]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/qlogic/qed/qed_sriov.c
9759a4914263762043356de0c064ec47787cdc5d
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / qlogic / qed / qed_sriov.c
1 /* QLogic qed NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/etherdevice.h>
10 #include <linux/crc32.h>
11 #include <linux/qed/qed_iov_if.h>
12 #include "qed_cxt.h"
13 #include "qed_hsi.h"
14 #include "qed_hw.h"
15 #include "qed_init_ops.h"
16 #include "qed_int.h"
17 #include "qed_mcp.h"
18 #include "qed_reg_addr.h"
19 #include "qed_sp.h"
20 #include "qed_sriov.h"
21 #include "qed_vf.h"
22
23 /* IOV ramrods */
24 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
25 {
26 struct vf_start_ramrod_data *p_ramrod = NULL;
27 struct qed_spq_entry *p_ent = NULL;
28 struct qed_sp_init_data init_data;
29 int rc = -EINVAL;
30 u8 fp_minor;
31
32 /* Get SPQ entry */
33 memset(&init_data, 0, sizeof(init_data));
34 init_data.cid = qed_spq_get_cid(p_hwfn);
35 init_data.opaque_fid = p_vf->opaque_fid;
36 init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
37
38 rc = qed_sp_init_request(p_hwfn, &p_ent,
39 COMMON_RAMROD_VF_START,
40 PROTOCOLID_COMMON, &init_data);
41 if (rc)
42 return rc;
43
44 p_ramrod = &p_ent->ramrod.vf_start;
45
46 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
47 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
48
49 switch (p_hwfn->hw_info.personality) {
50 case QED_PCI_ETH:
51 p_ramrod->personality = PERSONALITY_ETH;
52 break;
53 case QED_PCI_ETH_ROCE:
54 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
55 break;
56 default:
57 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
58 p_hwfn->hw_info.personality);
59 return -EINVAL;
60 }
61
62 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
63 if (fp_minor > ETH_HSI_VER_MINOR) {
64 DP_VERBOSE(p_hwfn,
65 QED_MSG_IOV,
66 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
67 p_vf->abs_vf_id,
68 ETH_HSI_VER_MAJOR,
69 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
70 fp_minor = ETH_HSI_VER_MINOR;
71 }
72
73 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
74 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
75
76 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
77 "VF[%d] - Starting using HSI %02x.%02x\n",
78 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
79
80 return qed_spq_post(p_hwfn, p_ent, NULL);
81 }
82
83 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
84 u32 concrete_vfid, u16 opaque_vfid)
85 {
86 struct vf_stop_ramrod_data *p_ramrod = NULL;
87 struct qed_spq_entry *p_ent = NULL;
88 struct qed_sp_init_data init_data;
89 int rc = -EINVAL;
90
91 /* Get SPQ entry */
92 memset(&init_data, 0, sizeof(init_data));
93 init_data.cid = qed_spq_get_cid(p_hwfn);
94 init_data.opaque_fid = opaque_vfid;
95 init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
96
97 rc = qed_sp_init_request(p_hwfn, &p_ent,
98 COMMON_RAMROD_VF_STOP,
99 PROTOCOLID_COMMON, &init_data);
100 if (rc)
101 return rc;
102
103 p_ramrod = &p_ent->ramrod.vf_stop;
104
105 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
106
107 return qed_spq_post(p_hwfn, p_ent, NULL);
108 }
109
110 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
111 int rel_vf_id, bool b_enabled_only)
112 {
113 if (!p_hwfn->pf_iov_info) {
114 DP_NOTICE(p_hwfn->cdev, "No iov info\n");
115 return false;
116 }
117
118 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
119 (rel_vf_id < 0))
120 return false;
121
122 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
123 b_enabled_only)
124 return false;
125
126 return true;
127 }
128
129 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
130 u16 relative_vf_id,
131 bool b_enabled_only)
132 {
133 struct qed_vf_info *vf = NULL;
134
135 if (!p_hwfn->pf_iov_info) {
136 DP_NOTICE(p_hwfn->cdev, "No iov info\n");
137 return NULL;
138 }
139
140 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, b_enabled_only))
141 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
142 else
143 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
144 relative_vf_id);
145
146 return vf;
147 }
148
149 int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
150 int vfid, struct qed_ptt *p_ptt)
151 {
152 struct qed_bulletin_content *p_bulletin;
153 int crc_size = sizeof(p_bulletin->crc);
154 struct qed_dmae_params params;
155 struct qed_vf_info *p_vf;
156
157 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
158 if (!p_vf)
159 return -EINVAL;
160
161 if (!p_vf->vf_bulletin)
162 return -EINVAL;
163
164 p_bulletin = p_vf->bulletin.p_virt;
165
166 /* Increment bulletin board version and compute crc */
167 p_bulletin->version++;
168 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
169 p_vf->bulletin.size - crc_size);
170
171 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
172 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
173 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
174
175 /* propagate bulletin board via dmae to vm memory */
176 memset(&params, 0, sizeof(params));
177 params.flags = QED_DMAE_FLAG_VF_DST;
178 params.dst_vfid = p_vf->abs_vf_id;
179 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
180 p_vf->vf_bulletin, p_vf->bulletin.size / 4,
181 &params);
182 }
183
184 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
185 {
186 struct qed_hw_sriov_info *iov = cdev->p_iov_info;
187 int pos = iov->pos;
188
189 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
190 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
191
192 pci_read_config_word(cdev->pdev,
193 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
194 pci_read_config_word(cdev->pdev,
195 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
196
197 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
198 if (iov->num_vfs) {
199 DP_VERBOSE(cdev,
200 QED_MSG_IOV,
201 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
202 iov->num_vfs = 0;
203 }
204
205 pci_read_config_word(cdev->pdev,
206 pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
207
208 pci_read_config_word(cdev->pdev,
209 pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
210
211 pci_read_config_word(cdev->pdev,
212 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
213
214 pci_read_config_dword(cdev->pdev,
215 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
216
217 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
218
219 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
220
221 DP_VERBOSE(cdev,
222 QED_MSG_IOV,
223 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
224 iov->nres,
225 iov->cap,
226 iov->ctrl,
227 iov->total_vfs,
228 iov->initial_vfs,
229 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
230
231 /* Some sanity checks */
232 if (iov->num_vfs > NUM_OF_VFS(cdev) ||
233 iov->total_vfs > NUM_OF_VFS(cdev)) {
234 /* This can happen only due to a bug. In this case we set
235 * num_vfs to zero to avoid memory corruption in the code that
236 * assumes max number of vfs
237 */
238 DP_NOTICE(cdev,
239 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
240 iov->num_vfs);
241
242 iov->num_vfs = 0;
243 iov->total_vfs = 0;
244 }
245
246 return 0;
247 }
248
249 static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn *p_hwfn,
250 struct qed_ptt *p_ptt)
251 {
252 struct qed_igu_block *p_sb;
253 u16 sb_id;
254 u32 val;
255
256 if (!p_hwfn->hw_info.p_igu_info) {
257 DP_ERR(p_hwfn,
258 "qed_iov_clear_vf_igu_blocks IGU Info not initialized\n");
259 return;
260 }
261
262 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
263 sb_id++) {
264 p_sb = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
265 if ((p_sb->status & QED_IGU_STATUS_FREE) &&
266 !(p_sb->status & QED_IGU_STATUS_PF)) {
267 val = qed_rd(p_hwfn, p_ptt,
268 IGU_REG_MAPPING_MEMORY + sb_id * 4);
269 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
270 qed_wr(p_hwfn, p_ptt,
271 IGU_REG_MAPPING_MEMORY + 4 * sb_id, val);
272 }
273 }
274 }
275
276 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
277 {
278 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
279 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
280 struct qed_bulletin_content *p_bulletin_virt;
281 dma_addr_t req_p, rply_p, bulletin_p;
282 union pfvf_tlvs *p_reply_virt_addr;
283 union vfpf_tlvs *p_req_virt_addr;
284 u8 idx = 0;
285
286 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
287
288 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
289 req_p = p_iov_info->mbx_msg_phys_addr;
290 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
291 rply_p = p_iov_info->mbx_reply_phys_addr;
292 p_bulletin_virt = p_iov_info->p_bulletins;
293 bulletin_p = p_iov_info->bulletins_phys;
294 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
295 DP_ERR(p_hwfn,
296 "qed_iov_setup_vfdb called without allocating mem first\n");
297 return;
298 }
299
300 for (idx = 0; idx < p_iov->total_vfs; idx++) {
301 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
302 u32 concrete;
303
304 vf->vf_mbx.req_virt = p_req_virt_addr + idx;
305 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
306 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
307 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
308
309 vf->state = VF_STOPPED;
310 vf->b_init = false;
311
312 vf->bulletin.phys = idx *
313 sizeof(struct qed_bulletin_content) +
314 bulletin_p;
315 vf->bulletin.p_virt = p_bulletin_virt + idx;
316 vf->bulletin.size = sizeof(struct qed_bulletin_content);
317
318 vf->relative_vf_id = idx;
319 vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
320 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
321 vf->concrete_fid = concrete;
322 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
323 (vf->abs_vf_id << 8);
324 vf->vport_id = idx + 1;
325 }
326 }
327
328 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
329 {
330 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
331 void **p_v_addr;
332 u16 num_vfs = 0;
333
334 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
335
336 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
337 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
338
339 /* Allocate PF Mailbox buffer (per-VF) */
340 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
341 p_v_addr = &p_iov_info->mbx_msg_virt_addr;
342 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
343 p_iov_info->mbx_msg_size,
344 &p_iov_info->mbx_msg_phys_addr,
345 GFP_KERNEL);
346 if (!*p_v_addr)
347 return -ENOMEM;
348
349 /* Allocate PF Mailbox Reply buffer (per-VF) */
350 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
351 p_v_addr = &p_iov_info->mbx_reply_virt_addr;
352 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
353 p_iov_info->mbx_reply_size,
354 &p_iov_info->mbx_reply_phys_addr,
355 GFP_KERNEL);
356 if (!*p_v_addr)
357 return -ENOMEM;
358
359 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
360 num_vfs;
361 p_v_addr = &p_iov_info->p_bulletins;
362 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
363 p_iov_info->bulletins_size,
364 &p_iov_info->bulletins_phys,
365 GFP_KERNEL);
366 if (!*p_v_addr)
367 return -ENOMEM;
368
369 DP_VERBOSE(p_hwfn,
370 QED_MSG_IOV,
371 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
372 p_iov_info->mbx_msg_virt_addr,
373 (u64) p_iov_info->mbx_msg_phys_addr,
374 p_iov_info->mbx_reply_virt_addr,
375 (u64) p_iov_info->mbx_reply_phys_addr,
376 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
377
378 return 0;
379 }
380
381 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
382 {
383 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
384
385 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
386 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
387 p_iov_info->mbx_msg_size,
388 p_iov_info->mbx_msg_virt_addr,
389 p_iov_info->mbx_msg_phys_addr);
390
391 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
392 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
393 p_iov_info->mbx_reply_size,
394 p_iov_info->mbx_reply_virt_addr,
395 p_iov_info->mbx_reply_phys_addr);
396
397 if (p_iov_info->p_bulletins)
398 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
399 p_iov_info->bulletins_size,
400 p_iov_info->p_bulletins,
401 p_iov_info->bulletins_phys);
402 }
403
404 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
405 {
406 struct qed_pf_iov *p_sriov;
407
408 if (!IS_PF_SRIOV(p_hwfn)) {
409 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
410 "No SR-IOV - no need for IOV db\n");
411 return 0;
412 }
413
414 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
415 if (!p_sriov) {
416 DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_sriov'\n");
417 return -ENOMEM;
418 }
419
420 p_hwfn->pf_iov_info = p_sriov;
421
422 return qed_iov_allocate_vfdb(p_hwfn);
423 }
424
425 void qed_iov_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
426 {
427 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
428 return;
429
430 qed_iov_setup_vfdb(p_hwfn);
431 qed_iov_clear_vf_igu_blocks(p_hwfn, p_ptt);
432 }
433
434 void qed_iov_free(struct qed_hwfn *p_hwfn)
435 {
436 if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
437 qed_iov_free_vfdb(p_hwfn);
438 kfree(p_hwfn->pf_iov_info);
439 }
440 }
441
442 void qed_iov_free_hw_info(struct qed_dev *cdev)
443 {
444 kfree(cdev->p_iov_info);
445 cdev->p_iov_info = NULL;
446 }
447
448 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
449 {
450 struct qed_dev *cdev = p_hwfn->cdev;
451 int pos;
452 int rc;
453
454 if (IS_VF(p_hwfn->cdev))
455 return 0;
456
457 /* Learn the PCI configuration */
458 pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
459 PCI_EXT_CAP_ID_SRIOV);
460 if (!pos) {
461 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
462 return 0;
463 }
464
465 /* Allocate a new struct for IOV information */
466 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
467 if (!cdev->p_iov_info) {
468 DP_NOTICE(p_hwfn, "Can't support IOV due to lack of memory\n");
469 return -ENOMEM;
470 }
471 cdev->p_iov_info->pos = pos;
472
473 rc = qed_iov_pci_cfg_info(cdev);
474 if (rc)
475 return rc;
476
477 /* We want PF IOV to be synonemous with the existance of p_iov_info;
478 * In case the capability is published but there are no VFs, simply
479 * de-allocate the struct.
