]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/qlogic/qede/qede_main.c
qede: qedr closure after setting state
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include <linux/qed/qede_roce.h>
64 #include "qede.h"
65 #include "qede_ptp.h"
66
67 static char version[] =
68 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
69
70 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
71 MODULE_LICENSE("GPL");
72 MODULE_VERSION(DRV_MODULE_VERSION);
73
74 static uint debug;
75 module_param(debug, uint, 0);
76 MODULE_PARM_DESC(debug, " Default debug msglevel");
77
78 static const struct qed_eth_ops *qed_ops;
79
80 #define CHIP_NUM_57980S_40 0x1634
81 #define CHIP_NUM_57980S_10 0x1666
82 #define CHIP_NUM_57980S_MF 0x1636
83 #define CHIP_NUM_57980S_100 0x1644
84 #define CHIP_NUM_57980S_50 0x1654
85 #define CHIP_NUM_57980S_25 0x1656
86 #define CHIP_NUM_57980S_IOV 0x1664
87 #define CHIP_NUM_AH 0x8070
88 #define CHIP_NUM_AH_IOV 0x8090
89
90 #ifndef PCI_DEVICE_ID_NX2_57980E
91 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
92 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
93 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
94 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
95 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
96 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
97 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
98 #define PCI_DEVICE_ID_AH CHIP_NUM_AH
99 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
100
101 #endif
102
103 enum qede_pci_private {
104 QEDE_PRIVATE_PF,
105 QEDE_PRIVATE_VF
106 };
107
108 static const struct pci_device_id qede_pci_tbl[] = {
109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
114 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
115 #ifdef CONFIG_QED_SRIOV
116 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
117 #endif
118 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
119 #ifdef CONFIG_QED_SRIOV
120 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
121 #endif
122 { 0 }
123 };
124
125 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
126
127 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
128
129 #define TX_TIMEOUT (5 * HZ)
130
131 /* Utilize last protocol index for XDP */
132 #define XDP_PI 11
133
134 static void qede_remove(struct pci_dev *pdev);
135 static void qede_shutdown(struct pci_dev *pdev);
136 static void qede_link_update(void *dev, struct qed_link_output *link);
137
138 /* The qede lock is used to protect driver state change and driver flows that
139 * are not reentrant.
140 */
141 void __qede_lock(struct qede_dev *edev)
142 {
143 mutex_lock(&edev->qede_lock);
144 }
145
146 void __qede_unlock(struct qede_dev *edev)
147 {
148 mutex_unlock(&edev->qede_lock);
149 }
150
151 #ifdef CONFIG_QED_SRIOV
152 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
153 __be16 vlan_proto)
154 {
155 struct qede_dev *edev = netdev_priv(ndev);
156
157 if (vlan > 4095) {
158 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
159 return -EINVAL;
160 }
161
162 if (vlan_proto != htons(ETH_P_8021Q))
163 return -EPROTONOSUPPORT;
164
165 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
166 vlan, vf);
167
168 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
169 }
170
171 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
172 {
173 struct qede_dev *edev = netdev_priv(ndev);
174
175 DP_VERBOSE(edev, QED_MSG_IOV,
176 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
177 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
178
179 if (!is_valid_ether_addr(mac)) {
180 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
181 return -EINVAL;
182 }
183
184 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
185 }
186
187 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
188 {
189 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
190 struct qed_dev_info *qed_info = &edev->dev_info.common;
191 struct qed_update_vport_params *vport_params;
192 int rc;
193
194 vport_params = vzalloc(sizeof(*vport_params));
195 if (!vport_params)
196 return -ENOMEM;
197 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
198
199 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
200
201 /* Enable/Disable Tx switching for PF */
202 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
203 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
204 vport_params->vport_id = 0;
205 vport_params->update_tx_switching_flg = 1;
206 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
207 edev->ops->vport_update(edev->cdev, vport_params);
208 }
209
210 vfree(vport_params);
211 return rc;
212 }
213 #endif
214
215 static struct pci_driver qede_pci_driver = {
216 .name = "qede",
217 .id_table = qede_pci_tbl,
218 .probe = qede_probe,
219 .remove = qede_remove,
220 .shutdown = qede_shutdown,
221 #ifdef CONFIG_QED_SRIOV
222 .sriov_configure = qede_sriov_configure,
223 #endif
224 };
225
226 static struct qed_eth_cb_ops qede_ll_ops = {
227 {
228 #ifdef CONFIG_RFS_ACCEL
229 .arfs_filter_op = qede_arfs_filter_op,
230 #endif
231 .link_update = qede_link_update,
232 },
233 .force_mac = qede_force_mac,
234 .ports_update = qede_udp_ports_update,
235 };
236
237 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
238 void *ptr)
239 {
240 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
241 struct ethtool_drvinfo drvinfo;
242 struct qede_dev *edev;
243
244 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
245 goto done;
246
247 /* Check whether this is a qede device */
248 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
249 goto done;
250
251 memset(&drvinfo, 0, sizeof(drvinfo));
252 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
253 if (strcmp(drvinfo.driver, "qede"))
254 goto done;
255 edev = netdev_priv(ndev);
256
257 switch (event) {
258 case NETDEV_CHANGENAME:
259 /* Notify qed of the name change */
260 if (!edev->ops || !edev->ops->common)
261 goto done;
262 edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede");
263 break;
264 case NETDEV_CHANGEADDR:
265 edev = netdev_priv(ndev);
266 qede_roce_event_changeaddr(edev);
267 break;
268 }
269
270 done:
271 return NOTIFY_DONE;
272 }
273
274 static struct notifier_block qede_netdev_notifier = {
275 .notifier_call = qede_netdev_event,
276 };
277
278 static
279 int __init qede_init(void)
280 {
281 int ret;
282
283 pr_info("qede_init: %s\n", version);
284
285 qed_ops = qed_get_eth_ops();
286 if (!qed_ops) {
287 pr_notice("Failed to get qed ethtool operations\n");
288 return -EINVAL;
289 }
290
291 /* Must register notifier before pci ops, since we might miss
292 * interface rename after pci probe and netdev registeration.
