]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/qlogic/qla3xxx.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / qlogic / qla3xxx.c
1 /*
2 * QLogic QLA3xxx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
4 *
5 * See LICENSE.qla3xxx for copyright and licensing details.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/ip.h>
26 #include <linux/in.h>
27 #include <linux/if_arp.h>
28 #include <linux/if_ether.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/ethtool.h>
32 #include <linux/skbuff.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/if_vlan.h>
35 #include <linux/delay.h>
36 #include <linux/mm.h>
37 #include <linux/prefetch.h>
38
39 #include "qla3xxx.h"
40
41 #define DRV_NAME "qla3xxx"
42 #define DRV_STRING "QLogic ISP3XXX Network Driver"
43 #define DRV_VERSION "v2.03.00-k5"
44
45 static const char ql3xxx_driver_name[] = DRV_NAME;
46 static const char ql3xxx_driver_version[] = DRV_VERSION;
47
48 #define TIMED_OUT_MSG \
49 "Timed out waiting for management port to get free before issuing command\n"
50
51 MODULE_AUTHOR("QLogic Corporation");
52 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
53 MODULE_LICENSE("GPL");
54 MODULE_VERSION(DRV_VERSION);
55
56 static const u32 default_msg
57 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
58 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
59
60 static int debug = -1; /* defaults above */
61 module_param(debug, int, 0);
62 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63
64 static int msi;
65 module_param(msi, int, 0);
66 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
67
68 static const struct pci_device_id ql3xxx_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
70 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
71 /* required last entry */
72 {0,}
73 };
74
75 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
76
77 /*
78 * These are the known PHY's which are used
79 */
80 enum PHY_DEVICE_TYPE {
81 PHY_TYPE_UNKNOWN = 0,
82 PHY_VITESSE_VSC8211,
83 PHY_AGERE_ET1011C,
84 MAX_PHY_DEV_TYPES
85 };
86
87 struct PHY_DEVICE_INFO {
88 const enum PHY_DEVICE_TYPE phyDevice;
89 const u32 phyIdOUI;
90 const u16 phyIdModel;
91 const char *name;
92 };
93
94 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
95 {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
96 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
97 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
98 };
99
100
101 /*
102 * Caller must take hw_lock.
103 */
104 static int ql_sem_spinlock(struct ql3_adapter *qdev,
105 u32 sem_mask, u32 sem_bits)
106 {
107 struct ql3xxx_port_registers __iomem *port_regs =
108 qdev->mem_map_registers;
109 u32 value;
110 unsigned int seconds = 3;
111
112 do {
113 writel((sem_mask | sem_bits),
114 &port_regs->CommonRegs.semaphoreReg);
115 value = readl(&port_regs->CommonRegs.semaphoreReg);
116 if ((value & (sem_mask >> 16)) == sem_bits)
117 return 0;
118 ssleep(1);
119 } while (--seconds);
120 return -1;
121 }
122
123 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
124 {
125 struct ql3xxx_port_registers __iomem *port_regs =
126 qdev->mem_map_registers;
127 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
128 readl(&port_regs->CommonRegs.semaphoreReg);
129 }
130
131 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
132 {
133 struct ql3xxx_port_registers __iomem *port_regs =
134 qdev->mem_map_registers;
135 u32 value;
136
137 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
138 value = readl(&port_regs->CommonRegs.semaphoreReg);
139 return ((value & (sem_mask >> 16)) == sem_bits);
140 }
141
142 /*
143 * Caller holds hw_lock.
144 */
145 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
146 {
147 int i = 0;
148
149 do {
150 if (ql_sem_lock(qdev,
151 QL_DRVR_SEM_MASK,
152 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
153 * 2) << 1)) {
154 netdev_printk(KERN_DEBUG, qdev->ndev,
155 "driver lock acquired\n");
156 return 1;
157 }
158 ssleep(1);
159 } while (++i < 10);
160
161 netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
162 return 0;
163 }
164
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
166 {
167 struct ql3xxx_port_registers __iomem *port_regs =
168 qdev->mem_map_registers;
169
170 writel(((ISP_CONTROL_NP_MASK << 16) | page),
171 &port_regs->CommonRegs.ispControlStatus);
172 readl(&port_regs->CommonRegs.ispControlStatus);
173 qdev->current_page = page;
174 }
175
176 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
177 {
178 u32 value;
179 unsigned long hw_flags;
180
181 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182 value = readl(reg);
183 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
184
185 return value;
186 }
187
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
189 {
190 return readl(reg);
191 }
192
193 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
194 {
195 u32 value;
196 unsigned long hw_flags;
197
198 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
199
200 if (qdev->current_page != 0)
201 ql_set_register_page(qdev, 0);
202 value = readl(reg);
203
204 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
205 return value;
206 }
207
208 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
209 {
210 if (qdev->current_page != 0)
211 ql_set_register_page(qdev, 0);
212 return readl(reg);
213 }
214
215 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
216 u32 __iomem *reg, u32 value)
217 {
218 unsigned long hw_flags;
219
220 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
221 writel(value, reg);
222 readl(reg);
223 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
224 }
225
226 static void ql_write_common_reg(struct ql3_adapter *qdev,
227 u32 __iomem *reg, u32 value)
228 {
229 writel(value, reg);
230 readl(reg);
231 }
232
233 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
234 u32 __iomem *reg, u32 value)
235 {
236 writel(value, reg);
237 readl(reg);
238 udelay(1);
239 }
240
241 static void ql_write_page0_reg(struct ql3_adapter *qdev,
242 u32 __iomem *reg, u32 value)
243 {
244 if (qdev->current_page != 0)
245 ql_set_register_page(qdev, 0);
246 writel(value, reg);
247 readl(reg);
248 }
249
250 /*
251 * Caller holds hw_lock. Only called during init.
252 */
253 static void ql_write_page1_reg(struct ql3_adapter *qdev,
254 u32 __iomem *reg, u32 value)
255 {
256 if (qdev->current_page != 1)
257 ql_set_register_page(qdev, 1);
258 writel(value, reg);
259 readl(reg);
260 }
261
262 /*
263 * Caller holds hw_lock. Only called during init.
264 */
265 static void ql_write_page2_reg(struct ql3_adapter *qdev,
266 u32 __iomem *reg, u32 value)
267 {
268 if (qdev->current_page != 2)
269 ql_set_register_page(qdev, 2);
270 writel(value, reg);
271 readl(reg);
272 }
273
274 static void ql_disable_interrupts(struct ql3_adapter *qdev)
275 {
276 struct ql3xxx_port_registers __iomem *port_regs =
277 qdev->mem_map_registers;
278
279 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
280 (ISP_IMR_ENABLE_INT << 16));
281
282 }
283
284 static void ql_enable_interrupts(struct ql3_adapter *qdev)
285 {
286 struct ql3xxx_port_registers __iomem *port_regs =
287 qdev->mem_map_registers;
288
289 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
290 ((0xff << 16) | ISP_IMR_ENABLE_INT));
291
292 }
293
294 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
295 struct ql_rcv_buf_cb *lrg_buf_cb)
296 {
297 dma_addr_t map;
298 int err;
299 lrg_buf_cb->next = NULL;
300
301 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
302 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
303 } else {
304 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
305 qdev->lrg_buf_free_tail = lrg_buf_cb;
306 }
307
308 if (!lrg_buf_cb->skb) {
309 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
310 qdev->lrg_buffer_len);
311 if (unlikely(!lrg_buf_cb->skb)) {
312 qdev->lrg_buf_skb_check++;
313 } else {
314 /*
315 * We save some space to copy the ethhdr from first
316 * buffer
317 */
318 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
319 map = pci_map_single(qdev->pdev,
320 lrg_buf_cb->skb->data,
321 qdev->lrg_buffer_len -
322 QL_HEADER_SPACE,
323 PCI_DMA_FROMDEVICE);
324 err = pci_dma_mapping_error(qdev->pdev, map);
325 if (err) {
326 netdev_err(qdev->ndev,
327 "PCI mapping failed with error: %d\n",
328 err);
329 dev_kfree_skb(lrg_buf_cb->skb);
330 lrg_buf_cb->skb = NULL;
331
332 qdev->lrg_buf_skb_check++;
333 return;
334 }
335
336 lrg_buf_cb->buf_phy_addr_low =
337 cpu_to_le32(LS_64BITS(map));
338 lrg_buf_cb->buf_phy_addr_high =
339 cpu_to_le32(MS_64BITS(map));
340 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
341 dma_unmap_len_set(lrg_buf_cb, maplen,
342 qdev->lrg_buffer_len -
343 QL_HEADER_SPACE);
344 }
345 }
346
347 qdev->lrg_buf_free_count++;
348 }
349
350 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
351 *qdev)
352 {
353 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
354
355 if (lrg_buf_cb != NULL) {
356 qdev->lrg_buf_free_head = lrg_buf_cb->next;
357 if (qdev->lrg_buf_free_head == NULL)
358 qdev->lrg_buf_free_tail = NULL;
359 qdev->lrg_buf_free_count--;
360 }
361
362 return lrg_buf_cb;
363 }
364
365 static u32 addrBits = EEPROM_NO_ADDR_BITS;
366 static u32 dataBits = EEPROM_NO_DATA_BITS;
367
368 static void fm93c56a_deselect(struct ql3_adapter *qdev);
369 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
370 unsigned short *value);
371
372 /*
373 * Caller holds hw_lock.
374 */
375 static void fm93c56a_select(struct ql3_adapter *qdev)
376 {
377 struct ql3xxx_port_registers __iomem *port_regs =
378 qdev->mem_map_registers;
379 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
380
381 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
382 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
383 ql_write_nvram_reg(qdev, spir,
384 ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
385 }
386
387 /*
388 * Caller holds hw_lock.
389 */
390 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
391 {
392 int i;
393 u32 mask;
394 u32 dataBit;
395 u32 previousBit;
396 struct ql3xxx_port_registers __iomem *port_regs =
397 qdev->mem_map_registers;
398 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
399
400 /* Clock in a zero, then do the start bit */
401 ql_write_nvram_reg(qdev, spir,
402 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
403 AUBURN_EEPROM_DO_1));
404 ql_write_nvram_reg(qdev, spir,
405 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
406 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
407 ql_write_nvram_reg(qdev, spir,
408 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
409 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
410
411 mask = 1 << (FM93C56A_CMD_BITS - 1);
412 /* Force the previous data bit to be different */
413 previousBit = 0xffff;
414 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
415 dataBit = (cmd & mask)
416 ? AUBURN_EEPROM_DO_1
417 : AUBURN_EEPROM_DO_0;
418 if (previousBit != dataBit) {
419 /* If the bit changed, change the DO state to match */
420 ql_write_nvram_reg(qdev, spir,
421 (ISP_NVRAM_MASK |
422 qdev->eeprom_cmd_data | dataBit));
423 previousBit = dataBit;
424 }
425 ql_write_nvram_reg(qdev, spir,
426 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
427 dataBit | AUBURN_EEPROM_CLK_RISE));
428 ql_write_nvram_reg(qdev, spir,
429 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
430 dataBit | AUBURN_EEPROM_CLK_FALL));
431 cmd = cmd << 1;
432 }
433
434 mask = 1 << (addrBits - 1);
435 /* Force the previous data bit to be different */
436 previousBit = 0xffff;
437 for (i = 0; i < addrBits; i++) {
438 dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
439 : AUBURN_EEPROM_DO_0;
440 if (previousBit != dataBit) {
441 /*
442 * If the bit changed, then change the DO state to
443 * match
444 */
445 ql_write_nvram_reg(qdev, spir,
446 (ISP_NVRAM_MASK |
447 qdev->eeprom_cmd_data | dataBit));
448 previousBit = dataBit;
449 }
450 ql_write_nvram_reg(qdev, spir,
451 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
452 dataBit | AUBURN_EEPROM_CLK_RISE));
453 ql_write_nvram_reg(qdev, spir,
454 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
455 dataBit | AUBURN_EEPROM_CLK_FALL));
456 eepromAddr = eepromAddr << 1;
457 }
458 }
459
460 /*
461 * Caller holds hw_lock.
462 */
463 static void fm93c56a_deselect(struct ql3_adapter *qdev)
464 {
465 struct ql3xxx_port_registers __iomem *port_regs =
466 qdev->mem_map_registers;
467 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
468
469 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
470 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
471 }
472
473 /*
474 * Caller holds hw_lock.
475 */
476 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
477 {
478 int i;
479 u32 data = 0;
480 u32 dataBit;
481 struct ql3xxx_port_registers __iomem *port_regs =
482 qdev->mem_map_registers;
483 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
484
485 /* Read the data bits */
486 /* The first bit is a dummy. Clock right over it. */
487 for (i = 0; i < dataBits; i++) {
488 ql_write_nvram_reg(qdev, spir,
489 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
490 AUBURN_EEPROM_CLK_RISE);
491 ql_write_nvram_reg(qdev, spir,
492 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
493 AUBURN_EEPROM_CLK_FALL);
494 dataBit = (ql_read_common_reg(qdev, spir) &
495 AUBURN_EEPROM_DI_1) ? 1 : 0;
496 data = (data << 1) | dataBit;
497 }
498 *value = (u16)data;
499 }
500
501 /*
502 * Caller holds hw_lock.
