]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/qlogic/qlge/qlge_main.c
PCI: Remove DEFINE_PCI_DEVICE_TABLE macro use
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1; /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 "Option to enable MPI firmware dump. "
81 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 "Option to allow force of firmware core dump. "
87 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 /* required last entry */
93 {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104 * resources shared between the NIC driver, MPI firmware,
105 * FCOE firmware and the FC driver.
106 */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109 u32 sem_bits = 0;
110
111 switch (sem_mask) {
112 case SEM_XGMAC0_MASK:
113 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 break;
115 case SEM_XGMAC1_MASK:
116 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 break;
118 case SEM_ICB_MASK:
119 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 break;
121 case SEM_MAC_ADDR_MASK:
122 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 break;
124 case SEM_FLASH_MASK:
125 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 break;
127 case SEM_PROBE_MASK:
128 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 break;
130 case SEM_RT_IDX_MASK:
131 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 break;
133 case SEM_PROC_REG_MASK:
134 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 break;
136 default:
137 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 return -EINVAL;
139 }
140
141 ql_write32(qdev, SEM, sem_bits | sem_mask);
142 return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147 unsigned int wait_count = 30;
148 do {
149 if (!ql_sem_trylock(qdev, sem_mask))
150 return 0;
151 udelay(100);
152 } while (--wait_count);
153 return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158 ql_write32(qdev, SEM, sem_mask);
159 ql_read32(qdev, SEM); /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163 * in a given register. It is used mostly by the initialize
164 * process, but is also used in kernel thread API such as
165 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166 */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169 u32 temp;
170 int count = UDELAY_COUNT;
171
172 while (count) {
173 temp = ql_read32(qdev, reg);
174
175 /* check for errors */
176 if (temp & err_bit) {
177 netif_alert(qdev, probe, qdev->ndev,
178 "register 0x%.08x access error, value = 0x%.08x!.\n",
179 reg, temp);
180 return -EIO;
181 } else if (temp & bit)
182 return 0;
183 udelay(UDELAY_DELAY);
184 count--;
185 }
186 netif_alert(qdev, probe, qdev->ndev,
187 "Timed out waiting for reg %x to come ready.\n", reg);
188 return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192 * to the chip. This function waits for an operation to complete.
193 */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196 int count = UDELAY_COUNT;
197 u32 temp;
198
199 while (count) {
200 temp = ql_read32(qdev, CFG);
201 if (temp & CFG_LE)
202 return -EIO;
203 if (!(temp & bit))
204 return 0;
205 udelay(UDELAY_DELAY);
206 count--;
207 }
208 return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213 * sets address, triggers download, waits for completion.
214 */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 u16 q_id)
217 {
218 u64 map;
219 int status = 0;
220 int direction;
221 u32 mask;
222 u32 value;
223
224 direction =
225 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 PCI_DMA_FROMDEVICE;
227
228 map = pci_map_single(qdev->pdev, ptr, size, direction);
229 if (pci_dma_mapping_error(qdev->pdev, map)) {
230 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 return -ENOMEM;
232 }
233
234 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 if (status)
236 return status;
237
238 status = ql_wait_cfg(qdev, bit);
239 if (status) {
240 netif_err(qdev, ifup, qdev->ndev,
241 "Timed out waiting for CFG to come ready.\n");
242 goto exit;
243 }
244
245 ql_write32(qdev, ICB_L, (u32) map);
246 ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248 mask = CFG_Q_MASK | (bit << 16);
249 value = bit | (q_id << CFG_Q_SHIFT);
250 ql_write32(qdev, CFG, (mask | value));
251
252 /*
253 * Wait for the bit to clear after signaling hw.
254 */
255 status = ql_wait_cfg(qdev, bit);
256 exit:
257 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
258 pci_unmap_single(qdev->pdev, map, size, direction);
259 return status;
260 }
261
262 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 u32 *value)
265 {
266 u32 offset = 0;
267 int status;
268
269 switch (type) {
270 case MAC_ADDR_TYPE_MULTI_MAC:
271 case MAC_ADDR_TYPE_CAM_MAC:
272 {
273 status =
274 ql_wait_reg_rdy(qdev,
275 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 if (status)
277 goto exit;
278 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 status =
282 ql_wait_reg_rdy(qdev,
283 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 if (status)
285 goto exit;
286 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev,
297 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 status =
303 ql_wait_reg_rdy(qdev,
304 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 if (status)
306 goto exit;
307 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 status =
311 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 MAC_ADDR_MR, 0);
313 if (status)
314 goto exit;
315 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 }
317 break;
318 }
319 case MAC_ADDR_TYPE_VLAN:
320 case MAC_ADDR_TYPE_MULTI_FLTR:
321 default:
322 netif_crit(qdev, ifup, qdev->ndev,
323 "Address type %d not yet supported.\n", type);
324 status = -EPERM;
325 }
326 exit:
327 return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331 * inbound frame matching.
332 */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 u16 index)
335 {
336 u32 offset = 0;
337 int status = 0;
338
339 switch (type) {
340 case MAC_ADDR_TYPE_MULTI_MAC:
341 {
342 u32 upper = (addr[0] << 8) | addr[1];
343 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 (addr[4] << 8) | (addr[5]);
345
346 status =
347 ql_wait_reg_rdy(qdev,
348 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 if (status)
350 goto exit;
351 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 (index << MAC_ADDR_IDX_SHIFT) |
353 type | MAC_ADDR_E);
354 ql_write32(qdev, MAC_ADDR_DATA, lower);
355 status =
356 ql_wait_reg_rdy(qdev,
357 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 if (status)
359 goto exit;
360 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 (index << MAC_ADDR_IDX_SHIFT) |
362 type | MAC_ADDR_E);
363
364 ql_write32(qdev, MAC_ADDR_DATA, upper);
365 status =
366 ql_wait_reg_rdy(qdev,
367 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 if (status)
369 goto exit;
370 break;
371 }
372 case MAC_ADDR_TYPE_CAM_MAC:
373 {
374 u32 cam_output;
375 u32 upper = (addr[0] << 8) | addr[1];
376 u32 lower =
377 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 (addr[5]);
379 status =
380 ql_wait_reg_rdy(qdev,
381 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 if (status)
383 goto exit;
384 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 type); /* type */
387 ql_write32(qdev, MAC_ADDR_DATA, lower);
388 status =
389 ql_wait_reg_rdy(qdev,
390 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 if (status)
392 goto exit;
393 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 type); /* type */
396 ql_write32(qdev, MAC_ADDR_DATA, upper);
397 status =
398 ql_wait_reg_rdy(qdev,
399 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 if (status)
401 goto exit;
402 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
403 (index << MAC_ADDR_IDX_SHIFT) | /* index */
404 type); /* type */
405 /* This field should also include the queue id
406 and possibly the function id. Right now we hardcode
407 the route field to NIC core.
408 */
409 cam_output = (CAM_OUT_ROUTE_NIC |
410 (qdev->
411 func << CAM_OUT_FUNC_SHIFT) |
412 (0 << CAM_OUT_CQ_ID_SHIFT));
413 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 cam_output |= CAM_OUT_RV;
415 /* route to NIC core */
416 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 break;
418 }
419 case MAC_ADDR_TYPE_VLAN:
420 {
421 u32 enable_bit = *((u32 *) &addr[0]);
422 /* For VLAN, the addr actually holds a bit that
423 * either enables or disables the vlan id we are
424 * addressing. It's either MAC_ADDR_E on or off.
425 * That's bit-27 we're talking about.
426 */
427 status =
428 ql_wait_reg_rdy(qdev,
429 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 if (status)
431 goto exit;
432 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433 (index << MAC_ADDR_IDX_SHIFT) | /* index */
434 type | /* type */
435 enable_bit); /* enable/disable */
436 break;
437 }
438 case MAC_ADDR_TYPE_MULTI_FLTR:
439 default:
440 netif_crit(qdev, ifup, qdev->ndev,
441 "Address type %d not yet supported.\n", type);
442 status = -EPERM;
443 }
444 exit:
445 return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449 * have to clear it to prevent wrong frame routing
450 * especially in a bonding environment.
451 */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454 int status;
455 char zero_mac_addr[ETH_ALEN];
456 char *addr;
457
458 if (set) {
459 addr = &qdev->current_mac_addr[0];
460 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 "Set Mac addr %pM\n", addr);
462 } else {
463 memset(zero_mac_addr, 0, ETH_ALEN);
464 addr = &zero_mac_addr[0];
465 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 "Clearing MAC address\n");
467 }
468 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 if (status)
470 return status;
471 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 if (status)
475 netif_err(qdev, ifup, qdev->ndev,
476 "Failed to init mac address.\n");
477 return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482 netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 netif_carrier_on(qdev->ndev);
484 ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489 netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 netif_carrier_off(qdev->ndev);
491 ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495 * Used for debug and reg dump.
496 */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499 int status = 0;
500
501 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 if (status)
503 goto exit;
504
505 ql_write32(qdev, RT_IDX,
506 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 if (status)
509 goto exit;
510 *value = ql_read32(qdev, RT_DATA);
511 exit:
512 return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes. Each one can be used
516 * to route different frame types to various inbound queues. We send broadcast/
517 * multicast/error frames to the default queue for slow handling,
518 * and CAM hit/RSS frames to the fast handling queues.
519 */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 int enable)
522 {
523 int status = -EINVAL; /* Return error if no mask match. */
524 u32 value = 0;
525
526 switch (mask) {
527 case RT_IDX_CAM_HIT:
528 {
529 value = RT_IDX_DST_CAM_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
533 }
534 case RT_IDX_VALID: /* Promiscuous Mode frames. */
535 {
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
540 }
541 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
542 {
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
547 }
548 case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 {
550 value = RT_IDX_DST_DFLT_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_IP_CSUM_ERR_SLOT <<
553 RT_IDX_IDX_SHIFT); /* index */
554 break;
555 }
556 case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 {
558 value = RT_IDX_DST_DFLT_Q | /* dest */
559 RT_IDX_TYPE_NICQ | /* type */
560 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 RT_IDX_IDX_SHIFT); /* index */
562 break;
563 }
564 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
565 {
566 value = RT_IDX_DST_DFLT_Q | /* dest */
567 RT_IDX_TYPE_NICQ | /* type */
568 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 break;
570 }
571 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
572 {
573 value = RT_IDX_DST_DFLT_Q | /* dest */
574 RT_IDX_TYPE_NICQ | /* type */
575 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 break;
577 }
578 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
579 {
580 value = RT_IDX_DST_DFLT_Q | /* dest */
581 RT_IDX_TYPE_NICQ | /* type */
582 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 break;
584 }
585 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
586 {
587 value = RT_IDX_DST_RSS | /* dest */
588 RT_IDX_TYPE_NICQ | /* type */
589 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 break;
591 }
592 case 0: /* Clear the E-bit on an entry. */
593 {
594 value = RT_IDX_DST_DFLT_Q | /* dest */
595 RT_IDX_TYPE_NICQ | /* type */
596 (index << RT_IDX_IDX_SHIFT);/* index */
597 break;
598 }
599 default:
600 netif_err(qdev, ifup, qdev->ndev,
601 "Mask type %d not yet supported.\n", mask);
602 status = -EPERM;
603 goto exit;
604 }
605
606 if (value) {
607 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 if (status)
609 goto exit;
610 value |= (enable ? RT_IDX_E : 0);
611 ql_write32(qdev, RT_IDX, value);
612 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 }
614 exit:
615 return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629 * Otherwise, we may have multiple outstanding workers and don't want to
630 * enable until the last one finishes. In this case, the irq_cnt gets
631 * incremented every time we queue a worker and decremented every time
632 * a worker finishes. Once it hits zero we enable the interrupt.
633 */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636 u32 var = 0;
637 unsigned long hw_flags = 0;
638 struct intr_context *ctx = qdev->intr_context + intr;
639
640 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 /* Always enable if we're MSIX multi interrupts and
642 * it's not the default (zeroeth) interrupt.
643 */
644 ql_write32(qdev, INTR_EN,
645 ctx->intr_en_mask);
646 var = ql_read32(qdev, STS);
647 return var;
648 }
649
650 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 ql_write32(qdev, INTR_EN,
653 ctx->intr_en_mask);
654 var = ql_read32(qdev, STS);
655 }
656 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662 u32 var = 0;
663 struct intr_context *ctx;
664
665 /* HW disables for us if we're MSIX multi interrupts and
666 * it's not the default (zeroeth) interrupt.
667 */
668 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 return 0;
670
671 ctx = qdev->intr_context + intr;
672 spin_lock(&qdev->hw_lock);
673 if (!atomic_read(&ctx->irq_cnt)) {
674 ql_write32(qdev, INTR_EN,
675 ctx->intr_dis_mask);
676 var = ql_read32(qdev, STS);
677 }
678 atomic_inc(&ctx->irq_cnt);
679 spin_unlock(&qdev->hw_lock);
680 return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685 int i;
686 for (i = 0; i < qdev->intr_count; i++) {
687 /* The enable call does a atomic_dec_and_test
688 * and enables only if the result is zero.
689 * So we precharge it here.
690 */
691 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 i == 0))
693 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 ql_enable_completion_interrupt(qdev, i);
695 }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701 int status, i;
702 u16 csum = 0;
703 __le16 *flash = (__le16 *)&qdev->flash;
704
705 status = strncmp((char *)&qdev->flash, str, 4);
706 if (status) {
707 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 return status;
709 }
710
711 for (i = 0; i < size; i++)
712 csum += le16_to_cpu(*flash++);
713
714 if (csum)
715 netif_err(qdev, ifup, qdev->ndev,
716 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718 return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723 int status = 0;
724 /* wait for reg to come ready */
725 status = ql_wait_reg_rdy(qdev,
726 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 if (status)
728 goto exit;
729 /* set up for reg read */
730 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 /* wait for reg to come ready */
732 status = ql_wait_reg_rdy(qdev,
733 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 if (status)
735 goto exit;
736 /* This data is stored on flash as an array of
737 * __le32. Since ql_read32() returns cpu endian
738 * we need to swap it back.
739 */
740 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747 u32 i, size;
748 int status;
749 __le32 *p = (__le32 *)&qdev->flash;
750 u32 offset;
751 u8 mac_addr[6];
752
753 /* Get flash offset for function and adjust
754 * for dword access.
755 */
756 if (!qdev->port)
757 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 else
759 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 return -ETIMEDOUT;
763
764 size = sizeof(struct flash_params_8000) / sizeof(u32);
765 for (i = 0; i < size; i++, p++) {
766 status = ql_read_flash_word(qdev, i+offset, p);
767 if (status) {
768 netif_err(qdev, ifup, qdev->ndev,
769 "Error reading flash.\n");
770 goto exit;
771 }
772 }
773
774 status = ql_validate_flash(qdev,
775 sizeof(struct flash_params_8000) / sizeof(u16),
776 "8000");
777 if (status) {
778 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 status = -EINVAL;
780 goto exit;
781 }
782
783 /* Extract either manufacturer or BOFM modified
784 * MAC address.
785 */
786 if (qdev->flash.flash_params_8000.data_type1 == 2)
787 memcpy(mac_addr,
788 qdev->flash.flash_params_8000.mac_addr1,
789 qdev->ndev->addr_len);
790 else
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr,
793 qdev->ndev->addr_len);
794
795 if (!is_valid_ether_addr(mac_addr)) {
796 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 status = -EINVAL;
798 goto exit;
799 }
800
801 memcpy(qdev->ndev->dev_addr,
802 mac_addr,
803 qdev->ndev->addr_len);
804
805 exit:
806 ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812 int i;
813 int status;
814 __le32 *p = (__le32 *)&qdev->flash;
815 u32 offset = 0;
816 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818 /* Second function's parameters follow the first
819 * function's.
