]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/qlogic/qede/qede_main.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65
66 static char version[] =
67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76
77 static const struct qed_eth_ops *qed_ops;
78
79 #define CHIP_NUM_57980S_40 0x1634
80 #define CHIP_NUM_57980S_10 0x1666
81 #define CHIP_NUM_57980S_MF 0x1636
82 #define CHIP_NUM_57980S_100 0x1644
83 #define CHIP_NUM_57980S_50 0x1654
84 #define CHIP_NUM_57980S_25 0x1656
85 #define CHIP_NUM_57980S_IOV 0x1664
86 #define CHIP_NUM_AH 0x8070
87 #define CHIP_NUM_AH_IOV 0x8090
88
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
99
100 #endif
101
102 enum qede_pci_private {
103 QEDE_PRIVATE_PF,
104 QEDE_PRIVATE_VF
105 };
106
107 static const struct pci_device_id qede_pci_tbl[] = {
108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 { 0 }
122 };
123
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127
128 #define TX_TIMEOUT (5 * HZ)
129
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI 11
132
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136
137 /* The qede lock is used to protect driver state change and driver flows that
138 * are not reentrant.
139 */
140 void __qede_lock(struct qede_dev *edev)
141 {
142 mutex_lock(&edev->qede_lock);
143 }
144
145 void __qede_unlock(struct qede_dev *edev)
146 {
147 mutex_unlock(&edev->qede_lock);
148 }
149
150 #ifdef CONFIG_QED_SRIOV
151 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
152 __be16 vlan_proto)
153 {
154 struct qede_dev *edev = netdev_priv(ndev);
155
156 if (vlan > 4095) {
157 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
158 return -EINVAL;
159 }
160
161 if (vlan_proto != htons(ETH_P_8021Q))
162 return -EPROTONOSUPPORT;
163
164 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
165 vlan, vf);
166
167 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
168 }
169
170 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
171 {
172 struct qede_dev *edev = netdev_priv(ndev);
173
174 DP_VERBOSE(edev, QED_MSG_IOV,
175 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
176 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
177
178 if (!is_valid_ether_addr(mac)) {
179 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
180 return -EINVAL;
181 }
182
183 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
184 }
185
186 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
187 {
188 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
189 struct qed_dev_info *qed_info = &edev->dev_info.common;
190 struct qed_update_vport_params *vport_params;
191 int rc;
192
193 vport_params = vzalloc(sizeof(*vport_params));
194 if (!vport_params)
195 return -ENOMEM;
196 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
197
198 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
199
200 /* Enable/Disable Tx switching for PF */
201 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
202 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
203 vport_params->vport_id = 0;
204 vport_params->update_tx_switching_flg = 1;
205 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
206 edev->ops->vport_update(edev->cdev, vport_params);
207 }
208
209 vfree(vport_params);
210 return rc;
211 }
212 #endif
213
214 static struct pci_driver qede_pci_driver = {
215 .name = "qede",
216 .id_table = qede_pci_tbl,
217 .probe = qede_probe,
218 .remove = qede_remove,
219 .shutdown = qede_shutdown,
220 #ifdef CONFIG_QED_SRIOV
221 .sriov_configure = qede_sriov_configure,
222 #endif
223 };
224
225 static struct qed_eth_cb_ops qede_ll_ops = {
226 {
227 #ifdef CONFIG_RFS_ACCEL
228 .arfs_filter_op = qede_arfs_filter_op,
229 #endif
230 .link_update = qede_link_update,
231 },
232 .force_mac = qede_force_mac,
233 .ports_update = qede_udp_ports_update,
234 };
235
236 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
237 void *ptr)
238 {
239 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
240 struct ethtool_drvinfo drvinfo;
241 struct qede_dev *edev;
242
243 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
244 goto done;
245
246 /* Check whether this is a qede device */
247 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
248 goto done;
249
250 memset(&drvinfo, 0, sizeof(drvinfo));
251 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
252 if (strcmp(drvinfo.driver, "qede"))
253 goto done;
254 edev = netdev_priv(ndev);
255
256 switch (event) {
257 case NETDEV_CHANGENAME:
258 /* Notify qed of the name change */
259 if (!edev->ops || !edev->ops->common)
260 goto done;
261 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
262 break;
263 case NETDEV_CHANGEADDR:
264 edev = netdev_priv(ndev);
265 qede_rdma_event_changeaddr(edev);
266 break;
267 }
268
269 done:
270 return NOTIFY_DONE;
271 }
272
273 static struct notifier_block qede_netdev_notifier = {
274 .notifier_call = qede_netdev_event,
275 };
276
277 static
278 int __init qede_init(void)
279 {
280 int ret;
281
282 pr_info("qede_init: %s\n", version);
283
284 qed_ops = qed_get_eth_ops();
285 if (!qed_ops) {
286 pr_notice("Failed to get qed ethtool operations\n");
287 return -EINVAL;
288 }
289
290 /* Must register notifier before pci ops, since we might miss
291 * interface rename after pci probe and netdev registeration.
292 */
293 ret = register_netdevice_notifier(&qede_netdev_notifier);
294 if (ret) {
295 pr_notice("Failed to register netdevice_notifier\n");
296 qed_put_eth_ops();
297 return -EINVAL;
298 }
299
300 ret = pci_register_driver(&qede_pci_driver);
301 if (ret) {
302 pr_notice("Failed to register driver\n");
303 unregister_netdevice_notifier(&qede_netdev_notifier);
304 qed_put_eth_ops();
305 return -EINVAL;
306 }
307
308 return 0;
309 }
310
311 static void __exit qede_cleanup(void)
312 {
313 if (debug & QED_LOG_INFO_MASK)
314 pr_info("qede_cleanup called\n");
315
316 unregister_netdevice_notifier(&qede_netdev_notifier);
317 pci_unregister_driver(&qede_pci_driver);
318 qed_put_eth_ops();
319 }
320
321 module_init(qede_init);
322 module_exit(qede_cleanup);
323
324 static int qede_open(struct net_device *ndev);
325 static int qede_close(struct net_device *ndev);
326
327 void qede_fill_by_demand_stats(struct qede_dev *edev)
328 {
329 struct qede_stats_common *p_common = &edev->stats.common;
330 struct qed_eth_stats stats;
331
332 edev->ops->get_vport_stats(edev->cdev, &stats);
333
334 p_common->no_buff_discards = stats.common.no_buff_discards;
335 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
336 p_common->ttl0_discard = stats.common.ttl0_discard;
337 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
338 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
339 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
340 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
341 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
342 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
343 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
344 p_common->mac_filter_discards = stats.common.mac_filter_discards;
345
346 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
347 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
348 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
349 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
350 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
351 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
352 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
353 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
354 p_common->coalesced_events = stats.common.tpa_coalesced_events;
355 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
356 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
357 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
358
359 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
360 p_common->rx_65_to_127_byte_packets =
361 stats.common.rx_65_to_127_byte_packets;
362 p_common->rx_128_to_255_byte_packets =
363 stats.common.rx_128_to_255_byte_packets;
364 p_common->rx_256_to_511_byte_packets =
365 stats.common.rx_256_to_511_byte_packets;
366 p_common->rx_512_to_1023_byte_packets =
367 stats.common.rx_512_to_1023_byte_packets;
368 p_common->rx_1024_to_1518_byte_packets =
369 stats.common.rx_1024_to_1518_byte_packets;
370 p_common->rx_crc_errors = stats.common.rx_crc_errors;
371 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
372 p_common->rx_pause_frames = stats.common.rx_pause_frames;
373 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
374 p_common->rx_align_errors = stats.common.rx_align_errors;
375 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
376 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
377 p_common->rx_jabbers = stats.common.rx_jabbers;
