]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/qlogic/qede/qede_main.c
Merge tag 'hwparam-20170420' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowell...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include <linux/qed/qede_roce.h>
64 #include "qede.h"
65 #include "qede_ptp.h"
66
67 static char version[] =
68 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
69
70 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
71 MODULE_LICENSE("GPL");
72 MODULE_VERSION(DRV_MODULE_VERSION);
73
74 static uint debug;
75 module_param(debug, uint, 0);
76 MODULE_PARM_DESC(debug, " Default debug msglevel");
77
78 static const struct qed_eth_ops *qed_ops;
79
80 #define CHIP_NUM_57980S_40 0x1634
81 #define CHIP_NUM_57980S_10 0x1666
82 #define CHIP_NUM_57980S_MF 0x1636
83 #define CHIP_NUM_57980S_100 0x1644
84 #define CHIP_NUM_57980S_50 0x1654
85 #define CHIP_NUM_57980S_25 0x1656
86 #define CHIP_NUM_57980S_IOV 0x1664
87 #define CHIP_NUM_AH 0x8070
88 #define CHIP_NUM_AH_IOV 0x8090
89
90 #ifndef PCI_DEVICE_ID_NX2_57980E
91 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
92 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
93 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
94 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
95 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
96 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
97 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
98 #define PCI_DEVICE_ID_AH CHIP_NUM_AH
99 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
100
101 #endif
102
103 enum qede_pci_private {
104 QEDE_PRIVATE_PF,
105 QEDE_PRIVATE_VF
106 };
107
108 static const struct pci_device_id qede_pci_tbl[] = {
109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
114 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
115 #ifdef CONFIG_QED_SRIOV
116 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
117 #endif
118 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
119 #ifdef CONFIG_QED_SRIOV
120 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
121 #endif
122 { 0 }
123 };
124
125 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
126
127 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
128
129 #define TX_TIMEOUT (5 * HZ)
130
131 /* Utilize last protocol index for XDP */
132 #define XDP_PI 11
133
134 static void qede_remove(struct pci_dev *pdev);
135 static void qede_shutdown(struct pci_dev *pdev);
136 static void qede_link_update(void *dev, struct qed_link_output *link);
137
138 /* The qede lock is used to protect driver state change and driver flows that
139 * are not reentrant.
140 */
141 void __qede_lock(struct qede_dev *edev)
142 {
143 mutex_lock(&edev->qede_lock);
144 }
145
146 void __qede_unlock(struct qede_dev *edev)
147 {
148 mutex_unlock(&edev->qede_lock);
149 }
150
151 #ifdef CONFIG_QED_SRIOV
152 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
153 __be16 vlan_proto)
154 {
155 struct qede_dev *edev = netdev_priv(ndev);
156
157 if (vlan > 4095) {
158 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
159 return -EINVAL;
160 }
161
162 if (vlan_proto != htons(ETH_P_8021Q))
163 return -EPROTONOSUPPORT;
164
165 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
166 vlan, vf);
167
168 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
169 }
170
171 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
172 {
173 struct qede_dev *edev = netdev_priv(ndev);
174
175 DP_VERBOSE(edev, QED_MSG_IOV,
176 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
177 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
178
179 if (!is_valid_ether_addr(mac)) {
180 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
181 return -EINVAL;
182 }
183
184 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
185 }
186
187 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
188 {
189 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
190 struct qed_dev_info *qed_info = &edev->dev_info.common;
191 struct qed_update_vport_params *vport_params;
192 int rc;
193
194 vport_params = vzalloc(sizeof(*vport_params));
195 if (!vport_params)
196 return -ENOMEM;
197 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
198
199 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
200
201 /* Enable/Disable Tx switching for PF */
202 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
203 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
204 vport_params->vport_id = 0;
205 vport_params->update_tx_switching_flg = 1;
206 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
207 edev->ops->vport_update(edev->cdev, vport_params);
208 }
209
210 vfree(vport_params);
211 return rc;
212 }
213 #endif
214
215 static struct pci_driver qede_pci_driver = {
216 .name = "qede",
217 .id_table = qede_pci_tbl,
218 .probe = qede_probe,
219 .remove = qede_remove,
220 .shutdown = qede_shutdown,
221 #ifdef CONFIG_QED_SRIOV
222 .sriov_configure = qede_sriov_configure,
223 #endif
224 };
225
226 static struct qed_eth_cb_ops qede_ll_ops = {
227 {
228 #ifdef CONFIG_RFS_ACCEL
229 .arfs_filter_op = qede_arfs_filter_op,
230 #endif
231 .link_update = qede_link_update,
232 },
233 .force_mac = qede_force_mac,
234 .ports_update = qede_udp_ports_update,
235 };
236
237 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
238 void *ptr)
239 {
240 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
241 struct ethtool_drvinfo drvinfo;
242 struct qede_dev *edev;
243
244 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
245 goto done;
246
247 /* Check whether this is a qede device */
248 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
249 goto done;
250
251 memset(&drvinfo, 0, sizeof(drvinfo));
252 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
253 if (strcmp(drvinfo.driver, "qede"))
254 goto done;
255 edev = netdev_priv(ndev);
256
257 switch (event) {
258 case NETDEV_CHANGENAME:
259 /* Notify qed of the name change */
260 if (!edev->ops || !edev->ops->common)
261 goto done;
262 edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede");
263 break;
264 case NETDEV_CHANGEADDR:
265 edev = netdev_priv(ndev);
266 qede_roce_event_changeaddr(edev);
267 break;
268 }
269
270 done:
271 return NOTIFY_DONE;
272 }
273
274 static struct notifier_block qede_netdev_notifier = {
275 .notifier_call = qede_netdev_event,
276 };
277
278 static
279 int __init qede_init(void)
280 {
281 int ret;
282
283 pr_info("qede_init: %s\n", version);
284
285 qed_ops = qed_get_eth_ops();
286 if (!qed_ops) {
287 pr_notice("Failed to get qed ethtool operations\n");
288 return -EINVAL;
289 }
290
291 /* Must register notifier before pci ops, since we might miss
292 * interface rename after pci probe and netdev registeration.