293 */
294 ret = register_netdevice_notifier(&qede_netdev_notifier);
295 if (ret) {
296 pr_notice("Failed to register netdevice_notifier\n");
297 qed_put_eth_ops();
298 return -EINVAL;
299 }
300
301 ret = pci_register_driver(&qede_pci_driver);
302 if (ret) {
303 pr_notice("Failed to register driver\n");
304 unregister_netdevice_notifier(&qede_netdev_notifier);
305 qed_put_eth_ops();
306 return -EINVAL;
307 }
308
309 return 0;
310 }
311
312 static void __exit qede_cleanup(void)
313 {
314 if (debug & QED_LOG_INFO_MASK)
315 pr_info("qede_cleanup called\n");
316
317 unregister_netdevice_notifier(&qede_netdev_notifier);
318 pci_unregister_driver(&qede_pci_driver);
319 qed_put_eth_ops();
320 }
321
322 module_init(qede_init);
323 module_exit(qede_cleanup);
324
325 static int qede_open(struct net_device *ndev);
326 static int qede_close(struct net_device *ndev);
327
328 void qede_fill_by_demand_stats(struct qede_dev *edev)
329 {
330 struct qede_stats_common *p_common = &edev->stats.common;
331 struct qed_eth_stats stats;
332
333 edev->ops->get_vport_stats(edev->cdev, &stats);
334
335 p_common->no_buff_discards = stats.common.no_buff_discards;
336 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
337 p_common->ttl0_discard = stats.common.ttl0_discard;
338 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
339 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
340 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
341 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
342 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
343 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
344 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
345 p_common->mac_filter_discards = stats.common.mac_filter_discards;
346
347 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
348 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
349 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
350 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
351 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
352 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
353 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
354 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
355 p_common->coalesced_events = stats.common.tpa_coalesced_events;
356 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
357 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
358 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
359
360 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
361 p_common->rx_65_to_127_byte_packets =
362 stats.common.rx_65_to_127_byte_packets;
363 p_common->rx_128_to_255_byte_packets =
364 stats.common.rx_128_to_255_byte_packets;
365 p_common->rx_256_to_511_byte_packets =
366 stats.common.rx_256_to_511_byte_packets;
367 p_common->rx_512_to_1023_byte_packets =
368 stats.common.rx_512_to_1023_byte_packets;
369 p_common->rx_1024_to_1518_byte_packets =
370 stats.common.rx_1024_to_1518_byte_packets;
371 p_common->rx_crc_errors = stats.common.rx_crc_errors;
372 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
373 p_common->rx_pause_frames = stats.common.rx_pause_frames;
374 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
375 p_common->rx_align_errors = stats.common.rx_align_errors;
376 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
377 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
378 p_common->rx_jabbers = stats.common.rx_jabbers;
379 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
380 p_common->rx_fragments = stats.common.rx_fragments;
381 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
382 p_common->tx_65_to_127_byte_packets =
383 stats.common.tx_65_to_127_byte_packets;
384 p_common->tx_128_to_255_byte_packets =
385 stats.common.tx_128_to_255_byte_packets;
386 p_common->tx_256_to_511_byte_packets =
387 stats.common.tx_256_to_511_byte_packets;
388 p_common->tx_512_to_1023_byte_packets =
389 stats.common.tx_512_to_1023_byte_packets;
390 p_common->tx_1024_to_1518_byte_packets =
391 stats.common.tx_1024_to_1518_byte_packets;
392 p_common->tx_pause_frames = stats.common.tx_pause_frames;
393 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
394 p_common->brb_truncates = stats.common.brb_truncates;
395 p_common->brb_discards = stats.common.brb_discards;
396 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
397
398 if (QEDE_IS_BB(edev)) {
399 struct qede_stats_bb *p_bb = &edev->stats.bb;
400
401 p_bb->rx_1519_to_1522_byte_packets =
402 stats.bb.rx_1519_to_1522_byte_packets;
403 p_bb->rx_1519_to_2047_byte_packets =
404 stats.bb.rx_1519_to_2047_byte_packets;
405 p_bb->rx_2048_to_4095_byte_packets =
406 stats.bb.rx_2048_to_4095_byte_packets;
407 p_bb->rx_4096_to_9216_byte_packets =
408 stats.bb.rx_4096_to_9216_byte_packets;
409 p_bb->rx_9217_to_16383_byte_packets =
410 stats.bb.rx_9217_to_16383_byte_packets;
411 p_bb->tx_1519_to_2047_byte_packets =
412 stats.bb.tx_1519_to_2047_byte_packets;
413 p_bb->tx_2048_to_4095_byte_packets =
414 stats.bb.tx_2048_to_4095_byte_packets;
415 p_bb->tx_4096_to_9216_byte_packets =
416 stats.bb.tx_4096_to_9216_byte_packets;
417 p_bb->tx_9217_to_16383_byte_packets =
418 stats.bb.tx_9217_to_16383_byte_packets;
419 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
420 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
421 } else {
422 struct qede_stats_ah *p_ah = &edev->stats.ah;
423
424 p_ah->rx_1519_to_max_byte_packets =
425 stats.ah.rx_1519_to_max_byte_packets;
426 p_ah->tx_1519_to_max_byte_packets =
427 stats.ah.tx_1519_to_max_byte_packets;
428 }
429 }
430
431 static void qede_get_stats64(struct net_device *dev,
432 struct rtnl_link_stats64 *stats)
433 {
434 struct qede_dev *edev = netdev_priv(dev);
435 struct qede_stats_common *p_common;
436
437 qede_fill_by_demand_stats(edev);
438 p_common = &edev->stats.common;
439
440 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
441 p_common->rx_bcast_pkts;
442 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
443 p_common->tx_bcast_pkts;
444
445 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
446 p_common->rx_bcast_bytes;
447 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
448 p_common->tx_bcast_bytes;
449
450 stats->tx_errors = p_common->tx_err_drop_pkts;
451 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
452
453 stats->rx_fifo_errors = p_common->no_buff_discards;
454
455 if (QEDE_IS_BB(edev))
456 stats->collisions = edev->stats.bb.tx_total_collisions;
457 stats->rx_crc_errors = p_common->rx_crc_errors;
458 stats->rx_frame_errors = p_common->rx_align_errors;
459 }
460
461 #ifdef CONFIG_QED_SRIOV
462 static int qede_get_vf_config(struct net_device *dev, int vfidx,
463 struct ifla_vf_info *ivi)
464 {
465 struct qede_dev *edev = netdev_priv(dev);
466
467 if (!edev->ops)
468 return -EINVAL;
469
470 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
471 }
472
473 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
474 int min_tx_rate, int max_tx_rate)
475 {
476 struct qede_dev *edev = netdev_priv(dev);
477
478 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
479 max_tx_rate);
480 }
481
482 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
483 {
484 struct qede_dev *edev = netdev_priv(dev);
485
486 if (!edev->ops)
487 return -EINVAL;
488
489 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
490 }
491
492 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
493 int link_state)
494 {
495 struct qede_dev *edev = netdev_priv(dev);
496
497 if (!edev->ops)
498 return -EINVAL;
499
500 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
501 }
502
503 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
504 {
505 struct qede_dev *edev = netdev_priv(dev);
506
507 if (!edev->ops)
508 return -EINVAL;
509
510 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
511 }
512 #endif
513
514 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
515 {
516 struct qede_dev *edev = netdev_priv(dev);
517
518 if (!netif_running(dev))
519 return -EAGAIN;
520
521 switch (cmd) {
522 case SIOCSHWTSTAMP:
523 return qede_ptp_hw_ts(edev, ifr);
524 default:
525 DP_VERBOSE(edev, QED_MSG_DEBUG,
526 "default IOCTL cmd 0x%x\n", cmd);
527 return -EOPNOTSUPP;
528 }
529
530 return 0;
531 }
532
533 static const struct net_device_ops qede_netdev_ops = {
534 .ndo_open = qede_open,
535 .ndo_stop = qede_close,
536 .ndo_start_xmit = qede_start_xmit,
537 .ndo_set_rx_mode = qede_set_rx_mode,
538 .ndo_set_mac_address = qede_set_mac_addr,
539 .ndo_validate_addr = eth_validate_addr,
540 .ndo_change_mtu = qede_change_mtu,
541 .ndo_do_ioctl = qede_ioctl,
542 #ifdef CONFIG_QED_SRIOV
543 .ndo_set_vf_mac = qede_set_vf_mac,
544 .ndo_set_vf_vlan = qede_set_vf_vlan,
545 .ndo_set_vf_trust = qede_set_vf_trust,
546 #endif
547 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
548 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
549 .ndo_set_features = qede_set_features,
550 .ndo_get_stats64 = qede_get_stats64,
551 #ifdef CONFIG_QED_SRIOV
552 .ndo_set_vf_link_state = qede_set_vf_link_state,
553 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
554 .ndo_get_vf_config = qede_get_vf_config,
555 .ndo_set_vf_rate = qede_set_vf_rate,
556 #endif
557 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
558 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
559 .ndo_features_check = qede_features_check,
560 .ndo_xdp = qede_xdp,
561 #ifdef CONFIG_RFS_ACCEL
562 .ndo_rx_flow_steer = qede_rx_flow_steer,
563 #endif
564 };
565
566 static const struct net_device_ops qede_netdev_vf_ops = {
567 .ndo_open = qede_open,
568 .ndo_stop = qede_close,
569 .ndo_start_xmit = qede_start_xmit,
570 .ndo_set_rx_mode = qede_set_rx_mode,
571 .ndo_set_mac_address = qede_set_mac_addr,
572 .ndo_validate_addr = eth_validate_addr,
573 .ndo_change_mtu = qede_change_mtu,
574 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
575 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
576 .ndo_set_features = qede_set_features,
577 .ndo_get_stats64 = qede_get_stats64,
578 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
579 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
580 .ndo_features_check = qede_features_check,
581 };
582
583 /* -------------------------------------------------------------------------
584 * START OF PROBE / REMOVE
585 * -------------------------------------------------------------------------
586 */
587
588 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
589 struct pci_dev *pdev,
590 struct qed_dev_eth_info *info,
591 u32 dp_module, u8 dp_level)
592 {
593 struct net_device *ndev;
594 struct qede_dev *edev;
595
596 ndev = alloc_etherdev_mqs(sizeof(*edev),
597 info->num_queues, info->num_queues);
598 if (!ndev) {
599 pr_err("etherdev allocation failed\n");
600 return NULL;
601 }
602
603 edev = netdev_priv(ndev);
604 edev->ndev = ndev;
605 edev->cdev = cdev;
606 edev->pdev = pdev;
607 edev->dp_module = dp_module;
608 edev->dp_level = dp_level;
609 edev->ops = qed_ops;
610 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
611 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
612
613 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
614 info->num_queues, info->num_queues);
615
616 SET_NETDEV_DEV(ndev, &pdev->dev);
617
618 memset(&edev->stats, 0, sizeof(edev->stats));
619 memcpy(&edev->dev_info, info, sizeof(*info));
620
621 /* As ethtool doesn't have the ability to show WoL behavior as
622 * 'default', if device supports it declare it's enabled.