378 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
379 p_common->rx_fragments = stats.common.rx_fragments;
380 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
381 p_common->tx_65_to_127_byte_packets =
382 stats.common.tx_65_to_127_byte_packets;
383 p_common->tx_128_to_255_byte_packets =
384 stats.common.tx_128_to_255_byte_packets;
385 p_common->tx_256_to_511_byte_packets =
386 stats.common.tx_256_to_511_byte_packets;
387 p_common->tx_512_to_1023_byte_packets =
388 stats.common.tx_512_to_1023_byte_packets;
389 p_common->tx_1024_to_1518_byte_packets =
390 stats.common.tx_1024_to_1518_byte_packets;
391 p_common->tx_pause_frames = stats.common.tx_pause_frames;
392 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
393 p_common->brb_truncates = stats.common.brb_truncates;
394 p_common->brb_discards = stats.common.brb_discards;
395 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
396
397 if (QEDE_IS_BB(edev)) {
398 struct qede_stats_bb *p_bb = &edev->stats.bb;
399
400 p_bb->rx_1519_to_1522_byte_packets =
401 stats.bb.rx_1519_to_1522_byte_packets;
402 p_bb->rx_1519_to_2047_byte_packets =
403 stats.bb.rx_1519_to_2047_byte_packets;
404 p_bb->rx_2048_to_4095_byte_packets =
405 stats.bb.rx_2048_to_4095_byte_packets;
406 p_bb->rx_4096_to_9216_byte_packets =
407 stats.bb.rx_4096_to_9216_byte_packets;
408 p_bb->rx_9217_to_16383_byte_packets =
409 stats.bb.rx_9217_to_16383_byte_packets;
410 p_bb->tx_1519_to_2047_byte_packets =
411 stats.bb.tx_1519_to_2047_byte_packets;
412 p_bb->tx_2048_to_4095_byte_packets =
413 stats.bb.tx_2048_to_4095_byte_packets;
414 p_bb->tx_4096_to_9216_byte_packets =
415 stats.bb.tx_4096_to_9216_byte_packets;
416 p_bb->tx_9217_to_16383_byte_packets =
417 stats.bb.tx_9217_to_16383_byte_packets;
418 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
419 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
420 } else {
421 struct qede_stats_ah *p_ah = &edev->stats.ah;
422
423 p_ah->rx_1519_to_max_byte_packets =
424 stats.ah.rx_1519_to_max_byte_packets;
425 p_ah->tx_1519_to_max_byte_packets =
426 stats.ah.tx_1519_to_max_byte_packets;
427 }
428 }
429
430 static void qede_get_stats64(struct net_device *dev,
431 struct rtnl_link_stats64 *stats)
432 {
433 struct qede_dev *edev = netdev_priv(dev);
434 struct qede_stats_common *p_common;
435
436 qede_fill_by_demand_stats(edev);
437 p_common = &edev->stats.common;
438
439 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
440 p_common->rx_bcast_pkts;
441 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
442 p_common->tx_bcast_pkts;
443
444 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
445 p_common->rx_bcast_bytes;
446 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
447 p_common->tx_bcast_bytes;
448
449 stats->tx_errors = p_common->tx_err_drop_pkts;
450 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
451
452 stats->rx_fifo_errors = p_common->no_buff_discards;
453
454 if (QEDE_IS_BB(edev))
455 stats->collisions = edev->stats.bb.tx_total_collisions;
456 stats->rx_crc_errors = p_common->rx_crc_errors;
457 stats->rx_frame_errors = p_common->rx_align_errors;
458 }
459
460 #ifdef CONFIG_QED_SRIOV
461 static int qede_get_vf_config(struct net_device *dev, int vfidx,
462 struct ifla_vf_info *ivi)
463 {
464 struct qede_dev *edev = netdev_priv(dev);
465
466 if (!edev->ops)
467 return -EINVAL;
468
469 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
470 }
471
472 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
473 int min_tx_rate, int max_tx_rate)
474 {
475 struct qede_dev *edev = netdev_priv(dev);
476
477 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
478 max_tx_rate);
479 }
480
481 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
482 {
483 struct qede_dev *edev = netdev_priv(dev);
484
485 if (!edev->ops)
486 return -EINVAL;
487
488 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
489 }
490
491 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
492 int link_state)
493 {
494 struct qede_dev *edev = netdev_priv(dev);
495
496 if (!edev->ops)
497 return -EINVAL;
498
499 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
500 }
501
502 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
503 {
504 struct qede_dev *edev = netdev_priv(dev);
505
506 if (!edev->ops)
507 return -EINVAL;
508
509 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
510 }
511 #endif
512
513 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
514 {
515 struct qede_dev *edev = netdev_priv(dev);
516
517 if (!netif_running(dev))
518 return -EAGAIN;
519
520 switch (cmd) {
521 case SIOCSHWTSTAMP:
522 return qede_ptp_hw_ts(edev, ifr);
523 default:
524 DP_VERBOSE(edev, QED_MSG_DEBUG,
525 "default IOCTL cmd 0x%x\n", cmd);
526 return -EOPNOTSUPP;
527 }
528
529 return 0;
530 }
531
532 static const struct net_device_ops qede_netdev_ops = {
533 .ndo_open = qede_open,
534 .ndo_stop = qede_close,
535 .ndo_start_xmit = qede_start_xmit,
536 .ndo_set_rx_mode = qede_set_rx_mode,
537 .ndo_set_mac_address = qede_set_mac_addr,
538 .ndo_validate_addr = eth_validate_addr,
539 .ndo_change_mtu = qede_change_mtu,
540 .ndo_do_ioctl = qede_ioctl,
541 #ifdef CONFIG_QED_SRIOV
542 .ndo_set_vf_mac = qede_set_vf_mac,
543 .ndo_set_vf_vlan = qede_set_vf_vlan,
544 .ndo_set_vf_trust = qede_set_vf_trust,
545 #endif
546 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
547 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
548 .ndo_set_features = qede_set_features,
549 .ndo_get_stats64 = qede_get_stats64,
550 #ifdef CONFIG_QED_SRIOV
551 .ndo_set_vf_link_state = qede_set_vf_link_state,
552 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
553 .ndo_get_vf_config = qede_get_vf_config,
554 .ndo_set_vf_rate = qede_set_vf_rate,
555 #endif
556 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
557 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
558 .ndo_features_check = qede_features_check,
559 .ndo_xdp = qede_xdp,
560 #ifdef CONFIG_RFS_ACCEL
561 .ndo_rx_flow_steer = qede_rx_flow_steer,
562 #endif
563 };
564
565 static const struct net_device_ops qede_netdev_vf_ops = {
566 .ndo_open = qede_open,
567 .ndo_stop = qede_close,
568 .ndo_start_xmit = qede_start_xmit,
569 .ndo_set_rx_mode = qede_set_rx_mode,
570 .ndo_set_mac_address = qede_set_mac_addr,
571 .ndo_validate_addr = eth_validate_addr,
572 .ndo_change_mtu = qede_change_mtu,
573 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
574 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
575 .ndo_set_features = qede_set_features,
576 .ndo_get_stats64 = qede_get_stats64,
577 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
578 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
579 .ndo_features_check = qede_features_check,
580 };
581
582 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
583 .ndo_open = qede_open,
584 .ndo_stop = qede_close,
585 .ndo_start_xmit = qede_start_xmit,
586 .ndo_set_rx_mode = qede_set_rx_mode,
587 .ndo_set_mac_address = qede_set_mac_addr,
588 .ndo_validate_addr = eth_validate_addr,
589 .ndo_change_mtu = qede_change_mtu,
590 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
591 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
592 .ndo_set_features = qede_set_features,
593 .ndo_get_stats64 = qede_get_stats64,
594 .ndo_udp_tunnel_add = qede_udp_tunnel_add,
595 .ndo_udp_tunnel_del = qede_udp_tunnel_del,
596 .ndo_features_check = qede_features_check,
597 .ndo_xdp = qede_xdp,
598 };
599
600 /* -------------------------------------------------------------------------
601 * START OF PROBE / REMOVE
602 * -------------------------------------------------------------------------
603 */
604
605 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
606 struct pci_dev *pdev,
607 struct qed_dev_eth_info *info,
608 u32 dp_module, u8 dp_level)
609 {
610 struct net_device *ndev;
611 struct qede_dev *edev;
612
613 ndev = alloc_etherdev_mqs(sizeof(*edev),
614 info->num_queues, info->num_queues);
615 if (!ndev) {
616 pr_err("etherdev allocation failed\n");
617 return NULL;
618 }
619
620 edev = netdev_priv(ndev);
621 edev->ndev = ndev;
622 edev->cdev = cdev;
623 edev->pdev = pdev;
624 edev->dp_module = dp_module;
625 edev->dp_level = dp_level;
626 edev->ops = qed_ops;
627 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
628 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
629
630 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
631 info->num_queues, info->num_queues);
632
633 SET_NETDEV_DEV(ndev, &pdev->dev);
634
635 memset(&edev->stats, 0, sizeof(edev->stats));
636 memcpy(&edev->dev_info, info, sizeof(*info));
637
638 /* As ethtool doesn't have the ability to show WoL behavior as
639 * 'default', if device supports it declare it's enabled.
