]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/qlogic/qla3xxx.c
net/qla3xxx: Fix a test in ql_reset_work()
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / qlogic / qla3xxx.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * QLogic QLA3xxx NIC HBA Driver
4 * Copyright (c) 2003-2006 QLogic Corporation
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
36 #include <linux/prefetch.h>
37
38 #include "qla3xxx.h"
39
40 #define DRV_NAME "qla3xxx"
41 #define DRV_STRING "QLogic ISP3XXX Network Driver"
42 #define DRV_VERSION "v2.03.00-k5"
43
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
46
47 #define TIMED_OUT_MSG \
48 "Timed out waiting for management port to get free before issuing command\n"
49
50 MODULE_AUTHOR("QLogic Corporation");
51 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54
55 static const u32 default_msg
56 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
57 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
58
59 static int debug = -1; /* defaults above */
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int msi;
64 module_param(msi, int, 0);
65 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
66
67 static const struct pci_device_id ql3xxx_pci_tbl[] = {
68 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
69 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
70 /* required last entry */
71 {0,}
72 };
73
74 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
75
76 /*
77 * These are the known PHY's which are used
78 */
79 enum PHY_DEVICE_TYPE {
80 PHY_TYPE_UNKNOWN = 0,
81 PHY_VITESSE_VSC8211,
82 PHY_AGERE_ET1011C,
83 MAX_PHY_DEV_TYPES
84 };
85
86 struct PHY_DEVICE_INFO {
87 const enum PHY_DEVICE_TYPE phyDevice;
88 const u32 phyIdOUI;
89 const u16 phyIdModel;
90 const char *name;
91 };
92
93 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
94 {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
95 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
96 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
97 };
98
99
100 /*
101 * Caller must take hw_lock.
102 */
103 static int ql_sem_spinlock(struct ql3_adapter *qdev,
104 u32 sem_mask, u32 sem_bits)
105 {
106 struct ql3xxx_port_registers __iomem *port_regs =
107 qdev->mem_map_registers;
108 u32 value;
109 unsigned int seconds = 3;
110
111 do {
112 writel((sem_mask | sem_bits),
113 &port_regs->CommonRegs.semaphoreReg);
114 value = readl(&port_regs->CommonRegs.semaphoreReg);
115 if ((value & (sem_mask >> 16)) == sem_bits)
116 return 0;
117 mdelay(1000);
118 } while (--seconds);
119 return -1;
120 }
121
122 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
123 {
124 struct ql3xxx_port_registers __iomem *port_regs =
125 qdev->mem_map_registers;
126 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
127 readl(&port_regs->CommonRegs.semaphoreReg);
128 }
129
130 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
131 {
132 struct ql3xxx_port_registers __iomem *port_regs =
133 qdev->mem_map_registers;
134 u32 value;
135
136 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
137 value = readl(&port_regs->CommonRegs.semaphoreReg);
138 return ((value & (sem_mask >> 16)) == sem_bits);
139 }
140
141 /*
142 * Caller holds hw_lock.
143 */
144 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
145 {
146 int i = 0;
147
148 do {
149 if (ql_sem_lock(qdev,
150 QL_DRVR_SEM_MASK,
151 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
152 * 2) << 1)) {
153 netdev_printk(KERN_DEBUG, qdev->ndev,
154 "driver lock acquired\n");
155 return 1;
156 }
157 mdelay(1000);
158 } while (++i < 10);
159
160 netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
161 return 0;
162 }
163
164 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
165 {
166 struct ql3xxx_port_registers __iomem *port_regs =
167 qdev->mem_map_registers;
168
169 writel(((ISP_CONTROL_NP_MASK << 16) | page),
170 &port_regs->CommonRegs.ispControlStatus);
171 readl(&port_regs->CommonRegs.ispControlStatus);
172 qdev->current_page = page;
173 }
174
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
176 {
177 u32 value;
178 unsigned long hw_flags;
179
180 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
181 value = readl(reg);
182 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
183
184 return value;
185 }
186
187 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
188 {
189 return readl(reg);
190 }
191
192 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
193 {
194 u32 value;
195 unsigned long hw_flags;
196
197 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
198
199 if (qdev->current_page != 0)
200 ql_set_register_page(qdev, 0);
201 value = readl(reg);
202
203 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
204 return value;
205 }
206
207 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
208 {
209 if (qdev->current_page != 0)
210 ql_set_register_page(qdev, 0);
211 return readl(reg);
212 }
213
214 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
215 u32 __iomem *reg, u32 value)
216 {
217 unsigned long hw_flags;
218
219 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
220 writel(value, reg);
221 readl(reg);
222 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
223 }
224
225 static void ql_write_common_reg(struct ql3_adapter *qdev,
226 u32 __iomem *reg, u32 value)
227 {
228 writel(value, reg);
229 readl(reg);
230 }
231
232 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
233 u32 __iomem *reg, u32 value)
234 {
235 writel(value, reg);
236 readl(reg);
237 udelay(1);
238 }
239
240 static void ql_write_page0_reg(struct ql3_adapter *qdev,
241 u32 __iomem *reg, u32 value)
242 {
243 if (qdev->current_page != 0)
244 ql_set_register_page(qdev, 0);
245 writel(value, reg);
246 readl(reg);
247 }
248
249 /*
250 * Caller holds hw_lock. Only called during init.
251 */
252 static void ql_write_page1_reg(struct ql3_adapter *qdev,
253 u32 __iomem *reg, u32 value)
254 {
255 if (qdev->current_page != 1)
256 ql_set_register_page(qdev, 1);
257 writel(value, reg);
258 readl(reg);
259 }
260
261 /*
262 * Caller holds hw_lock. Only called during init.
263 */
264 static void ql_write_page2_reg(struct ql3_adapter *qdev,
265 u32 __iomem *reg, u32 value)
266 {
267 if (qdev->current_page != 2)
268 ql_set_register_page(qdev, 2);
269 writel(value, reg);
270 readl(reg);
271 }
272
273 static void ql_disable_interrupts(struct ql3_adapter *qdev)
274 {
275 struct ql3xxx_port_registers __iomem *port_regs =
276 qdev->mem_map_registers;
277
278 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
279 (ISP_IMR_ENABLE_INT << 16));
280
281 }
282
283 static void ql_enable_interrupts(struct ql3_adapter *qdev)
284 {
285 struct ql3xxx_port_registers __iomem *port_regs =
286 qdev->mem_map_registers;
287
288 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
289 ((0xff << 16) | ISP_IMR_ENABLE_INT));
290
291 }
292
293 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
294 struct ql_rcv_buf_cb *lrg_buf_cb)
295 {
296 dma_addr_t map;
297 int err;
298 lrg_buf_cb->next = NULL;
299
300 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
301 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
302 } else {
303 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
304 qdev->lrg_buf_free_tail = lrg_buf_cb;
305 }
306
307 if (!lrg_buf_cb->skb) {
308 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
309 qdev->lrg_buffer_len);
310 if (unlikely(!lrg_buf_cb->skb)) {
311 qdev->lrg_buf_skb_check++;
312 } else {
313 /*
314 * We save some space to copy the ethhdr from first
315 * buffer
316 */
317 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
318 map = dma_map_single(&qdev->pdev->dev,
319 lrg_buf_cb->skb->data,
320 qdev->lrg_buffer_len - QL_HEADER_SPACE,
321 DMA_FROM_DEVICE);
322 err = dma_mapping_error(&qdev->pdev->dev, map);
323 if (err) {
324 netdev_err(qdev->ndev,
325 "PCI mapping failed with error: %d\n",
326 err);
327 dev_kfree_skb(lrg_buf_cb->skb);
328 lrg_buf_cb->skb = NULL;
329
330 qdev->lrg_buf_skb_check++;
331 return;
332 }
333
334 lrg_buf_cb->buf_phy_addr_low =
335 cpu_to_le32(LS_64BITS(map));
336 lrg_buf_cb->buf_phy_addr_high =
337 cpu_to_le32(MS_64BITS(map));
338 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
339 dma_unmap_len_set(lrg_buf_cb, maplen,
340 qdev->lrg_buffer_len -
341 QL_HEADER_SPACE);
342 }
343 }
344
345 qdev->lrg_buf_free_count++;
346 }
347
348 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
349 *qdev)
350 {
351 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
352
353 if (lrg_buf_cb != NULL) {
354 qdev->lrg_buf_free_head = lrg_buf_cb->next;
355 if (qdev->lrg_buf_free_head == NULL)
356 qdev->lrg_buf_free_tail = NULL;
357 qdev->lrg_buf_free_count--;
358 }
359
360 return lrg_buf_cb;
361 }
362
363 static u32 addrBits = EEPROM_NO_ADDR_BITS;
364 static u32 dataBits = EEPROM_NO_DATA_BITS;
365
366 static void fm93c56a_deselect(struct ql3_adapter *qdev);
367 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
368 unsigned short *value);
369
370 /*
371 * Caller holds hw_lock.
372 */
373 static void fm93c56a_select(struct ql3_adapter *qdev)
374 {
375 struct ql3xxx_port_registers __iomem *port_regs =
376 qdev->mem_map_registers;
377 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
378
379 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
380 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
381 }
382
383 /*
384 * Caller holds hw_lock.
385 */
386 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
387 {
388 int i;
389 u32 mask;
390 u32 dataBit;
391 u32 previousBit;
392 struct ql3xxx_port_registers __iomem *port_regs =
393 qdev->mem_map_registers;
394 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
395
396 /* Clock in a zero, then do the start bit */
397 ql_write_nvram_reg(qdev, spir,
398 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
399 AUBURN_EEPROM_DO_1));
400 ql_write_nvram_reg(qdev, spir,
401 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
402 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
403 ql_write_nvram_reg(qdev, spir,
404 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
405 AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
406
407 mask = 1 << (FM93C56A_CMD_BITS - 1);
408 /* Force the previous data bit to be different */
409 previousBit = 0xffff;
410 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
411 dataBit = (cmd & mask)
412 ? AUBURN_EEPROM_DO_1
413 : AUBURN_EEPROM_DO_0;
414 if (previousBit != dataBit) {
415 /* If the bit changed, change the DO state to match */
416 ql_write_nvram_reg(qdev, spir,
417 (ISP_NVRAM_MASK |
418 qdev->eeprom_cmd_data | dataBit));
419 previousBit = dataBit;
420 }
421 ql_write_nvram_reg(qdev, spir,
422 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
423 dataBit | AUBURN_EEPROM_CLK_RISE));
424 ql_write_nvram_reg(qdev, spir,
425 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
426 dataBit | AUBURN_EEPROM_CLK_FALL));
427 cmd = cmd << 1;
428 }
429
430 mask = 1 << (addrBits - 1);
431 /* Force the previous data bit to be different */
432 previousBit = 0xffff;
433 for (i = 0; i < addrBits; i++) {
434 dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
435 : AUBURN_EEPROM_DO_0;
436 if (previousBit != dataBit) {
437 /*
438 * If the bit changed, then change the DO state to
439 * match
440 */
441 ql_write_nvram_reg(qdev, spir,
442 (ISP_NVRAM_MASK |
443 qdev->eeprom_cmd_data | dataBit));
444 previousBit = dataBit;
445 }
446 ql_write_nvram_reg(qdev, spir,
447 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
448 dataBit | AUBURN_EEPROM_CLK_RISE));
449 ql_write_nvram_reg(qdev, spir,
450 (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
451 dataBit | AUBURN_EEPROM_CLK_FALL));
452 eepromAddr = eepromAddr << 1;
453 }
454 }
455
456 /*
457 * Caller holds hw_lock.
458 */
459 static void fm93c56a_deselect(struct ql3_adapter *qdev)
460 {
461 struct ql3xxx_port_registers __iomem *port_regs =
462 qdev->mem_map_registers;
463 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
464
465 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
466 ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
467 }
468
469 /*
470 * Caller holds hw_lock.
471 */
472 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
473 {
474 int i;
475 u32 data = 0;
476 u32 dataBit;
477 struct ql3xxx_port_registers __iomem *port_regs =
478 qdev->mem_map_registers;
479 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
480
481 /* Read the data bits */
482 /* The first bit is a dummy. Clock right over it. */
483 for (i = 0; i < dataBits; i++) {
484 ql_write_nvram_reg(qdev, spir,
485 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
486 AUBURN_EEPROM_CLK_RISE);
487 ql_write_nvram_reg(qdev, spir,
488 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
489 AUBURN_EEPROM_CLK_FALL);
490 dataBit = (ql_read_common_reg(qdev, spir) &
491 AUBURN_EEPROM_DI_1) ? 1 : 0;
492 data = (data << 1) | dataBit;
493 }
494 *value = (u16)data;
495 }
496
497 /*
498 * Caller holds hw_lock.