623 */
624 if (edev->dev_info.common.wol_support)
625 edev->wol_enabled = true;
626
627 INIT_LIST_HEAD(&edev->vlan_list);
628
629 return edev;
630 }
631
632 static void qede_init_ndev(struct qede_dev *edev)
633 {
634 struct net_device *ndev = edev->ndev;
635 struct pci_dev *pdev = edev->pdev;
636 bool udp_tunnel_enable = false;
637 netdev_features_t hw_features;
638
639 pci_set_drvdata(pdev, ndev);
640
641 ndev->mem_start = edev->dev_info.common.pci_mem_start;
642 ndev->base_addr = ndev->mem_start;
643 ndev->mem_end = edev->dev_info.common.pci_mem_end;
644 ndev->irq = edev->dev_info.common.pci_irq;
645
646 ndev->watchdog_timeo = TX_TIMEOUT;
647
648 if (IS_VF(edev))
649 ndev->netdev_ops = &qede_netdev_vf_ops;
650 else
651 ndev->netdev_ops = &qede_netdev_ops;
652
653 qede_set_ethtool_ops(ndev);
654
655 ndev->priv_flags |= IFF_UNICAST_FLT;
656
657 /* user-changeble features */
658 hw_features = NETIF_F_GRO | NETIF_F_SG |
659 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
660 NETIF_F_TSO | NETIF_F_TSO6;
661
662 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
663 hw_features |= NETIF_F_NTUPLE;
664
665 if (edev->dev_info.common.vxlan_enable ||
666 edev->dev_info.common.geneve_enable)
667 udp_tunnel_enable = true;
668
669 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
670 hw_features |= NETIF_F_TSO_ECN;
671 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
672 NETIF_F_SG | NETIF_F_TSO |
673 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
674 NETIF_F_RXCSUM;
675 }
676
677 if (udp_tunnel_enable) {
678 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
679 NETIF_F_GSO_UDP_TUNNEL_CSUM);
680 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
681 NETIF_F_GSO_UDP_TUNNEL_CSUM);
682 }
683
684 if (edev->dev_info.common.gre_enable) {
685 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
686 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
687 NETIF_F_GSO_GRE_CSUM);
688 }
689
690 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
691 NETIF_F_HIGHDMA;
692 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
693 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
694 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
695
696 ndev->hw_features = hw_features;
697
698 /* MTU range: 46 - 9600 */
699 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
700 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
701
702 /* Set network device HW mac */
703 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
704
705 ndev->mtu = edev->dev_info.common.mtu;
706 }
707
708 /* This function converts from 32b param to two params of level and module
709 * Input 32b decoding:
710 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
711 * 'happy' flow, e.g. memory allocation failed.
712 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
713 * and provide important parameters.
714 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
715 * module. VERBOSE prints are for tracking the specific flow in low level.
716 *
717 * Notice that the level should be that of the lowest required logs.
718 */
719 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
720 {
721 *p_dp_level = QED_LEVEL_NOTICE;
722 *p_dp_module = 0;
723
724 if (debug & QED_LOG_VERBOSE_MASK) {
725 *p_dp_level = QED_LEVEL_VERBOSE;
726 *p_dp_module = (debug & 0x3FFFFFFF);
727 } else if (debug & QED_LOG_INFO_MASK) {
728 *p_dp_level = QED_LEVEL_INFO;
729 } else if (debug & QED_LOG_NOTICE_MASK) {
730 *p_dp_level = QED_LEVEL_NOTICE;
731 }
732 }
733
734 static void qede_free_fp_array(struct qede_dev *edev)
735 {
736 if (edev->fp_array) {
737 struct qede_fastpath *fp;
738 int i;
739
740 for_each_queue(i) {
741 fp = &edev->fp_array[i];
742
743 kfree(fp->sb_info);
744 kfree(fp->rxq);
745 kfree(fp->xdp_tx);
746 kfree(fp->txq);
747 }
748 kfree(edev->fp_array);
749 }
750
751 edev->num_queues = 0;
752 edev->fp_num_tx = 0;
753 edev->fp_num_rx = 0;
754 }
755
756 static int qede_alloc_fp_array(struct qede_dev *edev)
757 {
758 u8 fp_combined, fp_rx = edev->fp_num_rx;
759 struct qede_fastpath *fp;
760 int i;
761
762 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
763 sizeof(*edev->fp_array), GFP_KERNEL);
764 if (!edev->fp_array) {
765 DP_NOTICE(edev, "fp array allocation failed\n");
766 goto err;
767 }
768
769 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
770
771 /* Allocate the FP elements for Rx queues followed by combined and then
772 * the Tx. This ordering should be maintained so that the respective
773 * queues (Rx or Tx) will be together in the fastpath array and the
774 * associated ids will be sequential.