640 */
641 if (edev->dev_info.common.wol_support)
642 edev->wol_enabled = true;
643
644 INIT_LIST_HEAD(&edev->vlan_list);
645
646 return edev;
647 }
648
649 static void qede_init_ndev(struct qede_dev *edev)
650 {
651 struct net_device *ndev = edev->ndev;
652 struct pci_dev *pdev = edev->pdev;
653 bool udp_tunnel_enable = false;
654 netdev_features_t hw_features;
655
656 pci_set_drvdata(pdev, ndev);
657
658 ndev->mem_start = edev->dev_info.common.pci_mem_start;
659 ndev->base_addr = ndev->mem_start;
660 ndev->mem_end = edev->dev_info.common.pci_mem_end;
661 ndev->irq = edev->dev_info.common.pci_irq;
662
663 ndev->watchdog_timeo = TX_TIMEOUT;
664
665 if (IS_VF(edev)) {
666 if (edev->dev_info.xdp_supported)
667 ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
668 else
669 ndev->netdev_ops = &qede_netdev_vf_ops;
670 } else {
671 ndev->netdev_ops = &qede_netdev_ops;
672 }
673
674 qede_set_ethtool_ops(ndev);
675
676 ndev->priv_flags |= IFF_UNICAST_FLT;
677
678 /* user-changeble features */
679 hw_features = NETIF_F_GRO | NETIF_F_SG |
680 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
681 NETIF_F_TSO | NETIF_F_TSO6;
682
683 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
684 hw_features |= NETIF_F_NTUPLE;
685
686 if (edev->dev_info.common.vxlan_enable ||
687 edev->dev_info.common.geneve_enable)
688 udp_tunnel_enable = true;
689
690 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
691 hw_features |= NETIF_F_TSO_ECN;
692 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
693 NETIF_F_SG | NETIF_F_TSO |
694 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
695 NETIF_F_RXCSUM;
696 }
697
698 if (udp_tunnel_enable) {
699 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
700 NETIF_F_GSO_UDP_TUNNEL_CSUM);
701 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
702 NETIF_F_GSO_UDP_TUNNEL_CSUM);
703 }
704
705 if (edev->dev_info.common.gre_enable) {
706 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
707 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
708 NETIF_F_GSO_GRE_CSUM);
709 }
710
711 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
712 NETIF_F_HIGHDMA;
713 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
714 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
715 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
716
717 ndev->hw_features = hw_features;
718
719 /* MTU range: 46 - 9600 */
720 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
721 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
722
723 /* Set network device HW mac */
724 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
725
726 ndev->mtu = edev->dev_info.common.mtu;
727 }
728
729 /* This function converts from 32b param to two params of level and module
730 * Input 32b decoding:
731 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
732 * 'happy' flow, e.g. memory allocation failed.
733 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
734 * and provide important parameters.
735 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
736 * module. VERBOSE prints are for tracking the specific flow in low level.
737 *
738 * Notice that the level should be that of the lowest required logs.
739 */
740 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
741 {
742 *p_dp_level = QED_LEVEL_NOTICE;
743 *p_dp_module = 0;
744
745 if (debug & QED_LOG_VERBOSE_MASK) {
746 *p_dp_level = QED_LEVEL_VERBOSE;
747 *p_dp_module = (debug & 0x3FFFFFFF);
748 } else if (debug & QED_LOG_INFO_MASK) {
749 *p_dp_level = QED_LEVEL_INFO;
750 } else if (debug & QED_LOG_NOTICE_MASK) {
751 *p_dp_level = QED_LEVEL_NOTICE;
752 }
753 }
754
755 static void qede_free_fp_array(struct qede_dev *edev)
756 {
757 if (edev->fp_array) {
758 struct qede_fastpath *fp;
759 int i;
760
761 for_each_queue(i) {
762 fp = &edev->fp_array[i];
763
764 kfree(fp->sb_info);
765 kfree(fp->rxq);
766 kfree(fp->xdp_tx);
767 kfree(fp->txq);
768 }
769 kfree(edev->fp_array);
770 }
771
772 edev->num_queues = 0;
773 edev->fp_num_tx = 0;
774 edev->fp_num_rx = 0;
775 }
776
777 static int qede_alloc_fp_array(struct qede_dev *edev)
778 {
779 u8 fp_combined, fp_rx = edev->fp_num_rx;
780 struct qede_fastpath *fp;
781 int i;
782
783 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
784 sizeof(*edev->fp_array), GFP_KERNEL);
785 if (!edev->fp_array) {
786 DP_NOTICE(edev, "fp array allocation failed\n");
787 goto err;
788 }
789
790 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
791
792 /* Allocate the FP elements for Rx queues followed by combined and then
793 * the Tx. This ordering should be maintained so that the respective
794 * queues (Rx or Tx) will be together in the fastpath array and the
795 * associated ids will be sequential.
796 */
797 for_each_queue(i) {
798 fp = &edev->fp_array[i];
799
800 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
801 if (!fp->sb_info) {
802 DP_NOTICE(edev, "sb info struct allocation failed\n");
803 goto err;
804 }
805
806 if (fp_rx) {
807 fp->type = QEDE_FASTPATH_RX;
808 fp_rx--;
809 } else if (fp_combined) {
810 fp->type = QEDE_FASTPATH_COMBINED;
811 fp_combined--;
812 } else {
813 fp->type = QEDE_FASTPATH_TX;
814 }
815
816 if (fp->type & QEDE_FASTPATH_TX) {
817 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL);
818 if (!fp->txq)
819 goto err;
820 }
821
822 if (fp->type & QEDE_FASTPATH_RX) {
823 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
824 if (!fp->rxq)
825 goto err;
826
827 if (edev->xdp_prog) {
828 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
829 GFP_KERNEL);
830 if (!fp->xdp_tx)
831 goto err;
832 fp->type |= QEDE_FASTPATH_XDP;
833 }
834 }
835 }
836
837 return 0;
838 err:
839 qede_free_fp_array(edev);
840 return -ENOMEM;
841 }
842
843 static void qede_sp_task(struct work_struct *work)
844 {
845 struct qede_dev *edev = container_of(work, struct qede_dev,
846 sp_task.work);
847
848 __qede_lock(edev);
849
850 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
851 if (edev->state == QEDE_STATE_OPEN)
852 qede_config_rx_mode(edev->ndev);
853
854 #ifdef CONFIG_RFS_ACCEL
855 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
856 if (edev->state == QEDE_STATE_OPEN)
857 qede_process_arfs_filters(edev, false);
858 }
859 #endif
860 __qede_unlock(edev);
861 }
862
863 static void qede_update_pf_params(struct qed_dev *cdev)
864 {
865 struct qed_pf_params pf_params;
866
867 /* 64 rx + 64 tx + 64 XDP */
868 memset(&pf_params, 0, sizeof(struct qed_pf_params));
869 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3;
870
871 /* Same for VFs - make sure they'll have sufficient connections
872 * to support XDP Tx queues.