820 */
821 if (qdev->port)
822 offset = size;
823
824 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 return -ETIMEDOUT;
826
827 for (i = 0; i < size; i++, p++) {
828 status = ql_read_flash_word(qdev, i+offset, p);
829 if (status) {
830 netif_err(qdev, ifup, qdev->ndev,
831 "Error reading flash.\n");
832 goto exit;
833 }
834
835 }
836
837 status = ql_validate_flash(qdev,
838 sizeof(struct flash_params_8012) / sizeof(u16),
839 "8012");
840 if (status) {
841 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 status = -EINVAL;
843 goto exit;
844 }
845
846 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 status = -EINVAL;
848 goto exit;
849 }
850
851 memcpy(qdev->ndev->dev_addr,
852 qdev->flash.flash_params_8012.mac_addr,
853 qdev->ndev->addr_len);
854
855 exit:
856 ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861 * register pair. Each read/write requires us to wait for the ready
862 * bit before reading/writing the data.
863 */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866 int status;
867 /* wait for reg to come ready */
868 status = ql_wait_reg_rdy(qdev,
869 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 if (status)
871 return status;
872 /* write the data to the data reg */
873 ql_write32(qdev, XGMAC_DATA, data);
874 /* trigger the write */
875 ql_write32(qdev, XGMAC_ADDR, reg);
876 return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880 * register pair. Each read/write requires us to wait for the ready
881 * bit before reading/writing the data.
882 */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885 int status = 0;
886 /* wait for reg to come ready */
887 status = ql_wait_reg_rdy(qdev,
888 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 if (status)
890 goto exit;
891 /* set up for reg read */
892 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 /* wait for reg to come ready */
894 status = ql_wait_reg_rdy(qdev,
895 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 if (status)
897 goto exit;
898 /* get the data */
899 *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907 int status = 0;
908 u32 hi = 0;
909 u32 lo = 0;
910
911 status = ql_read_xgmac_reg(qdev, reg, &lo);
912 if (status)
913 goto exit;
914
915 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 if (status)
917 goto exit;
918
919 *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922 return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927 int status;
928 /*
929 * Get MPI firmware version for driver banner
930 * and ethool info.
931 */
932 status = ql_mb_about_fw(qdev);
933 if (status)
934 goto exit;
935 status = ql_mb_get_fw_state(qdev);
936 if (status)
937 goto exit;
938 /* Wake up a worker to get/set the TX/RX frame sizes. */
939 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 return status;
942 }
943
944 /* Take the MAC Core out of reset.
945 * Enable statistics counting.
946 * Take the transmitter/receiver out of reset.
947 * This functionality may be done in the MPI firmware at a
948 * later date.
949 */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952 int status = 0;
953 u32 data;
954
955 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 /* Another function has the semaphore, so
957 * wait for the port init bit to come ready.
958 */
959 netif_info(qdev, link, qdev->ndev,
960 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 if (status) {
963 netif_crit(qdev, link, qdev->ndev,
964 "Port initialize timed out.\n");
965 }
966 return status;
967 }
968
969 netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 /* Set the core reset. */
971 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 if (status)
973 goto end;
974 data |= GLOBAL_CFG_RESET;
975 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 if (status)
977 goto end;
978
979 /* Clear the core reset and turn on jumbo for receiver. */
980 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
981 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
982 data |= GLOBAL_CFG_TX_STAT_EN;
983 data |= GLOBAL_CFG_RX_STAT_EN;
984 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 if (status)
986 goto end;
987
988 /* Enable transmitter, and clear it's reset. */
989 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 if (status)
991 goto end;
992 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
993 data |= TX_CFG_EN; /* Enable the transmitter. */
994 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 if (status)
996 goto end;
997
998 /* Enable receiver and clear it's reset. */
999 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 if (status)
1001 goto end;
1002 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1003 data |= RX_CFG_EN; /* Enable the receiver. */
1004 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 if (status)
1006 goto end;
1007
1008 /* Turn on jumbo. */
1009 status =
1010 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 if (status)
1012 goto end;
1013 status =
1014 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 if (status)
1016 goto end;
1017
1018 /* Signal to the world that the port is enabled. */
1019 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027 return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 rx_ring->lbq_curr_idx++;
1035 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 rx_ring->lbq_curr_idx = 0;
1037 rx_ring->lbq_free_cnt++;
1038 return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 struct rx_ring *rx_ring)
1043 {
1044 struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046 pci_dma_sync_single_for_cpu(qdev->pdev,
1047 dma_unmap_addr(lbq_desc, mapaddr),
1048 rx_ring->lbq_buf_size,
1049 PCI_DMA_FROMDEVICE);
1050
1051 /* If it's the last chunk of our master page then
1052 * we unmap it.
1053 */
1054 if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 == ql_lbq_block_size(qdev))
1056 pci_unmap_page(qdev->pdev,
1057 lbq_desc->p.pg_chunk.map,
1058 ql_lbq_block_size(qdev),
1059 PCI_DMA_FROMDEVICE);
1060 return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 rx_ring->sbq_curr_idx++;
1068 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 rx_ring->sbq_curr_idx = 0;
1070 rx_ring->sbq_free_cnt++;
1071 return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077 rx_ring->cnsmr_idx++;
1078 rx_ring->curr_entry++;
1079 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 rx_ring->cnsmr_idx = 0;
1081 rx_ring->curr_entry = rx_ring->cq_base;
1082 }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 struct bq_desc *lbq_desc)
1092 {
1093 if (!rx_ring->pg_chunk.page) {
1094 u64 map;
1095 rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 GFP_ATOMIC,
1097 qdev->lbq_buf_order);
1098 if (unlikely(!rx_ring->pg_chunk.page)) {
1099 netif_err(qdev, drv, qdev->ndev,
1100 "page allocation failed.\n");
1101 return -ENOMEM;
1102 }
1103 rx_ring->pg_chunk.offset = 0;
1104 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 0, ql_lbq_block_size(qdev),
1106 PCI_DMA_FROMDEVICE);
1107 if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 __free_pages(rx_ring->pg_chunk.page,
1109 qdev->lbq_buf_order);
1110 rx_ring->pg_chunk.page = NULL;
1111 netif_err(qdev, drv, qdev->ndev,
1112 "PCI mapping failed.\n");
1113 return -ENOMEM;
1114 }
1115 rx_ring->pg_chunk.map = map;
1116 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 }
1118
1119 /* Copy the current master pg_chunk info
1120 * to the current descriptor.
1121 */
1122 lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123
1124 /* Adjust the master page chunk for next
1125 * buffer get.
1126 */
1127 rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 rx_ring->pg_chunk.page = NULL;
1130 lbq_desc->p.pg_chunk.last_flag = 1;
1131 } else {
1132 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 get_page(rx_ring->pg_chunk.page);
1134 lbq_desc->p.pg_chunk.last_flag = 0;
1135 }
1136 return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141 u32 clean_idx = rx_ring->lbq_clean_idx;
1142 u32 start_idx = clean_idx;
1143 struct bq_desc *lbq_desc;
1144 u64 map;
1145 int i;
1146
1147 while (rx_ring->lbq_free_cnt > 32) {
1148 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 "lbq: try cleaning clean_idx = %d.\n",
1151 clean_idx);
1152 lbq_desc = &rx_ring->lbq[clean_idx];
1153 if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154 rx_ring->lbq_clean_idx = clean_idx;
1155 netif_err(qdev, ifup, qdev->ndev,
1156 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 i, clean_idx);
1158 return;
1159 }
1160
1161 map = lbq_desc->p.pg_chunk.map +
1162 lbq_desc->p.pg_chunk.offset;
1163 dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 dma_unmap_len_set(lbq_desc, maplen,
1165 rx_ring->lbq_buf_size);
1166 *lbq_desc->addr = cpu_to_le64(map);
1167
1168 pci_dma_sync_single_for_device(qdev->pdev, map,
1169 rx_ring->lbq_buf_size,
1170 PCI_DMA_FROMDEVICE);
1171 clean_idx++;
1172 if (clean_idx == rx_ring->lbq_len)
1173 clean_idx = 0;
1174 }
1175
1176 rx_ring->lbq_clean_idx = clean_idx;
1177 rx_ring->lbq_prod_idx += 16;
1178 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 rx_ring->lbq_prod_idx = 0;
1180 rx_ring->lbq_free_cnt -= 16;
1181 }
1182
1183 if (start_idx != clean_idx) {
1184 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 "lbq: updating prod idx = %d.\n",
1186 rx_ring->lbq_prod_idx);
1187 ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 rx_ring->lbq_prod_idx_db_reg);
1189 }
1190 }
1191
1192 /* Process (refill) a small buffer queue. */
1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195 u32 clean_idx = rx_ring->sbq_clean_idx;
1196 u32 start_idx = clean_idx;
1197 struct bq_desc *sbq_desc;
1198 u64 map;
1199 int i;
1200
1201 while (rx_ring->sbq_free_cnt > 16) {
1202 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203 sbq_desc = &rx_ring->sbq[clean_idx];
1204 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 "sbq: try cleaning clean_idx = %d.\n",
1206 clean_idx);
1207 if (sbq_desc->p.skb == NULL) {
1208 netif_printk(qdev, rx_status, KERN_DEBUG,
1209 qdev->ndev,
1210 "sbq: getting new skb for index %d.\n",
1211 sbq_desc->index);
1212 sbq_desc->p.skb =
1213 netdev_alloc_skb(qdev->ndev,
1214 SMALL_BUFFER_SIZE);
1215 if (sbq_desc->p.skb == NULL) {
1216 rx_ring->sbq_clean_idx = clean_idx;
1217 return;
1218 }
1219 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 map = pci_map_single(qdev->pdev,
1221 sbq_desc->p.skb->data,
1222 rx_ring->sbq_buf_size,
1223 PCI_DMA_FROMDEVICE);
1224 if (pci_dma_mapping_error(qdev->pdev, map)) {
1225 netif_err(qdev, ifup, qdev->ndev,
1226 "PCI mapping failed.\n");
1227 rx_ring->sbq_clean_idx = clean_idx;
1228 dev_kfree_skb_any(sbq_desc->p.skb);
1229 sbq_desc->p.skb = NULL;
1230 return;
1231 }
1232 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 dma_unmap_len_set(sbq_desc, maplen,
1234 rx_ring->sbq_buf_size);
1235 *sbq_desc->addr = cpu_to_le64(map);
1236 }
1237
1238 clean_idx++;
1239 if (clean_idx == rx_ring->sbq_len)
1240 clean_idx = 0;
1241 }
1242 rx_ring->sbq_clean_idx = clean_idx;
1243 rx_ring->sbq_prod_idx += 16;
1244 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 rx_ring->sbq_prod_idx = 0;
1246 rx_ring->sbq_free_cnt -= 16;
1247 }
1248
1249 if (start_idx != clean_idx) {
1250 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 "sbq: updating prod idx = %d.\n",
1252 rx_ring->sbq_prod_idx);
1253 ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 rx_ring->sbq_prod_idx_db_reg);
1255 }
1256 }
1257
1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 struct rx_ring *rx_ring)
1260 {
1261 ql_update_sbq(qdev, rx_ring);
1262 ql_update_lbq(qdev, rx_ring);
1263 }
1264
1265 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1266 * fails at some stage, or from the interrupt when a tx completes.
1267 */
1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269 struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271 int i;
1272 for (i = 0; i < mapped; i++) {
1273 if (i == 0 || (i == 7 && mapped > 7)) {
1274 /*
1275 * Unmap the skb->data area, or the
1276 * external sglist (AKA the Outbound
1277 * Address List (OAL)).
1278 * If its the zeroeth element, then it's
1279 * the skb->data area. If it's the 7th
1280 * element and there is more than 6 frags,
1281 * then its an OAL.
1282 */
1283 if (i == 7) {
1284 netif_printk(qdev, tx_done, KERN_DEBUG,
1285 qdev->ndev,
1286 "unmapping OAL area.\n");
1287 }
1288 pci_unmap_single(qdev->pdev,
1289 dma_unmap_addr(&tx_ring_desc->map[i],
1290 mapaddr),
1291 dma_unmap_len(&tx_ring_desc->map[i],
1292 maplen),
1293 PCI_DMA_TODEVICE);
1294 } else {
1295 netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 "unmapping frag %d.\n", i);
1297 pci_unmap_page(qdev->pdev,
1298 dma_unmap_addr(&tx_ring_desc->map[i],
1299 mapaddr),
1300 dma_unmap_len(&tx_ring_desc->map[i],
1301 maplen), PCI_DMA_TODEVICE);
1302 }
1303 }
1304
1305 }
1306
1307 /* Map the buffers for this transmit. This will return
1308 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309 */
1310 static int ql_map_send(struct ql_adapter *qdev,
1311 struct ob_mac_iocb_req *mac_iocb_ptr,
1312 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314 int len = skb_headlen(skb);
1315 dma_addr_t map;
1316 int frag_idx, err, map_idx = 0;
1317 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 int frag_cnt = skb_shinfo(skb)->nr_frags;
1319
1320 if (frag_cnt) {
1321 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 "frag_cnt = %d.\n", frag_cnt);
1323 }
1324 /*
1325 * Map the skb buffer first.
1326 */
1327 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328
1329 err = pci_dma_mapping_error(qdev->pdev, map);
1330 if (err) {
1331 netif_err(qdev, tx_queued, qdev->ndev,
1332 "PCI mapping failed with error: %d\n", err);
1333
1334 return NETDEV_TX_BUSY;
1335 }
1336
1337 tbd->len = cpu_to_le32(len);
1338 tbd->addr = cpu_to_le64(map);
1339 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341 map_idx++;
1342
1343 /*
1344 * This loop fills the remainder of the 8 address descriptors
1345 * in the IOCB. If there are more than 7 fragments, then the
1346 * eighth address desc will point to an external list (OAL).
1347 * When this happens, the remainder of the frags will be stored
1348 * in this list.
1349 */
1350 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 tbd++;
1353 if (frag_idx == 6 && frag_cnt > 7) {
1354 /* Let's tack on an sglist.
1355 * Our control block will now
1356 * look like this:
1357 * iocb->seg[0] = skb->data
1358 * iocb->seg[1] = frag[0]
1359 * iocb->seg[2] = frag[1]
1360 * iocb->seg[3] = frag[2]
1361 * iocb->seg[4] = frag[3]
1362 * iocb->seg[5] = frag[4]
1363 * iocb->seg[6] = frag[5]
1364 * iocb->seg[7] = ptr to OAL (external sglist)
1365 * oal->seg[0] = frag[6]
1366 * oal->seg[1] = frag[7]
1367 * oal->seg[2] = frag[8]
1368 * oal->seg[3] = frag[9]
1369 * oal->seg[4] = frag[10]
1370 * etc...
1371 */
1372 /* Tack on the OAL in the eighth segment of IOCB. */
1373 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 sizeof(struct oal),
1375 PCI_DMA_TODEVICE);
1376 err = pci_dma_mapping_error(qdev->pdev, map);
1377 if (err) {
1378 netif_err(qdev, tx_queued, qdev->ndev,
1379 "PCI mapping outbound address list with error: %d\n",
1380 err);
1381 goto map_error;
1382 }
1383
1384 tbd->addr = cpu_to_le64(map);
1385 /*
1386 * The length is the number of fragments
1387 * that remain to be mapped times the length
1388 * of our sglist (OAL).