503 */
504 static void eeprom_readword(struct ql3_adapter *qdev,
505 u32 eepromAddr, unsigned short *value)
506 {
507 fm93c56a_select(qdev);
508 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
509 fm93c56a_datain(qdev, value);
510 fm93c56a_deselect(qdev);
511 }
512
513 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
514 {
515 __le16 *p = (__le16 *)ndev->dev_addr;
516 p[0] = cpu_to_le16(addr[0]);
517 p[1] = cpu_to_le16(addr[1]);
518 p[2] = cpu_to_le16(addr[2]);
519 }
520
521 static int ql_get_nvram_params(struct ql3_adapter *qdev)
522 {
523 u16 *pEEPROMData;
524 u16 checksum = 0;
525 u32 index;
526 unsigned long hw_flags;
527
528 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
529
530 pEEPROMData = (u16 *)&qdev->nvram_data;
531 qdev->eeprom_cmd_data = 0;
532 if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
533 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
534 2) << 10)) {
535 pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
536 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
537 return -1;
538 }
539
540 for (index = 0; index < EEPROM_SIZE; index++) {
541 eeprom_readword(qdev, index, pEEPROMData);
542 checksum += *pEEPROMData;
543 pEEPROMData++;
544 }
545 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
546
547 if (checksum != 0) {
548 netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
549 checksum);
550 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
551 return -1;
552 }
553
554 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
555 return checksum;
556 }
557
558 static const u32 PHYAddr[2] = {
559 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
560 };
561
562 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
563 {
564 struct ql3xxx_port_registers __iomem *port_regs =
565 qdev->mem_map_registers;
566 u32 temp;
567 int count = 1000;
568
569 while (count) {
570 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
571 if (!(temp & MAC_MII_STATUS_BSY))
572 return 0;
573 udelay(10);
574 count--;
575 }
576 return -1;
577 }
578
579 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
580 {
581 struct ql3xxx_port_registers __iomem *port_regs =
582 qdev->mem_map_registers;
583 u32 scanControl;
584
585 if (qdev->numPorts > 1) {
586 /* Auto scan will cycle through multiple ports */
587 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
588 } else {
589 scanControl = MAC_MII_CONTROL_SC;
590 }
591
592 /*
593 * Scan register 1 of PHY/PETBI,
594 * Set up to scan both devices
595 * The autoscan starts from the first register, completes
596 * the last one before rolling over to the first
597 */
598 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
599 PHYAddr[0] | MII_SCAN_REGISTER);
600
601 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
602 (scanControl) |
603 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
604 }
605
606 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
607 {
608 u8 ret;
609 struct ql3xxx_port_registers __iomem *port_regs =
610 qdev->mem_map_registers;
611
612 /* See if scan mode is enabled before we turn it off */
613 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
614 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
615 /* Scan is enabled */
616 ret = 1;
617 } else {
618 /* Scan is disabled */
619 ret = 0;
620 }
621
622 /*
623 * When disabling scan mode you must first change the MII register
624 * address
625 */
626 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
627 PHYAddr[0] | MII_SCAN_REGISTER);
628
629 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
630 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
631 MAC_MII_CONTROL_RC) << 16));
632
633 return ret;
634 }
635
636 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
637 u16 regAddr, u16 value, u32 phyAddr)
638 {
639 struct ql3xxx_port_registers __iomem *port_regs =
640 qdev->mem_map_registers;
641 u8 scanWasEnabled;
642
643 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
644
645 if (ql_wait_for_mii_ready(qdev)) {
646 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
647 return -1;
648 }
649
650 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
651 phyAddr | regAddr);
652
653 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
654
655 /* Wait for write to complete 9/10/04 SJP */
656 if (ql_wait_for_mii_ready(qdev)) {
657 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
658 return -1;
659 }
660
661 if (scanWasEnabled)
662 ql_mii_enable_scan_mode(qdev);
663
664 return 0;
665 }
666
667 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
668 u16 *value, u32 phyAddr)
669 {
670 struct ql3xxx_port_registers __iomem *port_regs =
671 qdev->mem_map_registers;
672 u8 scanWasEnabled;
673 u32 temp;
674
675 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
676
677 if (ql_wait_for_mii_ready(qdev)) {
678 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
679 return -1;
680 }
681
682 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
683 phyAddr | regAddr);
684
685 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
686 (MAC_MII_CONTROL_RC << 16));
687
688 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
689 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
690
691 /* Wait for the read to complete */
692 if (ql_wait_for_mii_ready(qdev)) {
693 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
694 return -1;
695 }
696
697 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
698 *value = (u16) temp;
699
700 if (scanWasEnabled)
701 ql_mii_enable_scan_mode(qdev);
702
703 return 0;
704 }
705
706 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
707 {
708 struct ql3xxx_port_registers __iomem *port_regs =
709 qdev->mem_map_registers;
710
711 ql_mii_disable_scan_mode(qdev);
712
713 if (ql_wait_for_mii_ready(qdev)) {
714 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
715 return -1;
716 }
717
718 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
719 qdev->PHYAddr | regAddr);
720
721 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
722
723 /* Wait for write to complete. */
724 if (ql_wait_for_mii_ready(qdev)) {
725 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
726 return -1;
727 }
728
729 ql_mii_enable_scan_mode(qdev);
730
731 return 0;
732 }
733
734 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
735 {
736 u32 temp;
737 struct ql3xxx_port_registers __iomem *port_regs =
738 qdev->mem_map_registers;
739
740 ql_mii_disable_scan_mode(qdev);
741
742 if (ql_wait_for_mii_ready(qdev)) {
743 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
744 return -1;
745 }
746
747 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
748 qdev->PHYAddr | regAddr);
749
750 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
751 (MAC_MII_CONTROL_RC << 16));
752
753 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
754 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
755
756 /* Wait for the read to complete */
757 if (ql_wait_for_mii_ready(qdev)) {
758 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
759 return -1;
760 }
761
762 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
763 *value = (u16) temp;
764
765 ql_mii_enable_scan_mode(qdev);
766
767 return 0;
768 }
769
770 static void ql_petbi_reset(struct ql3_adapter *qdev)
771 {
772 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
773 }
774
775 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
776 {
777 u16 reg;
778
779 /* Enable Auto-negotiation sense */
780 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
781 reg |= PETBI_TBI_AUTO_SENSE;
782 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
783
784 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
785 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
786
787 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
788 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
789 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
790
791 }
792
793 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
794 {
795 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
796 PHYAddr[qdev->mac_index]);
797 }
798
799 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
800 {
801 u16 reg;
802
803 /* Enable Auto-negotiation sense */
804 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
805 PHYAddr[qdev->mac_index]);
806 reg |= PETBI_TBI_AUTO_SENSE;
807 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
808 PHYAddr[qdev->mac_index]);
809
810 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
811 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
812 PHYAddr[qdev->mac_index]);
813
814 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
815 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
816 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
817 PHYAddr[qdev->mac_index]);
818 }
819
820 static void ql_petbi_init(struct ql3_adapter *qdev)
821 {
822 ql_petbi_reset(qdev);
823 ql_petbi_start_neg(qdev);
824 }
825
826 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
827 {
828 ql_petbi_reset_ex(qdev);
829 ql_petbi_start_neg_ex(qdev);
830 }
831
832 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
833 {
834 u16 reg;
835
836 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
837 return 0;
838
839 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
840 }
841
842 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
843 {
844 netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
845 /* power down device bit 11 = 1 */
846 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
847 /* enable diagnostic mode bit 2 = 1 */
848 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
849 /* 1000MB amplitude adjust (see Agere errata) */
850 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
851 /* 1000MB amplitude adjust (see Agere errata) */
852 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
853 /* 100MB amplitude adjust (see Agere errata) */
854 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
855 /* 100MB amplitude adjust (see Agere errata) */
856 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
857 /* 10MB amplitude adjust (see Agere errata) */
858 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
859 /* 10MB amplitude adjust (see Agere errata) */
860 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
861 /* point to hidden reg 0x2806 */
862 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
863 /* Write new PHYAD w/bit 5 set */
864 ql_mii_write_reg_ex(qdev, 0x11,
865 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
866 /*
867 * Disable diagnostic mode bit 2 = 0
868 * Power up device bit 11 = 0
869 * Link up (on) and activity (blink)
870 */
871 ql_mii_write_reg(qdev, 0x12, 0x840a);
872 ql_mii_write_reg(qdev, 0x00, 0x1140);
873 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
874 }
875
876 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
877 u16 phyIdReg0, u16 phyIdReg1)
878 {
879 enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
880 u32 oui;
881 u16 model;
882 int i;
883
884 if (phyIdReg0 == 0xffff)
885 return result;
886
887 if (phyIdReg1 == 0xffff)
888 return result;
889
890 /* oui is split between two registers */
891 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
892
893 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
894
895 /* Scan table for this PHY */
896 for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
897 if ((oui == PHY_DEVICES[i].phyIdOUI) &&
898 (model == PHY_DEVICES[i].phyIdModel)) {
899 netdev_info(qdev->ndev, "Phy: %s\n",
900 PHY_DEVICES[i].name);
901 result = PHY_DEVICES[i].phyDevice;
902 break;
903 }
904 }
905
906 return result;
907 }
908
909 static int ql_phy_get_speed(struct ql3_adapter *qdev)
910 {
911 u16 reg;
912
913 switch (qdev->phyType) {
914 case PHY_AGERE_ET1011C: {
915 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
916 return 0;
917
918 reg = (reg >> 8) & 3;
919 break;
920 }
921 default:
922 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
923 return 0;
924
925 reg = (((reg & 0x18) >> 3) & 3);
926 }
927
928 switch (reg) {
929 case 2:
930 return SPEED_1000;
931 case 1:
932 return SPEED_100;
933 case 0:
934 return SPEED_10;
935 default:
936 return -1;
937 }
938 }
939
940 static int ql_is_full_dup(struct ql3_adapter *qdev)
941 {
942 u16 reg;
943
944 switch (qdev->phyType) {
945 case PHY_AGERE_ET1011C: {
946 if (ql_mii_read_reg(qdev, 0x1A, &reg))
947 return 0;
948
949 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
950 }
951 case PHY_VITESSE_VSC8211:
952 default: {
953 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
954 return 0;
955 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
956 }
957 }
958 }
959
960 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
961 {
962 u16 reg;
963
964 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
965 return 0;
966
967 return (reg & PHY_NEG_PAUSE) != 0;
968 }
969
970 static int PHY_Setup(struct ql3_adapter *qdev)
971 {
972 u16 reg1;
973 u16 reg2;
974 bool agereAddrChangeNeeded = false;
975 u32 miiAddr = 0;
976 int err;
977
978 /* Determine the PHY we are using by reading the ID's */
979 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
980 if (err != 0) {
981 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
982 return err;
983 }
984
985 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
986 if (err != 0) {
987 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
988 return err;
989 }
990
991 /* Check if we have a Agere PHY */
992 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
993
994 /* Determine which MII address we should be using
995 determined by the index of the card */
996 if (qdev->mac_index == 0)
997 miiAddr = MII_AGERE_ADDR_1;
998 else
999 miiAddr = MII_AGERE_ADDR_2;
1000
1001 err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1002 if (err != 0) {
1003 netdev_err(qdev->ndev,
1004 "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1005 return err;
1006 }
1007
1008 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1009 if (err != 0) {
1010 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1011 return err;
1012 }
1013
1014 /* We need to remember to initialize the Agere PHY */
1015 agereAddrChangeNeeded = true;
1016 }
1017
1018 /* Determine the particular PHY we have on board to apply
1019 PHY specific initializations */
1020 qdev->phyType = getPhyType(qdev, reg1, reg2);
1021
1022 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1023 /* need this here so address gets changed */
1024 phyAgereSpecificInit(qdev, miiAddr);
1025 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1026 netdev_err(qdev->ndev, "PHY is unknown\n");
1027 return -EIO;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /*
1034 * Caller holds hw_lock.
1035 */
1036 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1037 {
1038 struct ql3xxx_port_registers __iomem *port_regs =
1039 qdev->mem_map_registers;
1040 u32 value;
1041
1042 if (enable)
1043 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1044 else
1045 value = (MAC_CONFIG_REG_PE << 16);
1046
1047 if (qdev->mac_index)
1048 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1049 else
1050 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1051 }
1052
1053 /*
1054 * Caller holds hw_lock.
1055 */
1056 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1057 {
1058 struct ql3xxx_port_registers __iomem *port_regs =
1059 qdev->mem_map_registers;
1060 u32 value;
1061
1062 if (enable)
1063 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1064 else
1065 value = (MAC_CONFIG_REG_SR << 16);
1066
1067 if (qdev->mac_index)
1068 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1069 else
1070 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1071 }
1072
1073 /*
1074 * Caller holds hw_lock.
1075 */
1076 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1077 {
1078 struct ql3xxx_port_registers __iomem *port_regs =
1079 qdev->mem_map_registers;
1080 u32 value;
1081
1082 if (enable)
1083 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1084 else
1085 value = (MAC_CONFIG_REG_GM << 16);
1086
1087 if (qdev->mac_index)
1088 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1089 else
1090 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1091 }
1092
1093 /*
1094 * Caller holds hw_lock.
1095 */
1096 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1097 {
1098 struct ql3xxx_port_registers __iomem *port_regs =
1099 qdev->mem_map_registers;
1100 u32 value;
1101
1102 if (enable)
1103 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1104 else
1105 value = (MAC_CONFIG_REG_FD << 16);
1106
1107 if (qdev->mac_index)
1108 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1109 else
1110 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1111 }
1112
1113 /*
1114 * Caller holds hw_lock.
1115 */
1116 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1117 {
1118 struct ql3xxx_port_registers __iomem *port_regs =
1119 qdev->mem_map_registers;
1120 u32 value;
1121
1122 if (enable)
1123 value =
1124 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1125 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1126 else
1127 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1128
1129 if (qdev->mac_index)
1130 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1131 else
1132 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1133 }
1134
1135 /*
1136 * Caller holds hw_lock.
1137 */
1138 static int ql_is_fiber(struct ql3_adapter *qdev)
1139 {
1140 struct ql3xxx_port_registers __iomem *port_regs =
1141 qdev->mem_map_registers;
1142 u32 bitToCheck = 0;
1143 u32 temp;
1144
1145 switch (qdev->mac_index) {
1146 case 0:
1147 bitToCheck = PORT_STATUS_SM0;
1148 break;
1149 case 1:
1150 bitToCheck = PORT_STATUS_SM1;
1151 break;
1152 }
1153
1154 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1155 return (temp & bitToCheck) != 0;
1156 }
1157
1158 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1159 {
1160 u16 reg;
1161 ql_mii_read_reg(qdev, 0x00, &reg);
1162 return (reg & 0x1000) != 0;
1163 }
1164
1165 /*
1166 * Caller holds hw_lock.