499 */
500 static void eeprom_readword(struct ql3_adapter *qdev,
501 u32 eepromAddr, unsigned short *value)
502 {
503 fm93c56a_select(qdev);
504 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
505 fm93c56a_datain(qdev, value);
506 fm93c56a_deselect(qdev);
507 }
508
509 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
510 {
511 __le16 *p = (__le16 *)ndev->dev_addr;
512 p[0] = cpu_to_le16(addr[0]);
513 p[1] = cpu_to_le16(addr[1]);
514 p[2] = cpu_to_le16(addr[2]);
515 }
516
517 static int ql_get_nvram_params(struct ql3_adapter *qdev)
518 {
519 u16 *pEEPROMData;
520 u16 checksum = 0;
521 u32 index;
522 unsigned long hw_flags;
523
524 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
525
526 pEEPROMData = (u16 *)&qdev->nvram_data;
527 qdev->eeprom_cmd_data = 0;
528 if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
529 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
530 2) << 10)) {
531 pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
532 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
533 return -1;
534 }
535
536 for (index = 0; index < EEPROM_SIZE; index++) {
537 eeprom_readword(qdev, index, pEEPROMData);
538 checksum += *pEEPROMData;
539 pEEPROMData++;
540 }
541 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
542
543 if (checksum != 0) {
544 netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
545 checksum);
546 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
547 return -1;
548 }
549
550 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
551 return checksum;
552 }
553
554 static const u32 PHYAddr[2] = {
555 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
556 };
557
558 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
559 {
560 struct ql3xxx_port_registers __iomem *port_regs =
561 qdev->mem_map_registers;
562 u32 temp;
563 int count = 1000;
564
565 while (count) {
566 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
567 if (!(temp & MAC_MII_STATUS_BSY))
568 return 0;
569 udelay(10);
570 count--;
571 }
572 return -1;
573 }
574
575 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
576 {
577 struct ql3xxx_port_registers __iomem *port_regs =
578 qdev->mem_map_registers;
579 u32 scanControl;
580
581 if (qdev->numPorts > 1) {
582 /* Auto scan will cycle through multiple ports */
583 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
584 } else {
585 scanControl = MAC_MII_CONTROL_SC;
586 }
587
588 /*
589 * Scan register 1 of PHY/PETBI,
590 * Set up to scan both devices
591 * The autoscan starts from the first register, completes
592 * the last one before rolling over to the first
593 */
594 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
595 PHYAddr[0] | MII_SCAN_REGISTER);
596
597 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
598 (scanControl) |
599 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
600 }
601
602 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
603 {
604 u8 ret;
605 struct ql3xxx_port_registers __iomem *port_regs =
606 qdev->mem_map_registers;
607
608 /* See if scan mode is enabled before we turn it off */
609 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
610 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
611 /* Scan is enabled */
612 ret = 1;
613 } else {
614 /* Scan is disabled */
615 ret = 0;
616 }
617
618 /*
619 * When disabling scan mode you must first change the MII register
620 * address
621 */
622 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
623 PHYAddr[0] | MII_SCAN_REGISTER);
624
625 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
626 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
627 MAC_MII_CONTROL_RC) << 16));
628
629 return ret;
630 }
631
632 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
633 u16 regAddr, u16 value, u32 phyAddr)
634 {
635 struct ql3xxx_port_registers __iomem *port_regs =
636 qdev->mem_map_registers;
637 u8 scanWasEnabled;
638
639 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
640
641 if (ql_wait_for_mii_ready(qdev)) {
642 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
643 return -1;
644 }
645
646 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
647 phyAddr | regAddr);
648
649 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
650
651 /* Wait for write to complete 9/10/04 SJP */
652 if (ql_wait_for_mii_ready(qdev)) {
653 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
654 return -1;
655 }
656
657 if (scanWasEnabled)
658 ql_mii_enable_scan_mode(qdev);
659
660 return 0;
661 }
662
663 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
664 u16 *value, u32 phyAddr)
665 {
666 struct ql3xxx_port_registers __iomem *port_regs =
667 qdev->mem_map_registers;
668 u8 scanWasEnabled;
669 u32 temp;
670
671 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
672
673 if (ql_wait_for_mii_ready(qdev)) {
674 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
675 return -1;
676 }
677
678 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
679 phyAddr | regAddr);
680
681 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
682 (MAC_MII_CONTROL_RC << 16));
683
684 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
685 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
686
687 /* Wait for the read to complete */
688 if (ql_wait_for_mii_ready(qdev)) {
689 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
690 return -1;
691 }
692
693 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
694 *value = (u16) temp;
695
696 if (scanWasEnabled)
697 ql_mii_enable_scan_mode(qdev);
698
699 return 0;
700 }
701
702 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
703 {
704 struct ql3xxx_port_registers __iomem *port_regs =
705 qdev->mem_map_registers;
706
707 ql_mii_disable_scan_mode(qdev);
708
709 if (ql_wait_for_mii_ready(qdev)) {
710 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
711 return -1;
712 }
713
714 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
715 qdev->PHYAddr | regAddr);
716
717 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
718
719 /* Wait for write to complete. */
720 if (ql_wait_for_mii_ready(qdev)) {
721 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
722 return -1;
723 }
724
725 ql_mii_enable_scan_mode(qdev);
726
727 return 0;
728 }
729
730 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
731 {
732 u32 temp;
733 struct ql3xxx_port_registers __iomem *port_regs =
734 qdev->mem_map_registers;
735
736 ql_mii_disable_scan_mode(qdev);
737
738 if (ql_wait_for_mii_ready(qdev)) {
739 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
740 return -1;
741 }
742
743 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
744 qdev->PHYAddr | regAddr);
745
746 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
747 (MAC_MII_CONTROL_RC << 16));
748
749 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
750 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
751
752 /* Wait for the read to complete */
753 if (ql_wait_for_mii_ready(qdev)) {
754 netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
755 return -1;
756 }
757
758 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
759 *value = (u16) temp;
760
761 ql_mii_enable_scan_mode(qdev);
762
763 return 0;
764 }
765
766 static void ql_petbi_reset(struct ql3_adapter *qdev)
767 {
768 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
769 }
770
771 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
772 {
773 u16 reg;
774
775 /* Enable Auto-negotiation sense */
776 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
777 reg |= PETBI_TBI_AUTO_SENSE;
778 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
779
780 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
781 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
782
783 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
784 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
785 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
786
787 }
788
789 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
790 {
791 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
792 PHYAddr[qdev->mac_index]);
793 }
794
795 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
796 {
797 u16 reg;
798
799 /* Enable Auto-negotiation sense */
800 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
801 PHYAddr[qdev->mac_index]);
802 reg |= PETBI_TBI_AUTO_SENSE;
803 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
804 PHYAddr[qdev->mac_index]);
805
806 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
807 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
808 PHYAddr[qdev->mac_index]);
809
810 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
811 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
812 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
813 PHYAddr[qdev->mac_index]);
814 }
815
816 static void ql_petbi_init(struct ql3_adapter *qdev)
817 {
818 ql_petbi_reset(qdev);
819 ql_petbi_start_neg(qdev);
820 }
821
822 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
823 {
824 ql_petbi_reset_ex(qdev);
825 ql_petbi_start_neg_ex(qdev);
826 }
827
828 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
829 {
830 u16 reg;
831
832 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
833 return 0;
834
835 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
836 }
837
838 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
839 {
840 netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
841 /* power down device bit 11 = 1 */
842 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
843 /* enable diagnostic mode bit 2 = 1 */
844 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
845 /* 1000MB amplitude adjust (see Agere errata) */
846 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
847 /* 1000MB amplitude adjust (see Agere errata) */
848 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
849 /* 100MB amplitude adjust (see Agere errata) */
850 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
851 /* 100MB amplitude adjust (see Agere errata) */
852 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
853 /* 10MB amplitude adjust (see Agere errata) */
854 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
855 /* 10MB amplitude adjust (see Agere errata) */
856 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
857 /* point to hidden reg 0x2806 */
858 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
859 /* Write new PHYAD w/bit 5 set */
860 ql_mii_write_reg_ex(qdev, 0x11,
861 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
862 /*
863 * Disable diagnostic mode bit 2 = 0
864 * Power up device bit 11 = 0
865 * Link up (on) and activity (blink)
866 */
867 ql_mii_write_reg(qdev, 0x12, 0x840a);
868 ql_mii_write_reg(qdev, 0x00, 0x1140);
869 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
870 }
871
872 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
873 u16 phyIdReg0, u16 phyIdReg1)
874 {
875 enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
876 u32 oui;
877 u16 model;
878 int i;
879
880 if (phyIdReg0 == 0xffff)
881 return result;
882
883 if (phyIdReg1 == 0xffff)
884 return result;
885
886 /* oui is split between two registers */
887 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
888
889 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
890
891 /* Scan table for this PHY */
892 for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
893 if ((oui == PHY_DEVICES[i].phyIdOUI) &&
894 (model == PHY_DEVICES[i].phyIdModel)) {
895 netdev_info(qdev->ndev, "Phy: %s\n",
896 PHY_DEVICES[i].name);
897 result = PHY_DEVICES[i].phyDevice;
898 break;
899 }
900 }
901
902 return result;
903 }
904
905 static int ql_phy_get_speed(struct ql3_adapter *qdev)
906 {
907 u16 reg;
908
909 switch (qdev->phyType) {
910 case PHY_AGERE_ET1011C: {
911 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
912 return 0;
913
914 reg = (reg >> 8) & 3;
915 break;
916 }
917 default:
918 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
919 return 0;
920
921 reg = (((reg & 0x18) >> 3) & 3);
922 }
923
924 switch (reg) {
925 case 2:
926 return SPEED_1000;
927 case 1:
928 return SPEED_100;
929 case 0:
930 return SPEED_10;
931 default:
932 return -1;
933 }
934 }
935
936 static int ql_is_full_dup(struct ql3_adapter *qdev)
937 {
938 u16 reg;
939
940 switch (qdev->phyType) {
941 case PHY_AGERE_ET1011C: {
942 if (ql_mii_read_reg(qdev, 0x1A, &reg))
943 return 0;
944
945 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
946 }
947 case PHY_VITESSE_VSC8211:
948 default: {
949 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
950 return 0;
951 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
952 }
953 }
954 }
955
956 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
957 {
958 u16 reg;
959
960 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
961 return 0;
962
963 return (reg & PHY_NEG_PAUSE) != 0;
964 }
965
966 static int PHY_Setup(struct ql3_adapter *qdev)
967 {
968 u16 reg1;
969 u16 reg2;
970 bool agereAddrChangeNeeded = false;
971 u32 miiAddr = 0;
972 int err;
973
974 /* Determine the PHY we are using by reading the ID's */
975 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
976 if (err != 0) {
977 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
978 return err;
979 }
980
981 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
982 if (err != 0) {
983 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
984 return err;
985 }
986
987 /* Check if we have a Agere PHY */
988 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
989
990 /* Determine which MII address we should be using
991 determined by the index of the card */
992 if (qdev->mac_index == 0)
993 miiAddr = MII_AGERE_ADDR_1;
994 else
995 miiAddr = MII_AGERE_ADDR_2;
996
997 err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
998 if (err != 0) {
999 netdev_err(qdev->ndev,
1000 "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1001 return err;
1002 }
1003
1004 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1005 if (err != 0) {
1006 netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1007 return err;
1008 }
1009
1010 /* We need to remember to initialize the Agere PHY */
1011 agereAddrChangeNeeded = true;
1012 }
1013
1014 /* Determine the particular PHY we have on board to apply
1015 PHY specific initializations */
1016 qdev->phyType = getPhyType(qdev, reg1, reg2);
1017
1018 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1019 /* need this here so address gets changed */
1020 phyAgereSpecificInit(qdev, miiAddr);
1021 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1022 netdev_err(qdev->ndev, "PHY is unknown\n");
1023 return -EIO;
1024 }
1025
1026 return 0;
1027 }
1028
1029 /*
1030 * Caller holds hw_lock.
1031 */
1032 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1033 {
1034 struct ql3xxx_port_registers __iomem *port_regs =
1035 qdev->mem_map_registers;
1036 u32 value;
1037
1038 if (enable)
1039 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1040 else
1041 value = (MAC_CONFIG_REG_PE << 16);
1042
1043 if (qdev->mac_index)
1044 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1045 else
1046 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1047 }
1048
1049 /*
1050 * Caller holds hw_lock.
1051 */
1052 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1053 {
1054 struct ql3xxx_port_registers __iomem *port_regs =
1055 qdev->mem_map_registers;
1056 u32 value;
1057
1058 if (enable)
1059 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1060 else
1061 value = (MAC_CONFIG_REG_SR << 16);
1062
1063 if (qdev->mac_index)
1064 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1065 else
1066 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1067 }
1068
1069 /*
1070 * Caller holds hw_lock.
1071 */
1072 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1073 {
1074 struct ql3xxx_port_registers __iomem *port_regs =
1075 qdev->mem_map_registers;
1076 u32 value;
1077
1078 if (enable)
1079 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1080 else
1081 value = (MAC_CONFIG_REG_GM << 16);
1082
1083 if (qdev->mac_index)
1084 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1085 else
1086 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1087 }
1088
1089 /*
1090 * Caller holds hw_lock.
1091 */
1092 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1093 {
1094 struct ql3xxx_port_registers __iomem *port_regs =
1095 qdev->mem_map_registers;
1096 u32 value;
1097
1098 if (enable)
1099 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1100 else
1101 value = (MAC_CONFIG_REG_FD << 16);
1102
1103 if (qdev->mac_index)
1104 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1105 else
1106 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1107 }
1108
1109 /*
1110 * Caller holds hw_lock.
1111 */
1112 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1113 {
1114 struct ql3xxx_port_registers __iomem *port_regs =
1115 qdev->mem_map_registers;
1116 u32 value;
1117
1118 if (enable)
1119 value =
1120 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1121 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1122 else
1123 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1124
1125 if (qdev->mac_index)
1126 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1127 else
1128 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1129 }
1130
1131 /*
1132 * Caller holds hw_lock.
1133 */
1134 static int ql_is_fiber(struct ql3_adapter *qdev)
1135 {
1136 struct ql3xxx_port_registers __iomem *port_regs =
1137 qdev->mem_map_registers;
1138 u32 bitToCheck = 0;
1139 u32 temp;
1140
1141 switch (qdev->mac_index) {
1142 case 0:
1143 bitToCheck = PORT_STATUS_SM0;
1144 break;
1145 case 1:
1146 bitToCheck = PORT_STATUS_SM1;
1147 break;
1148 }
1149
1150 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1151 return (temp & bitToCheck) != 0;
1152 }
1153
1154 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1155 {
1156 u16 reg;
1157 ql_mii_read_reg(qdev, 0x00, &reg);
1158 return (reg & 0x1000) != 0;
1159 }
1160
1161 /*
1162 * Caller holds hw_lock.