1389 */
1390 tbd->len =
1391 cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 (frag_cnt - frag_idx)) | TX_DESC_C);
1393 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394 map);
1395 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396 sizeof(struct oal));
1397 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 map_idx++;
1399 }
1400
1401 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402 DMA_TO_DEVICE);
1403
1404 err = dma_mapping_error(&qdev->pdev->dev, map);
1405 if (err) {
1406 netif_err(qdev, tx_queued, qdev->ndev,
1407 "PCI mapping frags failed with error: %d.\n",
1408 err);
1409 goto map_error;
1410 }
1411
1412 tbd->addr = cpu_to_le64(map);
1413 tbd->len = cpu_to_le32(skb_frag_size(frag));
1414 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 skb_frag_size(frag));
1417
1418 }
1419 /* Save the number of segments we've mapped. */
1420 tx_ring_desc->map_cnt = map_idx;
1421 /* Terminate the last segment. */
1422 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 return NETDEV_TX_OK;
1424
1425 map_error:
1426 /*
1427 * If the first frag mapping failed, then i will be zero.
1428 * This causes the unmap of the skb->data area. Otherwise
1429 * we pass in the number of frags that mapped successfully
1430 * so they can be umapped.
1431 */
1432 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 return NETDEV_TX_BUSY;
1434 }
1435
1436 /* Categorizing receive firmware frame errors */
1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 struct rx_ring *rx_ring)
1439 {
1440 struct nic_stats *stats = &qdev->nic_stats;
1441
1442 stats->rx_err_count++;
1443 rx_ring->rx_errors++;
1444
1445 switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 stats->rx_code_err++;
1448 break;
1449 case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 stats->rx_oversize_err++;
1451 break;
1452 case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 stats->rx_undersize_err++;
1454 break;
1455 case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 stats->rx_preamble_err++;
1457 break;
1458 case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 stats->rx_frame_len_err++;
1460 break;
1461 case IB_MAC_IOCB_RSP_ERR_CRC:
1462 stats->rx_crc_err++;
1463 default:
1464 break;
1465 }
1466 }
1467
1468 /**
1469 * ql_update_mac_hdr_len - helper routine to update the mac header length
1470 * based on vlan tags if present
1471 */
1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 void *page, size_t *len)
1475 {
1476 u16 *tags;
1477
1478 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 return;
1480 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 tags = (u16 *)page;
1482 /* Look for stacked vlan tags in ethertype field */
1483 if (tags[6] == ETH_P_8021Q &&
1484 tags[8] == ETH_P_8021Q)
1485 *len += 2 * VLAN_HLEN;
1486 else
1487 *len += VLAN_HLEN;
1488 }
1489 }
1490
1491 /* Process an inbound completion from an rx ring. */
1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 struct rx_ring *rx_ring,
1494 struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 u32 length,
1496 u16 vlan_id)
1497 {
1498 struct sk_buff *skb;
1499 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500 struct napi_struct *napi = &rx_ring->napi;
1501
1502 /* Frame error, so drop the packet. */
1503 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 put_page(lbq_desc->p.pg_chunk.page);
1506 return;
1507 }
1508 napi->dev = qdev->ndev;
1509
1510 skb = napi_get_frags(napi);
1511 if (!skb) {
1512 netif_err(qdev, drv, qdev->ndev,
1513 "Couldn't get an skb, exiting.\n");
1514 rx_ring->rx_dropped++;
1515 put_page(lbq_desc->p.pg_chunk.page);
1516 return;
1517 }
1518 prefetch(lbq_desc->p.pg_chunk.va);
1519 __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 lbq_desc->p.pg_chunk.page,
1521 lbq_desc->p.pg_chunk.offset,
1522 length);
1523
1524 skb->len += length;
1525 skb->data_len += length;
1526 skb->truesize += length;
1527 skb_shinfo(skb)->nr_frags++;
1528
1529 rx_ring->rx_packets++;
1530 rx_ring->rx_bytes += length;
1531 skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 skb_record_rx_queue(skb, rx_ring->cq_id);
1533 if (vlan_id != 0xffff)
1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535 napi_gro_frags(napi);
1536 }
1537
1538 /* Process an inbound completion from an rx ring. */
1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 struct rx_ring *rx_ring,
1541 struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 u32 length,
1543 u16 vlan_id)
1544 {
1545 struct net_device *ndev = qdev->ndev;
1546 struct sk_buff *skb = NULL;
1547 void *addr;
1548 struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 struct napi_struct *napi = &rx_ring->napi;
1550 size_t hlen = ETH_HLEN;
1551
1552 skb = netdev_alloc_skb(ndev, length);
1553 if (!skb) {
1554 rx_ring->rx_dropped++;
1555 put_page(lbq_desc->p.pg_chunk.page);
1556 return;
1557 }
1558
1559 addr = lbq_desc->p.pg_chunk.va;
1560 prefetch(addr);
1561
1562 /* Frame error, so drop the packet. */
1563 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 goto err_out;
1566 }
1567
1568 /* Update the MAC header length*/
1569 ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570
1571 /* The max framesize filter on this chip is set higher than
1572 * MTU since FCoE uses 2k frames.
1573 */
1574 if (skb->len > ndev->mtu + hlen) {
1575 netif_err(qdev, drv, qdev->ndev,
1576 "Segment too small, dropping.\n");
1577 rx_ring->rx_dropped++;
1578 goto err_out;
1579 }
1580 memcpy(skb_put(skb, hlen), addr, hlen);
1581 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 length);
1584 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585 lbq_desc->p.pg_chunk.offset + hlen,
1586 length - hlen);
1587 skb->len += length - hlen;
1588 skb->data_len += length - hlen;
1589 skb->truesize += length - hlen;
1590
1591 rx_ring->rx_packets++;
1592 rx_ring->rx_bytes += skb->len;
1593 skb->protocol = eth_type_trans(skb, ndev);
1594 skb_checksum_none_assert(skb);
1595
1596 if ((ndev->features & NETIF_F_RXCSUM) &&
1597 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 /* TCP frame. */
1599 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 "TCP checksum done!\n");
1602 skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 /* Unfragmented ipv4 UDP frame. */
1606 struct iphdr *iph =
1607 (struct iphdr *)((u8 *)addr + hlen);
1608 if (!(iph->frag_off &
1609 htons(IP_MF|IP_OFFSET))) {
1610 skb->ip_summed = CHECKSUM_UNNECESSARY;
1611 netif_printk(qdev, rx_status, KERN_DEBUG,
1612 qdev->ndev,
1613 "UDP checksum done!\n");
1614 }
1615 }
1616 }
1617
1618 skb_record_rx_queue(skb, rx_ring->cq_id);
1619 if (vlan_id != 0xffff)
1620 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 napi_gro_receive(napi, skb);
1623 else
1624 netif_receive_skb(skb);
1625 return;
1626 err_out:
1627 dev_kfree_skb_any(skb);
1628 put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630
1631 /* Process an inbound completion from an rx ring. */
1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 struct rx_ring *rx_ring,
1634 struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 u32 length,
1636 u16 vlan_id)
1637 {
1638 struct net_device *ndev = qdev->ndev;
1639 struct sk_buff *skb = NULL;
1640 struct sk_buff *new_skb = NULL;
1641 struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642
1643 skb = sbq_desc->p.skb;
1644 /* Allocate new_skb and copy */
1645 new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 if (new_skb == NULL) {
1647 rx_ring->rx_dropped++;
1648 return;
1649 }
1650 skb_reserve(new_skb, NET_IP_ALIGN);
1651 memcpy(skb_put(new_skb, length), skb->data, length);
1652 skb = new_skb;
1653
1654 /* Frame error, so drop the packet. */
1655 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1656 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1657 dev_kfree_skb_any(skb);
1658 return;
1659 }
1660
1661 /* loopback self test for ethtool */
1662 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1663 ql_check_lb_frame(qdev, skb);
1664 dev_kfree_skb_any(skb);
1665 return;
1666 }
1667
1668 /* The max framesize filter on this chip is set higher than
1669 * MTU since FCoE uses 2k frames.
1670 */
1671 if (skb->len > ndev->mtu + ETH_HLEN) {
1672 dev_kfree_skb_any(skb);
1673 rx_ring->rx_dropped++;
1674 return;
1675 }
1676
1677 prefetch(skb->data);
1678 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1679 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1680 "%s Multicast.\n",
1681 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1682 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1683 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1684 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1685 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1686 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1687 }
1688 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1689 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690 "Promiscuous Packet.\n");
1691
1692 rx_ring->rx_packets++;
1693 rx_ring->rx_bytes += skb->len;
1694 skb->protocol = eth_type_trans(skb, ndev);
1695 skb_checksum_none_assert(skb);
1696
1697 /* If rx checksum is on, and there are no
1698 * csum or frame errors.
1699 */
1700 if ((ndev->features & NETIF_F_RXCSUM) &&
1701 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1702 /* TCP frame. */
1703 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1704 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1705 "TCP checksum done!\n");
1706 skb->ip_summed = CHECKSUM_UNNECESSARY;
1707 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1708 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1709 /* Unfragmented ipv4 UDP frame. */
1710 struct iphdr *iph = (struct iphdr *) skb->data;
1711 if (!(iph->frag_off &
1712 htons(IP_MF|IP_OFFSET))) {
1713 skb->ip_summed = CHECKSUM_UNNECESSARY;
1714 netif_printk(qdev, rx_status, KERN_DEBUG,
1715 qdev->ndev,
1716 "UDP checksum done!\n");
1717 }
1718 }
1719 }
1720
1721 skb_record_rx_queue(skb, rx_ring->cq_id);
1722 if (vlan_id != 0xffff)
1723 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1724 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1725 napi_gro_receive(&rx_ring->napi, skb);
1726 else
1727 netif_receive_skb(skb);
1728 }
1729
1730 static void ql_realign_skb(struct sk_buff *skb, int len)
1731 {
1732 void *temp_addr = skb->data;
1733
1734 /* Undo the skb_reserve(skb,32) we did before
1735 * giving to hardware, and realign data on
1736 * a 2-byte boundary.
1737 */
1738 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1739 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1740 skb_copy_to_linear_data(skb, temp_addr,
1741 (unsigned int)len);
1742 }
1743
1744 /*
1745 * This function builds an skb for the given inbound
1746 * completion. It will be rewritten for readability in the near
1747 * future, but for not it works well.
1748 */
1749 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1750 struct rx_ring *rx_ring,
1751 struct ib_mac_iocb_rsp *ib_mac_rsp)
1752 {
1753 struct bq_desc *lbq_desc;
1754 struct bq_desc *sbq_desc;
1755 struct sk_buff *skb = NULL;
1756 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1757 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1758 size_t hlen = ETH_HLEN;
1759
1760 /*
1761 * Handle the header buffer if present.
1762 */
1763 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1764 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1765 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1766 "Header of %d bytes in small buffer.\n", hdr_len);
1767 /*
1768 * Headers fit nicely into a small buffer.
1769 */
1770 sbq_desc = ql_get_curr_sbuf(rx_ring);
1771 pci_unmap_single(qdev->pdev,
1772 dma_unmap_addr(sbq_desc, mapaddr),
1773 dma_unmap_len(sbq_desc, maplen),
1774 PCI_DMA_FROMDEVICE);
1775 skb = sbq_desc->p.skb;
1776 ql_realign_skb(skb, hdr_len);
1777 skb_put(skb, hdr_len);
1778 sbq_desc->p.skb = NULL;
1779 }
1780
1781 /*
1782 * Handle the data buffer(s).
1783 */
1784 if (unlikely(!length)) { /* Is there data too? */
1785 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1786 "No Data buffer in this packet.\n");
1787 return skb;
1788 }
1789
1790 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1791 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1792 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1793 "Headers in small, data of %d bytes in small, combine them.\n",
1794 length);
1795 /*
1796 * Data is less than small buffer size so it's
1797 * stuffed in a small buffer.
1798 * For this case we append the data
1799 * from the "data" small buffer to the "header" small
1800 * buffer.
1801 */
1802 sbq_desc = ql_get_curr_sbuf(rx_ring);
1803 pci_dma_sync_single_for_cpu(qdev->pdev,
1804 dma_unmap_addr
1805 (sbq_desc, mapaddr),
1806 dma_unmap_len
1807 (sbq_desc, maplen),
1808 PCI_DMA_FROMDEVICE);
1809 memcpy(skb_put(skb, length),
1810 sbq_desc->p.skb->data, length);
1811 pci_dma_sync_single_for_device(qdev->pdev,
1812 dma_unmap_addr
1813 (sbq_desc,
1814 mapaddr),
1815 dma_unmap_len
1816 (sbq_desc,
1817 maplen),
1818 PCI_DMA_FROMDEVICE);
1819 } else {
1820 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1821 "%d bytes in a single small buffer.\n",
1822 length);
1823 sbq_desc = ql_get_curr_sbuf(rx_ring);
1824 skb = sbq_desc->p.skb;
1825 ql_realign_skb(skb, length);
1826 skb_put(skb, length);
1827 pci_unmap_single(qdev->pdev,
1828 dma_unmap_addr(sbq_desc,
1829 mapaddr),
1830 dma_unmap_len(sbq_desc,
1831 maplen),
1832 PCI_DMA_FROMDEVICE);
1833 sbq_desc->p.skb = NULL;
1834 }
1835 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1836 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1837 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1838 "Header in small, %d bytes in large. Chain large to small!\n",
1839 length);
1840 /*
1841 * The data is in a single large buffer. We
1842 * chain it to the header buffer's skb and let
1843 * it rip.
1844 */
1845 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1846 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1847 "Chaining page at offset = %d, for %d bytes to skb.\n",
1848 lbq_desc->p.pg_chunk.offset, length);
1849 skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1850 lbq_desc->p.pg_chunk.offset,
1851 length);
1852 skb->len += length;
1853 skb->data_len += length;
1854 skb->truesize += length;
1855 } else {
1856 /*
1857 * The headers and data are in a single large buffer. We
1858 * copy it to a new skb and let it go. This can happen with
1859 * jumbo mtu on a non-TCP/UDP frame.
1860 */
1861 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1862 skb = netdev_alloc_skb(qdev->ndev, length);
1863 if (skb == NULL) {
1864 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1865 "No skb available, drop the packet.\n");
1866 return NULL;
1867 }
1868 pci_unmap_page(qdev->pdev,
1869 dma_unmap_addr(lbq_desc,
1870 mapaddr),
1871 dma_unmap_len(lbq_desc, maplen),
1872 PCI_DMA_FROMDEVICE);
1873 skb_reserve(skb, NET_IP_ALIGN);
1874 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1875 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1876 length);
1877 skb_fill_page_desc(skb, 0,
1878 lbq_desc->p.pg_chunk.page,
1879 lbq_desc->p.pg_chunk.offset,
1880 length);
1881 skb->len += length;
1882 skb->data_len += length;
1883 skb->truesize += length;
1884 length -= length;
1885 ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1886 lbq_desc->p.pg_chunk.va,
1887 &hlen);
1888 __pskb_pull_tail(skb, hlen);
1889 }
1890 } else {
1891 /*
1892 * The data is in a chain of large buffers
1893 * pointed to by a small buffer. We loop
1894 * thru and chain them to the our small header
1895 * buffer's skb.
1896 * frags: There are 18 max frags and our small
1897 * buffer will hold 32 of them. The thing is,
1898 * we'll use 3 max for our 9000 byte jumbo
1899 * frames. If the MTU goes up we could
1900 * eventually be in trouble.