1167 */
1168 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1169 {
1170 struct ql3xxx_port_registers __iomem *port_regs =
1171 qdev->mem_map_registers;
1172 u32 bitToCheck = 0;
1173 u32 temp;
1174
1175 switch (qdev->mac_index) {
1176 case 0:
1177 bitToCheck = PORT_STATUS_AC0;
1178 break;
1179 case 1:
1180 bitToCheck = PORT_STATUS_AC1;
1181 break;
1182 }
1183
1184 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1185 if (temp & bitToCheck) {
1186 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1187 return 1;
1188 }
1189 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1190 return 0;
1191 }
1192
1193 /*
1194 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1195 */
1196 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1197 {
1198 if (ql_is_fiber(qdev))
1199 return ql_is_petbi_neg_pause(qdev);
1200 else
1201 return ql_is_phy_neg_pause(qdev);
1202 }
1203
1204 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1205 {
1206 struct ql3xxx_port_registers __iomem *port_regs =
1207 qdev->mem_map_registers;
1208 u32 bitToCheck = 0;
1209 u32 temp;
1210
1211 switch (qdev->mac_index) {
1212 case 0:
1213 bitToCheck = PORT_STATUS_AE0;
1214 break;
1215 case 1:
1216 bitToCheck = PORT_STATUS_AE1;
1217 break;
1218 }
1219 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1220 return (temp & bitToCheck) != 0;
1221 }
1222
1223 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1224 {
1225 if (ql_is_fiber(qdev))
1226 return SPEED_1000;
1227 else
1228 return ql_phy_get_speed(qdev);
1229 }
1230
1231 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1232 {
1233 if (ql_is_fiber(qdev))
1234 return 1;
1235 else
1236 return ql_is_full_dup(qdev);
1237 }
1238
1239 /*
1240 * Caller holds hw_lock.
1241 */
1242 static int ql_link_down_detect(struct ql3_adapter *qdev)
1243 {
1244 struct ql3xxx_port_registers __iomem *port_regs =
1245 qdev->mem_map_registers;
1246 u32 bitToCheck = 0;
1247 u32 temp;
1248
1249 switch (qdev->mac_index) {
1250 case 0:
1251 bitToCheck = ISP_CONTROL_LINK_DN_0;
1252 break;
1253 case 1:
1254 bitToCheck = ISP_CONTROL_LINK_DN_1;
1255 break;
1256 }
1257
1258 temp =
1259 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1260 return (temp & bitToCheck) != 0;
1261 }
1262
1263 /*
1264 * Caller holds hw_lock.
1265 */
1266 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1267 {
1268 struct ql3xxx_port_registers __iomem *port_regs =
1269 qdev->mem_map_registers;
1270
1271 switch (qdev->mac_index) {
1272 case 0:
1273 ql_write_common_reg(qdev,
1274 &port_regs->CommonRegs.ispControlStatus,
1275 (ISP_CONTROL_LINK_DN_0) |
1276 (ISP_CONTROL_LINK_DN_0 << 16));
1277 break;
1278
1279 case 1:
1280 ql_write_common_reg(qdev,
1281 &port_regs->CommonRegs.ispControlStatus,
1282 (ISP_CONTROL_LINK_DN_1) |
1283 (ISP_CONTROL_LINK_DN_1 << 16));
1284 break;
1285
1286 default:
1287 return 1;
1288 }
1289
1290 return 0;
1291 }
1292
1293 /*
1294 * Caller holds hw_lock.
1295 */
1296 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1297 {
1298 struct ql3xxx_port_registers __iomem *port_regs =
1299 qdev->mem_map_registers;
1300 u32 bitToCheck = 0;
1301 u32 temp;
1302
1303 switch (qdev->mac_index) {
1304 case 0:
1305 bitToCheck = PORT_STATUS_F1_ENABLED;
1306 break;
1307 case 1:
1308 bitToCheck = PORT_STATUS_F3_ENABLED;
1309 break;
1310 default:
1311 break;
1312 }
1313
1314 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1315 if (temp & bitToCheck) {
1316 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1317 "not link master\n");
1318 return 0;
1319 }
1320
1321 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1322 return 1;
1323 }
1324
1325 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1326 {
1327 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1328 PHYAddr[qdev->mac_index]);
1329 }
1330
1331 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1332 {
1333 u16 reg;
1334 u16 portConfiguration;
1335
1336 if (qdev->phyType == PHY_AGERE_ET1011C)
1337 ql_mii_write_reg(qdev, 0x13, 0x0000);
1338 /* turn off external loopback */
1339
1340 if (qdev->mac_index == 0)
1341 portConfiguration =
1342 qdev->nvram_data.macCfg_port0.portConfiguration;
1343 else
1344 portConfiguration =
1345 qdev->nvram_data.macCfg_port1.portConfiguration;
1346
1347 /* Some HBA's in the field are set to 0 and they need to
1348 be reinterpreted with a default value */
1349 if (portConfiguration == 0)
1350 portConfiguration = PORT_CONFIG_DEFAULT;
1351
1352 /* Set the 1000 advertisements */
1353 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1354 PHYAddr[qdev->mac_index]);
1355 reg &= ~PHY_GIG_ALL_PARAMS;
1356
1357 if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1358 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1359 reg |= PHY_GIG_ADV_1000F;
1360 else
1361 reg |= PHY_GIG_ADV_1000H;
1362 }
1363
1364 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1365 PHYAddr[qdev->mac_index]);
1366
1367 /* Set the 10/100 & pause negotiation advertisements */
1368 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1369 PHYAddr[qdev->mac_index]);
1370 reg &= ~PHY_NEG_ALL_PARAMS;
1371
1372 if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1373 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1374
1375 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1376 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1377 reg |= PHY_NEG_ADV_100F;
1378
1379 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1380 reg |= PHY_NEG_ADV_10F;
1381 }
1382
1383 if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1384 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1385 reg |= PHY_NEG_ADV_100H;
1386
1387 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1388 reg |= PHY_NEG_ADV_10H;
1389 }
1390
1391 if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1392 reg |= 1;
1393
1394 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1395 PHYAddr[qdev->mac_index]);
1396
1397 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1398
1399 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1400 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1401 PHYAddr[qdev->mac_index]);
1402 }
1403
1404 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1405 {
1406 ql_phy_reset_ex(qdev);
1407 PHY_Setup(qdev);
1408 ql_phy_start_neg_ex(qdev);
1409 }
1410
1411 /*
1412 * Caller holds hw_lock.
1413 */
1414 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1415 {
1416 struct ql3xxx_port_registers __iomem *port_regs =
1417 qdev->mem_map_registers;
1418 u32 bitToCheck = 0;
1419 u32 temp, linkState;
1420
1421 switch (qdev->mac_index) {
1422 case 0:
1423 bitToCheck = PORT_STATUS_UP0;
1424 break;
1425 case 1:
1426 bitToCheck = PORT_STATUS_UP1;
1427 break;
1428 }
1429
1430 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1431 if (temp & bitToCheck)
1432 linkState = LS_UP;
1433 else
1434 linkState = LS_DOWN;
1435
1436 return linkState;
1437 }
1438
1439 static int ql_port_start(struct ql3_adapter *qdev)
1440 {
1441 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1442 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1443 2) << 7)) {
1444 netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1445 return -1;
1446 }
1447
1448 if (ql_is_fiber(qdev)) {
1449 ql_petbi_init(qdev);
1450 } else {
1451 /* Copper port */
1452 ql_phy_init_ex(qdev);
1453 }
1454
1455 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1456 return 0;
1457 }
1458
1459 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1460 {
1461
1462 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1463 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1464 2) << 7))
1465 return -1;
1466
1467 if (!ql_auto_neg_error(qdev)) {
1468 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1469 /* configure the MAC */
1470 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1471 "Configuring link\n");
1472 ql_mac_cfg_soft_reset(qdev, 1);
1473 ql_mac_cfg_gig(qdev,
1474 (ql_get_link_speed
1475 (qdev) ==
1476 SPEED_1000));
1477 ql_mac_cfg_full_dup(qdev,
1478 ql_is_link_full_dup
1479 (qdev));
1480 ql_mac_cfg_pause(qdev,
1481 ql_is_neg_pause
1482 (qdev));
1483 ql_mac_cfg_soft_reset(qdev, 0);
1484
1485 /* enable the MAC */
1486 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1487 "Enabling mac\n");
1488 ql_mac_enable(qdev, 1);
1489 }
1490
1491 qdev->port_link_state = LS_UP;
1492 netif_start_queue(qdev->ndev);
1493 netif_carrier_on(qdev->ndev);
1494 netif_info(qdev, link, qdev->ndev,
1495 "Link is up at %d Mbps, %s duplex\n",
1496 ql_get_link_speed(qdev),
1497 ql_is_link_full_dup(qdev) ? "full" : "half");
1498
1499 } else { /* Remote error detected */
1500
1501 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1502 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1503 "Remote error detected. Calling ql_port_start()\n");
1504 /*
1505 * ql_port_start() is shared code and needs
1506 * to lock the PHY on it's own.
1507 */
1508 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1509 if (ql_port_start(qdev)) /* Restart port */
1510 return -1;
1511 return 0;
1512 }
1513 }
1514 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1515 return 0;
1516 }
1517
1518 static void ql_link_state_machine_work(struct work_struct *work)
1519 {
1520 struct ql3_adapter *qdev =
1521 container_of(work, struct ql3_adapter, link_state_work.work);
1522
1523 u32 curr_link_state;
1524 unsigned long hw_flags;
1525
1526 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1527
1528 curr_link_state = ql_get_link_state(qdev);
1529
1530 if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1531 netif_info(qdev, link, qdev->ndev,
1532 "Reset in progress, skip processing link state\n");
1533
1534 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1535
1536 /* Restart timer on 2 second interval. */
1537 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1538
1539 return;
1540 }
1541
1542 switch (qdev->port_link_state) {
1543 default:
1544 if (test_bit(QL_LINK_MASTER, &qdev->flags))
1545 ql_port_start(qdev);
1546 qdev->port_link_state = LS_DOWN;
1547 /* Fall Through */
1548
1549 case LS_DOWN:
1550 if (curr_link_state == LS_UP) {
1551 netif_info(qdev, link, qdev->ndev, "Link is up\n");
1552 if (ql_is_auto_neg_complete(qdev))
1553 ql_finish_auto_neg(qdev);
1554
1555 if (qdev->port_link_state == LS_UP)
1556 ql_link_down_detect_clear(qdev);
1557
1558 qdev->port_link_state = LS_UP;
1559 }
1560 break;
1561
1562 case LS_UP:
1563 /*
1564 * See if the link is currently down or went down and came
1565 * back up
1566 */
1567 if (curr_link_state == LS_DOWN) {
1568 netif_info(qdev, link, qdev->ndev, "Link is down\n");
1569 qdev->port_link_state = LS_DOWN;
1570 }
1571 if (ql_link_down_detect(qdev))
1572 qdev->port_link_state = LS_DOWN;
1573 break;
1574 }
1575 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1576
1577 /* Restart timer on 2 second interval. */
1578 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1579 }
1580
1581 /*
1582 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1583 */
1584 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1585 {
1586 if (ql_this_adapter_controls_port(qdev))
1587 set_bit(QL_LINK_MASTER, &qdev->flags);
1588 else
1589 clear_bit(QL_LINK_MASTER, &qdev->flags);
1590 }
1591
1592 /*
1593 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1594 */
1595 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1596 {
1597 ql_mii_enable_scan_mode(qdev);
1598
1599 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1600 if (ql_this_adapter_controls_port(qdev))
1601 ql_petbi_init_ex(qdev);
1602 } else {
1603 if (ql_this_adapter_controls_port(qdev))
1604 ql_phy_init_ex(qdev);
1605 }
1606 }
1607
1608 /*
1609 * MII_Setup needs to be called before taking the PHY out of reset
1610 * so that the management interface clock speed can be set properly.
1611 * It would be better if we had a way to disable MDC until after the
1612 * PHY is out of reset, but we don't have that capability.