873 */
874 pf_params.eth_pf_params.num_vf_cons = 48;
875
876 #ifdef CONFIG_RFS_ACCEL
877 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
878 #endif
879 qed_ops->common->update_pf_params(cdev, &pf_params);
880 }
881
882 #define QEDE_FW_VER_STR_SIZE 80
883
884 static void qede_log_probe(struct qede_dev *edev)
885 {
886 struct qed_dev_info *p_dev_info = &edev->dev_info.common;
887 u8 buf[QEDE_FW_VER_STR_SIZE];
888 size_t left_size;
889
890 snprintf(buf, QEDE_FW_VER_STR_SIZE,
891 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
892 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
893 p_dev_info->fw_eng,
894 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
895 QED_MFW_VERSION_3_OFFSET,
896 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
897 QED_MFW_VERSION_2_OFFSET,
898 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
899 QED_MFW_VERSION_1_OFFSET,
900 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
901 QED_MFW_VERSION_0_OFFSET);
902
903 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
904 if (p_dev_info->mbi_version && left_size)
905 snprintf(buf + strlen(buf), left_size,
906 " [MBI %d.%d.%d]",
907 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
908 QED_MBI_VERSION_2_OFFSET,
909 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
910 QED_MBI_VERSION_1_OFFSET,
911 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
912 QED_MBI_VERSION_0_OFFSET);
913
914 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
915 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
916 buf, edev->ndev->name);
917 }
918
919 enum qede_probe_mode {
920 QEDE_PROBE_NORMAL,
921 };
922
923 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
924 bool is_vf, enum qede_probe_mode mode)
925 {
926 struct qed_probe_params probe_params;
927 struct qed_slowpath_params sp_params;
928 struct qed_dev_eth_info dev_info;
929 struct qede_dev *edev;
930 struct qed_dev *cdev;
931 int rc;
932
933 if (unlikely(dp_level & QED_LEVEL_INFO))
934 pr_notice("Starting qede probe\n");
935
936 memset(&probe_params, 0, sizeof(probe_params));
937 probe_params.protocol = QED_PROTOCOL_ETH;
938 probe_params.dp_module = dp_module;
939 probe_params.dp_level = dp_level;
940 probe_params.is_vf = is_vf;
941 cdev = qed_ops->common->probe(pdev, &probe_params);
942 if (!cdev) {
943 rc = -ENODEV;
944 goto err0;
945 }
946
947 qede_update_pf_params(cdev);
948
949 /* Start the Slowpath-process */
950 memset(&sp_params, 0, sizeof(sp_params));
951 sp_params.int_mode = QED_INT_MODE_MSIX;
952 sp_params.drv_major = QEDE_MAJOR_VERSION;
953 sp_params.drv_minor = QEDE_MINOR_VERSION;
954 sp_params.drv_rev = QEDE_REVISION_VERSION;
955 sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
956 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
957 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
958 if (rc) {
959 pr_notice("Cannot start slowpath\n");
960 goto err1;
961 }
962
963 /* Learn information crucial for qede to progress */
964 rc = qed_ops->fill_dev_info(cdev, &dev_info);
965 if (rc)
966 goto err2;
967
968 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
969 dp_level);
970 if (!edev) {
971 rc = -ENOMEM;
972 goto err2;
973 }
974
975 if (is_vf)
976 edev->flags |= QEDE_FLAG_IS_VF;
977
978 qede_init_ndev(edev);
979
980 rc = qede_rdma_dev_add(edev);
981 if (rc)
982 goto err3;
983
984 /* Prepare the lock prior to the registeration of the netdev,
985 * as once it's registered we might reach flows requiring it
986 * [it's even possible to reach a flow needing it directly
987 * from there, although it's unlikely].
988 */
989 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
990 mutex_init(&edev->qede_lock);
991 rc = register_netdev(edev->ndev);
992 if (rc) {
993 DP_NOTICE(edev, "Cannot register net-device\n");
994 goto err4;
995 }
996
997 edev->ops->common->set_name(cdev, edev->ndev->name);
998
999 /* PTP not supported on VFs */
1000 if (!is_vf)
1001 qede_ptp_enable(edev, true);
1002
1003 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1004
1005 #ifdef CONFIG_DCB
1006 if (!IS_VF(edev))
1007 qede_set_dcbnl_ops(edev->ndev);
1008 #endif
1009
1010 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1011
1012 qede_log_probe(edev);
1013 return 0;
1014
1015 err4:
1016 qede_rdma_dev_remove(edev);
1017 err3:
1018 free_netdev(edev->ndev);
1019 err2:
1020 qed_ops->common->slowpath_stop(cdev);
1021 err1:
1022 qed_ops->common->remove(cdev);
1023 err0:
1024 return rc;
1025 }
1026
1027 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1028 {
1029 bool is_vf = false;
1030 u32 dp_module = 0;
1031 u8 dp_level = 0;
1032
1033 switch ((enum qede_pci_private)id->driver_data) {
1034 case QEDE_PRIVATE_VF:
1035 if (debug & QED_LOG_VERBOSE_MASK)
1036 dev_err(&pdev->dev, "Probing a VF\n");
1037 is_vf = true;
1038 break;
1039 default:
1040 if (debug & QED_LOG_VERBOSE_MASK)
1041 dev_err(&pdev->dev, "Probing a PF\n");
1042 }
1043
1044 qede_config_debug(debug, &dp_module, &dp_level);
1045
1046 return __qede_probe(pdev, dp_module, dp_level, is_vf,
1047 QEDE_PROBE_NORMAL);
1048 }
1049
1050 enum qede_remove_mode {
1051 QEDE_REMOVE_NORMAL,
1052 };
1053
1054 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1055 {
1056 struct net_device *ndev = pci_get_drvdata(pdev);
1057 struct qede_dev *edev = netdev_priv(ndev);
1058 struct qed_dev *cdev = edev->cdev;
1059
1060 DP_INFO(edev, "Starting qede_remove\n");
1061
1062 unregister_netdev(ndev);
1063 cancel_delayed_work_sync(&edev->sp_task);
1064
1065 qede_ptp_disable(edev);
1066
1067 qede_rdma_dev_remove(edev);
1068
1069 edev->ops->common->set_power_state(cdev, PCI_D0);
1070
1071 pci_set_drvdata(pdev, NULL);
1072
1073 /* Release edev's reference to XDP's bpf if such exist */
1074 if (edev->xdp_prog)
1075 bpf_prog_put(edev->xdp_prog);
1076
1077 /* Use global ops since we've freed edev */
1078 qed_ops->common->slowpath_stop(cdev);
1079 if (system_state == SYSTEM_POWER_OFF)
1080 return;
1081 qed_ops->common->remove(cdev);
1082
1083 /* Since this can happen out-of-sync with other flows,
1084 * don't release the netdevice until after slowpath stop
1085 * has been called to guarantee various other contexts
1086 * [e.g., QED register callbacks] won't break anything when
1087 * accessing the netdevice.