1901 */
1902 int size, i = 0;
1903 sbq_desc = ql_get_curr_sbuf(rx_ring);
1904 pci_unmap_single(qdev->pdev,
1905 dma_unmap_addr(sbq_desc, mapaddr),
1906 dma_unmap_len(sbq_desc, maplen),
1907 PCI_DMA_FROMDEVICE);
1908 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1909 /*
1910 * This is an non TCP/UDP IP frame, so
1911 * the headers aren't split into a small
1912 * buffer. We have to use the small buffer
1913 * that contains our sg list as our skb to
1914 * send upstairs. Copy the sg list here to
1915 * a local buffer and use it to find the
1916 * pages to chain.
1917 */
1918 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1919 "%d bytes of headers & data in chain of large.\n",
1920 length);
1921 skb = sbq_desc->p.skb;
1922 sbq_desc->p.skb = NULL;
1923 skb_reserve(skb, NET_IP_ALIGN);
1924 }
1925 while (length > 0) {
1926 lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1927 size = (length < rx_ring->lbq_buf_size) ? length :
1928 rx_ring->lbq_buf_size;
1929
1930 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1931 "Adding page %d to skb for %d bytes.\n",
1932 i, size);
1933 skb_fill_page_desc(skb, i,
1934 lbq_desc->p.pg_chunk.page,
1935 lbq_desc->p.pg_chunk.offset,
1936 size);
1937 skb->len += size;
1938 skb->data_len += size;
1939 skb->truesize += size;
1940 length -= size;
1941 i++;
1942 }
1943 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1944 &hlen);
1945 __pskb_pull_tail(skb, hlen);
1946 }
1947 return skb;
1948 }
1949
1950 /* Process an inbound completion from an rx ring. */
1951 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1952 struct rx_ring *rx_ring,
1953 struct ib_mac_iocb_rsp *ib_mac_rsp,
1954 u16 vlan_id)
1955 {
1956 struct net_device *ndev = qdev->ndev;
1957 struct sk_buff *skb = NULL;
1958
1959 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1960
1961 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1962 if (unlikely(!skb)) {
1963 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1964 "No skb available, drop packet.\n");
1965 rx_ring->rx_dropped++;
1966 return;
1967 }
1968
1969 /* Frame error, so drop the packet. */
1970 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1971 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1972 dev_kfree_skb_any(skb);
1973 return;
1974 }
1975
1976 /* The max framesize filter on this chip is set higher than
1977 * MTU since FCoE uses 2k frames.
1978 */
1979 if (skb->len > ndev->mtu + ETH_HLEN) {
1980 dev_kfree_skb_any(skb);
1981 rx_ring->rx_dropped++;
1982 return;
1983 }
1984
1985 /* loopback self test for ethtool */
1986 if (test_bit(QL_SELFTEST, &qdev->flags)) {
1987 ql_check_lb_frame(qdev, skb);
1988 dev_kfree_skb_any(skb);
1989 return;
1990 }
1991
1992 prefetch(skb->data);
1993 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1994 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
1995 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1996 IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1997 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1998 IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1999 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2000 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2001 rx_ring->rx_multicast++;
2002 }
2003 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2004 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2005 "Promiscuous Packet.\n");
2006 }
2007
2008 skb->protocol = eth_type_trans(skb, ndev);
2009 skb_checksum_none_assert(skb);
2010
2011 /* If rx checksum is on, and there are no
2012 * csum or frame errors.
2013 */
2014 if ((ndev->features & NETIF_F_RXCSUM) &&
2015 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2016 /* TCP frame. */
2017 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2018 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2019 "TCP checksum done!\n");
2020 skb->ip_summed = CHECKSUM_UNNECESSARY;
2021 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2022 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2023 /* Unfragmented ipv4 UDP frame. */
2024 struct iphdr *iph = (struct iphdr *) skb->data;
2025 if (!(iph->frag_off &
2026 htons(IP_MF|IP_OFFSET))) {
2027 skb->ip_summed = CHECKSUM_UNNECESSARY;
2028 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2029 "TCP checksum done!\n");
2030 }
2031 }
2032 }
2033
2034 rx_ring->rx_packets++;
2035 rx_ring->rx_bytes += skb->len;
2036 skb_record_rx_queue(skb, rx_ring->cq_id);
2037 if (vlan_id != 0xffff)
2038 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2039 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2040 napi_gro_receive(&rx_ring->napi, skb);
2041 else
2042 netif_receive_skb(skb);
2043 }
2044
2045 /* Process an inbound completion from an rx ring. */
2046 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2047 struct rx_ring *rx_ring,
2048 struct ib_mac_iocb_rsp *ib_mac_rsp)
2049 {
2050 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2051 u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2052 (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2053 ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2054 IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2055
2056 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2057
2058 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2059 /* The data and headers are split into
2060 * separate buffers.
2061 */
2062 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2063 vlan_id);
2064 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2065 /* The data fit in a single small buffer.
2066 * Allocate a new skb, copy the data and
2067 * return the buffer to the free pool.
2068 */
2069 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2070 length, vlan_id);
2071 } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2072 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2073 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2074 /* TCP packet in a page chunk that's been checksummed.
2075 * Tack it on to our GRO skb and let it go.
2076 */
2077 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2078 length, vlan_id);
2079 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2080 /* Non-TCP packet in a page chunk. Allocate an
2081 * skb, tack it on frags, and send it up.
2082 */
2083 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2084 length, vlan_id);
2085 } else {
2086 /* Non-TCP/UDP large frames that span multiple buffers
2087 * can be processed corrrectly by the split frame logic.
2088 */
2089 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2090 vlan_id);
2091 }
2092
2093 return (unsigned long)length;
2094 }
2095
2096 /* Process an outbound completion from an rx ring. */
2097 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2098 struct ob_mac_iocb_rsp *mac_rsp)
2099 {
2100 struct tx_ring *tx_ring;
2101 struct tx_ring_desc *tx_ring_desc;
2102
2103 QL_DUMP_OB_MAC_RSP(mac_rsp);
2104 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2105 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2106 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2107 tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2108 tx_ring->tx_packets++;
2109 dev_kfree_skb(tx_ring_desc->skb);
2110 tx_ring_desc->skb = NULL;
2111
2112 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2113 OB_MAC_IOCB_RSP_S |
2114 OB_MAC_IOCB_RSP_L |
2115 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2116 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2117 netif_warn(qdev, tx_done, qdev->ndev,
2118 "Total descriptor length did not match transfer length.\n");
2119 }
2120 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2121 netif_warn(qdev, tx_done, qdev->ndev,
2122 "Frame too short to be valid, not sent.\n");
2123 }
2124 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2125 netif_warn(qdev, tx_done, qdev->ndev,
2126 "Frame too long, but sent anyway.\n");
2127 }
2128 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2129 netif_warn(qdev, tx_done, qdev->ndev,
2130 "PCI backplane error. Frame not sent.\n");
2131 }
2132 }
2133 atomic_inc(&tx_ring->tx_count);
2134 }
2135
2136 /* Fire up a handler to reset the MPI processor. */
2137 void ql_queue_fw_error(struct ql_adapter *qdev)
2138 {
2139 ql_link_off(qdev);
2140 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2141 }
2142
2143 void ql_queue_asic_error(struct ql_adapter *qdev)
2144 {
2145 ql_link_off(qdev);
2146 ql_disable_interrupts(qdev);
2147 /* Clear adapter up bit to signal the recovery
2148 * process that it shouldn't kill the reset worker
2149 * thread
2150 */
2151 clear_bit(QL_ADAPTER_UP, &qdev->flags);
2152 /* Set asic recovery bit to indicate reset process that we are
2153 * in fatal error recovery process rather than normal close
2154 */
2155 set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2156 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2157 }
2158
2159 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2160 struct ib_ae_iocb_rsp *ib_ae_rsp)
2161 {
2162 switch (ib_ae_rsp->event) {
2163 case MGMT_ERR_EVENT:
2164 netif_err(qdev, rx_err, qdev->ndev,
2165 "Management Processor Fatal Error.\n");
2166 ql_queue_fw_error(qdev);
2167 return;
2168
2169 case CAM_LOOKUP_ERR_EVENT:
2170 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2171 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2172 ql_queue_asic_error(qdev);
2173 return;
2174
2175 case SOFT_ECC_ERROR_EVENT:
2176 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2177 ql_queue_asic_error(qdev);
2178 break;
2179
2180 case PCI_ERR_ANON_BUF_RD:
2181 netdev_err(qdev->ndev, "PCI error occurred when reading "
2182 "anonymous buffers from rx_ring %d.\n",
2183 ib_ae_rsp->q_id);
2184 ql_queue_asic_error(qdev);
2185 break;
2186
2187 default:
2188 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2189 ib_ae_rsp->event);
2190 ql_queue_asic_error(qdev);
2191 break;
2192 }
2193 }
2194
2195 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2196 {
2197 struct ql_adapter *qdev = rx_ring->qdev;
2198 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2199 struct ob_mac_iocb_rsp *net_rsp = NULL;
2200 int count = 0;
2201
2202 struct tx_ring *tx_ring;
2203 /* While there are entries in the completion queue. */
2204 while (prod != rx_ring->cnsmr_idx) {
2205
2206 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2207 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2208 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2209
2210 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2211 rmb();
2212 switch (net_rsp->opcode) {
2213
2214 case OPCODE_OB_MAC_TSO_IOCB:
2215 case OPCODE_OB_MAC_IOCB:
2216 ql_process_mac_tx_intr(qdev, net_rsp);
2217 break;
2218 default:
2219 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2220 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2221 net_rsp->opcode);
2222 }
2223 count++;
2224 ql_update_cq(rx_ring);
2225 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2226 }
2227 if (!net_rsp)
2228 return 0;
2229 ql_write_cq_idx(rx_ring);
2230 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2231 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2232 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2233 /*
2234 * The queue got stopped because the tx_ring was full.
2235 * Wake it up, because it's now at least 25% empty.
2236 */
2237 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2238 }
2239
2240 return count;
2241 }
2242
2243 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2244 {
2245 struct ql_adapter *qdev = rx_ring->qdev;
2246 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2247 struct ql_net_rsp_iocb *net_rsp;
2248 int count = 0;
2249
2250 /* While there are entries in the completion queue. */
2251 while (prod != rx_ring->cnsmr_idx) {
2252
2253 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2254 "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2255 rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2256
2257 net_rsp = rx_ring->curr_entry;
2258 rmb();
2259 switch (net_rsp->opcode) {
2260 case OPCODE_IB_MAC_IOCB:
2261 ql_process_mac_rx_intr(qdev, rx_ring,
2262 (struct ib_mac_iocb_rsp *)
2263 net_rsp);
2264 break;
2265
2266 case OPCODE_IB_AE_IOCB:
2267 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2268 net_rsp);
2269 break;
2270 default:
2271 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2272 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2273 net_rsp->opcode);
2274 break;
2275 }
2276 count++;
2277 ql_update_cq(rx_ring);
2278 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2279 if (count == budget)
2280 break;
2281 }
2282 ql_update_buffer_queues(qdev, rx_ring);
2283 ql_write_cq_idx(rx_ring);
2284 return count;
2285 }
2286
2287 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2288 {
2289 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2290 struct ql_adapter *qdev = rx_ring->qdev;
2291 struct rx_ring *trx_ring;
2292 int i, work_done = 0;
2293 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2294
2295 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2296 "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2297
2298 /* Service the TX rings first. They start
2299 * right after the RSS rings. */
2300 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2301 trx_ring = &qdev->rx_ring[i];
2302 /* If this TX completion ring belongs to this vector and
2303 * it's not empty then service it.
2304 */
2305 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2306 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2307 trx_ring->cnsmr_idx)) {
2308 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2309 "%s: Servicing TX completion ring %d.\n",
2310 __func__, trx_ring->cq_id);
2311 ql_clean_outbound_rx_ring(trx_ring);
2312 }
2313 }
2314
2315 /*
2316 * Now service the RSS ring if it's active.
2317 */
2318 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2319 rx_ring->cnsmr_idx) {
2320 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2321 "%s: Servicing RX completion ring %d.\n",
2322 __func__, rx_ring->cq_id);
2323 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2324 }
2325
2326 if (work_done < budget) {
2327 napi_complete(napi);
2328 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2329 }
2330 return work_done;
2331 }
2332
2333 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2334 {
2335 struct ql_adapter *qdev = netdev_priv(ndev);
2336
2337 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2338 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2339 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2340 } else {
2341 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2342 }
2343 }
2344
2345 /**
2346 * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2347 * based on the features to enable/disable hardware vlan accel
2348 */
2349 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2350 netdev_features_t features)
2351 {
2352 struct ql_adapter *qdev = netdev_priv(ndev);
2353 int status = 0;
2354
2355 status = ql_adapter_down(qdev);
2356 if (status) {
2357 netif_err(qdev, link, qdev->ndev,
2358 "Failed to bring down the adapter\n");
2359 return status;
2360 }
2361
2362 /* update the features with resent change */
2363 ndev->features = features;
2364
2365 status = ql_adapter_up(qdev);
2366 if (status) {
2367 netif_err(qdev, link, qdev->ndev,
2368 "Failed to bring up the adapter\n");
2369 return status;
2370 }
2371 return status;
2372 }
2373
2374 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2375 netdev_features_t features)
2376 {
2377 int err;
2378
2379 /* Update the behavior of vlan accel in the adapter */
2380 err = qlge_update_hw_vlan_features(ndev, features);
2381 if (err)
2382 return err;
2383
2384 return features;
2385 }
2386
2387 static int qlge_set_features(struct net_device *ndev,
2388 netdev_features_t features)
2389 {
2390 netdev_features_t changed = ndev->features ^ features;
2391
2392 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2393 qlge_vlan_mode(ndev, features);
2394
2395 return 0;
2396 }
2397
2398 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2399 {
2400 u32 enable_bit = MAC_ADDR_E;
2401 int err;
2402
2403 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2404 MAC_ADDR_TYPE_VLAN, vid);
2405 if (err)
2406 netif_err(qdev, ifup, qdev->ndev,
2407 "Failed to init vlan address.\n");
2408 return err;
2409 }
2410
2411 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2412 {
2413 struct ql_adapter *qdev = netdev_priv(ndev);
2414 int status;
2415 int err;
2416
2417 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2418 if (status)
2419 return status;
2420
2421 err = __qlge_vlan_rx_add_vid(qdev, vid);
2422 set_bit(vid, qdev->active_vlans);
2423
2424 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2425
2426 return err;
2427 }
2428
2429 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2430 {
2431 u32 enable_bit = 0;
2432 int err;
2433
2434 err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2435 MAC_ADDR_TYPE_VLAN, vid);
2436 if (err)
2437 netif_err(qdev, ifup, qdev->ndev,
2438 "Failed to clear vlan address.\n");
2439 return err;
2440 }
2441
2442 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2443 {
2444 struct ql_adapter *qdev = netdev_priv(ndev);
2445 int status;
2446 int err;
2447
2448 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2449 if (status)
2450 return status;
2451
2452 err = __qlge_vlan_rx_kill_vid(qdev, vid);
2453 clear_bit(vid, qdev->active_vlans);
2454
2455 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2456
2457 return err;
2458 }
2459
2460 static void qlge_restore_vlan(struct ql_adapter *qdev)
2461 {
2462 int status;
2463 u16 vid;
2464
2465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466 if (status)
2467 return;
2468
2469 for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2470 __qlge_vlan_rx_add_vid(qdev, vid);
2471
2472 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2473 }
2474
2475 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2476 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2477 {
2478 struct rx_ring *rx_ring = dev_id;
2479 napi_schedule(&rx_ring->napi);
2480 return IRQ_HANDLED;
2481 }
2482
2483 /* This handles a fatal error, MPI activity, and the default
2484 * rx_ring in an MSI-X multiple vector environment.