775 */
776 for_each_queue(i) {
777 fp = &edev->fp_array[i];
778
779 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
780 if (!fp->sb_info) {
781 DP_NOTICE(edev, "sb info struct allocation failed\n");
782 goto err;
783 }
784
785 if (fp_rx) {
786 fp->type = QEDE_FASTPATH_RX;
787 fp_rx--;
788 } else if (fp_combined) {
789 fp->type = QEDE_FASTPATH_COMBINED;
790 fp_combined--;
791 } else {
792 fp->type = QEDE_FASTPATH_TX;
793 }
794
795 if (fp->type & QEDE_FASTPATH_TX) {
796 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
797 if (!fp->txq)
798 goto err;
799 }
800
801 if (fp->type & QEDE_FASTPATH_RX) {
802 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
803 if (!fp->rxq)
804 goto err;
805
806 if (edev->xdp_prog) {
807 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
808 GFP_KERNEL);
809 if (!fp->xdp_tx)
810 goto err;
811 fp->type |= QEDE_FASTPATH_XDP;
812 }
813 }
814 }
815
816 return 0;
817 err:
818 qede_free_fp_array(edev);
819 return -ENOMEM;
820 }
821
822 static void qede_sp_task(struct work_struct *work)
823 {
824 struct qede_dev *edev = container_of(work, struct qede_dev,
825 sp_task.work);
826
827 __qede_lock(edev);
828
829 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
830 if (edev->state == QEDE_STATE_OPEN)
831 qede_config_rx_mode(edev->ndev);
832
833 #ifdef CONFIG_RFS_ACCEL
834 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
835 if (edev->state == QEDE_STATE_OPEN)
836 qede_process_arfs_filters(edev, false);
837 }
838 #endif
839 __qede_unlock(edev);
840 }
841
842 static void qede_update_pf_params(struct qed_dev *cdev)
843 {
844 struct qed_pf_params pf_params;
845
846 /* 64 rx + 64 tx + 64 XDP */
847 memset(&pf_params, 0, sizeof(struct qed_pf_params));
848 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
849 #ifdef CONFIG_RFS_ACCEL
850 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
851 #endif
852 qed_ops->common->update_pf_params(cdev, &pf_params);
853 }
854
855 enum qede_probe_mode {
856 QEDE_PROBE_NORMAL,
857 };
858
859 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
860 bool is_vf, enum qede_probe_mode mode)
861 {
862 struct qed_probe_params probe_params;
863 struct qed_slowpath_params sp_params;
864 struct qed_dev_eth_info dev_info;
865 struct qede_dev *edev;
866 struct qed_dev *cdev;
867 int rc;
868
869 if (unlikely(dp_level & QED_LEVEL_INFO))
870 pr_notice("Starting qede probe\n");
871
872 memset(&probe_params, 0, sizeof(probe_params));
873 probe_params.protocol = QED_PROTOCOL_ETH;
874 probe_params.dp_module = dp_module;
875 probe_params.dp_level = dp_level;
876 probe_params.is_vf = is_vf;
877 cdev = qed_ops->common->probe(pdev, &probe_params);
878 if (!cdev) {
879 rc = -ENODEV;
880 goto err0;
881 }
882
883 qede_update_pf_params(cdev);
884
885 /* Start the Slowpath-process */
886 memset(&sp_params, 0, sizeof(sp_params));
887 sp_params.int_mode = QED_INT_MODE_MSIX;
888 sp_params.drv_major = QEDE_MAJOR_VERSION;
889 sp_params.drv_minor = QEDE_MINOR_VERSION;
890 sp_params.drv_rev = QEDE_REVISION_VERSION;
891 sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
892 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
893 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
894 if (rc) {
895 pr_notice("Cannot start slowpath\n");
896 goto err1;
897 }
898
899 /* Learn information crucial for qede to progress */
900 rc = qed_ops->fill_dev_info(cdev, &dev_info);
901 if (rc)
902 goto err2;
903
904 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
905 dp_level);
906 if (!edev) {
907 rc = -ENOMEM;
908 goto err2;
909 }
910
911 if (is_vf)
912 edev->flags |= QEDE_FLAG_IS_VF;
913
914 qede_init_ndev(edev);
915
916 rc = qede_roce_dev_add(edev);
917 if (rc)
918 goto err3;
919
920 /* Prepare the lock prior to the registeration of the netdev,
921 * as once it's registered we might reach flows requiring it
922 * [it's even possible to reach a flow needing it directly
923 * from there, although it's unlikely].
924 */
925 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
926 mutex_init(&edev->qede_lock);
927 rc = register_netdev(edev->ndev);
928 if (rc) {
929 DP_NOTICE(edev, "Cannot register net-device\n");
930 goto err4;
931 }
932
933 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
934
935 /* PTP not supported on VFs */
936 if (!is_vf)
937 qede_ptp_enable(edev, true);
938
939 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
940
941 #ifdef CONFIG_DCB
942 if (!IS_VF(edev))
943 qede_set_dcbnl_ops(edev->ndev);
944 #endif
945
946 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
947
948 DP_INFO(edev, "Ending successfully qede probe\n");
949
950 return 0;
951
952 err4:
953 qede_roce_dev_remove(edev);
954 err3:
955 free_netdev(edev->ndev);
956 err2:
957 qed_ops->common->slowpath_stop(cdev);
958 err1:
959 qed_ops->common->remove(cdev);
960 err0:
961 return rc;
962 }
963
964 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
965 {
966 bool is_vf = false;
967 u32 dp_module = 0;
968 u8 dp_level = 0;
969
970 switch ((enum qede_pci_private)id->driver_data) {
971 case QEDE_PRIVATE_VF:
972 if (debug & QED_LOG_VERBOSE_MASK)
973 dev_err(&pdev->dev, "Probing a VF\n");
974 is_vf = true;
975 break;
976 default:
977 if (debug & QED_LOG_VERBOSE_MASK)
978 dev_err(&pdev->dev, "Probing a PF\n");
979 }
980
981 qede_config_debug(debug, &dp_module, &dp_level);
982
983 return __qede_probe(pdev, dp_module, dp_level, is_vf,
984 QEDE_PROBE_NORMAL);
985 }
986
987 enum qede_remove_mode {
988 QEDE_REMOVE_NORMAL,
989 };
990
991 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
992 {
993 struct net_device *ndev = pci_get_drvdata(pdev);
994 struct qede_dev *edev = netdev_priv(ndev);
995 struct qed_dev *cdev = edev->cdev;
996
997 DP_INFO(edev, "Starting qede_remove\n");
998
999 unregister_netdev(ndev);
1000 cancel_delayed_work_sync(&edev->sp_task);
1001
1002 qede_ptp_disable(edev);
1003
1004 qede_roce_dev_remove(edev);
1005
1006 edev->ops->common->set_power_state(cdev, PCI_D0);
1007
1008 pci_set_drvdata(pdev, NULL);
1009
1010 /* Release edev's reference to XDP's bpf if such exist */
1011 if (edev->xdp_prog)
1012 bpf_prog_put(edev->xdp_prog);
1013
1014 /* Use global ops since we've freed edev */
1015 qed_ops->common->slowpath_stop(cdev);
1016 if (system_state == SYSTEM_POWER_OFF)
1017 return;
1018 qed_ops->common->remove(cdev);
1019
1020 /* Since this can happen out-of-sync with other flows,
1021 * don't release the netdevice until after slowpath stop
1022 * has been called to guarantee various other contexts
1023 * [e.g., QED register callbacks] won't break anything when
1024 * accessing the netdevice.