1163 */
1164 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1165 {
1166 struct ql3xxx_port_registers __iomem *port_regs =
1167 qdev->mem_map_registers;
1168 u32 bitToCheck = 0;
1169 u32 temp;
1170
1171 switch (qdev->mac_index) {
1172 case 0:
1173 bitToCheck = PORT_STATUS_AC0;
1174 break;
1175 case 1:
1176 bitToCheck = PORT_STATUS_AC1;
1177 break;
1178 }
1179
1180 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1181 if (temp & bitToCheck) {
1182 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1183 return 1;
1184 }
1185 netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1186 return 0;
1187 }
1188
1189 /*
1190 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1191 */
1192 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1193 {
1194 if (ql_is_fiber(qdev))
1195 return ql_is_petbi_neg_pause(qdev);
1196 else
1197 return ql_is_phy_neg_pause(qdev);
1198 }
1199
1200 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1201 {
1202 struct ql3xxx_port_registers __iomem *port_regs =
1203 qdev->mem_map_registers;
1204 u32 bitToCheck = 0;
1205 u32 temp;
1206
1207 switch (qdev->mac_index) {
1208 case 0:
1209 bitToCheck = PORT_STATUS_AE0;
1210 break;
1211 case 1:
1212 bitToCheck = PORT_STATUS_AE1;
1213 break;
1214 }
1215 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1216 return (temp & bitToCheck) != 0;
1217 }
1218
1219 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1220 {
1221 if (ql_is_fiber(qdev))
1222 return SPEED_1000;
1223 else
1224 return ql_phy_get_speed(qdev);
1225 }
1226
1227 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1228 {
1229 if (ql_is_fiber(qdev))
1230 return 1;
1231 else
1232 return ql_is_full_dup(qdev);
1233 }
1234
1235 /*
1236 * Caller holds hw_lock.
1237 */
1238 static int ql_link_down_detect(struct ql3_adapter *qdev)
1239 {
1240 struct ql3xxx_port_registers __iomem *port_regs =
1241 qdev->mem_map_registers;
1242 u32 bitToCheck = 0;
1243 u32 temp;
1244
1245 switch (qdev->mac_index) {
1246 case 0:
1247 bitToCheck = ISP_CONTROL_LINK_DN_0;
1248 break;
1249 case 1:
1250 bitToCheck = ISP_CONTROL_LINK_DN_1;
1251 break;
1252 }
1253
1254 temp =
1255 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1256 return (temp & bitToCheck) != 0;
1257 }
1258
1259 /*
1260 * Caller holds hw_lock.
1261 */
1262 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1263 {
1264 struct ql3xxx_port_registers __iomem *port_regs =
1265 qdev->mem_map_registers;
1266
1267 switch (qdev->mac_index) {
1268 case 0:
1269 ql_write_common_reg(qdev,
1270 &port_regs->CommonRegs.ispControlStatus,
1271 (ISP_CONTROL_LINK_DN_0) |
1272 (ISP_CONTROL_LINK_DN_0 << 16));
1273 break;
1274
1275 case 1:
1276 ql_write_common_reg(qdev,
1277 &port_regs->CommonRegs.ispControlStatus,
1278 (ISP_CONTROL_LINK_DN_1) |
1279 (ISP_CONTROL_LINK_DN_1 << 16));
1280 break;
1281
1282 default:
1283 return 1;
1284 }
1285
1286 return 0;
1287 }
1288
1289 /*
1290 * Caller holds hw_lock.
1291 */
1292 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1293 {
1294 struct ql3xxx_port_registers __iomem *port_regs =
1295 qdev->mem_map_registers;
1296 u32 bitToCheck = 0;
1297 u32 temp;
1298
1299 switch (qdev->mac_index) {
1300 case 0:
1301 bitToCheck = PORT_STATUS_F1_ENABLED;
1302 break;
1303 case 1:
1304 bitToCheck = PORT_STATUS_F3_ENABLED;
1305 break;
1306 default:
1307 break;
1308 }
1309
1310 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1311 if (temp & bitToCheck) {
1312 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1313 "not link master\n");
1314 return 0;
1315 }
1316
1317 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1318 return 1;
1319 }
1320
1321 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1322 {
1323 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1324 PHYAddr[qdev->mac_index]);
1325 }
1326
1327 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1328 {
1329 u16 reg;
1330 u16 portConfiguration;
1331
1332 if (qdev->phyType == PHY_AGERE_ET1011C)
1333 ql_mii_write_reg(qdev, 0x13, 0x0000);
1334 /* turn off external loopback */
1335
1336 if (qdev->mac_index == 0)
1337 portConfiguration =
1338 qdev->nvram_data.macCfg_port0.portConfiguration;
1339 else
1340 portConfiguration =
1341 qdev->nvram_data.macCfg_port1.portConfiguration;
1342
1343 /* Some HBA's in the field are set to 0 and they need to
1344 be reinterpreted with a default value */
1345 if (portConfiguration == 0)
1346 portConfiguration = PORT_CONFIG_DEFAULT;
1347
1348 /* Set the 1000 advertisements */
1349 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1350 PHYAddr[qdev->mac_index]);
1351 reg &= ~PHY_GIG_ALL_PARAMS;
1352
1353 if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1354 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1355 reg |= PHY_GIG_ADV_1000F;
1356 else
1357 reg |= PHY_GIG_ADV_1000H;
1358 }
1359
1360 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1361 PHYAddr[qdev->mac_index]);
1362
1363 /* Set the 10/100 & pause negotiation advertisements */
1364 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1365 PHYAddr[qdev->mac_index]);
1366 reg &= ~PHY_NEG_ALL_PARAMS;
1367
1368 if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1369 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1370
1371 if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1372 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1373 reg |= PHY_NEG_ADV_100F;
1374
1375 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1376 reg |= PHY_NEG_ADV_10F;
1377 }
1378
1379 if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1380 if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1381 reg |= PHY_NEG_ADV_100H;
1382
1383 if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1384 reg |= PHY_NEG_ADV_10H;
1385 }
1386
1387 if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1388 reg |= 1;
1389
1390 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1391 PHYAddr[qdev->mac_index]);
1392
1393 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1394
1395 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1396 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1397 PHYAddr[qdev->mac_index]);
1398 }
1399
1400 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1401 {
1402 ql_phy_reset_ex(qdev);
1403 PHY_Setup(qdev);
1404 ql_phy_start_neg_ex(qdev);
1405 }
1406
1407 /*
1408 * Caller holds hw_lock.
1409 */
1410 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1411 {
1412 struct ql3xxx_port_registers __iomem *port_regs =
1413 qdev->mem_map_registers;
1414 u32 bitToCheck = 0;
1415 u32 temp, linkState;
1416
1417 switch (qdev->mac_index) {
1418 case 0:
1419 bitToCheck = PORT_STATUS_UP0;
1420 break;
1421 case 1:
1422 bitToCheck = PORT_STATUS_UP1;
1423 break;
1424 }
1425
1426 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1427 if (temp & bitToCheck)
1428 linkState = LS_UP;
1429 else
1430 linkState = LS_DOWN;
1431
1432 return linkState;
1433 }
1434
1435 static int ql_port_start(struct ql3_adapter *qdev)
1436 {
1437 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1438 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1439 2) << 7)) {
1440 netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1441 return -1;
1442 }
1443
1444 if (ql_is_fiber(qdev)) {
1445 ql_petbi_init(qdev);
1446 } else {
1447 /* Copper port */
1448 ql_phy_init_ex(qdev);
1449 }
1450
1451 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1452 return 0;
1453 }
1454
1455 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1456 {
1457
1458 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1459 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1460 2) << 7))
1461 return -1;
1462
1463 if (!ql_auto_neg_error(qdev)) {
1464 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1465 /* configure the MAC */
1466 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1467 "Configuring link\n");
1468 ql_mac_cfg_soft_reset(qdev, 1);
1469 ql_mac_cfg_gig(qdev,
1470 (ql_get_link_speed
1471 (qdev) ==
1472 SPEED_1000));
1473 ql_mac_cfg_full_dup(qdev,
1474 ql_is_link_full_dup
1475 (qdev));
1476 ql_mac_cfg_pause(qdev,
1477 ql_is_neg_pause
1478 (qdev));
1479 ql_mac_cfg_soft_reset(qdev, 0);
1480
1481 /* enable the MAC */
1482 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1483 "Enabling mac\n");
1484 ql_mac_enable(qdev, 1);
1485 }
1486
1487 qdev->port_link_state = LS_UP;
1488 netif_start_queue(qdev->ndev);
1489 netif_carrier_on(qdev->ndev);
1490 netif_info(qdev, link, qdev->ndev,
1491 "Link is up at %d Mbps, %s duplex\n",
1492 ql_get_link_speed(qdev),
1493 ql_is_link_full_dup(qdev) ? "full" : "half");
1494
1495 } else { /* Remote error detected */
1496
1497 if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1498 netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1499 "Remote error detected. Calling ql_port_start()\n");
1500 /*
1501 * ql_port_start() is shared code and needs
1502 * to lock the PHY on it's own.
1503 */
1504 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1505 if (ql_port_start(qdev)) /* Restart port */
1506 return -1;
1507 return 0;
1508 }
1509 }
1510 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1511 return 0;
1512 }
1513
1514 static void ql_link_state_machine_work(struct work_struct *work)
1515 {
1516 struct ql3_adapter *qdev =
1517 container_of(work, struct ql3_adapter, link_state_work.work);
1518
1519 u32 curr_link_state;
1520 unsigned long hw_flags;
1521
1522 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1523
1524 curr_link_state = ql_get_link_state(qdev);
1525
1526 if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1527 netif_info(qdev, link, qdev->ndev,
1528 "Reset in progress, skip processing link state\n");
1529
1530 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1531
1532 /* Restart timer on 2 second interval. */
1533 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1534
1535 return;
1536 }
1537
1538 switch (qdev->port_link_state) {
1539 default:
1540 if (test_bit(QL_LINK_MASTER, &qdev->flags))
1541 ql_port_start(qdev);
1542 qdev->port_link_state = LS_DOWN;
1543 fallthrough;
1544
1545 case LS_DOWN:
1546 if (curr_link_state == LS_UP) {
1547 netif_info(qdev, link, qdev->ndev, "Link is up\n");
1548 if (ql_is_auto_neg_complete(qdev))
1549 ql_finish_auto_neg(qdev);
1550
1551 if (qdev->port_link_state == LS_UP)
1552 ql_link_down_detect_clear(qdev);
1553
1554 qdev->port_link_state = LS_UP;
1555 }
1556 break;
1557
1558 case LS_UP:
1559 /*
1560 * See if the link is currently down or went down and came
1561 * back up
1562 */
1563 if (curr_link_state == LS_DOWN) {
1564 netif_info(qdev, link, qdev->ndev, "Link is down\n");
1565 qdev->port_link_state = LS_DOWN;
1566 }
1567 if (ql_link_down_detect(qdev))
1568 qdev->port_link_state = LS_DOWN;
1569 break;
1570 }
1571 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1572
1573 /* Restart timer on 2 second interval. */
1574 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1575 }
1576
1577 /*
1578 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1579 */
1580 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1581 {
1582 if (ql_this_adapter_controls_port(qdev))
1583 set_bit(QL_LINK_MASTER, &qdev->flags);
1584 else
1585 clear_bit(QL_LINK_MASTER, &qdev->flags);
1586 }
1587
1588 /*
1589 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1590 */
1591 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1592 {
1593 ql_mii_enable_scan_mode(qdev);
1594
1595 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1596 if (ql_this_adapter_controls_port(qdev))
1597 ql_petbi_init_ex(qdev);
1598 } else {
1599 if (ql_this_adapter_controls_port(qdev))
1600 ql_phy_init_ex(qdev);
1601 }
1602 }
1603
1604 /*
1605 * MII_Setup needs to be called before taking the PHY out of reset
1606 * so that the management interface clock speed can be set properly.
1607 * It would be better if we had a way to disable MDC until after the
1608 * PHY is out of reset, but we don't have that capability.