2485 * In MSI/Legacy environment it also process the rest of
2486 * the rx_rings.
2487 */
2488 static irqreturn_t qlge_isr(int irq, void *dev_id)
2489 {
2490 struct rx_ring *rx_ring = dev_id;
2491 struct ql_adapter *qdev = rx_ring->qdev;
2492 struct intr_context *intr_context = &qdev->intr_context[0];
2493 u32 var;
2494 int work_done = 0;
2495
2496 spin_lock(&qdev->hw_lock);
2497 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2498 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2499 "Shared Interrupt, Not ours!\n");
2500 spin_unlock(&qdev->hw_lock);
2501 return IRQ_NONE;
2502 }
2503 spin_unlock(&qdev->hw_lock);
2504
2505 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2506
2507 /*
2508 * Check for fatal error.
2509 */
2510 if (var & STS_FE) {
2511 ql_queue_asic_error(qdev);
2512 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2513 var = ql_read32(qdev, ERR_STS);
2514 netdev_err(qdev->ndev, "Resetting chip. "
2515 "Error Status Register = 0x%x\n", var);
2516 return IRQ_HANDLED;
2517 }
2518
2519 /*
2520 * Check MPI processor activity.
2521 */
2522 if ((var & STS_PI) &&
2523 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2524 /*
2525 * We've got an async event or mailbox completion.
2526 * Handle it and clear the source of the interrupt.
2527 */
2528 netif_err(qdev, intr, qdev->ndev,
2529 "Got MPI processor interrupt.\n");
2530 ql_disable_completion_interrupt(qdev, intr_context->intr);
2531 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2532 queue_delayed_work_on(smp_processor_id(),
2533 qdev->workqueue, &qdev->mpi_work, 0);
2534 work_done++;
2535 }
2536
2537 /*
2538 * Get the bit-mask that shows the active queues for this
2539 * pass. Compare it to the queues that this irq services
2540 * and call napi if there's a match.
2541 */
2542 var = ql_read32(qdev, ISR1);
2543 if (var & intr_context->irq_mask) {
2544 netif_info(qdev, intr, qdev->ndev,
2545 "Waking handler for rx_ring[0].\n");
2546 ql_disable_completion_interrupt(qdev, intr_context->intr);
2547 napi_schedule(&rx_ring->napi);
2548 work_done++;
2549 }
2550 ql_enable_completion_interrupt(qdev, intr_context->intr);
2551 return work_done ? IRQ_HANDLED : IRQ_NONE;
2552 }
2553
2554 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2555 {
2556
2557 if (skb_is_gso(skb)) {
2558 int err;
2559
2560 err = skb_cow_head(skb, 0);
2561 if (err < 0)
2562 return err;
2563
2564 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2565 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2566 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2567 mac_iocb_ptr->total_hdrs_len =
2568 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2569 mac_iocb_ptr->net_trans_offset =
2570 cpu_to_le16(skb_network_offset(skb) |
2571 skb_transport_offset(skb)
2572 << OB_MAC_TRANSPORT_HDR_SHIFT);
2573 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2574 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2575 if (likely(skb->protocol == htons(ETH_P_IP))) {
2576 struct iphdr *iph = ip_hdr(skb);
2577 iph->check = 0;
2578 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2579 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2580 iph->daddr, 0,
2581 IPPROTO_TCP,
2582 0);
2583 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2584 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2585 tcp_hdr(skb)->check =
2586 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2587 &ipv6_hdr(skb)->daddr,
2588 0, IPPROTO_TCP, 0);
2589 }
2590 return 1;
2591 }
2592 return 0;
2593 }
2594
2595 static void ql_hw_csum_setup(struct sk_buff *skb,
2596 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2597 {
2598 int len;
2599 struct iphdr *iph = ip_hdr(skb);
2600 __sum16 *check;
2601 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2602 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2603 mac_iocb_ptr->net_trans_offset =
2604 cpu_to_le16(skb_network_offset(skb) |
2605 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2606
2607 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2608 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2609 if (likely(iph->protocol == IPPROTO_TCP)) {
2610 check = &(tcp_hdr(skb)->check);
2611 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2612 mac_iocb_ptr->total_hdrs_len =
2613 cpu_to_le16(skb_transport_offset(skb) +
2614 (tcp_hdr(skb)->doff << 2));
2615 } else {
2616 check = &(udp_hdr(skb)->check);
2617 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2618 mac_iocb_ptr->total_hdrs_len =
2619 cpu_to_le16(skb_transport_offset(skb) +
2620 sizeof(struct udphdr));
2621 }
2622 *check = ~csum_tcpudp_magic(iph->saddr,
2623 iph->daddr, len, iph->protocol, 0);
2624 }
2625
2626 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2627 {
2628 struct tx_ring_desc *tx_ring_desc;
2629 struct ob_mac_iocb_req *mac_iocb_ptr;
2630 struct ql_adapter *qdev = netdev_priv(ndev);
2631 int tso;
2632 struct tx_ring *tx_ring;
2633 u32 tx_ring_idx = (u32) skb->queue_mapping;
2634
2635 tx_ring = &qdev->tx_ring[tx_ring_idx];
2636
2637 if (skb_padto(skb, ETH_ZLEN))
2638 return NETDEV_TX_OK;
2639
2640 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2641 netif_info(qdev, tx_queued, qdev->ndev,
2642 "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2643 __func__, tx_ring_idx);
2644 netif_stop_subqueue(ndev, tx_ring->wq_id);
2645 tx_ring->tx_errors++;
2646 return NETDEV_TX_BUSY;
2647 }
2648 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2649 mac_iocb_ptr = tx_ring_desc->queue_entry;
2650 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2651
2652 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2653 mac_iocb_ptr->tid = tx_ring_desc->index;
2654 /* We use the upper 32-bits to store the tx queue for this IO.
2655 * When we get the completion we can use it to establish the context.
2656 */
2657 mac_iocb_ptr->txq_idx = tx_ring_idx;
2658 tx_ring_desc->skb = skb;
2659
2660 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2661
2662 if (vlan_tx_tag_present(skb)) {
2663 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2664 "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
2665 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2666 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2667 }
2668 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2669 if (tso < 0) {
2670 dev_kfree_skb_any(skb);
2671 return NETDEV_TX_OK;
2672 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2673 ql_hw_csum_setup(skb,
2674 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2675 }
2676 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2677 NETDEV_TX_OK) {
2678 netif_err(qdev, tx_queued, qdev->ndev,
2679 "Could not map the segments.\n");
2680 tx_ring->tx_errors++;
2681 return NETDEV_TX_BUSY;
2682 }
2683 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2684 tx_ring->prod_idx++;
2685 if (tx_ring->prod_idx == tx_ring->wq_len)
2686 tx_ring->prod_idx = 0;
2687 wmb();
2688
2689 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2690 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2691 "tx queued, slot %d, len %d\n",
2692 tx_ring->prod_idx, skb->len);
2693
2694 atomic_dec(&tx_ring->tx_count);
2695
2696 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2697 netif_stop_subqueue(ndev, tx_ring->wq_id);
2698 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2699 /*
2700 * The queue got stopped because the tx_ring was full.
2701 * Wake it up, because it's now at least 25% empty.
2702 */
2703 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2704 }
2705 return NETDEV_TX_OK;
2706 }
2707
2708
2709 static void ql_free_shadow_space(struct ql_adapter *qdev)
2710 {
2711 if (qdev->rx_ring_shadow_reg_area) {
2712 pci_free_consistent(qdev->pdev,
2713 PAGE_SIZE,
2714 qdev->rx_ring_shadow_reg_area,
2715 qdev->rx_ring_shadow_reg_dma);
2716 qdev->rx_ring_shadow_reg_area = NULL;
2717 }
2718 if (qdev->tx_ring_shadow_reg_area) {
2719 pci_free_consistent(qdev->pdev,
2720 PAGE_SIZE,
2721 qdev->tx_ring_shadow_reg_area,
2722 qdev->tx_ring_shadow_reg_dma);
2723 qdev->tx_ring_shadow_reg_area = NULL;
2724 }
2725 }
2726
2727 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2728 {
2729 qdev->rx_ring_shadow_reg_area =
2730 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2731 &qdev->rx_ring_shadow_reg_dma);
2732 if (qdev->rx_ring_shadow_reg_area == NULL) {
2733 netif_err(qdev, ifup, qdev->ndev,
2734 "Allocation of RX shadow space failed.\n");
2735 return -ENOMEM;
2736 }
2737
2738 qdev->tx_ring_shadow_reg_area =
2739 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2740 &qdev->tx_ring_shadow_reg_dma);
2741 if (qdev->tx_ring_shadow_reg_area == NULL) {
2742 netif_err(qdev, ifup, qdev->ndev,
2743 "Allocation of TX shadow space failed.\n");
2744 goto err_wqp_sh_area;
2745 }
2746 return 0;
2747
2748 err_wqp_sh_area:
2749 pci_free_consistent(qdev->pdev,
2750 PAGE_SIZE,
2751 qdev->rx_ring_shadow_reg_area,
2752 qdev->rx_ring_shadow_reg_dma);
2753 return -ENOMEM;
2754 }
2755
2756 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2757 {
2758 struct tx_ring_desc *tx_ring_desc;
2759 int i;
2760 struct ob_mac_iocb_req *mac_iocb_ptr;
2761
2762 mac_iocb_ptr = tx_ring->wq_base;
2763 tx_ring_desc = tx_ring->q;
2764 for (i = 0; i < tx_ring->wq_len; i++) {
2765 tx_ring_desc->index = i;
2766 tx_ring_desc->skb = NULL;
2767 tx_ring_desc->queue_entry = mac_iocb_ptr;
2768 mac_iocb_ptr++;
2769 tx_ring_desc++;
2770 }
2771 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2772 }
2773
2774 static void ql_free_tx_resources(struct ql_adapter *qdev,
2775 struct tx_ring *tx_ring)
2776 {
2777 if (tx_ring->wq_base) {
2778 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2779 tx_ring->wq_base, tx_ring->wq_base_dma);
2780 tx_ring->wq_base = NULL;
2781 }
2782 kfree(tx_ring->q);
2783 tx_ring->q = NULL;
2784 }
2785
2786 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2787 struct tx_ring *tx_ring)
2788 {
2789 tx_ring->wq_base =
2790 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2791 &tx_ring->wq_base_dma);
2792
2793 if ((tx_ring->wq_base == NULL) ||
2794 tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2795 goto pci_alloc_err;
2796
2797 tx_ring->q =
2798 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2799 if (tx_ring->q == NULL)
2800 goto err;
2801
2802 return 0;
2803 err:
2804 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2805 tx_ring->wq_base, tx_ring->wq_base_dma);
2806 tx_ring->wq_base = NULL;
2807 pci_alloc_err:
2808 netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2809 return -ENOMEM;
2810 }
2811
2812 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2813 {
2814 struct bq_desc *lbq_desc;
2815
2816 uint32_t curr_idx, clean_idx;
2817
2818 curr_idx = rx_ring->lbq_curr_idx;
2819 clean_idx = rx_ring->lbq_clean_idx;
2820 while (curr_idx != clean_idx) {
2821 lbq_desc = &rx_ring->lbq[curr_idx];
2822
2823 if (lbq_desc->p.pg_chunk.last_flag) {
2824 pci_unmap_page(qdev->pdev,
2825 lbq_desc->p.pg_chunk.map,
2826 ql_lbq_block_size(qdev),
2827 PCI_DMA_FROMDEVICE);
2828 lbq_desc->p.pg_chunk.last_flag = 0;
2829 }
2830
2831 put_page(lbq_desc->p.pg_chunk.page);
2832 lbq_desc->p.pg_chunk.page = NULL;
2833
2834 if (++curr_idx == rx_ring->lbq_len)
2835 curr_idx = 0;
2836
2837 }
2838 if (rx_ring->pg_chunk.page) {
2839 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2840 ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2841 put_page(rx_ring->pg_chunk.page);
2842 rx_ring->pg_chunk.page = NULL;
2843 }
2844 }
2845
2846 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2847 {
2848 int i;
2849 struct bq_desc *sbq_desc;
2850
2851 for (i = 0; i < rx_ring->sbq_len; i++) {
2852 sbq_desc = &rx_ring->sbq[i];
2853 if (sbq_desc == NULL) {
2854 netif_err(qdev, ifup, qdev->ndev,
2855 "sbq_desc %d is NULL.\n", i);
2856 return;
2857 }
2858 if (sbq_desc->p.skb) {
2859 pci_unmap_single(qdev->pdev,
2860 dma_unmap_addr(sbq_desc, mapaddr),
2861 dma_unmap_len(sbq_desc, maplen),
2862 PCI_DMA_FROMDEVICE);
2863 dev_kfree_skb(sbq_desc->p.skb);
2864 sbq_desc->p.skb = NULL;
2865 }
2866 }
2867 }
2868
2869 /* Free all large and small rx buffers associated
2870 * with the completion queues for this device.
2871 */
2872 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2873 {
2874 int i;
2875 struct rx_ring *rx_ring;
2876
2877 for (i = 0; i < qdev->rx_ring_count; i++) {
2878 rx_ring = &qdev->rx_ring[i];
2879 if (rx_ring->lbq)
2880 ql_free_lbq_buffers(qdev, rx_ring);
2881 if (rx_ring->sbq)
2882 ql_free_sbq_buffers(qdev, rx_ring);
2883 }
2884 }
2885
2886 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2887 {
2888 struct rx_ring *rx_ring;
2889 int i;
2890
2891 for (i = 0; i < qdev->rx_ring_count; i++) {
2892 rx_ring = &qdev->rx_ring[i];
2893 if (rx_ring->type != TX_Q)
2894 ql_update_buffer_queues(qdev, rx_ring);
2895 }
2896 }
2897
2898 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2899 struct rx_ring *rx_ring)
2900 {
2901 int i;
2902 struct bq_desc *lbq_desc;
2903 __le64 *bq = rx_ring->lbq_base;
2904
2905 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2906 for (i = 0; i < rx_ring->lbq_len; i++) {
2907 lbq_desc = &rx_ring->lbq[i];
2908 memset(lbq_desc, 0, sizeof(*lbq_desc));
2909 lbq_desc->index = i;
2910 lbq_desc->addr = bq;
2911 bq++;
2912 }
2913 }
2914
2915 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2916 struct rx_ring *rx_ring)
2917 {
2918 int i;
2919 struct bq_desc *sbq_desc;
2920 __le64 *bq = rx_ring->sbq_base;
2921
2922 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2923 for (i = 0; i < rx_ring->sbq_len; i++) {
2924 sbq_desc = &rx_ring->sbq[i];
2925 memset(sbq_desc, 0, sizeof(*sbq_desc));
2926 sbq_desc->index = i;
2927 sbq_desc->addr = bq;
2928 bq++;
2929 }
2930 }
2931
2932 static void ql_free_rx_resources(struct ql_adapter *qdev,
2933 struct rx_ring *rx_ring)
2934 {
2935 /* Free the small buffer queue. */
2936 if (rx_ring->sbq_base) {
2937 pci_free_consistent(qdev->pdev,
2938 rx_ring->sbq_size,
2939 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2940 rx_ring->sbq_base = NULL;
2941 }
2942
2943 /* Free the small buffer queue control blocks. */
2944 kfree(rx_ring->sbq);
2945 rx_ring->sbq = NULL;
2946
2947 /* Free the large buffer queue. */
2948 if (rx_ring->lbq_base) {
2949 pci_free_consistent(qdev->pdev,
2950 rx_ring->lbq_size,
2951 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2952 rx_ring->lbq_base = NULL;
2953 }
2954
2955 /* Free the large buffer queue control blocks. */
2956 kfree(rx_ring->lbq);
2957 rx_ring->lbq = NULL;
2958
2959 /* Free the rx queue. */
2960 if (rx_ring->cq_base) {
2961 pci_free_consistent(qdev->pdev,
2962 rx_ring->cq_size,
2963 rx_ring->cq_base, rx_ring->cq_base_dma);
2964 rx_ring->cq_base = NULL;
2965 }
2966 }
2967
2968 /* Allocate queues and buffers for this completions queue based
2969 * on the values in the parameter structure. */
2970 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2971 struct rx_ring *rx_ring)
2972 {
2973
2974 /*
2975 * Allocate the completion queue for this rx_ring.