1088 */
1089 free_netdev(ndev);
1090
1091 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1092 }
1093
1094 static void qede_remove(struct pci_dev *pdev)
1095 {
1096 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1097 }
1098
1099 static void qede_shutdown(struct pci_dev *pdev)
1100 {
1101 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1102 }
1103
1104 /* -------------------------------------------------------------------------
1105 * START OF LOAD / UNLOAD
1106 * -------------------------------------------------------------------------
1107 */
1108
1109 static int qede_set_num_queues(struct qede_dev *edev)
1110 {
1111 int rc;
1112 u16 rss_num;
1113
1114 /* Setup queues according to possible resources*/
1115 if (edev->req_queues)
1116 rss_num = edev->req_queues;
1117 else
1118 rss_num = netif_get_num_default_rss_queues() *
1119 edev->dev_info.common.num_hwfns;
1120
1121 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1122
1123 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1124 if (rc > 0) {
1125 /* Managed to request interrupts for our queues */
1126 edev->num_queues = rc;
1127 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1128 QEDE_QUEUE_CNT(edev), rss_num);
1129 rc = 0;
1130 }
1131
1132 edev->fp_num_tx = edev->req_num_tx;
1133 edev->fp_num_rx = edev->req_num_rx;
1134
1135 return rc;
1136 }
1137
1138 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1139 u16 sb_id)
1140 {
1141 if (sb_info->sb_virt) {
1142 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1143 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1144 (void *)sb_info->sb_virt, sb_info->sb_phys);
1145 memset(sb_info, 0, sizeof(*sb_info));
1146 }
1147 }
1148
1149 /* This function allocates fast-path status block memory */
1150 static int qede_alloc_mem_sb(struct qede_dev *edev,
1151 struct qed_sb_info *sb_info, u16 sb_id)
1152 {
1153 struct status_block *sb_virt;
1154 dma_addr_t sb_phys;
1155 int rc;
1156
1157 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1158 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1159 if (!sb_virt) {
1160 DP_ERR(edev, "Status block allocation failed\n");
1161 return -ENOMEM;
1162 }
1163
1164 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1165 sb_virt, sb_phys, sb_id,
1166 QED_SB_TYPE_L2_QUEUE);
1167 if (rc) {
1168 DP_ERR(edev, "Status block initialization failed\n");
1169 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1170 sb_virt, sb_phys);
1171 return rc;
1172 }
1173
1174 return 0;
1175 }
1176
1177 static void qede_free_rx_buffers(struct qede_dev *edev,
1178 struct qede_rx_queue *rxq)
1179 {
1180 u16 i;
1181
1182 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1183 struct sw_rx_data *rx_buf;
1184 struct page *data;
1185
1186 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1187 data = rx_buf->data;
1188
1189 dma_unmap_page(&edev->pdev->dev,
1190 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1191
1192 rx_buf->data = NULL;
1193 __free_page(data);
1194 }
1195 }
1196
1197 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1198 {
1199 int i;
1200
1201 if (edev->gro_disable)
1202 return;
1203
1204 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1205 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1206 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1207
1208 if (replace_buf->data) {
1209 dma_unmap_page(&edev->pdev->dev,
1210 replace_buf->mapping,
1211 PAGE_SIZE, DMA_FROM_DEVICE);
1212 __free_page(replace_buf->data);
1213 }
1214 }
1215 }
1216
1217 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1218 {
1219 qede_free_sge_mem(edev, rxq);
1220
1221 /* Free rx buffers */
1222 qede_free_rx_buffers(edev, rxq);
1223
1224 /* Free the parallel SW ring */
1225 kfree(rxq->sw_rx_ring);
1226
1227 /* Free the real RQ ring used by FW */
1228 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1229 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1230 }
1231
1232 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
1233 {
1234 dma_addr_t mapping;
1235 int i;
1236
1237 /* Don't perform FW aggregations in case of XDP */
1238 if (edev->xdp_prog)
1239 edev->gro_disable = 1;
1240
1241 if (edev->gro_disable)
1242 return 0;
1243
1244 if (edev->ndev->mtu > PAGE_SIZE) {
1245 edev->gro_disable = 1;
1246 return 0;
1247 }
1248
1249 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1250 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1251 struct sw_rx_data *replace_buf = &tpa_info->buffer;
1252
1253 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
1254 if (unlikely(!replace_buf->data)) {
1255 DP_NOTICE(edev,
1256 "Failed to allocate TPA skb pool [replacement buffer]\n");
1257 goto err;
1258 }
1259
1260 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
1261 PAGE_SIZE, DMA_FROM_DEVICE);
1262 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
1263 DP_NOTICE(edev,
1264 "Failed to map TPA replacement buffer\n");
1265 goto err;
1266 }
1267
1268 replace_buf->mapping = mapping;
1269 tpa_info->buffer.page_offset = 0;
1270 tpa_info->buffer_mapping = mapping;
1271 tpa_info->state = QEDE_AGG_STATE_NONE;
1272 }
1273
1274 return 0;
1275 err:
1276 qede_free_sge_mem(edev, rxq);
1277 edev->gro_disable = 1;
1278 return -ENOMEM;
1279 }
1280
1281 /* This function allocates all memory needed per Rx queue */
1282 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1283 {
1284 int i, rc, size;
1285
1286 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1287
1288 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1289 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0;
1290
1291 /* Make sure that the headroom and payload fit in a single page */
1292 if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE)
1293 rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom;
1294
1295 /* Segment size to spilt a page in multiple equal parts,
1296 * unless XDP is used in which case we'd use the entire page.
1297 */
1298 if (!edev->xdp_prog)
1299 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
1300 else
1301 rxq->rx_buf_seg_size = PAGE_SIZE;
1302
1303 /* Allocate the parallel driver ring for Rx buffers */
1304 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1305 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1306 if (!rxq->sw_rx_ring) {
1307 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1308 rc = -ENOMEM;
1309 goto err;
1310 }
1311
1312 /* Allocate FW Rx ring */
1313 rc = edev->ops->common->chain_alloc(edev->cdev,
1314 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1315 QED_CHAIN_MODE_NEXT_PTR,
1316 QED_CHAIN_CNT_TYPE_U16,
1317 RX_RING_SIZE,
1318 sizeof(struct eth_rx_bd),
1319 &rxq->rx_bd_ring, NULL);
1320 if (rc)
1321 goto err;
1322
1323 /* Allocate FW completion ring */
1324 rc = edev->ops->common->chain_alloc(edev->cdev,
1325 QED_CHAIN_USE_TO_CONSUME,
1326 QED_CHAIN_MODE_PBL,
1327 QED_CHAIN_CNT_TYPE_U16,
1328 RX_RING_SIZE,
1329 sizeof(union eth_rx_cqe),
1330 &rxq->rx_comp_ring, NULL);
1331 if (rc)
1332 goto err;
1333
1334 /* Allocate buffers for the Rx ring */
1335 rxq->filled_buffers = 0;
1336 for (i = 0; i < rxq->num_rx_buffers; i++) {
1337 rc = qede_alloc_rx_buffer(rxq, false);
1338 if (rc) {
1339 DP_ERR(edev,
1340 "Rx buffers allocation failed at index %d\n", i);
1341 goto err;
1342 }
1343 }
1344
1345 rc = qede_alloc_sge_mem(edev, rxq);
1346 err:
1347 return rc;
1348 }
1349
1350 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1351 {
1352 /* Free the parallel SW ring */