480 */
481 if (!cdev->p_iov_info->total_vfs) {
482 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
483 "IOV capabilities, but no VFs are published\n");
484 kfree(cdev->p_iov_info);
485 cdev->p_iov_info = NULL;
486 return 0;
487 }
488
489 /* Calculate the first VF index - this is a bit tricky; Basically,
490 * VFs start at offset 16 relative to PF0, and 2nd engine VFs begin
491 * after the first engine's VFs.
492 */
493 cdev->p_iov_info->first_vf_in_pf = p_hwfn->cdev->p_iov_info->offset +
494 p_hwfn->abs_pf_id - 16;
495 if (QED_PATH_ID(p_hwfn))
496 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
497
498 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
499 "First VF in hwfn 0x%08x\n",
500 cdev->p_iov_info->first_vf_in_pf);
501
502 return 0;
503 }
504
505 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
506 {
507 /* Check PF supports sriov */
508 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
509 !IS_PF_SRIOV_ALLOC(p_hwfn))
510 return false;
511
512 /* Check VF validity */
513 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true))
514 return false;
515
516 return true;
517 }
518
519 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
520 u16 rel_vf_id, u8 to_disable)
521 {
522 struct qed_vf_info *vf;
523 int i;
524
525 for_each_hwfn(cdev, i) {
526 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
527
528 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
529 if (!vf)
530 continue;
531
532 vf->to_disable = to_disable;
533 }
534 }
535
536 void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
537 {
538 u16 i;
539
540 if (!IS_QED_SRIOV(cdev))
541 return;
542
543 for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
544 qed_iov_set_vf_to_disable(cdev, i, to_disable);
545 }
546
547 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
548 struct qed_ptt *p_ptt, u8 abs_vfid)
549 {
550 qed_wr(p_hwfn, p_ptt,
551 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
552 1 << (abs_vfid & 0x1f));
553 }
554
555 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
556 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
557 {
558 int i;
559
560 /* Set VF masks and configuration - pretend */
561 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
562
563 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
564
565 /* unpretend */
566 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
567
568 /* iterate over all queues, clear sb consumer */
569 for (i = 0; i < vf->num_sbs; i++)
570 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
571 vf->igu_sbs[i],
572 vf->opaque_fid, true);
573 }
574
575 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
576 struct qed_ptt *p_ptt,
577 struct qed_vf_info *vf, bool enable)
578 {
579 u32 igu_vf_conf;
580
581 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
582
583 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
584
585 if (enable)
586 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
587 else
588 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
589
590 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
591
592 /* unpretend */
593 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
594 }
595
596 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
597 struct qed_ptt *p_ptt,
598 struct qed_vf_info *vf)
599 {
600 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
601 int rc;
602
603 if (vf->to_disable)
604 return 0;
605
606 DP_VERBOSE(p_hwfn,
607 QED_MSG_IOV,
608 "Enable internal access for vf %x [abs %x]\n",
609 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
610
611 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
612
613 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
614
615 rc = qed_mcp_config_vf_msix(p_hwfn, p_ptt, vf->abs_vf_id, vf->num_sbs);
616 if (rc)
617 return rc;
618
619 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
620
621 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
622 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
623
624 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
625 p_hwfn->hw_info.hw_mode);
626
627 /* unpretend */
628 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
629
630 vf->state = VF_FREE;
631
632 return rc;
633 }
634
635 /**
636 * @brief qed_iov_config_perm_table - configure the permission
637 * zone table.
638 * In E4, queue zone permission table size is 320x9. There
639 * are 320 VF queues for single engine device (256 for dual
640 * engine device), and each entry has the following format:
641 * {Valid, VF[7:0]}
642 * @param p_hwfn
643 * @param p_ptt
644 * @param vf
645 * @param enable
646 */
647 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
648 struct qed_ptt *p_ptt,
649 struct qed_vf_info *vf, u8 enable)
650 {
651 u32 reg_addr, val;
652 u16 qzone_id = 0;
653 int qid;
654
655 for (qid = 0; qid < vf->num_rxqs; qid++) {
656 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
657 &qzone_id);
658
659 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
660 val = enable ? (vf->abs_vf_id | (1 << 8)) : 0;
661 qed_wr(p_hwfn, p_ptt, reg_addr, val);
662 }
663 }
664
665 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
666 struct qed_ptt *p_ptt,
667 struct qed_vf_info *vf)
668 {
669 /* Reset vf in IGU - interrupts are still disabled */
670 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
671
672 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
673
674 /* Permission Table */
675 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
676 }
677
678 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
679 struct qed_ptt *p_ptt,
680 struct qed_vf_info *vf, u16 num_rx_queues)
681 {
682 struct qed_igu_block *igu_blocks;
683 int qid = 0, igu_id = 0;
684 u32 val = 0;
685
686 igu_blocks = p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks;
687
688 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->free_blks)
689 num_rx_queues = p_hwfn->hw_info.p_igu_info->free_blks;
690 p_hwfn->hw_info.p_igu_info->free_blks -= num_rx_queues;
691
692 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
693 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
694 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
695
696 while ((qid < num_rx_queues) &&
697 (igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev))) {
698 if (igu_blocks[igu_id].status & QED_IGU_STATUS_FREE) {
699 struct cau_sb_entry sb_entry;
700
701 vf->igu_sbs[qid] = (u16)igu_id;
702 igu_blocks[igu_id].status &= ~QED_IGU_STATUS_FREE;
703
704 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
705
706 qed_wr(p_hwfn, p_ptt,
707 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id,
708 val);
709
710 /* Configure igu sb in CAU which were marked valid */
711 qed_init_cau_sb_entry(p_hwfn, &sb_entry,
712 p_hwfn->rel_pf_id,
713 vf->abs_vf_id, 1);
714 qed_dmae_host2grc(p_hwfn, p_ptt,
715 (u64)(uintptr_t)&sb_entry,
716 CAU_REG_SB_VAR_MEMORY +
717 igu_id * sizeof(u64), 2, 0);
718 qid++;
719 }
720 igu_id++;
721 }
722
723 vf->num_sbs = (u8) num_rx_queues;
724
725 return vf->num_sbs;
726 }
727
728 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
729 struct qed_ptt *p_ptt,
730 struct qed_vf_info *vf)
731 {
732 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
733 int idx, igu_id;
734 u32 addr, val;
735
736 /* Invalidate igu CAM lines and mark them as free */
737 for (idx = 0; idx < vf->num_sbs; idx++) {
738 igu_id = vf->igu_sbs[idx];
739 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
740
741 val = qed_rd(p_hwfn, p_ptt, addr);
742 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
743 qed_wr(p_hwfn, p_ptt, addr, val);
744
745 p_info->igu_map.igu_blocks[igu_id].status |=
746 QED_IGU_STATUS_FREE;
747
748 p_hwfn->hw_info.p_igu_info->free_blks++;
749 }
750
751 vf->num_sbs = 0;
752 }
753
754 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
755 struct qed_ptt *p_ptt,
756 u16 rel_vf_id, u16 num_rx_queues)
757 {
758 u8 num_of_vf_avaiable_chains = 0;
759 struct qed_vf_info *vf = NULL;
760 int rc = 0;
761 u32 cids;
762 u8 i;
763
764 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
765 if (!vf) {
766 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
767 return -EINVAL;
768 }
769
770 if (vf->b_init) {
771 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", rel_vf_id);
772 return -EINVAL;
773 }
774
775 /* Limit number of queues according to number of CIDs */
776 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
777 DP_VERBOSE(p_hwfn,
778 QED_MSG_IOV,
779 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
780 vf->relative_vf_id, num_rx_queues, (u16) cids);
781 num_rx_queues = min_t(u16, num_rx_queues, ((u16) cids));
782
783 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
784 p_ptt,
785 vf,
786 num_rx_queues);
787 if (!num_of_vf_avaiable_chains) {
788 DP_ERR(p_hwfn, "no available igu sbs\n");
789 return -ENOMEM;
790 }
791
792 /* Choose queue number and index ranges */
793 vf->num_rxqs = num_of_vf_avaiable_chains;
794 vf->num_txqs = num_of_vf_avaiable_chains;
795
796 for (i = 0; i < vf->num_rxqs; i++) {
797 u16 queue_id = qed_int_queue_id_from_sb_id(p_hwfn,
798 vf->igu_sbs[i]);
799
800 if (queue_id > RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
801 DP_NOTICE(p_hwfn,
802 "VF[%d] will require utilizing of out-of-bounds queues - %04x\n",
803 vf->relative_vf_id, queue_id);
804 return -EINVAL;
805 }
806
807 /* CIDs are per-VF, so no problem having them 0-based. */
808 vf->vf_queues[i].fw_rx_qid = queue_id;
809 vf->vf_queues[i].fw_tx_qid = queue_id;
810 vf->vf_queues[i].fw_cid = i;
811
812 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
813 "VF[%d] - [%d] SB %04x, Tx/Rx queue %04x CID %04x\n",
814 vf->relative_vf_id, i, vf->igu_sbs[i], queue_id, i);
815 }
816 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
817 if (!rc) {
818 vf->b_init = true;
819
820 if (IS_LEAD_HWFN(p_hwfn))
821 p_hwfn->cdev->p_iov_info->num_vfs++;
822 }
823
824 return rc;
825 }
826
827 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
828 u16 vfid,
829 struct qed_mcp_link_params *params,
830 struct qed_mcp_link_state *link,
831 struct qed_mcp_link_capabilities *p_caps)
832 {
833 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
834 vfid,
835 false);
836 struct qed_bulletin_content *p_bulletin;
837
838 if (!p_vf)
839 return;
840
841 p_bulletin = p_vf->bulletin.p_virt;
842 p_bulletin->req_autoneg = params->speed.autoneg;
843 p_bulletin->req_adv_speed = params->speed.advertised_speeds;
844 p_bulletin->req_forced_speed = params->speed.forced_speed;
845 p_bulletin->req_autoneg_pause = params->pause.autoneg;
846 p_bulletin->req_forced_rx = params->pause.forced_rx;
847 p_bulletin->req_forced_tx = params->pause.forced_tx;
848 p_bulletin->req_loopback = params->loopback_mode;
849
850 p_bulletin->link_up = link->link_up;
851 p_bulletin->speed = link->speed;
852 p_bulletin->full_duplex = link->full_duplex;
853 p_bulletin->autoneg = link->an;
854 p_bulletin->autoneg_complete = link->an_complete;
855 p_bulletin->parallel_detection = link->parallel_detection;
856 p_bulletin->pfc_enabled = link->pfc_enabled;
857 p_bulletin->partner_adv_speed = link->partner_adv_speed;
858 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
859 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
860 p_bulletin->partner_adv_pause = link->partner_adv_pause;
861 p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
862
863 p_bulletin->capability_speed = p_caps->speed_capabilities;
864 }
865
866 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
867 struct qed_ptt *p_ptt, u16 rel_vf_id)
868 {
869 struct qed_mcp_link_capabilities caps;
870 struct qed_mcp_link_params params;
871 struct qed_mcp_link_state link;
872 struct qed_vf_info *vf = NULL;
873
874 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
875 if (!vf) {
876 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
877 return -EINVAL;
878 }
879
880 if (vf->bulletin.p_virt)
881 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
882
883 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
884
885 /* Get the link configuration back in bulletin so
886 * that when VFs are re-enabled they get the actual
887 * link configuration.