2976 */
2977 rx_ring->cq_base =
2978 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2979 &rx_ring->cq_base_dma);
2980
2981 if (rx_ring->cq_base == NULL) {
2982 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2983 return -ENOMEM;
2984 }
2985
2986 if (rx_ring->sbq_len) {
2987 /*
2988 * Allocate small buffer queue.
2989 */
2990 rx_ring->sbq_base =
2991 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2992 &rx_ring->sbq_base_dma);
2993
2994 if (rx_ring->sbq_base == NULL) {
2995 netif_err(qdev, ifup, qdev->ndev,
2996 "Small buffer queue allocation failed.\n");
2997 goto err_mem;
2998 }
2999
3000 /*
3001 * Allocate small buffer queue control blocks.
3002 */
3003 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3004 sizeof(struct bq_desc),
3005 GFP_KERNEL);
3006 if (rx_ring->sbq == NULL)
3007 goto err_mem;
3008
3009 ql_init_sbq_ring(qdev, rx_ring);
3010 }
3011
3012 if (rx_ring->lbq_len) {
3013 /*
3014 * Allocate large buffer queue.
3015 */
3016 rx_ring->lbq_base =
3017 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3018 &rx_ring->lbq_base_dma);
3019
3020 if (rx_ring->lbq_base == NULL) {
3021 netif_err(qdev, ifup, qdev->ndev,
3022 "Large buffer queue allocation failed.\n");
3023 goto err_mem;
3024 }
3025 /*
3026 * Allocate large buffer queue control blocks.
3027 */
3028 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3029 sizeof(struct bq_desc),
3030 GFP_KERNEL);
3031 if (rx_ring->lbq == NULL)
3032 goto err_mem;
3033
3034 ql_init_lbq_ring(qdev, rx_ring);
3035 }
3036
3037 return 0;
3038
3039 err_mem:
3040 ql_free_rx_resources(qdev, rx_ring);
3041 return -ENOMEM;
3042 }
3043
3044 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3045 {
3046 struct tx_ring *tx_ring;
3047 struct tx_ring_desc *tx_ring_desc;
3048 int i, j;
3049
3050 /*
3051 * Loop through all queues and free
3052 * any resources.
3053 */
3054 for (j = 0; j < qdev->tx_ring_count; j++) {
3055 tx_ring = &qdev->tx_ring[j];
3056 for (i = 0; i < tx_ring->wq_len; i++) {
3057 tx_ring_desc = &tx_ring->q[i];
3058 if (tx_ring_desc && tx_ring_desc->skb) {
3059 netif_err(qdev, ifdown, qdev->ndev,
3060 "Freeing lost SKB %p, from queue %d, index %d.\n",
3061 tx_ring_desc->skb, j,
3062 tx_ring_desc->index);
3063 ql_unmap_send(qdev, tx_ring_desc,
3064 tx_ring_desc->map_cnt);
3065 dev_kfree_skb(tx_ring_desc->skb);
3066 tx_ring_desc->skb = NULL;
3067 }
3068 }
3069 }
3070 }
3071
3072 static void ql_free_mem_resources(struct ql_adapter *qdev)
3073 {
3074 int i;
3075
3076 for (i = 0; i < qdev->tx_ring_count; i++)
3077 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3078 for (i = 0; i < qdev->rx_ring_count; i++)
3079 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3080 ql_free_shadow_space(qdev);
3081 }
3082
3083 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3084 {
3085 int i;
3086
3087 /* Allocate space for our shadow registers and such. */
3088 if (ql_alloc_shadow_space(qdev))
3089 return -ENOMEM;
3090
3091 for (i = 0; i < qdev->rx_ring_count; i++) {
3092 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3093 netif_err(qdev, ifup, qdev->ndev,
3094 "RX resource allocation failed.\n");
3095 goto err_mem;
3096 }
3097 }
3098 /* Allocate tx queue resources */
3099 for (i = 0; i < qdev->tx_ring_count; i++) {
3100 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3101 netif_err(qdev, ifup, qdev->ndev,
3102 "TX resource allocation failed.\n");
3103 goto err_mem;
3104 }
3105 }
3106 return 0;
3107
3108 err_mem:
3109 ql_free_mem_resources(qdev);
3110 return -ENOMEM;
3111 }
3112
3113 /* Set up the rx ring control block and pass it to the chip.
3114 * The control block is defined as
3115 * "Completion Queue Initialization Control Block", or cqicb.
3116 */
3117 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3118 {
3119 struct cqicb *cqicb = &rx_ring->cqicb;
3120 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3121 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3122 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3123 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3124 void __iomem *doorbell_area =
3125 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3126 int err = 0;
3127 u16 bq_len;
3128 u64 tmp;
3129 __le64 *base_indirect_ptr;
3130 int page_entries;
3131
3132 /* Set up the shadow registers for this ring. */
3133 rx_ring->prod_idx_sh_reg = shadow_reg;
3134 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3135 *rx_ring->prod_idx_sh_reg = 0;
3136 shadow_reg += sizeof(u64);
3137 shadow_reg_dma += sizeof(u64);
3138 rx_ring->lbq_base_indirect = shadow_reg;
3139 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3140 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3141 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3142 rx_ring->sbq_base_indirect = shadow_reg;
3143 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3144
3145 /* PCI doorbell mem area + 0x00 for consumer index register */
3146 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3147 rx_ring->cnsmr_idx = 0;
3148 rx_ring->curr_entry = rx_ring->cq_base;
3149
3150 /* PCI doorbell mem area + 0x04 for valid register */
3151 rx_ring->valid_db_reg = doorbell_area + 0x04;
3152
3153 /* PCI doorbell mem area + 0x18 for large buffer consumer */
3154 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3155
3156 /* PCI doorbell mem area + 0x1c */
3157 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3158
3159 memset((void *)cqicb, 0, sizeof(struct cqicb));
3160 cqicb->msix_vect = rx_ring->irq;
3161
3162 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3163 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3164
3165 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3166
3167 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3168
3169 /*
3170 * Set up the control block load flags.
3171 */
3172 cqicb->flags = FLAGS_LC | /* Load queue base address */
3173 FLAGS_LV | /* Load MSI-X vector */
3174 FLAGS_LI; /* Load irq delay values */
3175 if (rx_ring->lbq_len) {
3176 cqicb->flags |= FLAGS_LL; /* Load lbq values */
3177 tmp = (u64)rx_ring->lbq_base_dma;
3178 base_indirect_ptr = rx_ring->lbq_base_indirect;
3179 page_entries = 0;
3180 do {
3181 *base_indirect_ptr = cpu_to_le64(tmp);
3182 tmp += DB_PAGE_SIZE;
3183 base_indirect_ptr++;
3184 page_entries++;
3185 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3186 cqicb->lbq_addr =
3187 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3188 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3189 (u16) rx_ring->lbq_buf_size;
3190 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3191 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3192 (u16) rx_ring->lbq_len;
3193 cqicb->lbq_len = cpu_to_le16(bq_len);
3194 rx_ring->lbq_prod_idx = 0;
3195 rx_ring->lbq_curr_idx = 0;
3196 rx_ring->lbq_clean_idx = 0;
3197 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3198 }
3199 if (rx_ring->sbq_len) {
3200 cqicb->flags |= FLAGS_LS; /* Load sbq values */
3201 tmp = (u64)rx_ring->sbq_base_dma;
3202 base_indirect_ptr = rx_ring->sbq_base_indirect;
3203 page_entries = 0;
3204 do {
3205 *base_indirect_ptr = cpu_to_le64(tmp);
3206 tmp += DB_PAGE_SIZE;
3207 base_indirect_ptr++;
3208 page_entries++;
3209 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3210 cqicb->sbq_addr =
3211 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3212 cqicb->sbq_buf_size =
3213 cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3214 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3215 (u16) rx_ring->sbq_len;
3216 cqicb->sbq_len = cpu_to_le16(bq_len);
3217 rx_ring->sbq_prod_idx = 0;
3218 rx_ring->sbq_curr_idx = 0;
3219 rx_ring->sbq_clean_idx = 0;
3220 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3221 }
3222 switch (rx_ring->type) {
3223 case TX_Q:
3224 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3225 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3226 break;
3227 case RX_Q:
3228 /* Inbound completion handling rx_rings run in
3229 * separate NAPI contexts.
3230 */
3231 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3232 64);
3233 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3234 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3235 break;
3236 default:
3237 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3238 "Invalid rx_ring->type = %d.\n", rx_ring->type);
3239 }
3240 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3241 CFG_LCQ, rx_ring->cq_id);
3242 if (err) {
3243 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3244 return err;
3245 }
3246 return err;
3247 }
3248
3249 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3250 {
3251 struct wqicb *wqicb = (struct wqicb *)tx_ring;
3252 void __iomem *doorbell_area =
3253 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3254 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3255 (tx_ring->wq_id * sizeof(u64));
3256 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3257 (tx_ring->wq_id * sizeof(u64));
3258 int err = 0;
3259
3260 /*
3261 * Assign doorbell registers for this tx_ring.
3262 */
3263 /* TX PCI doorbell mem area for tx producer index */
3264 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3265 tx_ring->prod_idx = 0;
3266 /* TX PCI doorbell mem area + 0x04 */
3267 tx_ring->valid_db_reg = doorbell_area + 0x04;
3268
3269 /*
3270 * Assign shadow registers for this tx_ring.
3271 */
3272 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3273 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3274
3275 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3276 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3277 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3278 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3279 wqicb->rid = 0;
3280 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3281
3282 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3283
3284 ql_init_tx_ring(qdev, tx_ring);
3285
3286 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3287 (u16) tx_ring->wq_id);
3288 if (err) {
3289 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3290 return err;
3291 }
3292 return err;
3293 }
3294
3295 static void ql_disable_msix(struct ql_adapter *qdev)
3296 {
3297 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3298 pci_disable_msix(qdev->pdev);
3299 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3300 kfree(qdev->msi_x_entry);
3301 qdev->msi_x_entry = NULL;
3302 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3303 pci_disable_msi(qdev->pdev);
3304 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3305 }
3306 }
3307
3308 /* We start by trying to get the number of vectors
3309 * stored in qdev->intr_count. If we don't get that
3310 * many then we reduce the count and try again.
3311 */
3312 static void ql_enable_msix(struct ql_adapter *qdev)
3313 {
3314 int i, err;
3315
3316 /* Get the MSIX vectors. */
3317 if (qlge_irq_type == MSIX_IRQ) {
3318 /* Try to alloc space for the msix struct,
3319 * if it fails then go to MSI/legacy.
3320 */
3321 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3322 sizeof(struct msix_entry),
3323 GFP_KERNEL);
3324 if (!qdev->msi_x_entry) {
3325 qlge_irq_type = MSI_IRQ;
3326 goto msi;
3327 }
3328
3329 for (i = 0; i < qdev->intr_count; i++)
3330 qdev->msi_x_entry[i].entry = i;
3331
3332 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3333 1, qdev->intr_count);
3334 if (err < 0) {
3335 kfree(qdev->msi_x_entry);
3336 qdev->msi_x_entry = NULL;
3337 netif_warn(qdev, ifup, qdev->ndev,
3338 "MSI-X Enable failed, trying MSI.\n");
3339 qlge_irq_type = MSI_IRQ;
3340 } else {
3341 qdev->intr_count = err;
3342 set_bit(QL_MSIX_ENABLED, &qdev->flags);
3343 netif_info(qdev, ifup, qdev->ndev,
3344 "MSI-X Enabled, got %d vectors.\n",
3345 qdev->intr_count);
3346 return;
3347 }
3348 }
3349 msi:
3350 qdev->intr_count = 1;
3351 if (qlge_irq_type == MSI_IRQ) {
3352 if (!pci_enable_msi(qdev->pdev)) {
3353 set_bit(QL_MSI_ENABLED, &qdev->flags);
3354 netif_info(qdev, ifup, qdev->ndev,
3355 "Running with MSI interrupts.\n");
3356 return;
3357 }
3358 }
3359 qlge_irq_type = LEG_IRQ;
3360 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3361 "Running with legacy interrupts.\n");
3362 }
3363
3364 /* Each vector services 1 RSS ring and and 1 or more
3365 * TX completion rings. This function loops through
3366 * the TX completion rings and assigns the vector that
3367 * will service it. An example would be if there are
3368 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3369 * This would mean that vector 0 would service RSS ring 0
3370 * and TX completion rings 0,1,2 and 3. Vector 1 would
3371 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3372 */
3373 static void ql_set_tx_vect(struct ql_adapter *qdev)
3374 {
3375 int i, j, vect;
3376 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3377
3378 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3379 /* Assign irq vectors to TX rx_rings.*/
3380 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3381 i < qdev->rx_ring_count; i++) {
3382 if (j == tx_rings_per_vector) {
3383 vect++;
3384 j = 0;
3385 }
3386 qdev->rx_ring[i].irq = vect;
3387 j++;
3388 }
3389 } else {
3390 /* For single vector all rings have an irq
3391 * of zero.
3392 */
3393 for (i = 0; i < qdev->rx_ring_count; i++)
3394 qdev->rx_ring[i].irq = 0;
3395 }
3396 }
3397
3398 /* Set the interrupt mask for this vector. Each vector
3399 * will service 1 RSS ring and 1 or more TX completion
3400 * rings. This function sets up a bit mask per vector
3401 * that indicates which rings it services.
3402 */
3403 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3404 {
3405 int j, vect = ctx->intr;
3406 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3407
3408 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3409 /* Add the RSS ring serviced by this vector
3410 * to the mask.
3411 */
3412 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3413 /* Add the TX ring(s) serviced by this vector
3414 * to the mask. */
3415 for (j = 0; j < tx_rings_per_vector; j++) {
3416 ctx->irq_mask |=
3417 (1 << qdev->rx_ring[qdev->rss_ring_count +
3418 (vect * tx_rings_per_vector) + j].cq_id);
3419 }
3420 } else {
3421 /* For single vector we just shift each queue's
3422 * ID into the mask.
3423 */
3424 for (j = 0; j < qdev->rx_ring_count; j++)
3425 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3426 }
3427 }
3428
3429 /*
3430 * Here we build the intr_context structures based on
3431 * our rx_ring count and intr vector count.
3432 * The intr_context structure is used to hook each vector
3433 * to possibly different handlers.