1353 if (txq->is_xdp)
1354 kfree(txq->sw_tx_ring.xdp);
1355 else
1356 kfree(txq->sw_tx_ring.skbs);
1357
1358 /* Free the real RQ ring used by FW */
1359 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1360 }
1361
1362 /* This function allocates all memory needed per Tx queue */
1363 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1364 {
1365 union eth_tx_bd_types *p_virt;
1366 int size, rc;
1367
1368 txq->num_tx_buffers = edev->q_num_tx_buffers;
1369
1370 /* Allocate the parallel driver ring for Tx buffers */
1371 if (txq->is_xdp) {
1372 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1373 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1374 if (!txq->sw_tx_ring.xdp)
1375 goto err;
1376 } else {
1377 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1378 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1379 if (!txq->sw_tx_ring.skbs)
1380 goto err;
1381 }
1382
1383 rc = edev->ops->common->chain_alloc(edev->cdev,
1384 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1385 QED_CHAIN_MODE_PBL,
1386 QED_CHAIN_CNT_TYPE_U16,
1387 txq->num_tx_buffers,
1388 sizeof(*p_virt),
1389 &txq->tx_pbl, NULL);
1390 if (rc)
1391 goto err;
1392
1393 return 0;
1394
1395 err:
1396 qede_free_mem_txq(edev, txq);
1397 return -ENOMEM;
1398 }
1399
1400 /* This function frees all memory of a single fp */
1401 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1402 {
1403 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1404
1405 if (fp->type & QEDE_FASTPATH_RX)
1406 qede_free_mem_rxq(edev, fp->rxq);
1407
1408 if (fp->type & QEDE_FASTPATH_XDP)
1409 qede_free_mem_txq(edev, fp->xdp_tx);
1410
1411 if (fp->type & QEDE_FASTPATH_TX)
1412 qede_free_mem_txq(edev, fp->txq);
1413 }
1414
1415 /* This function allocates all memory needed for a single fp (i.e. an entity
1416 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1417 */
1418 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1419 {
1420 int rc = 0;
1421
1422 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1423 if (rc)
1424 goto out;
1425
1426 if (fp->type & QEDE_FASTPATH_RX) {
1427 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1428 if (rc)
1429 goto out;
1430 }
1431
1432 if (fp->type & QEDE_FASTPATH_XDP) {
1433 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1434 if (rc)
1435 goto out;
1436 }
1437
1438 if (fp->type & QEDE_FASTPATH_TX) {
1439 rc = qede_alloc_mem_txq(edev, fp->txq);
1440 if (rc)
1441 goto out;
1442 }
1443
1444 out:
1445 return rc;
1446 }
1447
1448 static void qede_free_mem_load(struct qede_dev *edev)
1449 {
1450 int i;
1451
1452 for_each_queue(i) {
1453 struct qede_fastpath *fp = &edev->fp_array[i];
1454
1455 qede_free_mem_fp(edev, fp);
1456 }
1457 }
1458
1459 /* This function allocates all qede memory at NIC load. */
1460 static int qede_alloc_mem_load(struct qede_dev *edev)
1461 {
1462 int rc = 0, queue_id;
1463
1464 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1465 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1466
1467 rc = qede_alloc_mem_fp(edev, fp);
1468 if (rc) {
1469 DP_ERR(edev,
1470 "Failed to allocate memory for fastpath - rss id = %d\n",
1471 queue_id);
1472 qede_free_mem_load(edev);
1473 return rc;
1474 }
1475 }
1476
1477 return 0;
1478 }
1479
1480 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1481 static void qede_init_fp(struct qede_dev *edev)
1482 {
1483 int queue_id, rxq_index = 0, txq_index = 0;
1484 struct qede_fastpath *fp;
1485
1486 for_each_queue(queue_id) {
1487 fp = &edev->fp_array[queue_id];
1488
1489 fp->edev = edev;
1490 fp->id = queue_id;
1491
1492 if (fp->type & QEDE_FASTPATH_XDP) {
1493 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1494 rxq_index);
1495 fp->xdp_tx->is_xdp = 1;
1496 }
1497
1498 if (fp->type & QEDE_FASTPATH_RX) {
1499 fp->rxq->rxq_id = rxq_index++;
1500
1501 /* Determine how to map buffers for this queue */
1502 if (fp->type & QEDE_FASTPATH_XDP)
1503 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1504 else
1505 fp->rxq->data_direction = DMA_FROM_DEVICE;
1506 fp->rxq->dev = &edev->pdev->dev;
1507 }
1508
1509 if (fp->type & QEDE_FASTPATH_TX) {
1510 fp->txq->index = txq_index++;
1511 if (edev->dev_info.is_legacy)
1512 fp->txq->is_legacy = 1;
1513 fp->txq->dev = &edev->pdev->dev;
1514 }
1515
1516 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1517 edev->ndev->name, queue_id);
1518 }
1519
1520 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
1521 }
1522
1523 static int qede_set_real_num_queues(struct qede_dev *edev)
1524 {
1525 int rc = 0;
1526
1527 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
1528 if (rc) {
1529 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1530 return rc;
1531 }
1532
1533 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1534 if (rc) {
1535 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1536 return rc;
1537 }
1538
1539 return 0;
1540 }
1541
1542 static void qede_napi_disable_remove(struct qede_dev *edev)
1543 {
1544 int i;
1545
1546 for_each_queue(i) {
1547 napi_disable(&edev->fp_array[i].napi);
1548
1549 netif_napi_del(&edev->fp_array[i].napi);
1550 }
1551 }
1552
1553 static void qede_napi_add_enable(struct qede_dev *edev)
1554 {
1555 int i;
1556
1557 /* Add NAPI objects */
1558 for_each_queue(i) {
1559 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1560 qede_poll, NAPI_POLL_WEIGHT);
1561 napi_enable(&edev->fp_array[i].napi);
1562 }
1563 }
1564
1565 static void qede_sync_free_irqs(struct qede_dev *edev)
1566 {
1567 int i;
1568
1569 for (i = 0; i < edev->int_info.used_cnt; i++) {
1570 if (edev->int_info.msix_cnt) {
1571 synchronize_irq(edev->int_info.msix[i].vector);
1572 free_irq(edev->int_info.msix[i].vector,
1573 &edev->fp_array[i]);
1574 } else {
1575 edev->ops->common->simd_handler_clean(edev->cdev, i);
1576 }
1577 }
1578
1579 edev->int_info.used_cnt = 0;
1580 }
1581
1582 static int qede_req_msix_irqs(struct qede_dev *edev)
1583 {
1584 int i, rc;
1585
1586 /* Sanitize number of interrupts == number of prepared RSS queues */
1587 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1588 DP_ERR(edev,
1589 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1590 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1591 return -EINVAL;
1592 }
1593
1594 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1595 #ifdef CONFIG_RFS_ACCEL
1596 struct qede_fastpath *fp = &edev->fp_array[i];
1597
1598 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1599 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1600 edev->int_info.msix[i].vector);
1601 if (rc) {
1602 DP_ERR(edev, "Failed to add CPU rmap\n");
1603 qede_free_arfs(edev);
1604 }
1605 }
1606 #endif
1607 rc = request_irq(edev->int_info.msix[i].vector,
1608 qede_msix_fp_int, 0, edev->fp_array[i].name,
1609 &edev->fp_array[i]);
1610 if (rc) {
1611 DP_ERR(edev, "Request fp %d irq failed\n", i);
1612 qede_sync_free_irqs(edev);
1613 return rc;
1614 }
1615 DP_VERBOSE(edev, NETIF_MSG_INTR,
1616 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1617 edev->fp_array[i].name, i,
1618 &edev->fp_array[i]);
1619 edev->int_info.used_cnt++;
1620 }
1621
1622 return 0;
1623 }
1624
1625 static void qede_simd_fp_handler(void *cookie)
1626 {
1627 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1628
1629 napi_schedule_irqoff(&fp->napi);
1630 }
1631
1632 static int qede_setup_irqs(struct qede_dev *edev)
1633 {
1634 int i, rc = 0;
1635
1636 /* Learn Interrupt configuration */