888 */
889 memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
890 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
891 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
892 qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
893
894 /* Forget the VF's acquisition message */
895 memset(&vf->acquire, 0, sizeof(vf->acquire));
896
897 /* disablng interrupts and resetting permission table was done during
898 * vf-close, however, we could get here without going through vf_close
899 */
900 /* Disable Interrupts for VF */
901 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
902
903 /* Reset Permission table */
904 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
905
906 vf->num_rxqs = 0;
907 vf->num_txqs = 0;
908 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
909
910 if (vf->b_init) {
911 vf->b_init = false;
912
913 if (IS_LEAD_HWFN(p_hwfn))
914 p_hwfn->cdev->p_iov_info->num_vfs--;
915 }
916
917 return 0;
918 }
919
920 static bool qed_iov_tlv_supported(u16 tlvtype)
921 {
922 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
923 }
924
925 /* place a given tlv on the tlv buffer, continuing current tlv list */
926 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
927 {
928 struct channel_tlv *tl = (struct channel_tlv *)*offset;
929
930 tl->type = type;
931 tl->length = length;
932
933 /* Offset should keep pointing to next TLV (the end of the last) */
934 *offset += length;
935
936 /* Return a pointer to the start of the added tlv */
937 return *offset - length;
938 }
939
940 /* list the types and lengths of the tlvs on the buffer */
941 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
942 {
943 u16 i = 1, total_length = 0;
944 struct channel_tlv *tlv;
945
946 do {
947 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
948
949 /* output tlv */
950 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
951 "TLV number %d: type %d, length %d\n",
952 i, tlv->type, tlv->length);
953
954 if (tlv->type == CHANNEL_TLV_LIST_END)
955 return;
956
957 /* Validate entry - protect against malicious VFs */
958 if (!tlv->length) {
959 DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
960 return;
961 }
962
963 total_length += tlv->length;
964
965 if (total_length >= sizeof(struct tlv_buffer_size)) {
966 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
967 return;
968 }
969
970 i++;
971 } while (1);
972 }
973
974 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
975 struct qed_ptt *p_ptt,
976 struct qed_vf_info *p_vf,
977 u16 length, u8 status)
978 {
979 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
980 struct qed_dmae_params params;
981 u8 eng_vf_id;
982
983 mbx->reply_virt->default_resp.hdr.status = status;
984
985 qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
986
987 eng_vf_id = p_vf->abs_vf_id;
988
989 memset(&params, 0, sizeof(struct qed_dmae_params));
990 params.flags = QED_DMAE_FLAG_VF_DST;
991 params.dst_vfid = eng_vf_id;
992
993 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
994 mbx->req_virt->first_tlv.reply_address +
995 sizeof(u64),
996 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
997 &params);
998
999 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1000 mbx->req_virt->first_tlv.reply_address,
1001 sizeof(u64) / 4, &params);
1002
1003 REG_WR(p_hwfn,
1004 GTT_BAR0_MAP_REG_USDM_RAM +
1005 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1006 }
1007
1008 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1009 enum qed_iov_vport_update_flag flag)
1010 {
1011 switch (flag) {
1012 case QED_IOV_VP_UPDATE_ACTIVATE:
1013 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1014 case QED_IOV_VP_UPDATE_VLAN_STRIP:
1015 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1016 case QED_IOV_VP_UPDATE_TX_SWITCH:
1017 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1018 case QED_IOV_VP_UPDATE_MCAST:
1019 return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1020 case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1021 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1022 case QED_IOV_VP_UPDATE_RSS:
1023 return CHANNEL_TLV_VPORT_UPDATE_RSS;
1024 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1025 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1026 case QED_IOV_VP_UPDATE_SGE_TPA:
1027 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1028 default:
1029 return 0;
1030 }
1031 }
1032
1033 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1034 struct qed_vf_info *p_vf,
1035 struct qed_iov_vf_mbx *p_mbx,
1036 u8 status,
1037 u16 tlvs_mask, u16 tlvs_accepted)
1038 {
1039 struct pfvf_def_resp_tlv *resp;
1040 u16 size, total_len, i;
1041
1042 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1043 p_mbx->offset = (u8 *)p_mbx->reply_virt;
1044 size = sizeof(struct pfvf_def_resp_tlv);
1045 total_len = size;
1046
1047 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1048
1049 /* Prepare response for all extended tlvs if they are found by PF */
1050 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1051 if (!(tlvs_mask & (1 << i)))
1052 continue;
1053
1054 resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1055 qed_iov_vport_to_tlv(p_hwfn, i), size);
1056
1057 if (tlvs_accepted & (1 << i))
1058 resp->hdr.status = status;
1059 else
1060 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1061
1062 DP_VERBOSE(p_hwfn,
1063 QED_MSG_IOV,
1064 "VF[%d] - vport_update response: TLV %d, status %02x\n",
1065 p_vf->relative_vf_id,
1066 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1067
1068 total_len += size;
1069 }
1070
1071 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1072 sizeof(struct channel_list_end_tlv));
1073
1074 return total_len;
1075 }
1076
1077 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1078 struct qed_ptt *p_ptt,
1079 struct qed_vf_info *vf_info,
1080 u16 type, u16 length, u8 status)
1081 {
1082 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1083
1084 mbx->offset = (u8 *)mbx->reply_virt;
1085
1086 qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1087 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1088 sizeof(struct channel_list_end_tlv));
1089
1090 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1091 }
1092
1093 struct qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1094 u16 relative_vf_id,
1095 bool b_enabled_only)
1096 {
1097 struct qed_vf_info *vf = NULL;
1098
1099 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1100 if (!vf)
1101 return NULL;
1102
1103 return &vf->p_vf_info;
1104 }
1105
1106 void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1107 {
1108 struct qed_public_vf_info *vf_info;
1109
1110 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1111
1112 if (!vf_info)
1113 return;
1114
1115 /* Clear the VF mac */
1116 memset(vf_info->mac, 0, ETH_ALEN);
1117 }
1118
1119 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1120 struct qed_vf_info *p_vf)
1121 {
1122 u32 i;
1123
1124 p_vf->vf_bulletin = 0;
1125 p_vf->vport_instance = 0;
1126 p_vf->num_mac_filters = 0;
1127 p_vf->num_vlan_filters = 0;
1128 p_vf->configured_features = 0;
1129
1130 /* If VF previously requested less resources, go back to default */
1131 p_vf->num_rxqs = p_vf->num_sbs;
1132 p_vf->num_txqs = p_vf->num_sbs;
1133
1134 p_vf->num_active_rxqs = 0;
1135
1136 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++)
1137 p_vf->vf_queues[i].rxq_active = 0;
1138
1139 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1140 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1141 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1142 }
1143
1144 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1145 struct qed_ptt *p_ptt,
1146 struct qed_vf_info *vf)
1147 {
1148 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1149 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1150 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1151 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1152 u8 i, vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1153 struct pf_vf_resc *resc = &resp->resc;
1154 int rc;
1155
1156 memset(resp, 0, sizeof(*resp));
1157
1158 /* Validate FW compatibility */
1159 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1160 DP_INFO(p_hwfn,
1161 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
1162 vf->abs_vf_id,
1163 req->vfdev_info.eth_fp_hsi_major,
1164 req->vfdev_info.eth_fp_hsi_minor,
1165 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1166
1167 /* Write the PF version so that VF would know which version
1168 * is supported.
1169 */
1170 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1171 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1172
1173 goto out;
1174 }
1175
1176 /* On 100g PFs, prevent old VFs from loading */
1177 if ((p_hwfn->cdev->num_hwfns > 1) &&
1178 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1179 DP_INFO(p_hwfn,
1180 "VF[%d] is running an old driver that doesn't support 100g\n",
1181 vf->abs_vf_id);
1182 goto out;
1183 }
1184
1185 /* Store the acquire message */
1186 memcpy(&vf->acquire, req, sizeof(vf->acquire));
1187
1188 /* Fill in vf info stuff */
1189 vf->opaque_fid = req->vfdev_info.opaque_fid;
1190 vf->num_mac_filters = 1;
1191 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
1192
1193 vf->vf_bulletin = req->bulletin_addr;
1194 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1195 vf->bulletin.size : req->bulletin_size;
1196
1197 /* fill in pfdev info */
1198 pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1199 pfdev_info->db_size = 0;
1200 pfdev_info->indices_per_sb = PIS_PER_SB;
1201
1202 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1203 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1204 if (p_hwfn->cdev->num_hwfns > 1)
1205 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1206
1207 pfdev_info->stats_info.mstats.address =
1208 PXP_VF_BAR0_START_MSDM_ZONE_B +
1209 offsetof(struct mstorm_vf_zone, non_trigger.eth_queue_stat);
1210 pfdev_info->stats_info.mstats.len =
1211 sizeof(struct eth_mstorm_per_queue_stat);
1212
1213 pfdev_info->stats_info.ustats.address =
1214 PXP_VF_BAR0_START_USDM_ZONE_B +
1215 offsetof(struct ustorm_vf_zone, non_trigger.eth_queue_stat);
1216 pfdev_info->stats_info.ustats.len =
1217 sizeof(struct eth_ustorm_per_queue_stat);
1218
1219 pfdev_info->stats_info.pstats.address =
1220 PXP_VF_BAR0_START_PSDM_ZONE_B +
1221 offsetof(struct pstorm_vf_zone, non_trigger.eth_queue_stat);
1222 pfdev_info->stats_info.pstats.len =
1223 sizeof(struct eth_pstorm_per_queue_stat);
1224
1225 pfdev_info->stats_info.tstats.address = 0;
1226 pfdev_info->stats_info.tstats.len = 0;
1227
1228 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1229
1230 pfdev_info->fw_major = FW_MAJOR_VERSION;
1231 pfdev_info->fw_minor = FW_MINOR_VERSION;
1232 pfdev_info->fw_rev = FW_REVISION_VERSION;
1233 pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1234 pfdev_info->minor_fp_hsi = min_t(u8,
1235 ETH_HSI_VER_MINOR,
1236 req->vfdev_info.eth_fp_hsi_minor);
1237 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1238 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1239
1240 pfdev_info->dev_type = p_hwfn->cdev->type;
1241 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1242
1243 resc->num_rxqs = vf->num_rxqs;
1244 resc->num_txqs = vf->num_txqs;
1245 resc->num_sbs = vf->num_sbs;
1246 for (i = 0; i < resc->num_sbs; i++) {
1247 resc->hw_sbs[i].hw_sb_id = vf->igu_sbs[i];
1248 resc->hw_sbs[i].sb_qid = 0;
1249 }
1250
1251 for (i = 0; i < resc->num_rxqs; i++) {
1252 qed_fw_l2_queue(p_hwfn, vf->vf_queues[i].fw_rx_qid,
1253 (u16 *)&resc->hw_qid[i]);
1254 resc->cid[i] = vf->vf_queues[i].fw_cid;
1255 }
1256
1257 resc->num_mac_filters = min_t(u8, vf->num_mac_filters,
1258 req->resc_request.num_mac_filters);
1259 resc->num_vlan_filters = min_t(u8, vf->num_vlan_filters,
1260 req->resc_request.num_vlan_filters);
1261
1262 /* This isn't really required as VF isn't limited, but some VFs might
1263 * actually test this value, so need to provide it.
1264 */
1265 resc->num_mc_filters = req->resc_request.num_mc_filters;
1266
1267 /* Start the VF in FW */
1268 rc = qed_sp_vf_start(p_hwfn, vf);
1269 if (rc) {
1270 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1271 vfpf_status = PFVF_STATUS_FAILURE;
1272 goto out;
1273 }
1274
1275 /* Fill agreed size of bulletin board in response */
1276 resp->bulletin_size = vf->bulletin.size;
1277 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1278
1279 DP_VERBOSE(p_hwfn,
1280 QED_MSG_IOV,
1281 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1282 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1283 vf->abs_vf_id,
1284 resp->pfdev_info.chip_num,
1285 resp->pfdev_info.db_size,
1286 resp->pfdev_info.indices_per_sb,
1287 resp->pfdev_info.capabilities,
1288 resc->num_rxqs,
1289 resc->num_txqs,
1290 resc->num_sbs,
1291 resc->num_mac_filters,
1292 resc->num_vlan_filters);
1293 vf->state = VF_ACQUIRED;
1294
1295 /* Prepare Response */
1296 out:
1297 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1298 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1299 }
1300
1301 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1302 struct qed_vf_info *p_vf, bool val)
1303 {
1304 struct qed_sp_vport_update_params params;
1305 int rc;
1306
1307 if (val == p_vf->spoof_chk) {
1308 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1309 "Spoofchk value[%d] is already configured\n", val);
1310 return 0;
1311 }
1312
1313 memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1314 params.opaque_fid = p_vf->opaque_fid;
1315 params.vport_id = p_vf->vport_id;
1316 params.update_anti_spoofing_en_flg = 1;
1317 params.anti_spoofing_en = val;
1318
1319 rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1320 if (rc) {
1321 p_vf->spoof_chk = val;
1322 p_vf->req_spoofchk_val = p_vf->spoof_chk;
1323 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1324 "Spoofchk val[%d] configured\n", val);
1325 } else {
1326 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1327 "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1328 val, p_vf->relative_vf_id);
1329 }
1330
1331 return rc;
1332 }
1333
1334 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1335 struct qed_vf_info *p_vf)
1336 {
1337 struct qed_filter_ucast filter;
1338 int rc = 0;
1339 int i;
1340
1341 memset(&filter, 0, sizeof(filter));
1342 filter.is_rx_filter = 1;
1343 filter.is_tx_filter = 1;
1344 filter.vport_to_add_to = p_vf->vport_id;
1345 filter.opcode = QED_FILTER_ADD;
1346
1347 /* Reconfigure vlans */
1348 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1349 if (!p_vf->shadow_config.vlans[i].used)
1350 continue;
1351
1352 filter.type = QED_FILTER_VLAN;
1353 filter.vlan = p_vf->shadow_config.vlans[i].vid;
1354 DP_VERBOSE(p_hwfn,
1355 QED_MSG_IOV,
1356 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1357 filter.vlan, p_vf->relative_vf_id);
1358 rc = qed_sp_eth_filter_ucast(p_hwfn,
1359 p_vf->opaque_fid,
1360 &filter,
1361 QED_SPQ_MODE_CB, NULL);
1362 if (rc) {
1363 DP_NOTICE(p_hwfn,
1364 "Failed to configure VLAN [%04x] to VF [%04x]\n",
1365 filter.vlan, p_vf->relative_vf_id);
1366 break;
1367 }
1368 }
1369
1370 return rc;
1371 }
1372
1373 static int
1374 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1375 struct qed_vf_info *p_vf, u64 events)
1376 {
1377 int rc = 0;
1378
1379 if ((events & (1 << VLAN_ADDR_FORCED)) &&
1380 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1381 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1382
1383 return rc;
1384 }
1385
1386 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1387 struct qed_vf_info *p_vf, u64 events)
1388 {
1389 int rc = 0;
1390 struct qed_filter_ucast filter;
1391
1392 if (!p_vf->vport_instance)
1393 return -EINVAL;
1394
1395 if (events & (1 << MAC_ADDR_FORCED)) {
1396 /* Since there's no way [currently] of removing the MAC,
1397 * we can always assume this means we need to force it.