293 */
294 ret = register_netdevice_notifier(&qede_netdev_notifier);
295 if (ret) {
296 pr_notice("Failed to register netdevice_notifier\n");
297 qed_put_eth_ops();
298 return -EINVAL;
299 }
300
301 ret = pci_register_driver(&qede_pci_driver);
302 if (ret) {
303 pr_notice("Failed to register driver\n");
304 unregister_netdevice_notifier(&qede_netdev_notifier);
305 qed_put_eth_ops();
306 return -EINVAL;
307 }
308
309 return 0;
310 }
311
312 static void __exit qede_cleanup(void)
313 {
314 if (debug & QED_LOG_INFO_MASK)
315 pr_info("qede_cleanup called\n");
316
317 unregister_netdevice_notifier(&qede_netdev_notifier);
318 pci_unregister_driver(&qede_pci_driver);
319 qed_put_eth_ops();
320 }
321
322 module_init(qede_init);
323 module_exit(qede_cleanup);
324
325 static int qede_open(struct net_device *ndev);
326 static int qede_close(struct net_device *ndev);
327
328 void qede_fill_by_demand_stats(struct qede_dev *edev)
329 {
330 struct qede_stats_common *p_common = &edev->stats.common;
331 struct qed_eth_stats stats;
332
333 edev->ops->get_vport_stats(edev->cdev, &stats);
334
335 p_common->no_buff_discards = stats.common.no_buff_discards;
336 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
337 p_common->ttl0_discard = stats.common.ttl0_discard;
338 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
339 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
340 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
341 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
342 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
343 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
344 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
345 p_common->mac_filter_discards = stats.common.mac_filter_discards;
346
347 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
348 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
349 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
350 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
351 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
352 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
353 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
354 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
355 p_common->coalesced_events = stats.common.tpa_coalesced_events;
356 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
357 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
358 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
359
360 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
361 p_common->rx_65_to_127_byte_packets =
362 stats.common.rx_65_to_127_byte_packets;
363 p_common->rx_128_to_255_byte_packets =
364 stats.common.rx_128_to_255_byte_packets;
365 p_common->rx_256_to_511_byte_packets =
366 stats.common.rx_256_to_511_byte_packets;
367 p_common->rx_512_to_1023_byte_packets =
368 stats.common.rx_512_to_1023_byte_packets;
369 p_common->rx_1024_to_1518_byte_packets =
370 stats.common.rx_1024_to_1518_byte_packets;
371 p_common->rx_crc_errors = stats.common.rx_crc_errors;
372 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
373 p_common->rx_pause_frames = stats.common.rx_pause_frames;
374 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
375 p_common->rx_align_errors = stats.common.rx_align_errors;
376 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
377 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
378 p_common->rx_jabbers = stats.common.rx_jabbers;
379 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
380 p_common->rx_fragments = stats.common.rx_fragments;
381 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
382 p_common->tx_65_to_127_byte_packets =
383 stats.common.tx_65_to_127_byte_packets;
384 p_common->tx_128_to_255_byte_packets =
385 stats.common.tx_128_to_255_byte_packets;
386 p_common->tx_256_to_511_byte_packets =
387 stats.common.tx_256_to_511_byte_packets;
388 p_common->tx_512_to_1023_byte_packets =
389 stats.common.tx_512_to_1023_byte_packets;
390 p_common->tx_1024_to_1518_byte_packets =
391 stats.common.tx_1024_to_1518_byte_packets;
392 p_common->tx_pause_frames = stats.common.tx_pause_frames;
393 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
394 p_common->brb_truncates = stats.common.brb_truncates;
395 p_common->brb_discards = stats.common.brb_discards;
396 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
397
398 if (QEDE_IS_BB(edev)) {
399 struct qede_stats_bb *p_bb = &edev->stats.bb;
400
401 p_bb->rx_1519_to_1522_byte_packets =
402 stats.bb.rx_1519_to_1522_byte_packets;
403 p_bb->rx_1519_to_2047_byte_packets =
404 stats.bb.rx_1519_to_2047_byte_packets;
405 p_bb->rx_2048_to_4095_byte_packets =
406 stats.bb.rx_2048_to_4095_byte_packets;
407 p_bb->rx_4096_to_9216_byte_packets =
408 stats.bb.rx_4096_to_9216_byte_packets;
409 p_bb->rx_9217_to_16383_byte_packets =
410 stats.bb.rx_9217_to_16383_byte_packets;
411 p_bb->tx_1519_to_2047_byte_packets =
412 stats.bb.tx_1519_to_2047_byte_packets;
413 p_bb->tx_2048_to_4095_byte_packets =
414 stats.bb.tx_2048_to_4095_byte_packets;
415 p_bb->tx_4096_to_9216_byte_packets =
416 stats.bb.tx_4096_to_9216_byte_packets;
417 p_bb->tx_9217_to_16383_byte_packets =
418 stats.bb.tx_9217_to_16383_byte_packets;
419 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
420 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
421 } else {
422 struct qede_stats_ah *p_ah = &edev->stats.ah;
423
424 p_ah->rx_1519_to_max_byte_packets =
425 stats.ah.rx_1519_to_max_byte_packets;
426 p_ah->tx_1519_to_max_byte_packets =
427 stats.ah.tx_1519_to_max_byte_packets;
428 }
429 }
430
431 static void qede_get_stats64(struct net_device *dev,
432 struct rtnl_link_stats64 *stats)
433 {
434 struct qede_dev *edev = netdev_priv(dev);
435 struct qede_stats_common *p_common;
436
437 qede_fill_by_demand_stats(edev);
438 p_common = &edev->stats.common;
439
440 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
441 p_common->rx_bcast_pkts;
442 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
443 p_common->tx_bcast_pkts;
444
445 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
446 p_common->rx_bcast_bytes;
447 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
448 p_common->tx_bcast_bytes;
449
450 stats->tx_errors = p_common->tx_err_drop_pkts;
451 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
452
453 stats->rx_fifo_errors = p_common->no_buff_discards;
454
455 if (QEDE_IS_BB(edev))
456 stats->collisions = edev->stats.bb.tx_total_collisions;
457 stats->rx_crc_errors = p_common->rx_crc_errors;
458 stats->rx_frame_errors = p_common->rx_align_errors;
459 }
460
461 #ifdef CONFIG_QED_SRIOV
462 static int qede_get_vf_config(struct net_device *dev, int vfidx,
463 struct ifla_vf_info *ivi)
464 {
465 struct qede_dev *edev = netdev_priv(dev);
466
467 if (!edev->ops)
468 return -EINVAL;
469
470 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
471 }
472
473 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
474 int min_tx_rate, int max_tx_rate)
475 {
476 struct qede_dev *edev = netdev_priv(dev);
477
478 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
479 max_tx_rate);
480 }
481
482 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
483 {
484 struct qede_dev *edev = netdev_priv(dev);
485
486 if (!edev->ops)
487 return -EINVAL;
488
489 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
490 }
491
492 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
493 int link_state)
494 {
495 struct qede_dev *edev = netdev_priv(dev);
496
497 if (!edev->ops)
498 return -EINVAL;
499
500 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
501 }
502
503 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
504 {
505 struct qede_dev *edev = netdev_priv(dev);
506
507 if (!edev->ops)
508 return -EINVAL;
509
510 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
511 }
512 #endif
513
514 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
515 {
516 struct qede_dev *edev = netdev_priv(dev);