1637 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1638 if (rc)
1639 return rc;
1640
1641 if (edev->int_info.msix_cnt) {
1642 rc = qede_req_msix_irqs(edev);
1643 if (rc)
1644 return rc;
1645 edev->ndev->irq = edev->int_info.msix[0].vector;
1646 } else {
1647 const struct qed_common_ops *ops;
1648
1649 /* qed should learn receive the RSS ids and callbacks */
1650 ops = edev->ops->common;
1651 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1652 ops->simd_handler_config(edev->cdev,
1653 &edev->fp_array[i], i,
1654 qede_simd_fp_handler);
1655 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1656 }
1657 return 0;
1658 }
1659
1660 static int qede_drain_txq(struct qede_dev *edev,
1661 struct qede_tx_queue *txq, bool allow_drain)
1662 {
1663 int rc, cnt = 1000;
1664
1665 while (txq->sw_tx_cons != txq->sw_tx_prod) {
1666 if (!cnt) {
1667 if (allow_drain) {
1668 DP_NOTICE(edev,
1669 "Tx queue[%d] is stuck, requesting MCP to drain\n",
1670 txq->index);
1671 rc = edev->ops->common->drain(edev->cdev);
1672 if (rc)
1673 return rc;
1674 return qede_drain_txq(edev, txq, false);
1675 }
1676 DP_NOTICE(edev,
1677 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1678 txq->index, txq->sw_tx_prod,
1679 txq->sw_tx_cons);
1680 return -ENODEV;
1681 }
1682 cnt--;
1683 usleep_range(1000, 2000);
1684 barrier();
1685 }
1686
1687 /* FW finished processing, wait for HW to transmit all tx packets */
1688 usleep_range(1000, 2000);
1689
1690 return 0;
1691 }
1692
1693 static int qede_stop_txq(struct qede_dev *edev,
1694 struct qede_tx_queue *txq, int rss_id)
1695 {
1696 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1697 }
1698
1699 static int qede_stop_queues(struct qede_dev *edev)
1700 {
1701 struct qed_update_vport_params *vport_update_params;
1702 struct qed_dev *cdev = edev->cdev;
1703 struct qede_fastpath *fp;
1704 int rc, i;
1705
1706 /* Disable the vport */
1707 vport_update_params = vzalloc(sizeof(*vport_update_params));
1708 if (!vport_update_params)
1709 return -ENOMEM;
1710
1711 vport_update_params->vport_id = 0;
1712 vport_update_params->update_vport_active_flg = 1;
1713 vport_update_params->vport_active_flg = 0;
1714 vport_update_params->update_rss_flg = 0;
1715
1716 rc = edev->ops->vport_update(cdev, vport_update_params);
1717 vfree(vport_update_params);
1718
1719 if (rc) {
1720 DP_ERR(edev, "Failed to update vport\n");
1721 return rc;
1722 }
1723
1724 /* Flush Tx queues. If needed, request drain from MCP */
1725 for_each_queue(i) {
1726 fp = &edev->fp_array[i];
1727
1728 if (fp->type & QEDE_FASTPATH_TX) {
1729 rc = qede_drain_txq(edev, fp->txq, true);
1730 if (rc)
1731 return rc;
1732 }
1733
1734 if (fp->type & QEDE_FASTPATH_XDP) {
1735 rc = qede_drain_txq(edev, fp->xdp_tx, true);
1736 if (rc)
1737 return rc;
1738 }
1739 }
1740
1741 /* Stop all Queues in reverse order */
1742 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1743 fp = &edev->fp_array[i];
1744
1745 /* Stop the Tx Queue(s) */
1746 if (fp->type & QEDE_FASTPATH_TX) {
1747 rc = qede_stop_txq(edev, fp->txq, i);
1748 if (rc)
1749 return rc;
1750 }
1751
1752 /* Stop the Rx Queue */
1753 if (fp->type & QEDE_FASTPATH_RX) {
1754 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1755 if (rc) {
1756 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1757 return rc;
1758 }
1759 }
1760
1761 /* Stop the XDP forwarding queue */
1762 if (fp->type & QEDE_FASTPATH_XDP) {
1763 rc = qede_stop_txq(edev, fp->xdp_tx, i);
1764 if (rc)
1765 return rc;
1766
1767 bpf_prog_put(fp->rxq->xdp_prog);
1768 }
1769 }
1770
1771 /* Stop the vport */
1772 rc = edev->ops->vport_stop(cdev, 0);
1773 if (rc)
1774 DP_ERR(edev, "Failed to stop VPORT\n");
1775
1776 return rc;
1777 }
1778
1779 static int qede_start_txq(struct qede_dev *edev,
1780 struct qede_fastpath *fp,
1781 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1782 {
1783 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1784 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1785 struct qed_queue_start_common_params params;
1786 struct qed_txq_start_ret_params ret_params;
1787 int rc;
1788
1789 memset(&params, 0, sizeof(params));
1790 memset(&ret_params, 0, sizeof(ret_params));
1791
1792 /* Let the XDP queue share the queue-zone with one of the regular txq.
1793 * We don't really care about its coalescing.
1794 */
1795 if (txq->is_xdp)
1796 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1797 else
1798 params.queue_id = txq->index;
1799
1800 params.p_sb = fp->sb_info;
1801 params.sb_idx = sb_idx;
1802
1803 rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1804 page_cnt, &ret_params);
1805 if (rc) {
1806 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1807 return rc;
1808 }
1809
1810 txq->doorbell_addr = ret_params.p_doorbell;
1811 txq->handle = ret_params.p_handle;
1812
1813 /* Determine the FW consumer address associated */
1814 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1815
1816 /* Prepare the doorbell parameters */
1817 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1818 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1819 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1820 DQ_XCM_ETH_TX_BD_PROD_CMD);
1821 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1822
1823 return rc;
1824 }
1825
1826 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1827 {
1828 int vlan_removal_en = 1;
1829 struct qed_dev *cdev = edev->cdev;
1830 struct qed_dev_info *qed_info = &edev->dev_info.common;
1831 struct qed_update_vport_params *vport_update_params;
1832 struct qed_queue_start_common_params q_params;
1833 struct qed_start_vport_params start = {0};
1834 int rc, i;
1835
1836 if (!edev->num_queues) {
1837 DP_ERR(edev,
1838 "Cannot update V-VPORT as active as there are no Rx queues\n");
1839 return -EINVAL;
1840 }
1841
1842 vport_update_params = vzalloc(sizeof(*vport_update_params));
1843 if (!vport_update_params)
1844 return -ENOMEM;
1845
1846 start.handle_ptp_pkts = !!(edev->ptp);
1847 start.gro_enable = !edev->gro_disable;
1848 start.mtu = edev->ndev->mtu;
1849 start.vport_id = 0;
1850 start.drop_ttl0 = true;
1851 start.remove_inner_vlan = vlan_removal_en;
1852 start.clear_stats = clear_stats;
1853
1854 rc = edev->ops->vport_start(cdev, &start);
1855
1856 if (rc) {
1857 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1858 goto out;
1859 }
1860
1861 DP_VERBOSE(edev, NETIF_MSG_IFUP,
1862 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1863 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1864
1865 for_each_queue(i) {
1866 struct qede_fastpath *fp = &edev->fp_array[i];
1867 dma_addr_t p_phys_table;
1868 u32 page_cnt;
1869
1870 if (fp->type & QEDE_FASTPATH_RX) {
1871 struct qed_rxq_start_ret_params ret_params;
1872 struct qede_rx_queue *rxq = fp->rxq;
1873 __le16 *val;
1874
1875 memset(&ret_params, 0, sizeof(ret_params));
1876 memset(&q_params, 0, sizeof(q_params));
1877 q_params.queue_id = rxq->rxq_id;
1878 q_params.vport_id = 0;
1879 q_params.p_sb = fp->sb_info;
1880 q_params.sb_idx = RX_PI;
1881
1882 p_phys_table =
1883 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1884 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1885
1886 rc = edev->ops->q_rx_start(cdev, i, &q_params,
1887 rxq->rx_buf_size,
1888 rxq->rx_bd_ring.p_phys_addr,
1889 p_phys_table,
1890 page_cnt, &ret_params);
1891 if (rc) {
1892 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
1893 rc);
1894 goto out;
1895 }
1896
1897 /* Use the return parameters */
