]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/net/ethernet/qlogic/qlge/qlge_main.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
93 {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147 unsigned int wait_count = 30;
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
151 udelay(100);
152 } while (--wait_count);
153 return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
188 return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217 {
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 return -ENOMEM;
232 }
233
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
242 goto exit;
243 }
244
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256 exit:
257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260 }
261
262 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265 {
266 u32 offset = 0;
267 int status;
268
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 MAC_ADDR_MR, 0);
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
324 status = -EPERM;
325 }
326 exit:
327 return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335 {
336 u32 offset = 0;
337 int status = 0;
338
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
379 status =
380 ql_wait_reg_rdy(qdev,
381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
427 status =
428 ql_wait_reg_rdy(qdev,
429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
442 status = -EPERM;
443 }
444 exit:
445 return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
459 addr = &qdev->current_mac_addr[0];
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
462 } else {
463 eth_zero_addr(zero_mac_addr);
464 addr = &zero_mac_addr[0];
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
477 return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499 int status = 0;
500
501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511 exit:
512 return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522 {
523 int status = -EINVAL; /* Return error if no mask match. */
524 u32 value = 0;
525
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
580 value = RT_IDX_DST_DFLT_Q | /* dest */
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614 exit:
615 return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
631 * incremented every time we queue a worker and decremented every time
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
644 ql_write32(qdev, INTR_EN,
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
648 }
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662 u32 var = 0;
663 struct intr_context *ctx;
664
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
672 spin_lock(&qdev->hw_lock);
673 if (!atomic_read(&ctx->irq_cnt)) {
674 ql_write32(qdev, INTR_EN,
675 ctx->intr_dis_mask);
676 var = ql_read32(qdev, STS);
677 }
678 atomic_inc(&ctx->irq_cnt);
679 spin_unlock(&qdev->hw_lock);
680 return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718 return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
751 u8 mac_addr[6];
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
756 if (!qdev->port)
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 status = -EINVAL;
780 goto exit;
781 }
782
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
802 mac_addr,
803 qdev->ndev->addr_len);
804
805 exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812 int i;
813 int status;
814 __le32 *p = (__le32 *)&qdev->flash;
815 u32 offset = 0;
816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
821 if (qdev->port)
822 offset = size;
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
827 for (i = 0; i < size; i++, p++) {
828 status = ql_read_flash_word(qdev, i+offset, p);
829 if (status) {
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
832 goto exit;
833 }
834
835 }
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
855 exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922 return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927 int status;
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 return status;
942 }
943
944 /* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
965 }
966 return status;
967 }
968
969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043 {
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
1047 dma_unmap_addr(lbq_desc, mapaddr),
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092 {
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COMP | GFP_ATOMIC,
1096 qdev->lbq_buf_order);
1097 if (unlikely(!rx_ring->pg_chunk.page)) {
1098 netif_err(qdev, drv, qdev->ndev,
1099 "page allocation failed.\n");
1100 return -ENOMEM;
1101 }
1102 rx_ring->pg_chunk.offset = 0;
1103 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104 0, ql_lbq_block_size(qdev),
1105 PCI_DMA_FROMDEVICE);
1106 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107 __free_pages(rx_ring->pg_chunk.page,
1108 qdev->lbq_buf_order);
1109 rx_ring->pg_chunk.page = NULL;
1110 netif_err(qdev, drv, qdev->ndev,
1111 "PCI mapping failed.\n");
1112 return -ENOMEM;
1113 }
1114 rx_ring->pg_chunk.map = map;
1115 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1116 }
1117
1118 /* Copy the current master pg_chunk info
1119 * to the current descriptor.
1120 */
1121 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1122
1123 /* Adjust the master page chunk for next
1124 * buffer get.
1125 */
1126 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1127 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1128 rx_ring->pg_chunk.page = NULL;
1129 lbq_desc->p.pg_chunk.last_flag = 1;
1130 } else {
1131 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1132 get_page(rx_ring->pg_chunk.page);
1133 lbq_desc->p.pg_chunk.last_flag = 0;
1134 }
1135 return 0;
1136 }
1137 /* Process (refill) a large buffer queue. */
1138 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1139 {
1140 u32 clean_idx = rx_ring->lbq_clean_idx;
1141 u32 start_idx = clean_idx;
1142 struct bq_desc *lbq_desc;
1143 u64 map;
1144 int i;
1145
1146 while (rx_ring->lbq_free_cnt > 32) {
1147 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1148 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1149 "lbq: try cleaning clean_idx = %d.\n",
1150 clean_idx);
1151 lbq_desc = &rx_ring->lbq[clean_idx];
1152 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1153 rx_ring->lbq_clean_idx = clean_idx;
1154 netif_err(qdev, ifup, qdev->ndev,
1155 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1156 i, clean_idx);
1157 return;
1158 }
1159
1160 map = lbq_desc->p.pg_chunk.map +
1161 lbq_desc->p.pg_chunk.offset;
1162 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1163 dma_unmap_len_set(lbq_desc, maplen,
1164 rx_ring->lbq_buf_size);
1165 *lbq_desc->addr = cpu_to_le64(map);
1166
1167 pci_dma_sync_single_for_device(qdev->pdev, map,
1168 rx_ring->lbq_buf_size,
1169 PCI_DMA_FROMDEVICE);
1170 clean_idx++;
1171 if (clean_idx == rx_ring->lbq_len)
1172 clean_idx = 0;
1173 }
1174
1175 rx_ring->lbq_clean_idx = clean_idx;
1176 rx_ring->lbq_prod_idx += 16;
1177 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1178 rx_ring->lbq_prod_idx = 0;
1179 rx_ring->lbq_free_cnt -= 16;
1180 }
1181
1182 if (start_idx != clean_idx) {
1183 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1184 "lbq: updating prod idx = %d.\n",
1185 rx_ring->lbq_prod_idx);
1186 ql_write_db_reg(rx_ring->lbq_prod_idx,
1187 rx_ring->lbq_prod_idx_db_reg);
1188 }
1189 }
1190
1191 /* Process (refill) a small buffer queue. */
1192 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1193 {
1194 u32 clean_idx = rx_ring->sbq_clean_idx;
1195 u32 start_idx = clean_idx;
1196 struct bq_desc *sbq_desc;
1197 u64 map;
1198 int i;
1199
1200 while (rx_ring->sbq_free_cnt > 16) {
1201 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1202 sbq_desc = &rx_ring->sbq[clean_idx];
1203 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1204 "sbq: try cleaning clean_idx = %d.\n",
1205 clean_idx);
1206 if (sbq_desc->p.skb == NULL) {
1207 netif_printk(qdev, rx_status, KERN_DEBUG,
1208 qdev->ndev,
1209 "sbq: getting new skb for index %d.\n",
1210 sbq_desc->index);
1211 sbq_desc->p.skb =
1212 netdev_alloc_skb(qdev->ndev,
1213 SMALL_BUFFER_SIZE);
1214 if (sbq_desc->p.skb == NULL) {
1215 rx_ring->sbq_clean_idx = clean_idx;
1216 return;
1217 }
1218 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1219 map = pci_map_single(qdev->pdev,
1220 sbq_desc->p.skb->data,
1221 rx_ring->sbq_buf_size,
1222 PCI_DMA_FROMDEVICE);
1223 if (pci_dma_mapping_error(qdev->pdev, map)) {
1224 netif_err(qdev, ifup, qdev->ndev,
1225 "PCI mapping failed.\n");
1226 rx_ring->sbq_clean_idx = clean_idx;
1227 dev_kfree_skb_any(sbq_desc->p.skb);
1228 sbq_desc->p.skb = NULL;
1229 return;
1230 }
1231 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1232 dma_unmap_len_set(sbq_desc, maplen,
1233 rx_ring->sbq_buf_size);
1234 *sbq_desc->addr = cpu_to_le64(map);
1235 }
1236
1237 clean_idx++;
1238 if (clean_idx == rx_ring->sbq_len)
1239 clean_idx = 0;
1240 }
1241 rx_ring->sbq_clean_idx = clean_idx;
1242 rx_ring->sbq_prod_idx += 16;
1243 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1244 rx_ring->sbq_prod_idx = 0;
1245 rx_ring->sbq_free_cnt -= 16;
1246 }
1247
1248 if (start_idx != clean_idx) {
1249 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1250 "sbq: updating prod idx = %d.\n",
1251 rx_ring->sbq_prod_idx);
1252 ql_write_db_reg(rx_ring->sbq_prod_idx,
1253 rx_ring->sbq_prod_idx_db_reg);
1254 }
1255 }
1256
1257 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1258 struct rx_ring *rx_ring)
1259 {
1260 ql_update_sbq(qdev, rx_ring);
1261 ql_update_lbq(qdev, rx_ring);
1262 }
1263
1264 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1265 * fails at some stage, or from the interrupt when a tx completes.
1266 */
1267 static void ql_unmap_send(struct ql_adapter *qdev,
1268 struct tx_ring_desc *tx_ring_desc, int mapped)
1269 {
1270 int i;
1271 for (i = 0; i < mapped; i++) {
1272 if (i == 0 || (i == 7 && mapped > 7)) {
1273 /*
1274 * Unmap the skb->data area, or the
1275 * external sglist (AKA the Outbound
1276 * Address List (OAL)).
1277 * If its the zeroeth element, then it's
1278 * the skb->data area. If it's the 7th
1279 * element and there is more than 6 frags,
1280 * then its an OAL.
1281 */
1282 if (i == 7) {
1283 netif_printk(qdev, tx_done, KERN_DEBUG,
1284 qdev->ndev,
1285 "unmapping OAL area.\n");
1286 }
1287 pci_unmap_single(qdev->pdev,
1288 dma_unmap_addr(&tx_ring_desc->map[i],
1289 mapaddr),
1290 dma_unmap_len(&tx_ring_desc->map[i],
1291 maplen),
1292 PCI_DMA_TODEVICE);
1293 } else {
1294 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1295 "unmapping frag %d.\n", i);
1296 pci_unmap_page(qdev->pdev,
1297 dma_unmap_addr(&tx_ring_desc->map[i],
1298 mapaddr),
1299 dma_unmap_len(&tx_ring_desc->map[i],
1300 maplen), PCI_DMA_TODEVICE);
1301 }
1302 }
1303
1304 }
1305
1306 /* Map the buffers for this transmit. This will return
1307 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1308 */
1309 static int ql_map_send(struct ql_adapter *qdev,
1310 struct ob_mac_iocb_req *mac_iocb_ptr,
1311 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1312 {
1313 int len = skb_headlen(skb);
1314 dma_addr_t map;
1315 int frag_idx, err, map_idx = 0;
1316 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1317 int frag_cnt = skb_shinfo(skb)->nr_frags;
1318
1319 if (frag_cnt) {
1320 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1321 "frag_cnt = %d.\n", frag_cnt);
1322 }
1323 /*
1324 * Map the skb buffer first.
1325 */
1326 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1327
1328 err = pci_dma_mapping_error(qdev->pdev, map);
1329 if (err) {
1330 netif_err(qdev, tx_queued, qdev->ndev,
1331 "PCI mapping failed with error: %d\n", err);
1332
1333 return NETDEV_TX_BUSY;
1334 }
1335
1336 tbd->len = cpu_to_le32(len);
1337 tbd->addr = cpu_to_le64(map);
1338 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1339 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1340 map_idx++;
1341
1342 /*
1343 * This loop fills the remainder of the 8 address descriptors
1344 * in the IOCB. If there are more than 7 fragments, then the
1345 * eighth address desc will point to an external list (OAL).
1346 * When this happens, the remainder of the frags will be stored
1347 * in this list.
1348 */
1349 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1350 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1351 tbd++;
1352 if (frag_idx == 6 && frag_cnt > 7) {
1353 /* Let's tack on an sglist.
1354 * Our control block will now
1355 * look like this:
1356 * iocb->seg[0] = skb->data
1357 * iocb->seg[1] = frag[0]
1358 * iocb->seg[2] = frag[1]
1359 * iocb->seg[3] = frag[2]
1360 * iocb->seg[4] = frag[3]
1361 * iocb->seg[5] = frag[4]
1362 * iocb->seg[6] = frag[5]
1363 * iocb->seg[7] = ptr to OAL (external sglist)
1364 * oal->seg[0] = frag[6]
1365 * oal->seg[1] = frag[7]
1366 * oal->seg[2] = frag[8]
1367 * oal->seg[3] = frag[9]
1368 * oal->seg[4] = frag[10]
1369 * etc...
1370 */
1371 /* Tack on the OAL in the eighth segment of IOCB. */
1372 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1373 sizeof(struct oal),
1374 PCI_DMA_TODEVICE);
1375 err = pci_dma_mapping_error(qdev->pdev, map);
1376 if (err) {
1377 netif_err(qdev, tx_queued, qdev->ndev,
1378 "PCI mapping outbound address list with error: %d\n",
1379 err);
1380 goto map_error;
1381 }
1382
1383 tbd->addr = cpu_to_le64(map);
1384 /*
1385 * The length is the number of fragments
1386 * that remain to be mapped times the length
1387 * of our sglist (OAL).
1388 */
1389 tbd->len =
1390 cpu_to_le32((sizeof(struct tx_buf_desc) *
1391 (frag_cnt - frag_idx)) | TX_DESC_C);
1392 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1393 map);
1394 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1395 sizeof(struct oal));
1396 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1397 map_idx++;
1398 }
1399
1400 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1401 DMA_TO_DEVICE);
1402
1403 err = dma_mapping_error(&qdev->pdev->dev, map);
1404 if (err) {
1405 netif_err(qdev, tx_queued, qdev->ndev,
1406 "PCI mapping frags failed with error: %d.\n",
1407 err);
1408 goto map_error;
1409 }
1410
1411 tbd->addr = cpu_to_le64(map);
1412 tbd->len = cpu_to_le32(skb_frag_size(frag));
1413 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1414 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1415 skb_frag_size(frag));
1416
1417 }
1418 /* Save the number of segments we've mapped. */
1419 tx_ring_desc->map_cnt = map_idx;
1420 /* Terminate the last segment. */
1421 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1422 return NETDEV_TX_OK;
1423
1424 map_error:
1425 /*
1426 * If the first frag mapping failed, then i will be zero.
1427 * This causes the unmap of the skb->data area. Otherwise
1428 * we pass in the number of frags that mapped successfully
1429 * so they can be umapped.