1609 */
1610 static int ql_mii_setup(struct ql3_adapter *qdev)
1611 {
1612 u32 reg;
1613 struct ql3xxx_port_registers __iomem *port_regs =
1614 qdev->mem_map_registers;
1615
1616 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1617 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1618 2) << 7))
1619 return -1;
1620
1621 if (qdev->device_id == QL3032_DEVICE_ID)
1622 ql_write_page0_reg(qdev,
1623 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1624
1625 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1626 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1627
1628 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1629 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1630
1631 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1632 return 0;
1633 }
1634
1635 #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
1636 SUPPORTED_FIBRE | \
1637 SUPPORTED_Autoneg)
1638 #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
1639 SUPPORTED_10baseT_Full | \
1640 SUPPORTED_100baseT_Half | \
1641 SUPPORTED_100baseT_Full | \
1642 SUPPORTED_1000baseT_Half | \
1643 SUPPORTED_1000baseT_Full | \
1644 SUPPORTED_Autoneg | \
1645 SUPPORTED_TP) \
1646
1647 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1648 {
1649 if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1650 return SUPPORTED_OPTICAL_MODES;
1651
1652 return SUPPORTED_TP_MODES;
1653 }
1654
1655 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1656 {
1657 int status;
1658 unsigned long hw_flags;
1659 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1660 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1661 (QL_RESOURCE_BITS_BASE_CODE |
1662 (qdev->mac_index) * 2) << 7)) {
1663 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1664 return 0;
1665 }
1666 status = ql_is_auto_cfg(qdev);
1667 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1668 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1669 return status;
1670 }
1671
1672 static u32 ql_get_speed(struct ql3_adapter *qdev)
1673 {
1674 u32 status;
1675 unsigned long hw_flags;
1676 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1677 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1678 (QL_RESOURCE_BITS_BASE_CODE |
1679 (qdev->mac_index) * 2) << 7)) {
1680 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1681 return 0;
1682 }
1683 status = ql_get_link_speed(qdev);
1684 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1685 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1686 return status;
1687 }
1688
1689 static int ql_get_full_dup(struct ql3_adapter *qdev)
1690 {
1691 int status;
1692 unsigned long hw_flags;
1693 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1694 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1695 (QL_RESOURCE_BITS_BASE_CODE |
1696 (qdev->mac_index) * 2) << 7)) {
1697 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1698 return 0;
1699 }
1700 status = ql_is_link_full_dup(qdev);
1701 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1702 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1703 return status;
1704 }
1705
1706 static int ql_get_link_ksettings(struct net_device *ndev,
1707 struct ethtool_link_ksettings *cmd)
1708 {
1709 struct ql3_adapter *qdev = netdev_priv(ndev);
1710 u32 supported, advertising;
1711
1712 supported = ql_supported_modes(qdev);
1713
1714 if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1715 cmd->base.port = PORT_FIBRE;
1716 } else {
1717 cmd->base.port = PORT_TP;
1718 cmd->base.phy_address = qdev->PHYAddr;
1719 }
1720 advertising = ql_supported_modes(qdev);
1721 cmd->base.autoneg = ql_get_auto_cfg_status(qdev);
1722 cmd->base.speed = ql_get_speed(qdev);
1723 cmd->base.duplex = ql_get_full_dup(qdev);
1724
1725 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1726 supported);
1727 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1728 advertising);
1729
1730 return 0;
1731 }
1732
1733 static void ql_get_drvinfo(struct net_device *ndev,
1734 struct ethtool_drvinfo *drvinfo)
1735 {
1736 struct ql3_adapter *qdev = netdev_priv(ndev);
1737 strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1738 strlcpy(drvinfo->version, ql3xxx_driver_version,
1739 sizeof(drvinfo->version));
1740 strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1741 sizeof(drvinfo->bus_info));
1742 }
1743
1744 static u32 ql_get_msglevel(struct net_device *ndev)
1745 {
1746 struct ql3_adapter *qdev = netdev_priv(ndev);
1747 return qdev->msg_enable;
1748 }
1749
1750 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1751 {
1752 struct ql3_adapter *qdev = netdev_priv(ndev);
1753 qdev->msg_enable = value;
1754 }
1755
1756 static void ql_get_pauseparam(struct net_device *ndev,
1757 struct ethtool_pauseparam *pause)
1758 {
1759 struct ql3_adapter *qdev = netdev_priv(ndev);
1760 struct ql3xxx_port_registers __iomem *port_regs =
1761 qdev->mem_map_registers;
1762
1763 u32 reg;
1764 if (qdev->mac_index == 0)
1765 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1766 else
1767 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1768
1769 pause->autoneg = ql_get_auto_cfg_status(qdev);
1770 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1771 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1772 }
1773
1774 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1775 .get_drvinfo = ql_get_drvinfo,
1776 .get_link = ethtool_op_get_link,
1777 .get_msglevel = ql_get_msglevel,
1778 .set_msglevel = ql_set_msglevel,
1779 .get_pauseparam = ql_get_pauseparam,
1780 .get_link_ksettings = ql_get_link_ksettings,
1781 };
1782
1783 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1784 {
1785 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1786 dma_addr_t map;
1787 int err;
1788
1789 while (lrg_buf_cb) {
1790 if (!lrg_buf_cb->skb) {
1791 lrg_buf_cb->skb =
1792 netdev_alloc_skb(qdev->ndev,
1793 qdev->lrg_buffer_len);
1794 if (unlikely(!lrg_buf_cb->skb)) {
1795 netdev_printk(KERN_DEBUG, qdev->ndev,
1796 "Failed netdev_alloc_skb()\n");
1797 break;
1798 } else {
1799 /*
1800 * We save some space to copy the ethhdr from
1801 * first buffer
1802 */
1803 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1804 map = dma_map_single(&qdev->pdev->dev,
1805 lrg_buf_cb->skb->data,
1806 qdev->lrg_buffer_len - QL_HEADER_SPACE,
1807 DMA_FROM_DEVICE);
1808
1809 err = dma_mapping_error(&qdev->pdev->dev, map);
1810 if (err) {
1811 netdev_err(qdev->ndev,
1812 "PCI mapping failed with error: %d\n",
1813 err);
1814 dev_kfree_skb(lrg_buf_cb->skb);
1815 lrg_buf_cb->skb = NULL;
1816 break;
1817 }
1818
1819
1820 lrg_buf_cb->buf_phy_addr_low =
1821 cpu_to_le32(LS_64BITS(map));
1822 lrg_buf_cb->buf_phy_addr_high =
1823 cpu_to_le32(MS_64BITS(map));
1824 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1825 dma_unmap_len_set(lrg_buf_cb, maplen,
1826 qdev->lrg_buffer_len -
1827 QL_HEADER_SPACE);
1828 --qdev->lrg_buf_skb_check;
1829 if (!qdev->lrg_buf_skb_check)
1830 return 1;
1831 }
1832 }
1833 lrg_buf_cb = lrg_buf_cb->next;
1834 }
1835 return 0;
1836 }
1837
1838 /*
1839 * Caller holds hw_lock.
1840 */
1841 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1842 {
1843 struct ql3xxx_port_registers __iomem *port_regs =
1844 qdev->mem_map_registers;
1845
1846 if (qdev->small_buf_release_cnt >= 16) {
1847 while (qdev->small_buf_release_cnt >= 16) {
1848 qdev->small_buf_q_producer_index++;
1849
1850 if (qdev->small_buf_q_producer_index ==
1851 NUM_SBUFQ_ENTRIES)
1852 qdev->small_buf_q_producer_index = 0;
1853 qdev->small_buf_release_cnt -= 8;
1854 }
1855 wmb();
1856 writel_relaxed(qdev->small_buf_q_producer_index,
1857 &port_regs->CommonRegs.rxSmallQProducerIndex);
1858 }
1859 }
1860
1861 /*
1862 * Caller holds hw_lock.
1863 */
1864 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1865 {
1866 struct bufq_addr_element *lrg_buf_q_ele;
1867 int i;
1868 struct ql_rcv_buf_cb *lrg_buf_cb;
1869 struct ql3xxx_port_registers __iomem *port_regs =
1870 qdev->mem_map_registers;
1871
1872 if ((qdev->lrg_buf_free_count >= 8) &&
1873 (qdev->lrg_buf_release_cnt >= 16)) {
1874
1875 if (qdev->lrg_buf_skb_check)
1876 if (!ql_populate_free_queue(qdev))
1877 return;
1878
1879 lrg_buf_q_ele = qdev->lrg_buf_next_free;
1880
1881 while ((qdev->lrg_buf_release_cnt >= 16) &&
1882 (qdev->lrg_buf_free_count >= 8)) {
1883
1884 for (i = 0; i < 8; i++) {
1885 lrg_buf_cb =
1886 ql_get_from_lrg_buf_free_list(qdev);
1887 lrg_buf_q_ele->addr_high =
1888 lrg_buf_cb->buf_phy_addr_high;
1889 lrg_buf_q_ele->addr_low =
1890 lrg_buf_cb->buf_phy_addr_low;
1891 lrg_buf_q_ele++;
1892
1893 qdev->lrg_buf_release_cnt--;
1894 }
1895
1896 qdev->lrg_buf_q_producer_index++;
1897
1898 if (qdev->lrg_buf_q_producer_index ==
1899 qdev->num_lbufq_entries)
1900 qdev->lrg_buf_q_producer_index = 0;
1901
1902 if (qdev->lrg_buf_q_producer_index ==
1903 (qdev->num_lbufq_entries - 1)) {
1904 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1905 }
1906 }
1907 wmb();
1908 qdev->lrg_buf_next_free = lrg_buf_q_ele;
1909 writel(qdev->lrg_buf_q_producer_index,
1910 &port_regs->CommonRegs.rxLargeQProducerIndex);
1911 }
1912 }
1913
1914 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1915 struct ob_mac_iocb_rsp *mac_rsp)
1916 {
1917 struct ql_tx_buf_cb *tx_cb;
1918 int i;
1919
1920 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1921 netdev_warn(qdev->ndev,
1922 "Frame too short but it was padded and sent\n");
1923 }
1924
1925 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1926
1927 /* Check the transmit response flags for any errors */
1928 if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1929 netdev_err(qdev->ndev,
1930 "Frame too short to be legal, frame not sent\n");
1931
1932 qdev->ndev->stats.tx_errors++;
1933 goto frame_not_sent;
1934 }
1935
1936 if (tx_cb->seg_count == 0) {
1937 netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1938 mac_rsp->transaction_id);
1939
1940 qdev->ndev->stats.tx_errors++;
1941 goto invalid_seg_count;
1942 }
1943
1944 dma_unmap_single(&qdev->pdev->dev,
1945 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1946 dma_unmap_len(&tx_cb->map[0], maplen), DMA_TO_DEVICE);
1947 tx_cb->seg_count--;
1948 if (tx_cb->seg_count) {
1949 for (i = 1; i < tx_cb->seg_count; i++) {
1950 dma_unmap_page(&qdev->pdev->dev,
1951 dma_unmap_addr(&tx_cb->map[i], mapaddr),
1952 dma_unmap_len(&tx_cb->map[i], maplen),
1953 DMA_TO_DEVICE);
1954 }
1955 }
1956 qdev->ndev->stats.tx_packets++;
1957 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1958
1959 frame_not_sent:
1960 dev_kfree_skb_irq(tx_cb->skb);
1961 tx_cb->skb = NULL;
1962
1963 invalid_seg_count:
1964 atomic_inc(&qdev->tx_count);
1965 }
1966
1967 static void ql_get_sbuf(struct ql3_adapter *qdev)
1968 {
1969 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1970 qdev->small_buf_index = 0;
1971 qdev->small_buf_release_cnt++;
1972 }
1973
1974 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1975 {
1976 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1977 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1978 qdev->lrg_buf_release_cnt++;
1979 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1980 qdev->lrg_buf_index = 0;
1981 return lrg_buf_cb;
1982 }
1983
1984 /*
1985 * The difference between 3022 and 3032 for inbound completions:
1986 * 3022 uses two buffers per completion. The first buffer contains
1987 * (some) header info, the second the remainder of the headers plus
1988 * the data. For this chip we reserve some space at the top of the
1989 * receive buffer so that the header info in buffer one can be
1990 * prepended to the buffer two. Buffer two is the sent up while
1991 * buffer one is returned to the hardware to be reused.
1992 * 3032 receives all of it's data and headers in one buffer for a
1993 * simpler process. 3032 also supports checksum verification as
1994 * can be seen in ql_process_macip_rx_intr().
1995 */
1996 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
1997 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
1998 {
1999 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2000 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2001 struct sk_buff *skb;
2002 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2003
2004 /*
2005 * Get the inbound address list (small buffer).
2006 */
2007 ql_get_sbuf(qdev);
2008
2009 if (qdev->device_id == QL3022_DEVICE_ID)
2010 lrg_buf_cb1 = ql_get_lbuf(qdev);
2011
2012 /* start of second buffer */
2013 lrg_buf_cb2 = ql_get_lbuf(qdev);
2014 skb = lrg_buf_cb2->skb;
2015
2016 qdev->ndev->stats.rx_packets++;
2017 qdev->ndev->stats.rx_bytes += length;
2018
2019 skb_put(skb, length);
2020 dma_unmap_single(&qdev->pdev->dev,
2021 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2022 dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE);
2023 prefetch(skb->data);
2024 skb_checksum_none_assert(skb);
2025 skb->protocol = eth_type_trans(skb, qdev->ndev);
2026
2027 napi_gro_receive(&qdev->napi, skb);
2028 lrg_buf_cb2->skb = NULL;
2029
2030 if (qdev->device_id == QL3022_DEVICE_ID)
2031 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2032 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2033 }
2034
2035 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2036 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2037 {
2038 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2039 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2040 struct sk_buff *skb1 = NULL, *skb2;
2041 struct net_device *ndev = qdev->ndev;
2042 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2043 u16 size = 0;
2044
2045 /*
2046 * Get the inbound address list (small buffer).
2047 */
2048
2049 ql_get_sbuf(qdev);
2050
2051 if (qdev->device_id == QL3022_DEVICE_ID) {
2052 /* start of first buffer on 3022 */
2053 lrg_buf_cb1 = ql_get_lbuf(qdev);
2054 skb1 = lrg_buf_cb1->skb;
2055 size = ETH_HLEN;
2056 if (*((u16 *) skb1->data) != 0xFFFF)
2057 size += VLAN_ETH_HLEN - ETH_HLEN;
2058 }
2059
2060 /* start of second buffer */
2061 lrg_buf_cb2 = ql_get_lbuf(qdev);
2062 skb2 = lrg_buf_cb2->skb;
2063
2064 skb_put(skb2, length); /* Just the second buffer length here. */
2065 dma_unmap_single(&qdev->pdev->dev,
2066 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2067 dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE);
2068 prefetch(skb2->data);
2069
2070 skb_checksum_none_assert(skb2);
2071 if (qdev->device_id == QL3022_DEVICE_ID) {
2072 /*
2073 * Copy the ethhdr from first buffer to second. This
2074 * is necessary for 3022 IP completions.
2075 */
2076 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2077 skb_push(skb2, size), size);
2078 } else {
2079 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2080 if (checksum &
2081 (IB_IP_IOCB_RSP_3032_ICE |
2082 IB_IP_IOCB_RSP_3032_CE)) {
2083 netdev_err(ndev,
2084 "%s: Bad checksum for this %s packet, checksum = %x\n",
2085 __func__,
2086 ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2087 "TCP" : "UDP"), checksum);
2088 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2089 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2090 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2091 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2092 }
2093 }
2094 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2095
2096 napi_gro_receive(&qdev->napi, skb2);
2097 ndev->stats.rx_packets++;
2098 ndev->stats.rx_bytes += length;
2099 lrg_buf_cb2->skb = NULL;
2100
2101 if (qdev->device_id == QL3022_DEVICE_ID)
2102 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2103 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2104 }
2105
2106 static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget)
2107 {
2108 struct net_rsp_iocb *net_rsp;
2109 struct net_device *ndev = qdev->ndev;
2110 int work_done = 0;
2111
2112 /* While there are entries in the completion queue. */
2113 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2114 qdev->rsp_consumer_index) && (work_done < budget)) {
2115
2116 net_rsp = qdev->rsp_current;
2117 rmb();
2118 /*
2119 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2120 * if the inbound completion is for a VLAN.