1398 */
1399 memset(&filter, 0, sizeof(filter));
1400 filter.type = QED_FILTER_MAC;
1401 filter.opcode = QED_FILTER_REPLACE;
1402 filter.is_rx_filter = 1;
1403 filter.is_tx_filter = 1;
1404 filter.vport_to_add_to = p_vf->vport_id;
1405 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1406
1407 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1408 &filter, QED_SPQ_MODE_CB, NULL);
1409 if (rc) {
1410 DP_NOTICE(p_hwfn,
1411 "PF failed to configure MAC for VF\n");
1412 return rc;
1413 }
1414
1415 p_vf->configured_features |= 1 << MAC_ADDR_FORCED;
1416 }
1417
1418 if (events & (1 << VLAN_ADDR_FORCED)) {
1419 struct qed_sp_vport_update_params vport_update;
1420 u8 removal;
1421 int i;
1422
1423 memset(&filter, 0, sizeof(filter));
1424 filter.type = QED_FILTER_VLAN;
1425 filter.is_rx_filter = 1;
1426 filter.is_tx_filter = 1;
1427 filter.vport_to_add_to = p_vf->vport_id;
1428 filter.vlan = p_vf->bulletin.p_virt->pvid;
1429 filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1430 QED_FILTER_FLUSH;
1431
1432 /* Send the ramrod */
1433 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1434 &filter, QED_SPQ_MODE_CB, NULL);
1435 if (rc) {
1436 DP_NOTICE(p_hwfn,
1437 "PF failed to configure VLAN for VF\n");
1438 return rc;
1439 }
1440
1441 /* Update the default-vlan & silent vlan stripping */
1442 memset(&vport_update, 0, sizeof(vport_update));
1443 vport_update.opaque_fid = p_vf->opaque_fid;
1444 vport_update.vport_id = p_vf->vport_id;
1445 vport_update.update_default_vlan_enable_flg = 1;
1446 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1447 vport_update.update_default_vlan_flg = 1;
1448 vport_update.default_vlan = filter.vlan;
1449
1450 vport_update.update_inner_vlan_removal_flg = 1;
1451 removal = filter.vlan ? 1
1452 : p_vf->shadow_config.inner_vlan_removal;
1453 vport_update.inner_vlan_removal_flg = removal;
1454 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1455 rc = qed_sp_vport_update(p_hwfn,
1456 &vport_update,
1457 QED_SPQ_MODE_EBLOCK, NULL);
1458 if (rc) {
1459 DP_NOTICE(p_hwfn,
1460 "PF failed to configure VF vport for vlan\n");
1461 return rc;
1462 }
1463
1464 /* Update all the Rx queues */
1465 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1466 u16 qid;
1467
1468 if (!p_vf->vf_queues[i].rxq_active)
1469 continue;
1470
1471 qid = p_vf->vf_queues[i].fw_rx_qid;
1472
1473 rc = qed_sp_eth_rx_queues_update(p_hwfn, qid,
1474 1, 0, 1,
1475 QED_SPQ_MODE_EBLOCK,
1476 NULL);
1477 if (rc) {
1478 DP_NOTICE(p_hwfn,
1479 "Failed to send Rx update fo queue[0x%04x]\n",
1480 qid);
1481 return rc;
1482 }
1483 }
1484
1485 if (filter.vlan)
1486 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1487 else
1488 p_vf->configured_features &= ~(1 << VLAN_ADDR_FORCED);
1489 }
1490
1491 /* If forced features are terminated, we need to configure the shadow
1492 * configuration back again.
1493 */
1494 if (events)
1495 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1496
1497 return rc;
1498 }
1499
1500 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1501 struct qed_ptt *p_ptt,
1502 struct qed_vf_info *vf)
1503 {
1504 struct qed_sp_vport_start_params params = { 0 };
1505 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1506 struct vfpf_vport_start_tlv *start;
1507 u8 status = PFVF_STATUS_SUCCESS;
1508 struct qed_vf_info *vf_info;
1509 u64 *p_bitmap;
1510 int sb_id;
1511 int rc;
1512
1513 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1514 if (!vf_info) {
1515 DP_NOTICE(p_hwfn->cdev,
1516 "Failed to get VF info, invalid vfid [%d]\n",
1517 vf->relative_vf_id);
1518 return;
1519 }
1520
1521 vf->state = VF_ENABLED;
1522 start = &mbx->req_virt->start_vport;
1523
1524 /* Initialize Status block in CAU */
1525 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1526 if (!start->sb_addr[sb_id]) {
1527 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1528 "VF[%d] did not fill the address of SB %d\n",
1529 vf->relative_vf_id, sb_id);
1530 break;
1531 }
1532
1533 qed_int_cau_conf_sb(p_hwfn, p_ptt,
1534 start->sb_addr[sb_id],
1535 vf->igu_sbs[sb_id],
1536 vf->abs_vf_id, 1);
1537 }
1538 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1539
1540 vf->mtu = start->mtu;
1541 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1542
1543 /* Take into consideration configuration forced by hypervisor;
1544 * If none is configured, use the supplied VF values [for old
1545 * vfs that would still be fine, since they passed '0' as padding].
1546 */
1547 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1548 if (!(*p_bitmap & (1 << VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1549 u8 vf_req = start->only_untagged;
1550
1551 vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1552 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1553 }
1554
1555 params.tpa_mode = start->tpa_mode;
1556 params.remove_inner_vlan = start->inner_vlan_removal;
1557 params.tx_switching = true;
1558
1559 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1560 params.drop_ttl0 = false;
1561 params.concrete_fid = vf->concrete_fid;
1562 params.opaque_fid = vf->opaque_fid;
1563 params.vport_id = vf->vport_id;
1564 params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1565 params.mtu = vf->mtu;
1566
1567 rc = qed_sp_eth_vport_start(p_hwfn, &params);
1568 if (rc != 0) {
1569 DP_ERR(p_hwfn,
1570 "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1571 status = PFVF_STATUS_FAILURE;
1572 } else {
1573 vf->vport_instance++;
1574
1575 /* Force configuration if needed on the newly opened vport */
1576 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1577
1578 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1579 }
1580 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1581 sizeof(struct pfvf_def_resp_tlv), status);
1582 }
1583
1584 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1585 struct qed_ptt *p_ptt,
1586 struct qed_vf_info *vf)
1587 {
1588 u8 status = PFVF_STATUS_SUCCESS;
1589 int rc;
1590
1591 vf->vport_instance--;
1592 vf->spoof_chk = false;
1593
1594 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
1595 if (rc != 0) {
1596 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
1597 rc);
1598 status = PFVF_STATUS_FAILURE;
1599 }
1600
1601 /* Forget the configuration on the vport */
1602 vf->configured_features = 0;
1603 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
1604
1605 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
1606 sizeof(struct pfvf_def_resp_tlv), status);
1607 }
1608
1609 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
1610 struct qed_ptt *p_ptt,
1611 struct qed_vf_info *vf, u8 status)
1612 {
1613 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1614 struct pfvf_start_queue_resp_tlv *p_tlv;
1615 struct vfpf_start_rxq_tlv *req;
1616
1617 mbx->offset = (u8 *)mbx->reply_virt;
1618
1619 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
1620 sizeof(*p_tlv));
1621 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1622 sizeof(struct channel_list_end_tlv));
1623
1624 /* Update the TLV with the response */
1625 if (status == PFVF_STATUS_SUCCESS) {
1626 req = &mbx->req_virt->start_rxq;
1627 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
1628 offsetof(struct mstorm_vf_zone,
1629 non_trigger.eth_rx_queue_producers) +
1630 sizeof(struct eth_rx_prod_data) * req->rx_qid;
1631 }
1632
1633 qed_iov_send_response(p_hwfn, p_ptt, vf, sizeof(*p_tlv), status);
1634 }
1635
1636 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
1637 struct qed_ptt *p_ptt,
1638 struct qed_vf_info *vf)
1639 {
1640 struct qed_queue_start_common_params params;
1641 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1642 u8 status = PFVF_STATUS_SUCCESS;
1643 struct vfpf_start_rxq_tlv *req;
1644 int rc;
1645
1646 memset(&params, 0, sizeof(params));
1647 req = &mbx->req_virt->start_rxq;
1648 params.queue_id = vf->vf_queues[req->rx_qid].fw_rx_qid;
1649 params.vf_qid = req->rx_qid;
1650 params.vport_id = vf->vport_id;
1651 params.sb = req->hw_sb;
1652 params.sb_idx = req->sb_index;
1653
1654 rc = qed_sp_eth_rxq_start_ramrod(p_hwfn, vf->opaque_fid,
1655 vf->vf_queues[req->rx_qid].fw_cid,
1656 &params,
1657 vf->abs_vf_id + 0x10,
1658 req->bd_max_bytes,
1659 req->rxq_addr,
1660 req->cqe_pbl_addr, req->cqe_pbl_size);
1661
1662 if (rc) {
1663 status = PFVF_STATUS_FAILURE;
1664 } else {
1665 vf->vf_queues[req->rx_qid].rxq_active = true;
1666 vf->num_active_rxqs++;
1667 }
1668
1669 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status);
1670 }
1671
1672 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
1673 struct qed_ptt *p_ptt,
1674 struct qed_vf_info *vf)
1675 {
1676 u16 length = sizeof(struct pfvf_def_resp_tlv);
1677 struct qed_queue_start_common_params params;
1678 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1679 union qed_qm_pq_params pq_params;
1680 u8 status = PFVF_STATUS_SUCCESS;
1681 struct vfpf_start_txq_tlv *req;
1682 int rc;
1683
1684 /* Prepare the parameters which would choose the right PQ */
1685 memset(&pq_params, 0, sizeof(pq_params));
1686 pq_params.eth.is_vf = 1;
1687 pq_params.eth.vf_id = vf->relative_vf_id;
1688
1689 memset(&params, 0, sizeof(params));
1690 req = &mbx->req_virt->start_txq;
1691 params.queue_id = vf->vf_queues[req->tx_qid].fw_tx_qid;
1692 params.vport_id = vf->vport_id;
1693 params.sb = req->hw_sb;
1694 params.sb_idx = req->sb_index;
1695
1696 rc = qed_sp_eth_txq_start_ramrod(p_hwfn,
1697 vf->opaque_fid,
1698 vf->vf_queues[req->tx_qid].fw_cid,
1699 &params,
1700 vf->abs_vf_id + 0x10,
1701 req->pbl_addr,
1702 req->pbl_size, &pq_params);
1703
1704 if (rc)
1705 status = PFVF_STATUS_FAILURE;
1706 else
1707 vf->vf_queues[req->tx_qid].txq_active = true;
1708
1709 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_START_TXQ,
1710 length, status);
1711 }
1712
1713 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
1714 struct qed_vf_info *vf,
1715 u16 rxq_id, u8 num_rxqs, bool cqe_completion)
1716 {
1717 int rc = 0;
1718 int qid;
1719
1720 if (rxq_id + num_rxqs > ARRAY_SIZE(vf->vf_queues))
1721 return -EINVAL;
1722
1723 for (qid = rxq_id; qid < rxq_id + num_rxqs; qid++) {
1724 if (vf->vf_queues[qid].rxq_active) {
1725 rc = qed_sp_eth_rx_queue_stop(p_hwfn,
1726 vf->vf_queues[qid].
1727 fw_rx_qid, false,
1728 cqe_completion);
1729
1730 if (rc)
1731 return rc;
1732 }
1733 vf->vf_queues[qid].rxq_active = false;
1734 vf->num_active_rxqs--;
1735 }
1736
1737 return rc;
1738 }
1739
1740 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
1741 struct qed_vf_info *vf, u16 txq_id, u8 num_txqs)
1742 {
1743 int rc = 0;
1744 int qid;
1745
1746 if (txq_id + num_txqs > ARRAY_SIZE(vf->vf_queues))
1747 return -EINVAL;
1748
1749 for (qid = txq_id; qid < txq_id + num_txqs; qid++) {
1750 if (vf->vf_queues[qid].txq_active) {
1751 rc = qed_sp_eth_tx_queue_stop(p_hwfn,
1752 vf->vf_queues[qid].
1753 fw_tx_qid);
1754
1755 if (rc)
1756 return rc;
1757 }
1758 vf->vf_queues[qid].txq_active = false;
1759 }
1760 return rc;
1761 }
1762
1763 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
1764 struct qed_ptt *p_ptt,
1765 struct qed_vf_info *vf)
1766 {
1767 u16 length = sizeof(struct pfvf_def_resp_tlv);
1768 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1769 u8 status = PFVF_STATUS_SUCCESS;
1770 struct vfpf_stop_rxqs_tlv *req;
1771 int rc;
1772
1773 /* We give the option of starting from qid != 0, in this case we
1774 * need to make sure that qid + num_qs doesn't exceed the actual
1775 * amount of queues that exist.
