 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
1072 {
1073 p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_ATOMIC);
1074 if (!p_hwfn->sp_dpc)
1075 return -ENOMEM;
1076
1077 return 0;
1078 }
1079
1080 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
1081 {
1082 kfree(p_hwfn->sp_dpc);
1083 }
1084
1085 int qed_int_alloc(struct qed_hwfn *p_hwfn,
1086 struct qed_ptt *p_ptt)
1087 {
1088 int rc = 0;
1089
1090 rc = qed_int_sp_dpc_alloc(p_hwfn);
1091 if (rc) {
1092 DP_ERR(p_hwfn->cdev, "Failed to allocate sp dpc mem\n");
1093 return rc;
1094 }
1095 rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
1096 if (rc) {
1097 DP_ERR(p_hwfn->cdev, "Failed to allocate sp sb mem\n");
1098 return rc;
1099 }
1100 rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
1101 if (rc) {
1102 DP_ERR(p_hwfn->cdev, "Failed to allocate sb attn mem\n");
1103 return rc;
1104 }
1105 return rc;
1106 }
1107
1108 void qed_int_free(struct qed_hwfn *p_hwfn)
1109 {
1110 qed_int_sp_sb_free(p_hwfn);
1111 qed_int_sb_attn_free(p_hwfn);
1112 qed_int_sp_dpc_free(p_hwfn);
1113 }
1114
1115 void qed_int_setup(struct qed_hwfn *p_hwfn,
1116 struct qed_ptt *p_ptt)
1117 {
1118 qed_int_sp_sb_setup(p_hwfn, p_ptt);
1119 qed_int_sp_dpc_setup(p_hwfn);
1120 }
1121
1122 int qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
1123 int *p_iov_blks)
1124 {
1125 struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
1126
1127 if (!info)
1128 return 0;
1129
1130 if (p_iov_blks)
1131 *p_iov_blks = info->free_blks;
1132
1133 return info->igu_sb_cnt;
1134 }