1430 */
1431 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1432 return NETDEV_TX_BUSY;
1433 }
1434
1435 /* Categorizing receive firmware frame errors */
1436 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1437 struct rx_ring *rx_ring)
1438 {
1439 struct nic_stats *stats = &qdev->nic_stats;
1440
1441 stats->rx_err_count++;
1442 rx_ring->rx_errors++;
1443
1444 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1445 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1446 stats->rx_code_err++;
1447 break;
1448 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1449 stats->rx_oversize_err++;
1450 break;
1451 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1452 stats->rx_undersize_err++;
1453 break;
1454 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1455 stats->rx_preamble_err++;
1456 break;
1457 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1458 stats->rx_frame_len_err++;
1459 break;
1460 case IB_MAC_IOCB_RSP_ERR_CRC:
1461 stats->rx_crc_err++;
1462 default:
1463 break;
1464 }
1465 }
1466
1467 /**
1468 * ql_update_mac_hdr_len - helper routine to update the mac header length
1469 * based on vlan tags if present
1470 */
1471 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1472 struct ib_mac_iocb_rsp *ib_mac_rsp,
1473 void *page, size_t *len)
1474 {
1475 u16 *tags;
1476
1477 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1478 return;
1479 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1480 tags = (u16 *)page;
1481 /* Look for stacked vlan tags in ethertype field */
1482 if (tags[6] == ETH_P_8021Q &&
1483 tags[8] == ETH_P_8021Q)
1484 *len += 2 * VLAN_HLEN;
1485 else
1486 *len += VLAN_HLEN;
1487 }
1488 }
1489
1490 /* Process an inbound completion from an rx ring. */
1491 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1492 struct rx_ring *rx_ring,
1493 struct ib_mac_iocb_rsp *ib_mac_rsp,
1494 u32 length,
1495 u16 vlan_id)
1496 {
1497 struct sk_buff *skb;
1498 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1499 struct napi_struct *napi = &rx_ring->napi;
1500
1501 /* Frame error, so drop the packet. */
1502 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1503 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1504 put_page(lbq_desc->p.pg_chunk.page);
1505 return;
1506 }
1507 napi->dev = qdev->ndev;
1508
1509 skb = napi_get_frags(napi);
1510 if (!skb) {
1511 netif_err(qdev, drv, qdev->ndev,
1512 "Couldn't get an skb, exiting.\n");
1513 rx_ring->rx_dropped++;
1514 put_page(lbq_desc->p.pg_chunk.page);
1515 return;
1516 }
1517 prefetch(lbq_desc->p.pg_chunk.va);
1518 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1519 lbq_desc->p.pg_chunk.page,
1520 lbq_desc->p.pg_chunk.offset,
1521 length);
1522
1523 skb->len += length;
1524 skb->data_len += length;
1525 skb->truesize += length;
1526 skb_shinfo(skb)->nr_frags++;
1527
1528 rx_ring->rx_packets++;
1529 rx_ring->rx_bytes += length;
1530 skb->ip_summed = CHECKSUM_UNNECESSARY;
1531 skb_record_rx_queue(skb, rx_ring->cq_id);
1532 if (vlan_id != 0xffff)
1533 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1534 napi_gro_frags(napi);
1535 }
1536
1537 /* Process an inbound completion from an rx ring. */
1538 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1539 struct rx_ring *rx_ring,
1540 struct ib_mac_iocb_rsp *ib_mac_rsp,
1541 u32 length,
1542 u16 vlan_id)
1543 {
1544 struct net_device *ndev = qdev->ndev;
1545 struct sk_buff *skb = NULL;
1546 void *addr;
1547 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1548 struct napi_struct *napi = &rx_ring->napi;
1549 size_t hlen = ETH_HLEN;
1550
1551 skb = netdev_alloc_skb(ndev, length);
1552 if (!skb) {
1553 rx_ring->rx_dropped++;
1554 put_page(lbq_desc->p.pg_chunk.page);
1555 return;
1556 }
1557
1558 addr = lbq_desc->p.pg_chunk.va;
1559 prefetch(addr);
1560
1561 /* Frame error, so drop the packet. */
1562 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1563 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1564 goto err_out;
1565 }
1566
1567 /* Update the MAC header length*/
1568 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1569
1570 /* The max framesize filter on this chip is set higher than
1571 * MTU since FCoE uses 2k frames.
1572 */
1573 if (skb->len > ndev->mtu + hlen) {
1574 netif_err(qdev, drv, qdev->ndev,
1575 "Segment too small, dropping.\n");
1576 rx_ring->rx_dropped++;
1577 goto err_out;
1578 }
1579 skb_put_data(skb, addr, hlen);
1580 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1581 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1582 length);
1583 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1584 lbq_desc->p.pg_chunk.offset + hlen,
1585 length - hlen);
1586 skb->len += length - hlen;
1587 skb->data_len += length - hlen;
1588 skb->truesize += length - hlen;
1589
1590 rx_ring->rx_packets++;
1591 rx_ring->rx_bytes += skb->len;
1592 skb->protocol = eth_type_trans(skb, ndev);
1593 skb_checksum_none_assert(skb);
1594
1595 if ((ndev->features & NETIF_F_RXCSUM) &&
1596 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1597 /* TCP frame. */
1598 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1599 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1600 "TCP checksum done!\n");
1601 skb->ip_summed = CHECKSUM_UNNECESSARY;
1602 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1603 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1604 /* Unfragmented ipv4 UDP frame. */
1605 struct iphdr *iph =
1606 (struct iphdr *)((u8 *)addr + hlen);
1607 if (!(iph->frag_off &
1608 htons(IP_MF|IP_OFFSET))) {
1609 skb->ip_summed = CHECKSUM_UNNECESSARY;
1610 netif_printk(qdev, rx_status, KERN_DEBUG,
1611 qdev->ndev,
1612 "UDP checksum done!\n");
1613 }
1614 }
1615 }
1616
1617 skb_record_rx_queue(skb, rx_ring->cq_id);
1618 if (vlan_id != 0xffff)
1619 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1620 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1621 napi_gro_receive(napi, skb);
1622 else
1623 netif_receive_skb(skb);
1624 return;
1625 err_out:
1626 dev_kfree_skb_any(skb);
1627 put_page(lbq_desc->p.pg_chunk.page);
1628 }
1629
1630 /* Process an inbound completion from an rx ring. */
1631 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1632 struct rx_ring *rx_ring,
1633 struct ib_mac_iocb_rsp *ib_mac_rsp,
1634 u32 length,
1635 u16 vlan_id)
1636 {
1637 struct net_device *ndev = qdev->ndev;
1638 struct sk_buff *skb = NULL;
1639 struct sk_buff *new_skb = NULL;
1640 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1641
1642 skb = sbq_desc->p.skb;
1643 /* Allocate new_skb and copy */
1644 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1645 if (new_skb == NULL) {
1646 rx_ring->rx_dropped++;
1647 return;
1648 }
1649 skb_reserve(new_skb, NET_IP_ALIGN);
1650
1651 pci_dma_sync_single_for_cpu(qdev->pdev,
1652 dma_unmap_addr(sbq_desc, mapaddr),
1653 dma_unmap_len(sbq_desc, maplen),
1654 PCI_DMA_FROMDEVICE);
1655
1656 skb_put_data(new_skb, skb->data, length);
1657
1658 pci_dma_sync_single_for_device(qdev->pdev,
1659 dma_unmap_addr(sbq_desc, mapaddr),
1660 dma_unmap_len(sbq_desc, maplen),
1661 PCI_DMA_FROMDEVICE);
1662 skb = new_skb;
1663
1664 /* Frame error, so drop the packet. */
1665 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1666 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1667 dev_kfree_skb_any(skb);
1668 return;
1669 }
1670
1671 /* loopback self test for ethtool */
1672 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1673 ql_check_lb_frame(qdev, skb);
1674 dev_kfree_skb_any(skb);
1675 return;
1676 }
1677
1678 /* The max framesize filter on this chip is set higher than
1679 * MTU since FCoE uses 2k frames.
1680 */
1681 if (skb->len > ndev->mtu + ETH_HLEN) {
1682 dev_kfree_skb_any(skb);
1683 rx_ring->rx_dropped++;
1684 return;
1685 }
1686
1687 prefetch(skb->data);
1688 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "%s Multicast.\n",
1691 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1692 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1693 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1694 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1695 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1696 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1697 }
1698 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1699 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1700 "Promiscuous Packet.\n");
1701
1702 rx_ring->rx_packets++;
1703 rx_ring->rx_bytes += skb->len;
1704 skb->protocol = eth_type_trans(skb, ndev);
1705 skb_checksum_none_assert(skb);
1706
1707 /* If rx checksum is on, and there are no
1708 * csum or frame errors.
1709 */
1710 if ((ndev->features & NETIF_F_RXCSUM) &&
1711 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1712 /* TCP frame. */
1713 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1714 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1715 "TCP checksum done!\n");
1716 skb->ip_summed = CHECKSUM_UNNECESSARY;
1717 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1718 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1719 /* Unfragmented ipv4 UDP frame. */
1720 struct iphdr *iph = (struct iphdr *) skb->data;
1721 if (!(iph->frag_off &
1722 htons(IP_MF|IP_OFFSET))) {
1723 skb->ip_summed = CHECKSUM_UNNECESSARY;
1724 netif_printk(qdev, rx_status, KERN_DEBUG,
1725 qdev->ndev,
1726 "UDP checksum done!\n");
1727 }
1728 }
1729 }
1730
1731 skb_record_rx_queue(skb, rx_ring->cq_id);
1732 if (vlan_id != 0xffff)
1733 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1734 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1735 napi_gro_receive(&rx_ring->napi, skb);
1736 else
1737 netif_receive_skb(skb);
1738 }
1739
1740 static void ql_realign_skb(struct sk_buff *skb, int len)
1741 {
1742 void *temp_addr = skb->data;
1743
1744 /* Undo the skb_reserve(skb,32) we did before
1745 * giving to hardware, and realign data on
1746 * a 2-byte boundary.
1747 */
1748 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1749 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1750 memmove(skb->data, temp_addr, len);
1751 }
1752
1753 /*
1754 * This function builds an skb for the given inbound
1755 * completion. It will be rewritten for readability in the near
1756 * future, but for not it works well.
1757 */
1758 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1759 struct rx_ring *rx_ring,
1760 struct ib_mac_iocb_rsp *ib_mac_rsp)
1761 {
1762 struct bq_desc *lbq_desc;
1763 struct bq_desc *sbq_desc;
1764 struct sk_buff *skb = NULL;
1765 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1766 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1767 size_t hlen = ETH_HLEN;
1768
1769 /*
1770 * Handle the header buffer if present.
1771 */
1772 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1773 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1774 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1775 "Header of %d bytes in small buffer.\n", hdr_len);
1776 /*
1777 * Headers fit nicely into a small buffer.
1778 */
1779 sbq_desc = ql_get_curr_sbuf(rx_ring);
1780 pci_unmap_single(qdev->pdev,
1781 dma_unmap_addr(sbq_desc, mapaddr),
1782 dma_unmap_len(sbq_desc, maplen),
1783 PCI_DMA_FROMDEVICE);
1784 skb = sbq_desc->p.skb;
1785 ql_realign_skb(skb, hdr_len);
1786 skb_put(skb, hdr_len);
1787 sbq_desc->p.skb = NULL;
1788 }
1789
1790 /*
1791 * Handle the data buffer(s).
1792 */
1793 if (unlikely(!length)) { /* Is there data too? */
1794 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1795 "No Data buffer in this packet.\n");
1796 return skb;
1797 }
1798
1799 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1800 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1801 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1802 "Headers in small, data of %d bytes in small, combine them.\n",
1803 length);
1804 /*
1805 * Data is less than small buffer size so it's
1806 * stuffed in a small buffer.
1807 * For this case we append the data
1808 * from the "data" small buffer to the "header" small
1809 * buffer.
1810 */
1811 sbq_desc = ql_get_curr_sbuf(rx_ring);
1812 pci_dma_sync_single_for_cpu(qdev->pdev,
1813 dma_unmap_addr
1814 (sbq_desc, mapaddr),
1815 dma_unmap_len
1816 (sbq_desc, maplen),
1817 PCI_DMA_FROMDEVICE);
1818 skb_put_data(skb, sbq_desc->p.skb->data, length);
1819 pci_dma_sync_single_for_device(qdev->pdev,
1820 dma_unmap_addr
1821 (sbq_desc,
1822 mapaddr),
1823 dma_unmap_len
1824 (sbq_desc,
1825 maplen),
1826 PCI_DMA_FROMDEVICE);
1827 } else {
1828 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1829 "%d bytes in a single small buffer.\n",
1830 length);
1831 sbq_desc = ql_get_curr_sbuf(rx_ring);
1832 skb = sbq_desc->p.skb;
1833 ql_realign_skb(skb, length);
1834 skb_put(skb, length);
1835 pci_unmap_single(qdev->pdev,
1836 dma_unmap_addr(sbq_desc,
1837 mapaddr),
1838 dma_unmap_len(sbq_desc,
1839 maplen),
1840 PCI_DMA_FROMDEVICE);
1841 sbq_desc->p.skb = NULL;
1842 }
1843 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1844 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1845 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1846 "Header in small, %d bytes in large. Chain large to small!\n",
1847 length);
1848 /*
1849 * The data is in a single large buffer. We
1850 * chain it to the header buffer's skb and let
1851 * it rip.
1852 */
1853 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1854 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1855 "Chaining page at offset = %d, for %d bytes to skb.\n",
1856 lbq_desc->p.pg_chunk.offset, length);
1857 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1858 lbq_desc->p.pg_chunk.offset,
1859 length);
1860 skb->len += length;
1861 skb->data_len += length;
1862 skb->truesize += length;
1863 } else {
1864 /*
1865 * The headers and data are in a single large buffer. We
1866 * copy it to a new skb and let it go. This can happen with
1867 * jumbo mtu on a non-TCP/UDP frame.
1868 */
1869 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1870 skb = netdev_alloc_skb(qdev->ndev, length);
1871 if (skb == NULL) {
1872 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1873 "No skb available, drop the packet.\n");
1874 return NULL;
1875 }
1876 pci_unmap_page(qdev->pdev,
1877 dma_unmap_addr(lbq_desc,
1878 mapaddr),
1879 dma_unmap_len(lbq_desc, maplen),
1880 PCI_DMA_FROMDEVICE);
1881 skb_reserve(skb, NET_IP_ALIGN);
1882 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1883 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1884 length);
1885 skb_fill_page_desc(skb, 0,
1886 lbq_desc->p.pg_chunk.page,
1887 lbq_desc->p.pg_chunk.offset,
1888 length);
1889 skb->len += length;
1890 skb->data_len += length;
1891 skb->truesize += length;
1892 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1893 lbq_desc->p.pg_chunk.va,
1894 &hlen);
1895 __pskb_pull_tail(skb, hlen);
1896 }
1897 } else {
1898 /*
1899 * The data is in a chain of large buffers
1900 * pointed to by a small buffer. We loop
1901 * thru and chain them to the our small header
1902 * buffer's skb.
1903 * frags: There are 18 max frags and our small
1904 * buffer will hold 32 of them. The thing is,
1905 * we'll use 3 max for our 9000 byte jumbo
1906 * frames. If the MTU goes up we could
1907 * eventually be in trouble.
1908 */
1909 int size, i = 0;
1910 sbq_desc = ql_get_curr_sbuf(rx_ring);
1911 pci_unmap_single(qdev->pdev,
1912 dma_unmap_addr(sbq_desc, mapaddr),
1913 dma_unmap_len(sbq_desc, maplen),
1914 PCI_DMA_FROMDEVICE);
1915 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1916 /*
1917 * This is an non TCP/UDP IP frame, so
1918 * the headers aren't split into a small
1919 * buffer. We have to use the small buffer
1920 * that contains our sg list as our skb to
1921 * send upstairs. Copy the sg list here to
1922 * a local buffer and use it to find the
1923 * pages to chain.