1776 */
1777 req = &mbx->req_virt->stop_rxqs;
1778 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
1779 req->num_rxqs, req->cqe_completion);
1780 if (rc)
1781 status = PFVF_STATUS_FAILURE;
1782
1783 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
1784 length, status);
1785 }
1786
1787 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
1788 struct qed_ptt *p_ptt,
1789 struct qed_vf_info *vf)
1790 {
1791 u16 length = sizeof(struct pfvf_def_resp_tlv);
1792 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1793 u8 status = PFVF_STATUS_SUCCESS;
1794 struct vfpf_stop_txqs_tlv *req;
1795 int rc;
1796
1797 /* We give the option of starting from qid != 0, in this case we
1798 * need to make sure that qid + num_qs doesn't exceed the actual
1799 * amount of queues that exist.
1800 */
1801 req = &mbx->req_virt->stop_txqs;
1802 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, req->num_txqs);
1803 if (rc)
1804 status = PFVF_STATUS_FAILURE;
1805
1806 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
1807 length, status);
1808 }
1809
1810 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
1811 struct qed_ptt *p_ptt,
1812 struct qed_vf_info *vf)
1813 {
1814 u16 length = sizeof(struct pfvf_def_resp_tlv);
1815 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1816 struct vfpf_update_rxq_tlv *req;
1817 u8 status = PFVF_STATUS_SUCCESS;
1818 u8 complete_event_flg;
1819 u8 complete_cqe_flg;
1820 u16 qid;
1821 int rc;
1822 u8 i;
1823
1824 req = &mbx->req_virt->update_rxq;
1825 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
1826 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
1827
1828 for (i = 0; i < req->num_rxqs; i++) {
1829 qid = req->rx_qid + i;
1830
1831 if (!vf->vf_queues[qid].rxq_active) {
1832 DP_NOTICE(p_hwfn, "VF rx_qid = %d isn`t active!\n",
1833 qid);
1834 status = PFVF_STATUS_FAILURE;
1835 break;
1836 }
1837
1838 rc = qed_sp_eth_rx_queues_update(p_hwfn,
1839 vf->vf_queues[qid].fw_rx_qid,
1840 1,
1841 complete_cqe_flg,
1842 complete_event_flg,
1843 QED_SPQ_MODE_EBLOCK, NULL);
1844
1845 if (rc) {
1846 status = PFVF_STATUS_FAILURE;
1847 break;
1848 }
1849 }
1850
1851 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
1852 length, status);
1853 }
1854
1855 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
1856 void *p_tlvs_list, u16 req_type)
1857 {
1858 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
1859 int len = 0;
1860
1861 do {
1862 if (!p_tlv->length) {
1863 DP_NOTICE(p_hwfn, "Zero length TLV found\n");
1864 return NULL;
1865 }
1866
1867 if (p_tlv->type == req_type) {
1868 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1869 "Extended tlv type %d, length %d found\n",
1870 p_tlv->type, p_tlv->length);
1871 return p_tlv;
1872 }
1873
1874 len += p_tlv->length;
1875 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
1876
1877 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
1878 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
1879 return NULL;
1880 }
1881 } while (p_tlv->type != CHANNEL_TLV_LIST_END);
1882
1883 return NULL;
1884 }
1885
1886 static void
1887 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
1888 struct qed_sp_vport_update_params *p_data,
1889 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
1890 {
1891 struct vfpf_vport_update_activate_tlv *p_act_tlv;
1892 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1893
1894 p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
1895 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
1896 if (!p_act_tlv)
1897 return;
1898
1899 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
1900 p_data->vport_active_rx_flg = p_act_tlv->active_rx;
1901 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
1902 p_data->vport_active_tx_flg = p_act_tlv->active_tx;
1903 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
1904 }
1905
1906 static void
1907 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
1908 struct qed_sp_vport_update_params *p_data,
1909 struct qed_vf_info *p_vf,
1910 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
1911 {
1912 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
1913 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1914
1915 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
1916 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
1917 if (!p_vlan_tlv)
1918 return;
1919
1920 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
1921
1922 /* Ignore the VF request if we're forcing a vlan */
1923 if (!(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) {
1924 p_data->update_inner_vlan_removal_flg = 1;
1925 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
1926 }
1927
1928 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
1929 }
1930
1931 static void
1932 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
1933 struct qed_sp_vport_update_params *p_data,
1934 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
1935 {
1936 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
1937 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1938
1939 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
1940 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
1941 tlv);
1942 if (!p_tx_switch_tlv)
1943 return;
1944
1945 p_data->update_tx_switching_flg = 1;
1946 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
1947 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
1948 }
1949
1950 static void
1951 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
1952 struct qed_sp_vport_update_params *p_data,
1953 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
1954 {
1955 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
1956 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
1957
1958 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
1959 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
1960 if (!p_mcast_tlv)
1961 return;
1962
1963 p_data->update_approx_mcast_flg = 1;
1964 memcpy(p_data->bins, p_mcast_tlv->bins,
1965 sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS);
1966 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
1967 }
1968
1969 static void
1970 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
1971 struct qed_sp_vport_update_params *p_data,
1972 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
1973 {
1974 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
1975 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
1976 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1977
1978 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
1979 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
1980 if (!p_accept_tlv)
1981 return;
1982
1983 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
1984 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
1985 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
1986 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
1987 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
1988 }
1989
1990 static void
1991 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
1992 struct qed_sp_vport_update_params *p_data,
1993 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
1994 {
1995 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
1996 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1997
1998 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
1999 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2000 tlv);
2001 if (!p_accept_any_vlan)
2002 return;
2003
2004 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2005 p_data->update_accept_any_vlan_flg =
2006 p_accept_any_vlan->update_accept_any_vlan_flg;
2007 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2008 }
2009
2010 static void
2011 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2012 struct qed_vf_info *vf,
2013 struct qed_sp_vport_update_params *p_data,
2014 struct qed_rss_params *p_rss,
2015 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2016 {
2017 struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2018 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2019 u16 i, q_idx, max_q_idx;
2020 u16 table_size;
2021
2022 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2023 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2024 if (!p_rss_tlv) {
2025 p_data->rss_params = NULL;
2026 return;
2027 }
2028
2029 memset(p_rss, 0, sizeof(struct qed_rss_params));
2030
2031 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2032 VFPF_UPDATE_RSS_CONFIG_FLAG);
2033 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2034 VFPF_UPDATE_RSS_CAPS_FLAG);
2035 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2036 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2037 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2038 VFPF_UPDATE_RSS_KEY_FLAG);
2039
2040 p_rss->rss_enable = p_rss_tlv->rss_enable;
2041 p_rss->rss_eng_id = vf->relative_vf_id + 1;
2042 p_rss->rss_caps = p_rss_tlv->rss_caps;
2043 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2044 memcpy(p_rss->rss_ind_table, p_rss_tlv->rss_ind_table,
2045 sizeof(p_rss->rss_ind_table));
2046 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2047
2048 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2049 (1 << p_rss_tlv->rss_table_size_log));
2050
2051 max_q_idx = ARRAY_SIZE(vf->vf_queues);
2052
2053 for (i = 0; i < table_size; i++) {
2054 u16 index = vf->vf_queues[0].fw_rx_qid;
2055
2056 q_idx = p_rss->rss_ind_table[i];
2057 if (q_idx >= max_q_idx)
2058 DP_NOTICE(p_hwfn,
2059 "rss_ind_table[%d] = %d, rxq is out of range\n",
2060 i, q_idx);
2061 else if (!vf->vf_queues[q_idx].rxq_active)
2062 DP_NOTICE(p_hwfn,
2063 "rss_ind_table[%d] = %d, rxq is not active\n",
2064 i, q_idx);
2065 else
2066 index = vf->vf_queues[q_idx].fw_rx_qid;
2067 p_rss->rss_ind_table[i] = index;
2068 }
2069
2070 p_data->rss_params = p_rss;
2071 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2072 }
2073
2074 static void
2075 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2076 struct qed_vf_info *vf,
2077 struct qed_sp_vport_update_params *p_data,
2078 struct qed_sge_tpa_params *p_sge_tpa,
2079 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2080 {
2081 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2082 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2083
2084 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2085 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2086
2087 if (!p_sge_tpa_tlv) {
2088 p_data->sge_tpa_params = NULL;
2089 return;
2090 }
2091
2092 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2093
2094 p_sge_tpa->update_tpa_en_flg =
2095 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2096 p_sge_tpa->update_tpa_param_flg =
2097 !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2098 VFPF_UPDATE_TPA_PARAM_FLAG);
2099
2100 p_sge_tpa->tpa_ipv4_en_flg =
2101 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2102 p_sge_tpa->tpa_ipv6_en_flg =
2103 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2104 p_sge_tpa->tpa_pkt_split_flg =
2105 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2106 p_sge_tpa->tpa_hdr_data_split_flg =
2107 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2108 p_sge_tpa->tpa_gro_consistent_flg =
2109 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2110
2111 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2112 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2113 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2114 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2115 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2116
2117 p_data->sge_tpa_params = p_sge_tpa;
2118
2119 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2120 }
2121
2122 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
2123 struct qed_ptt *p_ptt,
2124 struct qed_vf_info *vf)
2125 {
2126 struct qed_sp_vport_update_params params;
2127 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2128 struct qed_sge_tpa_params sge_tpa_params;
2129 struct qed_rss_params rss_params;
2130 u8 status = PFVF_STATUS_SUCCESS;
2131 u16 tlvs_mask = 0;
2132 u16 length;
2133 int rc;
2134
2135 memset(&params, 0, sizeof(params));
2136 params.opaque_fid = vf->opaque_fid;
2137 params.vport_id = vf->vport_id;
2138 params.rss_params = NULL;
2139
2140 /* Search for extended tlvs list and update values
2141 * from VF in struct qed_sp_vport_update_params.
2142 */
2143 qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
2144 qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
2145 qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
2146 qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
2147 qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
2148 qed_iov_vp_update_rss_param(p_hwfn, vf, &params, &rss_params,
2149 mbx, &tlvs_mask);
2150 qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
2151 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
2152 &sge_tpa_params, mbx, &tlvs_mask);
2153
2154 /* Just log a message if there is no single extended tlv in buffer.
2155 * When all features of vport update ramrod would be requested by VF
2156 * as extended TLVs in buffer then an error can be returned in response
2157 * if there is no extended TLV present in buffer.
2158 */
2159 if (!tlvs_mask) {
2160 DP_NOTICE(p_hwfn,
2161 "No feature tlvs found for vport update\n");
2162 status = PFVF_STATUS_NOT_SUPPORTED;
2163 goto out;
2164 }
2165
2166 rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
2167
2168 if (rc)
2169 status = PFVF_STATUS_FAILURE;
2170
2171 out:
2172 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
2173 tlvs_mask, tlvs_mask);
2174 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2175 }
2176
2177 static int qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
2178 struct qed_vf_info *p_vf,
2179 struct qed_filter_ucast *p_params)
2180 {
2181 int i;
2182
2183 if (p_params->type == QED_FILTER_MAC)
2184 return 0;
2185
2186 /* First remove entries and then add new ones */
2187 if (p_params->opcode == QED_FILTER_REMOVE) {
2188 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
2189 if (p_vf->shadow_config.vlans[i].used &&
2190 p_vf->shadow_config.vlans[i].vid ==
2191 p_params->vlan) {
2192 p_vf->shadow_config.vlans[i].used = false;
2193 break;
2194 }
2195 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
2196 DP_VERBOSE(p_hwfn,
2197 QED_MSG_IOV,
2198 "VF [%d] - Tries to remove a non-existing vlan\n",
2199 p_vf->relative_vf_id);
2200 return -EINVAL;
2201 }
2202 } else if (p_params->opcode == QED_FILTER_REPLACE ||
2203 p_params->opcode == QED_FILTER_FLUSH) {
2204 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
2205 p_vf->shadow_config.vlans[i].used = false;
2206 }
2207
2208 /* In forced mode, we're willing to remove entries - but we don't add
2209 * new ones.