517
518 if (!netif_running(dev))
519 return -EAGAIN;
520
521 switch (cmd) {
522 case SIOCSHWTSTAMP:
523 return qede_ptp_hw_ts(edev, ifr);
524 default:
525 DP_VERBOSE(edev, QED_MSG_DEBUG,
526 "default IOCTL cmd 0x%x\n", cmd);
527 return -EOPNOTSUPP;
528 }
529
530 return 0;
531 }
532
533 static const struct net_device_ops qede_netdev_ops = {
534 .ndo_open = qede_open,
535 .ndo_stop = qede_close,
536 .ndo_start_xmit = qede_start_xmit,
537 .ndo_set_rx_mode = qede_set_rx_mode,
538 .ndo_set_mac_address = qede_set_mac_addr,
539 .ndo_validate_addr = eth_validate_addr,
540 .ndo_change_mtu = qede_change_mtu,
541 .ndo_do_ioctl = qede_ioctl,
542 #ifdef CONFIG_QED_SRIOV
543 .ndo_set_vf_mac = qede_set_vf_mac,
544 .ndo_set_vf_vlan = qede_set_vf_vlan,
545 .ndo_set_vf_trust = qede_set_vf_trust,
546 #endif
547 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
548 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
549 .ndo_set_features = qede_set_features,
550 .ndo_get_stats64 = qede_get_stats64,
551 #ifdef CONFIG_QED_SRIOV
552 .ndo_set_vf_link_state = qede_set_vf_link_state,
553 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
554 .ndo_get_vf_config = qede_get_vf_config,
555 .ndo_set_vf_rate = qede_set_vf_rate,
556 #endif
557 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
558 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
559 .ndo_features_check = qede_features_check,
560 .ndo_xdp = qede_xdp,
561 #ifdef CONFIG_RFS_ACCEL
562 .ndo_rx_flow_steer = qede_rx_flow_steer,
563 #endif
564 };
565
566 static const struct net_device_ops qede_netdev_vf_ops = {
567 .ndo_open = qede_open,
568 .ndo_stop = qede_close,
569 .ndo_start_xmit = qede_start_xmit,
570 .ndo_set_rx_mode = qede_set_rx_mode,
571 .ndo_set_mac_address = qede_set_mac_addr,
572 .ndo_validate_addr = eth_validate_addr,
573 .ndo_change_mtu = qede_change_mtu,
574 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
575 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
576 .ndo_set_features = qede_set_features,
577 .ndo_get_stats64 = qede_get_stats64,
578 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
579 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
580 .ndo_features_check = qede_features_check,
581 };
582
583 /* -------------------------------------------------------------------------
584 * START OF PROBE / REMOVE
585 * -------------------------------------------------------------------------
586 */
587
588 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
589 struct pci_dev *pdev,
590 struct qed_dev_eth_info *info,
591 u32 dp_module, u8 dp_level)
592 {
593 struct net_device *ndev;
594 struct qede_dev *edev;
595
596 ndev = alloc_etherdev_mqs(sizeof(*edev),
597 info->num_queues, info->num_queues);
598 if (!ndev) {
599 pr_err("etherdev allocation failed\n");
600 return NULL;
601 }
602
603 edev = netdev_priv(ndev);
604 edev->ndev = ndev;
605 edev->cdev = cdev;
606 edev->pdev = pdev;
607 edev->dp_module = dp_module;
608 edev->dp_level = dp_level;
609 edev->ops = qed_ops;
610 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
611 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
612
613 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
614 info->num_queues, info->num_queues);
615
616 SET_NETDEV_DEV(ndev, &pdev->dev);
617
618 memset(&edev->stats, 0, sizeof(edev->stats));
619 memcpy(&edev->dev_info, info, sizeof(*info));
620
621 INIT_LIST_HEAD(&edev->vlan_list);
622
623 return edev;
624 }
625
626 static void qede_init_ndev(struct qede_dev *edev)
627 {
628 struct net_device *ndev = edev->ndev;
629 struct pci_dev *pdev = edev->pdev;
630 bool udp_tunnel_enable = false;
631 netdev_features_t hw_features;
632
633 pci_set_drvdata(pdev, ndev);
634
635 ndev->mem_start = edev->dev_info.common.pci_mem_start;
636 ndev->base_addr = ndev->mem_start;
637 ndev->mem_end = edev->dev_info.common.pci_mem_end;
638 ndev->irq = edev->dev_info.common.pci_irq;
639
640 ndev->watchdog_timeo = TX_TIMEOUT;
641
642 if (IS_VF(edev))
643 ndev->netdev_ops = &qede_netdev_vf_ops;
644 else
645 ndev->netdev_ops = &qede_netdev_ops;
646
647 qede_set_ethtool_ops(ndev);
648
649 ndev->priv_flags |= IFF_UNICAST_FLT;
650
651 /* user-changeble features */
652 hw_features = NETIF_F_GRO | NETIF_F_SG |
653 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
654 NETIF_F_TSO | NETIF_F_TSO6;
655
656 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
657 hw_features |= NETIF_F_NTUPLE;
658
659 if (edev->dev_info.common.vxlan_enable ||
660 edev->dev_info.common.geneve_enable)
661 udp_tunnel_enable = true;
662
663 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
664 hw_features |= NETIF_F_TSO_ECN;
665 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
666 NETIF_F_SG | NETIF_F_TSO |
667 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
668 NETIF_F_RXCSUM;
669 }
670
671 if (udp_tunnel_enable) {
672 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
673 NETIF_F_GSO_UDP_TUNNEL_CSUM);
674 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
675 NETIF_F_GSO_UDP_TUNNEL_CSUM);
676 }
677
678 if (edev->dev_info.common.gre_enable) {
679 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
680 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
681 NETIF_F_GSO_GRE_CSUM);
682 }
683
684 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
685 NETIF_F_HIGHDMA;
686 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
687 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
688 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
689
690 ndev->hw_features = hw_features;
691
692 /* MTU range: 46 - 9600 */
693 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
694 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
695
696 /* Set network device HW mac */
697 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
698
699 ndev->mtu = edev->dev_info.common.mtu;
700 }
701
702 /* This function converts from 32b param to two params of level and module
703 * Input 32b decoding:
704 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
705 * 'happy' flow, e.g. memory allocation failed.
706 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
707 * and provide important parameters.
708 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
709 * module. VERBOSE prints are for tracking the specific flow in low level.
710 *
711 * Notice that the level should be that of the lowest required logs.
712 */
713 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
714 {
715 *p_dp_level = QED_LEVEL_NOTICE;
716 *p_dp_module = 0;
717
718 if (debug & QED_LOG_VERBOSE_MASK) {
719 *p_dp_level = QED_LEVEL_VERBOSE;
720 *p_dp_module = (debug & 0x3FFFFFFF);
721 } else if (debug & QED_LOG_INFO_MASK) {
722 *p_dp_level = QED_LEVEL_INFO;
723 } else if (debug & QED_LOG_NOTICE_MASK) {
724 *p_dp_level = QED_LEVEL_NOTICE;
725 }
726 }
727
728 static void qede_free_fp_array(struct qede_dev *edev)
729 {
730 if (edev->fp_array) {
731 struct qede_fastpath *fp;
732 int i;
733
734 for_each_queue(i) {
735 fp = &edev->fp_array[i];
736
737 kfree(fp->sb_info);
738 kfree(fp->rxq);
739 kfree(fp->xdp_tx);
740 kfree(fp->txq);
741 }
742 kfree(edev->fp_array);
743 }
744
745 edev->num_queues = 0;
746 edev->fp_num_tx = 0;
747 edev->fp_num_rx = 0;
748 }
749
750 static int qede_alloc_fp_array(struct qede_dev *edev)
751 {
752 u8 fp_combined, fp_rx = edev->fp_num_rx;
753 struct qede_fastpath *fp;
754 int i;
755
756 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
757 sizeof(*edev->fp_array), GFP_KERNEL);
758 if (!edev->fp_array) {
759 DP_NOTICE(edev, "fp array allocation failed\n");
760 goto err;
761 }
762
763 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
764
765 /* Allocate the FP elements for Rx queues followed by combined and then
766 * the Tx. This ordering should be maintained so that the respective
767 * queues (Rx or Tx) will be together in the fastpath array and the
768 * associated ids will be sequential.