1613 */
1614 static int ql_mii_setup(struct ql3_adapter *qdev)
1615 {
1616 u32 reg;
1617 struct ql3xxx_port_registers __iomem *port_regs =
1618 qdev->mem_map_registers;
1619
1620 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1621 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1622 2) << 7))
1623 return -1;
1624
1625 if (qdev->device_id == QL3032_DEVICE_ID)
1626 ql_write_page0_reg(qdev,
1627 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1628
1629 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1630 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1631
1632 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1633 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1634
1635 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1636 return 0;
1637 }
1638
1639 #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
1640 SUPPORTED_FIBRE | \
1641 SUPPORTED_Autoneg)
1642 #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
1643 SUPPORTED_10baseT_Full | \
1644 SUPPORTED_100baseT_Half | \
1645 SUPPORTED_100baseT_Full | \
1646 SUPPORTED_1000baseT_Half | \
1647 SUPPORTED_1000baseT_Full | \
1648 SUPPORTED_Autoneg | \
1649 SUPPORTED_TP) \
1650
1651 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1652 {
1653 if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1654 return SUPPORTED_OPTICAL_MODES;
1655
1656 return SUPPORTED_TP_MODES;
1657 }
1658
1659 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1660 {
1661 int status;
1662 unsigned long hw_flags;
1663 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1664 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1665 (QL_RESOURCE_BITS_BASE_CODE |
1666 (qdev->mac_index) * 2) << 7)) {
1667 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1668 return 0;
1669 }
1670 status = ql_is_auto_cfg(qdev);
1671 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1672 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1673 return status;
1674 }
1675
1676 static u32 ql_get_speed(struct ql3_adapter *qdev)
1677 {
1678 u32 status;
1679 unsigned long hw_flags;
1680 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1681 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1682 (QL_RESOURCE_BITS_BASE_CODE |
1683 (qdev->mac_index) * 2) << 7)) {
1684 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1685 return 0;
1686 }
1687 status = ql_get_link_speed(qdev);
1688 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1689 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1690 return status;
1691 }
1692
1693 static int ql_get_full_dup(struct ql3_adapter *qdev)
1694 {
1695 int status;
1696 unsigned long hw_flags;
1697 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1698 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1699 (QL_RESOURCE_BITS_BASE_CODE |
1700 (qdev->mac_index) * 2) << 7)) {
1701 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1702 return 0;
1703 }
1704 status = ql_is_link_full_dup(qdev);
1705 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1706 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1707 return status;
1708 }
1709
1710 static int ql_get_link_ksettings(struct net_device *ndev,
1711 struct ethtool_link_ksettings *cmd)
1712 {
1713 struct ql3_adapter *qdev = netdev_priv(ndev);
1714 u32 supported, advertising;
1715
1716 supported = ql_supported_modes(qdev);
1717
1718 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1719 cmd->base.port = PORT_FIBRE;
1720 } else {
1721 cmd->base.port = PORT_TP;
1722 cmd->base.phy_address = qdev->PHYAddr;
1723 }
1724 advertising = ql_supported_modes(qdev);
1725 cmd->base.autoneg = ql_get_auto_cfg_status(qdev);
1726 cmd->base.speed = ql_get_speed(qdev);
1727 cmd->base.duplex = ql_get_full_dup(qdev);
1728
1729 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1730 supported);
1731 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1732 advertising);
1733
1734 return 0;
1735 }
1736
1737 static void ql_get_drvinfo(struct net_device *ndev,
1738 struct ethtool_drvinfo *drvinfo)
1739 {
1740 struct ql3_adapter *qdev = netdev_priv(ndev);
1741 strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1742 strlcpy(drvinfo->version, ql3xxx_driver_version,
1743 sizeof(drvinfo->version));
1744 strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1745 sizeof(drvinfo->bus_info));
1746 }
1747
1748 static u32 ql_get_msglevel(struct net_device *ndev)
1749 {
1750 struct ql3_adapter *qdev = netdev_priv(ndev);
1751 return qdev->msg_enable;
1752 }
1753
1754 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1755 {
1756 struct ql3_adapter *qdev = netdev_priv(ndev);
1757 qdev->msg_enable = value;
1758 }
1759
1760 static void ql_get_pauseparam(struct net_device *ndev,
1761 struct ethtool_pauseparam *pause)
1762 {
1763 struct ql3_adapter *qdev = netdev_priv(ndev);
1764 struct ql3xxx_port_registers __iomem *port_regs =
1765 qdev->mem_map_registers;
1766
1767 u32 reg;
1768 if (qdev->mac_index == 0)
1769 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1770 else
1771 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1772
1773 pause->autoneg = ql_get_auto_cfg_status(qdev);
1774 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1775 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1776 }
1777
1778 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1779 .get_drvinfo = ql_get_drvinfo,
1780 .get_link = ethtool_op_get_link,
1781 .get_msglevel = ql_get_msglevel,
1782 .set_msglevel = ql_set_msglevel,
1783 .get_pauseparam = ql_get_pauseparam,
1784 .get_link_ksettings = ql_get_link_ksettings,
1785 };
1786
1787 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1788 {
1789 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1790 dma_addr_t map;
1791 int err;
1792
1793 while (lrg_buf_cb) {
1794 if (!lrg_buf_cb->skb) {
1795 lrg_buf_cb->skb =
1796 netdev_alloc_skb(qdev->ndev,
1797 qdev->lrg_buffer_len);
1798 if (unlikely(!lrg_buf_cb->skb)) {
1799 netdev_printk(KERN_DEBUG, qdev->ndev,
1800 "Failed netdev_alloc_skb()\n");
1801 break;
1802 } else {
1803 /*
1804 * We save some space to copy the ethhdr from
1805 * first buffer
1806 */
1807 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1808 map = pci_map_single(qdev->pdev,
1809 lrg_buf_cb->skb->data,
1810 qdev->lrg_buffer_len -
1811 QL_HEADER_SPACE,
1812 PCI_DMA_FROMDEVICE);
1813
1814 err = pci_dma_mapping_error(qdev->pdev, map);
1815 if (err) {
1816 netdev_err(qdev->ndev,
1817 "PCI mapping failed with error: %d\n",
1818 err);
1819 dev_kfree_skb(lrg_buf_cb->skb);
1820 lrg_buf_cb->skb = NULL;
1821 break;
1822 }
1823
1824
1825 lrg_buf_cb->buf_phy_addr_low =
1826 cpu_to_le32(LS_64BITS(map));
1827 lrg_buf_cb->buf_phy_addr_high =
1828 cpu_to_le32(MS_64BITS(map));
1829 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1830 dma_unmap_len_set(lrg_buf_cb, maplen,
1831 qdev->lrg_buffer_len -
1832 QL_HEADER_SPACE);
1833 --qdev->lrg_buf_skb_check;
1834 if (!qdev->lrg_buf_skb_check)
1835 return 1;
1836 }
1837 }
1838 lrg_buf_cb = lrg_buf_cb->next;
1839 }
1840 return 0;
1841 }
1842
1843 /*
1844 * Caller holds hw_lock.
1845 */
1846 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1847 {
1848 struct ql3xxx_port_registers __iomem *port_regs =
1849 qdev->mem_map_registers;
1850
1851 if (qdev->small_buf_release_cnt >= 16) {
1852 while (qdev->small_buf_release_cnt >= 16) {
1853 qdev->small_buf_q_producer_index++;
1854
1855 if (qdev->small_buf_q_producer_index ==
1856 NUM_SBUFQ_ENTRIES)
1857 qdev->small_buf_q_producer_index = 0;
1858 qdev->small_buf_release_cnt -= 8;
1859 }
1860 wmb();
1861 writel(qdev->small_buf_q_producer_index,
1862 &port_regs->CommonRegs.rxSmallQProducerIndex);
1863 }
1864 }
1865
1866 /*
1867 * Caller holds hw_lock.
1868 */
1869 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1870 {
1871 struct bufq_addr_element *lrg_buf_q_ele;
1872 int i;
1873 struct ql_rcv_buf_cb *lrg_buf_cb;
1874 struct ql3xxx_port_registers __iomem *port_regs =
1875 qdev->mem_map_registers;
1876
1877 if ((qdev->lrg_buf_free_count >= 8) &&
1878 (qdev->lrg_buf_release_cnt >= 16)) {
1879
1880 if (qdev->lrg_buf_skb_check)
1881 if (!ql_populate_free_queue(qdev))
1882 return;
1883
1884 lrg_buf_q_ele = qdev->lrg_buf_next_free;
1885
1886 while ((qdev->lrg_buf_release_cnt >= 16) &&
1887 (qdev->lrg_buf_free_count >= 8)) {
1888
1889 for (i = 0; i < 8; i++) {
1890 lrg_buf_cb =
1891 ql_get_from_lrg_buf_free_list(qdev);
1892 lrg_buf_q_ele->addr_high =
1893 lrg_buf_cb->buf_phy_addr_high;
1894 lrg_buf_q_ele->addr_low =
1895 lrg_buf_cb->buf_phy_addr_low;
1896 lrg_buf_q_ele++;
1897
1898 qdev->lrg_buf_release_cnt--;
1899 }
1900
1901 qdev->lrg_buf_q_producer_index++;
1902
1903 if (qdev->lrg_buf_q_producer_index ==
1904 qdev->num_lbufq_entries)
1905 qdev->lrg_buf_q_producer_index = 0;
1906
1907 if (qdev->lrg_buf_q_producer_index ==
1908 (qdev->num_lbufq_entries - 1)) {
1909 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1910 }
1911 }
1912 wmb();
1913 qdev->lrg_buf_next_free = lrg_buf_q_ele;
1914 writel(qdev->lrg_buf_q_producer_index,
1915 &port_regs->CommonRegs.rxLargeQProducerIndex);
1916 }
1917 }
1918
1919 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1920 struct ob_mac_iocb_rsp *mac_rsp)
1921 {
1922 struct ql_tx_buf_cb *tx_cb;
1923 int i;
1924
1925 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1926 netdev_warn(qdev->ndev,
1927 "Frame too short but it was padded and sent\n");
1928 }
1929
1930 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1931
1932 /* Check the transmit response flags for any errors */
1933 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1934 netdev_err(qdev->ndev,
1935 "Frame too short to be legal, frame not sent\n");
1936
1937 qdev->ndev->stats.tx_errors++;
1938 goto frame_not_sent;
1939 }
1940
1941 if (tx_cb->seg_count == 0) {
1942 netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1943 mac_rsp->transaction_id);
1944
1945 qdev->ndev->stats.tx_errors++;
1946 goto invalid_seg_count;
1947 }
1948
1949 pci_unmap_single(qdev->pdev,
1950 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1951 dma_unmap_len(&tx_cb->map[0], maplen),
1952 PCI_DMA_TODEVICE);
1953 tx_cb->seg_count--;
1954 if (tx_cb->seg_count) {
1955 for (i = 1; i < tx_cb->seg_count; i++) {
1956 pci_unmap_page(qdev->pdev,
1957 dma_unmap_addr(&tx_cb->map[i],
1958 mapaddr),
1959 dma_unmap_len(&tx_cb->map[i], maplen),
1960 PCI_DMA_TODEVICE);
1961 }
1962 }
1963 qdev->ndev->stats.tx_packets++;
1964 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1965
1966 frame_not_sent:
1967 dev_kfree_skb_irq(tx_cb->skb);
1968 tx_cb->skb = NULL;
1969
1970 invalid_seg_count:
1971 atomic_inc(&qdev->tx_count);
1972 }
1973
1974 static void ql_get_sbuf(struct ql3_adapter *qdev)
1975 {
1976 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1977 qdev->small_buf_index = 0;
1978 qdev->small_buf_release_cnt++;
1979 }
1980
1981 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1982 {
1983 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1984 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1985 qdev->lrg_buf_release_cnt++;
1986 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1987 qdev->lrg_buf_index = 0;
1988 return lrg_buf_cb;
1989 }
1990
1991 /*
1992 * The difference between 3022 and 3032 for inbound completions:
1993 * 3022 uses two buffers per completion. The first buffer contains
1994 * (some) header info, the second the remainder of the headers plus
1995 * the data. For this chip we reserve some space at the top of the
1996 * receive buffer so that the header info in buffer one can be
1997 * prepended to the buffer two. Buffer two is the sent up while
1998 * buffer one is returned to the hardware to be reused.
1999 * 3032 receives all of it's data and headers in one buffer for a
2000 * simpler process. 3032 also supports checksum verification as
2001 * can be seen in ql_process_macip_rx_intr().
2002 */
2003 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2004 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2005 {
2006 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2007 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2008 struct sk_buff *skb;
2009 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2010
2011 /*
2012 * Get the inbound address list (small buffer).
2013 */
2014 ql_get_sbuf(qdev);
2015
2016 if (qdev->device_id == QL3022_DEVICE_ID)
2017 lrg_buf_cb1 = ql_get_lbuf(qdev);
2018
2019 /* start of second buffer */
2020 lrg_buf_cb2 = ql_get_lbuf(qdev);
2021 skb = lrg_buf_cb2->skb;
2022
2023 qdev->ndev->stats.rx_packets++;
2024 qdev->ndev->stats.rx_bytes += length;
2025
2026 skb_put(skb, length);
2027 pci_unmap_single(qdev->pdev,
2028 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2029 dma_unmap_len(lrg_buf_cb2, maplen),
2030 PCI_DMA_FROMDEVICE);
2031 prefetch(skb->data);
2032 skb_checksum_none_assert(skb);
2033 skb->protocol = eth_type_trans(skb, qdev->ndev);
2034
2035 napi_gro_receive(&qdev->napi, skb);
2036 lrg_buf_cb2->skb = NULL;
2037
2038 if (qdev->device_id == QL3022_DEVICE_ID)
2039 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2040 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2041 }
2042
2043 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2044 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2045 {
2046 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2047 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2048 struct sk_buff *skb1 = NULL, *skb2;
2049 struct net_device *ndev = qdev->ndev;
2050 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2051 u16 size = 0;
2052
2053 /*
2054 * Get the inbound address list (small buffer).
2055 */
2056
2057 ql_get_sbuf(qdev);
2058
2059 if (qdev->device_id == QL3022_DEVICE_ID) {
2060 /* start of first buffer on 3022 */
2061 lrg_buf_cb1 = ql_get_lbuf(qdev);
2062 skb1 = lrg_buf_cb1->skb;
2063 size = ETH_HLEN;
2064 if (*((u16 *) skb1->data) != 0xFFFF)
2065 size += VLAN_ETH_HLEN - ETH_HLEN;
2066 }
2067
2068 /* start of second buffer */
2069 lrg_buf_cb2 = ql_get_lbuf(qdev);
2070 skb2 = lrg_buf_cb2->skb;
2071
2072 skb_put(skb2, length); /* Just the second buffer length here. */
2073 pci_unmap_single(qdev->pdev,
2074 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2075 dma_unmap_len(lrg_buf_cb2, maplen),
2076 PCI_DMA_FROMDEVICE);
2077 prefetch(skb2->data);
2078
2079 skb_checksum_none_assert(skb2);
2080 if (qdev->device_id == QL3022_DEVICE_ID) {
2081 /*
2082 * Copy the ethhdr from first buffer to second. This
2083 * is necessary for 3022 IP completions.
2084 */
2085 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2086 skb_push(skb2, size), size);
2087 } else {
2088 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2089 if (checksum &
2090 (IB_IP_IOCB_RSP_3032_ICE |
2091 IB_IP_IOCB_RSP_3032_CE)) {
2092 netdev_err(ndev,
2093 "%s: Bad checksum for this %s packet, checksum = %x\n",
2094 __func__,
2095 ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2096 "TCP" : "UDP"), checksum);
2097 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2098 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2099 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2100 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2101 }
2102 }
2103 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2104
2105 napi_gro_receive(&qdev->napi, skb2);
2106 ndev->stats.rx_packets++;
2107 ndev->stats.rx_bytes += length;
2108 lrg_buf_cb2->skb = NULL;
2109
2110 if (qdev->device_id == QL3022_DEVICE_ID)
2111 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2112 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2113 }
2114
2115 static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget)
2116 {
2117 struct net_rsp_iocb *net_rsp;
2118 struct net_device *ndev = qdev->ndev;
2119 int work_done = 0;
2120
2121 /* While there are entries in the completion queue. */
2122 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2123 qdev->rsp_consumer_index) && (work_done < budget)) {
2124
2125 net_rsp = qdev->rsp_current;
2126 rmb();
2127 /*
2128 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2129 * if the inbound completion is for a VLAN.