2121 */
2122 if (qdev->device_id == QL3032_DEVICE_ID)
2123 net_rsp->opcode &= 0x7f;
2124 switch (net_rsp->opcode) {
2125
2126 case OPCODE_OB_MAC_IOCB_FN0:
2127 case OPCODE_OB_MAC_IOCB_FN2:
2128 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2129 net_rsp);
2130 break;
2131
2132 case OPCODE_IB_MAC_IOCB:
2133 case OPCODE_IB_3032_MAC_IOCB:
2134 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2135 net_rsp);
2136 work_done++;
2137 break;
2138
2139 case OPCODE_IB_IP_IOCB:
2140 case OPCODE_IB_3032_IP_IOCB:
2141 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2142 net_rsp);
2143 work_done++;
2144 break;
2145 default: {
2146 u32 *tmp = (u32 *)net_rsp;
2147 netdev_err(ndev,
2148 "Hit default case, not handled!\n"
2149 " dropping the packet, opcode = %x\n"
2150 "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2151 net_rsp->opcode,
2152 (unsigned long int)tmp[0],
2153 (unsigned long int)tmp[1],
2154 (unsigned long int)tmp[2],
2155 (unsigned long int)tmp[3]);
2156 }
2157 }
2158
2159 qdev->rsp_consumer_index++;
2160
2161 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2162 qdev->rsp_consumer_index = 0;
2163 qdev->rsp_current = qdev->rsp_q_virt_addr;
2164 } else {
2165 qdev->rsp_current++;
2166 }
2167
2168 }
2169
2170 return work_done;
2171 }
2172
2173 static int ql_poll(struct napi_struct *napi, int budget)
2174 {
2175 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2176 struct ql3xxx_port_registers __iomem *port_regs =
2177 qdev->mem_map_registers;
2178 int work_done;
2179
2180 work_done = ql_tx_rx_clean(qdev, budget);
2181
2182 if (work_done < budget && napi_complete_done(napi, work_done)) {
2183 unsigned long flags;
2184
2185 spin_lock_irqsave(&qdev->hw_lock, flags);
2186 ql_update_small_bufq_prod_index(qdev);
2187 ql_update_lrg_bufq_prod_index(qdev);
2188 writel(qdev->rsp_consumer_index,
2189 &port_regs->CommonRegs.rspQConsumerIndex);
2190 spin_unlock_irqrestore(&qdev->hw_lock, flags);
2191
2192 ql_enable_interrupts(qdev);
2193 }
2194 return work_done;
2195 }
2196
2197 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2198 {
2199
2200 struct net_device *ndev = dev_id;
2201 struct ql3_adapter *qdev = netdev_priv(ndev);
2202 struct ql3xxx_port_registers __iomem *port_regs =
2203 qdev->mem_map_registers;
2204 u32 value;
2205 int handled = 1;
2206 u32 var;
2207
2208 value = ql_read_common_reg_l(qdev,
2209 &port_regs->CommonRegs.ispControlStatus);
2210
2211 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2212 spin_lock(&qdev->adapter_lock);
2213 netif_stop_queue(qdev->ndev);
2214 netif_carrier_off(qdev->ndev);
2215 ql_disable_interrupts(qdev);
2216 qdev->port_link_state = LS_DOWN;
2217 set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2218
2219 if (value & ISP_CONTROL_FE) {
2220 /*
2221 * Chip Fatal Error.
2222 */
2223 var =
2224 ql_read_page0_reg_l(qdev,
2225 &port_regs->PortFatalErrStatus);
2226 netdev_warn(ndev,
2227 "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2228 var);
2229 set_bit(QL_RESET_START, &qdev->flags) ;
2230 } else {
2231 /*
2232 * Soft Reset Requested.
2233 */
2234 set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2235 netdev_err(ndev,
2236 "Another function issued a reset to the chip. ISR value = %x\n",
2237 value);
2238 }
2239 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2240 spin_unlock(&qdev->adapter_lock);
2241 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2242 ql_disable_interrupts(qdev);
2243 if (likely(napi_schedule_prep(&qdev->napi)))
2244 __napi_schedule(&qdev->napi);
2245 } else
2246 return IRQ_NONE;
2247
2248 return IRQ_RETVAL(handled);
2249 }
2250
2251 /*
2252 * Get the total number of segments needed for the given number of fragments.
2253 * This is necessary because outbound address lists (OAL) will be used when
2254 * more than two frags are given. Each address list has 5 addr/len pairs.
2255 * The 5th pair in each OAL is used to point to the next OAL if more frags
2256 * are coming. That is why the frags:segment count ratio is not linear.
2257 */
2258 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2259 {
2260 if (qdev->device_id == QL3022_DEVICE_ID)
2261 return 1;
2262
2263 if (frags <= 2)
2264 return frags + 1;
2265 else if (frags <= 6)
2266 return frags + 2;
2267 else if (frags <= 10)
2268 return frags + 3;
2269 else if (frags <= 14)
2270 return frags + 4;
2271 else if (frags <= 18)
2272 return frags + 5;
2273 return -1;
2274 }
2275
2276 static void ql_hw_csum_setup(const struct sk_buff *skb,
2277 struct ob_mac_iocb_req *mac_iocb_ptr)
2278 {
2279 const struct iphdr *ip = ip_hdr(skb);
2280
2281 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2282 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2283
2284 if (ip->protocol == IPPROTO_TCP) {
2285 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2286 OB_3032MAC_IOCB_REQ_IC;
2287 } else {
2288 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2289 OB_3032MAC_IOCB_REQ_IC;
2290 }
2291
2292 }
2293
2294 /*
2295 * Map the buffers for this transmit.
2296 * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2297 */
2298 static int ql_send_map(struct ql3_adapter *qdev,
2299 struct ob_mac_iocb_req *mac_iocb_ptr,
2300 struct ql_tx_buf_cb *tx_cb,
2301 struct sk_buff *skb)
2302 {
2303 struct oal *oal;
2304 struct oal_entry *oal_entry;
2305 int len = skb_headlen(skb);
2306 dma_addr_t map;
2307 int err;
2308 int completed_segs, i;
2309 int seg_cnt, seg = 0;
2310 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2311
2312 seg_cnt = tx_cb->seg_count;
2313 /*
2314 * Map the skb buffer first.
2315 */
2316 map = dma_map_single(&qdev->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2317
2318 err = dma_mapping_error(&qdev->pdev->dev, map);
2319 if (err) {
2320 netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2321 err);
2322
2323 return NETDEV_TX_BUSY;
2324 }
2325
2326 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2327 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2328 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2329 oal_entry->len = cpu_to_le32(len);
2330 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2331 dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2332 seg++;
2333
2334 if (seg_cnt == 1) {
2335 /* Terminate the last segment. */
2336 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2337 return NETDEV_TX_OK;
2338 }
2339 oal = tx_cb->oal;
2340 for (completed_segs = 0;
2341 completed_segs < frag_cnt;
2342 completed_segs++, seg++) {
2343 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2344 oal_entry++;
2345 /*
2346 * Check for continuation requirements.
2347 * It's strange but necessary.
2348 * Continuation entry points to outbound address list.
2349 */
2350 if ((seg == 2 && seg_cnt > 3) ||
2351 (seg == 7 && seg_cnt > 8) ||
2352 (seg == 12 && seg_cnt > 13) ||
2353 (seg == 17 && seg_cnt > 18)) {
2354 map = dma_map_single(&qdev->pdev->dev, oal,
2355 sizeof(struct oal),
2356 DMA_TO_DEVICE);
2357
2358 err = dma_mapping_error(&qdev->pdev->dev, map);
2359 if (err) {
2360 netdev_err(qdev->ndev,
2361 "PCI mapping outbound address list with error: %d\n",
2362 err);
2363 goto map_error;
2364 }
2365
2366 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2367 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2368 oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2369 OAL_CONT_ENTRY);
2370 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2371 dma_unmap_len_set(&tx_cb->map[seg], maplen,
2372 sizeof(struct oal));
2373 oal_entry = (struct oal_entry *)oal;
2374 oal++;
2375 seg++;
2376 }
2377
2378 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2379 DMA_TO_DEVICE);
2380
2381 err = dma_mapping_error(&qdev->pdev->dev, map);
2382 if (err) {
2383 netdev_err(qdev->ndev,
2384 "PCI mapping frags failed with error: %d\n",
2385 err);
2386 goto map_error;
2387 }
2388
2389 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2390 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2391 oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2392 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2393 dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2394 }
2395 /* Terminate the last segment. */
2396 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2397 return NETDEV_TX_OK;
2398
2399 map_error:
2400 /* A PCI mapping failed and now we will need to back out
2401 * We need to traverse through the oal's and associated pages which
2402 * have been mapped and now we must unmap them to clean up properly
2403 */
2404
2405 seg = 1;
2406 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2407 oal = tx_cb->oal;
2408 for (i = 0; i < completed_segs; i++, seg++) {
2409 oal_entry++;
2410
2411 /*
2412 * Check for continuation requirements.
2413 * It's strange but necessary.
2414 */
2415
2416 if ((seg == 2 && seg_cnt > 3) ||
2417 (seg == 7 && seg_cnt > 8) ||
2418 (seg == 12 && seg_cnt > 13) ||
2419 (seg == 17 && seg_cnt > 18)) {
2420 dma_unmap_single(&qdev->pdev->dev,
2421 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2422 dma_unmap_len(&tx_cb->map[seg], maplen),
2423 DMA_TO_DEVICE);
2424 oal++;
2425 seg++;
2426 }
2427
2428 dma_unmap_page(&qdev->pdev->dev,
2429 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2430 dma_unmap_len(&tx_cb->map[seg], maplen),
2431 DMA_TO_DEVICE);
2432 }
2433
2434 dma_unmap_single(&qdev->pdev->dev,
2435 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2436 dma_unmap_addr(&tx_cb->map[0], maplen),
2437 DMA_TO_DEVICE);
2438
2439 return NETDEV_TX_BUSY;
2440
2441 }
2442
2443 /*
2444 * The difference between 3022 and 3032 sends:
2445 * 3022 only supports a simple single segment transmission.
2446 * 3032 supports checksumming and scatter/gather lists (fragments).
2447 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2448 * in the IOCB plus a chain of outbound address lists (OAL) that
2449 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2450 * will be used to point to an OAL when more ALP entries are required.
2451 * The IOCB is always the top of the chain followed by one or more
2452 * OALs (when necessary).
2453 */
2454 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2455 struct net_device *ndev)
2456 {
2457 struct ql3_adapter *qdev = netdev_priv(ndev);
2458 struct ql3xxx_port_registers __iomem *port_regs =
2459 qdev->mem_map_registers;
2460 struct ql_tx_buf_cb *tx_cb;
2461 u32 tot_len = skb->len;
2462 struct ob_mac_iocb_req *mac_iocb_ptr;
2463
2464 if (unlikely(atomic_read(&qdev->tx_count) < 2))
2465 return NETDEV_TX_BUSY;
2466
2467 tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2468 tx_cb->seg_count = ql_get_seg_count(qdev,
2469 skb_shinfo(skb)->nr_frags);
2470 if (tx_cb->seg_count == -1) {
2471 netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2472 return NETDEV_TX_OK;
2473 }
2474
2475 mac_iocb_ptr = tx_cb->queue_entry;
2476 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2477 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2478 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2479 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2480 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2481 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2482 tx_cb->skb = skb;
2483 if (qdev->device_id == QL3032_DEVICE_ID &&
2484 skb->ip_summed == CHECKSUM_PARTIAL)
2485 ql_hw_csum_setup(skb, mac_iocb_ptr);
2486
2487 if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2488 netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2489 return NETDEV_TX_BUSY;
2490 }
2491
2492 wmb();
2493 qdev->req_producer_index++;
2494 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2495 qdev->req_producer_index = 0;
2496 wmb();
2497 ql_write_common_reg_l(qdev,
2498 &port_regs->CommonRegs.reqQProducerIndex,
2499 qdev->req_producer_index);
2500
2501 netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2502 "tx queued, slot %d, len %d\n",
2503 qdev->req_producer_index, skb->len);
2504
2505 atomic_dec(&qdev->tx_count);
2506 return NETDEV_TX_OK;
2507 }
2508
2509 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2510 {
2511 qdev->req_q_size =
2512 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2513
2514 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2515
2516 /* The barrier is required to ensure request and response queue
2517 * addr writes to the registers.