3434 */
3435 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3436 {
3437 int i = 0;
3438 struct intr_context *intr_context = &qdev->intr_context[0];
3439
3440 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3441 /* Each rx_ring has it's
3442 * own intr_context since we have separate
3443 * vectors for each queue.
3444 */
3445 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3446 qdev->rx_ring[i].irq = i;
3447 intr_context->intr = i;
3448 intr_context->qdev = qdev;
3449 /* Set up this vector's bit-mask that indicates
3450 * which queues it services.
3451 */
3452 ql_set_irq_mask(qdev, intr_context);
3453 /*
3454 * We set up each vectors enable/disable/read bits so
3455 * there's no bit/mask calculations in the critical path.
3456 */
3457 intr_context->intr_en_mask =
3458 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3459 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3460 | i;
3461 intr_context->intr_dis_mask =
3462 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3463 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3464 INTR_EN_IHD | i;
3465 intr_context->intr_read_mask =
3466 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3467 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3468 i;
3469 if (i == 0) {
3470 /* The first vector/queue handles
3471 * broadcast/multicast, fatal errors,
3472 * and firmware events. This in addition
3473 * to normal inbound NAPI processing.
3474 */
3475 intr_context->handler = qlge_isr;
3476 sprintf(intr_context->name, "%s-rx-%d",
3477 qdev->ndev->name, i);
3478 } else {
3479 /*
3480 * Inbound queues handle unicast frames only.
3481 */
3482 intr_context->handler = qlge_msix_rx_isr;
3483 sprintf(intr_context->name, "%s-rx-%d",
3484 qdev->ndev->name, i);
3485 }
3486 }
3487 } else {
3488 /*
3489 * All rx_rings use the same intr_context since
3490 * there is only one vector.
3491 */
3492 intr_context->intr = 0;
3493 intr_context->qdev = qdev;
3494 /*
3495 * We set up each vectors enable/disable/read bits so
3496 * there's no bit/mask calculations in the critical path.
3497 */
3498 intr_context->intr_en_mask =
3499 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3500 intr_context->intr_dis_mask =
3501 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3502 INTR_EN_TYPE_DISABLE;
3503 intr_context->intr_read_mask =
3504 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3505 /*
3506 * Single interrupt means one handler for all rings.
3507 */
3508 intr_context->handler = qlge_isr;
3509 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3510 /* Set up this vector's bit-mask that indicates
3511 * which queues it services. In this case there is
3512 * a single vector so it will service all RSS and
3513 * TX completion rings.
3514 */
3515 ql_set_irq_mask(qdev, intr_context);
3516 }
3517 /* Tell the TX completion rings which MSIx vector
3518 * they will be using.
3519 */
3520 ql_set_tx_vect(qdev);
3521 }
3522
3523 static void ql_free_irq(struct ql_adapter *qdev)
3524 {
3525 int i;
3526 struct intr_context *intr_context = &qdev->intr_context[0];
3527
3528 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3529 if (intr_context->hooked) {
3530 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3531 free_irq(qdev->msi_x_entry[i].vector,
3532 &qdev->rx_ring[i]);
3533 } else {
3534 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3535 }
3536 }
3537 }
3538 ql_disable_msix(qdev);
3539 }
3540
3541 static int ql_request_irq(struct ql_adapter *qdev)
3542 {
3543 int i;
3544 int status = 0;
3545 struct pci_dev *pdev = qdev->pdev;
3546 struct intr_context *intr_context = &qdev->intr_context[0];
3547
3548 ql_resolve_queues_to_irqs(qdev);
3549
3550 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3551 atomic_set(&intr_context->irq_cnt, 0);
3552 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3553 status = request_irq(qdev->msi_x_entry[i].vector,
3554 intr_context->handler,
3555 0,
3556 intr_context->name,
3557 &qdev->rx_ring[i]);
3558 if (status) {
3559 netif_err(qdev, ifup, qdev->ndev,
3560 "Failed request for MSIX interrupt %d.\n",
3561 i);
3562 goto err_irq;
3563 }
3564 } else {
3565 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3566 "trying msi or legacy interrupts.\n");
3567 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3568 "%s: irq = %d.\n", __func__, pdev->irq);
3569 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3570 "%s: context->name = %s.\n", __func__,
3571 intr_context->name);
3572 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3573 "%s: dev_id = 0x%p.\n", __func__,
3574 &qdev->rx_ring[0]);
3575 status =
3576 request_irq(pdev->irq, qlge_isr,
3577 test_bit(QL_MSI_ENABLED,
3578 &qdev->
3579 flags) ? 0 : IRQF_SHARED,
3580 intr_context->name, &qdev->rx_ring[0]);
3581 if (status)
3582 goto err_irq;
3583
3584 netif_err(qdev, ifup, qdev->ndev,
3585 "Hooked intr %d, queue type %s, with name %s.\n",
3586 i,
3587 qdev->rx_ring[0].type == DEFAULT_Q ?
3588 "DEFAULT_Q" :
3589 qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3590 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3591 intr_context->name);
3592 }
3593 intr_context->hooked = 1;
3594 }
3595 return status;
3596 err_irq:
3597 netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3598 ql_free_irq(qdev);
3599 return status;
3600 }
3601
3602 static int ql_start_rss(struct ql_adapter *qdev)
3603 {
3604 static const u8 init_hash_seed[] = {
3605 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3606 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3607 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3608 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3609 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3610 };
3611 struct ricb *ricb = &qdev->ricb;
3612 int status = 0;
3613 int i;
3614 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3615
3616 memset((void *)ricb, 0, sizeof(*ricb));
3617
3618 ricb->base_cq = RSS_L4K;
3619 ricb->flags =
3620 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3621 ricb->mask = cpu_to_le16((u16)(0x3ff));
3622
3623 /*
3624 * Fill out the Indirection Table.
3625 */
3626 for (i = 0; i < 1024; i++)
3627 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3628
3629 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3630 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3631
3632 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3633 if (status) {
3634 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3635 return status;
3636 }
3637 return status;
3638 }
3639
3640 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3641 {
3642 int i, status = 0;
3643
3644 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3645 if (status)
3646 return status;
3647 /* Clear all the entries in the routing table. */
3648 for (i = 0; i < 16; i++) {
3649 status = ql_set_routing_reg(qdev, i, 0, 0);
3650 if (status) {
3651 netif_err(qdev, ifup, qdev->ndev,
3652 "Failed to init routing register for CAM packets.\n");
3653 break;
3654 }
3655 }
3656 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3657 return status;
3658 }
3659
3660 /* Initialize the frame-to-queue routing. */
3661 static int ql_route_initialize(struct ql_adapter *qdev)
3662 {
3663 int status = 0;
3664
3665 /* Clear all the entries in the routing table. */
3666 status = ql_clear_routing_entries(qdev);
3667 if (status)
3668 return status;
3669
3670 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3671 if (status)
3672 return status;
3673
3674 status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3675 RT_IDX_IP_CSUM_ERR, 1);
3676 if (status) {
3677 netif_err(qdev, ifup, qdev->ndev,
3678 "Failed to init routing register "
3679 "for IP CSUM error packets.\n");
3680 goto exit;
3681 }
3682 status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3683 RT_IDX_TU_CSUM_ERR, 1);
3684 if (status) {
3685 netif_err(qdev, ifup, qdev->ndev,
3686 "Failed to init routing register "
3687 "for TCP/UDP CSUM error packets.\n");
3688 goto exit;
3689 }
3690 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3691 if (status) {
3692 netif_err(qdev, ifup, qdev->ndev,
3693 "Failed to init routing register for broadcast packets.\n");
3694 goto exit;
3695 }
3696 /* If we have more than one inbound queue, then turn on RSS in the
3697 * routing block.
3698 */
3699 if (qdev->rss_ring_count > 1) {
3700 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3701 RT_IDX_RSS_MATCH, 1);
3702 if (status) {
3703 netif_err(qdev, ifup, qdev->ndev,
3704 "Failed to init routing register for MATCH RSS packets.\n");
3705 goto exit;
3706 }
3707 }
3708
3709 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3710 RT_IDX_CAM_HIT, 1);
3711 if (status)
3712 netif_err(qdev, ifup, qdev->ndev,
3713 "Failed to init routing register for CAM packets.\n");
3714 exit:
3715 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3716 return status;
3717 }
3718
3719 int ql_cam_route_initialize(struct ql_adapter *qdev)
3720 {
3721 int status, set;
3722
3723 /* If check if the link is up and use to
3724 * determine if we are setting or clearing
3725 * the MAC address in the CAM.
3726 */
3727 set = ql_read32(qdev, STS);
3728 set &= qdev->port_link_up;
3729 status = ql_set_mac_addr(qdev, set);
3730 if (status) {
3731 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3732 return status;
3733 }
3734
3735 status = ql_route_initialize(qdev);
3736 if (status)
3737 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3738
3739 return status;
3740 }
3741
3742 static int ql_adapter_initialize(struct ql_adapter *qdev)
3743 {
3744 u32 value, mask;
3745 int i;
3746 int status = 0;
3747
3748 /*
3749 * Set up the System register to halt on errors.
3750 */
3751 value = SYS_EFE | SYS_FAE;
3752 mask = value << 16;
3753 ql_write32(qdev, SYS, mask | value);
3754
3755 /* Set the default queue, and VLAN behavior. */
3756 value = NIC_RCV_CFG_DFQ;
3757 mask = NIC_RCV_CFG_DFQ_MASK;
3758 if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3759 value |= NIC_RCV_CFG_RV;
3760 mask |= (NIC_RCV_CFG_RV << 16);
3761 }
3762 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3763
3764 /* Set the MPI interrupt to enabled. */
3765 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3766
3767 /* Enable the function, set pagesize, enable error checking. */
3768 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3769 FSC_EC | FSC_VM_PAGE_4K;
3770 value |= SPLT_SETTING;
3771
3772 /* Set/clear header splitting. */
3773 mask = FSC_VM_PAGESIZE_MASK |
3774 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3775 ql_write32(qdev, FSC, mask | value);
3776
3777 ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3778
3779 /* Set RX packet routing to use port/pci function on which the
3780 * packet arrived on in addition to usual frame routing.
3781 * This is helpful on bonding where both interfaces can have
3782 * the same MAC address.
3783 */
3784 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3785 /* Reroute all packets to our Interface.
3786 * They may have been routed to MPI firmware
3787 * due to WOL.
3788 */
3789 value = ql_read32(qdev, MGMT_RCV_CFG);
3790 value &= ~MGMT_RCV_CFG_RM;
3791 mask = 0xffff0000;
3792
3793 /* Sticky reg needs clearing due to WOL. */
3794 ql_write32(qdev, MGMT_RCV_CFG, mask);
3795 ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3796
3797 /* Default WOL is enable on Mezz cards */
3798 if (qdev->pdev->subsystem_device == 0x0068 ||
3799 qdev->pdev->subsystem_device == 0x0180)
3800 qdev->wol = WAKE_MAGIC;
3801
3802 /* Start up the rx queues. */
3803 for (i = 0; i < qdev->rx_ring_count; i++) {
3804 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3805 if (status) {
3806 netif_err(qdev, ifup, qdev->ndev,
3807 "Failed to start rx ring[%d].\n", i);
3808 return status;
3809 }
3810 }
3811
3812 /* If there is more than one inbound completion queue
3813 * then download a RICB to configure RSS.
3814 */
3815 if (qdev->rss_ring_count > 1) {
3816 status = ql_start_rss(qdev);
3817 if (status) {
3818 netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3819 return status;
3820 }
3821 }
3822
3823 /* Start up the tx queues. */
3824 for (i = 0; i < qdev->tx_ring_count; i++) {
3825 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3826 if (status) {
3827 netif_err(qdev, ifup, qdev->ndev,
3828 "Failed to start tx ring[%d].\n", i);
3829 return status;
3830 }
3831 }
3832
3833 /* Initialize the port and set the max framesize. */
3834 status = qdev->nic_ops->port_initialize(qdev);
3835 if (status)
3836 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3837
3838 /* Set up the MAC address and frame routing filter. */
3839 status = ql_cam_route_initialize(qdev);
3840 if (status) {
3841 netif_err(qdev, ifup, qdev->ndev,
3842 "Failed to init CAM/Routing tables.\n");
3843 return status;
3844 }
3845
3846 /* Start NAPI for the RSS queues. */
3847 for (i = 0; i < qdev->rss_ring_count; i++)
3848 napi_enable(&qdev->rx_ring[i].napi);
3849
3850 return status;
3851 }
3852
3853 /* Issue soft reset to chip. */
3854 static int ql_adapter_reset(struct ql_adapter *qdev)
3855 {
3856 u32 value;
3857 int status = 0;
3858 unsigned long end_jiffies;
3859
3860 /* Clear all the entries in the routing table. */
3861 status = ql_clear_routing_entries(qdev);
3862 if (status) {
3863 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3864 return status;
3865 }
3866
3867 end_jiffies = jiffies +
3868 max((unsigned long)1, usecs_to_jiffies(30));
3869
3870 /* Check if bit is set then skip the mailbox command and
3871 * clear the bit, else we are in normal reset process.
3872 */
3873 if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3874 /* Stop management traffic. */
3875 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3876
3877 /* Wait for the NIC and MGMNT FIFOs to empty. */
3878 ql_wait_fifo_empty(qdev);
3879 } else
3880 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3881
3882 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3883
3884 do {
3885 value = ql_read32(qdev, RST_FO);
3886 if ((value & RST_FO_FR) == 0)
3887 break;
3888 cpu_relax();
3889 } while (time_before(jiffies, end_jiffies));
3890
3891 if (value & RST_FO_FR) {
3892 netif_err(qdev, ifdown, qdev->ndev,
3893 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3894 status = -ETIMEDOUT;
3895 }
3896
3897 /* Resume management traffic. */
3898 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3899 return status;
3900 }
3901
3902 static void ql_display_dev_info(struct net_device *ndev)
3903 {
3904 struct ql_adapter *qdev = netdev_priv(ndev);
3905
3906 netif_info(qdev, probe, qdev->ndev,
3907 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3908 "XG Roll = %d, XG Rev = %d.\n",
3909 qdev->func,
3910 qdev->port,
3911 qdev->chip_rev_id & 0x0000000f,
3912 qdev->chip_rev_id >> 4 & 0x0000000f,
3913 qdev->chip_rev_id >> 8 & 0x0000000f,
3914 qdev->chip_rev_id >> 12 & 0x0000000f);
3915 netif_info(qdev, probe, qdev->ndev,
3916 "MAC address %pM\n", ndev->dev_addr);
3917 }
3918
3919 static int ql_wol(struct ql_adapter *qdev)
3920 {
3921 int status = 0;
3922 u32 wol = MB_WOL_DISABLE;
3923
3924 /* The CAM is still intact after a reset, but if we
3925 * are doing WOL, then we may need to program the
3926 * routing regs. We would also need to issue the mailbox
3927 * commands to instruct the MPI what to do per the ethtool
3928 * settings.