1025 */
1026 free_netdev(ndev);
1027
1028 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1029 }
1030
1031 static void qede_remove(struct pci_dev *pdev)
1032 {
1033 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1034 }
1035
1036 static void qede_shutdown(struct pci_dev *pdev)
1037 {
1038 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1039 }
1040
1041 /* -------------------------------------------------------------------------
1042 * START OF LOAD / UNLOAD
1043 * -------------------------------------------------------------------------
1044 */
1045
1046 static int qede_set_num_queues(struct qede_dev *edev)
1047 {
1048 int rc;
1049 u16 rss_num;
1050
1051 /* Setup queues according to possible resources*/
1052 if (edev->req_queues)
1053 rss_num = edev->req_queues;
1054 else
1055 rss_num = netif_get_num_default_rss_queues() *
1056 edev->dev_info.common.num_hwfns;
1057
1058 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1059
1060 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1061 if (rc > 0) {
1062 /* Managed to request interrupts for our queues */
1063 edev->num_queues = rc;
1064 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1065 QEDE_QUEUE_CNT(edev), rss_num);
1066 rc = 0;
1067 }
1068
1069 edev->fp_num_tx = edev->req_num_tx;
1070 edev->fp_num_rx = edev->req_num_rx;
1071
1072 return rc;
1073 }
1074
1075 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1076 u16 sb_id)
1077 {
1078 if (sb_info->sb_virt) {
1079 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1080 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1081 (void *)sb_info->sb_virt, sb_info->sb_phys);
1082 memset(sb_info, 0, sizeof(*sb_info));
1083 }
1084 }
1085
1086 /* This function allocates fast-path status block memory */
1087 static int qede_alloc_mem_sb(struct qede_dev *edev,
1088 struct qed_sb_info *sb_info, u16 sb_id)
1089 {
1090 struct status_block *sb_virt;
1091 dma_addr_t sb_phys;
1092 int rc;
1093
1094 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1095 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1096 if (!sb_virt) {
1097 DP_ERR(edev, "Status block allocation failed\n");
1098 return -ENOMEM;
1099 }
1100
1101 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1102 sb_virt, sb_phys, sb_id,
1103 QED_SB_TYPE_L2_QUEUE);
1104 if (rc) {
1105 DP_ERR(edev, "Status block initialization failed\n");
1106 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1107 sb_virt, sb_phys);
1108 return rc;
1109 }
1110
1111 return 0;
1112 }
1113
1114 static void qede_free_rx_buffers(struct qede_dev *edev,
1115 struct qede_rx_queue *rxq)
1116 {
1117 u16 i;
1118
1119 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1120 struct sw_rx_data *rx_buf;
1121 struct page *data;
1122
1123 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1124 data = rx_buf->data;
1125
1126 dma_unmap_page(&edev->pdev->dev,
1127 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1128
1129 rx_buf->data = NULL;
1130 __free_page(data);
1131 }
1132 }
1133
1134 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1135 {
1136 int i;
1137
1138 if (edev->gro_disable)
1139 return;
1140
1141 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1142 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1143 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1144
1145 if (replace_buf->data) {
1146 dma_unmap_page(&edev->pdev->dev,
1147 replace_buf->mapping,
1148 PAGE_SIZE, DMA_FROM_DEVICE);
1149 __free_page(replace_buf->data);
1150 }
1151 }
1152 }
1153
1154 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1155 {
1156 qede_free_sge_mem(edev, rxq);
1157
1158 /* Free rx buffers */
1159 qede_free_rx_buffers(edev, rxq);
1160
1161 /* Free the parallel SW ring */
1162 kfree(rxq->sw_rx_ring);
1163
1164 /* Free the real RQ ring used by FW */
1165 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1166 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1167 }
1168
1169 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1170 {
1171 dma_addr_t mapping;
1172 int i;
1173
1174 /* Don't perform FW aggregations in case of XDP */
1175 if (edev->xdp_prog)
1176 edev->gro_disable = 1;
1177
1178 if (edev->gro_disable)
1179 return 0;
1180
1181 if (edev->ndev->mtu > PAGE_SIZE) {
1182 edev->gro_disable = 1;
1183 return 0;
1184 }
1185
1186 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1187 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1188 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1189
1190 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1191 if (unlikely(!replace_buf->data)) {
1192 DP_NOTICE(edev,
1193 "Failed to allocate TPA skb pool [replacement buffer]\n");
1194 goto err;
1195 }
1196
1197 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1198 PAGE_SIZE, DMA_FROM_DEVICE);
1199 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1200 DP_NOTICE(edev,
1201 "Failed to map TPA replacement buffer\n");
1202 goto err;
1203 }
1204
1205 replace_buf->mapping = mapping;
1206 tpa_info->buffer.page_offset = 0;
1207 tpa_info->buffer_mapping = mapping;
1208 tpa_info->state = QEDE_AGG_STATE_NONE;
1209 }
1210
1211 return 0;
1212 err:
1213 qede_free_sge_mem(edev, rxq);
1214 edev->gro_disable = 1;
1215 return -ENOMEM;
1216 }
1217
1218 /* This function allocates all memory needed per Rx queue */
1219 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1220 {
1221 int i, rc, size;
1222
1223 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1224
1225 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1226 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1227
1228 /* Make sure that the headroom and payload fit in a single page */
1229 if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1230 rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1231
1232 /* Segment size to spilt a page in multiple equal parts,
1233 * unless XDP is used in which case we'd use the entire page.
1234 */
1235 if (!edev->xdp_prog)
1236 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1237 else
1238 rxq->rx_buf_seg_size = PAGE_SIZE;
1239
1240 /* Allocate the parallel driver ring for Rx buffers */
1241 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1242 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1243 if (!rxq->sw_rx_ring) {
1244 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1245 rc = -ENOMEM;
1246 goto err;
1247 }
1248
1249 /* Allocate FW Rx ring */
1250 rc = edev->ops->common->chain_alloc(edev->cdev,
1251 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1252 QED_CHAIN_MODE_NEXT_PTR,
1253 QED_CHAIN_CNT_TYPE_U16,
1254 RX_RING_SIZE,
1255 sizeof(struct eth_rx_bd),
1256 &rxq->rx_bd_ring);
1257
1258 if (rc)
1259 goto err;
1260
1261 /* Allocate FW completion ring */
1262 rc = edev->ops->common->chain_alloc(edev->cdev,
1263 QED_CHAIN_USE_TO_CONSUME,
1264 QED_CHAIN_MODE_PBL,
1265 QED_CHAIN_CNT_TYPE_U16,
1266 RX_RING_SIZE,
1267 sizeof(union eth_rx_cqe),
1268 &rxq->rx_comp_ring);
1269 if (rc)
1270 goto err;
1271
1272 /* Allocate buffers for the Rx ring */
1273 rxq->filled_buffers = 0;
1274 for (i = 0; i < rxq->num_rx_buffers; i++) {
1275 rc = qede_alloc_rx_buffer(rxq, false);
1276 if (rc) {
1277 DP_ERR(edev,
1278 "Rx buffers allocation failed at index %d\n", i);
1279 goto err;
1280 }
1281 }
1282
1283 rc = qede_alloc_sge_mem(edev, rxq);
1284 err:
1285 return rc;
1286 }
1287
1288 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1289 {
1290 /* Free the parallel SW ring */
1291 if (txq->is_xdp)