2518 */
2519 wmb();
2520
2521 qdev->req_q_virt_addr =
2522 dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size,
2523 &qdev->req_q_phy_addr, GFP_KERNEL);
2524
2525 if ((qdev->req_q_virt_addr == NULL) ||
2526 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2527 netdev_err(qdev->ndev, "reqQ failed\n");
2528 return -ENOMEM;
2529 }
2530
2531 qdev->rsp_q_virt_addr =
2532 dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->rsp_q_size,
2533 &qdev->rsp_q_phy_addr, GFP_KERNEL);
2534
2535 if ((qdev->rsp_q_virt_addr == NULL) ||
2536 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2537 netdev_err(qdev->ndev, "rspQ allocation failed\n");
2538 dma_free_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size,
2539 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2540 return -ENOMEM;
2541 }
2542
2543 set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2544
2545 return 0;
2546 }
2547
2548 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2549 {
2550 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2551 netdev_info(qdev->ndev, "Already done\n");
2552 return;
2553 }
2554
2555 dma_free_coherent(&qdev->pdev->dev, qdev->req_q_size,
2556 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2557
2558 qdev->req_q_virt_addr = NULL;
2559
2560 dma_free_coherent(&qdev->pdev->dev, qdev->rsp_q_size,
2561 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2562
2563 qdev->rsp_q_virt_addr = NULL;
2564
2565 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2566 }
2567
2568 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2569 {
2570 /* Create Large Buffer Queue */
2571 qdev->lrg_buf_q_size =
2572 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2573 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2574 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2575 else
2576 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2577
2578 qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2579 sizeof(struct ql_rcv_buf_cb),
2580 GFP_KERNEL);
2581 if (qdev->lrg_buf == NULL)
2582 return -ENOMEM;
2583
2584 qdev->lrg_buf_q_alloc_virt_addr =
2585 dma_alloc_coherent(&qdev->pdev->dev,
2586 qdev->lrg_buf_q_alloc_size,
2587 &qdev->lrg_buf_q_alloc_phy_addr, GFP_KERNEL);
2588
2589 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2590 netdev_err(qdev->ndev, "lBufQ failed\n");
2591 return -ENOMEM;
2592 }
2593 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2594 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2595
2596 /* Create Small Buffer Queue */
2597 qdev->small_buf_q_size =
2598 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2599 if (qdev->small_buf_q_size < PAGE_SIZE)
2600 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2601 else
2602 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2603
2604 qdev->small_buf_q_alloc_virt_addr =
2605 dma_alloc_coherent(&qdev->pdev->dev,
2606 qdev->small_buf_q_alloc_size,
2607 &qdev->small_buf_q_alloc_phy_addr, GFP_KERNEL);
2608
2609 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2610 netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2611 dma_free_coherent(&qdev->pdev->dev,
2612 qdev->lrg_buf_q_alloc_size,
2613 qdev->lrg_buf_q_alloc_virt_addr,
2614 qdev->lrg_buf_q_alloc_phy_addr);
2615 return -ENOMEM;
2616 }
2617
2618 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2619 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2620 set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2621 return 0;
2622 }
2623
2624 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2625 {
2626 if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2627 netdev_info(qdev->ndev, "Already done\n");
2628 return;
2629 }
2630 kfree(qdev->lrg_buf);
2631 dma_free_coherent(&qdev->pdev->dev, qdev->lrg_buf_q_alloc_size,
2632 qdev->lrg_buf_q_alloc_virt_addr,
2633 qdev->lrg_buf_q_alloc_phy_addr);
2634
2635 qdev->lrg_buf_q_virt_addr = NULL;
2636
2637 dma_free_coherent(&qdev->pdev->dev, qdev->small_buf_q_alloc_size,
2638 qdev->small_buf_q_alloc_virt_addr,
2639 qdev->small_buf_q_alloc_phy_addr);
2640
2641 qdev->small_buf_q_virt_addr = NULL;
2642
2643 clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2644 }
2645
2646 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2647 {
2648 int i;
2649 struct bufq_addr_element *small_buf_q_entry;
2650
2651 /* Currently we allocate on one of memory and use it for smallbuffers */
2652 qdev->small_buf_total_size =
2653 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2654 QL_SMALL_BUFFER_SIZE);
2655
2656 qdev->small_buf_virt_addr =
2657 dma_alloc_coherent(&qdev->pdev->dev,
2658 qdev->small_buf_total_size,
2659 &qdev->small_buf_phy_addr, GFP_KERNEL);
2660
2661 if (qdev->small_buf_virt_addr == NULL) {
2662 netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2663 return -ENOMEM;
2664 }
2665
2666 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2667 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2668
2669 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2670
2671 /* Initialize the small buffer queue. */
2672 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2673 small_buf_q_entry->addr_high =
2674 cpu_to_le32(qdev->small_buf_phy_addr_high);
2675 small_buf_q_entry->addr_low =
2676 cpu_to_le32(qdev->small_buf_phy_addr_low +
2677 (i * QL_SMALL_BUFFER_SIZE));
2678 small_buf_q_entry++;
2679 }
2680 qdev->small_buf_index = 0;
2681 set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2682 return 0;
2683 }
2684
2685 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2686 {
2687 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2688 netdev_info(qdev->ndev, "Already done\n");
2689 return;
2690 }
2691 if (qdev->small_buf_virt_addr != NULL) {
2692 dma_free_coherent(&qdev->pdev->dev,
2693 qdev->small_buf_total_size,
2694 qdev->small_buf_virt_addr,
2695 qdev->small_buf_phy_addr);
2696
2697 qdev->small_buf_virt_addr = NULL;
2698 }
2699 }
2700
2701 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2702 {
2703 int i = 0;
2704 struct ql_rcv_buf_cb *lrg_buf_cb;
2705
2706 for (i = 0; i < qdev->num_large_buffers; i++) {
2707 lrg_buf_cb = &qdev->lrg_buf[i];
2708 if (lrg_buf_cb->skb) {
2709 dev_kfree_skb(lrg_buf_cb->skb);
2710 dma_unmap_single(&qdev->pdev->dev,
2711 dma_unmap_addr(lrg_buf_cb, mapaddr),
2712 dma_unmap_len(lrg_buf_cb, maplen),
2713 DMA_FROM_DEVICE);
2714 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2715 } else {
2716 break;
2717 }
2718 }
2719 }
2720
2721 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2722 {
2723 int i;
2724 struct ql_rcv_buf_cb *lrg_buf_cb;
2725 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2726
2727 for (i = 0; i < qdev->num_large_buffers; i++) {
2728 lrg_buf_cb = &qdev->lrg_buf[i];
2729 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2730 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2731 buf_addr_ele++;
2732 }
2733 qdev->lrg_buf_index = 0;
2734 qdev->lrg_buf_skb_check = 0;
2735 }
2736
2737 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2738 {
2739 int i;
2740 struct ql_rcv_buf_cb *lrg_buf_cb;
2741 struct sk_buff *skb;
2742 dma_addr_t map;
2743 int err;
2744
2745 for (i = 0; i < qdev->num_large_buffers; i++) {
2746 lrg_buf_cb = &qdev->lrg_buf[i];
2747 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2748
2749 skb = netdev_alloc_skb(qdev->ndev,
2750 qdev->lrg_buffer_len);
2751 if (unlikely(!skb)) {
2752 /* Better luck next round */
2753 netdev_err(qdev->ndev,
2754 "large buff alloc failed for %d bytes at index %d\n",
2755 qdev->lrg_buffer_len * 2, i);
2756 ql_free_large_buffers(qdev);
2757 return -ENOMEM;
2758 } else {
2759 lrg_buf_cb->index = i;
2760 /*
2761 * We save some space to copy the ethhdr from first
2762 * buffer
2763 */
2764 skb_reserve(skb, QL_HEADER_SPACE);
2765 map = dma_map_single(&qdev->pdev->dev, skb->data,
2766 qdev->lrg_buffer_len - QL_HEADER_SPACE,
2767 DMA_FROM_DEVICE);
2768
2769 err = dma_mapping_error(&qdev->pdev->dev, map);
2770 if (err) {
2771 netdev_err(qdev->ndev,
2772 "PCI mapping failed with error: %d\n",
2773 err);
2774 dev_kfree_skb_irq(skb);
2775 ql_free_large_buffers(qdev);
2776 return -ENOMEM;
2777 }
2778
2779 lrg_buf_cb->skb = skb;
2780 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2781 dma_unmap_len_set(lrg_buf_cb, maplen,
2782 qdev->lrg_buffer_len -
2783 QL_HEADER_SPACE);
2784 lrg_buf_cb->buf_phy_addr_low =
2785 cpu_to_le32(LS_64BITS(map));
2786 lrg_buf_cb->buf_phy_addr_high =
2787 cpu_to_le32(MS_64BITS(map));
2788 }
2789 }
2790 return 0;
2791 }
2792
2793 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2794 {
2795 struct ql_tx_buf_cb *tx_cb;
2796 int i;
2797
2798 tx_cb = &qdev->tx_buf[0];
2799 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2800 kfree(tx_cb->oal);
2801 tx_cb->oal = NULL;
2802 tx_cb++;
2803 }
2804 }
2805
2806 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2807 {
2808 struct ql_tx_buf_cb *tx_cb;
2809 int i;
2810 struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2811
2812 /* Create free list of transmit buffers */
2813 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2814
2815 tx_cb = &qdev->tx_buf[i];
2816 tx_cb->skb = NULL;
2817 tx_cb->queue_entry = req_q_curr;
2818 req_q_curr++;
2819 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2820 if (tx_cb->oal == NULL)
2821 return -ENOMEM;
2822 }
2823 return 0;
2824 }
2825
2826 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2827 {
2828 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2829 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2830 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2831 } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2832 /*
2833 * Bigger buffers, so less of them.
2834 */
2835 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2836 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2837 } else {
2838 netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
2839 qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2840 return -ENOMEM;
2841 }
2842 qdev->num_large_buffers =
2843 qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2844 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2845 qdev->max_frame_size =
2846 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2847
2848 /*
2849 * First allocate a page of shared memory and use it for shadow
2850 * locations of Network Request Queue Consumer Address Register and
2851 * Network Completion Queue Producer Index Register
2852 */
2853 qdev->shadow_reg_virt_addr =
2854 dma_alloc_coherent(&qdev->pdev->dev, PAGE_SIZE,
2855 &qdev->shadow_reg_phy_addr, GFP_KERNEL);
2856
2857 if (qdev->shadow_reg_virt_addr != NULL) {
2858 qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2859 qdev->req_consumer_index_phy_addr_high =
2860 MS_64BITS(qdev->shadow_reg_phy_addr);
2861 qdev->req_consumer_index_phy_addr_low =
2862 LS_64BITS(qdev->shadow_reg_phy_addr);
2863
2864 qdev->prsp_producer_index =
2865 (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2866 qdev->rsp_producer_index_phy_addr_high =
2867 qdev->req_consumer_index_phy_addr_high;
2868 qdev->rsp_producer_index_phy_addr_low =
2869 qdev->req_consumer_index_phy_addr_low + 8;
2870 } else {
2871 netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2872 return -ENOMEM;
2873 }
2874
2875 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2876 netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2877 goto err_req_rsp;
2878 }
2879
2880 if (ql_alloc_buffer_queues(qdev) != 0) {
2881 netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2882 goto err_buffer_queues;
2883 }
2884
2885 if (ql_alloc_small_buffers(qdev) != 0) {
2886 netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2887 goto err_small_buffers;
2888 }
2889
2890 if (ql_alloc_large_buffers(qdev) != 0) {
2891 netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2892 goto err_small_buffers;
2893 }
2894
2895 /* Initialize the large buffer queue. */
2896 ql_init_large_buffers(qdev);
2897 if (ql_create_send_free_list(qdev))
2898 goto err_free_list;
2899
2900 qdev->rsp_current = qdev->rsp_q_virt_addr;
2901
2902 return 0;
2903 err_free_list:
2904 ql_free_send_free_list(qdev);
2905 err_small_buffers:
2906 ql_free_buffer_queues(qdev);
2907 err_buffer_queues:
2908 ql_free_net_req_rsp_queues(qdev);
2909 err_req_rsp:
2910 dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE,
2911 qdev->shadow_reg_virt_addr,
2912 qdev->shadow_reg_phy_addr);
2913
2914 return -ENOMEM;
2915 }
2916
2917 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2918 {
2919 ql_free_send_free_list(qdev);
2920 ql_free_large_buffers(qdev);
2921 ql_free_small_buffers(qdev);
2922 ql_free_buffer_queues(qdev);
2923 ql_free_net_req_rsp_queues(qdev);
2924 if (qdev->shadow_reg_virt_addr != NULL) {
2925 dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE,
2926 qdev->shadow_reg_virt_addr,
2927 qdev->shadow_reg_phy_addr);
2928 qdev->shadow_reg_virt_addr = NULL;
2929 }
2930 }
2931
2932 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2933 {
2934 struct ql3xxx_local_ram_registers __iomem *local_ram =
2935 (void __iomem *)qdev->mem_map_registers;
2936
2937 if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2938 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2939 2) << 4))
2940 return -1;
2941
2942 ql_write_page2_reg(qdev,
2943 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2944
2945 ql_write_page2_reg(qdev,
2946 &local_ram->maxBufletCount,
2947 qdev->nvram_data.bufletCount);
2948
2949 ql_write_page2_reg(qdev,
2950 &local_ram->freeBufletThresholdLow,
2951 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2952 (qdev->nvram_data.tcpWindowThreshold0));
2953
2954 ql_write_page2_reg(qdev,
2955 &local_ram->freeBufletThresholdHigh,
2956 qdev->nvram_data.tcpWindowThreshold50);
2957
2958 ql_write_page2_reg(qdev,
2959 &local_ram->ipHashTableBase,
2960 (qdev->nvram_data.ipHashTableBaseHi << 16) |
2961 qdev->nvram_data.ipHashTableBaseLo);
2962 ql_write_page2_reg(qdev,
2963 &local_ram->ipHashTableCount,
2964 qdev->nvram_data.ipHashTableSize);
2965 ql_write_page2_reg(qdev,
2966 &local_ram->tcpHashTableBase,
2967 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2968 qdev->nvram_data.tcpHashTableBaseLo);
2969 ql_write_page2_reg(qdev,
2970 &local_ram->tcpHashTableCount,
2971 qdev->nvram_data.tcpHashTableSize);
2972 ql_write_page2_reg(qdev,
2973 &local_ram->ncbBase,
2974 (qdev->nvram_data.ncbTableBaseHi << 16) |
2975 qdev->nvram_data.ncbTableBaseLo);
2976 ql_write_page2_reg(qdev,
2977 &local_ram->maxNcbCount,
2978 qdev->nvram_data.ncbTableSize);
2979 ql_write_page2_reg(qdev,
2980 &local_ram->drbBase,
2981 (qdev->nvram_data.drbTableBaseHi << 16) |
2982 qdev->nvram_data.drbTableBaseLo);
2983 ql_write_page2_reg(qdev,
2984 &local_ram->maxDrbCount,
2985 qdev->nvram_data.drbTableSize);
2986 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
2987 return 0;
2988 }
2989
2990 static int ql_adapter_initialize(struct ql3_adapter *qdev)
2991 {
2992 u32 value;
2993 struct ql3xxx_port_registers __iomem *port_regs =
2994 qdev->mem_map_registers;
2995 __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
2996 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
2997 (void __iomem *)port_regs;
2998 u32 delay = 10;
2999 int status = 0;
3000
3001 if (ql_mii_setup(qdev))
3002 return -1;
3003
3004 /* Bring out PHY out of reset */
3005 ql_write_common_reg(qdev, spir,
3006 (ISP_SERIAL_PORT_IF_WE |
3007 (ISP_SERIAL_PORT_IF_WE << 16)));
3008 /* Give the PHY time to come out of reset. */
3009 mdelay(100);
3010 qdev->port_link_state = LS_DOWN;
3011 netif_carrier_off(qdev->ndev);
3012
3013 /* V2 chip fix for ARS-39168. */
3014 ql_write_common_reg(qdev, spir,
3015 (ISP_SERIAL_PORT_IF_SDE |
3016 (ISP_SERIAL_PORT_IF_SDE << 16)));
3017
3018 /* Request Queue Registers */
3019 *((u32 *)(qdev->preq_consumer_index)) = 0;
3020 atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3021 qdev->req_producer_index = 0;
3022
3023 ql_write_page1_reg(qdev,
3024 &hmem_regs->reqConsumerIndexAddrHigh,
3025 qdev->req_consumer_index_phy_addr_high);
3026 ql_write_page1_reg(qdev,
3027 &hmem_regs->reqConsumerIndexAddrLow,
3028 qdev->req_consumer_index_phy_addr_low);
3029
3030 ql_write_page1_reg(qdev,
3031 &hmem_regs->reqBaseAddrHigh,
3032 MS_64BITS(qdev->req_q_phy_addr));
3033 ql_write_page1_reg(qdev,
3034 &hmem_regs->reqBaseAddrLow,
3035 LS_64BITS(qdev->req_q_phy_addr));
3036 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3037
3038 /* Response Queue Registers */
3039 *((__le16 *) (qdev->prsp_producer_index)) = 0;
3040 qdev->rsp_consumer_index = 0;
3041 qdev->rsp_current = qdev->rsp_q_virt_addr;
3042
3043 ql_write_page1_reg(qdev,
3044 &hmem_regs->rspProducerIndexAddrHigh,
3045 qdev->rsp_producer_index_phy_addr_high);
3046
3047 ql_write_page1_reg(qdev,
3048 &hmem_regs->rspProducerIndexAddrLow,
3049 qdev->rsp_producer_index_phy_addr_low);
3050
3051 ql_write_page1_reg(qdev,
3052 &hmem_regs->rspBaseAddrHigh,
3053 MS_64BITS(qdev->rsp_q_phy_addr));
3054
3055 ql_write_page1_reg(qdev,
3056 &hmem_regs->rspBaseAddrLow,
3057 LS_64BITS(qdev->rsp_q_phy_addr));
3058
3059 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3060
3061 /* Large Buffer Queue */
3062 ql_write_page1_reg(qdev,
3063 &hmem_regs->rxLargeQBaseAddrHigh,
3064 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3065
3066 ql_write_page1_reg(qdev,
3067 &hmem_regs->rxLargeQBaseAddrLow,
3068 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3069
3070 ql_write_page1_reg(qdev,
3071 &hmem_regs->rxLargeQLength,
3072 qdev->num_lbufq_entries);
3073
3074 ql_write_page1_reg(qdev,
3075 &hmem_regs->rxLargeBufferLength,
3076 qdev->lrg_buffer_len);
3077
3078 /* Small Buffer Queue */
3079 ql_write_page1_reg(qdev,
3080 &hmem_regs->rxSmallQBaseAddrHigh,
3081 MS_64BITS(qdev->small_buf_q_phy_addr));
3082
3083 ql_write_page1_reg(qdev,
3084 &hmem_regs->rxSmallQBaseAddrLow,
3085 LS_64BITS(qdev->small_buf_q_phy_addr));
3086
3087 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3088 ql_write_page1_reg(qdev,
3089 &hmem_regs->rxSmallBufferLength,
3090 QL_SMALL_BUFFER_SIZE);
3091
3092 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3093 qdev->small_buf_release_cnt = 8;
3094 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3095 qdev->lrg_buf_release_cnt = 8;
3096 qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3097 qdev->small_buf_index = 0;
3098 qdev->lrg_buf_index = 0;
3099 qdev->lrg_buf_free_count = 0;
3100 qdev->lrg_buf_free_head = NULL;
3101 qdev->lrg_buf_free_tail = NULL;
3102
3103 ql_write_common_reg(qdev,
3104 &port_regs->CommonRegs.