769 */
770 for_each_queue(i) {
771 fp = &edev->fp_array[i];
772
773 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
774 if (!fp->sb_info) {
775 DP_NOTICE(edev, "sb info struct allocation failed\n");
776 goto err;
777 }
778
779 if (fp_rx) {
780 fp->type = QEDE_FASTPATH_RX;
781 fp_rx--;
782 } else if (fp_combined) {
783 fp->type = QEDE_FASTPATH_COMBINED;
784 fp_combined--;
785 } else {
786 fp->type = QEDE_FASTPATH_TX;
787 }
788
789 if (fp->type & QEDE_FASTPATH_TX) {
790 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
791 if (!fp->txq)
792 goto err;
793 }
794
795 if (fp->type & QEDE_FASTPATH_RX) {
796 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
797 if (!fp->rxq)
798 goto err;
799
800 if (edev->xdp_prog) {
801 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
802 GFP_KERNEL);
803 if (!fp->xdp_tx)
804 goto err;
805 fp->type |= QEDE_FASTPATH_XDP;
806 }
807 }
808 }
809
810 return 0;
811 err:
812 qede_free_fp_array(edev);
813 return -ENOMEM;
814 }
815
816 static void qede_sp_task(struct work_struct *work)
817 {
818 struct qede_dev *edev = container_of(work, struct qede_dev,
819 sp_task.work);
820
821 __qede_lock(edev);
822
823 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
824 if (edev->state == QEDE_STATE_OPEN)
825 qede_config_rx_mode(edev->ndev);
826
827 #ifdef CONFIG_RFS_ACCEL
828 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
829 if (edev->state == QEDE_STATE_OPEN)
830 qede_process_arfs_filters(edev, false);
831 }
832 #endif
833 __qede_unlock(edev);
834 }
835
836 static void qede_update_pf_params(struct qed_dev *cdev)
837 {
838 struct qed_pf_params pf_params;
839
840 /* 64 rx + 64 tx + 64 XDP */
841 memset(&pf_params, 0, sizeof(struct qed_pf_params));
842 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
843 #ifdef CONFIG_RFS_ACCEL
844 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
845 #endif
846 qed_ops->common->update_pf_params(cdev, &pf_params);
847 }
848
849 enum qede_probe_mode {
850 QEDE_PROBE_NORMAL,
851 };
852
853 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
854 bool is_vf, enum qede_probe_mode mode)
855 {
856 struct qed_probe_params probe_params;
857 struct qed_slowpath_params sp_params;
858 struct qed_dev_eth_info dev_info;
859 struct qede_dev *edev;
860 struct qed_dev *cdev;
861 int rc;
862
863 if (unlikely(dp_level & QED_LEVEL_INFO))
864 pr_notice("Starting qede probe\n");
865
866 memset(&probe_params, 0, sizeof(probe_params));
867 probe_params.protocol = QED_PROTOCOL_ETH;
868 probe_params.dp_module = dp_module;
869 probe_params.dp_level = dp_level;
870 probe_params.is_vf = is_vf;
871 cdev = qed_ops->common->probe(pdev, &probe_params);
872 if (!cdev) {
873 rc = -ENODEV;
874 goto err0;
875 }
876
877 qede_update_pf_params(cdev);
878
879 /* Start the Slowpath-process */
880 memset(&sp_params, 0, sizeof(sp_params));
881 sp_params.int_mode = QED_INT_MODE_MSIX;
882 sp_params.drv_major = QEDE_MAJOR_VERSION;
883 sp_params.drv_minor = QEDE_MINOR_VERSION;
884 sp_params.drv_rev = QEDE_REVISION_VERSION;
885 sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
886 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
887 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
888 if (rc) {
889 pr_notice("Cannot start slowpath\n");
890 goto err1;
891 }
892
893 /* Learn information crucial for qede to progress */
894 rc = qed_ops->fill_dev_info(cdev, &dev_info);
895 if (rc)
896 goto err2;
897
898 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
899 dp_level);
900 if (!edev) {
901 rc = -ENOMEM;
902 goto err2;
903 }
904
905 if (is_vf)
906 edev->flags |= QEDE_FLAG_IS_VF;
907
908 qede_init_ndev(edev);
909
910 rc = qede_roce_dev_add(edev);
911 if (rc)
912 goto err3;
913
914 /* Prepare the lock prior to the registeration of the netdev,
915 * as once it's registered we might reach flows requiring it
916 * [it's even possible to reach a flow needing it directly
917 * from there, although it's unlikely].
918 */
919 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
920 mutex_init(&edev->qede_lock);
921 rc = register_netdev(edev->ndev);
922 if (rc) {
923 DP_NOTICE(edev, "Cannot register net-device\n");
924 goto err4;
925 }
926
927 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
928
929 /* PTP not supported on VFs */
930 if (!is_vf)
931 qede_ptp_enable(edev, true);
932
933 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
934
935 #ifdef CONFIG_DCB
936 if (!IS_VF(edev))
937 qede_set_dcbnl_ops(edev->ndev);
938 #endif
939
940 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
941
942 DP_INFO(edev, "Ending successfully qede probe\n");
943
944 return 0;
945
946 err4:
947 qede_roce_dev_remove(edev);
948 err3:
949 free_netdev(edev->ndev);
950 err2:
951 qed_ops->common->slowpath_stop(cdev);
952 err1:
953 qed_ops->common->remove(cdev);
954 err0:
955 return rc;
956 }
957
958 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
959 {
960 bool is_vf = false;
961 u32 dp_module = 0;
962 u8 dp_level = 0;
963
964 switch ((enum qede_pci_private)id->driver_data) {
965 case QEDE_PRIVATE_VF:
966 if (debug & QED_LOG_VERBOSE_MASK)
967 dev_err(&pdev->dev, "Probing a VF\n");
968 is_vf = true;
969 break;
970 default:
971 if (debug & QED_LOG_VERBOSE_MASK)
972 dev_err(&pdev->dev, "Probing a PF\n");
973 }
974
975 qede_config_debug(debug, &dp_module, &dp_level);
976
977 return __qede_probe(pdev, dp_module, dp_level, is_vf,
978 QEDE_PROBE_NORMAL);
979 }
980
981 enum qede_remove_mode {
982 QEDE_REMOVE_NORMAL,
983 };
984
985 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
986 {
987 struct net_device *ndev = pci_get_drvdata(pdev);
988 struct qede_dev *edev = netdev_priv(ndev);
989 struct qed_dev *cdev = edev->cdev;
990
991 DP_INFO(edev, "Starting qede_remove\n");
992
993 unregister_netdev(ndev);
994 cancel_delayed_work_sync(&edev->sp_task);
995
996 qede_ptp_disable(edev);
997
998 qede_roce_dev_remove(edev);
999
1000 edev->ops->common->set_power_state(cdev, PCI_D0);
1001
1002 pci_set_drvdata(pdev, NULL);
1003
1004 /* Release edev's reference to XDP's bpf if such exist */
1005 if (edev->xdp_prog)
1006 bpf_prog_put(edev->xdp_prog);
1007
1008 /* Use global ops since we've freed edev */
1009 qed_ops->common->slowpath_stop(cdev);
1010 if (system_state == SYSTEM_POWER_OFF)
1011 return;
1012 qed_ops->common->remove(cdev);
1013
1014 /* Since this can happen out-of-sync with other flows,
1015 * don't release the netdevice until after slowpath stop
1016 * has been called to guarantee various other contexts
1017 * [e.g., QED register callbacks] won't break anything when
1018 * accessing the netdevice.