2210 */
2211 if (p_vf->bulletin.p_virt->valid_bitmap & (1 << VLAN_ADDR_FORCED))
2212 return 0;
2213
2214 if (p_params->opcode == QED_FILTER_ADD ||
2215 p_params->opcode == QED_FILTER_REPLACE) {
2216 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
2217 if (p_vf->shadow_config.vlans[i].used)
2218 continue;
2219
2220 p_vf->shadow_config.vlans[i].used = true;
2221 p_vf->shadow_config.vlans[i].vid = p_params->vlan;
2222 break;
2223 }
2224
2225 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
2226 DP_VERBOSE(p_hwfn,
2227 QED_MSG_IOV,
2228 "VF [%d] - Tries to configure more than %d vlan filters\n",
2229 p_vf->relative_vf_id,
2230 QED_ETH_VF_NUM_VLAN_FILTERS + 1);
2231 return -EINVAL;
2232 }
2233 }
2234
2235 return 0;
2236 }
2237
2238 int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
2239 int vfid, struct qed_filter_ucast *params)
2240 {
2241 struct qed_public_vf_info *vf;
2242
2243 vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
2244 if (!vf)
2245 return -EINVAL;
2246
2247 /* No real decision to make; Store the configured MAC */
2248 if (params->type == QED_FILTER_MAC ||
2249 params->type == QED_FILTER_MAC_VLAN)
2250 ether_addr_copy(vf->mac, params->mac);
2251
2252 return 0;
2253 }
2254
2255 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
2256 struct qed_ptt *p_ptt,
2257 struct qed_vf_info *vf)
2258 {
2259 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
2260 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2261 struct vfpf_ucast_filter_tlv *req;
2262 u8 status = PFVF_STATUS_SUCCESS;
2263 struct qed_filter_ucast params;
2264 int rc;
2265
2266 /* Prepare the unicast filter params */
2267 memset(&params, 0, sizeof(struct qed_filter_ucast));
2268 req = &mbx->req_virt->ucast_filter;
2269 params.opcode = (enum qed_filter_opcode)req->opcode;
2270 params.type = (enum qed_filter_ucast_type)req->type;
2271
2272 params.is_rx_filter = 1;
2273 params.is_tx_filter = 1;
2274 params.vport_to_remove_from = vf->vport_id;
2275 params.vport_to_add_to = vf->vport_id;
2276 memcpy(params.mac, req->mac, ETH_ALEN);
2277 params.vlan = req->vlan;
2278
2279 DP_VERBOSE(p_hwfn,
2280 QED_MSG_IOV,
2281 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
2282 vf->abs_vf_id, params.opcode, params.type,
2283 params.is_rx_filter ? "RX" : "",
2284 params.is_tx_filter ? "TX" : "",
2285 params.vport_to_add_to,
2286 params.mac[0], params.mac[1],
2287 params.mac[2], params.mac[3],
2288 params.mac[4], params.mac[5], params.vlan);
2289
2290 if (!vf->vport_instance) {
2291 DP_VERBOSE(p_hwfn,
2292 QED_MSG_IOV,
2293 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
2294 vf->abs_vf_id);
2295 status = PFVF_STATUS_FAILURE;
2296 goto out;
2297 }
2298
2299 /* Update shadow copy of the VF configuration */
2300 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
2301 status = PFVF_STATUS_FAILURE;
2302 goto out;
2303 }
2304
2305 /* Determine if the unicast filtering is acceptible by PF */
2306 if ((p_bulletin->valid_bitmap & (1 << VLAN_ADDR_FORCED)) &&
2307 (params.type == QED_FILTER_VLAN ||
2308 params.type == QED_FILTER_MAC_VLAN)) {
2309 /* Once VLAN is forced or PVID is set, do not allow
2310 * to add/replace any further VLANs.
2311 */
2312 if (params.opcode == QED_FILTER_ADD ||
2313 params.opcode == QED_FILTER_REPLACE)
2314 status = PFVF_STATUS_FORCED;
2315 goto out;
2316 }
2317
2318 if ((p_bulletin->valid_bitmap & (1 << MAC_ADDR_FORCED)) &&
2319 (params.type == QED_FILTER_MAC ||
2320 params.type == QED_FILTER_MAC_VLAN)) {
2321 if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
2322 (params.opcode != QED_FILTER_ADD &&
2323 params.opcode != QED_FILTER_REPLACE))
2324 status = PFVF_STATUS_FORCED;
2325 goto out;
2326 }
2327
2328 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
2329 if (rc) {
2330 status = PFVF_STATUS_FAILURE;
2331 goto out;
2332 }
2333
2334 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
2335 QED_SPQ_MODE_CB, NULL);
2336 if (rc)
2337 status = PFVF_STATUS_FAILURE;
2338
2339 out:
2340 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
2341 sizeof(struct pfvf_def_resp_tlv), status);
2342 }
2343
2344 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
2345 struct qed_ptt *p_ptt,
2346 struct qed_vf_info *vf)
2347 {
2348 int i;
2349
2350 /* Reset the SBs */
2351 for (i = 0; i < vf->num_sbs; i++)
2352 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2353 vf->igu_sbs[i],
2354 vf->opaque_fid, false);
2355
2356 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
2357 sizeof(struct pfvf_def_resp_tlv),
2358 PFVF_STATUS_SUCCESS);
2359 }
2360
2361 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
2362 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
2363 {
2364 u16 length = sizeof(struct pfvf_def_resp_tlv);
2365 u8 status = PFVF_STATUS_SUCCESS;
2366
2367 /* Disable Interrupts for VF */
2368 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
2369
2370 /* Reset Permission table */
2371 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
2372
2373 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
2374 length, status);
2375 }
2376
2377 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
2378 struct qed_ptt *p_ptt,
2379 struct qed_vf_info *p_vf)
2380 {
2381 u16 length = sizeof(struct pfvf_def_resp_tlv);
2382 u8 status = PFVF_STATUS_SUCCESS;
2383 int rc = 0;
2384
2385 qed_iov_vf_cleanup(p_hwfn, p_vf);
2386
2387 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
2388 /* Stopping the VF */
2389 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
2390 p_vf->opaque_fid);
2391
2392 if (rc) {
2393 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
2394 rc);
2395 status = PFVF_STATUS_FAILURE;
2396 }
2397
2398 p_vf->state = VF_STOPPED;
2399 }
2400
2401 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
2402 length, status);
2403 }
2404
2405 static int
2406 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
2407 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2408 {
2409 int cnt;
2410 u32 val;
2411
2412 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
2413
2414 for (cnt = 0; cnt < 50; cnt++) {
2415 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
2416 if (!val)
2417 break;
2418 msleep(20);
2419 }
2420 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
2421
2422 if (cnt == 50) {
2423 DP_ERR(p_hwfn,
2424 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
2425 p_vf->abs_vf_id, val);
2426 return -EBUSY;
2427 }
2428
2429 return 0;
2430 }
2431
2432 static int
2433 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
2434 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2435 {
2436 u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS];
2437 int i, cnt;
2438
2439 /* Read initial consumers & producers */
2440 for (i = 0; i < MAX_NUM_VOQS; i++) {
2441 u32 prod;
2442
2443 cons[i] = qed_rd(p_hwfn, p_ptt,
2444 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
2445 i * 0x40);
2446 prod = qed_rd(p_hwfn, p_ptt,
2447 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
2448 i * 0x40);
2449 distance[i] = prod - cons[i];
2450 }
2451
2452 /* Wait for consumers to pass the producers */
2453 i = 0;
2454 for (cnt = 0; cnt < 50; cnt++) {
2455 for (; i < MAX_NUM_VOQS; i++) {
2456 u32 tmp;
2457
2458 tmp = qed_rd(p_hwfn, p_ptt,
2459 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
2460 i * 0x40);
2461 if (distance[i] > tmp - cons[i])
2462 break;
2463 }
2464
2465 if (i == MAX_NUM_VOQS)
2466 break;
2467
2468 msleep(20);
2469 }
2470
2471 if (cnt == 50) {
2472 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
2473 p_vf->abs_vf_id, i);
2474 return -EBUSY;
2475 }
2476
2477 return 0;
2478 }
2479
2480 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
2481 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2482 {
2483 int rc;
2484
2485 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
2486 if (rc)
2487 return rc;
2488
2489 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
2490 if (rc)
2491 return rc;
2492
2493 return 0;
2494 }
2495
2496 static int
2497 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
2498 struct qed_ptt *p_ptt,
2499 u16 rel_vf_id, u32 *ack_vfs)
2500 {
2501 struct qed_vf_info *p_vf;
2502 int rc = 0;
2503
2504 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
2505 if (!p_vf)
2506 return 0;
2507
2508 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
2509 (1ULL << (rel_vf_id % 64))) {
2510 u16 vfid = p_vf->abs_vf_id;
2511
2512 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2513 "VF[%d] - Handling FLR\n", vfid);
2514
2515 qed_iov_vf_cleanup(p_hwfn, p_vf);
2516
2517 /* If VF isn't active, no need for anything but SW */
2518 if (!p_vf->b_init)
2519 goto cleanup;
2520
2521 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
2522 if (rc)
2523 goto cleanup;
2524
2525 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
2526 if (rc) {
2527 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
2528 return rc;
2529 }
2530
2531 /* VF_STOPPED has to be set only after final cleanup
2532 * but prior to re-enabling the VF.
2533 */
2534 p_vf->state = VF_STOPPED;
2535
2536 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
2537 if (rc) {
2538 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
2539 vfid);
2540 return rc;
2541 }
2542 cleanup:
2543 /* Mark VF for ack and clean pending state */
2544 if (p_vf->state == VF_RESET)
2545 p_vf->state = VF_STOPPED;
2546 ack_vfs[vfid / 32] |= (1 << (vfid % 32));
2547 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
2548 ~(1ULL << (rel_vf_id % 64));
2549 p_hwfn->pf_iov_info->pending_events[rel_vf_id / 64] &=
2550 ~(1ULL << (rel_vf_id % 64));
2551 }
2552
2553 return rc;
2554 }
2555
2556 int qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2557 {
2558 u32 ack_vfs[VF_MAX_STATIC / 32];
2559 int rc = 0;
2560 u16 i;
2561
2562 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
2563
2564 /* Since BRB <-> PRS interface can't be tested as part of the flr
2565 * polling due to HW limitations, simply sleep a bit. And since
2566 * there's no need to wait per-vf, do it before looping.
2567 */
2568 msleep(100);
2569
2570 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
2571 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
2572
2573 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
2574 return rc;
2575 }
2576
2577 int qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
2578 {
2579 u16 i, found = 0;
2580
2581 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
2582 for (i = 0; i < (VF_MAX_STATIC / 32); i++)
2583 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2584 "[%08x,...,%08x]: %08x\n",
2585 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
2586
2587 if (!p_hwfn->cdev->p_iov_info) {
2588 DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
2589 return 0;
2590 }
2591
2592 /* Mark VFs */
2593 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
2594 struct qed_vf_info *p_vf;
2595 u8 vfid;
2596
2597 p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
2598 if (!p_vf)
2599 continue;
2600
2601 vfid = p_vf->abs_vf_id;
2602 if ((1 << (vfid % 32)) & p_disabled_vfs[vfid / 32]) {
2603 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
2604 u16 rel_vf_id = p_vf->relative_vf_id;
2605
2606 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2607 "VF[%d] [rel %d] got FLR-ed\n",
2608 vfid, rel_vf_id);
2609
2610 p_vf->state = VF_RESET;
2611
2612 /* No need to lock here, since pending_flr should
2613 * only change here and before ACKing MFw. Since
2614 * MFW will not trigger an additional attention for
2615 * VF flr until ACKs, we're safe.
2616 */
2617 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
2618 found = 1;
2619 }
2620 }
2621
2622 return found;
2623 }
2624
2625 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
2626 u16 vfid,
2627 struct qed_mcp_link_params *p_params,
2628 struct qed_mcp_link_state *p_link,
2629 struct qed_mcp_link_capabilities *p_caps)
2630 {
2631 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
2632 vfid,
2633 false);
2634 struct qed_bulletin_content *p_bulletin;
2635
2636 if (!p_vf)
2637 return;
2638
2639 p_bulletin = p_vf->bulletin.p_virt;
2640
2641 if (p_params)
2642 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
2643 if (p_link)
2644 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
2645 if (p_caps)
2646 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
2647 }
2648
2649 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
2650 struct qed_ptt *p_ptt, int vfid)
2651 {
2652 struct qed_iov_vf_mbx *mbx;
2653 struct qed_vf_info *p_vf;
2654 int i;
2655
2656 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
2657 if (!p_vf)
2658 return;
2659
2660 mbx = &p_vf->vf_mbx;
2661
2662 /* qed_iov_process_mbx_request */
2663 DP_VERBOSE(p_hwfn,
2664 QED_MSG_IOV,
2665 "qed_iov_process_mbx_req vfid %d\n", p_vf->abs_vf_id);
2666
2667 mbx->first_tlv = mbx->req_virt->first_tlv;
2668
2669 /* check if tlv type is known */
2670 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
2671 switch (mbx->first_tlv.tl.type) {
2672 case CHANNEL_TLV_ACQUIRE:
2673 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
2674 break;
2675 case CHANNEL_TLV_VPORT_START:
2676 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
2677 break;
2678 case CHANNEL_TLV_VPORT_TEARDOWN:
2679 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
2680 break;
2681 case CHANNEL_TLV_START_RXQ:
2682 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
2683 break;
2684 case CHANNEL_TLV_START_TXQ:
2685 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
2686 break;
2687 case CHANNEL_TLV_STOP_RXQS:
2688 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
2689 break;
2690 case CHANNEL_TLV_STOP_TXQS:
2691 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
2692 break;
2693 case CHANNEL_TLV_UPDATE_RXQ:
2694 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
2695 break;
2696 case CHANNEL_TLV_VPORT_UPDATE:
2697 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
2698 break;
2699 case CHANNEL_TLV_UCAST_FILTER:
2700 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
2701 break;
2702 case CHANNEL_TLV_CLOSE:
2703 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
2704 break;
2705 case CHANNEL_TLV_INT_CLEANUP:
2706 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
2707 break;
2708 case CHANNEL_TLV_RELEASE:
2709 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
2710 break;
2711 }
2712 } else {
2713 /* unknown TLV - this may belong to a VF driver from the future
2714 * - a version written after this PF driver was written, which
2715 * supports features unknown as of yet. Too bad since we don't
2716 * support them. Or this may be because someone wrote a crappy
2717 * VF driver and is sending garbage over the channel.