3105 rxSmallQProducerIndex,
3106 qdev->small_buf_q_producer_index);
3107 ql_write_common_reg(qdev,
3108 &port_regs->CommonRegs.
3109 rxLargeQProducerIndex,
3110 qdev->lrg_buf_q_producer_index);
3111
3112 /*
3113 * Find out if the chip has already been initialized. If it has, then
3114 * we skip some of the initialization.
3115 */
3116 clear_bit(QL_LINK_MASTER, &qdev->flags);
3117 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3118 if ((value & PORT_STATUS_IC) == 0) {
3119
3120 /* Chip has not been configured yet, so let it rip. */
3121 if (ql_init_misc_registers(qdev)) {
3122 status = -1;
3123 goto out;
3124 }
3125
3126 value = qdev->nvram_data.tcpMaxWindowSize;
3127 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3128
3129 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3130
3131 if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3132 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3133 * 2) << 13)) {
3134 status = -1;
3135 goto out;
3136 }
3137 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3138 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3139 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3140 16) | (INTERNAL_CHIP_SD |
3141 INTERNAL_CHIP_WE)));
3142 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3143 }
3144
3145 if (qdev->mac_index)
3146 ql_write_page0_reg(qdev,
3147 &port_regs->mac1MaxFrameLengthReg,
3148 qdev->max_frame_size);
3149 else
3150 ql_write_page0_reg(qdev,
3151 &port_regs->mac0MaxFrameLengthReg,
3152 qdev->max_frame_size);
3153
3154 if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3155 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3156 2) << 7)) {
3157 status = -1;
3158 goto out;
3159 }
3160
3161 PHY_Setup(qdev);
3162 ql_init_scan_mode(qdev);
3163 ql_get_phy_owner(qdev);
3164
3165 /* Load the MAC Configuration */
3166
3167 /* Program lower 32 bits of the MAC address */
3168 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3169 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3170 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3171 ((qdev->ndev->dev_addr[2] << 24)
3172 | (qdev->ndev->dev_addr[3] << 16)
3173 | (qdev->ndev->dev_addr[4] << 8)
3174 | qdev->ndev->dev_addr[5]));
3175
3176 /* Program top 16 bits of the MAC address */
3177 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3178 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3179 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3180 ((qdev->ndev->dev_addr[0] << 8)
3181 | qdev->ndev->dev_addr[1]));
3182
3183 /* Enable Primary MAC */
3184 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3185 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3186 MAC_ADDR_INDIRECT_PTR_REG_PE));
3187
3188 /* Clear Primary and Secondary IP addresses */
3189 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3190 ((IP_ADDR_INDEX_REG_MASK << 16) |
3191 (qdev->mac_index << 2)));
3192 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3193
3194 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3195 ((IP_ADDR_INDEX_REG_MASK << 16) |
3196 ((qdev->mac_index << 2) + 1)));
3197 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3198
3199 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3200
3201 /* Indicate Configuration Complete */
3202 ql_write_page0_reg(qdev,
3203 &port_regs->portControl,
3204 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3205
3206 do {
3207 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3208 if (value & PORT_STATUS_IC)
3209 break;
3210 spin_unlock_irq(&qdev->hw_lock);
3211 msleep(500);
3212 spin_lock_irq(&qdev->hw_lock);
3213 } while (--delay);
3214
3215 if (delay == 0) {
3216 netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3217 status = -1;
3218 goto out;
3219 }
3220
3221 /* Enable Ethernet Function */
3222 if (qdev->device_id == QL3032_DEVICE_ID) {
3223 value =
3224 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3225 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3226 QL3032_PORT_CONTROL_ET);
3227 ql_write_page0_reg(qdev, &port_regs->functionControl,
3228 ((value << 16) | value));
3229 } else {
3230 value =
3231 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3232 PORT_CONTROL_HH);
3233 ql_write_page0_reg(qdev, &port_regs->portControl,
3234 ((value << 16) | value));
3235 }
3236
3237
3238 out:
3239 return status;
3240 }
3241
3242 /*
3243 * Caller holds hw_lock.
3244 */
3245 static int ql_adapter_reset(struct ql3_adapter *qdev)
3246 {
3247 struct ql3xxx_port_registers __iomem *port_regs =
3248 qdev->mem_map_registers;
3249 int status = 0;
3250 u16 value;
3251 int max_wait_time;
3252
3253 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3254 clear_bit(QL_RESET_DONE, &qdev->flags);
3255
3256 /*
3257 * Issue soft reset to chip.
3258 */
3259 netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3260 ql_write_common_reg(qdev,
3261 &port_regs->CommonRegs.ispControlStatus,
3262 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3263
3264 /* Wait 3 seconds for reset to complete. */
3265 netdev_printk(KERN_DEBUG, qdev->ndev,
3266 "Wait 10 milliseconds for reset to complete\n");
3267
3268 /* Wait until the firmware tells us the Soft Reset is done */
3269 max_wait_time = 5;
3270 do {
3271 value =
3272 ql_read_common_reg(qdev,
3273 &port_regs->CommonRegs.ispControlStatus);
3274 if ((value & ISP_CONTROL_SR) == 0)
3275 break;
3276
3277 mdelay(1000);
3278 } while ((--max_wait_time));
3279
3280 /*
3281 * Also, make sure that the Network Reset Interrupt bit has been
3282 * cleared after the soft reset has taken place.
3283 */
3284 value =
3285 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3286 if (value & ISP_CONTROL_RI) {
3287 netdev_printk(KERN_DEBUG, qdev->ndev,
3288 "clearing RI after reset\n");
3289 ql_write_common_reg(qdev,
3290 &port_regs->CommonRegs.
3291 ispControlStatus,
3292 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3293 }
3294
3295 if (max_wait_time == 0) {
3296 /* Issue Force Soft Reset */
3297 ql_write_common_reg(qdev,
3298 &port_regs->CommonRegs.
3299 ispControlStatus,
3300 ((ISP_CONTROL_FSR << 16) |
3301 ISP_CONTROL_FSR));
3302 /*
3303 * Wait until the firmware tells us the Force Soft Reset is
3304 * done
3305 */
3306 max_wait_time = 5;
3307 do {
3308 value = ql_read_common_reg(qdev,
3309 &port_regs->CommonRegs.
3310 ispControlStatus);
3311 if ((value & ISP_CONTROL_FSR) == 0)
3312 break;
3313 mdelay(1000);
3314 } while ((--max_wait_time));
3315 }
3316 if (max_wait_time == 0)
3317 status = 1;
3318
3319 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3320 set_bit(QL_RESET_DONE, &qdev->flags);
3321 return status;
3322 }
3323
3324 static void ql_set_mac_info(struct ql3_adapter *qdev)
3325 {
3326 struct ql3xxx_port_registers __iomem *port_regs =
3327 qdev->mem_map_registers;
3328 u32 value, port_status;
3329 u8 func_number;
3330
3331 /* Get the function number */
3332 value =
3333 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3334 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3335 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3336 switch (value & ISP_CONTROL_FN_MASK) {
3337 case ISP_CONTROL_FN0_NET:
3338 qdev->mac_index = 0;
3339 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3340 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3341 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3342 if (port_status & PORT_STATUS_SM0)
3343 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3344 else
3345 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3346 break;
3347
3348 case ISP_CONTROL_FN1_NET:
3349 qdev->mac_index = 1;
3350 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3351 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3352 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3353 if (port_status & PORT_STATUS_SM1)
3354 set_bit(QL_LINK_OPTICAL, &qdev->flags);
3355 else
3356 clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3357 break;
3358
3359 case ISP_CONTROL_FN0_SCSI:
3360 case ISP_CONTROL_FN1_SCSI:
3361 default:
3362 netdev_printk(KERN_DEBUG, qdev->ndev,
3363 "Invalid function number, ispControlStatus = 0x%x\n",
3364 value);
3365 break;
3366 }
3367 qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3368 }
3369
3370 static void ql_display_dev_info(struct net_device *ndev)
3371 {
3372 struct ql3_adapter *qdev = netdev_priv(ndev);
3373 struct pci_dev *pdev = qdev->pdev;
3374
3375 netdev_info(ndev,
3376 "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3377 DRV_NAME, qdev->index, qdev->chip_rev_id,
3378 qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3379 qdev->pci_slot);
3380 netdev_info(ndev, "%s Interface\n",
3381 test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3382
3383 /*
3384 * Print PCI bus width/type.
3385 */
3386 netdev_info(ndev, "Bus interface is %s %s\n",
3387 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3388 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3389
3390 netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
3391 qdev->mem_map_registers);
3392 netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3393
3394 netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3395 }
3396
3397 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3398 {
3399 struct net_device *ndev = qdev->ndev;
3400 int retval = 0;
3401
3402 netif_stop_queue(ndev);
3403 netif_carrier_off(ndev);
3404
3405 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3406 clear_bit(QL_LINK_MASTER, &qdev->flags);
3407
3408 ql_disable_interrupts(qdev);
3409
3410 free_irq(qdev->pdev->irq, ndev);
3411
3412 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3413 netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3414 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3415 pci_disable_msi(qdev->pdev);
3416 }
3417
3418 del_timer_sync(&qdev->adapter_timer);
3419
3420 napi_disable(&qdev->napi);
3421
3422 if (do_reset) {
3423 int soft_reset;
3424 unsigned long hw_flags;
3425
3426 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3427 if (ql_wait_for_drvr_lock(qdev)) {
3428 soft_reset = ql_adapter_reset(qdev);
3429 if (soft_reset) {
3430 netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3431 qdev->index);
3432 }
3433 netdev_err(ndev,
3434 "Releasing driver lock via chip reset\n");
3435 } else {
3436 netdev_err(ndev,
3437 "Could not acquire driver lock to do reset!\n");
3438 retval = -1;
3439 }
3440 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3441 }
3442 ql_free_mem_resources(qdev);
3443 return retval;
3444 }
3445
3446 static int ql_adapter_up(struct ql3_adapter *qdev)
3447 {
3448 struct net_device *ndev = qdev->ndev;
3449 int err;
3450 unsigned long irq_flags = IRQF_SHARED;
3451 unsigned long hw_flags;
3452
3453 if (ql_alloc_mem_resources(qdev)) {
3454 netdev_err(ndev, "Unable to allocate buffers\n");
3455 return -ENOMEM;
3456 }
3457
3458 if (qdev->msi) {
3459 if (pci_enable_msi(qdev->pdev)) {
3460 netdev_err(ndev,
3461 "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
3462 qdev->msi = 0;
3463 } else {
3464 netdev_info(ndev, "MSI Enabled...\n");
3465 set_bit(QL_MSI_ENABLED, &qdev->flags);
3466 irq_flags &= ~IRQF_SHARED;
3467 }
3468 }
3469
3470 err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3471 irq_flags, ndev->name, ndev);
3472 if (err) {
3473 netdev_err(ndev,
3474 "Failed to reserve interrupt %d - already in use\n",
3475 qdev->pdev->irq);
3476 goto err_irq;
3477 }
3478
3479 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3480
3481 if (!ql_wait_for_drvr_lock(qdev)) {
3482 netdev_err(ndev, "Could not acquire driver lock\n");
3483 err = -ENODEV;
3484 goto err_lock;
3485 }
3486
3487 err = ql_adapter_initialize(qdev);
3488 if (err) {
3489 netdev_err(ndev, "Unable to initialize adapter\n");
3490 goto err_init;
3491 }
3492 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3493
3494 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3495
3496 set_bit(QL_ADAPTER_UP, &qdev->flags);
3497
3498 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3499
3500 napi_enable(&qdev->napi);
3501 ql_enable_interrupts(qdev);
3502 return 0;
3503
3504 err_init:
3505 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3506 err_lock:
3507 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3508 free_irq(qdev->pdev->irq, ndev);
3509 err_irq:
3510 if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3511 netdev_info(ndev, "calling pci_disable_msi()\n");
3512 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3513 pci_disable_msi(qdev->pdev);
3514 }
3515 return err;
3516 }
3517
3518 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3519 {
3520 if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3521 netdev_err(qdev->ndev,
3522 "Driver up/down cycle failed, closing device\n");
3523 rtnl_lock();
3524 dev_close(qdev->ndev);
3525 rtnl_unlock();
3526 return -1;
3527 }
3528 return 0;
3529 }
3530
3531 static int ql3xxx_close(struct net_device *ndev)
3532 {
3533 struct ql3_adapter *qdev = netdev_priv(ndev);
3534
3535 /*
3536 * Wait for device to recover from a reset.