1019 */
1020 free_netdev(ndev);
1021
1022 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1023 }
1024
1025 static void qede_remove(struct pci_dev *pdev)
1026 {
1027 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1028 }
1029
1030 static void qede_shutdown(struct pci_dev *pdev)
1031 {
1032 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1033 }
1034
1035 /* -------------------------------------------------------------------------
1036 * START OF LOAD / UNLOAD
1037 * -------------------------------------------------------------------------
1038 */
1039
1040 static int qede_set_num_queues(struct qede_dev *edev)
1041 {
1042 int rc;
1043 u16 rss_num;
1044
1045 /* Setup queues according to possible resources*/
1046 if (edev->req_queues)
1047 rss_num = edev->req_queues;
1048 else
1049 rss_num = netif_get_num_default_rss_queues() *
1050 edev->dev_info.common.num_hwfns;
1051
1052 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1053
1054 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1055 if (rc > 0) {
1056 /* Managed to request interrupts for our queues */
1057 edev->num_queues = rc;
1058 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1059 QEDE_QUEUE_CNT(edev), rss_num);
1060 rc = 0;
1061 }
1062
1063 edev->fp_num_tx = edev->req_num_tx;
1064 edev->fp_num_rx = edev->req_num_rx;
1065
1066 return rc;
1067 }
1068
1069 static void qede_free_mem_sb(struct qede_dev *edev,
1070 struct qed_sb_info *sb_info)
1071 {
1072 if (sb_info->sb_virt)
1073 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1074 (void *)sb_info->sb_virt, sb_info->sb_phys);
1075 }
1076
1077 /* This function allocates fast-path status block memory */
1078 static int qede_alloc_mem_sb(struct qede_dev *edev,
1079 struct qed_sb_info *sb_info, u16 sb_id)
1080 {
1081 struct status_block *sb_virt;
1082 dma_addr_t sb_phys;
1083 int rc;
1084
1085 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1086 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1087 if (!sb_virt) {
1088 DP_ERR(edev, "Status block allocation failed\n");
1089 return -ENOMEM;
1090 }
1091
1092 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1093 sb_virt, sb_phys, sb_id,
1094 QED_SB_TYPE_L2_QUEUE);
1095 if (rc) {
1096 DP_ERR(edev, "Status block initialization failed\n");
1097 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1098 sb_virt, sb_phys);
1099 return rc;
1100 }
1101
1102 return 0;
1103 }
1104
1105 static void qede_free_rx_buffers(struct qede_dev *edev,
1106 struct qede_rx_queue *rxq)
1107 {
1108 u16 i;
1109
1110 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1111 struct sw_rx_data *rx_buf;
1112 struct page *data;
1113
1114 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1115 data = rx_buf->data;
1116
1117 dma_unmap_page(&edev->pdev->dev,
1118 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1119
1120 rx_buf->data = NULL;
1121 __free_page(data);
1122 }
1123 }
1124
1125 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1126 {
1127 int i;
1128
1129 if (edev->gro_disable)
1130 return;
1131
1132 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1133 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1134 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1135
1136 if (replace_buf->data) {
1137 dma_unmap_page(&edev->pdev->dev,
1138 replace_buf->mapping,
1139 PAGE_SIZE, DMA_FROM_DEVICE);
1140 __free_page(replace_buf->data);
1141 }
1142 }
1143 }
1144
1145 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1146 {
1147 qede_free_sge_mem(edev, rxq);
1148
1149 /* Free rx buffers */
1150 qede_free_rx_buffers(edev, rxq);
1151
1152 /* Free the parallel SW ring */
1153 kfree(rxq->sw_rx_ring);
1154
1155 /* Free the real RQ ring used by FW */
1156 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1157 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1158 }
1159
1160 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1161 {
1162 dma_addr_t mapping;
1163 int i;
1164
1165 /* Don't perform FW aggregations in case of XDP */
1166 if (edev->xdp_prog)
1167 edev->gro_disable = 1;
1168
1169 if (edev->gro_disable)
1170 return 0;
1171
1172 if (edev->ndev->mtu > PAGE_SIZE) {
1173 edev->gro_disable = 1;
1174 return 0;
1175 }
1176
1177 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1178 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1179 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1180
1181 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1182 if (unlikely(!replace_buf->data)) {
1183 DP_NOTICE(edev,
1184 "Failed to allocate TPA skb pool [replacement buffer]\n");
1185 goto err;
1186 }
1187
1188 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1189 PAGE_SIZE, DMA_FROM_DEVICE);
1190 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1191 DP_NOTICE(edev,
1192 "Failed to map TPA replacement buffer\n");
1193 goto err;
1194 }
1195
1196 replace_buf->mapping = mapping;
1197 tpa_info->buffer.page_offset = 0;
1198 tpa_info->buffer_mapping = mapping;
1199 tpa_info->state = QEDE_AGG_STATE_NONE;
1200 }
1201
1202 return 0;
1203 err:
1204 qede_free_sge_mem(edev, rxq);
1205 edev->gro_disable = 1;
1206 return -ENOMEM;
1207 }
1208
1209 /* This function allocates all memory needed per Rx queue */
1210 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1211 {
1212 int i, rc, size;
1213
1214 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1215
1216 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1217 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1218
1219 /* Make sure that the headroom and payload fit in a single page */
1220 if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1221 rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1222
1223 /* Segment size to spilt a page in multiple equal parts,
1224 * unless XDP is used in which case we'd use the entire page.
1225 */
1226 if (!edev->xdp_prog)
1227 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1228 else
1229 rxq->rx_buf_seg_size = PAGE_SIZE;
1230
1231 /* Allocate the parallel driver ring for Rx buffers */
1232 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1233 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1234 if (!rxq->sw_rx_ring) {
1235 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1236 rc = -ENOMEM;
1237 goto err;
1238 }
1239
1240 /* Allocate FW Rx ring */
1241 rc = edev->ops->common->chain_alloc(edev->cdev,
1242 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1243 QED_CHAIN_MODE_NEXT_PTR,
1244 QED_CHAIN_CNT_TYPE_U16,
1245 RX_RING_SIZE,
1246 sizeof(struct eth_rx_bd),
1247 &rxq->rx_bd_ring);
1248
1249 if (rc)
1250 goto err;
1251
1252 /* Allocate FW completion ring */
1253 rc = edev->ops->common->chain_alloc(edev->cdev,
1254 QED_CHAIN_USE_TO_CONSUME,
1255 QED_CHAIN_MODE_PBL,
1256 QED_CHAIN_CNT_TYPE_U16,
1257 RX_RING_SIZE,
1258 sizeof(union eth_rx_cqe),
1259 &rxq->rx_comp_ring);
1260 if (rc)
1261 goto err;
1262
1263 /* Allocate buffers for the Rx ring */
1264 rxq->filled_buffers = 0;
1265 for (i = 0; i < rxq->num_rx_buffers; i++) {
1266 rc = qede_alloc_rx_buffer(rxq, false);
1267 if (rc) {
1268 DP_ERR(edev,
1269 "Rx buffers allocation failed at index %d\n", i);
1270 goto err;
1271 }
1272 }
1273
1274 rc = qede_alloc_sge_mem(edev, rxq);
1275 err:
1276 return rc;
1277 }
1278
1279 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1280 {
1281 /* Free the parallel SW ring */
1282 if (txq->is_xdp)
1283 kfree(txq->sw_tx_ring.xdp);
1284 else
1285 kfree(txq->sw_tx_ring.skbs);
1286