1924 */
1925 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1926 "%d bytes of headers & data in chain of large.\n",
1927 length);
1928 skb = sbq_desc->p.skb;
1929 sbq_desc->p.skb = NULL;
1930 skb_reserve(skb, NET_IP_ALIGN);
1931 }
1932 do {
1933 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1934 size = (length < rx_ring->lbq_buf_size) ? length :
1935 rx_ring->lbq_buf_size;
1936
1937 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1938 "Adding page %d to skb for %d bytes.\n",
1939 i, size);
1940 skb_fill_page_desc(skb, i,
1941 lbq_desc->p.pg_chunk.page,
1942 lbq_desc->p.pg_chunk.offset,
1943 size);
1944 skb->len += size;
1945 skb->data_len += size;
1946 skb->truesize += size;
1947 length -= size;
1948 i++;
1949 } while (length > 0);
1950 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1951 &hlen);
1952 __pskb_pull_tail(skb, hlen);
1953 }
1954 return skb;
1955 }
1956
1957 /* Process an inbound completion from an rx ring. */
1958 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1959 struct rx_ring *rx_ring,
1960 struct ib_mac_iocb_rsp *ib_mac_rsp,
1961 u16 vlan_id)
1962 {
1963 struct net_device *ndev = qdev->ndev;
1964 struct sk_buff *skb = NULL;
1965
1966 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1967
1968 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1969 if (unlikely(!skb)) {
1970 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1971 "No skb available, drop packet.\n");
1972 rx_ring->rx_dropped++;
1973 return;
1974 }
1975
1976 /* Frame error, so drop the packet. */
1977 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1978 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1979 dev_kfree_skb_any(skb);
1980 return;
1981 }
1982
1983 /* The max framesize filter on this chip is set higher than
1984 * MTU since FCoE uses 2k frames.
1985 */
1986 if (skb->len > ndev->mtu + ETH_HLEN) {
1987 dev_kfree_skb_any(skb);
1988 rx_ring->rx_dropped++;
1989 return;
1990 }
1991
1992 /* loopback self test for ethtool */
1993 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1994 ql_check_lb_frame(qdev, skb);
1995 dev_kfree_skb_any(skb);
1996 return;
1997 }
1998
1999 prefetch(skb->data);
2000 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2001 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2002 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2003 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2004 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2005 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2006 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2008 rx_ring->rx_multicast++;
2009 }
2010 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2011 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2012 "Promiscuous Packet.\n");
2013 }
2014
2015 skb->protocol = eth_type_trans(skb, ndev);
2016 skb_checksum_none_assert(skb);
2017
2018 /* If rx checksum is on, and there are no
2019 * csum or frame errors.
2020 */
2021 if ((ndev->features & NETIF_F_RXCSUM) &&
2022 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2023 /* TCP frame. */
2024 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2025 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2026 "TCP checksum done!\n");
2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2029 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2030 /* Unfragmented ipv4 UDP frame. */
2031 struct iphdr *iph = (struct iphdr *) skb->data;
2032 if (!(iph->frag_off &
2033 htons(IP_MF|IP_OFFSET))) {
2034 skb->ip_summed = CHECKSUM_UNNECESSARY;
2035 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2036 "TCP checksum done!\n");
2037 }
2038 }
2039 }
2040
2041 rx_ring->rx_packets++;
2042 rx_ring->rx_bytes += skb->len;
2043 skb_record_rx_queue(skb, rx_ring->cq_id);
2044 if (vlan_id != 0xffff)
2045 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2046 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2047 napi_gro_receive(&rx_ring->napi, skb);
2048 else
2049 netif_receive_skb(skb);
2050 }
2051
2052 /* Process an inbound completion from an rx ring. */
2053 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2054 struct rx_ring *rx_ring,
2055 struct ib_mac_iocb_rsp *ib_mac_rsp)
2056 {
2057 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2058 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2059 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2060 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2061 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2062
2063 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2064
2065 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2066 /* The data and headers are split into
2067 * separate buffers.
2068 */
2069 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2070 vlan_id);
2071 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2072 /* The data fit in a single small buffer.
2073 * Allocate a new skb, copy the data and
2074 * return the buffer to the free pool.
2075 */
2076 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2077 length, vlan_id);
2078 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2079 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2080 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2081 /* TCP packet in a page chunk that's been checksummed.
2082 * Tack it on to our GRO skb and let it go.
2083 */
2084 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2085 length, vlan_id);
2086 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2087 /* Non-TCP packet in a page chunk. Allocate an
2088 * skb, tack it on frags, and send it up.
2089 */
2090 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2091 length, vlan_id);
2092 } else {
2093 /* Non-TCP/UDP large frames that span multiple buffers
2094 * can be processed corrrectly by the split frame logic.
2095 */
2096 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2097 vlan_id);
2098 }
2099
2100 return (unsigned long)length;
2101 }
2102
2103 /* Process an outbound completion from an rx ring. */
2104 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2105 struct ob_mac_iocb_rsp *mac_rsp)
2106 {
2107 struct tx_ring *tx_ring;
2108 struct tx_ring_desc *tx_ring_desc;
2109
2110 QL_DUMP_OB_MAC_RSP(mac_rsp);
2111 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2112 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2113 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2114 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2115 tx_ring->tx_packets++;
2116 dev_kfree_skb(tx_ring_desc->skb);
2117 tx_ring_desc->skb = NULL;
2118
2119 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2120 OB_MAC_IOCB_RSP_S |
2121 OB_MAC_IOCB_RSP_L |
2122 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2123 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2124 netif_warn(qdev, tx_done, qdev->ndev,
2125 "Total descriptor length did not match transfer length.\n");
2126 }
2127 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2128 netif_warn(qdev, tx_done, qdev->ndev,
2129 "Frame too short to be valid, not sent.\n");
2130 }
2131 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2132 netif_warn(qdev, tx_done, qdev->ndev,
2133 "Frame too long, but sent anyway.\n");
2134 }
2135 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2136 netif_warn(qdev, tx_done, qdev->ndev,
2137 "PCI backplane error. Frame not sent.\n");
2138 }
2139 }
2140 atomic_inc(&tx_ring->tx_count);
2141 }
2142
2143 /* Fire up a handler to reset the MPI processor. */
2144 void ql_queue_fw_error(struct ql_adapter *qdev)
2145 {
2146 ql_link_off(qdev);
2147 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2148 }
2149
2150 void ql_queue_asic_error(struct ql_adapter *qdev)
2151 {
2152 ql_link_off(qdev);
2153 ql_disable_interrupts(qdev);
2154 /* Clear adapter up bit to signal the recovery
2155 * process that it shouldn't kill the reset worker
2156 * thread
2157 */
2158 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2159 /* Set asic recovery bit to indicate reset process that we are
2160 * in fatal error recovery process rather than normal close
2161 */
2162 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2163 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2164 }
2165
2166 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2167 struct ib_ae_iocb_rsp *ib_ae_rsp)
2168 {
2169 switch (ib_ae_rsp->event) {
2170 case MGMT_ERR_EVENT:
2171 netif_err(qdev, rx_err, qdev->ndev,
2172 "Management Processor Fatal Error.\n");
2173 ql_queue_fw_error(qdev);
2174 return;
2175
2176 case CAM_LOOKUP_ERR_EVENT:
2177 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2178 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2179 ql_queue_asic_error(qdev);
2180 return;
2181
2182 case SOFT_ECC_ERROR_EVENT:
2183 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2184 ql_queue_asic_error(qdev);
2185 break;
2186
2187 case PCI_ERR_ANON_BUF_RD:
2188 netdev_err(qdev->ndev, "PCI error occurred when reading "
2189 "anonymous buffers from rx_ring %d.\n",
2190 ib_ae_rsp->q_id);
2191 ql_queue_asic_error(qdev);
2192 break;
2193
2194 default:
2195 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2196 ib_ae_rsp->event);
2197 ql_queue_asic_error(qdev);
2198 break;
2199 }
2200 }
2201
2202 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2203 {
2204 struct ql_adapter *qdev = rx_ring->qdev;
2205 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2206 struct ob_mac_iocb_rsp *net_rsp = NULL;
2207 int count = 0;
2208
2209 struct tx_ring *tx_ring;
2210 /* While there are entries in the completion queue. */
2211 while (prod != rx_ring->cnsmr_idx) {
2212
2213 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2214 "cq_id = %d, prod = %d, cnsmr = %d\n",
2215 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2216
2217 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2218 rmb();
2219 switch (net_rsp->opcode) {
2220
2221 case OPCODE_OB_MAC_TSO_IOCB:
2222 case OPCODE_OB_MAC_IOCB:
2223 ql_process_mac_tx_intr(qdev, net_rsp);
2224 break;
2225 default:
2226 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2227 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2228 net_rsp->opcode);
2229 }
2230 count++;
2231 ql_update_cq(rx_ring);
2232 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2233 }
2234 if (!net_rsp)
2235 return 0;
2236 ql_write_cq_idx(rx_ring);
2237 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2238 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2239 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2240 /*
2241 * The queue got stopped because the tx_ring was full.
2242 * Wake it up, because it's now at least 25% empty.
2243 */
2244 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2245 }
2246
2247 return count;
2248 }
2249
2250 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2251 {
2252 struct ql_adapter *qdev = rx_ring->qdev;
2253 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2254 struct ql_net_rsp_iocb *net_rsp;
2255 int count = 0;
2256
2257 /* While there are entries in the completion queue. */
2258 while (prod != rx_ring->cnsmr_idx) {
2259
2260 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2261 "cq_id = %d, prod = %d, cnsmr = %d\n",
2262 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2263
2264 net_rsp = rx_ring->curr_entry;
2265 rmb();
2266 switch (net_rsp->opcode) {
2267 case OPCODE_IB_MAC_IOCB:
2268 ql_process_mac_rx_intr(qdev, rx_ring,
2269 (struct ib_mac_iocb_rsp *)
2270 net_rsp);
2271 break;
2272
2273 case OPCODE_IB_AE_IOCB:
2274 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2275 net_rsp);
2276 break;
2277 default:
2278 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2279 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2280 net_rsp->opcode);
2281 break;
2282 }
2283 count++;
2284 ql_update_cq(rx_ring);
2285 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2286 if (count == budget)
2287 break;
2288 }
2289 ql_update_buffer_queues(qdev, rx_ring);
2290 ql_write_cq_idx(rx_ring);
2291 return count;
2292 }
2293
2294 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2295 {
2296 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2297 struct ql_adapter *qdev = rx_ring->qdev;
2298 struct rx_ring *trx_ring;
2299 int i, work_done = 0;
2300 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2301
2302 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2303 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2304
2305 /* Service the TX rings first. They start
2306 * right after the RSS rings. */
2307 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2308 trx_ring = &qdev->rx_ring[i];
2309 /* If this TX completion ring belongs to this vector and
2310 * it's not empty then service it.
2311 */
2312 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2313 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2314 trx_ring->cnsmr_idx)) {
2315 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2316 "%s: Servicing TX completion ring %d.\n",
2317 __func__, trx_ring->cq_id);
2318 ql_clean_outbound_rx_ring(trx_ring);
2319 }
2320 }
2321
2322 /*
2323 * Now service the RSS ring if it's active.
2324 */
2325 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2326 rx_ring->cnsmr_idx) {
2327 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2328 "%s: Servicing RX completion ring %d.\n",
2329 __func__, rx_ring->cq_id);
2330 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2331 }
2332
2333 if (work_done < budget) {
2334 napi_complete_done(napi, work_done);
2335 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2336 }
2337 return work_done;
2338 }
2339
2340 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2341 {
2342 struct ql_adapter *qdev = netdev_priv(ndev);
2343
2344 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2345 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2346 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2347 } else {
2348 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2349 }
2350 }
2351
2352 /**
2353 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2354 * based on the features to enable/disable hardware vlan accel
2355 */
2356 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2357 netdev_features_t features)
2358 {
2359 struct ql_adapter *qdev = netdev_priv(ndev);
2360 int status = 0;
2361 bool need_restart = netif_running(ndev);
2362
2363 if (need_restart) {
2364 status = ql_adapter_down(qdev);
2365 if (status) {
2366 netif_err(qdev, link, qdev->ndev,
2367 "Failed to bring down the adapter\n");
2368 return status;
2369 }
2370 }
2371
2372 /* update the features with resent change */
2373 ndev->features = features;
2374
2375 if (need_restart) {
2376 status = ql_adapter_up(qdev);
2377 if (status) {
2378 netif_err(qdev, link, qdev->ndev,
2379 "Failed to bring up the adapter\n");
2380 return status;
2381 }
2382 }
2383
2384 return status;
2385 }
2386
2387 static int qlge_set_features(struct net_device *ndev,
2388 netdev_features_t features)
2389 {
2390 netdev_features_t changed = ndev->features ^ features;
2391 int err;
2392
2393 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
2394 /* Update the behavior of vlan accel in the adapter */
2395 err = qlge_update_hw_vlan_features(ndev, features);
2396 if (err)
2397 return err;
2398
2399 qlge_vlan_mode(ndev, features);
2400 }
2401
2402 return 0;
2403 }
2404
2405 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2406 {
2407 u32 enable_bit = MAC_ADDR_E;
2408 int err;
2409
2410 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2411 MAC_ADDR_TYPE_VLAN, vid);
2412 if (err)
2413 netif_err(qdev, ifup, qdev->ndev,
2414 "Failed to init vlan address.\n");
2415 return err;
2416 }
2417
2418 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2419 {
2420 struct ql_adapter *qdev = netdev_priv(ndev);
2421 int status;
2422 int err;
2423
2424 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2425 if (status)
2426 return status;
2427
2428 err = __qlge_vlan_rx_add_vid(qdev, vid);
2429 set_bit(vid, qdev->active_vlans);
2430
2431 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2432
2433 return err;
2434 }
2435
2436 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2437 {
2438 u32 enable_bit = 0;
2439 int err;
2440
2441 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2442 MAC_ADDR_TYPE_VLAN, vid);
2443 if (err)
2444 netif_err(qdev, ifup, qdev->ndev,
2445 "Failed to clear vlan address.\n");
2446 return err;
2447 }
2448
2449 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2450 {
2451 struct ql_adapter *qdev = netdev_priv(ndev);
2452 int status;
2453 int err;
2454
2455 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2456 if (status)
2457 return status;
2458
2459 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2460 clear_bit(vid, qdev->active_vlans);
2461
2462 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2463
2464 return err;
2465 }
2466
2467 static void qlge_restore_vlan(struct ql_adapter *qdev)
2468 {
2469 int status;
2470 u16 vid;
2471
2472 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2473 if (status)
2474 return;
2475
2476 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2477 __qlge_vlan_rx_add_vid(qdev, vid);
2478
2479 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2480 }
2481
2482 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2483 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2484 {
2485 struct rx_ring *rx_ring = dev_id;
2486 napi_schedule(&rx_ring->napi);
2487 return IRQ_HANDLED;
2488 }
2489
2490 /* This handles a fatal error, MPI activity, and the default
2491 * rx_ring in an MSI-X multiple vector environment.
2492 * In MSI/Legacy environment it also process the rest of
2493 * the rx_rings.
2494 */
2495 static irqreturn_t qlge_isr(int irq, void *dev_id)
2496 {
2497 struct rx_ring *rx_ring = dev_id;
2498 struct ql_adapter *qdev = rx_ring->qdev;
2499 struct intr_context *intr_context = &qdev->intr_context[0];
2500 u32 var;
2501 int work_done = 0;
2502
2503 spin_lock(&qdev->hw_lock);
2504 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2505 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2506 "Shared Interrupt, Not ours!\n");
2507 spin_unlock(&qdev->hw_lock);
2508 return IRQ_NONE;
2509 }
2510 spin_unlock(&qdev->hw_lock);
2511
2512 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2513
2514 /*
2515 * Check for fatal error.
2516 */
2517 if (var & STS_FE) {
2518 ql_queue_asic_error(qdev);
2519 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2520 var = ql_read32(qdev, ERR_STS);
2521 netdev_err(qdev->ndev, "Resetting chip. "
2522 "Error Status Register = 0x%x\n", var);
2523 return IRQ_HANDLED;
2524 }
2525
2526 /*
2527 * Check MPI processor activity.
2528 */
2529 if ((var & STS_PI) &&
2530 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2531 /*
2532 * We've got an async event or mailbox completion.
2533 * Handle it and clear the source of the interrupt.