3537 * (Rarely happens, but possible.)
3538 */
3539 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3540 msleep(50);
3541
3542 ql_adapter_down(qdev, QL_DO_RESET);
3543 return 0;
3544 }
3545
3546 static int ql3xxx_open(struct net_device *ndev)
3547 {
3548 struct ql3_adapter *qdev = netdev_priv(ndev);
3549 return ql_adapter_up(qdev);
3550 }
3551
3552 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3553 {
3554 struct ql3_adapter *qdev = netdev_priv(ndev);
3555 struct ql3xxx_port_registers __iomem *port_regs =
3556 qdev->mem_map_registers;
3557 struct sockaddr *addr = p;
3558 unsigned long hw_flags;
3559
3560 if (netif_running(ndev))
3561 return -EBUSY;
3562
3563 if (!is_valid_ether_addr(addr->sa_data))
3564 return -EADDRNOTAVAIL;
3565
3566 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3567
3568 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3569 /* Program lower 32 bits of the MAC address */
3570 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3571 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3572 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3573 ((ndev->dev_addr[2] << 24) | (ndev->
3574 dev_addr[3] << 16) |
3575 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3576
3577 /* Program top 16 bits of the MAC address */
3578 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3579 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3580 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3581 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3582 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3583
3584 return 0;
3585 }
3586
3587 static void ql3xxx_tx_timeout(struct net_device *ndev, unsigned int txqueue)
3588 {
3589 struct ql3_adapter *qdev = netdev_priv(ndev);
3590
3591 netdev_err(ndev, "Resetting...\n");
3592 /*
3593 * Stop the queues, we've got a problem.
3594 */
3595 netif_stop_queue(ndev);
3596
3597 /*
3598 * Wake up the worker to process this event.
3599 */
3600 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3601 }
3602
3603 static void ql_reset_work(struct work_struct *work)
3604 {
3605 struct ql3_adapter *qdev =
3606 container_of(work, struct ql3_adapter, reset_work.work);
3607 struct net_device *ndev = qdev->ndev;
3608 u32 value;
3609 struct ql_tx_buf_cb *tx_cb;
3610 int max_wait_time, i;
3611 struct ql3xxx_port_registers __iomem *port_regs =
3612 qdev->mem_map_registers;
3613 unsigned long hw_flags;
3614
3615 if (test_bit(QL_RESET_PER_SCSI, &qdev->flags) ||
3616 test_bit(QL_RESET_START, &qdev->flags)) {
3617 clear_bit(QL_LINK_MASTER, &qdev->flags);
3618
3619 /*
3620 * Loop through the active list and return the skb.
3621 */
3622 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3623 int j;
3624 tx_cb = &qdev->tx_buf[i];
3625 if (tx_cb->skb) {
3626 netdev_printk(KERN_DEBUG, ndev,
3627 "Freeing lost SKB\n");
3628 dma_unmap_single(&qdev->pdev->dev,
3629 dma_unmap_addr(&tx_cb->map[0], mapaddr),
3630 dma_unmap_len(&tx_cb->map[0], maplen),
3631 DMA_TO_DEVICE);
3632 for (j = 1; j < tx_cb->seg_count; j++) {
3633 dma_unmap_page(&qdev->pdev->dev,
3634 dma_unmap_addr(&tx_cb->map[j], mapaddr),
3635 dma_unmap_len(&tx_cb->map[j], maplen),
3636 DMA_TO_DEVICE);
3637 }
3638 dev_kfree_skb(tx_cb->skb);
3639 tx_cb->skb = NULL;
3640 }
3641 }
3642
3643 netdev_err(ndev, "Clearing NRI after reset\n");
3644 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3645 ql_write_common_reg(qdev,
3646 &port_regs->CommonRegs.
3647 ispControlStatus,
3648 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3649 /*
3650 * Wait the for Soft Reset to Complete.
3651 */
3652 max_wait_time = 10;
3653 do {
3654 value = ql_read_common_reg(qdev,
3655 &port_regs->CommonRegs.
3656
3657 ispControlStatus);
3658 if ((value & ISP_CONTROL_SR) == 0) {
3659 netdev_printk(KERN_DEBUG, ndev,
3660 "reset completed\n");
3661 break;
3662 }
3663
3664 if (value & ISP_CONTROL_RI) {
3665 netdev_printk(KERN_DEBUG, ndev,
3666 "clearing NRI after reset\n");
3667 ql_write_common_reg(qdev,
3668 &port_regs->
3669 CommonRegs.
3670 ispControlStatus,
3671 ((ISP_CONTROL_RI <<
3672 16) | ISP_CONTROL_RI));
3673 }
3674
3675 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3676 ssleep(1);
3677 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3678 } while (--max_wait_time);
3679 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3680
3681 if (value & ISP_CONTROL_SR) {
3682
3683 /*
3684 * Set the reset flags and clear the board again.
3685 * Nothing else to do...
3686 */
3687 netdev_err(ndev,
3688 "Timed out waiting for reset to complete\n");
3689 netdev_err(ndev, "Do a reset\n");
3690 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3691 clear_bit(QL_RESET_START, &qdev->flags);
3692 ql_cycle_adapter(qdev, QL_DO_RESET);
3693 return;
3694 }
3695
3696 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3697 clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3698 clear_bit(QL_RESET_START, &qdev->flags);
3699 ql_cycle_adapter(qdev, QL_NO_RESET);
3700 }
3701 }
3702
3703 static void ql_tx_timeout_work(struct work_struct *work)
3704 {
3705 struct ql3_adapter *qdev =
3706 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3707
3708 ql_cycle_adapter(qdev, QL_DO_RESET);
3709 }
3710
3711 static void ql_get_board_info(struct ql3_adapter *qdev)
3712 {
3713 struct ql3xxx_port_registers __iomem *port_regs =
3714 qdev->mem_map_registers;
3715 u32 value;
3716
3717 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3718
3719 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3720 if (value & PORT_STATUS_64)
3721 qdev->pci_width = 64;
3722 else
3723 qdev->pci_width = 32;
3724 if (value & PORT_STATUS_X)
3725 qdev->pci_x = 1;
3726 else
3727 qdev->pci_x = 0;
3728 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3729 }
3730
3731 static void ql3xxx_timer(struct timer_list *t)
3732 {
3733 struct ql3_adapter *qdev = from_timer(qdev, t, adapter_timer);
3734 queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3735 }
3736
3737 static const struct net_device_ops ql3xxx_netdev_ops = {
3738 .ndo_open = ql3xxx_open,
3739 .ndo_start_xmit = ql3xxx_send,
3740 .ndo_stop = ql3xxx_close,
3741 .ndo_validate_addr = eth_validate_addr,
3742 .ndo_set_mac_address = ql3xxx_set_mac_address,
3743 .ndo_tx_timeout = ql3xxx_tx_timeout,
3744 };
3745
3746 static int ql3xxx_probe(struct pci_dev *pdev,
3747 const struct pci_device_id *pci_entry)
3748 {
3749 struct net_device *ndev = NULL;
3750 struct ql3_adapter *qdev = NULL;
3751 static int cards_found;
3752 int pci_using_dac, err;
3753
3754 err = pci_enable_device(pdev);
3755 if (err) {
3756 pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3757 goto err_out;
3758 }
3759
3760 err = pci_request_regions(pdev, DRV_NAME);
3761 if (err) {
3762 pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3763 goto err_out_disable_pdev;
3764 }
3765
3766 pci_set_master(pdev);
3767
3768 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)))
3769 pci_using_dac = 1;
3770 else if (!(err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))))
3771 pci_using_dac = 0;
3772
3773 if (err) {
3774 pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3775 goto err_out_free_regions;
3776 }
3777
3778 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3779 if (!ndev) {
3780 err = -ENOMEM;
3781 goto err_out_free_regions;
3782 }
3783
3784 SET_NETDEV_DEV(ndev, &pdev->dev);
3785
3786 pci_set_drvdata(pdev, ndev);
3787
3788 qdev = netdev_priv(ndev);
3789 qdev->index = cards_found;
3790 qdev->ndev = ndev;
3791 qdev->pdev = pdev;
3792 qdev->device_id = pci_entry->device;
3793 qdev->port_link_state = LS_DOWN;
3794 if (msi)
3795 qdev->msi = 1;
3796
3797 qdev->msg_enable = netif_msg_init(debug, default_msg);
3798
3799 if (pci_using_dac)
3800 ndev->features |= NETIF_F_HIGHDMA;
3801 if (qdev->device_id == QL3032_DEVICE_ID)
3802 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3803
3804 qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3805 if (!qdev->mem_map_registers) {
3806 pr_err("%s: cannot map device registers\n", pci_name(pdev));
3807 err = -EIO;
3808 goto err_out_free_ndev;
3809 }
3810
3811 spin_lock_init(&qdev->adapter_lock);
3812 spin_lock_init(&qdev->hw_lock);
3813
3814 /* Set driver entry points */
3815 ndev->netdev_ops = &ql3xxx_netdev_ops;
3816 ndev->ethtool_ops = &ql3xxx_ethtool_ops;
3817 ndev->watchdog_timeo = 5 * HZ;
3818
3819 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3820
3821 ndev->irq = pdev->irq;
3822
3823 /* make sure the EEPROM is good */
3824 if (ql_get_nvram_params(qdev)) {
3825 pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3826 __func__, qdev->index);
3827 err = -EIO;
3828 goto err_out_iounmap;
3829 }
3830
3831 ql_set_mac_info(qdev);
3832
3833 /* Validate and set parameters */
3834 if (qdev->mac_index) {
3835 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3836 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3837 } else {
3838 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3839 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3840 }
3841
3842 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3843
3844 /* Record PCI bus information. */
3845 ql_get_board_info(qdev);
3846
3847 /*
3848 * Set the Maximum Memory Read Byte Count value. We do this to handle
3849 * jumbo frames.
3850 */
3851 if (qdev->pci_x)
3852 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3853
3854 err = register_netdev(ndev);
3855 if (err) {
3856 pr_err("%s: cannot register net device\n", pci_name(pdev));
3857 goto err_out_iounmap;
3858 }
3859
3860 /* we're going to reset, so assume we have no link for now */
3861
3862 netif_carrier_off(ndev);
3863 netif_stop_queue(ndev);
3864
3865 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3866 if (!qdev->workqueue) {
3867 unregister_netdev(ndev);
3868 err = -ENOMEM;
3869 goto err_out_iounmap;
3870 }
3871
3872 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3873 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3874 INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3875
3876 timer_setup(&qdev->adapter_timer, ql3xxx_timer, 0);
3877 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
3878
3879 if (!cards_found) {
3880 pr_alert("%s\n", DRV_STRING);
3881 pr_alert("Driver name: %s, Version: %s\n",
3882 DRV_NAME, DRV_VERSION);
3883 }
3884 ql_display_dev_info(ndev);
3885
3886 cards_found++;
3887 return 0;
3888
3889 err_out_iounmap:
3890 iounmap(qdev->mem_map_registers);
3891 err_out_free_ndev:
3892 free_netdev(ndev);
3893 err_out_free_regions:
3894 pci_release_regions(pdev);
3895 err_out_disable_pdev:
3896 pci_disable_device(pdev);
3897 err_out:
3898 return err;
3899 }
3900
3901 static void ql3xxx_remove(struct pci_dev *pdev)
3902 {
3903 struct net_device *ndev = pci_get_drvdata(pdev);
3904 struct ql3_adapter *qdev = netdev_priv(ndev);
3905
3906 unregister_netdev(ndev);
3907
3908 ql_disable_interrupts(qdev);
3909
3910 if (qdev->workqueue) {
3911 cancel_delayed_work(&qdev->reset_work);
3912 cancel_delayed_work(&qdev->tx_timeout_work);
3913 destroy_workqueue(qdev->workqueue);
3914 qdev->workqueue = NULL;
3915 }
3916
3917 iounmap(qdev->mem_map_registers);
3918 pci_release_regions(pdev);
3919 free_netdev(ndev);
3920 }
3921
3922 static struct pci_driver ql3xxx_driver = {
3923
3924 .name = DRV_NAME,
3925 .id_table = ql3xxx_pci_tbl,
3926 .probe = ql3xxx_probe,
3927 .remove = ql3xxx_remove,
3928 };
3929
3930 module_pci_driver(ql3xxx_driver);