1287 /* Free the real RQ ring used by FW */
1288 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1289 }
1290
1291 /* This function allocates all memory needed per Tx queue */
1292 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1293 {
1294 union eth_tx_bd_types *p_virt;
1295 int size, rc;
1296
1297 txq->num_tx_buffers = edev->q_num_tx_buffers;
1298
1299 /* Allocate the parallel driver ring for Tx buffers */
1300 if (txq->is_xdp) {
1301 size = sizeof(*txq->sw_tx_ring.xdp) * TX_RING_SIZE;
1302 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1303 if (!txq->sw_tx_ring.xdp)
1304 goto err;
1305 } else {
1306 size = sizeof(*txq->sw_tx_ring.skbs) * TX_RING_SIZE;
1307 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1308 if (!txq->sw_tx_ring.skbs)
1309 goto err;
1310 }
1311
1312 rc = edev->ops->common->chain_alloc(edev->cdev,
1313 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1314 QED_CHAIN_MODE_PBL,
1315 QED_CHAIN_CNT_TYPE_U16,
1316 TX_RING_SIZE,
1317 sizeof(*p_virt), &txq->tx_pbl);
1318 if (rc)
1319 goto err;
1320
1321 return 0;
1322
1323 err:
1324 qede_free_mem_txq(edev, txq);
1325 return -ENOMEM;
1326 }
1327
1328 /* This function frees all memory of a single fp */
1329 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1330 {
1331 qede_free_mem_sb(edev, fp->sb_info);
1332
1333 if (fp->type & QEDE_FASTPATH_RX)
1334 qede_free_mem_rxq(edev, fp->rxq);
1335
1336 if (fp->type & QEDE_FASTPATH_XDP)
1337 qede_free_mem_txq(edev, fp->xdp_tx);
1338
1339 if (fp->type & QEDE_FASTPATH_TX)
1340 qede_free_mem_txq(edev, fp->txq);
1341 }
1342
1343 /* This function allocates all memory needed for a single fp (i.e. an entity
1344 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1345 */
1346 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1347 {
1348 int rc = 0;
1349
1350 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1351 if (rc)
1352 goto out;
1353
1354 if (fp->type & QEDE_FASTPATH_RX) {
1355 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1356 if (rc)
1357 goto out;
1358 }
1359
1360 if (fp->type & QEDE_FASTPATH_XDP) {
1361 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1362 if (rc)
1363 goto out;
1364 }
1365
1366 if (fp->type & QEDE_FASTPATH_TX) {
1367 rc = qede_alloc_mem_txq(edev, fp->txq);
1368 if (rc)
1369 goto out;
1370 }
1371
1372 out:
1373 return rc;
1374 }
1375
1376 static void qede_free_mem_load(struct qede_dev *edev)
1377 {
1378 int i;
1379
1380 for_each_queue(i) {
1381 struct qede_fastpath *fp = &edev->fp_array[i];
1382
1383 qede_free_mem_fp(edev, fp);
1384 }
1385 }
1386
1387 /* This function allocates all qede memory at NIC load. */
1388 static int qede_alloc_mem_load(struct qede_dev *edev)
1389 {
1390 int rc = 0, queue_id;
1391
1392 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1393 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1394
1395 rc = qede_alloc_mem_fp(edev, fp);
1396 if (rc) {
1397 DP_ERR(edev,
1398 "Failed to allocate memory for fastpath - rss id = %d\n",
1399 queue_id);
1400 qede_free_mem_load(edev);
1401 return rc;
1402 }
1403 }
1404
1405 return 0;
1406 }
1407
1408 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1409 static void qede_init_fp(struct qede_dev *edev)
1410 {
1411 int queue_id, rxq_index = 0, txq_index = 0;
1412 struct qede_fastpath *fp;
1413
1414 for_each_queue(queue_id) {
1415 fp = &edev->fp_array[queue_id];
1416
1417 fp->edev = edev;
1418 fp->id = queue_id;
1419
1420 if (fp->type & QEDE_FASTPATH_XDP) {
1421 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1422 rxq_index);
1423 fp->xdp_tx->is_xdp = 1;
1424 }
1425
1426 if (fp->type & QEDE_FASTPATH_RX) {
1427 fp->rxq->rxq_id = rxq_index++;
1428
1429 /* Determine how to map buffers for this queue */
1430 if (fp->type & QEDE_FASTPATH_XDP)
1431 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1432 else
1433 fp->rxq->data_direction = DMA_FROM_DEVICE;
1434 fp->rxq->dev = &edev->pdev->dev;
1435 }
1436
1437 if (fp->type & QEDE_FASTPATH_TX) {
1438 fp->txq->index = txq_index++;
1439 if (edev->dev_info.is_legacy)
1440 fp->txq->is_legacy = 1;
1441 fp->txq->dev = &edev->pdev->dev;
1442 }
1443
1444 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1445 edev->ndev->name, queue_id);
1446 }
1447
1448 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
1449 }
1450
1451 static int qede_set_real_num_queues(struct qede_dev *edev)
1452 {
1453 int rc = 0;
1454
1455 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1456 if (rc) {
1457 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1458 return rc;
1459 }
1460
1461 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1462 if (rc) {
1463 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1464 return rc;
1465 }
1466
1467 return 0;
1468 }
1469
1470 static void qede_napi_disable_remove(struct qede_dev *edev)
1471 {
1472 int i;
1473
1474 for_each_queue(i) {
1475 napi_disable(&edev->fp_array[i].napi);
1476
1477 netif_napi_del(&edev->fp_array[i].napi);
1478 }
1479 }
1480
1481 static void qede_napi_add_enable(struct qede_dev *edev)
1482 {
1483 int i;
1484
1485 /* Add NAPI objects */
1486 for_each_queue(i) {
1487 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1488 qede_poll, NAPI_POLL_WEIGHT);
1489 napi_enable(&edev->fp_array[i].napi);
1490 }
1491 }
1492
1493 static void qede_sync_free_irqs(struct qede_dev *edev)
1494 {
1495 int i;
1496
1497 for (i = 0; i < edev->int_info.used_cnt; i++) {
1498 if (edev->int_info.msix_cnt) {
1499 synchronize_irq(edev->int_info.msix[i].vector);
1500 free_irq(edev->int_info.msix[i].vector,
1501 &edev->fp_array[i]);
1502 } else {
1503 edev->ops->common->simd_handler_clean(edev->cdev, i);
1504 }
1505 }
1506
1507 edev->int_info.used_cnt = 0;
1508 }
1509
1510 static int qede_req_msix_irqs(struct qede_dev *edev)
1511 {
1512 int i, rc;
1513
1514 /* Sanitize number of interrupts == number of prepared RSS queues */
1515 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1516 DP_ERR(edev,
1517 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1518 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1519 return -EINVAL;
1520 }
1521
1522 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1523 #ifdef CONFIG_RFS_ACCEL
1524 struct qede_fastpath *fp = &edev->fp_array[i];
1525
1526 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1527 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1528 edev->int_info.msix[i].vector);
1529 if (rc) {
1530 DP_ERR(edev, "Failed to add CPU rmap\n");
1531 qede_free_arfs(edev);
1532 }
1533 }
1534 #endif
1535 rc = request_irq(edev->int_info.msix[i].vector,
1536 qede_msix_fp_int, 0, edev->fp_array[i].name,
1537 &edev->fp_array[i]);
1538 if (rc) {
1539 DP_ERR(edev, "Request fp %d irq failed\n", i);
1540 qede_sync_free_irqs(edev);
1541 return rc;
1542 }
1543 DP_VERBOSE(edev, NETIF_MSG_INTR,
1544 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1545 edev->fp_array[i].name, i,
1546 &edev->fp_array[i]);
1547 edev->int_info.used_cnt++;
1548 }
1549
1550 return 0;
1551 }
1552
1553 static void qede_simd_fp_handler(void *cookie)
1554 {
1555 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1556
1557 napi_schedule_irqoff(&fp->napi);
1558 }
1559
1560 static int qede_setup_irqs(struct qede_dev *edev)
1561 {
1562 int i, rc = 0;
1563
1564 /* Learn Interrupt configuration */
1565 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1566 if (rc)
1567 return rc;
1568
1569 if (edev->int_info.msix_cnt) {
1570 rc = qede_req_msix_irqs(edev);