2534 */
2535 netif_err(qdev, intr, qdev->ndev,
2536 "Got MPI processor interrupt.\n");
2537 ql_disable_completion_interrupt(qdev, intr_context->intr);
2538 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2539 queue_delayed_work_on(smp_processor_id(),
2540 qdev->workqueue, &qdev->mpi_work, 0);
2541 work_done++;
2542 }
2543
2544 /*
2545 * Get the bit-mask that shows the active queues for this
2546 * pass. Compare it to the queues that this irq services
2547 * and call napi if there's a match.
2548 */
2549 var = ql_read32(qdev, ISR1);
2550 if (var & intr_context->irq_mask) {
2551 netif_info(qdev, intr, qdev->ndev,
2552 "Waking handler for rx_ring[0].\n");
2553 ql_disable_completion_interrupt(qdev, intr_context->intr);
2554 napi_schedule(&rx_ring->napi);
2555 work_done++;
2556 }
2557 ql_enable_completion_interrupt(qdev, intr_context->intr);
2558 return work_done ? IRQ_HANDLED : IRQ_NONE;
2559 }
2560
2561 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2562 {
2563
2564 if (skb_is_gso(skb)) {
2565 int err;
2566 __be16 l3_proto = vlan_get_protocol(skb);
2567
2568 err = skb_cow_head(skb, 0);
2569 if (err < 0)
2570 return err;
2571
2572 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2573 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2574 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2575 mac_iocb_ptr->total_hdrs_len =
2576 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2577 mac_iocb_ptr->net_trans_offset =
2578 cpu_to_le16(skb_network_offset(skb) |
2579 skb_transport_offset(skb)
2580 << OB_MAC_TRANSPORT_HDR_SHIFT);
2581 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2582 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2583 if (likely(l3_proto == htons(ETH_P_IP))) {
2584 struct iphdr *iph = ip_hdr(skb);
2585 iph->check = 0;
2586 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2587 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2588 iph->daddr, 0,
2589 IPPROTO_TCP,
2590 0);
2591 } else if (l3_proto == htons(ETH_P_IPV6)) {
2592 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2593 tcp_hdr(skb)->check =
2594 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2595 &ipv6_hdr(skb)->daddr,
2596 0, IPPROTO_TCP, 0);
2597 }
2598 return 1;
2599 }
2600 return 0;
2601 }
2602
2603 static void ql_hw_csum_setup(struct sk_buff *skb,
2604 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2605 {
2606 int len;
2607 struct iphdr *iph = ip_hdr(skb);
2608 __sum16 *check;
2609 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2610 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2611 mac_iocb_ptr->net_trans_offset =
2612 cpu_to_le16(skb_network_offset(skb) |
2613 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2614
2615 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2616 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2617 if (likely(iph->protocol == IPPROTO_TCP)) {
2618 check = &(tcp_hdr(skb)->check);
2619 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2620 mac_iocb_ptr->total_hdrs_len =
2621 cpu_to_le16(skb_transport_offset(skb) +
2622 (tcp_hdr(skb)->doff << 2));
2623 } else {
2624 check = &(udp_hdr(skb)->check);
2625 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2626 mac_iocb_ptr->total_hdrs_len =
2627 cpu_to_le16(skb_transport_offset(skb) +
2628 sizeof(struct udphdr));
2629 }
2630 *check = ~csum_tcpudp_magic(iph->saddr,
2631 iph->daddr, len, iph->protocol, 0);
2632 }
2633
2634 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2635 {
2636 struct tx_ring_desc *tx_ring_desc;
2637 struct ob_mac_iocb_req *mac_iocb_ptr;
2638 struct ql_adapter *qdev = netdev_priv(ndev);
2639 int tso;
2640 struct tx_ring *tx_ring;
2641 u32 tx_ring_idx = (u32) skb->queue_mapping;
2642
2643 tx_ring = &qdev->tx_ring[tx_ring_idx];
2644
2645 if (skb_padto(skb, ETH_ZLEN))
2646 return NETDEV_TX_OK;
2647
2648 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2649 netif_info(qdev, tx_queued, qdev->ndev,
2650 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2651 __func__, tx_ring_idx);
2652 netif_stop_subqueue(ndev, tx_ring->wq_id);
2653 tx_ring->tx_errors++;
2654 return NETDEV_TX_BUSY;
2655 }
2656 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2657 mac_iocb_ptr = tx_ring_desc->queue_entry;
2658 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2659
2660 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2661 mac_iocb_ptr->tid = tx_ring_desc->index;
2662 /* We use the upper 32-bits to store the tx queue for this IO.
2663 * When we get the completion we can use it to establish the context.
2664 */
2665 mac_iocb_ptr->txq_idx = tx_ring_idx;
2666 tx_ring_desc->skb = skb;
2667
2668 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2669
2670 if (skb_vlan_tag_present(skb)) {
2671 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2672 "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2673 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2674 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2675 }
2676 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2677 if (tso < 0) {
2678 dev_kfree_skb_any(skb);
2679 return NETDEV_TX_OK;
2680 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2681 ql_hw_csum_setup(skb,
2682 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2683 }
2684 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2685 NETDEV_TX_OK) {
2686 netif_err(qdev, tx_queued, qdev->ndev,
2687 "Could not map the segments.\n");
2688 tx_ring->tx_errors++;
2689 return NETDEV_TX_BUSY;
2690 }
2691 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2692 tx_ring->prod_idx++;
2693 if (tx_ring->prod_idx == tx_ring->wq_len)
2694 tx_ring->prod_idx = 0;
2695 wmb();
2696
2697 ql_write_db_reg_relaxed(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2698 mmiowb();
2699 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2700 "tx queued, slot %d, len %d\n",
2701 tx_ring->prod_idx, skb->len);
2702
2703 atomic_dec(&tx_ring->tx_count);
2704
2705 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2706 netif_stop_subqueue(ndev, tx_ring->wq_id);
2707 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2708 /*
2709 * The queue got stopped because the tx_ring was full.
2710 * Wake it up, because it's now at least 25% empty.
2711 */
2712 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2713 }
2714 return NETDEV_TX_OK;
2715 }
2716
2717
2718 static void ql_free_shadow_space(struct ql_adapter *qdev)
2719 {
2720 if (qdev->rx_ring_shadow_reg_area) {
2721 pci_free_consistent(qdev->pdev,
2722 PAGE_SIZE,
2723 qdev->rx_ring_shadow_reg_area,
2724 qdev->rx_ring_shadow_reg_dma);
2725 qdev->rx_ring_shadow_reg_area = NULL;
2726 }
2727 if (qdev->tx_ring_shadow_reg_area) {
2728 pci_free_consistent(qdev->pdev,
2729 PAGE_SIZE,
2730 qdev->tx_ring_shadow_reg_area,
2731 qdev->tx_ring_shadow_reg_dma);
2732 qdev->tx_ring_shadow_reg_area = NULL;
2733 }
2734 }
2735
2736 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2737 {
2738 qdev->rx_ring_shadow_reg_area =
2739 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2740 &qdev->rx_ring_shadow_reg_dma);
2741 if (qdev->rx_ring_shadow_reg_area == NULL) {
2742 netif_err(qdev, ifup, qdev->ndev,
2743 "Allocation of RX shadow space failed.\n");
2744 return -ENOMEM;
2745 }
2746
2747 qdev->tx_ring_shadow_reg_area =
2748 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2749 &qdev->tx_ring_shadow_reg_dma);
2750 if (qdev->tx_ring_shadow_reg_area == NULL) {
2751 netif_err(qdev, ifup, qdev->ndev,
2752 "Allocation of TX shadow space failed.\n");
2753 goto err_wqp_sh_area;
2754 }
2755 return 0;
2756
2757 err_wqp_sh_area:
2758 pci_free_consistent(qdev->pdev,
2759 PAGE_SIZE,
2760 qdev->rx_ring_shadow_reg_area,
2761 qdev->rx_ring_shadow_reg_dma);
2762 return -ENOMEM;
2763 }
2764
2765 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2766 {
2767 struct tx_ring_desc *tx_ring_desc;
2768 int i;
2769 struct ob_mac_iocb_req *mac_iocb_ptr;
2770
2771 mac_iocb_ptr = tx_ring->wq_base;
2772 tx_ring_desc = tx_ring->q;
2773 for (i = 0; i < tx_ring->wq_len; i++) {
2774 tx_ring_desc->index = i;
2775 tx_ring_desc->skb = NULL;
2776 tx_ring_desc->queue_entry = mac_iocb_ptr;
2777 mac_iocb_ptr++;
2778 tx_ring_desc++;
2779 }
2780 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2781 }
2782
2783 static void ql_free_tx_resources(struct ql_adapter *qdev,
2784 struct tx_ring *tx_ring)
2785 {
2786 if (tx_ring->wq_base) {
2787 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2788 tx_ring->wq_base, tx_ring->wq_base_dma);
2789 tx_ring->wq_base = NULL;
2790 }
2791 kfree(tx_ring->q);
2792 tx_ring->q = NULL;
2793 }
2794
2795 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2796 struct tx_ring *tx_ring)
2797 {
2798 tx_ring->wq_base =
2799 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2800 &tx_ring->wq_base_dma);
2801
2802 if ((tx_ring->wq_base == NULL) ||
2803 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2804 goto pci_alloc_err;
2805
2806 tx_ring->q =
2807 kmalloc_array(tx_ring->wq_len, sizeof(struct tx_ring_desc),
2808 GFP_KERNEL);
2809 if (tx_ring->q == NULL)
2810 goto err;
2811
2812 return 0;
2813 err:
2814 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2815 tx_ring->wq_base, tx_ring->wq_base_dma);
2816 tx_ring->wq_base = NULL;
2817 pci_alloc_err:
2818 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2819 return -ENOMEM;
2820 }
2821
2822 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2823 {
2824 struct bq_desc *lbq_desc;
2825
2826 uint32_t curr_idx, clean_idx;
2827
2828 curr_idx = rx_ring->lbq_curr_idx;
2829 clean_idx = rx_ring->lbq_clean_idx;
2830 while (curr_idx != clean_idx) {
2831 lbq_desc = &rx_ring->lbq[curr_idx];
2832
2833 if (lbq_desc->p.pg_chunk.last_flag) {
2834 pci_unmap_page(qdev->pdev,
2835 lbq_desc->p.pg_chunk.map,
2836 ql_lbq_block_size(qdev),
2837 PCI_DMA_FROMDEVICE);
2838 lbq_desc->p.pg_chunk.last_flag = 0;
2839 }
2840
2841 put_page(lbq_desc->p.pg_chunk.page);
2842 lbq_desc->p.pg_chunk.page = NULL;
2843
2844 if (++curr_idx == rx_ring->lbq_len)
2845 curr_idx = 0;
2846
2847 }
2848 if (rx_ring->pg_chunk.page) {
2849 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2850 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2851 put_page(rx_ring->pg_chunk.page);
2852 rx_ring->pg_chunk.page = NULL;
2853 }
2854 }
2855
2856 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2857 {
2858 int i;
2859 struct bq_desc *sbq_desc;
2860
2861 for (i = 0; i < rx_ring->sbq_len; i++) {
2862 sbq_desc = &rx_ring->sbq[i];
2863 if (sbq_desc == NULL) {
2864 netif_err(qdev, ifup, qdev->ndev,
2865 "sbq_desc %d is NULL.\n", i);
2866 return;
2867 }
2868 if (sbq_desc->p.skb) {
2869 pci_unmap_single(qdev->pdev,
2870 dma_unmap_addr(sbq_desc, mapaddr),
2871 dma_unmap_len(sbq_desc, maplen),
2872 PCI_DMA_FROMDEVICE);
2873 dev_kfree_skb(sbq_desc->p.skb);
2874 sbq_desc->p.skb = NULL;
2875 }
2876 }
2877 }
2878
2879 /* Free all large and small rx buffers associated
2880 * with the completion queues for this device.
2881 */
2882 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2883 {
2884 int i;
2885 struct rx_ring *rx_ring;
2886
2887 for (i = 0; i < qdev->rx_ring_count; i++) {
2888 rx_ring = &qdev->rx_ring[i];
2889 if (rx_ring->lbq)
2890 ql_free_lbq_buffers(qdev, rx_ring);
2891 if (rx_ring->sbq)
2892 ql_free_sbq_buffers(qdev, rx_ring);
2893 }
2894 }
2895
2896 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2897 {
2898 struct rx_ring *rx_ring;
2899 int i;
2900
2901 for (i = 0; i < qdev->rx_ring_count; i++) {
2902 rx_ring = &qdev->rx_ring[i];
2903 if (rx_ring->type != TX_Q)
2904 ql_update_buffer_queues(qdev, rx_ring);
2905 }
2906 }
2907
2908 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2909 struct rx_ring *rx_ring)
2910 {
2911 int i;
2912 struct bq_desc *lbq_desc;
2913 __le64 *bq = rx_ring->lbq_base;
2914
2915 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2916 for (i = 0; i < rx_ring->lbq_len; i++) {
2917 lbq_desc = &rx_ring->lbq[i];
2918 memset(lbq_desc, 0, sizeof(*lbq_desc));
2919 lbq_desc->index = i;
2920 lbq_desc->addr = bq;
2921 bq++;
2922 }
2923 }
2924
2925 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2926 struct rx_ring *rx_ring)
2927 {
2928 int i;
2929 struct bq_desc *sbq_desc;
2930 __le64 *bq = rx_ring->sbq_base;
2931
2932 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2933 for (i = 0; i < rx_ring->sbq_len; i++) {
2934 sbq_desc = &rx_ring->sbq[i];
2935 memset(sbq_desc, 0, sizeof(*sbq_desc));
2936 sbq_desc->index = i;
2937 sbq_desc->addr = bq;
2938 bq++;
2939 }
2940 }
2941
2942 static void ql_free_rx_resources(struct ql_adapter *qdev,
2943 struct rx_ring *rx_ring)
2944 {
2945 /* Free the small buffer queue. */
2946 if (rx_ring->sbq_base) {
2947 pci_free_consistent(qdev->pdev,
2948 rx_ring->sbq_size,
2949 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2950 rx_ring->sbq_base = NULL;
2951 }
2952
2953 /* Free the small buffer queue control blocks. */
2954 kfree(rx_ring->sbq);
2955 rx_ring->sbq = NULL;
2956
2957 /* Free the large buffer queue. */
2958 if (rx_ring->lbq_base) {
2959 pci_free_consistent(qdev->pdev,
2960 rx_ring->lbq_size,
2961 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2962 rx_ring->lbq_base = NULL;
2963 }
2964
2965 /* Free the large buffer queue control blocks. */
2966 kfree(rx_ring->lbq);
2967 rx_ring->lbq = NULL;
2968
2969 /* Free the rx queue. */
2970 if (rx_ring->cq_base) {
2971 pci_free_consistent(qdev->pdev,
2972 rx_ring->cq_size,
2973 rx_ring->cq_base, rx_ring->cq_base_dma);
2974 rx_ring->cq_base = NULL;
2975 }
2976 }
2977
2978 /* Allocate queues and buffers for this completions queue based
2979 * on the values in the parameter structure. */
2980 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2981 struct rx_ring *rx_ring)
2982 {
2983
2984 /*
2985 * Allocate the completion queue for this rx_ring.
2986 */
2987 rx_ring->cq_base =
2988 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2989 &rx_ring->cq_base_dma);
2990
2991 if (rx_ring->cq_base == NULL) {
2992 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2993 return -ENOMEM;
2994 }
2995
2996 if (rx_ring->sbq_len) {
2997 /*
2998 * Allocate small buffer queue.