2718 */
2719 DP_ERR(p_hwfn,
2720 "unknown TLV. type %d length %d. first 20 bytes of mailbox buffer:\n",
2721 mbx->first_tlv.tl.type, mbx->first_tlv.tl.length);
2722
2723 for (i = 0; i < 20; i++) {
2724 DP_VERBOSE(p_hwfn,
2725 QED_MSG_IOV,
2726 "%x ",
2727 mbx->req_virt->tlv_buf_size.tlv_buffer[i]);
2728 }
2729 }
2730 }
2731
2732 void qed_iov_pf_add_pending_events(struct qed_hwfn *p_hwfn, u8 vfid)
2733 {
2734 u64 add_bit = 1ULL << (vfid % 64);
2735
2736 p_hwfn->pf_iov_info->pending_events[vfid / 64] |= add_bit;
2737 }
2738
2739 static void qed_iov_pf_get_and_clear_pending_events(struct qed_hwfn *p_hwfn,
2740 u64 *events)
2741 {
2742 u64 *p_pending_events = p_hwfn->pf_iov_info->pending_events;
2743
2744 memcpy(events, p_pending_events, sizeof(u64) * QED_VF_ARRAY_LENGTH);
2745 memset(p_pending_events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
2746 }
2747
2748 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
2749 u16 abs_vfid, struct regpair *vf_msg)
2750 {
2751 u8 min = (u8)p_hwfn->cdev->p_iov_info->first_vf_in_pf;
2752 struct qed_vf_info *p_vf;
2753
2754 if (!qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min)) {
2755 DP_VERBOSE(p_hwfn,
2756 QED_MSG_IOV,
2757 "Got a message from VF [abs 0x%08x] that cannot be handled by PF\n",
2758 abs_vfid);
2759 return 0;
2760 }
2761 p_vf = &p_hwfn->pf_iov_info->vfs_array[(u8)abs_vfid - min];
2762
2763 /* List the physical address of the request so that handler
2764 * could later on copy the message from it.
2765 */
2766 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
2767
2768 /* Mark the event and schedule the workqueue */
2769 qed_iov_pf_add_pending_events(p_hwfn, p_vf->relative_vf_id);
2770 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
2771
2772 return 0;
2773 }
2774
2775 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
2776 u8 opcode, __le16 echo, union event_ring_data *data)
2777 {
2778 switch (opcode) {
2779 case COMMON_EVENT_VF_PF_CHANNEL:
2780 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
2781 &data->vf_pf_channel.msg_addr);
2782 default:
2783 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
2784 opcode);
2785 return -EINVAL;
2786 }
2787 }
2788
2789 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
2790 {
2791 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2792 u16 i;
2793
2794 if (!p_iov)
2795 goto out;
2796
2797 for (i = rel_vf_id; i < p_iov->total_vfs; i++)
2798 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true))
2799 return i;
2800
2801 out:
2802 return MAX_NUM_VFS;
2803 }
2804
2805 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
2806 int vfid)
2807 {
2808 struct qed_dmae_params params;
2809 struct qed_vf_info *vf_info;
2810
2811 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
2812 if (!vf_info)
2813 return -EINVAL;
2814
2815 memset(&params, 0, sizeof(struct qed_dmae_params));
2816 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
2817 params.src_vfid = vf_info->abs_vf_id;
2818
2819 if (qed_dmae_host2host(p_hwfn, ptt,
2820 vf_info->vf_mbx.pending_req,
2821 vf_info->vf_mbx.req_phys,
2822 sizeof(union vfpf_tlvs) / 4, &params)) {
2823 DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2824 "Failed to copy message from VF 0x%02x\n", vfid);
2825
2826 return -EIO;
2827 }
2828
2829 return 0;
2830 }
2831
2832 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
2833 u8 *mac, int vfid)
2834 {
2835 struct qed_vf_info *vf_info;
2836 u64 feature;
2837
2838 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
2839 if (!vf_info) {
2840 DP_NOTICE(p_hwfn->cdev,
2841 "Can not set forced MAC, invalid vfid [%d]\n", vfid);
2842 return;
2843 }
2844
2845 feature = 1 << MAC_ADDR_FORCED;
2846 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
2847
2848 vf_info->bulletin.p_virt->valid_bitmap |= feature;
2849 /* Forced MAC will disable MAC_ADDR */
2850 vf_info->bulletin.p_virt->valid_bitmap &=
2851 ~(1 << VFPF_BULLETIN_MAC_ADDR);
2852
2853 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
2854 }
2855
2856 void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
2857 u16 pvid, int vfid)
2858 {
2859 struct qed_vf_info *vf_info;
2860 u64 feature;
2861
2862 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
2863 if (!vf_info) {
2864 DP_NOTICE(p_hwfn->cdev,
2865 "Can not set forced MAC, invalid vfid [%d]\n", vfid);
2866 return;
2867 }
2868
2869 feature = 1 << VLAN_ADDR_FORCED;
2870 vf_info->bulletin.p_virt->pvid = pvid;
2871 if (pvid)
2872 vf_info->bulletin.p_virt->valid_bitmap |= feature;
2873 else
2874 vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
2875
2876 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
2877 }
2878
2879 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
2880 {
2881 struct qed_vf_info *p_vf_info;
2882
2883 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
2884 if (!p_vf_info)
2885 return false;
2886
2887 return !!p_vf_info->vport_instance;
2888 }
2889
2890 bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
2891 {
2892 struct qed_vf_info *p_vf_info;
2893
2894 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
2895 if (!p_vf_info)
2896 return true;
2897
2898 return p_vf_info->state == VF_STOPPED;
2899 }
2900
2901 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
2902 {
2903 struct qed_vf_info *vf_info;
2904
2905 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
2906 if (!vf_info)
2907 return false;
2908
2909 return vf_info->spoof_chk;
2910 }
2911
2912 int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
2913 {
2914 struct qed_vf_info *vf;
2915 int rc = -EINVAL;
2916
2917 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
2918 DP_NOTICE(p_hwfn,
2919 "SR-IOV sanity check failed, can't set spoofchk\n");
2920 goto out;
2921 }
2922
2923 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
2924 if (!vf)
2925 goto out;
2926
2927 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
2928 /* After VF VPORT start PF will configure spoof check */
2929 vf->req_spoofchk_val = val;
2930 rc = 0;
2931 goto out;
2932 }
2933
2934 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
2935
2936 out:
2937 return rc;
2938 }
2939
2940 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
2941 u16 rel_vf_id)
2942 {
2943 struct qed_vf_info *p_vf;
2944
2945 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
2946 if (!p_vf || !p_vf->bulletin.p_virt)
2947 return NULL;
2948
2949 if (!(p_vf->bulletin.p_virt->valid_bitmap & (1 << MAC_ADDR_FORCED)))
2950 return NULL;
2951
2952 return p_vf->bulletin.p_virt->mac;
2953 }
2954
2955 u16 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
2956 {
2957 struct qed_vf_info *p_vf;
2958
2959 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
2960 if (!p_vf || !p_vf->bulletin.p_virt)
2961 return 0;
2962
2963 if (!(p_vf->bulletin.p_virt->valid_bitmap & (1 << VLAN_ADDR_FORCED)))
2964 return 0;
2965
2966 return p_vf->bulletin.p_virt->pvid;
2967 }
2968
2969 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
2970 struct qed_ptt *p_ptt, int vfid, int val)
2971 {
2972 struct qed_vf_info *vf;
2973 u8 abs_vp_id = 0;
2974 int rc;
2975
2976 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
2977 if (!vf)
2978 return -EINVAL;
2979
2980 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
2981 if (rc)
2982 return rc;
2983
2984 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val);
2985 }
2986
2987 int qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
2988 {
2989 struct qed_vf_info *vf;
2990 u8 vport_id;
2991 int i;
2992
2993 for_each_hwfn(cdev, i) {
2994 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2995
2996 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
2997 DP_NOTICE(p_hwfn,
2998 "SR-IOV sanity check failed, can't set min rate\n");
2999 return -EINVAL;
3000 }
3001 }
3002
3003 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
3004 vport_id = vf->vport_id;
3005
3006 return qed_configure_vport_wfq(cdev, vport_id, rate);
3007 }
3008
3009 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
3010 {
3011 struct qed_wfq_data *vf_vp_wfq;
3012 struct qed_vf_info *vf_info;
3013
3014 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3015 if (!vf_info)
3016 return 0;
3017
3018 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
3019
3020 if (vf_vp_wfq->configured)
3021 return vf_vp_wfq->min_speed;
3022 else
3023 return 0;
3024 }
3025
3026 /**
3027 * qed_schedule_iov - schedules IOV task for VF and PF
3028 * @hwfn: hardware function pointer
3029 * @flag: IOV flag for VF/PF
3030 */
3031 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
3032 {
3033 smp_mb__before_atomic();
3034 set_bit(flag, &hwfn->iov_task_flags);
3035 smp_mb__after_atomic();
3036 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3037 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
3038 }
3039
3040 void qed_vf_start_iov_wq(struct qed_dev *cdev)
3041 {
3042 int i;
3043
3044 for_each_hwfn(cdev, i)
3045 queue_delayed_work(cdev->hwfns[i].iov_wq,
3046 &cdev->hwfns[i].iov_task, 0);
3047 }
3048
3049 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
3050 {
3051 int i, j;
3052
3053 for_each_hwfn(cdev, i)
3054 if (cdev->hwfns[i].iov_wq)
3055 flush_workqueue(cdev->hwfns[i].iov_wq);
3056
3057 /* Mark VFs for disablement */
3058 qed_iov_set_vfs_to_disable(cdev, true);
3059
3060 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
3061 pci_disable_sriov(cdev->pdev);
3062
3063 for_each_hwfn(cdev, i) {
3064 struct qed_hwfn *hwfn = &cdev->hwfns[i];
3065 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3066
3067 /* Failure to acquire the ptt in 100g creates an odd error
3068 * where the first engine has already relased IOV.