1571 if (rc)
1572 return rc;
1573 edev->ndev->irq = edev->int_info.msix[0].vector;
1574 } else {
1575 const struct qed_common_ops *ops;
1576
1577 /* qed should learn receive the RSS ids and callbacks */
1578 ops = edev->ops->common;
1579 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1580 ops->simd_handler_config(edev->cdev,
1581 &edev->fp_array[i], i,
1582 qede_simd_fp_handler);
1583 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1584 }
1585 return 0;
1586 }
1587
1588 static int qede_drain_txq(struct qede_dev *edev,
1589 struct qede_tx_queue *txq, bool allow_drain)
1590 {
1591 int rc, cnt = 1000;
1592
1593 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1594 if (!cnt) {
1595 if (allow_drain) {
1596 DP_NOTICE(edev,
1597 "Tx queue[%d] is stuck, requesting MCP to drain\n",
1598 txq->index);
1599 rc = edev->ops->common->drain(edev->cdev);
1600 if (rc)
1601 return rc;
1602 return qede_drain_txq(edev, txq, false);
1603 }
1604 DP_NOTICE(edev,
1605 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1606 txq->index, txq->sw_tx_prod,
1607 txq->sw_tx_cons);
1608 return -ENODEV;
1609 }
1610 cnt--;
1611 usleep_range(1000, 2000);
1612 barrier();
1613 }
1614
1615 /* FW finished processing, wait for HW to transmit all tx packets */
1616 usleep_range(1000, 2000);
1617
1618 return 0;
1619 }
1620
1621 static int qede_stop_txq(struct qede_dev *edev,
1622 struct qede_tx_queue *txq, int rss_id)
1623 {
1624 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1625 }
1626
1627 static int qede_stop_queues(struct qede_dev *edev)
1628 {
1629 struct qed_update_vport_params *vport_update_params;
1630 struct qed_dev *cdev = edev->cdev;
1631 struct qede_fastpath *fp;
1632 int rc, i;
1633
1634 /* Disable the vport */
1635 vport_update_params = vzalloc(sizeof(*vport_update_params));
1636 if (!vport_update_params)
1637 return -ENOMEM;
1638
1639 vport_update_params->vport_id = 0;
1640 vport_update_params->update_vport_active_flg = 1;
1641 vport_update_params->vport_active_flg = 0;
1642 vport_update_params->update_rss_flg = 0;
1643
1644 rc = edev->ops->vport_update(cdev, vport_update_params);
1645 vfree(vport_update_params);
1646
1647 if (rc) {
1648 DP_ERR(edev, "Failed to update vport\n");
1649 return rc;
1650 }
1651
1652 /* Flush Tx queues. If needed, request drain from MCP */
1653 for_each_queue(i) {
1654 fp = &edev->fp_array[i];
1655
1656 if (fp->type & QEDE_FASTPATH_TX) {
1657 rc = qede_drain_txq(edev, fp->txq, true);
1658 if (rc)
1659 return rc;
1660 }
1661
1662 if (fp->type & QEDE_FASTPATH_XDP) {
1663 rc = qede_drain_txq(edev, fp->xdp_tx, true);
1664 if (rc)
1665 return rc;
1666 }
1667 }
1668
1669 /* Stop all Queues in reverse order */
1670 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1671 fp = &edev->fp_array[i];
1672
1673 /* Stop the Tx Queue(s) */
1674 if (fp->type & QEDE_FASTPATH_TX) {
1675 rc = qede_stop_txq(edev, fp->txq, i);
1676 if (rc)
1677 return rc;
1678 }
1679
1680 /* Stop the Rx Queue */
1681 if (fp->type & QEDE_FASTPATH_RX) {
1682 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1683 if (rc) {
1684 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1685 return rc;
1686 }
1687 }
1688
1689 /* Stop the XDP forwarding queue */
1690 if (fp->type & QEDE_FASTPATH_XDP) {
1691 rc = qede_stop_txq(edev, fp->xdp_tx, i);
1692 if (rc)
1693 return rc;
1694
1695 bpf_prog_put(fp->rxq->xdp_prog);
1696 }
1697 }
1698
1699 /* Stop the vport */
1700 rc = edev->ops->vport_stop(cdev, 0);
1701 if (rc)
1702 DP_ERR(edev, "Failed to stop VPORT\n");
1703
1704 return rc;
1705 }
1706
1707 static int qede_start_txq(struct qede_dev *edev,
1708 struct qede_fastpath *fp,
1709 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1710 {
1711 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1712 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1713 struct qed_queue_start_common_params params;
1714 struct qed_txq_start_ret_params ret_params;
1715 int rc;
1716
1717 memset(&params, 0, sizeof(params));
1718 memset(&ret_params, 0, sizeof(ret_params));
1719
1720 /* Let the XDP queue share the queue-zone with one of the regular txq.
1721 * We don't really care about its coalescing.
1722 */
1723 if (txq->is_xdp)
1724 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1725 else
1726 params.queue_id = txq->index;
1727
1728 params.sb = fp->sb_info->igu_sb_id;
1729 params.sb_idx = sb_idx;
1730
1731 rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1732 page_cnt, &ret_params);
1733 if (rc) {
1734 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1735 return rc;
1736 }
1737
1738 txq->doorbell_addr = ret_params.p_doorbell;
1739 txq->handle = ret_params.p_handle;
1740
1741 /* Determine the FW consumer address associated */
1742 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1743
1744 /* Prepare the doorbell parameters */
1745 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1746 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1747 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1748 DQ_XCM_ETH_TX_BD_PROD_CMD);
1749 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1750
1751 return rc;
1752 }
1753
1754 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1755 {
1756 int vlan_removal_en = 1;
1757 struct qed_dev *cdev = edev->cdev;
1758 struct qed_dev_info *qed_info = &edev->dev_info.common;
1759 struct qed_update_vport_params *vport_update_params;
1760 struct qed_queue_start_common_params q_params;
1761 struct qed_start_vport_params start = {0};
1762 int rc, i;
1763
1764 if (!edev->num_queues) {
1765 DP_ERR(edev,
1766 "Cannot update V-VPORT as active as there are no Rx queues\n");
1767 return -EINVAL;
1768 }
1769
1770 vport_update_params = vzalloc(sizeof(*vport_update_params));
1771 if (!vport_update_params)
1772 return -ENOMEM;
1773
1774 start.handle_ptp_pkts = !!(edev->ptp);
1775 start.gro_enable = !edev->gro_disable;
1776 start.mtu = edev->ndev->mtu;
1777 start.vport_id = 0;
1778 start.drop_ttl0 = true;
1779 start.remove_inner_vlan = vlan_removal_en;
1780 start.clear_stats = clear_stats;
1781
1782 rc = edev->ops->vport_start(cdev, &start);
1783
1784 if (rc) {
1785 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1786 goto out;
1787 }
1788
1789 DP_VERBOSE(edev, NETIF_MSG_IFUP,
1790 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1791 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1792
1793 for_each_queue(i) {
1794 struct qede_fastpath *fp = &edev->fp_array[i];
1795 dma_addr_t p_phys_table;
1796 u32 page_cnt;
1797
1798 if (fp->type & QEDE_FASTPATH_RX) {
1799 struct qed_rxq_start_ret_params ret_params;
1800 struct qede_rx_queue *rxq = fp->rxq;
1801 __le16 *val;
1802
1803 memset(&ret_params, 0, sizeof(ret_params));
1804 memset(&q_params, 0, sizeof(q_params));
1805 q_params.queue_id = rxq->rxq_id;
1806 q_params.vport_id = 0;
1807 q_params.sb = fp->sb_info->igu_sb_id;
1808 q_params.sb_idx = RX_PI;
1809
1810 p_phys_table =
1811 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1812 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1813
1814 rc = edev->ops->q_rx_start(cdev, i, &q_params,
1815 rxq->rx_buf_size,
1816 rxq->rx_bd_ring.p_phys_addr,
1817 p_phys_table,
1818 page_cnt, &ret_params);
1819 if (rc) {
1820 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1821 rc);
1822 goto out;
1823 }
1824
1825 /* Use the return parameters */
1826 rxq->hw_rxq_prod_addr = ret_params.p_prod;
1827 rxq->handle = ret_params.p_handle;
1828