2999 */
3000 rx_ring->sbq_base =
3001 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3002 &rx_ring->sbq_base_dma);
3003
3004 if (rx_ring->sbq_base == NULL) {
3005 netif_err(qdev, ifup, qdev->ndev,
3006 "Small buffer queue allocation failed.\n");
3007 goto err_mem;
3008 }
3009
3010 /*
3011 * Allocate small buffer queue control blocks.
3012 */
3013 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3014 sizeof(struct bq_desc),
3015 GFP_KERNEL);
3016 if (rx_ring->sbq == NULL)
3017 goto err_mem;
3018
3019 ql_init_sbq_ring(qdev, rx_ring);
3020 }
3021
3022 if (rx_ring->lbq_len) {
3023 /*
3024 * Allocate large buffer queue.
3025 */
3026 rx_ring->lbq_base =
3027 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3028 &rx_ring->lbq_base_dma);
3029
3030 if (rx_ring->lbq_base == NULL) {
3031 netif_err(qdev, ifup, qdev->ndev,
3032 "Large buffer queue allocation failed.\n");
3033 goto err_mem;
3034 }
3035 /*
3036 * Allocate large buffer queue control blocks.
3037 */
3038 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3039 sizeof(struct bq_desc),
3040 GFP_KERNEL);
3041 if (rx_ring->lbq == NULL)
3042 goto err_mem;
3043
3044 ql_init_lbq_ring(qdev, rx_ring);
3045 }
3046
3047 return 0;
3048
3049 err_mem:
3050 ql_free_rx_resources(qdev, rx_ring);
3051 return -ENOMEM;
3052 }
3053
3054 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3055 {
3056 struct tx_ring *tx_ring;
3057 struct tx_ring_desc *tx_ring_desc;
3058 int i, j;
3059
3060 /*
3061 * Loop through all queues and free
3062 * any resources.
3063 */
3064 for (j = 0; j < qdev->tx_ring_count; j++) {
3065 tx_ring = &qdev->tx_ring[j];
3066 for (i = 0; i < tx_ring->wq_len; i++) {
3067 tx_ring_desc = &tx_ring->q[i];
3068 if (tx_ring_desc && tx_ring_desc->skb) {
3069 netif_err(qdev, ifdown, qdev->ndev,
3070 "Freeing lost SKB %p, from queue %d, index %d.\n",
3071 tx_ring_desc->skb, j,
3072 tx_ring_desc->index);
3073 ql_unmap_send(qdev, tx_ring_desc,
3074 tx_ring_desc->map_cnt);
3075 dev_kfree_skb(tx_ring_desc->skb);
3076 tx_ring_desc->skb = NULL;
3077 }
3078 }
3079 }
3080 }
3081
3082 static void ql_free_mem_resources(struct ql_adapter *qdev)
3083 {
3084 int i;
3085
3086 for (i = 0; i < qdev->tx_ring_count; i++)
3087 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3088 for (i = 0; i < qdev->rx_ring_count; i++)
3089 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3090 ql_free_shadow_space(qdev);
3091 }
3092
3093 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3094 {
3095 int i;
3096
3097 /* Allocate space for our shadow registers and such. */
3098 if (ql_alloc_shadow_space(qdev))
3099 return -ENOMEM;
3100
3101 for (i = 0; i < qdev->rx_ring_count; i++) {
3102 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3103 netif_err(qdev, ifup, qdev->ndev,
3104 "RX resource allocation failed.\n");
3105 goto err_mem;
3106 }
3107 }
3108 /* Allocate tx queue resources */
3109 for (i = 0; i < qdev->tx_ring_count; i++) {
3110 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3111 netif_err(qdev, ifup, qdev->ndev,
3112 "TX resource allocation failed.\n");
3113 goto err_mem;
3114 }
3115 }
3116 return 0;
3117
3118 err_mem:
3119 ql_free_mem_resources(qdev);
3120 return -ENOMEM;
3121 }
3122
3123 /* Set up the rx ring control block and pass it to the chip.
3124 * The control block is defined as
3125 * "Completion Queue Initialization Control Block", or cqicb.
3126 */
3127 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3128 {
3129 struct cqicb *cqicb = &rx_ring->cqicb;
3130 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3131 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3132 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3133 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3134 void __iomem *doorbell_area =
3135 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3136 int err = 0;
3137 u16 bq_len;
3138 u64 tmp;
3139 __le64 *base_indirect_ptr;
3140 int page_entries;
3141
3142 /* Set up the shadow registers for this ring. */
3143 rx_ring->prod_idx_sh_reg = shadow_reg;
3144 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3145 *rx_ring->prod_idx_sh_reg = 0;
3146 shadow_reg += sizeof(u64);
3147 shadow_reg_dma += sizeof(u64);
3148 rx_ring->lbq_base_indirect = shadow_reg;
3149 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3150 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3151 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3152 rx_ring->sbq_base_indirect = shadow_reg;
3153 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3154
3155 /* PCI doorbell mem area + 0x00 for consumer index register */
3156 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3157 rx_ring->cnsmr_idx = 0;
3158 rx_ring->curr_entry = rx_ring->cq_base;
3159
3160 /* PCI doorbell mem area + 0x04 for valid register */
3161 rx_ring->valid_db_reg = doorbell_area + 0x04;
3162
3163 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3164 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3165
3166 /* PCI doorbell mem area + 0x1c */
3167 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3168
3169 memset((void *)cqicb, 0, sizeof(struct cqicb));
3170 cqicb->msix_vect = rx_ring->irq;
3171
3172 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3173 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3174
3175 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3176
3177 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3178
3179 /*
3180 * Set up the control block load flags.
3181 */
3182 cqicb->flags = FLAGS_LC | /* Load queue base address */
3183 FLAGS_LV | /* Load MSI-X vector */
3184 FLAGS_LI; /* Load irq delay values */
3185 if (rx_ring->lbq_len) {
3186 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3187 tmp = (u64)rx_ring->lbq_base_dma;
3188 base_indirect_ptr = rx_ring->lbq_base_indirect;
3189 page_entries = 0;
3190 do {
3191 *base_indirect_ptr = cpu_to_le64(tmp);
3192 tmp += DB_PAGE_SIZE;
3193 base_indirect_ptr++;
3194 page_entries++;
3195 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3196 cqicb->lbq_addr =
3197 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3198 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3199 (u16) rx_ring->lbq_buf_size;
3200 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3201 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3202 (u16) rx_ring->lbq_len;
3203 cqicb->lbq_len = cpu_to_le16(bq_len);
3204 rx_ring->lbq_prod_idx = 0;
3205 rx_ring->lbq_curr_idx = 0;
3206 rx_ring->lbq_clean_idx = 0;
3207 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3208 }
3209 if (rx_ring->sbq_len) {
3210 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3211 tmp = (u64)rx_ring->sbq_base_dma;
3212 base_indirect_ptr = rx_ring->sbq_base_indirect;
3213 page_entries = 0;
3214 do {
3215 *base_indirect_ptr = cpu_to_le64(tmp);
3216 tmp += DB_PAGE_SIZE;
3217 base_indirect_ptr++;
3218 page_entries++;
3219 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3220 cqicb->sbq_addr =
3221 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3222 cqicb->sbq_buf_size =
3223 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3224 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3225 (u16) rx_ring->sbq_len;
3226 cqicb->sbq_len = cpu_to_le16(bq_len);
3227 rx_ring->sbq_prod_idx = 0;
3228 rx_ring->sbq_curr_idx = 0;
3229 rx_ring->sbq_clean_idx = 0;
3230 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3231 }
3232 switch (rx_ring->type) {
3233 case TX_Q:
3234 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3235 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3236 break;
3237 case RX_Q:
3238 /* Inbound completion handling rx_rings run in
3239 * separate NAPI contexts.
3240 */
3241 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3242 64);
3243 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3244 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3245 break;
3246 default:
3247 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3248 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3249 }
3250 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3251 CFG_LCQ, rx_ring->cq_id);
3252 if (err) {
3253 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3254 return err;
3255 }
3256 return err;
3257 }
3258
3259 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3260 {
3261 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3262 void __iomem *doorbell_area =
3263 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3264 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3265 (tx_ring->wq_id * sizeof(u64));
3266 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3267 (tx_ring->wq_id * sizeof(u64));
3268 int err = 0;
3269
3270 /*
3271 * Assign doorbell registers for this tx_ring.
3272 */
3273 /* TX PCI doorbell mem area for tx producer index */
3274 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3275 tx_ring->prod_idx = 0;
3276 /* TX PCI doorbell mem area + 0x04 */
3277 tx_ring->valid_db_reg = doorbell_area + 0x04;
3278
3279 /*
3280 * Assign shadow registers for this tx_ring.
3281 */
3282 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3283 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3284
3285 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3286 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3287 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3288 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3289 wqicb->rid = 0;
3290 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3291
3292 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3293
3294 ql_init_tx_ring(qdev, tx_ring);
3295
3296 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3297 (u16) tx_ring->wq_id);
3298 if (err) {
3299 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3300 return err;
3301 }
3302 return err;
3303 }
3304
3305 static void ql_disable_msix(struct ql_adapter *qdev)
3306 {
3307 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3308 pci_disable_msix(qdev->pdev);
3309 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3310 kfree(qdev->msi_x_entry);
3311 qdev->msi_x_entry = NULL;
3312 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3313 pci_disable_msi(qdev->pdev);
3314 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3315 }
3316 }
3317
3318 /* We start by trying to get the number of vectors
3319 * stored in qdev->intr_count. If we don't get that
3320 * many then we reduce the count and try again.
3321 */
3322 static void ql_enable_msix(struct ql_adapter *qdev)
3323 {
3324 int i, err;
3325
3326 /* Get the MSIX vectors. */
3327 if (qlge_irq_type == MSIX_IRQ) {
3328 /* Try to alloc space for the msix struct,
3329 * if it fails then go to MSI/legacy.
3330 */
3331 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3332 sizeof(struct msix_entry),
3333 GFP_KERNEL);
3334 if (!qdev->msi_x_entry) {
3335 qlge_irq_type = MSI_IRQ;
3336 goto msi;
3337 }
3338
3339 for (i = 0; i < qdev->intr_count; i++)
3340 qdev->msi_x_entry[i].entry = i;
3341
3342 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3343 1, qdev->intr_count);
3344 if (err < 0) {
3345 kfree(qdev->msi_x_entry);
3346 qdev->msi_x_entry = NULL;
3347 netif_warn(qdev, ifup, qdev->ndev,
3348 "MSI-X Enable failed, trying MSI.\n");
3349 qlge_irq_type = MSI_IRQ;
3350 } else {
3351 qdev->intr_count = err;
3352 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3353 netif_info(qdev, ifup, qdev->ndev,
3354 "MSI-X Enabled, got %d vectors.\n",
3355 qdev->intr_count);
3356 return;
3357 }
3358 }
3359 msi:
3360 qdev->intr_count = 1;
3361 if (qlge_irq_type == MSI_IRQ) {
3362 if (!pci_enable_msi(qdev->pdev)) {
3363 set_bit(QL_MSI_ENABLED, &qdev->flags);
3364 netif_info(qdev, ifup, qdev->ndev,
3365 "Running with MSI interrupts.\n");
3366 return;
3367 }
3368 }
3369 qlge_irq_type = LEG_IRQ;
3370 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3371 "Running with legacy interrupts.\n");
3372 }
3373
3374 /* Each vector services 1 RSS ring and and 1 or more
3375 * TX completion rings. This function loops through
3376 * the TX completion rings and assigns the vector that
3377 * will service it. An example would be if there are
3378 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3379 * This would mean that vector 0 would service RSS ring 0
3380 * and TX completion rings 0,1,2 and 3. Vector 1 would
3381 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3382 */
3383 static void ql_set_tx_vect(struct ql_adapter *qdev)
3384 {
3385 int i, j, vect;
3386 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3387
3388 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3389 /* Assign irq vectors to TX rx_rings.*/
3390 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3391 i < qdev->rx_ring_count; i++) {
3392 if (j == tx_rings_per_vector) {
3393 vect++;
3394 j = 0;
3395 }
3396 qdev->rx_ring[i].irq = vect;
3397 j++;
3398 }
3399 } else {
3400 /* For single vector all rings have an irq
3401 * of zero.
3402 */
3403 for (i = 0; i < qdev->rx_ring_count; i++)
3404 qdev->rx_ring[i].irq = 0;
3405 }
3406 }
3407
3408 /* Set the interrupt mask for this vector. Each vector
3409 * will service 1 RSS ring and 1 or more TX completion
3410 * rings. This function sets up a bit mask per vector
3411 * that indicates which rings it services.
3412 */
3413 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3414 {
3415 int j, vect = ctx->intr;
3416 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3417
3418 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3419 /* Add the RSS ring serviced by this vector
3420 * to the mask.
3421 */
3422 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3423 /* Add the TX ring(s) serviced by this vector
3424 * to the mask. */
3425 for (j = 0; j < tx_rings_per_vector; j++) {
3426 ctx->irq_mask |=
3427 (1 << qdev->rx_ring[qdev->rss_ring_count +
3428 (vect * tx_rings_per_vector) + j].cq_id);
3429 }
3430 } else {
3431 /* For single vector we just shift each queue's
3432 * ID into the mask.
3433 */
3434 for (j = 0; j < qdev->rx_ring_count; j++)
3435 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3436 }
3437 }
3438
3439 /*
3440 * Here we build the intr_context structures based on
3441 * our rx_ring count and intr vector count.
3442 * The intr_context structure is used to hook each vector
3443 * to possibly different handlers.
3444 */
3445 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3446 {
3447 int i = 0;
3448 struct intr_context *intr_context = &qdev->intr_context[0];
3449
3450 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3451 /* Each rx_ring has it's
3452 * own intr_context since we have separate
3453 * vectors for each queue.
3454 */
3455 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3456 qdev->rx_ring[i].irq = i;
3457 intr_context->intr = i;
3458 intr_context->qdev = qdev;
3459 /* Set up this vector's bit-mask that indicates
3460 * which queues it services.
3461 */
3462 ql_set_irq_mask(qdev, intr_context);
3463 /*
3464 * We set up each vectors enable/disable/read bits so
3465 * there's no bit/mask calculations in the critical path.
3466 */
3467 intr_context->intr_en_mask =
3468 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3469 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3470 | i;
3471 intr_context->intr_dis_mask =
3472 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3473 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3474 INTR_EN_IHD | i;
3475 intr_context->intr_read_mask =
3476 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3477 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3478 i;
3479 if (i == 0) {
3480 /* The first vector/queue handles
3481 * broadcast/multicast, fatal errors,
3482 * and firmware events. This in addition
3483 * to normal inbound NAPI processing.
3484 */
3485 intr_context->handler = qlge_isr;
3486 sprintf(intr_context->name, "%s-rx-%d",
3487 qdev->ndev->name, i);
3488 } else {
3489 /*
3490 * Inbound queues handle unicast frames only.
3491 */
3492 intr_context->handler = qlge_msix_rx_isr;
3493 sprintf(intr_context->name, "%s-rx-%d",
3494 qdev->ndev->name, i);
3495 }
3496 }
3497 } else {
3498 /*
3499 * All rx_rings use the same intr_context since
3500 * there is only one vector.
3501 */
3502 intr_context->intr = 0;
3503 intr_context->qdev = qdev;
3504 /*
3505 * We set up each vectors enable/disable/read bits so
3506 * there's no bit/mask calculations in the critical path.
3507 */
3508 intr_context->intr_en_mask =
3509 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3510 intr_context->intr_dis_mask =
3511 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3512 INTR_EN_TYPE_DISABLE;
3513 intr_context->intr_read_mask =
3514 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3515 /*
3516 * Single interrupt means one handler for all rings.