1292 kfree(txq->sw_tx_ring.xdp);
1293 else
1294 kfree(txq->sw_tx_ring.skbs);
1295
1296 /* Free the real RQ ring used by FW */
1297 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1298 }
1299
1300 /* This function allocates all memory needed per Tx queue */
1301 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1302 {
1303 union eth_tx_bd_types *p_virt;
1304 int size, rc;
1305
1306 txq->num_tx_buffers = edev->q_num_tx_buffers;
1307
1308 /* Allocate the parallel driver ring for Tx buffers */
1309 if (txq->is_xdp) {
1310 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1311 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1312 if (!txq->sw_tx_ring.xdp)
1313 goto err;
1314 } else {
1315 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1316 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1317 if (!txq->sw_tx_ring.skbs)
1318 goto err;
1319 }
1320
1321 rc = edev->ops->common->chain_alloc(edev->cdev,
1322 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1323 QED_CHAIN_MODE_PBL,
1324 QED_CHAIN_CNT_TYPE_U16,
1325 txq->num_tx_buffers,
1326 sizeof(*p_virt), &txq->tx_pbl);
1327 if (rc)
1328 goto err;
1329
1330 return 0;
1331
1332 err:
1333 qede_free_mem_txq(edev, txq);
1334 return -ENOMEM;
1335 }
1336
1337 /* This function frees all memory of a single fp */
1338 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1339 {
1340 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1341
1342 if (fp->type & QEDE_FASTPATH_RX)
1343 qede_free_mem_rxq(edev, fp->rxq);
1344
1345 if (fp->type & QEDE_FASTPATH_XDP)
1346 qede_free_mem_txq(edev, fp->xdp_tx);
1347
1348 if (fp->type & QEDE_FASTPATH_TX)
1349 qede_free_mem_txq(edev, fp->txq);
1350 }
1351
1352 /* This function allocates all memory needed for a single fp (i.e. an entity
1353 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1354 */
1355 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1356 {
1357 int rc = 0;
1358
1359 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1360 if (rc)
1361 goto out;
1362
1363 if (fp->type & QEDE_FASTPATH_RX) {
1364 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1365 if (rc)
1366 goto out;
1367 }
1368
1369 if (fp->type & QEDE_FASTPATH_XDP) {
1370 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1371 if (rc)
1372 goto out;
1373 }
1374
1375 if (fp->type & QEDE_FASTPATH_TX) {
1376 rc = qede_alloc_mem_txq(edev, fp->txq);
1377 if (rc)
1378 goto out;
1379 }
1380
1381 out:
1382 return rc;
1383 }
1384
1385 static void qede_free_mem_load(struct qede_dev *edev)
1386 {
1387 int i;
1388
1389 for_each_queue(i) {
1390 struct qede_fastpath *fp = &edev->fp_array[i];
1391
1392 qede_free_mem_fp(edev, fp);
1393 }
1394 }
1395
1396 /* This function allocates all qede memory at NIC load. */
1397 static int qede_alloc_mem_load(struct qede_dev *edev)
1398 {
1399 int rc = 0, queue_id;
1400
1401 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1402 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1403
1404 rc = qede_alloc_mem_fp(edev, fp);
1405 if (rc) {
1406 DP_ERR(edev,
1407 "Failed to allocate memory for fastpath - rss id = %d\n",
1408 queue_id);
1409 qede_free_mem_load(edev);
1410 return rc;
1411 }
1412 }
1413
1414 return 0;
1415 }
1416
1417 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1418 static void qede_init_fp(struct qede_dev *edev)
1419 {
1420 int queue_id, rxq_index = 0, txq_index = 0;
1421 struct qede_fastpath *fp;
1422
1423 for_each_queue(queue_id) {
1424 fp = &edev->fp_array[queue_id];
1425
1426 fp->edev = edev;
1427 fp->id = queue_id;
1428
1429 if (fp->type & QEDE_FASTPATH_XDP) {
1430 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1431 rxq_index);
1432 fp->xdp_tx->is_xdp = 1;
1433 }
1434
1435 if (fp->type & QEDE_FASTPATH_RX) {
1436 fp->rxq->rxq_id = rxq_index++;
1437
1438 /* Determine how to map buffers for this queue */
1439 if (fp->type & QEDE_FASTPATH_XDP)
1440 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1441 else
1442 fp->rxq->data_direction = DMA_FROM_DEVICE;
1443 fp->rxq->dev = &edev->pdev->dev;
1444 }
1445
1446 if (fp->type & QEDE_FASTPATH_TX) {
1447 fp->txq->index = txq_index++;
1448 if (edev->dev_info.is_legacy)
1449 fp->txq->is_legacy = 1;
1450 fp->txq->dev = &edev->pdev->dev;
1451 }
1452
1453 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1454 edev->ndev->name, queue_id);
1455 }
1456
1457 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
1458 }
1459
1460 static int qede_set_real_num_queues(struct qede_dev *edev)
1461 {
1462 int rc = 0;
1463
1464 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1465 if (rc) {
1466 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1467 return rc;
1468 }
1469
1470 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1471 if (rc) {
1472 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1473 return rc;
1474 }
1475
1476 return 0;
1477 }
1478
1479 static void qede_napi_disable_remove(struct qede_dev *edev)
1480 {
1481 int i;
1482
1483 for_each_queue(i) {
1484 napi_disable(&edev->fp_array[i].napi);
1485
1486 netif_napi_del(&edev->fp_array[i].napi);
1487 }
1488 }
1489
1490 static void qede_napi_add_enable(struct qede_dev *edev)
1491 {
1492 int i;
1493
1494 /* Add NAPI objects */
1495 for_each_queue(i) {
1496 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1497 qede_poll, NAPI_POLL_WEIGHT);
1498 napi_enable(&edev->fp_array[i].napi);
1499 }
1500 }
1501
1502 static void qede_sync_free_irqs(struct qede_dev *edev)
1503 {
1504 int i;
1505
1506 for (i = 0; i < edev->int_info.used_cnt; i++) {
1507 if (edev->int_info.msix_cnt) {
1508 synchronize_irq(edev->int_info.msix[i].vector);
1509 free_irq(edev->int_info.msix[i].vector,
1510 &edev->fp_array[i]);
1511 } else {
1512 edev->ops->common->simd_handler_clean(edev->cdev, i);
1513 }
1514 }
1515
1516 edev->int_info.used_cnt = 0;
1517 }
1518
1519 static int qede_req_msix_irqs(struct qede_dev *edev)
1520 {
1521 int i, rc;
1522
1523 /* Sanitize number of interrupts == number of prepared RSS queues */
1524 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1525 DP_ERR(edev,
1526 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1527 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1528 return -EINVAL;
1529 }
1530
1531 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1532 #ifdef CONFIG_RFS_ACCEL
1533 struct qede_fastpath *fp = &edev->fp_array[i];
1534
1535 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1536 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1537 edev->int_info.msix[i].vector);
1538 if (rc) {
1539 DP_ERR(edev, "Failed to add CPU rmap\n");
1540 qede_free_arfs(edev);
1541 }
1542 }
1543 #endif
1544 rc = request_irq(edev->int_info.msix[i].vector,
1545 qede_msix_fp_int, 0, edev->fp_array[i].name,
1546 &edev->fp_array[i]);
1547 if (rc) {
1548 DP_ERR(edev, "Request fp %d irq failed\n", i);
1549 qede_sync_free_irqs(edev);
1550 return rc;
1551 }
1552 DP_VERBOSE(edev, NETIF_MSG_INTR,
1553 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1554 edev->fp_array[i].name, i,
1555 &edev->fp_array[i]);
1556 edev->int_info.used_cnt++;
1557 }
1558
1559 return 0;
1560 }
1561
1562 static void qede_simd_fp_handler(void *cookie)
1563 {
1564 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1565
1566 napi_schedule_irqoff(&fp->napi);
1567 }
1568
1569 static int qede_setup_irqs(struct qede_dev *edev)
1570 {
1571 int i, rc = 0;
1572
1573 /* Learn Interrupt configuration */
1574 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1575 if (rc)