1829 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1830 rxq->hw_cons_ptr = val;
1831
1832 qede_update_rx_prod(edev, rxq);
1833 }
1834
1835 if (fp->type & QEDE_FASTPATH_XDP) {
1836 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1837 if (rc)
1838 goto out;
1839
1840 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1841 if (IS_ERR(fp->rxq->xdp_prog)) {
1842 rc = PTR_ERR(fp->rxq->xdp_prog);
1843 fp->rxq->xdp_prog = NULL;
1844 goto out;
1845 }
1846 }
1847
1848 if (fp->type & QEDE_FASTPATH_TX) {
1849 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1850 if (rc)
1851 goto out;
1852 }
1853 }
1854
1855 /* Prepare and send the vport enable */
1856 vport_update_params->vport_id = start.vport_id;
1857 vport_update_params->update_vport_active_flg = 1;
1858 vport_update_params->vport_active_flg = 1;
1859
1860 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1861 qed_info->tx_switching) {
1862 vport_update_params->update_tx_switching_flg = 1;
1863 vport_update_params->tx_switching_flg = 1;
1864 }
1865
1866 qede_fill_rss_params(edev, &vport_update_params->rss_params,
1867 &vport_update_params->update_rss_flg);
1868
1869 rc = edev->ops->vport_update(cdev, vport_update_params);
1870 if (rc)
1871 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1872
1873 out:
1874 vfree(vport_update_params);
1875 return rc;
1876 }
1877
1878 enum qede_unload_mode {
1879 QEDE_UNLOAD_NORMAL,
1880 };
1881
1882 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1883 bool is_locked)
1884 {
1885 struct qed_link_params link_params;
1886 int rc;
1887
1888 DP_INFO(edev, "Starting qede unload\n");
1889
1890 if (!is_locked)
1891 __qede_lock(edev);
1892
1893 qede_roce_dev_event_close(edev);
1894 edev->state = QEDE_STATE_CLOSED;
1895
1896 /* Close OS Tx */
1897 netif_tx_disable(edev->ndev);
1898 netif_carrier_off(edev->ndev);
1899
1900 /* Reset the link */
1901 memset(&link_params, 0, sizeof(link_params));
1902 link_params.link_up = false;
1903 edev->ops->common->set_link(edev->cdev, &link_params);
1904 rc = qede_stop_queues(edev);
1905 if (rc) {
1906 qede_sync_free_irqs(edev);
1907 goto out;
1908 }
1909
1910 DP_INFO(edev, "Stopped Queues\n");
1911
1912 qede_vlan_mark_nonconfigured(edev);
1913 edev->ops->fastpath_stop(edev->cdev);
1914 #ifdef CONFIG_RFS_ACCEL
1915 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1916 qede_poll_for_freeing_arfs_filters(edev);
1917 qede_free_arfs(edev);
1918 }
1919 #endif
1920 /* Release the interrupts */
1921 qede_sync_free_irqs(edev);
1922 edev->ops->common->set_fp_int(edev->cdev, 0);
1923
1924 qede_napi_disable_remove(edev);
1925
1926 qede_free_mem_load(edev);
1927 qede_free_fp_array(edev);
1928
1929 out:
1930 if (!is_locked)
1931 __qede_unlock(edev);
1932 DP_INFO(edev, "Ending qede unload\n");
1933 }
1934
1935 enum qede_load_mode {
1936 QEDE_LOAD_NORMAL,
1937 QEDE_LOAD_RELOAD,
1938 };
1939
1940 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
1941 bool is_locked)
1942 {
1943 struct qed_link_params link_params;
1944 int rc;
1945
1946 DP_INFO(edev, "Starting qede load\n");
1947
1948 if (!is_locked)
1949 __qede_lock(edev);
1950
1951 rc = qede_set_num_queues(edev);
1952 if (rc)
1953 goto out;
1954
1955 rc = qede_alloc_fp_array(edev);
1956 if (rc)
1957 goto out;
1958
1959 qede_init_fp(edev);
1960
1961 rc = qede_alloc_mem_load(edev);
1962 if (rc)
1963 goto err1;
1964 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
1965 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
1966
1967 rc = qede_set_real_num_queues(edev);
1968 if (rc)
1969 goto err2;
1970
1971 #ifdef CONFIG_RFS_ACCEL
1972 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1973 rc = qede_alloc_arfs(edev);
1974 if (rc)
1975 DP_NOTICE(edev, "aRFS memory allocation failed\n");
1976 }
1977 #endif
1978 qede_napi_add_enable(edev);
1979 DP_INFO(edev, "Napi added and enabled\n");
1980
1981 rc = qede_setup_irqs(edev);
1982 if (rc)
1983 goto err3;
1984 DP_INFO(edev, "Setup IRQs succeeded\n");
1985
1986 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
1987 if (rc)
1988 goto err4;
1989 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
1990
1991 /* Add primary mac and set Rx filters */
1992 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
1993
1994 /* Program un-configured VLANs */
1995 qede_configure_vlan_filters(edev);
1996
1997 /* Ask for link-up using current configuration */
1998 memset(&link_params, 0, sizeof(link_params));
1999 link_params.link_up = true;
2000 edev->ops->common->set_link(edev->cdev, &link_params);
2001
2002 qede_roce_dev_event_open(edev);
2003
2004 edev->state = QEDE_STATE_OPEN;
2005
2006 DP_INFO(edev, "Ending successfully qede load\n");
2007
2008 goto out;
2009 err4:
2010 qede_sync_free_irqs(edev);
2011 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2012 err3:
2013 qede_napi_disable_remove(edev);
2014 err2:
2015 qede_free_mem_load(edev);
2016 err1:
2017 edev->ops->common->set_fp_int(edev->cdev, 0);
2018 qede_free_fp_array(edev);
2019 edev->num_queues = 0;
2020 edev->fp_num_tx = 0;
2021 edev->fp_num_rx = 0;
2022 out:
2023 if (!is_locked)
2024 __qede_unlock(edev);
2025
2026 return rc;
2027 }
2028
2029 /* 'func' should be able to run between unload and reload assuming interface
2030 * is actually running, or afterwards in case it's currently DOWN.
2031 */
2032 void qede_reload(struct qede_dev *edev,
2033 struct qede_reload_args *args, bool is_locked)
2034 {
2035 if (!is_locked)
2036 __qede_lock(edev);
2037
2038 /* Since qede_lock is held, internal state wouldn't change even
2039 * if netdev state would start transitioning. Check whether current
2040 * internal configuration indicates device is up, then reload.
2041 */
2042 if (edev->state == QEDE_STATE_OPEN) {
2043 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2044 if (args)
2045 args->func(edev, args);
2046 qede_load(edev, QEDE_LOAD_RELOAD, true);
2047
2048 /* Since no one is going to do it for us, re-configure */
2049 qede_config_rx_mode(edev->ndev);
2050 } else if (args) {
2051 args->func(edev, args);
2052 }
2053
2054 if (!is_locked)
2055 __qede_unlock(edev);
2056 }
2057
2058 /* called with rtnl_lock */
2059 static int qede_open(struct net_device *ndev)
2060 {
2061 struct qede_dev *edev = netdev_priv(ndev);
2062 int rc;
2063
2064 netif_carrier_off(ndev);
2065
2066 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2067
2068 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2069 if (rc)
2070 return rc;
2071
2072 udp_tunnel_get_rx_info(ndev);
2073
2074 edev->ops->common->update_drv_state(edev->cdev, true);
2075
2076 return 0;
2077 }
2078
2079 static int qede_close(struct net_device *ndev)
2080 {
2081 struct qede_dev *edev = netdev_priv(ndev);
2082
2083 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2084
2085 edev->ops->common->update_drv_state(edev->cdev, false);
2086
2087 return 0;
2088 }
2089
2090 static void qede_link_update(void *dev, struct qed_link_output *link)
2091 {
2092 struct qede_dev *edev = dev;
2093
2094 if (!netif_running(edev->ndev)) {
2095 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2096 return;
2097 }
2098
2099 if (link->link_up) {
2100 if (!netif_carrier_ok(edev->ndev)) {
2101 DP_NOTICE(edev, "Link is up\n");
2102 netif_tx_start_all_queues(edev->ndev);
2103 netif_carrier_on(edev->ndev);
2104 }
2105 } else {
2106 if (netif_carrier_ok(edev->ndev)) {
2107 DP_NOTICE(edev, "Link is down\n");
2108 netif_tx_disable(edev->ndev);
2109 netif_carrier_off(edev->ndev);
2110 }
2111 }
2112 }