3517 */
3518 intr_context->handler = qlge_isr;
3519 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3520 /* Set up this vector's bit-mask that indicates
3521 * which queues it services. In this case there is
3522 * a single vector so it will service all RSS and
3523 * TX completion rings.
3524 */
3525 ql_set_irq_mask(qdev, intr_context);
3526 }
3527 /* Tell the TX completion rings which MSIx vector
3528 * they will be using.
3529 */
3530 ql_set_tx_vect(qdev);
3531 }
3532
3533 static void ql_free_irq(struct ql_adapter *qdev)
3534 {
3535 int i;
3536 struct intr_context *intr_context = &qdev->intr_context[0];
3537
3538 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3539 if (intr_context->hooked) {
3540 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3541 free_irq(qdev->msi_x_entry[i].vector,
3542 &qdev->rx_ring[i]);
3543 } else {
3544 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3545 }
3546 }
3547 }
3548 ql_disable_msix(qdev);
3549 }
3550
3551 static int ql_request_irq(struct ql_adapter *qdev)
3552 {
3553 int i;
3554 int status = 0;
3555 struct pci_dev *pdev = qdev->pdev;
3556 struct intr_context *intr_context = &qdev->intr_context[0];
3557
3558 ql_resolve_queues_to_irqs(qdev);
3559
3560 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3561 atomic_set(&intr_context->irq_cnt, 0);
3562 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3563 status = request_irq(qdev->msi_x_entry[i].vector,
3564 intr_context->handler,
3565 0,
3566 intr_context->name,
3567 &qdev->rx_ring[i]);
3568 if (status) {
3569 netif_err(qdev, ifup, qdev->ndev,
3570 "Failed request for MSIX interrupt %d.\n",
3571 i);
3572 goto err_irq;
3573 }
3574 } else {
3575 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3576 "trying msi or legacy interrupts.\n");
3577 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3578 "%s: irq = %d.\n", __func__, pdev->irq);
3579 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3580 "%s: context->name = %s.\n", __func__,
3581 intr_context->name);
3582 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3583 "%s: dev_id = 0x%p.\n", __func__,
3584 &qdev->rx_ring[0]);
3585 status =
3586 request_irq(pdev->irq, qlge_isr,
3587 test_bit(QL_MSI_ENABLED,
3588 &qdev->
3589 flags) ? 0 : IRQF_SHARED,
3590 intr_context->name, &qdev->rx_ring[0]);
3591 if (status)
3592 goto err_irq;
3593
3594 netif_err(qdev, ifup, qdev->ndev,
3595 "Hooked intr %d, queue type %s, with name %s.\n",
3596 i,
3597 qdev->rx_ring[0].type == DEFAULT_Q ?
3598 "DEFAULT_Q" :
3599 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3600 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3601 intr_context->name);
3602 }
3603 intr_context->hooked = 1;
3604 }
3605 return status;
3606 err_irq:
3607 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3608 ql_free_irq(qdev);
3609 return status;
3610 }
3611
3612 static int ql_start_rss(struct ql_adapter *qdev)
3613 {
3614 static const u8 init_hash_seed[] = {
3615 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3616 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3617 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3618 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3619 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3620 };
3621 struct ricb *ricb = &qdev->ricb;
3622 int status = 0;
3623 int i;
3624 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3625
3626 memset((void *)ricb, 0, sizeof(*ricb));
3627
3628 ricb->base_cq = RSS_L4K;
3629 ricb->flags =
3630 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3631 ricb->mask = cpu_to_le16((u16)(0x3ff));
3632
3633 /*
3634 * Fill out the Indirection Table.
3635 */
3636 for (i = 0; i < 1024; i++)
3637 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3638
3639 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3640 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3641
3642 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3643 if (status) {
3644 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3645 return status;
3646 }
3647 return status;
3648 }
3649
3650 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3651 {
3652 int i, status = 0;
3653
3654 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3655 if (status)
3656 return status;
3657 /* Clear all the entries in the routing table. */
3658 for (i = 0; i < 16; i++) {
3659 status = ql_set_routing_reg(qdev, i, 0, 0);
3660 if (status) {
3661 netif_err(qdev, ifup, qdev->ndev,
3662 "Failed to init routing register for CAM packets.\n");
3663 break;
3664 }
3665 }
3666 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3667 return status;
3668 }
3669
3670 /* Initialize the frame-to-queue routing. */
3671 static int ql_route_initialize(struct ql_adapter *qdev)
3672 {
3673 int status = 0;
3674
3675 /* Clear all the entries in the routing table. */
3676 status = ql_clear_routing_entries(qdev);
3677 if (status)
3678 return status;
3679
3680 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3681 if (status)
3682 return status;
3683
3684 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3685 RT_IDX_IP_CSUM_ERR, 1);
3686 if (status) {
3687 netif_err(qdev, ifup, qdev->ndev,
3688 "Failed to init routing register "
3689 "for IP CSUM error packets.\n");
3690 goto exit;
3691 }
3692 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3693 RT_IDX_TU_CSUM_ERR, 1);
3694 if (status) {
3695 netif_err(qdev, ifup, qdev->ndev,
3696 "Failed to init routing register "
3697 "for TCP/UDP CSUM error packets.\n");
3698 goto exit;
3699 }
3700 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3701 if (status) {
3702 netif_err(qdev, ifup, qdev->ndev,
3703 "Failed to init routing register for broadcast packets.\n");
3704 goto exit;
3705 }
3706 /* If we have more than one inbound queue, then turn on RSS in the
3707 * routing block.
3708 */
3709 if (qdev->rss_ring_count > 1) {
3710 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3711 RT_IDX_RSS_MATCH, 1);
3712 if (status) {
3713 netif_err(qdev, ifup, qdev->ndev,
3714 "Failed to init routing register for MATCH RSS packets.\n");
3715 goto exit;
3716 }
3717 }
3718
3719 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3720 RT_IDX_CAM_HIT, 1);
3721 if (status)
3722 netif_err(qdev, ifup, qdev->ndev,
3723 "Failed to init routing register for CAM packets.\n");
3724 exit:
3725 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3726 return status;
3727 }
3728
3729 int ql_cam_route_initialize(struct ql_adapter *qdev)
3730 {
3731 int status, set;
3732
3733 /* If check if the link is up and use to
3734 * determine if we are setting or clearing
3735 * the MAC address in the CAM.
3736 */
3737 set = ql_read32(qdev, STS);
3738 set &= qdev->port_link_up;
3739 status = ql_set_mac_addr(qdev, set);
3740 if (status) {
3741 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3742 return status;
3743 }
3744
3745 status = ql_route_initialize(qdev);
3746 if (status)
3747 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3748
3749 return status;
3750 }
3751
3752 static int ql_adapter_initialize(struct ql_adapter *qdev)
3753 {
3754 u32 value, mask;
3755 int i;
3756 int status = 0;
3757
3758 /*
3759 * Set up the System register to halt on errors.
3760 */
3761 value = SYS_EFE | SYS_FAE;
3762 mask = value << 16;
3763 ql_write32(qdev, SYS, mask | value);
3764
3765 /* Set the default queue, and VLAN behavior. */
3766 value = NIC_RCV_CFG_DFQ;
3767 mask = NIC_RCV_CFG_DFQ_MASK;
3768 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3769 value |= NIC_RCV_CFG_RV;
3770 mask |= (NIC_RCV_CFG_RV << 16);
3771 }
3772 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3773
3774 /* Set the MPI interrupt to enabled. */
3775 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3776
3777 /* Enable the function, set pagesize, enable error checking. */
3778 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3779 FSC_EC | FSC_VM_PAGE_4K;
3780 value |= SPLT_SETTING;
3781
3782 /* Set/clear header splitting. */
3783 mask = FSC_VM_PAGESIZE_MASK |
3784 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3785 ql_write32(qdev, FSC, mask | value);
3786
3787 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3788
3789 /* Set RX packet routing to use port/pci function on which the
3790 * packet arrived on in addition to usual frame routing.
3791 * This is helpful on bonding where both interfaces can have
3792 * the same MAC address.
3793 */
3794 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3795 /* Reroute all packets to our Interface.
3796 * They may have been routed to MPI firmware
3797 * due to WOL.
3798 */
3799 value = ql_read32(qdev, MGMT_RCV_CFG);
3800 value &= ~MGMT_RCV_CFG_RM;
3801 mask = 0xffff0000;
3802
3803 /* Sticky reg needs clearing due to WOL. */
3804 ql_write32(qdev, MGMT_RCV_CFG, mask);
3805 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3806
3807 /* Default WOL is enable on Mezz cards */
3808 if (qdev->pdev->subsystem_device == 0x0068 ||
3809 qdev->pdev->subsystem_device == 0x0180)
3810 qdev->wol = WAKE_MAGIC;
3811
3812 /* Start up the rx queues. */
3813 for (i = 0; i < qdev->rx_ring_count; i++) {
3814 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3815 if (status) {
3816 netif_err(qdev, ifup, qdev->ndev,
3817 "Failed to start rx ring[%d].\n", i);
3818 return status;
3819 }
3820 }
3821
3822 /* If there is more than one inbound completion queue
3823 * then download a RICB to configure RSS.
3824 */
3825 if (qdev->rss_ring_count > 1) {
3826 status = ql_start_rss(qdev);
3827 if (status) {
3828 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3829 return status;
3830 }
3831 }
3832
3833 /* Start up the tx queues. */
3834 for (i = 0; i < qdev->tx_ring_count; i++) {
3835 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3836 if (status) {
3837 netif_err(qdev, ifup, qdev->ndev,
3838 "Failed to start tx ring[%d].\n", i);
3839 return status;
3840 }
3841 }
3842
3843 /* Initialize the port and set the max framesize. */
3844 status = qdev->nic_ops->port_initialize(qdev);
3845 if (status)
3846 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3847
3848 /* Set up the MAC address and frame routing filter. */
3849 status = ql_cam_route_initialize(qdev);
3850 if (status) {
3851 netif_err(qdev, ifup, qdev->ndev,
3852 "Failed to init CAM/Routing tables.\n");
3853 return status;
3854 }
3855
3856 /* Start NAPI for the RSS queues. */
3857 for (i = 0; i < qdev->rss_ring_count; i++)
3858 napi_enable(&qdev->rx_ring[i].napi);
3859
3860 return status;
3861 }
3862
3863 /* Issue soft reset to chip. */
3864 static int ql_adapter_reset(struct ql_adapter *qdev)
3865 {
3866 u32 value;
3867 int status = 0;
3868 unsigned long end_jiffies;
3869
3870 /* Clear all the entries in the routing table. */
3871 status = ql_clear_routing_entries(qdev);
3872 if (status) {
3873 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3874 return status;
3875 }
3876
3877 /* Check if bit is set then skip the mailbox command and
3878 * clear the bit, else we are in normal reset process.
3879 */
3880 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3881 /* Stop management traffic. */
3882 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3883
3884 /* Wait for the NIC and MGMNT FIFOs to empty. */
3885 ql_wait_fifo_empty(qdev);
3886 } else
3887 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3888
3889 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3890
3891 end_jiffies = jiffies + usecs_to_jiffies(30);
3892 do {
3893 value = ql_read32(qdev, RST_FO);
3894 if ((value & RST_FO_FR) == 0)
3895 break;
3896 cpu_relax();
3897 } while (time_before(jiffies, end_jiffies));
3898
3899 if (value & RST_FO_FR) {
3900 netif_err(qdev, ifdown, qdev->ndev,
3901 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3902 status = -ETIMEDOUT;
3903 }
3904
3905 /* Resume management traffic. */
3906 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3907 return status;
3908 }
3909
3910 static void ql_display_dev_info(struct net_device *ndev)
3911 {
3912 struct ql_adapter *qdev = netdev_priv(ndev);
3913
3914 netif_info(qdev, probe, qdev->ndev,
3915 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3916 "XG Roll = %d, XG Rev = %d.\n",
3917 qdev->func,
3918 qdev->port,
3919 qdev->chip_rev_id & 0x0000000f,
3920 qdev->chip_rev_id >> 4 & 0x0000000f,
3921 qdev->chip_rev_id >> 8 & 0x0000000f,
3922 qdev->chip_rev_id >> 12 & 0x0000000f);
3923 netif_info(qdev, probe, qdev->ndev,
3924 "MAC address %pM\n", ndev->dev_addr);
3925 }
3926
3927 static int ql_wol(struct ql_adapter *qdev)
3928 {
3929 int status = 0;
3930 u32 wol = MB_WOL_DISABLE;
3931
3932 /* The CAM is still intact after a reset, but if we
3933 * are doing WOL, then we may need to program the
3934 * routing regs. We would also need to issue the mailbox
3935 * commands to instruct the MPI what to do per the ethtool
3936 * settings.
3937 */
3938
3939 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3940 WAKE_MCAST | WAKE_BCAST)) {
3941 netif_err(qdev, ifdown, qdev->ndev,
3942 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3943 qdev->wol);
3944 return -EINVAL;
3945 }
3946
3947 if (qdev->wol & WAKE_MAGIC) {
3948 status = ql_mb_wol_set_magic(qdev, 1);
3949 if (status) {
3950 netif_err(qdev, ifdown, qdev->ndev,
3951 "Failed to set magic packet on %s.\n",
3952 qdev->ndev->name);
3953 return status;
3954 } else
3955 netif_info(qdev, drv, qdev->ndev,
3956 "Enabled magic packet successfully on %s.\n",
3957 qdev->ndev->name);
3958
3959 wol |= MB_WOL_MAGIC_PKT;
3960 }
3961
3962 if (qdev->wol) {
3963 wol |= MB_WOL_MODE_ON;
3964 status = ql_mb_wol_mode(qdev, wol);
3965 netif_err(qdev, drv, qdev->ndev,
3966 "WOL %s (wol code 0x%x) on %s\n",
3967 (status == 0) ? "Successfully set" : "Failed",
3968 wol, qdev->ndev->name);
3969 }
3970
3971 return status;
3972 }
3973
3974 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3975 {
3976
3977 /* Don't kill the reset worker thread if we
3978 * are in the process of recovery.
3979 */
3980 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3981 cancel_delayed_work_sync(&qdev->asic_reset_work);
3982 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3983 cancel_delayed_work_sync(&qdev->mpi_work);
3984 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3985 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3986 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3987 }
3988
3989 static int ql_adapter_down(struct ql_adapter *qdev)
3990 {
3991 int i, status = 0;
3992
3993 ql_link_off(qdev);
3994
3995 ql_cancel_all_work_sync(qdev);
3996
3997 for (i = 0; i < qdev->rss_ring_count; i++)
3998 napi_disable(&qdev->rx_ring[i].napi);
3999
4000 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4001
4002 ql_disable_interrupts(qdev);
4003
4004 ql_tx_ring_clean(qdev);
4005
4006 /* Call netif_napi_del() from common point.
4007 */
4008 for (i = 0; i < qdev->rss_ring_count; i++)
4009 netif_napi_del(&qdev->rx_ring[i].napi);
4010
4011 status = ql_adapter_reset(qdev);
4012 if (status)
4013 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4014 qdev->func);
4015 ql_free_rx_buffers(qdev);
4016
4017 return status;
4018 }
4019
4020 static int ql_adapter_up(struct ql_adapter *qdev)
4021 {
4022 int err = 0;
4023
4024 err = ql_adapter_initialize(qdev);
4025 if (err) {
4026 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4027 goto err_init;
4028 }
4029 set_bit(QL_ADAPTER_UP, &qdev->flags);
4030 ql_alloc_rx_buffers(qdev);
4031 /* If the port is initialized and the
4032 * link is up the turn on the carrier.