2130 */
2131 if (qdev->device_id == QL3032_DEVICE_ID)
2132 net_rsp->opcode &= 0x7f;
2133 switch (net_rsp->opcode) {
2134
2135 case OPCODE_OB_MAC_IOCB_FN0:
2136 case OPCODE_OB_MAC_IOCB_FN2:
2137 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2138 net_rsp);
2139 break;
2140
2141 case OPCODE_IB_MAC_IOCB:
2142 case OPCODE_IB_3032_MAC_IOCB:
2143 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2144 net_rsp);
2145 work_done++;
2146 break;
2147
2148 case OPCODE_IB_IP_IOCB:
2149 case OPCODE_IB_3032_IP_IOCB:
2150 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2151 net_rsp);
2152 work_done++;
2153 break;
2154 default: {
2155 u32 *tmp = (u32 *)net_rsp;
2156 netdev_err(ndev,
2157 "Hit default case, not handled!\n"
2158 " dropping the packet, opcode = %x\n"
2159 "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2160 net_rsp->opcode,
2161 (unsigned long int)tmp[0],
2162 (unsigned long int)tmp[1],
2163 (unsigned long int)tmp[2],
2164 (unsigned long int)tmp[3]);
2165 }
2166 }
2167
2168 qdev->rsp_consumer_index++;
2169
2170 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2171 qdev->rsp_consumer_index = 0;
2172 qdev->rsp_current = qdev->rsp_q_virt_addr;
2173 } else {
2174 qdev->rsp_current++;
2175 }
2176
2177 }
2178
2179 return work_done;
2180 }
2181
2182 static int ql_poll(struct napi_struct *napi, int budget)
2183 {
2184 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2185 struct ql3xxx_port_registers __iomem *port_regs =
2186 qdev->mem_map_registers;
2187 int work_done;
2188
2189 work_done = ql_tx_rx_clean(qdev, budget);
2190
2191 if (work_done < budget && napi_complete_done(napi, work_done)) {
2192 unsigned long flags;
2193
2194 spin_lock_irqsave(&qdev->hw_lock, flags);
2195 ql_update_small_bufq_prod_index(qdev);
2196 ql_update_lrg_bufq_prod_index(qdev);
2197 writel(qdev->rsp_consumer_index,
2198 &port_regs->CommonRegs.rspQConsumerIndex);
2199 spin_unlock_irqrestore(&qdev->hw_lock, flags);
2200
2201 ql_enable_interrupts(qdev);
2202 }
2203 return work_done;
2204 }
2205
2206 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2207 {
2208
2209 struct net_device *ndev = dev_id;
2210 struct ql3_adapter *qdev = netdev_priv(ndev);
2211 struct ql3xxx_port_registers __iomem *port_regs =
2212 qdev->mem_map_registers;
2213 u32 value;
2214 int handled = 1;
2215 u32 var;
2216
2217 value = ql_read_common_reg_l(qdev,
2218 &port_regs->CommonRegs.ispControlStatus);
2219
2220 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2221 spin_lock(&qdev->adapter_lock);
2222 netif_stop_queue(qdev->ndev);
2223 netif_carrier_off(qdev->ndev);
2224 ql_disable_interrupts(qdev);
2225 qdev->port_link_state = LS_DOWN;
2226 set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2227
2228 if (value & ISP_CONTROL_FE) {
2229 /*
2230 * Chip Fatal Error.
2231 */
2232 var =
2233 ql_read_page0_reg_l(qdev,
2234 &port_regs->PortFatalErrStatus);
2235 netdev_warn(ndev,
2236 "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2237 var);
2238 set_bit(QL_RESET_START, &qdev->flags) ;
2239 } else {
2240 /*
2241 * Soft Reset Requested.
2242 */
2243 set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2244 netdev_err(ndev,
2245 "Another function issued a reset to the chip. ISR value = %x\n",
2246 value);
2247 }
2248 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2249 spin_unlock(&qdev->adapter_lock);
2250 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2251 ql_disable_interrupts(qdev);
2252 if (likely(napi_schedule_prep(&qdev->napi)))
2253 __napi_schedule(&qdev->napi);
2254 } else
2255 return IRQ_NONE;
2256
2257 return IRQ_RETVAL(handled);
2258 }
2259
2260 /*
2261 * Get the total number of segments needed for the given number of fragments.
2262 * This is necessary because outbound address lists (OAL) will be used when
2263 * more than two frags are given. Each address list has 5 addr/len pairs.
2264 * The 5th pair in each OAL is used to point to the next OAL if more frags
2265 * are coming. That is why the frags:segment count ratio is not linear.
2266 */
2267 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2268 {
2269 if (qdev->device_id == QL3022_DEVICE_ID)
2270 return 1;
2271
2272 if (frags <= 2)
2273 return frags + 1;
2274 else if (frags <= 6)
2275 return frags + 2;
2276 else if (frags <= 10)
2277 return frags + 3;
2278 else if (frags <= 14)
2279 return frags + 4;
2280 else if (frags <= 18)
2281 return frags + 5;
2282 return -1;
2283 }
2284
2285 static void ql_hw_csum_setup(const struct sk_buff *skb,
2286 struct ob_mac_iocb_req *mac_iocb_ptr)
2287 {
2288 const struct iphdr *ip = ip_hdr(skb);
2289
2290 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2291 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2292
2293 if (ip->protocol == IPPROTO_TCP) {
2294 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2295 OB_3032MAC_IOCB_REQ_IC;
2296 } else {
2297 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2298 OB_3032MAC_IOCB_REQ_IC;
2299 }
2300
2301 }
2302
2303 /*
2304 * Map the buffers for this transmit.
2305 * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2306 */
2307 static int ql_send_map(struct ql3_adapter *qdev,
2308 struct ob_mac_iocb_req *mac_iocb_ptr,
2309 struct ql_tx_buf_cb *tx_cb,
2310 struct sk_buff *skb)
2311 {
2312 struct oal *oal;
2313 struct oal_entry *oal_entry;
2314 int len = skb_headlen(skb);
2315 dma_addr_t map;
2316 int err;
2317 int completed_segs, i;
2318 int seg_cnt, seg = 0;
2319 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2320
2321 seg_cnt = tx_cb->seg_count;
2322 /*
2323 * Map the skb buffer first.
2324 */
2325 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2326
2327 err = pci_dma_mapping_error(qdev->pdev, map);
2328 if (err) {
2329 netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2330 err);
2331
2332 return NETDEV_TX_BUSY;
2333 }
2334
2335 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2336 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2337 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2338 oal_entry->len = cpu_to_le32(len);
2339 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2340 dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2341 seg++;
2342
2343 if (seg_cnt == 1) {
2344 /* Terminate the last segment. */
2345 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2346 return NETDEV_TX_OK;
2347 }
2348 oal = tx_cb->oal;
2349 for (completed_segs = 0;
2350 completed_segs < frag_cnt;
2351 completed_segs++, seg++) {
2352 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2353 oal_entry++;
2354 /*
2355 * Check for continuation requirements.
2356 * It's strange but necessary.
2357 * Continuation entry points to outbound address list.
2358 */
2359 if ((seg == 2 && seg_cnt > 3) ||
2360 (seg == 7 && seg_cnt > 8) ||
2361 (seg == 12 && seg_cnt > 13) ||
2362 (seg == 17 && seg_cnt > 18)) {
2363 map = pci_map_single(qdev->pdev, oal,
2364 sizeof(struct oal),
2365 PCI_DMA_TODEVICE);
2366
2367 err = pci_dma_mapping_error(qdev->pdev, map);
2368 if (err) {
2369 netdev_err(qdev->ndev,
2370 "PCI mapping outbound address list with error: %d\n",
2371 err);
2372 goto map_error;
2373 }
2374
2375 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2376 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2377 oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2378 OAL_CONT_ENTRY);
2379 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2380 dma_unmap_len_set(&tx_cb->map[seg], maplen,
2381 sizeof(struct oal));
2382 oal_entry = (struct oal_entry *)oal;
2383 oal++;
2384 seg++;
2385 }
2386
2387 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2388 DMA_TO_DEVICE);
2389
2390 err = dma_mapping_error(&qdev->pdev->dev, map);
2391 if (err) {
2392 netdev_err(qdev->ndev,
2393 "PCI mapping frags failed with error: %d\n",
2394 err);
2395 goto map_error;
2396 }
2397
2398 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2399 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2400 oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2401 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2402 dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2403 }
2404 /* Terminate the last segment. */
2405 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2406 return NETDEV_TX_OK;
2407
2408 map_error:
2409 /* A PCI mapping failed and now we will need to back out
2410 * We need to traverse through the oal's and associated pages which
2411 * have been mapped and now we must unmap them to clean up properly
2412 */
2413
2414 seg = 1;
2415 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2416 oal = tx_cb->oal;
2417 for (i = 0; i < completed_segs; i++, seg++) {
2418 oal_entry++;
2419
2420 /*
2421 * Check for continuation requirements.
2422 * It's strange but necessary.
2423 */
2424
2425 if ((seg == 2 && seg_cnt > 3) ||
2426 (seg == 7 && seg_cnt > 8) ||
2427 (seg == 12 && seg_cnt > 13) ||
2428 (seg == 17 && seg_cnt > 18)) {
2429 pci_unmap_single(qdev->pdev,
2430 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2431 dma_unmap_len(&tx_cb->map[seg], maplen),
2432 PCI_DMA_TODEVICE);
2433 oal++;
2434 seg++;
2435 }
2436
2437 pci_unmap_page(qdev->pdev,
2438 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2439 dma_unmap_len(&tx_cb->map[seg], maplen),
2440 PCI_DMA_TODEVICE);
2441 }
2442
2443 pci_unmap_single(qdev->pdev,
2444 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2445 dma_unmap_addr(&tx_cb->map[0], maplen),
2446 PCI_DMA_TODEVICE);
2447
2448 return NETDEV_TX_BUSY;
2449
2450 }
2451
2452 /*
2453 * The difference between 3022 and 3032 sends:
2454 * 3022 only supports a simple single segment transmission.
2455 * 3032 supports checksumming and scatter/gather lists (fragments).
2456 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2457 * in the IOCB plus a chain of outbound address lists (OAL) that
2458 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2459 * will be used to point to an OAL when more ALP entries are required.
2460 * The IOCB is always the top of the chain followed by one or more
2461 * OALs (when necessary).
2462 */
2463 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2464 struct net_device *ndev)
2465 {
2466 struct ql3_adapter *qdev = netdev_priv(ndev);
2467 struct ql3xxx_port_registers __iomem *port_regs =
2468 qdev->mem_map_registers;
2469 struct ql_tx_buf_cb *tx_cb;
2470 u32 tot_len = skb->len;
2471 struct ob_mac_iocb_req *mac_iocb_ptr;
2472
2473 if (unlikely(atomic_read(&qdev->tx_count) < 2))
2474 return NETDEV_TX_BUSY;
2475
2476 tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2477 tx_cb->seg_count = ql_get_seg_count(qdev,
2478 skb_shinfo(skb)->nr_frags);
2479 if (tx_cb->seg_count == -1) {
2480 netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2481 return NETDEV_TX_OK;
2482 }
2483
2484 mac_iocb_ptr = tx_cb->queue_entry;
2485 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2486 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2487 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2488 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2489 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2490 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2491 tx_cb->skb = skb;
2492 if (qdev->device_id == QL3032_DEVICE_ID &&
2493 skb->ip_summed == CHECKSUM_PARTIAL)
2494 ql_hw_csum_setup(skb, mac_iocb_ptr);
2495
2496 if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2497 netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2498 return NETDEV_TX_BUSY;
2499 }
2500
2501 wmb();
2502 qdev->req_producer_index++;
2503 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2504 qdev->req_producer_index = 0;
2505 wmb();
2506 ql_write_common_reg_l(qdev,
2507 &port_regs->CommonRegs.reqQProducerIndex,
2508 qdev->req_producer_index);
2509
2510 netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2511 "tx queued, slot %d, len %d\n",
2512 qdev->req_producer_index, skb->len);
2513
2514 atomic_dec(&qdev->tx_count);
2515 return NETDEV_TX_OK;
2516 }
2517
2518 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2519 {
2520 qdev->req_q_size =
2521 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2522
2523 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2524
2525 /* The barrier is required to ensure request and response queue
2526 * addr writes to the registers.