1576 return rc;
1577
1578 if (edev->int_info.msix_cnt) {
1579 rc = qede_req_msix_irqs(edev);
1580 if (rc)
1581 return rc;
1582 edev->ndev->irq = edev->int_info.msix[0].vector;
1583 } else {
1584 const struct qed_common_ops *ops;
1585
1586 /* qed should learn receive the RSS ids and callbacks */
1587 ops = edev->ops->common;
1588 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1589 ops->simd_handler_config(edev->cdev,
1590 &edev->fp_array[i], i,
1591 qede_simd_fp_handler);
1592 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1593 }
1594 return 0;
1595 }
1596
1597 static int qede_drain_txq(struct qede_dev *edev,
1598 struct qede_tx_queue *txq, bool allow_drain)
1599 {
1600 int rc, cnt = 1000;
1601
1602 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1603 if (!cnt) {
1604 if (allow_drain) {
1605 DP_NOTICE(edev,
1606 "Tx queue[%d] is stuck, requesting MCP to drain\n",
1607 txq->index);
1608 rc = edev->ops->common->drain(edev->cdev);
1609 if (rc)
1610 return rc;
1611 return qede_drain_txq(edev, txq, false);
1612 }
1613 DP_NOTICE(edev,
1614 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1615 txq->index, txq->sw_tx_prod,
1616 txq->sw_tx_cons);
1617 return -ENODEV;
1618 }
1619 cnt--;
1620 usleep_range(1000, 2000);
1621 barrier();
1622 }
1623
1624 /* FW finished processing, wait for HW to transmit all tx packets */
1625 usleep_range(1000, 2000);
1626
1627 return 0;
1628 }
1629
1630 static int qede_stop_txq(struct qede_dev *edev,
1631 struct qede_tx_queue *txq, int rss_id)
1632 {
1633 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1634 }
1635
1636 static int qede_stop_queues(struct qede_dev *edev)
1637 {
1638 struct qed_update_vport_params *vport_update_params;
1639 struct qed_dev *cdev = edev->cdev;
1640 struct qede_fastpath *fp;
1641 int rc, i;
1642
1643 /* Disable the vport */
1644 vport_update_params = vzalloc(sizeof(*vport_update_params));
1645 if (!vport_update_params)
1646 return -ENOMEM;
1647
1648 vport_update_params->vport_id = 0;
1649 vport_update_params->update_vport_active_flg = 1;
1650 vport_update_params->vport_active_flg = 0;
1651 vport_update_params->update_rss_flg = 0;
1652
1653 rc = edev->ops->vport_update(cdev, vport_update_params);
1654 vfree(vport_update_params);
1655
1656 if (rc) {
1657 DP_ERR(edev, "Failed to update vport\n");
1658 return rc;
1659 }
1660
1661 /* Flush Tx queues. If needed, request drain from MCP */
1662 for_each_queue(i) {
1663 fp = &edev->fp_array[i];
1664
1665 if (fp->type & QEDE_FASTPATH_TX) {
1666 rc = qede_drain_txq(edev, fp->txq, true);
1667 if (rc)
1668 return rc;
1669 }
1670
1671 if (fp->type & QEDE_FASTPATH_XDP) {
1672 rc = qede_drain_txq(edev, fp->xdp_tx, true);
1673 if (rc)
1674 return rc;
1675 }
1676 }
1677
1678 /* Stop all Queues in reverse order */
1679 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1680 fp = &edev->fp_array[i];
1681
1682 /* Stop the Tx Queue(s) */
1683 if (fp->type & QEDE_FASTPATH_TX) {
1684 rc = qede_stop_txq(edev, fp->txq, i);
1685 if (rc)
1686 return rc;
1687 }
1688
1689 /* Stop the Rx Queue */
1690 if (fp->type & QEDE_FASTPATH_RX) {
1691 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1692 if (rc) {
1693 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1694 return rc;
1695 }
1696 }
1697
1698 /* Stop the XDP forwarding queue */
1699 if (fp->type & QEDE_FASTPATH_XDP) {
1700 rc = qede_stop_txq(edev, fp->xdp_tx, i);
1701 if (rc)
1702 return rc;
1703
1704 bpf_prog_put(fp->rxq->xdp_prog);
1705 }
1706 }
1707
1708 /* Stop the vport */
1709 rc = edev->ops->vport_stop(cdev, 0);
1710 if (rc)
1711 DP_ERR(edev, "Failed to stop VPORT\n");
1712
1713 return rc;
1714 }
1715
1716 static int qede_start_txq(struct qede_dev *edev,
1717 struct qede_fastpath *fp,
1718 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1719 {
1720 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1721 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1722 struct qed_queue_start_common_params params;
1723 struct qed_txq_start_ret_params ret_params;
1724 int rc;
1725
1726 memset(&params, 0, sizeof(params));
1727 memset(&ret_params, 0, sizeof(ret_params));
1728
1729 /* Let the XDP queue share the queue-zone with one of the regular txq.
1730 * We don't really care about its coalescing.
1731 */
1732 if (txq->is_xdp)
1733 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1734 else
1735 params.queue_id = txq->index;
1736
1737 params.sb = fp->sb_info->igu_sb_id;
1738 params.sb_idx = sb_idx;
1739
1740 rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1741 page_cnt, &ret_params);
1742 if (rc) {
1743 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1744 return rc;
1745 }
1746
1747 txq->doorbell_addr = ret_params.p_doorbell;
1748 txq->handle = ret_params.p_handle;
1749
1750 /* Determine the FW consumer address associated */
1751 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1752
1753 /* Prepare the doorbell parameters */
1754 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1755 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1756 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1757 DQ_XCM_ETH_TX_BD_PROD_CMD);
1758 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1759
1760 return rc;
1761 }
1762
1763 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1764 {
1765 int vlan_removal_en = 1;
1766 struct qed_dev *cdev = edev->cdev;
1767 struct qed_dev_info *qed_info = &edev->dev_info.common;
1768 struct qed_update_vport_params *vport_update_params;
1769 struct qed_queue_start_common_params q_params;
1770 struct qed_start_vport_params start = {0};
1771 int rc, i;
1772
1773 if (!edev->num_queues) {
1774 DP_ERR(edev,
1775 "Cannot update V-VPORT as active as there are no Rx queues\n");
1776 return -EINVAL;
1777 }
1778
1779 vport_update_params = vzalloc(sizeof(*vport_update_params));
1780 if (!vport_update_params)
1781 return -ENOMEM;
1782
1783 start.handle_ptp_pkts = !!(edev->ptp);
1784 start.gro_enable = !edev->gro_disable;
1785 start.mtu = edev->ndev->mtu;
1786 start.vport_id = 0;
1787 start.drop_ttl0 = true;
1788 start.remove_inner_vlan = vlan_removal_en;
1789 start.clear_stats = clear_stats;
1790
1791 rc = edev->ops->vport_start(cdev, &start);
1792
1793 if (rc) {
1794 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1795 goto out;
1796 }
1797
1798 DP_VERBOSE(edev, NETIF_MSG_IFUP,
1799 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1800 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1801
1802 for_each_queue(i) {
1803 struct qede_fastpath *fp = &edev->fp_array[i];
1804 dma_addr_t p_phys_table;
1805 u32 page_cnt;
1806
1807 if (fp->type & QEDE_FASTPATH_RX) {
1808 struct qed_rxq_start_ret_params ret_params;
1809 struct qede_rx_queue *rxq = fp->rxq;
1810 __le16 *val;
1811
1812 memset(&ret_params, 0, sizeof(ret_params));
1813 memset(&q_params, 0, sizeof(q_params));
1814 q_params.queue_id = rxq->rxq_id;
1815 q_params.vport_id = 0;
1816 q_params.sb = fp->sb_info->igu_sb_id;
1817 q_params.sb_idx = RX_PI;
1818
1819 p_phys_table =
1820 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1821 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1822
1823 rc = edev->ops->q_rx_start(cdev, i, &q_params,
1824 rxq->rx_buf_size,
1825 rxq->rx_bd_ring.p_phys_addr,
1826 p_phys_table,
1827 page_cnt, &ret_params);
1828 if (rc) {
1829 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1830 rc);
1831 goto out;
1832 }
1833
1834 /* Use the return parameters */