4033 */
4034 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4035 (ql_read32(qdev, STS) & qdev->port_link_up))
4036 ql_link_on(qdev);
4037 /* Restore rx mode. */
4038 clear_bit(QL_ALLMULTI, &qdev->flags);
4039 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4040 qlge_set_multicast_list(qdev->ndev);
4041
4042 /* Restore vlan setting. */
4043 qlge_restore_vlan(qdev);
4044
4045 ql_enable_interrupts(qdev);
4046 ql_enable_all_completion_interrupts(qdev);
4047 netif_tx_start_all_queues(qdev->ndev);
4048
4049 return 0;
4050 err_init:
4051 ql_adapter_reset(qdev);
4052 return err;
4053 }
4054
4055 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4056 {
4057 ql_free_mem_resources(qdev);
4058 ql_free_irq(qdev);
4059 }
4060
4061 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4062 {
4063 int status = 0;
4064
4065 if (ql_alloc_mem_resources(qdev)) {
4066 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4067 return -ENOMEM;
4068 }
4069 status = ql_request_irq(qdev);
4070 return status;
4071 }
4072
4073 static int qlge_close(struct net_device *ndev)
4074 {
4075 struct ql_adapter *qdev = netdev_priv(ndev);
4076
4077 /* If we hit pci_channel_io_perm_failure
4078 * failure condition, then we already
4079 * brought the adapter down.
4080 */
4081 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4082 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4083 clear_bit(QL_EEH_FATAL, &qdev->flags);
4084 return 0;
4085 }
4086
4087 /*
4088 * Wait for device to recover from a reset.
4089 * (Rarely happens, but possible.)
4090 */
4091 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4092 msleep(1);
4093 ql_adapter_down(qdev);
4094 ql_release_adapter_resources(qdev);
4095 return 0;
4096 }
4097
4098 static int ql_configure_rings(struct ql_adapter *qdev)
4099 {
4100 int i;
4101 struct rx_ring *rx_ring;
4102 struct tx_ring *tx_ring;
4103 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4104 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4105 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4106
4107 qdev->lbq_buf_order = get_order(lbq_buf_len);
4108
4109 /* In a perfect world we have one RSS ring for each CPU
4110 * and each has it's own vector. To do that we ask for
4111 * cpu_cnt vectors. ql_enable_msix() will adjust the
4112 * vector count to what we actually get. We then
4113 * allocate an RSS ring for each.
4114 * Essentially, we are doing min(cpu_count, msix_vector_count).
4115 */
4116 qdev->intr_count = cpu_cnt;
4117 ql_enable_msix(qdev);
4118 /* Adjust the RSS ring count to the actual vector count. */
4119 qdev->rss_ring_count = qdev->intr_count;
4120 qdev->tx_ring_count = cpu_cnt;
4121 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4122
4123 for (i = 0; i < qdev->tx_ring_count; i++) {
4124 tx_ring = &qdev->tx_ring[i];
4125 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4126 tx_ring->qdev = qdev;
4127 tx_ring->wq_id = i;
4128 tx_ring->wq_len = qdev->tx_ring_size;
4129 tx_ring->wq_size =
4130 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4131
4132 /*
4133 * The completion queue ID for the tx rings start
4134 * immediately after the rss rings.
4135 */
4136 tx_ring->cq_id = qdev->rss_ring_count + i;
4137 }
4138
4139 for (i = 0; i < qdev->rx_ring_count; i++) {
4140 rx_ring = &qdev->rx_ring[i];
4141 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4142 rx_ring->qdev = qdev;
4143 rx_ring->cq_id = i;
4144 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4145 if (i < qdev->rss_ring_count) {
4146 /*
4147 * Inbound (RSS) queues.
4148 */
4149 rx_ring->cq_len = qdev->rx_ring_size;
4150 rx_ring->cq_size =
4151 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4152 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4153 rx_ring->lbq_size =
4154 rx_ring->lbq_len * sizeof(__le64);
4155 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4156 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4157 rx_ring->sbq_size =
4158 rx_ring->sbq_len * sizeof(__le64);
4159 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4160 rx_ring->type = RX_Q;
4161 } else {
4162 /*
4163 * Outbound queue handles outbound completions only.
4164 */
4165 /* outbound cq is same size as tx_ring it services. */
4166 rx_ring->cq_len = qdev->tx_ring_size;
4167 rx_ring->cq_size =
4168 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4169 rx_ring->lbq_len = 0;
4170 rx_ring->lbq_size = 0;
4171 rx_ring->lbq_buf_size = 0;
4172 rx_ring->sbq_len = 0;
4173 rx_ring->sbq_size = 0;
4174 rx_ring->sbq_buf_size = 0;
4175 rx_ring->type = TX_Q;
4176 }
4177 }
4178 return 0;
4179 }
4180
4181 static int qlge_open(struct net_device *ndev)
4182 {
4183 int err = 0;
4184 struct ql_adapter *qdev = netdev_priv(ndev);
4185
4186 err = ql_adapter_reset(qdev);
4187 if (err)
4188 return err;
4189
4190 err = ql_configure_rings(qdev);
4191 if (err)
4192 return err;
4193
4194 err = ql_get_adapter_resources(qdev);
4195 if (err)
4196 goto error_up;
4197
4198 err = ql_adapter_up(qdev);
4199 if (err)
4200 goto error_up;
4201
4202 return err;
4203
4204 error_up:
4205 ql_release_adapter_resources(qdev);
4206 return err;
4207 }
4208
4209 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4210 {
4211 struct rx_ring *rx_ring;
4212 int i, status;
4213 u32 lbq_buf_len;
4214
4215 /* Wait for an outstanding reset to complete. */
4216 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4217 int i = 4;
4218
4219 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4220 netif_err(qdev, ifup, qdev->ndev,
4221 "Waiting for adapter UP...\n");
4222 ssleep(1);
4223 }
4224
4225 if (!i) {
4226 netif_err(qdev, ifup, qdev->ndev,
4227 "Timed out waiting for adapter UP\n");
4228 return -ETIMEDOUT;
4229 }
4230 }
4231
4232 status = ql_adapter_down(qdev);
4233 if (status)
4234 goto error;
4235
4236 /* Get the new rx buffer size. */
4237 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4238 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4239 qdev->lbq_buf_order = get_order(lbq_buf_len);
4240
4241 for (i = 0; i < qdev->rss_ring_count; i++) {
4242 rx_ring = &qdev->rx_ring[i];
4243 /* Set the new size. */
4244 rx_ring->lbq_buf_size = lbq_buf_len;
4245 }
4246
4247 status = ql_adapter_up(qdev);
4248 if (status)
4249 goto error;
4250
4251 return status;
4252 error:
4253 netif_alert(qdev, ifup, qdev->ndev,
4254 "Driver up/down cycle failed, closing device.\n");
4255 set_bit(QL_ADAPTER_UP, &qdev->flags);
4256 dev_close(qdev->ndev);
4257 return status;
4258 }
4259
4260 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4261 {
4262 struct ql_adapter *qdev = netdev_priv(ndev);
4263 int status;
4264
4265 if (ndev->mtu == 1500 && new_mtu == 9000) {
4266 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4267 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4268 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4269 } else
4270 return -EINVAL;
4271
4272 queue_delayed_work(qdev->workqueue,
4273 &qdev->mpi_port_cfg_work, 3*HZ);
4274
4275 ndev->mtu = new_mtu;
4276
4277 if (!netif_running(qdev->ndev)) {
4278 return 0;
4279 }
4280
4281 status = ql_change_rx_buffers(qdev);
4282 if (status) {
4283 netif_err(qdev, ifup, qdev->ndev,
4284 "Changing MTU failed.\n");
4285 }
4286
4287 return status;
4288 }
4289
4290 static struct net_device_stats *qlge_get_stats(struct net_device
4291 *ndev)
4292 {
4293 struct ql_adapter *qdev = netdev_priv(ndev);
4294 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4295 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4296 unsigned long pkts, mcast, dropped, errors, bytes;
4297 int i;
4298
4299 /* Get RX stats. */
4300 pkts = mcast = dropped = errors = bytes = 0;
4301 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4302 pkts += rx_ring->rx_packets;
4303 bytes += rx_ring->rx_bytes;
4304 dropped += rx_ring->rx_dropped;
4305 errors += rx_ring->rx_errors;
4306 mcast += rx_ring->rx_multicast;
4307 }
4308 ndev->stats.rx_packets = pkts;
4309 ndev->stats.rx_bytes = bytes;
4310 ndev->stats.rx_dropped = dropped;
4311 ndev->stats.rx_errors = errors;
4312 ndev->stats.multicast = mcast;
4313
4314 /* Get TX stats. */
4315 pkts = errors = bytes = 0;
4316 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4317 pkts += tx_ring->tx_packets;
4318 bytes += tx_ring->tx_bytes;
4319 errors += tx_ring->tx_errors;
4320 }
4321 ndev->stats.tx_packets = pkts;
4322 ndev->stats.tx_bytes = bytes;
4323 ndev->stats.tx_errors = errors;
4324 return &ndev->stats;
4325 }
4326
4327 static void qlge_set_multicast_list(struct net_device *ndev)
4328 {
4329 struct ql_adapter *qdev = netdev_priv(ndev);
4330 struct netdev_hw_addr *ha;
4331 int i, status;
4332
4333 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4334 if (status)
4335 return;
4336 /*
4337 * Set or clear promiscuous mode if a
4338 * transition is taking place.
4339 */
4340 if (ndev->flags & IFF_PROMISC) {
4341 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4342 if (ql_set_routing_reg
4343 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4344 netif_err(qdev, hw, qdev->ndev,
4345 "Failed to set promiscuous mode.\n");
4346 } else {
4347 set_bit(QL_PROMISCUOUS, &qdev->flags);
4348 }
4349 }
4350 } else {
4351 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4352 if (ql_set_routing_reg
4353 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4354 netif_err(qdev, hw, qdev->ndev,
4355 "Failed to clear promiscuous mode.\n");
4356 } else {
4357 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4358 }
4359 }
4360 }
4361
4362 /*
4363 * Set or clear all multicast mode if a
4364 * transition is taking place.
4365 */
4366 if ((ndev->flags & IFF_ALLMULTI) ||
4367 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4368 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4369 if (ql_set_routing_reg
4370 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4371 netif_err(qdev, hw, qdev->ndev,
4372 "Failed to set all-multi mode.\n");
4373 } else {
4374 set_bit(QL_ALLMULTI, &qdev->flags);
4375 }
4376 }
4377 } else {
4378 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4379 if (ql_set_routing_reg
4380 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4381 netif_err(qdev, hw, qdev->ndev,
4382 "Failed to clear all-multi mode.\n");
4383 } else {
4384 clear_bit(QL_ALLMULTI, &qdev->flags);
4385 }
4386 }
4387 }
4388
4389 if (!netdev_mc_empty(ndev)) {
4390 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4391 if (status)
4392 goto exit;
4393 i = 0;
4394 netdev_for_each_mc_addr(ha, ndev) {
4395 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4396 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4397 netif_err(qdev, hw, qdev->ndev,
4398 "Failed to loadmulticast address.\n");
4399 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4400 goto exit;
4401 }
4402 i++;
4403 }
4404 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4405 if (ql_set_routing_reg
4406 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4407 netif_err(qdev, hw, qdev->ndev,
4408 "Failed to set multicast match mode.\n");
4409 } else {
4410 set_bit(QL_ALLMULTI, &qdev->flags);
4411 }
4412 }
4413 exit:
4414 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4415 }
4416
4417 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4418 {
4419 struct ql_adapter *qdev = netdev_priv(ndev);
4420 struct sockaddr *addr = p;
4421 int status;
4422
4423 if (!is_valid_ether_addr(addr->sa_data))
4424 return -EADDRNOTAVAIL;
4425 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4426 /* Update local copy of current mac address. */
4427 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4428
4429 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4430 if (status)
4431 return status;
4432 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4433 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4434 if (status)
4435 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4436 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4437 return status;
4438 }
4439
4440 static void qlge_tx_timeout(struct net_device *ndev)
4441 {
4442 struct ql_adapter *qdev = netdev_priv(ndev);
4443 ql_queue_asic_error(qdev);
4444 }
4445
4446 static void ql_asic_reset_work(struct work_struct *work)
4447 {
4448 struct ql_adapter *qdev =
4449 container_of(work, struct ql_adapter, asic_reset_work.work);
4450 int status;
4451 rtnl_lock();
4452 status = ql_adapter_down(qdev);
4453 if (status)
4454 goto error;
4455
4456 status = ql_adapter_up(qdev);
4457 if (status)
4458 goto error;
4459
4460 /* Restore rx mode. */
4461 clear_bit(QL_ALLMULTI, &qdev->flags);
4462 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4463 qlge_set_multicast_list(qdev->ndev);
4464
4465 rtnl_unlock();
4466 return;
4467 error:
4468 netif_alert(qdev, ifup, qdev->ndev,
4469 "Driver up/down cycle failed, closing device\n");
4470
4471 set_bit(QL_ADAPTER_UP, &qdev->flags);
4472 dev_close(qdev->ndev);
4473 rtnl_unlock();
4474 }
4475
4476 static const struct nic_operations qla8012_nic_ops = {
4477 .get_flash = ql_get_8012_flash_params,
4478 .port_initialize = ql_8012_port_initialize,
4479 };
4480
4481 static const struct nic_operations qla8000_nic_ops = {
4482 .get_flash = ql_get_8000_flash_params,
4483 .port_initialize = ql_8000_port_initialize,
4484 };
4485
4486 /* Find the pcie function number for the other NIC
4487 * on this chip. Since both NIC functions share a
4488 * common firmware we have the lowest enabled function
4489 * do any common work. Examples would be resetting
4490 * after a fatal firmware error, or doing a firmware
4491 * coredump.