3069 */
3070 if (!ptt) {
3071 DP_ERR(hwfn, "Failed to acquire ptt\n");
3072 return -EBUSY;
3073 }
3074
3075 /* Clean WFQ db and configure equal weight for all vports */
3076 qed_clean_wfq_db(hwfn, ptt);
3077
3078 qed_for_each_vf(hwfn, j) {
3079 int k;
3080
3081 if (!qed_iov_is_valid_vfid(hwfn, j, true))
3082 continue;
3083
3084 /* Wait until VF is disabled before releasing */
3085 for (k = 0; k < 100; k++) {
3086 if (!qed_iov_is_vf_stopped(hwfn, j))
3087 msleep(20);
3088 else
3089 break;
3090 }
3091
3092 if (k < 100)
3093 qed_iov_release_hw_for_vf(&cdev->hwfns[i],
3094 ptt, j);
3095 else
3096 DP_ERR(hwfn,
3097 "Timeout waiting for VF's FLR to end\n");
3098 }
3099
3100 qed_ptt_release(hwfn, ptt);
3101 }
3102
3103 qed_iov_set_vfs_to_disable(cdev, false);
3104
3105 return 0;
3106 }
3107
3108 static int qed_sriov_enable(struct qed_dev *cdev, int num)
3109 {
3110 struct qed_sb_cnt_info sb_cnt_info;
3111 int i, j, rc;
3112
3113 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
3114 DP_NOTICE(cdev, "Can start at most %d VFs\n",
3115 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
3116 return -EINVAL;
3117 }
3118
3119 /* Initialize HW for VF access */
3120 for_each_hwfn(cdev, j) {
3121 struct qed_hwfn *hwfn = &cdev->hwfns[j];
3122 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3123 int num_sbs = 0, limit = 16;
3124
3125 if (!ptt) {
3126 DP_ERR(hwfn, "Failed to acquire ptt\n");
3127 rc = -EBUSY;
3128 goto err;
3129 }
3130
3131 if (IS_MF_DEFAULT(hwfn))
3132 limit = MAX_NUM_VFS_BB / hwfn->num_funcs_on_engine;
3133
3134 memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
3135 qed_int_get_num_sbs(hwfn, &sb_cnt_info);
3136 num_sbs = min_t(int, sb_cnt_info.sb_free_blk, limit);
3137
3138 for (i = 0; i < num; i++) {
3139 if (!qed_iov_is_valid_vfid(hwfn, i, false))
3140 continue;
3141
3142 rc = qed_iov_init_hw_for_vf(hwfn,
3143 ptt, i, num_sbs / num);
3144 if (rc) {
3145 DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
3146 qed_ptt_release(hwfn, ptt);
3147 goto err;
3148 }
3149 }
3150
3151 qed_ptt_release(hwfn, ptt);
3152 }
3153
3154 /* Enable SRIOV PCIe functions */
3155 rc = pci_enable_sriov(cdev->pdev, num);
3156 if (rc) {
3157 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
3158 goto err;
3159 }
3160
3161 return num;
3162
3163 err:
3164 qed_sriov_disable(cdev, false);
3165 return rc;
3166 }
3167
3168 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
3169 {
3170 if (!IS_QED_SRIOV(cdev)) {
3171 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
3172 return -EOPNOTSUPP;
3173 }
3174
3175 if (num_vfs_param)
3176 return qed_sriov_enable(cdev, num_vfs_param);
3177 else
3178 return qed_sriov_disable(cdev, true);
3179 }
3180
3181 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
3182 {
3183 int i;
3184
3185 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
3186 DP_VERBOSE(cdev, QED_MSG_IOV,
3187 "Cannot set a VF MAC; Sriov is not enabled\n");
3188 return -EINVAL;
3189 }
3190
3191 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true)) {
3192 DP_VERBOSE(cdev, QED_MSG_IOV,
3193 "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
3194 return -EINVAL;
3195 }
3196
3197 for_each_hwfn(cdev, i) {
3198 struct qed_hwfn *hwfn = &cdev->hwfns[i];
3199 struct qed_public_vf_info *vf_info;
3200
3201 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3202 if (!vf_info)
3203 continue;
3204
3205 /* Set the forced MAC, and schedule the IOV task */
3206 ether_addr_copy(vf_info->forced_mac, mac);
3207 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
3208 }
3209
3210 return 0;
3211 }
3212
3213 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
3214 {
3215 int i;
3216
3217 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
3218 DP_VERBOSE(cdev, QED_MSG_IOV,
3219 "Cannot set a VF MAC; Sriov is not enabled\n");
3220 return -EINVAL;
3221 }
3222
3223 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true)) {
3224 DP_VERBOSE(cdev, QED_MSG_IOV,
3225 "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
3226 return -EINVAL;
3227 }
3228
3229 for_each_hwfn(cdev, i) {
3230 struct qed_hwfn *hwfn = &cdev->hwfns[i];
3231 struct qed_public_vf_info *vf_info;
3232
3233 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3234 if (!vf_info)
3235 continue;
3236
3237 /* Set the forced vlan, and schedule the IOV task */
3238 vf_info->forced_vlan = vid;
3239 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
3240 }
3241
3242 return 0;
3243 }
3244
3245 static int qed_get_vf_config(struct qed_dev *cdev,
3246 int vf_id, struct ifla_vf_info *ivi)
3247 {
3248 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
3249 struct qed_public_vf_info *vf_info;
3250 struct qed_mcp_link_state link;
3251 u32 tx_rate;
3252
3253 /* Sanitize request */
3254 if (IS_VF(cdev))
3255 return -EINVAL;
3256
3257 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true)) {
3258 DP_VERBOSE(cdev, QED_MSG_IOV,
3259 "VF index [%d] isn't active\n", vf_id);
3260 return -EINVAL;
3261 }
3262
3263 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
3264
3265 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
3266
3267 /* Fill information about VF */
3268 ivi->vf = vf_id;
3269
3270 if (is_valid_ether_addr(vf_info->forced_mac))
3271 ether_addr_copy(ivi->mac, vf_info->forced_mac);
3272 else
3273 ether_addr_copy(ivi->mac, vf_info->mac);
3274
3275 ivi->vlan = vf_info->forced_vlan;
3276 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
3277 ivi->linkstate = vf_info->link_state;
3278 tx_rate = vf_info->tx_rate;
3279 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
3280 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
3281
3282 return 0;
3283 }
3284
3285 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
3286 {
3287 struct qed_mcp_link_capabilities caps;
3288 struct qed_mcp_link_params params;
3289 struct qed_mcp_link_state link;
3290 int i;
3291
3292 if (!hwfn->pf_iov_info)
3293 return;
3294
3295 /* Update bulletin of all future possible VFs with link configuration */
3296 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
3297 struct qed_public_vf_info *vf_info;
3298
3299 vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
3300 if (!vf_info)
3301 continue;
3302
3303 memcpy(&params, qed_mcp_get_link_params(hwfn), sizeof(params));
3304 memcpy(&link, qed_mcp_get_link_state(hwfn), sizeof(link));
3305 memcpy(&caps, qed_mcp_get_link_capabilities(hwfn),
3306 sizeof(caps));
3307
3308 /* Modify link according to the VF's configured link state */
3309 switch (vf_info->link_state) {
3310 case IFLA_VF_LINK_STATE_DISABLE:
3311 link.link_up = false;
3312 break;
3313 case IFLA_VF_LINK_STATE_ENABLE:
3314 link.link_up = true;
3315 /* Set speed according to maximum supported by HW.
3316 * that is 40G for regular devices and 100G for CMT
3317 * mode devices.
3318 */
3319 link.speed = (hwfn->cdev->num_hwfns > 1) ?
3320 100000 : 40000;
3321 default:
3322 /* In auto mode pass PF link image to VF */
3323 break;
3324 }
3325
3326 if (link.link_up && vf_info->tx_rate) {
3327 struct qed_ptt *ptt;
3328 int rate;
3329
3330 rate = min_t(int, vf_info->tx_rate, link.speed);
3331
3332 ptt = qed_ptt_acquire(hwfn);
3333 if (!ptt) {
3334 DP_NOTICE(hwfn, "Failed to acquire PTT\n");
3335 return;
3336 }
3337
3338 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
3339 vf_info->tx_rate = rate;
3340 link.speed = rate;
3341 }
3342
3343 qed_ptt_release(hwfn, ptt);
3344 }
3345
3346 qed_iov_set_link(hwfn, i, &params, &link, &caps);
3347 }
3348
3349 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3350 }
3351
3352 static int qed_set_vf_link_state(struct qed_dev *cdev,
3353 int vf_id, int link_state)
3354 {
3355 int i;
3356
3357 /* Sanitize request */
3358 if (IS_VF(cdev))
3359 return -EINVAL;
3360
3361 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true)) {
3362 DP_VERBOSE(cdev, QED_MSG_IOV,
3363 "VF index [%d] isn't active\n", vf_id);
3364 return -EINVAL;
3365 }
3366
3367 /* Handle configuration of link state */
3368 for_each_hwfn(cdev, i) {
3369 struct qed_hwfn *hwfn = &cdev->hwfns[i];
3370 struct qed_public_vf_info *vf;
3371
3372 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
3373 if (!vf)
3374 continue;
3375
3376 if (vf->link_state == link_state)
3377 continue;
3378
3379 vf->link_state = link_state;
3380 qed_inform_vf_link_state(&cdev->hwfns[i]);
3381 }
3382
3383 return 0;
3384 }
3385
3386 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
3387 {
3388 int i, rc = -EINVAL;
3389
3390 for_each_hwfn(cdev, i) {
3391 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3392
3393 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
3394 if (rc)
3395 break;
3396 }
3397
3398 return rc;
3399 }
3400
3401 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
3402 {
3403 int i;
3404
3405 for_each_hwfn(cdev, i) {
3406 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3407 struct qed_public_vf_info *vf;
3408
3409 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
3410 DP_NOTICE(p_hwfn,
3411 "SR-IOV sanity check failed, can't set tx rate\n");
3412 return -EINVAL;
3413 }
3414
3415 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
3416
3417 vf->tx_rate = rate;
3418
3419 qed_inform_vf_link_state(p_hwfn);
3420 }
3421
3422 return 0;
3423 }
3424
3425 static int qed_set_vf_rate(struct qed_dev *cdev,
3426 int vfid, u32 min_rate, u32 max_rate)
3427 {
3428 int rc_min = 0, rc_max = 0;
3429
3430 if (max_rate)
3431 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
3432
3433 if (min_rate)
3434 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
3435
3436 if (rc_max | rc_min)
3437 return -EINVAL;
3438
3439 return 0;
3440 }
3441
3442 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
3443 {
3444 u64 events[QED_VF_ARRAY_LENGTH];
3445 struct qed_ptt *ptt;
3446 int i;
3447
3448 ptt = qed_ptt_acquire(hwfn);
3449 if (!ptt) {
3450 DP_VERBOSE(hwfn, QED_MSG_IOV,
3451 "Can't acquire PTT; re-scheduling\n");
3452 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
3453 return;
3454 }
3455
3456 qed_iov_pf_get_and_clear_pending_events(hwfn, events);
3457
3458 DP_VERBOSE(hwfn, QED_MSG_IOV,
3459 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
3460 events[0], events[1], events[2]);
3461
3462 qed_for_each_vf(hwfn, i) {
3463 /* Skip VFs with no pending messages */
3464 if (!(events[i / 64] & (1ULL << (i % 64))))
3465 continue;
3466
3467 DP_VERBOSE(hwfn, QED_MSG_IOV,
3468 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
3469 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
3470
3471 /* Copy VF's message to PF's request buffer for that VF */
3472 if (qed_iov_copy_vf_msg(hwfn, ptt, i))
3473 continue;
3474
3475 qed_iov_process_mbx_req(hwfn, ptt, i);
3476 }
3477
3478 qed_ptt_release(hwfn, ptt);
3479 }
3480
3481 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
3482 {
3483 int i;
3484
3485 qed_for_each_vf(hwfn, i) {
3486 struct qed_public_vf_info *info;
3487 bool update = false;
3488 u8 *mac;
3489
3490 info = qed_iov_get_public_vf_info(hwfn, i, true);
3491 if (!info)
3492 continue;
3493
3494 /* Update data on bulletin board */
3495 mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
3496 if (is_valid_ether_addr(info->forced_mac) &&
3497 (!mac || !ether_addr_equal(mac, info->forced_mac))) {
3498 DP_VERBOSE(hwfn,
3499 QED_MSG_IOV,
3500 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
3501 i,
3502 hwfn->cdev->p_iov_info->first_vf_in_pf + i);
3503
3504 /* Update bulletin board with forced MAC */
3505 qed_iov_bulletin_set_forced_mac(hwfn,
3506 info->forced_mac, i);
3507 update = true;
3508 }
3509
3510 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
3511 info->forced_vlan) {
3512 DP_VERBOSE(hwfn,
3513 QED_MSG_IOV,
3514 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
3515 info->forced_vlan,
3516 i,
3517 hwfn->cdev->p_iov_info->first_vf_in_pf + i);
3518 qed_iov_bulletin_set_forced_vlan(hwfn,
3519 info->forced_vlan, i);
3520 update = true;
3521 }
3522
3523 if (update)
3524 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3525 }
3526 }
3527
3528 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
3529 {
3530 struct qed_ptt *ptt;
3531 int i;
3532
3533 ptt = qed_ptt_acquire(hwfn);
3534 if (!ptt) {
3535 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
3536 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3537 return;
3538 }
3539
3540 qed_for_each_vf(hwfn, i)
3541 qed_iov_post_vf_bulletin(hwfn, i, ptt);
3542
3543 qed_ptt_release(hwfn, ptt);
3544 }
3545
3546 void qed_iov_pf_task(struct work_struct *work)
3547 {
3548 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
3549 iov_task.work);
3550 int rc;
3551
3552 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
3553 return;
3554
3555 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
3556 struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3557
3558 if (!ptt) {
3559 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
3560 return;
3561 }
3562
3563 rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
3564 if (rc)
3565 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
3566
3567 qed_ptt_release(hwfn, ptt);
3568 }
3569
3570 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
3571 qed_handle_vf_msg(hwfn);
3572
3573 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
3574 &hwfn->iov_task_flags))
3575 qed_handle_pf_set_vf_unicast(hwfn);
3576
3577 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
3578 &hwfn->iov_task_flags))
3579 qed_handle_bulletin_post(hwfn);
3580 }
3581
3582 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
3583 {
3584 int i;
3585
3586 for_each_hwfn(cdev, i) {
3587 if (!cdev->hwfns[i].iov_wq)
3588 continue;
3589
3590 if (schedule_first) {
3591 qed_schedule_iov(&cdev->hwfns[i],
3592 QED_IOV_WQ_STOP_WQ_FLAG);
3593 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
3594 }
3595
3596 flush_workqueue(cdev->hwfns[i].iov_wq);
3597 destroy_workqueue(cdev->hwfns[i].iov_wq);
3598 }
3599 }
3600
3601 int qed_iov_wq_start(struct qed_dev *cdev)
3602 {
3603 char name[NAME_SIZE];
3604 int i;
3605
3606 for_each_hwfn(cdev, i) {
3607 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3608
3609 /* PFs needs a dedicated workqueue only if they support IOV.
3610 * VFs always require one.
3611 */
3612 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
3613 continue;
3614
3615 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
3616 cdev->pdev->bus->number,
3617 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
3618
3619 p_hwfn->iov_wq = create_singlethread_workqueue(name);
3620 if (!p_hwfn->iov_wq) {
3621 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
3622 return -ENOMEM;
3623 }
3624
3625 if (IS_PF(cdev))
3626 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
3627 else
3628 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
3629 }
3630
3631 return 0;
3632 }
3633
3634 const struct qed_iov_hv_ops qed_iov_ops_pass = {
3635 .configure = &qed_sriov_configure,
3636 .set_mac = &qed_sriov_pf_set_mac,
3637 .set_vlan = &qed_sriov_pf_set_vlan,
3638 .get_config = &qed_get_vf_config,
3639 .set_link_state = &qed_set_vf_link_state,
3640 .set_spoof = &qed_spoof_configure,
3641 .set_rate = &qed_set_vf_rate,
3642 };