2527 */
2528 wmb();
2529
2530 qdev->req_q_virt_addr =
2531 pci_alloc_consistent(qdev->pdev,
2532 (size_t) qdev->req_q_size,
2533 &qdev->req_q_phy_addr);
2534
2535 if ((qdev->req_q_virt_addr == NULL) ||
2536 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2537 netdev_err(qdev->ndev, "reqQ failed\n");
2538 return -ENOMEM;
2539 }
2540
2541 qdev->rsp_q_virt_addr =
2542 pci_alloc_consistent(qdev->pdev,
2543 (size_t) qdev->rsp_q_size,
2544 &qdev->rsp_q_phy_addr);
2545
2546 if ((qdev->rsp_q_virt_addr == NULL) ||
2547 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2548 netdev_err(qdev->ndev, "rspQ allocation failed\n");
2549 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2550 qdev->req_q_virt_addr,
2551 qdev->req_q_phy_addr);
2552 return -ENOMEM;
2553 }
2554
2555 set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2556
2557 return 0;
2558 }
2559
2560 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2561 {
2562 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2563 netdev_info(qdev->ndev, "Already done\n");
2564 return;
2565 }
2566
2567 pci_free_consistent(qdev->pdev,
2568 qdev->req_q_size,
2569 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2570
2571 qdev->req_q_virt_addr = NULL;
2572
2573 pci_free_consistent(qdev->pdev,
2574 qdev->rsp_q_size,
2575 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2576
2577 qdev->rsp_q_virt_addr = NULL;
2578
2579 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2580 }
2581
2582 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2583 {
2584 /* Create Large Buffer Queue */
2585 qdev->lrg_buf_q_size =
2586 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2587 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2588 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2589 else
2590 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2591
2592 qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2593 sizeof(struct ql_rcv_buf_cb),
2594 GFP_KERNEL);
2595 if (qdev->lrg_buf == NULL)
2596 return -ENOMEM;
2597
2598 qdev->lrg_buf_q_alloc_virt_addr =
2599 pci_alloc_consistent(qdev->pdev,
2600 qdev->lrg_buf_q_alloc_size,
2601 &qdev->lrg_buf_q_alloc_phy_addr);
2602
2603 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2604 netdev_err(qdev->ndev, "lBufQ failed\n");
2605 return -ENOMEM;
2606 }
2607 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2608 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2609
2610 /* Create Small Buffer Queue */
2611 qdev->small_buf_q_size =
2612 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2613 if (qdev->small_buf_q_size < PAGE_SIZE)
2614 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2615 else
2616 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2617
2618 qdev->small_buf_q_alloc_virt_addr =
2619 pci_alloc_consistent(qdev->pdev,
2620 qdev->small_buf_q_alloc_size,
2621 &qdev->small_buf_q_alloc_phy_addr);
2622
2623 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2624 netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2625 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2626 qdev->lrg_buf_q_alloc_virt_addr,
2627 qdev->lrg_buf_q_alloc_phy_addr);
2628 return -ENOMEM;
2629 }
2630
2631 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2632 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2633 set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2634 return 0;
2635 }
2636
2637 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2638 {
2639 if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2640 netdev_info(qdev->ndev, "Already done\n");
2641 return;
2642 }
2643 kfree(qdev->lrg_buf);
2644 pci_free_consistent(qdev->pdev,
2645 qdev->lrg_buf_q_alloc_size,
2646 qdev->lrg_buf_q_alloc_virt_addr,
2647 qdev->lrg_buf_q_alloc_phy_addr);
2648
2649 qdev->lrg_buf_q_virt_addr = NULL;
2650
2651 pci_free_consistent(qdev->pdev,
2652 qdev->small_buf_q_alloc_size,
2653 qdev->small_buf_q_alloc_virt_addr,
2654 qdev->small_buf_q_alloc_phy_addr);
2655
2656 qdev->small_buf_q_virt_addr = NULL;
2657
2658 clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2659 }
2660
2661 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2662 {
2663 int i;
2664 struct bufq_addr_element *small_buf_q_entry;
2665
2666 /* Currently we allocate on one of memory and use it for smallbuffers */
2667 qdev->small_buf_total_size =
2668 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2669 QL_SMALL_BUFFER_SIZE);
2670
2671 qdev->small_buf_virt_addr =
2672 pci_alloc_consistent(qdev->pdev,
2673 qdev->small_buf_total_size,
2674 &qdev->small_buf_phy_addr);
2675
2676 if (qdev->small_buf_virt_addr == NULL) {
2677 netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2678 return -ENOMEM;
2679 }
2680
2681 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2682 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2683
2684 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2685
2686 /* Initialize the small buffer queue. */
2687 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2688 small_buf_q_entry->addr_high =
2689 cpu_to_le32(qdev->small_buf_phy_addr_high);
2690 small_buf_q_entry->addr_low =
2691 cpu_to_le32(qdev->small_buf_phy_addr_low +
2692 (i * QL_SMALL_BUFFER_SIZE));
2693 small_buf_q_entry++;
2694 }
2695 qdev->small_buf_index = 0;
2696 set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2697 return 0;
2698 }
2699
2700 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2701 {
2702 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2703 netdev_info(qdev->ndev, "Already done\n");
2704 return;
2705 }
2706 if (qdev->small_buf_virt_addr != NULL) {
2707 pci_free_consistent(qdev->pdev,
2708 qdev->small_buf_total_size,
2709 qdev->small_buf_virt_addr,
2710 qdev->small_buf_phy_addr);
2711
2712 qdev->small_buf_virt_addr = NULL;
2713 }
2714 }
2715
2716 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2717 {
2718 int i = 0;
2719 struct ql_rcv_buf_cb *lrg_buf_cb;
2720
2721 for (i = 0; i < qdev->num_large_buffers; i++) {
2722 lrg_buf_cb = &qdev->lrg_buf[i];
2723 if (lrg_buf_cb->skb) {
2724 dev_kfree_skb(lrg_buf_cb->skb);
2725 pci_unmap_single(qdev->pdev,
2726 dma_unmap_addr(lrg_buf_cb, mapaddr),
2727 dma_unmap_len(lrg_buf_cb, maplen),
2728 PCI_DMA_FROMDEVICE);
2729 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2730 } else {
2731 break;
2732 }
2733 }
2734 }
2735
2736 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2737 {
2738 int i;
2739 struct ql_rcv_buf_cb *lrg_buf_cb;
2740 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2741
2742 for (i = 0; i < qdev->num_large_buffers; i++) {
2743 lrg_buf_cb = &qdev->lrg_buf[i];
2744 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2745 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2746 buf_addr_ele++;
2747 }
2748 qdev->lrg_buf_index = 0;
2749 qdev->lrg_buf_skb_check = 0;
2750 }
2751
2752 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2753 {
2754 int i;
2755 struct ql_rcv_buf_cb *lrg_buf_cb;
2756 struct sk_buff *skb;
2757 dma_addr_t map;
2758 int err;
2759
2760 for (i = 0; i < qdev->num_large_buffers; i++) {
2761 skb = netdev_alloc_skb(qdev->ndev,
2762 qdev->lrg_buffer_len);
2763 if (unlikely(!skb)) {
2764 /* Better luck next round */
2765 netdev_err(qdev->ndev,
2766 "large buff alloc failed for %d bytes at index %d\n",
2767 qdev->lrg_buffer_len * 2, i);
2768 ql_free_large_buffers(qdev);
2769 return -ENOMEM;
2770 } else {
2771
2772 lrg_buf_cb = &qdev->lrg_buf[i];
2773 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2774 lrg_buf_cb->index = i;
2775 lrg_buf_cb->skb = skb;
2776 /*
2777 * We save some space to copy the ethhdr from first
2778 * buffer
2779 */
2780 skb_reserve(skb, QL_HEADER_SPACE);
2781 map = pci_map_single(qdev->pdev,
2782 skb->data,
2783 qdev->lrg_buffer_len -
2784 QL_HEADER_SPACE,
2785 PCI_DMA_FROMDEVICE);
2786
2787 err = pci_dma_mapping_error(qdev->pdev, map);
2788 if (err) {
2789 netdev_err(qdev->ndev,
2790 "PCI mapping failed with error: %d\n",
2791 err);
2792 ql_free_large_buffers(qdev);
2793 return -ENOMEM;
2794 }
2795
2796 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2797 dma_unmap_len_set(lrg_buf_cb, maplen,
2798 qdev->lrg_buffer_len -
2799 QL_HEADER_SPACE);
2800 lrg_buf_cb->buf_phy_addr_low =
2801 cpu_to_le32(LS_64BITS(map));
2802 lrg_buf_cb->buf_phy_addr_high =
2803 cpu_to_le32(MS_64BITS(map));
2804 }
2805 }
2806 return 0;
2807 }
2808
2809 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2810 {
2811 struct ql_tx_buf_cb *tx_cb;
2812 int i;
2813
2814 tx_cb = &qdev->tx_buf[0];
2815 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2816 kfree(tx_cb->oal);
2817 tx_cb->oal = NULL;
2818 tx_cb++;
2819 }
2820 }
2821
2822 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2823 {
2824 struct ql_tx_buf_cb *tx_cb;
2825 int i;
2826 struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2827
2828 /* Create free list of transmit buffers */
2829 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2830
2831 tx_cb = &qdev->tx_buf[i];
2832 tx_cb->skb = NULL;
2833 tx_cb->queue_entry = req_q_curr;
2834 req_q_curr++;
2835 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2836 if (tx_cb->oal == NULL)
2837 return -ENOMEM;
2838 }
2839 return 0;
2840 }
2841
2842 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2843 {
2844 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2845 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2846 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2847 } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2848 /*
2849 * Bigger buffers, so less of them.
2850 */
2851 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2852 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2853 } else {
2854 netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
2855 qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2856 return -ENOMEM;
2857 }
2858 qdev->num_large_buffers =
2859 qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2860 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2861 qdev->max_frame_size =
2862 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2863
2864 /*
2865 * First allocate a page of shared memory and use it for shadow
2866 * locations of Network Request Queue Consumer Address Register and
2867 * Network Completion Queue Producer Index Register
2868 */
2869 qdev->shadow_reg_virt_addr =
2870 pci_alloc_consistent(qdev->pdev,
2871 PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2872
2873 if (qdev->shadow_reg_virt_addr != NULL) {
2874 qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2875 qdev->req_consumer_index_phy_addr_high =
2876 MS_64BITS(qdev->shadow_reg_phy_addr);
2877 qdev->req_consumer_index_phy_addr_low =
2878 LS_64BITS(qdev->shadow_reg_phy_addr);
2879
2880 qdev->prsp_producer_index =
2881 (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2882 qdev->rsp_producer_index_phy_addr_high =
2883 qdev->req_consumer_index_phy_addr_high;
2884 qdev->rsp_producer_index_phy_addr_low =
2885 qdev->req_consumer_index_phy_addr_low + 8;
2886 } else {
2887 netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2888 return -ENOMEM;
2889 }
2890
2891 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2892 netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2893 goto err_req_rsp;
2894 }
2895
2896 if (ql_alloc_buffer_queues(qdev) != 0) {
2897 netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2898 goto err_buffer_queues;
2899 }
2900
2901 if (ql_alloc_small_buffers(qdev) != 0) {
2902 netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2903 goto err_small_buffers;
2904 }
2905
2906 if (ql_alloc_large_buffers(qdev) != 0) {
2907 netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2908 goto err_small_buffers;
2909 }
2910
2911 /* Initialize the large buffer queue. */
2912 ql_init_large_buffers(qdev);
2913 if (ql_create_send_free_list(qdev))
2914 goto err_free_list;
2915
2916 qdev->rsp_current = qdev->rsp_q_virt_addr;
2917
2918 return 0;
2919 err_free_list:
2920 ql_free_send_free_list(qdev);
2921 err_small_buffers:
2922 ql_free_buffer_queues(qdev);
2923 err_buffer_queues:
2924 ql_free_net_req_rsp_queues(qdev);
2925 err_req_rsp:
2926 pci_free_consistent(qdev->pdev,
2927 PAGE_SIZE,
2928 qdev->shadow_reg_virt_addr,
2929 qdev->shadow_reg_phy_addr);
2930
2931 return -ENOMEM;
2932 }
2933
2934 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2935 {
2936 ql_free_send_free_list(qdev);
2937 ql_free_large_buffers(qdev);
2938 ql_free_small_buffers(qdev);
2939 ql_free_buffer_queues(qdev);
2940 ql_free_net_req_rsp_queues(qdev);
2941 if (qdev->shadow_reg_virt_addr != NULL) {
2942 pci_free_consistent(qdev->pdev,
2943 PAGE_SIZE,
2944 qdev->shadow_reg_virt_addr,
2945 qdev->shadow_reg_phy_addr);
2946 qdev->shadow_reg_virt_addr = NULL;
2947 }
2948 }
2949
2950 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2951 {
2952 struct ql3xxx_local_ram_registers __iomem *local_ram =
2953 (void __iomem *)qdev->mem_map_registers;
2954
2955 if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2956 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2957 2) << 4))
2958 return -1;
2959
2960 ql_write_page2_reg(qdev,
2961 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2962
2963 ql_write_page2_reg(qdev,
2964 &local_ram->maxBufletCount,
2965 qdev->nvram_data.bufletCount);
2966
2967 ql_write_page2_reg(qdev,
2968 &local_ram->freeBufletThresholdLow,
2969 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2970 (qdev->nvram_data.tcpWindowThreshold0));
2971
2972 ql_write_page2_reg(qdev,
2973 &local_ram->freeBufletThresholdHigh,
2974 qdev->nvram_data.tcpWindowThreshold50);
2975
2976 ql_write_page2_reg(qdev,
2977 &local_ram->ipHashTableBase,
2978 (qdev->nvram_data.ipHashTableBaseHi << 16) |
2979 qdev->nvram_data.ipHashTableBaseLo);
2980 ql_write_page2_reg(qdev,
2981 &local_ram->ipHashTableCount,
2982 qdev->nvram_data.ipHashTableSize);
2983 ql_write_page2_reg(qdev,
2984 &local_ram->tcpHashTableBase,
2985 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2986 qdev->nvram_data.tcpHashTableBaseLo);
2987 ql_write_page2_reg(qdev,
2988 &local_ram->tcpHashTableCount,
2989 qdev->nvram_data.tcpHashTableSize);
2990 ql_write_page2_reg(qdev,
2991 &local_ram->ncbBase,
2992 (qdev->nvram_data.ncbTableBaseHi << 16) |
2993 qdev->nvram_data.ncbTableBaseLo);
2994 ql_write_page2_reg(qdev,
2995 &local_ram->maxNcbCount,
2996 qdev->nvram_data.ncbTableSize);
2997 ql_write_page2_reg(qdev,
2998 &local_ram->drbBase,
2999 (qdev->nvram_data.drbTableBaseHi << 16) |
3000 qdev->nvram_data.drbTableBaseLo);
3001 ql_write_page2_reg(qdev,
3002 &local_ram->maxDrbCount,
3003 qdev->nvram_data.drbTableSize);
3004 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3005 return 0;
3006 }
3007
3008 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3009 {
3010 u32 value;
3011 struct ql3xxx_port_registers __iomem *port_regs =
3012 qdev->mem_map_registers;
3013 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
3014 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3015 (void __iomem *)port_regs;
3016 u32 delay = 10;
3017 int status = 0;
3018
3019 if (ql_mii_setup(qdev))
3020 return -1;
3021
3022 /* Bring out PHY out of reset */
3023 ql_write_common_reg(qdev, spir,
3024 (ISP_SERIAL_PORT_IF_WE |
3025 (ISP_SERIAL_PORT_IF_WE << 16)));
3026 /* Give the PHY time to come out of reset. */
3027 mdelay(100);
3028 qdev->port_link_state = LS_DOWN;
3029 netif_carrier_off(qdev->ndev);
3030
3031 /* V2 chip fix for ARS-39168. */
3032 ql_write_common_reg(qdev, spir,
3033 (ISP_SERIAL_PORT_IF_SDE |
3034 (ISP_SERIAL_PORT_IF_SDE << 16)));
3035
3036 /* Request Queue Registers */
3037 *((u32 *)(qdev->preq_consumer_index)) = 0;
3038 atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3039 qdev->req_producer_index = 0;
3040
3041 ql_write_page1_reg(qdev,
3042 &hmem_regs->reqConsumerIndexAddrHigh,
3043 qdev->req_consumer_index_phy_addr_high);
3044 ql_write_page1_reg(qdev,
3045 &hmem_regs->reqConsumerIndexAddrLow,
3046 qdev->req_consumer_index_phy_addr_low);
3047
3048 ql_write_page1_reg(qdev,
3049 &hmem_regs->reqBaseAddrHigh,
3050 MS_64BITS(qdev->req_q_phy_addr));
3051 ql_write_page1_reg(qdev,
3052 &hmem_regs->reqBaseAddrLow,
3053 LS_64BITS(qdev->req_q_phy_addr));
3054 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3055
3056 /* Response Queue Registers */
3057 *((__le16 *) (qdev->prsp_producer_index)) = 0;
3058 qdev->rsp_consumer_index = 0;
3059 qdev->rsp_current = qdev->rsp_q_virt_addr;
3060
3061 ql_write_page1_reg(qdev,
3062 &hmem_regs->rspProducerIndexAddrHigh,
3063 qdev->rsp_producer_index_phy_addr_high);
3064
3065 ql_write_page1_reg(qdev,
3066 &hmem_regs->rspProducerIndexAddrLow,
3067 qdev->rsp_producer_index_phy_addr_low);
3068
3069 ql_write_page1_reg(qdev,
3070 &hmem_regs->rspBaseAddrHigh,
3071 MS_64BITS(qdev->rsp_q_phy_addr));
3072
3073 ql_write_page1_reg(qdev,
3074 &hmem_regs->rspBaseAddrLow,
3075 LS_64BITS(qdev->rsp_q_phy_addr));
3076
3077 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3078
3079 /* Large Buffer Queue */
3080 ql_write_page1_reg(qdev,
3081 &hmem_regs->rxLargeQBaseAddrHigh,
3082 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3083
3084 ql_write_page1_reg(qdev,
3085 &hmem_regs->rxLargeQBaseAddrLow,
3086 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3087
3088 ql_write_page1_reg(qdev,
3089 &hmem_regs->rxLargeQLength,
3090 qdev->num_lbufq_entries);
3091
3092 ql_write_page1_reg(qdev,
3093 &hmem_regs->rxLargeBufferLength,
3094 qdev->lrg_buffer_len);
3095
3096 /* Small Buffer Queue */
3097 ql_write_page1_reg(qdev,
3098 &hmem_regs->rxSmallQBaseAddrHigh,
3099 MS_64BITS(qdev->small_buf_q_phy_addr));
3100
3101 ql_write_page1_reg(qdev,
3102 &hmem_regs->rxSmallQBaseAddrLow,
3103 LS_64BITS(qdev->small_buf_q_phy_addr));
3104
3105 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3106 ql_write_page1_reg(qdev,
3107 &hmem_regs->rxSmallBufferLength,
3108 QL_SMALL_BUFFER_SIZE);
3109
3110 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3111 qdev->small_buf_release_cnt = 8;
3112 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3113 qdev->lrg_buf_release_cnt = 8;
3114 qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3115 qdev->small_buf_index = 0;
3116 qdev->lrg_buf_index = 0;
3117 qdev->lrg_buf_free_count = 0;
3118 qdev->lrg_buf_free_head = NULL;
3119 qdev->lrg_buf_free_tail = NULL;
3120
3121 ql_write_common_reg(qdev,
3122 &port_regs->CommonRegs.