1835 rxq->hw_rxq_prod_addr = ret_params.p_prod;
1836 rxq->handle = ret_params.p_handle;
1837
1838 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1839 rxq->hw_cons_ptr = val;
1840
1841 qede_update_rx_prod(edev, rxq);
1842 }
1843
1844 if (fp->type & QEDE_FASTPATH_XDP) {
1845 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1846 if (rc)
1847 goto out;
1848
1849 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1850 if (IS_ERR(fp->rxq->xdp_prog)) {
1851 rc = PTR_ERR(fp->rxq->xdp_prog);
1852 fp->rxq->xdp_prog = NULL;
1853 goto out;
1854 }
1855 }
1856
1857 if (fp->type & QEDE_FASTPATH_TX) {
1858 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1859 if (rc)
1860 goto out;
1861 }
1862 }
1863
1864 /* Prepare and send the vport enable */
1865 vport_update_params->vport_id = start.vport_id;
1866 vport_update_params->update_vport_active_flg = 1;
1867 vport_update_params->vport_active_flg = 1;
1868
1869 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1870 qed_info->tx_switching) {
1871 vport_update_params->update_tx_switching_flg = 1;
1872 vport_update_params->tx_switching_flg = 1;
1873 }
1874
1875 qede_fill_rss_params(edev, &vport_update_params->rss_params,
1876 &vport_update_params->update_rss_flg);
1877
1878 rc = edev->ops->vport_update(cdev, vport_update_params);
1879 if (rc)
1880 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1881
1882 out:
1883 vfree(vport_update_params);
1884 return rc;
1885 }
1886
1887 enum qede_unload_mode {
1888 QEDE_UNLOAD_NORMAL,
1889 };
1890
1891 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1892 bool is_locked)
1893 {
1894 struct qed_link_params link_params;
1895 int rc;
1896
1897 DP_INFO(edev, "Starting qede unload\n");
1898
1899 if (!is_locked)
1900 __qede_lock(edev);
1901
1902 edev->state = QEDE_STATE_CLOSED;
1903
1904 qede_roce_dev_event_close(edev);
1905
1906 /* Close OS Tx */
1907 netif_tx_disable(edev->ndev);
1908 netif_carrier_off(edev->ndev);
1909
1910 /* Reset the link */
1911 memset(&link_params, 0, sizeof(link_params));
1912 link_params.link_up = false;
1913 edev->ops->common->set_link(edev->cdev, &link_params);
1914 rc = qede_stop_queues(edev);
1915 if (rc) {
1916 qede_sync_free_irqs(edev);
1917 goto out;
1918 }
1919
1920 DP_INFO(edev, "Stopped Queues\n");
1921
1922 qede_vlan_mark_nonconfigured(edev);
1923 edev->ops->fastpath_stop(edev->cdev);
1924 #ifdef CONFIG_RFS_ACCEL
1925 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1926 qede_poll_for_freeing_arfs_filters(edev);
1927 qede_free_arfs(edev);
1928 }
1929 #endif
1930 /* Release the interrupts */
1931 qede_sync_free_irqs(edev);
1932 edev->ops->common->set_fp_int(edev->cdev, 0);
1933
1934 qede_napi_disable_remove(edev);
1935
1936 qede_free_mem_load(edev);
1937 qede_free_fp_array(edev);
1938
1939 out:
1940 if (!is_locked)
1941 __qede_unlock(edev);
1942 DP_INFO(edev, "Ending qede unload\n");
1943 }
1944
1945 enum qede_load_mode {
1946 QEDE_LOAD_NORMAL,
1947 QEDE_LOAD_RELOAD,
1948 };
1949
1950 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
1951 bool is_locked)
1952 {
1953 struct qed_link_params link_params;
1954 int rc;
1955
1956 DP_INFO(edev, "Starting qede load\n");
1957
1958 if (!is_locked)
1959 __qede_lock(edev);
1960
1961 rc = qede_set_num_queues(edev);
1962 if (rc)
1963 goto out;
1964
1965 rc = qede_alloc_fp_array(edev);
1966 if (rc)
1967 goto out;
1968
1969 qede_init_fp(edev);
1970
1971 rc = qede_alloc_mem_load(edev);
1972 if (rc)
1973 goto err1;
1974 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
1975 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
1976
1977 rc = qede_set_real_num_queues(edev);
1978 if (rc)
1979 goto err2;
1980
1981 #ifdef CONFIG_RFS_ACCEL
1982 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1983 rc = qede_alloc_arfs(edev);
1984 if (rc)
1985 DP_NOTICE(edev, "aRFS memory allocation failed\n");
1986 }
1987 #endif
1988 qede_napi_add_enable(edev);
1989 DP_INFO(edev, "Napi added and enabled\n");
1990
1991 rc = qede_setup_irqs(edev);
1992 if (rc)
1993 goto err3;
1994 DP_INFO(edev, "Setup IRQs succeeded\n");
1995
1996 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
1997 if (rc)
1998 goto err4;
1999 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2000
2001 /* Program un-configured VLANs */
2002 qede_configure_vlan_filters(edev);
2003
2004 /* Ask for link-up using current configuration */
2005 memset(&link_params, 0, sizeof(link_params));
2006 link_params.link_up = true;
2007 edev->ops->common->set_link(edev->cdev, &link_params);
2008
2009 qede_roce_dev_event_open(edev);
2010
2011 edev->state = QEDE_STATE_OPEN;
2012
2013 DP_INFO(edev, "Ending successfully qede load\n");
2014
2015 goto out;
2016 err4:
2017 qede_sync_free_irqs(edev);
2018 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2019 err3:
2020 qede_napi_disable_remove(edev);
2021 err2:
2022 qede_free_mem_load(edev);
2023 err1:
2024 edev->ops->common->set_fp_int(edev->cdev, 0);
2025 qede_free_fp_array(edev);
2026 edev->num_queues = 0;
2027 edev->fp_num_tx = 0;
2028 edev->fp_num_rx = 0;
2029 out:
2030 if (!is_locked)
2031 __qede_unlock(edev);
2032
2033 return rc;
2034 }
2035
2036 /* 'func' should be able to run between unload and reload assuming interface
2037 * is actually running, or afterwards in case it's currently DOWN.
2038 */
2039 void qede_reload(struct qede_dev *edev,
2040 struct qede_reload_args *args, bool is_locked)
2041 {
2042 if (!is_locked)
2043 __qede_lock(edev);
2044
2045 /* Since qede_lock is held, internal state wouldn't change even
2046 * if netdev state would start transitioning. Check whether current
2047 * internal configuration indicates device is up, then reload.
2048 */
2049 if (edev->state == QEDE_STATE_OPEN) {
2050 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2051 if (args)
2052 args->func(edev, args);
2053 qede_load(edev, QEDE_LOAD_RELOAD, true);
2054
2055 /* Since no one is going to do it for us, re-configure */
2056 qede_config_rx_mode(edev->ndev);
2057 } else if (args) {
2058 args->func(edev, args);
2059 }
2060
2061 if (!is_locked)
2062 __qede_unlock(edev);
2063 }
2064
2065 /* called with rtnl_lock */
2066 static int qede_open(struct net_device *ndev)
2067 {
2068 struct qede_dev *edev = netdev_priv(ndev);
2069 int rc;
2070
2071 netif_carrier_off(ndev);
2072
2073 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2074
2075 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2076 if (rc)
2077 return rc;
2078
2079 udp_tunnel_get_rx_info(ndev);
2080
2081 edev->ops->common->update_drv_state(edev->cdev, true);
2082
2083 return 0;
2084 }
2085
2086 static int qede_close(struct net_device *ndev)
2087 {
2088 struct qede_dev *edev = netdev_priv(ndev);
2089
2090 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2091
2092 edev->ops->common->update_drv_state(edev->cdev, false);
2093
2094 return 0;
2095 }
2096
2097 static void qede_link_update(void *dev, struct qed_link_output *link)
2098 {
2099 struct qede_dev *edev = dev;
2100
2101 if (!netif_running(edev->ndev)) {
2102 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2103 return;
2104 }
2105
2106 if (link->link_up) {
2107 if (!netif_carrier_ok(edev->ndev)) {
2108 DP_NOTICE(edev, "Link is up\n");
2109 netif_tx_start_all_queues(edev->ndev);
2110 netif_carrier_on(edev->ndev);
2111 }
2112 } else {
2113 if (netif_carrier_ok(edev->ndev)) {
2114 DP_NOTICE(edev, "Link is down\n");
2115 netif_tx_disable(edev->ndev);
2116 netif_carrier_off(edev->ndev);
2117 }
2118 }
2119 }