4492 */
4493 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4494 {
4495 int status = 0;
4496 u32 temp;
4497 u32 nic_func1, nic_func2;
4498
4499 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4500 &temp);
4501 if (status)
4502 return status;
4503
4504 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4505 MPI_TEST_NIC_FUNC_MASK);
4506 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4507 MPI_TEST_NIC_FUNC_MASK);
4508
4509 if (qdev->func == nic_func1)
4510 qdev->alt_func = nic_func2;
4511 else if (qdev->func == nic_func2)
4512 qdev->alt_func = nic_func1;
4513 else
4514 status = -EIO;
4515
4516 return status;
4517 }
4518
4519 static int ql_get_board_info(struct ql_adapter *qdev)
4520 {
4521 int status;
4522 qdev->func =
4523 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4524 if (qdev->func > 3)
4525 return -EIO;
4526
4527 status = ql_get_alt_pcie_func(qdev);
4528 if (status)
4529 return status;
4530
4531 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4532 if (qdev->port) {
4533 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4534 qdev->port_link_up = STS_PL1;
4535 qdev->port_init = STS_PI1;
4536 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4537 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4538 } else {
4539 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4540 qdev->port_link_up = STS_PL0;
4541 qdev->port_init = STS_PI0;
4542 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4543 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4544 }
4545 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4546 qdev->device_id = qdev->pdev->device;
4547 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4548 qdev->nic_ops = &qla8012_nic_ops;
4549 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4550 qdev->nic_ops = &qla8000_nic_ops;
4551 return status;
4552 }
4553
4554 static void ql_release_all(struct pci_dev *pdev)
4555 {
4556 struct net_device *ndev = pci_get_drvdata(pdev);
4557 struct ql_adapter *qdev = netdev_priv(ndev);
4558
4559 if (qdev->workqueue) {
4560 destroy_workqueue(qdev->workqueue);
4561 qdev->workqueue = NULL;
4562 }
4563
4564 if (qdev->reg_base)
4565 iounmap(qdev->reg_base);
4566 if (qdev->doorbell_area)
4567 iounmap(qdev->doorbell_area);
4568 vfree(qdev->mpi_coredump);
4569 pci_release_regions(pdev);
4570 }
4571
4572 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4573 int cards_found)
4574 {
4575 struct ql_adapter *qdev = netdev_priv(ndev);
4576 int err = 0;
4577
4578 memset((void *)qdev, 0, sizeof(*qdev));
4579 err = pci_enable_device(pdev);
4580 if (err) {
4581 dev_err(&pdev->dev, "PCI device enable failed.\n");
4582 return err;
4583 }
4584
4585 qdev->ndev = ndev;
4586 qdev->pdev = pdev;
4587 pci_set_drvdata(pdev, ndev);
4588
4589 /* Set PCIe read request size */
4590 err = pcie_set_readrq(pdev, 4096);
4591 if (err) {
4592 dev_err(&pdev->dev, "Set readrq failed.\n");
4593 goto err_out1;
4594 }
4595
4596 err = pci_request_regions(pdev, DRV_NAME);
4597 if (err) {
4598 dev_err(&pdev->dev, "PCI region request failed.\n");
4599 return err;
4600 }
4601
4602 pci_set_master(pdev);
4603 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4604 set_bit(QL_DMA64, &qdev->flags);
4605 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4606 } else {
4607 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4608 if (!err)
4609 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4610 }
4611
4612 if (err) {
4613 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4614 goto err_out2;
4615 }
4616
4617 /* Set PCIe reset type for EEH to fundamental. */
4618 pdev->needs_freset = 1;
4619 pci_save_state(pdev);
4620 qdev->reg_base =
4621 ioremap_nocache(pci_resource_start(pdev, 1),
4622 pci_resource_len(pdev, 1));
4623 if (!qdev->reg_base) {
4624 dev_err(&pdev->dev, "Register mapping failed.\n");
4625 err = -ENOMEM;
4626 goto err_out2;
4627 }
4628
4629 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4630 qdev->doorbell_area =
4631 ioremap_nocache(pci_resource_start(pdev, 3),
4632 pci_resource_len(pdev, 3));
4633 if (!qdev->doorbell_area) {
4634 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4635 err = -ENOMEM;
4636 goto err_out2;
4637 }
4638
4639 err = ql_get_board_info(qdev);
4640 if (err) {
4641 dev_err(&pdev->dev, "Register access failed.\n");
4642 err = -EIO;
4643 goto err_out2;
4644 }
4645 qdev->msg_enable = netif_msg_init(debug, default_msg);
4646 spin_lock_init(&qdev->hw_lock);
4647 spin_lock_init(&qdev->stats_lock);
4648
4649 if (qlge_mpi_coredump) {
4650 qdev->mpi_coredump =
4651 vmalloc(sizeof(struct ql_mpi_coredump));
4652 if (qdev->mpi_coredump == NULL) {
4653 err = -ENOMEM;
4654 goto err_out2;
4655 }
4656 if (qlge_force_coredump)
4657 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4658 }
4659 /* make sure the EEPROM is good */
4660 err = qdev->nic_ops->get_flash(qdev);
4661 if (err) {
4662 dev_err(&pdev->dev, "Invalid FLASH.\n");
4663 goto err_out2;
4664 }
4665
4666 /* Keep local copy of current mac address. */
4667 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4668
4669 /* Set up the default ring sizes. */
4670 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4671 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4672
4673 /* Set up the coalescing parameters. */
4674 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4675 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4676 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4677 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4678
4679 /*
4680 * Set up the operating parameters.
4681 */
4682 qdev->workqueue = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4683 ndev->name);
4684 if (!qdev->workqueue) {
4685 err = -ENOMEM;
4686 goto err_out2;
4687 }
4688
4689 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4690 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4691 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4692 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4693 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4694 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4695 init_completion(&qdev->ide_completion);
4696 mutex_init(&qdev->mpi_mutex);
4697
4698 if (!cards_found) {
4699 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4700 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4701 DRV_NAME, DRV_VERSION);
4702 }
4703 return 0;
4704 err_out2:
4705 ql_release_all(pdev);
4706 err_out1:
4707 pci_disable_device(pdev);
4708 return err;
4709 }
4710
4711 static const struct net_device_ops qlge_netdev_ops = {
4712 .ndo_open = qlge_open,
4713 .ndo_stop = qlge_close,
4714 .ndo_start_xmit = qlge_send,
4715 .ndo_change_mtu = qlge_change_mtu,
4716 .ndo_get_stats = qlge_get_stats,
4717 .ndo_set_rx_mode = qlge_set_multicast_list,
4718 .ndo_set_mac_address = qlge_set_mac_address,
4719 .ndo_validate_addr = eth_validate_addr,
4720 .ndo_tx_timeout = qlge_tx_timeout,
4721 .ndo_set_features = qlge_set_features,
4722 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4723 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4724 };
4725
4726 static void ql_timer(struct timer_list *t)
4727 {
4728 struct ql_adapter *qdev = from_timer(qdev, t, timer);
4729 u32 var = 0;
4730
4731 var = ql_read32(qdev, STS);
4732 if (pci_channel_offline(qdev->pdev)) {
4733 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4734 return;
4735 }
4736
4737 mod_timer(&qdev->timer, jiffies + (5*HZ));
4738 }
4739
4740 static int qlge_probe(struct pci_dev *pdev,
4741 const struct pci_device_id *pci_entry)
4742 {
4743 struct net_device *ndev = NULL;
4744 struct ql_adapter *qdev = NULL;
4745 static int cards_found = 0;
4746 int err = 0;
4747
4748 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4749 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4750 if (!ndev)
4751 return -ENOMEM;
4752
4753 err = ql_init_device(pdev, ndev, cards_found);
4754 if (err < 0) {
4755 free_netdev(ndev);
4756 return err;
4757 }
4758
4759 qdev = netdev_priv(ndev);
4760 SET_NETDEV_DEV(ndev, &pdev->dev);
4761 ndev->hw_features = NETIF_F_SG |
4762 NETIF_F_IP_CSUM |
4763 NETIF_F_TSO |
4764 NETIF_F_TSO_ECN |
4765 NETIF_F_HW_VLAN_CTAG_TX |
4766 NETIF_F_HW_VLAN_CTAG_RX |
4767 NETIF_F_HW_VLAN_CTAG_FILTER |
4768 NETIF_F_RXCSUM;
4769 ndev->features = ndev->hw_features;
4770 ndev->vlan_features = ndev->hw_features;
4771 /* vlan gets same features (except vlan filter) */
4772 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4773 NETIF_F_HW_VLAN_CTAG_TX |
4774 NETIF_F_HW_VLAN_CTAG_RX);
4775
4776 if (test_bit(QL_DMA64, &qdev->flags))
4777 ndev->features |= NETIF_F_HIGHDMA;
4778
4779 /*
4780 * Set up net_device structure.
4781 */
4782 ndev->tx_queue_len = qdev->tx_ring_size;
4783 ndev->irq = pdev->irq;
4784
4785 ndev->netdev_ops = &qlge_netdev_ops;
4786 ndev->ethtool_ops = &qlge_ethtool_ops;
4787 ndev->watchdog_timeo = 10 * HZ;
4788
4789 /* MTU range: this driver only supports 1500 or 9000, so this only
4790 * filters out values above or below, and we'll rely on
4791 * qlge_change_mtu to make sure only 1500 or 9000 are allowed
4792 */
4793 ndev->min_mtu = ETH_DATA_LEN;
4794 ndev->max_mtu = 9000;
4795
4796 err = register_netdev(ndev);
4797 if (err) {
4798 dev_err(&pdev->dev, "net device registration failed.\n");
4799 ql_release_all(pdev);
4800 pci_disable_device(pdev);
4801 free_netdev(ndev);
4802 return err;
4803 }
4804 /* Start up the timer to trigger EEH if
4805 * the bus goes dead
4806 */
4807 timer_setup(&qdev->timer, ql_timer, TIMER_DEFERRABLE);
4808 mod_timer(&qdev->timer, jiffies + (5*HZ));
4809 ql_link_off(qdev);
4810 ql_display_dev_info(ndev);
4811 atomic_set(&qdev->lb_count, 0);
4812 cards_found++;
4813 return 0;
4814 }
4815
4816 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4817 {
4818 return qlge_send(skb, ndev);
4819 }
4820
4821 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4822 {
4823 return ql_clean_inbound_rx_ring(rx_ring, budget);
4824 }
4825
4826 static void qlge_remove(struct pci_dev *pdev)
4827 {
4828 struct net_device *ndev = pci_get_drvdata(pdev);
4829 struct ql_adapter *qdev = netdev_priv(ndev);
4830 del_timer_sync(&qdev->timer);
4831 ql_cancel_all_work_sync(qdev);
4832 unregister_netdev(ndev);
4833 ql_release_all(pdev);
4834 pci_disable_device(pdev);
4835 free_netdev(ndev);
4836 }
4837
4838 /* Clean up resources without touching hardware. */
4839 static void ql_eeh_close(struct net_device *ndev)
4840 {
4841 int i;
4842 struct ql_adapter *qdev = netdev_priv(ndev);
4843
4844 if (netif_carrier_ok(ndev)) {
4845 netif_carrier_off(ndev);
4846 netif_stop_queue(ndev);
4847 }
4848
4849 /* Disabling the timer */
4850 ql_cancel_all_work_sync(qdev);
4851
4852 for (i = 0; i < qdev->rss_ring_count; i++)
4853 netif_napi_del(&qdev->rx_ring[i].napi);
4854
4855 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4856 ql_tx_ring_clean(qdev);
4857 ql_free_rx_buffers(qdev);
4858 ql_release_adapter_resources(qdev);
4859 }
4860
4861 /*
4862 * This callback is called by the PCI subsystem whenever
4863 * a PCI bus error is detected.
4864 */
4865 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4866 enum pci_channel_state state)
4867 {
4868 struct net_device *ndev = pci_get_drvdata(pdev);
4869 struct ql_adapter *qdev = netdev_priv(ndev);
4870
4871 switch (state) {
4872 case pci_channel_io_normal:
4873 return PCI_ERS_RESULT_CAN_RECOVER;
4874 case pci_channel_io_frozen:
4875 netif_device_detach(ndev);
4876 del_timer_sync(&qdev->timer);
4877 if (netif_running(ndev))
4878 ql_eeh_close(ndev);
4879 pci_disable_device(pdev);
4880 return PCI_ERS_RESULT_NEED_RESET;
4881 case pci_channel_io_perm_failure:
4882 dev_err(&pdev->dev,
4883 "%s: pci_channel_io_perm_failure.\n", __func__);
4884 del_timer_sync(&qdev->timer);
4885 ql_eeh_close(ndev);
4886 set_bit(QL_EEH_FATAL, &qdev->flags);
4887 return PCI_ERS_RESULT_DISCONNECT;
4888 }
4889
4890 /* Request a slot reset. */
4891 return PCI_ERS_RESULT_NEED_RESET;
4892 }
4893
4894 /*
4895 * This callback is called after the PCI buss has been reset.
4896 * Basically, this tries to restart the card from scratch.
4897 * This is a shortened version of the device probe/discovery code,
4898 * it resembles the first-half of the () routine.
4899 */
4900 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4901 {
4902 struct net_device *ndev = pci_get_drvdata(pdev);
4903 struct ql_adapter *qdev = netdev_priv(ndev);
4904
4905 pdev->error_state = pci_channel_io_normal;
4906
4907 pci_restore_state(pdev);
4908 if (pci_enable_device(pdev)) {
4909 netif_err(qdev, ifup, qdev->ndev,
4910 "Cannot re-enable PCI device after reset.\n");
4911 return PCI_ERS_RESULT_DISCONNECT;
4912 }
4913 pci_set_master(pdev);
4914
4915 if (ql_adapter_reset(qdev)) {
4916 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4917 set_bit(QL_EEH_FATAL, &qdev->flags);
4918 return PCI_ERS_RESULT_DISCONNECT;
4919 }
4920
4921 return PCI_ERS_RESULT_RECOVERED;
4922 }
4923
4924 static void qlge_io_resume(struct pci_dev *pdev)
4925 {
4926 struct net_device *ndev = pci_get_drvdata(pdev);
4927 struct ql_adapter *qdev = netdev_priv(ndev);
4928 int err = 0;
4929
4930 if (netif_running(ndev)) {
4931 err = qlge_open(ndev);
4932 if (err) {
4933 netif_err(qdev, ifup, qdev->ndev,
4934 "Device initialization failed after reset.\n");
4935 return;
4936 }
4937 } else {
4938 netif_err(qdev, ifup, qdev->ndev,
4939 "Device was not running prior to EEH.\n");
4940 }
4941 mod_timer(&qdev->timer, jiffies + (5*HZ));
4942 netif_device_attach(ndev);
4943 }
4944
4945 static const struct pci_error_handlers qlge_err_handler = {
4946 .error_detected = qlge_io_error_detected,
4947 .slot_reset = qlge_io_slot_reset,
4948 .resume = qlge_io_resume,
4949 };
4950
4951 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4952 {
4953 struct net_device *ndev = pci_get_drvdata(pdev);
4954 struct ql_adapter *qdev = netdev_priv(ndev);
4955 int err;
4956
4957 netif_device_detach(ndev);
4958 del_timer_sync(&qdev->timer);
4959
4960 if (netif_running(ndev)) {
4961 err = ql_adapter_down(qdev);
4962 if (!err)
4963 return err;
4964 }
4965
4966 ql_wol(qdev);
4967 err = pci_save_state(pdev);
4968 if (err)
4969 return err;
4970
4971 pci_disable_device(pdev);
4972
4973 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4974
4975 return 0;
4976 }
4977
4978 #ifdef CONFIG_PM
4979 static int qlge_resume(struct pci_dev *pdev)
4980 {
4981 struct net_device *ndev = pci_get_drvdata(pdev);
4982 struct ql_adapter *qdev = netdev_priv(ndev);
4983 int err;
4984
4985 pci_set_power_state(pdev, PCI_D0);
4986 pci_restore_state(pdev);
4987 err = pci_enable_device(pdev);
4988 if (err) {
4989 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4990 return err;
4991 }
4992 pci_set_master(pdev);
4993
4994 pci_enable_wake(pdev, PCI_D3hot, 0);
4995 pci_enable_wake(pdev, PCI_D3cold, 0);
4996
4997 if (netif_running(ndev)) {
4998 err = ql_adapter_up(qdev);
4999 if (err)
5000 return err;
5001 }
5002
5003 mod_timer(&qdev->timer, jiffies + (5*HZ));
5004 netif_device_attach(ndev);
5005
5006 return 0;
5007 }
5008 #endif /* CONFIG_PM */
5009
5010 static void qlge_shutdown(struct pci_dev *pdev)
5011 {
5012 qlge_suspend(pdev, PMSG_SUSPEND);
5013 }
5014
5015 static struct pci_driver qlge_driver = {
5016 .name = DRV_NAME,
5017 .id_table = qlge_pci_tbl,
5018 .probe = qlge_probe,
5019 .remove = qlge_remove,
5020 #ifdef CONFIG_PM
5021 .suspend = qlge_suspend,
5022 .resume = qlge_resume,
5023 #endif
5024 .shutdown = qlge_shutdown,
5025 .err_handler = &qlge_err_handler
5026 };
5027
5028 module_pci_driver(qlge_driver);