3123 rxSmallQProducerIndex,
3124 qdev->small_buf_q_producer_index);
3125 ql_write_common_reg(qdev,
3126 &port_regs->CommonRegs.
3127 rxLargeQProducerIndex,
3128 qdev->lrg_buf_q_producer_index);
3129
3130 /*
3131 * Find out if the chip has already been initialized. If it has, then
3132 * we skip some of the initialization.
3133 */
3134 clear_bit(QL_LINK_MASTER, &qdev->flags);
3135 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3136 if ((value & PORT_STATUS_IC) == 0) {
3137
3138 /* Chip has not been configured yet, so let it rip. */
3139 if (ql_init_misc_registers(qdev)) {
3140 status = -1;
3141 goto out;
3142 }
3143
3144 value = qdev->nvram_data.tcpMaxWindowSize;
3145 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3146
3147 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3148
3149 if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3150 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3151 * 2) << 13)) {
3152 status = -1;
3153 goto out;
3154 }
3155 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3156 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3157 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3158 16) | (INTERNAL_CHIP_SD |
3159 INTERNAL_CHIP_WE)));
3160 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3161 }
3162
3163 if (qdev->mac_index)
3164 ql_write_page0_reg(qdev,
3165 &port_regs->mac1MaxFrameLengthReg,
3166 qdev->max_frame_size);
3167 else
3168 ql_write_page0_reg(qdev,
3169 &port_regs->mac0MaxFrameLengthReg,
3170 qdev->max_frame_size);
3171
3172 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3173 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3174 2) << 7)) {
3175 status = -1;
3176 goto out;
3177 }
3178
3179 PHY_Setup(qdev);
3180 ql_init_scan_mode(qdev);
3181 ql_get_phy_owner(qdev);
3182
3183 /* Load the MAC Configuration */
3184
3185 /* Program lower 32 bits of the MAC address */
3186 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3187 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3188 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3189 ((qdev->ndev->dev_addr[2] << 24)
3190 | (qdev->ndev->dev_addr[3] << 16)
3191 | (qdev->ndev->dev_addr[4] << 8)
3192 | qdev->ndev->dev_addr[5]));
3193
3194 /* Program top 16 bits of the MAC address */
3195 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3196 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3197 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3198 ((qdev->ndev->dev_addr[0] << 8)
3199 | qdev->ndev->dev_addr[1]));
3200
3201 /* Enable Primary MAC */
3202 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3203 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3204 MAC_ADDR_INDIRECT_PTR_REG_PE));
3205
3206 /* Clear Primary and Secondary IP addresses */
3207 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3208 ((IP_ADDR_INDEX_REG_MASK << 16) |
3209 (qdev->mac_index << 2)));
3210 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3211
3212 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3213 ((IP_ADDR_INDEX_REG_MASK << 16) |
3214 ((qdev->mac_index << 2) + 1)));
3215 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3216
3217 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3218
3219 /* Indicate Configuration Complete */
3220 ql_write_page0_reg(qdev,
3221 &port_regs->portControl,
3222 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3223
3224 do {
3225 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3226 if (value & PORT_STATUS_IC)
3227 break;
3228 spin_unlock_irq(&qdev->hw_lock);
3229 msleep(500);
3230 spin_lock_irq(&qdev->hw_lock);
3231 } while (--delay);
3232
3233 if (delay == 0) {
3234 netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3235 status = -1;
3236 goto out;
3237 }
3238
3239 /* Enable Ethernet Function */
3240 if (qdev->device_id == QL3032_DEVICE_ID) {
3241 value =
3242 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3243 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3244 QL3032_PORT_CONTROL_ET);
3245 ql_write_page0_reg(qdev, &port_regs->functionControl,
3246 ((value << 16) | value));
3247 } else {
3248 value =
3249 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3250 PORT_CONTROL_HH);
3251 ql_write_page0_reg(qdev, &port_regs->portControl,
3252 ((value << 16) | value));
3253 }
3254
3255
3256 out:
3257 return status;
3258 }
3259
3260 /*
3261 * Caller holds hw_lock.
3262 */
3263 static int ql_adapter_reset(struct ql3_adapter *qdev)
3264 {
3265 struct ql3xxx_port_registers __iomem *port_regs =
3266 qdev->mem_map_registers;
3267 int status = 0;
3268 u16 value;
3269 int max_wait_time;
3270
3271 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3272 clear_bit(QL_RESET_DONE, &qdev->flags);
3273
3274 /*
3275 * Issue soft reset to chip.
3276 */
3277 netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3278 ql_write_common_reg(qdev,
3279 &port_regs->CommonRegs.ispControlStatus,
3280 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3281
3282 /* Wait 3 seconds for reset to complete. */
3283 netdev_printk(KERN_DEBUG, qdev->ndev,
3284 "Wait 10 milliseconds for reset to complete\n");
3285
3286 /* Wait until the firmware tells us the Soft Reset is done */
3287 max_wait_time = 5;
3288 do {
3289 value =
3290 ql_read_common_reg(qdev,
3291 &port_regs->CommonRegs.ispControlStatus);
3292 if ((value & ISP_CONTROL_SR) == 0)
3293 break;
3294
3295 ssleep(1);
3296 } while ((--max_wait_time));
3297
3298 /*
3299 * Also, make sure that the Network Reset Interrupt bit has been
3300 * cleared after the soft reset has taken place.
3301 */
3302 value =
3303 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3304 if (value & ISP_CONTROL_RI) {
3305 netdev_printk(KERN_DEBUG, qdev->ndev,
3306 "clearing RI after reset\n");
3307 ql_write_common_reg(qdev,
3308 &port_regs->CommonRegs.
3309 ispControlStatus,
3310 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3311 }
3312
3313 if (max_wait_time == 0) {
3314 /* Issue Force Soft Reset */
3315 ql_write_common_reg(qdev,
3316 &port_regs->CommonRegs.
3317 ispControlStatus,
3318 ((ISP_CONTROL_FSR << 16) |
3319 ISP_CONTROL_FSR));
3320 /*
3321 * Wait until the firmware tells us the Force Soft Reset is
3322 * done
3323 */
3324 max_wait_time = 5;
3325 do {
3326 value = ql_read_common_reg(qdev,
3327 &port_regs->CommonRegs.
3328 ispControlStatus);
3329 if ((value & ISP_CONTROL_FSR) == 0)
3330 break;
3331 ssleep(1);
3332 } while ((--max_wait_time));
3333 }
3334 if (max_wait_time == 0)
3335 status = 1;
3336
3337 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3338 set_bit(QL_RESET_DONE, &qdev->flags);
3339 return status;
3340 }
3341
3342 static void ql_set_mac_info(struct ql3_adapter *qdev)
3343 {
3344 struct ql3xxx_port_registers __iomem *port_regs =
3345 qdev->mem_map_registers;
3346 u32 value, port_status;
3347 u8 func_number;
3348
3349 /* Get the function number */
3350 value =
3351 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3352 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3353 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3354 switch (value & ISP_CONTROL_FN_MASK) {
3355 case ISP_CONTROL_FN0_NET:
3356 qdev->mac_index = 0;
3357 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3358 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3359 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3360 if (port_status & PORT_STATUS_SM0)
3361 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3362 else
3363 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3364 break;
3365
3366 case ISP_CONTROL_FN1_NET:
3367 qdev->mac_index = 1;
3368 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3369 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3370 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3371 if (port_status & PORT_STATUS_SM1)
3372 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3373 else
3374 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3375 break;
3376
3377 case ISP_CONTROL_FN0_SCSI:
3378 case ISP_CONTROL_FN1_SCSI:
3379 default:
3380 netdev_printk(KERN_DEBUG, qdev->ndev,
3381 "Invalid function number, ispControlStatus = 0x%x\n",
3382 value);
3383 break;
3384 }
3385 qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3386 }
3387
3388 static void ql_display_dev_info(struct net_device *ndev)
3389 {
3390 struct ql3_adapter *qdev = netdev_priv(ndev);
3391 struct pci_dev *pdev = qdev->pdev;
3392
3393 netdev_info(ndev,
3394 "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3395 DRV_NAME, qdev->index, qdev->chip_rev_id,
3396 qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3397 qdev->pci_slot);
3398 netdev_info(ndev, "%s Interface\n",
3399 test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3400
3401 /*
3402 * Print PCI bus width/type.