1898 rxq->hw_rxq_prod_addr = ret_params.p_prod;
1899 rxq->handle = ret_params.p_handle;
1900
1901 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
1902 rxq->hw_cons_ptr = val;
1903
1904 qede_update_rx_prod(edev, rxq);
1905 }
1906
1907 if (fp->type & QEDE_FASTPATH_XDP) {
1908 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
1909 if (rc)
1910 goto out;
1911
1912 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
1913 if (IS_ERR(fp->rxq->xdp_prog)) {
1914 rc = PTR_ERR(fp->rxq->xdp_prog);
1915 fp->rxq->xdp_prog = NULL;
1916 goto out;
1917 }
1918 }
1919
1920 if (fp->type & QEDE_FASTPATH_TX) {
1921 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0));
1922 if (rc)
1923 goto out;
1924 }
1925 }
1926
1927 /* Prepare and send the vport enable */
1928 vport_update_params->vport_id = start.vport_id;
1929 vport_update_params->update_vport_active_flg = 1;
1930 vport_update_params->vport_active_flg = 1;
1931
1932 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
1933 qed_info->tx_switching) {
1934 vport_update_params->update_tx_switching_flg = 1;
1935 vport_update_params->tx_switching_flg = 1;
1936 }
1937
1938 qede_fill_rss_params(edev, &vport_update_params->rss_params,
1939 &vport_update_params->update_rss_flg);
1940
1941 rc = edev->ops->vport_update(cdev, vport_update_params);
1942 if (rc)
1943 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
1944
1945 out:
1946 vfree(vport_update_params);
1947 return rc;
1948 }
1949
1950 enum qede_unload_mode {
1951 QEDE_UNLOAD_NORMAL,
1952 };
1953
1954 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
1955 bool is_locked)
1956 {
1957 struct qed_link_params link_params;
1958 int rc;
1959
1960 DP_INFO(edev, "Starting qede unload\n");
1961
1962 if (!is_locked)
1963 __qede_lock(edev);
1964
1965 edev->state = QEDE_STATE_CLOSED;
1966
1967 qede_rdma_dev_event_close(edev);
1968
1969 /* Close OS Tx */
1970 netif_tx_disable(edev->ndev);
1971 netif_carrier_off(edev->ndev);
1972
1973 /* Reset the link */
1974 memset(&link_params, 0, sizeof(link_params));
1975 link_params.link_up = false;
1976 edev->ops->common->set_link(edev->cdev, &link_params);
1977 rc = qede_stop_queues(edev);
1978 if (rc) {
1979 qede_sync_free_irqs(edev);
1980 goto out;
1981 }
1982
1983 DP_INFO(edev, "Stopped Queues\n");
1984
1985 qede_vlan_mark_nonconfigured(edev);
1986 edev->ops->fastpath_stop(edev->cdev);
1987 #ifdef CONFIG_RFS_ACCEL
1988 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
1989 qede_poll_for_freeing_arfs_filters(edev);
1990 qede_free_arfs(edev);
1991 }
1992 #endif
1993 /* Release the interrupts */
1994 qede_sync_free_irqs(edev);
1995 edev->ops->common->set_fp_int(edev->cdev, 0);
1996
1997 qede_napi_disable_remove(edev);
1998
1999 qede_free_mem_load(edev);
2000 qede_free_fp_array(edev);
2001
2002 out:
2003 if (!is_locked)
2004 __qede_unlock(edev);
2005 DP_INFO(edev, "Ending qede unload\n");
2006 }
2007
2008 enum qede_load_mode {
2009 QEDE_LOAD_NORMAL,
2010 QEDE_LOAD_RELOAD,
2011 };
2012
2013 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2014 bool is_locked)
2015 {
2016 struct qed_link_params link_params;
2017 int rc;
2018
2019 DP_INFO(edev, "Starting qede load\n");
2020
2021 if (!is_locked)
2022 __qede_lock(edev);
2023
2024 rc = qede_set_num_queues(edev);
2025 if (rc)
2026 goto out;
2027
2028 rc = qede_alloc_fp_array(edev);
2029 if (rc)
2030 goto out;
2031
2032 qede_init_fp(edev);
2033
2034 rc = qede_alloc_mem_load(edev);
2035 if (rc)
2036 goto err1;
2037 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2038 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2039
2040 rc = qede_set_real_num_queues(edev);
2041 if (rc)
2042 goto err2;
2043
2044 #ifdef CONFIG_RFS_ACCEL
2045 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2046 rc = qede_alloc_arfs(edev);
2047 if (rc)
2048 DP_NOTICE(edev, "aRFS memory allocation failed\n");
2049 }
2050 #endif
2051 qede_napi_add_enable(edev);
2052 DP_INFO(edev, "Napi added and enabled\n");
2053
2054 rc = qede_setup_irqs(edev);
2055 if (rc)
2056 goto err3;
2057 DP_INFO(edev, "Setup IRQs succeeded\n");
2058
2059 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2060 if (rc)
2061 goto err4;
2062 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2063
2064 /* Program un-configured VLANs */
2065 qede_configure_vlan_filters(edev);
2066
2067 /* Ask for link-up using current configuration */
2068 memset(&link_params, 0, sizeof(link_params));
2069 link_params.link_up = true;
2070 edev->ops->common->set_link(edev->cdev, &link_params);
2071
2072 qede_rdma_dev_event_open(edev);
2073
2074 edev->state = QEDE_STATE_OPEN;
2075
2076 DP_INFO(edev, "Ending successfully qede load\n");
2077
2078 goto out;
2079 err4:
2080 qede_sync_free_irqs(edev);
2081 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2082 err3:
2083 qede_napi_disable_remove(edev);
2084 err2:
2085 qede_free_mem_load(edev);
2086 err1:
2087 edev->ops->common->set_fp_int(edev->cdev, 0);
2088 qede_free_fp_array(edev);
2089 edev->num_queues = 0;
2090 edev->fp_num_tx = 0;
2091 edev->fp_num_rx = 0;
2092 out:
2093 if (!is_locked)
2094 __qede_unlock(edev);
2095
2096 return rc;
2097 }
2098
2099 /* 'func' should be able to run between unload and reload assuming interface
2100 * is actually running, or afterwards in case it's currently DOWN.
2101 */
2102 void qede_reload(struct qede_dev *edev,
2103 struct qede_reload_args *args, bool is_locked)
2104 {
2105 if (!is_locked)
2106 __qede_lock(edev);
2107
2108 /* Since qede_lock is held, internal state wouldn't change even
2109 * if netdev state would start transitioning. Check whether current
2110 * internal configuration indicates device is up, then reload.
2111 */
2112 if (edev->state == QEDE_STATE_OPEN) {
2113 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2114 if (args)
2115 args->func(edev, args);
2116 qede_load(edev, QEDE_LOAD_RELOAD, true);
2117
2118 /* Since no one is going to do it for us, re-configure */
2119 qede_config_rx_mode(edev->ndev);
2120 } else if (args) {
2121 args->func(edev, args);
2122 }
2123
2124 if (!is_locked)
2125 __qede_unlock(edev);
2126 }
2127
2128 /* called with rtnl_lock */
2129 static int qede_open(struct net_device *ndev)
2130 {
2131 struct qede_dev *edev = netdev_priv(ndev);
2132 int rc;
2133
2134 netif_carrier_off(ndev);
2135
2136 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2137
2138 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2139 if (rc)
2140 return rc;
2141
2142 udp_tunnel_get_rx_info(ndev);
2143
2144 edev->ops->common->update_drv_state(edev->cdev, true);
2145
2146 return 0;
2147 }
2148
2149 static int qede_close(struct net_device *ndev)
2150 {
2151 struct qede_dev *edev = netdev_priv(ndev);
2152
2153 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2154
2155 edev->ops->common->update_drv_state(edev->cdev, false);
2156
2157 return 0;
2158 }
2159
2160 static void qede_link_update(void *dev, struct qed_link_output *link)
2161 {
2162 struct qede_dev *edev = dev;
2163
2164 if (!netif_running(edev->ndev)) {
2165 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2166 return;
2167 }
2168
2169 if (link->link_up) {
2170 if (!netif_carrier_ok(edev->ndev)) {
2171 DP_NOTICE(edev, "Link is up\n");
2172 netif_tx_start_all_queues(edev->ndev);
2173 netif_carrier_on(edev->ndev);
2174 }
2175 } else {
2176 if (netif_carrier_ok(edev->ndev)) {
2177 DP_NOTICE(edev, "Link is down\n");
2178 netif_tx_disable(edev->ndev);
2179 netif_carrier_off(edev->ndev);
2180 }
2181 }
2182 }