3403 */
3404 netdev_info(ndev, "Bus interface is %s %s\n",
3405 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3406 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3407
3408 netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
3409 qdev->mem_map_registers);
3410 netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3411
3412 netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3413 }
3414
3415 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3416 {
3417 struct net_device *ndev = qdev->ndev;
3418 int retval = 0;
3419
3420 netif_stop_queue(ndev);
3421 netif_carrier_off(ndev);
3422
3423 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3424 clear_bit(QL_LINK_MASTER, &qdev->flags);
3425
3426 ql_disable_interrupts(qdev);
3427
3428 free_irq(qdev->pdev->irq, ndev);
3429
3430 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3431 netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3432 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3433 pci_disable_msi(qdev->pdev);
3434 }
3435
3436 del_timer_sync(&qdev->adapter_timer);
3437
3438 napi_disable(&qdev->napi);
3439
3440 if (do_reset) {
3441 int soft_reset;
3442 unsigned long hw_flags;
3443
3444 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3445 if (ql_wait_for_drvr_lock(qdev)) {
3446 soft_reset = ql_adapter_reset(qdev);
3447 if (soft_reset) {
3448 netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3449 qdev->index);
3450 }
3451 netdev_err(ndev,
3452 "Releasing driver lock via chip reset\n");
3453 } else {
3454 netdev_err(ndev,
3455 "Could not acquire driver lock to do reset!\n");
3456 retval = -1;
3457 }
3458 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3459 }
3460 ql_free_mem_resources(qdev);
3461 return retval;
3462 }
3463
3464 static int ql_adapter_up(struct ql3_adapter *qdev)
3465 {
3466 struct net_device *ndev = qdev->ndev;
3467 int err;
3468 unsigned long irq_flags = IRQF_SHARED;
3469 unsigned long hw_flags;
3470
3471 if (ql_alloc_mem_resources(qdev)) {
3472 netdev_err(ndev, "Unable to allocate buffers\n");
3473 return -ENOMEM;
3474 }
3475
3476 if (qdev->msi) {
3477 if (pci_enable_msi(qdev->pdev)) {
3478 netdev_err(ndev,
3479 "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
3480 qdev->msi = 0;
3481 } else {
3482 netdev_info(ndev, "MSI Enabled...\n");
3483 set_bit(QL_MSI_ENABLED, &qdev->flags);
3484 irq_flags &= ~IRQF_SHARED;
3485 }
3486 }
3487
3488 err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3489 irq_flags, ndev->name, ndev);
3490 if (err) {
3491 netdev_err(ndev,
3492 "Failed to reserve interrupt %d - already in use\n",
3493 qdev->pdev->irq);
3494 goto err_irq;
3495 }
3496
3497 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3498
3499 err = ql_wait_for_drvr_lock(qdev);
3500 if (err) {
3501 err = ql_adapter_initialize(qdev);
3502 if (err) {
3503 netdev_err(ndev, "Unable to initialize adapter\n");
3504 goto err_init;
3505 }
3506 netdev_err(ndev, "Releasing driver lock\n");
3507 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3508 } else {
3509 netdev_err(ndev, "Could not acquire driver lock\n");
3510 goto err_lock;
3511 }
3512
3513 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3514
3515 set_bit(QL_ADAPTER_UP, &qdev->flags);
3516
3517 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3518
3519 napi_enable(&qdev->napi);
3520 ql_enable_interrupts(qdev);
3521 return 0;
3522
3523 err_init:
3524 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3525 err_lock:
3526 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3527 free_irq(qdev->pdev->irq, ndev);
3528 err_irq:
3529 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3530 netdev_info(ndev, "calling pci_disable_msi()\n");
3531 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3532 pci_disable_msi(qdev->pdev);
3533 }
3534 return err;
3535 }
3536
3537 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3538 {
3539 if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3540 netdev_err(qdev->ndev,
3541 "Driver up/down cycle failed, closing device\n");
3542 rtnl_lock();
3543 dev_close(qdev->ndev);
3544 rtnl_unlock();
3545 return -1;
3546 }
3547 return 0;
3548 }
3549
3550 static int ql3xxx_close(struct net_device *ndev)
3551 {
3552 struct ql3_adapter *qdev = netdev_priv(ndev);
3553
3554 /*
3555 * Wait for device to recover from a reset.
3556 * (Rarely happens, but possible.)
3557 */
3558 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3559 msleep(50);
3560
3561 ql_adapter_down(qdev, QL_DO_RESET);
3562 return 0;
3563 }
3564
3565 static int ql3xxx_open(struct net_device *ndev)
3566 {
3567 struct ql3_adapter *qdev = netdev_priv(ndev);
3568 return ql_adapter_up(qdev);
3569 }
3570
3571 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3572 {
3573 struct ql3_adapter *qdev = netdev_priv(ndev);
3574 struct ql3xxx_port_registers __iomem *port_regs =
3575 qdev->mem_map_registers;
3576 struct sockaddr *addr = p;
3577 unsigned long hw_flags;
3578
3579 if (netif_running(ndev))
3580 return -EBUSY;
3581
3582 if (!is_valid_ether_addr(addr->sa_data))
3583 return -EADDRNOTAVAIL;
3584
3585 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3586
3587 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3588 /* Program lower 32 bits of the MAC address */
3589 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3590 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3591 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3592 ((ndev->dev_addr[2] << 24) | (ndev->
3593 dev_addr[3] << 16) |
3594 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3595
3596 /* Program top 16 bits of the MAC address */
3597 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3598 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3599 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3600 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3601 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3602
3603 return 0;
3604 }
3605
3606 static void ql3xxx_tx_timeout(struct net_device *ndev)
3607 {
3608 struct ql3_adapter *qdev = netdev_priv(ndev);
3609
3610 netdev_err(ndev, "Resetting...\n");
3611 /*
3612 * Stop the queues, we've got a problem.
3613 */
3614 netif_stop_queue(ndev);
3615
3616 /*
3617 * Wake up the worker to process this event.
3618 */
3619 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3620 }
3621
3622 static void ql_reset_work(struct work_struct *work)
3623 {
3624 struct ql3_adapter *qdev =
3625 container_of(work, struct ql3_adapter, reset_work.work);
3626 struct net_device *ndev = qdev->ndev;
3627 u32 value;
3628 struct ql_tx_buf_cb *tx_cb;
3629 int max_wait_time, i;
3630 struct ql3xxx_port_registers __iomem *port_regs =
3631 qdev->mem_map_registers;
3632 unsigned long hw_flags;
3633
3634 if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
3635 clear_bit(QL_LINK_MASTER, &qdev->flags);
3636
3637 /*
3638 * Loop through the active list and return the skb.
3639 */
3640 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3641 int j;
3642 tx_cb = &qdev->tx_buf[i];
3643 if (tx_cb->skb) {
3644 netdev_printk(KERN_DEBUG, ndev,
3645 "Freeing lost SKB\n");
3646 pci_unmap_single(qdev->pdev,
3647 dma_unmap_addr(&tx_cb->map[0],
3648 mapaddr),
3649 dma_unmap_len(&tx_cb->map[0], maplen),
3650 PCI_DMA_TODEVICE);
3651 for (j = 1; j < tx_cb->seg_count; j++) {
3652 pci_unmap_page(qdev->pdev,
3653 dma_unmap_addr(&tx_cb->map[j],
3654 mapaddr),
3655 dma_unmap_len(&tx_cb->map[j],
3656 maplen),
3657 PCI_DMA_TODEVICE);
3658 }
3659 dev_kfree_skb(tx_cb->skb);
3660 tx_cb->skb = NULL;
3661 }
3662 }
3663
3664 netdev_err(ndev, "Clearing NRI after reset\n");
3665 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3666 ql_write_common_reg(qdev,
3667 &port_regs->CommonRegs.
3668 ispControlStatus,
3669 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3670 /*
3671 * Wait the for Soft Reset to Complete.
3672 */
3673 max_wait_time = 10;
3674 do {
3675 value = ql_read_common_reg(qdev,
3676 &port_regs->CommonRegs.
3677
3678 ispControlStatus);
3679 if ((value & ISP_CONTROL_SR) == 0) {
3680 netdev_printk(KERN_DEBUG, ndev,
3681 "reset completed\n");
3682 break;
3683 }
3684
3685 if (value & ISP_CONTROL_RI) {
3686 netdev_printk(KERN_DEBUG, ndev,
3687 "clearing NRI after reset\n");
3688 ql_write_common_reg(qdev,
3689 &port_regs->
3690 CommonRegs.
3691 ispControlStatus,
3692 ((ISP_CONTROL_RI <<
3693 16) | ISP_CONTROL_RI));
3694 }
3695
3696 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3697 ssleep(1);
3698 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3699 } while (--max_wait_time);
3700 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3701
3702 if (value & ISP_CONTROL_SR) {
3703
3704 /*
3705 * Set the reset flags and clear the board again.
3706 * Nothing else to do...
3707 */
3708 netdev_err(ndev,
3709 "Timed out waiting for reset to complete\n");
3710 netdev_err(ndev, "Do a reset\n");
3711 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3712 clear_bit(QL_RESET_START, &qdev->flags);
3713 ql_cycle_adapter(qdev, QL_DO_RESET);
3714 return;
3715 }
3716
3717 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3718 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3719 clear_bit(QL_RESET_START, &qdev->flags);
3720 ql_cycle_adapter(qdev, QL_NO_RESET);
3721 }
3722 }
3723
3724 static void ql_tx_timeout_work(struct work_struct *work)
3725 {
3726 struct ql3_adapter *qdev =
3727 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3728
3729 ql_cycle_adapter(qdev, QL_DO_RESET);
3730 }
3731
3732 static void ql_get_board_info(struct ql3_adapter *qdev)
3733 {
3734 struct ql3xxx_port_registers __iomem *port_regs =
3735 qdev->mem_map_registers;
3736 u32 value;
3737
3738 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3739
3740 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3741 if (value & PORT_STATUS_64)
3742 qdev->pci_width = 64;
3743 else
3744 qdev->pci_width = 32;
3745 if (value & PORT_STATUS_X)
3746 qdev->pci_x = 1;
3747 else
3748 qdev->pci_x = 0;
3749 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3750 }
3751
3752 static void ql3xxx_timer(unsigned long ptr)
3753 {
3754 struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3755 queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3756 }
3757
3758 static const struct net_device_ops ql3xxx_netdev_ops = {
3759 .ndo_open = ql3xxx_open,
3760 .ndo_start_xmit = ql3xxx_send,
3761 .ndo_stop = ql3xxx_close,
3762 .ndo_validate_addr = eth_validate_addr,
3763 .ndo_set_mac_address = ql3xxx_set_mac_address,
3764 .ndo_tx_timeout = ql3xxx_tx_timeout,
3765 };
3766
3767 static int ql3xxx_probe(struct pci_dev *pdev,
3768 const struct pci_device_id *pci_entry)
3769 {
3770 struct net_device *ndev = NULL;
3771 struct ql3_adapter *qdev = NULL;
3772 static int cards_found;
3773 int uninitialized_var(pci_using_dac), err;
3774
3775 err = pci_enable_device(pdev);
3776 if (err) {
3777 pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3778 goto err_out;
3779 }
3780
3781 err = pci_request_regions(pdev, DRV_NAME);
3782 if (err) {
3783 pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3784 goto err_out_disable_pdev;
3785 }
3786
3787 pci_set_master(pdev);
3788
3789 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3790 pci_using_dac = 1;
3791 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3792 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3793 pci_using_dac = 0;
3794 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3795 }
3796
3797 if (err) {
3798 pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3799 goto err_out_free_regions;
3800 }
3801
3802 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3803 if (!ndev) {
3804 err = -ENOMEM;
3805 goto err_out_free_regions;
3806 }
3807
3808 SET_NETDEV_DEV(ndev, &pdev->dev);
3809
3810 pci_set_drvdata(pdev, ndev);
3811
3812 qdev = netdev_priv(ndev);
3813 qdev->index = cards_found;
3814 qdev->ndev = ndev;
3815 qdev->pdev = pdev;
3816 qdev->device_id = pci_entry->device;
3817 qdev->port_link_state = LS_DOWN;
3818 if (msi)
3819 qdev->msi = 1;
3820
3821 qdev->msg_enable = netif_msg_init(debug, default_msg);
3822
3823 if (pci_using_dac)
3824 ndev->features |= NETIF_F_HIGHDMA;
3825 if (qdev->device_id == QL3032_DEVICE_ID)
3826 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3827
3828 qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3829 if (!qdev->mem_map_registers) {
3830 pr_err("%s: cannot map device registers\n", pci_name(pdev));
3831 err = -EIO;
3832 goto err_out_free_ndev;
3833 }
3834
3835 spin_lock_init(&qdev->adapter_lock);
3836 spin_lock_init(&qdev->hw_lock);
3837
3838 /* Set driver entry points */
3839 ndev->netdev_ops = &ql3xxx_netdev_ops;
3840 ndev->ethtool_ops = &ql3xxx_ethtool_ops;
3841 ndev->watchdog_timeo = 5 * HZ;
3842
3843 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3844
3845 ndev->irq = pdev->irq;
3846
3847 /* make sure the EEPROM is good */
3848 if (ql_get_nvram_params(qdev)) {
3849 pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3850 __func__, qdev->index);
3851 err = -EIO;
3852 goto err_out_iounmap;
3853 }
3854
3855 ql_set_mac_info(qdev);
3856
3857 /* Validate and set parameters */
3858 if (qdev->mac_index) {
3859 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3860 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3861 } else {
3862 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3863 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3864 }
3865
3866 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3867
3868 /* Record PCI bus information. */
3869 ql_get_board_info(qdev);
3870
3871 /*
3872 * Set the Maximum Memory Read Byte Count value. We do this to handle
3873 * jumbo frames.
3874 */
3875 if (qdev->pci_x)
3876 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3877
3878 err = register_netdev(ndev);
3879 if (err) {
3880 pr_err("%s: cannot register net device\n", pci_name(pdev));
3881 goto err_out_iounmap;
3882 }
3883
3884 /* we're going to reset, so assume we have no link for now */
3885
3886 netif_carrier_off(ndev);
3887 netif_stop_queue(ndev);
3888
3889 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3890 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3891 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3892 INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3893
3894 setup_timer(&qdev->adapter_timer, ql3xxx_timer, (unsigned long)qdev);
3895 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
3896
3897 if (!cards_found) {
3898 pr_alert("%s\n", DRV_STRING);
3899 pr_alert("Driver name: %s, Version: %s\n",
3900 DRV_NAME, DRV_VERSION);
3901 }
3902 ql_display_dev_info(ndev);
3903
3904 cards_found++;
3905 return 0;
3906
3907 err_out_iounmap:
3908 iounmap(qdev->mem_map_registers);
3909 err_out_free_ndev:
3910 free_netdev(ndev);
3911 err_out_free_regions:
3912 pci_release_regions(pdev);
3913 err_out_disable_pdev:
3914 pci_disable_device(pdev);
3915 err_out:
3916 return err;
3917 }
3918
3919 static void ql3xxx_remove(struct pci_dev *pdev)
3920 {
3921 struct net_device *ndev = pci_get_drvdata(pdev);
3922 struct ql3_adapter *qdev = netdev_priv(ndev);
3923
3924 unregister_netdev(ndev);
3925
3926 ql_disable_interrupts(qdev);
3927
3928 if (qdev->workqueue) {
3929 cancel_delayed_work(&qdev->reset_work);
3930 cancel_delayed_work(&qdev->tx_timeout_work);
3931 destroy_workqueue(qdev->workqueue);
3932 qdev->workqueue = NULL;
3933 }
3934
3935 iounmap(qdev->mem_map_registers);
3936 pci_release_regions(pdev);
3937 free_netdev(ndev);
3938 }
3939
3940 static struct pci_driver ql3xxx_driver = {
3941
3942 .name = DRV_NAME,
3943 .id_table = ql3xxx_pci_tbl,
3944 .probe = ql3xxx_probe,
3945 .remove = ql3xxx_remove,
3946 };
3947
3948 module_pci_driver(ql3xxx_driver);