3929 */
3930
3931 if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3932 WAKE_MCAST | WAKE_BCAST)) {
3933 netif_err(qdev, ifdown, qdev->ndev,
3934 "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3935 qdev->wol);
3936 return -EINVAL;
3937 }
3938
3939 if (qdev->wol & WAKE_MAGIC) {
3940 status = ql_mb_wol_set_magic(qdev, 1);
3941 if (status) {
3942 netif_err(qdev, ifdown, qdev->ndev,
3943 "Failed to set magic packet on %s.\n",
3944 qdev->ndev->name);
3945 return status;
3946 } else
3947 netif_info(qdev, drv, qdev->ndev,
3948 "Enabled magic packet successfully on %s.\n",
3949 qdev->ndev->name);
3950
3951 wol |= MB_WOL_MAGIC_PKT;
3952 }
3953
3954 if (qdev->wol) {
3955 wol |= MB_WOL_MODE_ON;
3956 status = ql_mb_wol_mode(qdev, wol);
3957 netif_err(qdev, drv, qdev->ndev,
3958 "WOL %s (wol code 0x%x) on %s\n",
3959 (status == 0) ? "Successfully set" : "Failed",
3960 wol, qdev->ndev->name);
3961 }
3962
3963 return status;
3964 }
3965
3966 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3967 {
3968
3969 /* Don't kill the reset worker thread if we
3970 * are in the process of recovery.
3971 */
3972 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3973 cancel_delayed_work_sync(&qdev->asic_reset_work);
3974 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3975 cancel_delayed_work_sync(&qdev->mpi_work);
3976 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3977 cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3978 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3979 }
3980
3981 static int ql_adapter_down(struct ql_adapter *qdev)
3982 {
3983 int i, status = 0;
3984
3985 ql_link_off(qdev);
3986
3987 ql_cancel_all_work_sync(qdev);
3988
3989 for (i = 0; i < qdev->rss_ring_count; i++)
3990 napi_disable(&qdev->rx_ring[i].napi);
3991
3992 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3993
3994 ql_disable_interrupts(qdev);
3995
3996 ql_tx_ring_clean(qdev);
3997
3998 /* Call netif_napi_del() from common point.
3999 */
4000 for (i = 0; i < qdev->rss_ring_count; i++)
4001 netif_napi_del(&qdev->rx_ring[i].napi);
4002
4003 status = ql_adapter_reset(qdev);
4004 if (status)
4005 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4006 qdev->func);
4007 ql_free_rx_buffers(qdev);
4008
4009 return status;
4010 }
4011
4012 static int ql_adapter_up(struct ql_adapter *qdev)
4013 {
4014 int err = 0;
4015
4016 err = ql_adapter_initialize(qdev);
4017 if (err) {
4018 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4019 goto err_init;
4020 }
4021 set_bit(QL_ADAPTER_UP, &qdev->flags);
4022 ql_alloc_rx_buffers(qdev);
4023 /* If the port is initialized and the
4024 * link is up the turn on the carrier.
4025 */
4026 if ((ql_read32(qdev, STS) & qdev->port_init) &&
4027 (ql_read32(qdev, STS) & qdev->port_link_up))
4028 ql_link_on(qdev);
4029 /* Restore rx mode. */
4030 clear_bit(QL_ALLMULTI, &qdev->flags);
4031 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4032 qlge_set_multicast_list(qdev->ndev);
4033
4034 /* Restore vlan setting. */
4035 qlge_restore_vlan(qdev);
4036
4037 ql_enable_interrupts(qdev);
4038 ql_enable_all_completion_interrupts(qdev);
4039 netif_tx_start_all_queues(qdev->ndev);
4040
4041 return 0;
4042 err_init:
4043 ql_adapter_reset(qdev);
4044 return err;
4045 }
4046
4047 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4048 {
4049 ql_free_mem_resources(qdev);
4050 ql_free_irq(qdev);
4051 }
4052
4053 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4054 {
4055 int status = 0;
4056
4057 if (ql_alloc_mem_resources(qdev)) {
4058 netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
4059 return -ENOMEM;
4060 }
4061 status = ql_request_irq(qdev);
4062 return status;
4063 }
4064
4065 static int qlge_close(struct net_device *ndev)
4066 {
4067 struct ql_adapter *qdev = netdev_priv(ndev);
4068
4069 /* If we hit pci_channel_io_perm_failure
4070 * failure condition, then we already
4071 * brought the adapter down.
4072 */
4073 if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4074 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4075 clear_bit(QL_EEH_FATAL, &qdev->flags);
4076 return 0;
4077 }
4078
4079 /*
4080 * Wait for device to recover from a reset.
4081 * (Rarely happens, but possible.)
4082 */
4083 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4084 msleep(1);
4085 ql_adapter_down(qdev);
4086 ql_release_adapter_resources(qdev);
4087 return 0;
4088 }
4089
4090 static int ql_configure_rings(struct ql_adapter *qdev)
4091 {
4092 int i;
4093 struct rx_ring *rx_ring;
4094 struct tx_ring *tx_ring;
4095 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4096 unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4097 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4098
4099 qdev->lbq_buf_order = get_order(lbq_buf_len);
4100
4101 /* In a perfect world we have one RSS ring for each CPU
4102 * and each has it's own vector. To do that we ask for
4103 * cpu_cnt vectors. ql_enable_msix() will adjust the
4104 * vector count to what we actually get. We then
4105 * allocate an RSS ring for each.
4106 * Essentially, we are doing min(cpu_count, msix_vector_count).
4107 */
4108 qdev->intr_count = cpu_cnt;
4109 ql_enable_msix(qdev);
4110 /* Adjust the RSS ring count to the actual vector count. */
4111 qdev->rss_ring_count = qdev->intr_count;
4112 qdev->tx_ring_count = cpu_cnt;
4113 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4114
4115 for (i = 0; i < qdev->tx_ring_count; i++) {
4116 tx_ring = &qdev->tx_ring[i];
4117 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4118 tx_ring->qdev = qdev;
4119 tx_ring->wq_id = i;
4120 tx_ring->wq_len = qdev->tx_ring_size;
4121 tx_ring->wq_size =
4122 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4123
4124 /*
4125 * The completion queue ID for the tx rings start
4126 * immediately after the rss rings.
4127 */
4128 tx_ring->cq_id = qdev->rss_ring_count + i;
4129 }
4130
4131 for (i = 0; i < qdev->rx_ring_count; i++) {
4132 rx_ring = &qdev->rx_ring[i];
4133 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4134 rx_ring->qdev = qdev;
4135 rx_ring->cq_id = i;
4136 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
4137 if (i < qdev->rss_ring_count) {
4138 /*
4139 * Inbound (RSS) queues.
4140 */
4141 rx_ring->cq_len = qdev->rx_ring_size;
4142 rx_ring->cq_size =
4143 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4144 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4145 rx_ring->lbq_size =
4146 rx_ring->lbq_len * sizeof(__le64);
4147 rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4148 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4149 rx_ring->sbq_size =
4150 rx_ring->sbq_len * sizeof(__le64);
4151 rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4152 rx_ring->type = RX_Q;
4153 } else {
4154 /*
4155 * Outbound queue handles outbound completions only.
4156 */
4157 /* outbound cq is same size as tx_ring it services. */
4158 rx_ring->cq_len = qdev->tx_ring_size;
4159 rx_ring->cq_size =
4160 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4161 rx_ring->lbq_len = 0;
4162 rx_ring->lbq_size = 0;
4163 rx_ring->lbq_buf_size = 0;
4164 rx_ring->sbq_len = 0;
4165 rx_ring->sbq_size = 0;
4166 rx_ring->sbq_buf_size = 0;
4167 rx_ring->type = TX_Q;
4168 }
4169 }
4170 return 0;
4171 }
4172
4173 static int qlge_open(struct net_device *ndev)
4174 {
4175 int err = 0;
4176 struct ql_adapter *qdev = netdev_priv(ndev);
4177
4178 err = ql_adapter_reset(qdev);
4179 if (err)
4180 return err;
4181
4182 err = ql_configure_rings(qdev);
4183 if (err)
4184 return err;
4185
4186 err = ql_get_adapter_resources(qdev);
4187 if (err)
4188 goto error_up;
4189
4190 err = ql_adapter_up(qdev);
4191 if (err)
4192 goto error_up;
4193
4194 return err;
4195
4196 error_up:
4197 ql_release_adapter_resources(qdev);
4198 return err;
4199 }
4200
4201 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4202 {
4203 struct rx_ring *rx_ring;
4204 int i, status;
4205 u32 lbq_buf_len;
4206
4207 /* Wait for an outstanding reset to complete. */
4208 if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4209 int i = 3;
4210 while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4211 netif_err(qdev, ifup, qdev->ndev,
4212 "Waiting for adapter UP...\n");
4213 ssleep(1);
4214 }
4215
4216 if (!i) {
4217 netif_err(qdev, ifup, qdev->ndev,
4218 "Timed out waiting for adapter UP\n");
4219 return -ETIMEDOUT;
4220 }
4221 }
4222
4223 status = ql_adapter_down(qdev);
4224 if (status)
4225 goto error;
4226
4227 /* Get the new rx buffer size. */
4228 lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4229 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4230 qdev->lbq_buf_order = get_order(lbq_buf_len);
4231
4232 for (i = 0; i < qdev->rss_ring_count; i++) {
4233 rx_ring = &qdev->rx_ring[i];
4234 /* Set the new size. */
4235 rx_ring->lbq_buf_size = lbq_buf_len;
4236 }
4237
4238 status = ql_adapter_up(qdev);
4239 if (status)
4240 goto error;
4241
4242 return status;
4243 error:
4244 netif_alert(qdev, ifup, qdev->ndev,
4245 "Driver up/down cycle failed, closing device.\n");
4246 set_bit(QL_ADAPTER_UP, &qdev->flags);
4247 dev_close(qdev->ndev);
4248 return status;
4249 }
4250
4251 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4252 {
4253 struct ql_adapter *qdev = netdev_priv(ndev);
4254 int status;
4255
4256 if (ndev->mtu == 1500 && new_mtu == 9000) {
4257 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4258 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4259 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4260 } else
4261 return -EINVAL;
4262
4263 queue_delayed_work(qdev->workqueue,
4264 &qdev->mpi_port_cfg_work, 3*HZ);
4265
4266 ndev->mtu = new_mtu;
4267
4268 if (!netif_running(qdev->ndev)) {
4269 return 0;
4270 }
4271
4272 status = ql_change_rx_buffers(qdev);
4273 if (status) {
4274 netif_err(qdev, ifup, qdev->ndev,
4275 "Changing MTU failed.\n");
4276 }
4277
4278 return status;
4279 }
4280
4281 static struct net_device_stats *qlge_get_stats(struct net_device
4282 *ndev)
4283 {
4284 struct ql_adapter *qdev = netdev_priv(ndev);
4285 struct rx_ring *rx_ring = &qdev->rx_ring[0];
4286 struct tx_ring *tx_ring = &qdev->tx_ring[0];
4287 unsigned long pkts, mcast, dropped, errors, bytes;
4288 int i;
4289
4290 /* Get RX stats. */
4291 pkts = mcast = dropped = errors = bytes = 0;
4292 for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4293 pkts += rx_ring->rx_packets;
4294 bytes += rx_ring->rx_bytes;
4295 dropped += rx_ring->rx_dropped;
4296 errors += rx_ring->rx_errors;
4297 mcast += rx_ring->rx_multicast;
4298 }
4299 ndev->stats.rx_packets = pkts;
4300 ndev->stats.rx_bytes = bytes;
4301 ndev->stats.rx_dropped = dropped;
4302 ndev->stats.rx_errors = errors;
4303 ndev->stats.multicast = mcast;
4304
4305 /* Get TX stats. */
4306 pkts = errors = bytes = 0;
4307 for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4308 pkts += tx_ring->tx_packets;
4309 bytes += tx_ring->tx_bytes;
4310 errors += tx_ring->tx_errors;
4311 }
4312 ndev->stats.tx_packets = pkts;
4313 ndev->stats.tx_bytes = bytes;
4314 ndev->stats.tx_errors = errors;
4315 return &ndev->stats;
4316 }
4317
4318 static void qlge_set_multicast_list(struct net_device *ndev)
4319 {
4320 struct ql_adapter *qdev = netdev_priv(ndev);
4321 struct netdev_hw_addr *ha;
4322 int i, status;
4323
4324 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4325 if (status)
4326 return;
4327 /*
4328 * Set or clear promiscuous mode if a
4329 * transition is taking place.
4330 */
4331 if (ndev->flags & IFF_PROMISC) {
4332 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4333 if (ql_set_routing_reg
4334 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4335 netif_err(qdev, hw, qdev->ndev,
4336 "Failed to set promiscuous mode.\n");
4337 } else {
4338 set_bit(QL_PROMISCUOUS, &qdev->flags);
4339 }
4340 }
4341 } else {
4342 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4343 if (ql_set_routing_reg
4344 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4345 netif_err(qdev, hw, qdev->ndev,
4346 "Failed to clear promiscuous mode.\n");
4347 } else {
4348 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4349 }
4350 }
4351 }
4352
4353 /*
4354 * Set or clear all multicast mode if a
4355 * transition is taking place.
4356 */
4357 if ((ndev->flags & IFF_ALLMULTI) ||
4358 (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4359 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4360 if (ql_set_routing_reg
4361 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4362 netif_err(qdev, hw, qdev->ndev,
4363 "Failed to set all-multi mode.\n");
4364 } else {
4365 set_bit(QL_ALLMULTI, &qdev->flags);
4366 }
4367 }
4368 } else {
4369 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4370 if (ql_set_routing_reg
4371 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4372 netif_err(qdev, hw, qdev->ndev,
4373 "Failed to clear all-multi mode.\n");
4374 } else {
4375 clear_bit(QL_ALLMULTI, &qdev->flags);
4376 }
4377 }
4378 }
4379
4380 if (!netdev_mc_empty(ndev)) {
4381 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4382 if (status)
4383 goto exit;
4384 i = 0;
4385 netdev_for_each_mc_addr(ha, ndev) {
4386 if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4387 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4388 netif_err(qdev, hw, qdev->ndev,
4389 "Failed to loadmulticast address.\n");
4390 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4391 goto exit;
4392 }
4393 i++;
4394 }
4395 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4396 if (ql_set_routing_reg
4397 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4398 netif_err(qdev, hw, qdev->ndev,
4399 "Failed to set multicast match mode.\n");
4400 } else {
4401 set_bit(QL_ALLMULTI, &qdev->flags);
4402 }
4403 }
4404 exit:
4405 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4406 }
4407
4408 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4409 {
4410 struct ql_adapter *qdev = netdev_priv(ndev);
4411 struct sockaddr *addr = p;
4412 int status;
4413
4414 if (!is_valid_ether_addr(addr->sa_data))
4415 return -EADDRNOTAVAIL;
4416 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4417 /* Update local copy of current mac address. */
4418 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4419
4420 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4421 if (status)
4422 return status;
4423 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4424 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4425 if (status)
4426 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4427 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4428 return status;
4429 }
4430
4431 static void qlge_tx_timeout(struct net_device *ndev)
4432 {
4433 struct ql_adapter *qdev = netdev_priv(ndev);
4434 ql_queue_asic_error(qdev);
4435 }
4436
4437 static void ql_asic_reset_work(struct work_struct *work)
4438 {
4439 struct ql_adapter *qdev =
4440 container_of(work, struct ql_adapter, asic_reset_work.work);
4441 int status;
4442 rtnl_lock();
4443 status = ql_adapter_down(qdev);
4444 if (status)
4445 goto error;
4446
4447 status = ql_adapter_up(qdev);
4448 if (status)
4449 goto error;
4450
4451 /* Restore rx mode. */
4452 clear_bit(QL_ALLMULTI, &qdev->flags);
4453 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4454 qlge_set_multicast_list(qdev->ndev);
4455
4456 rtnl_unlock();
4457 return;
4458 error:
4459 netif_alert(qdev, ifup, qdev->ndev,
4460 "Driver up/down cycle failed, closing device\n");
4461
4462 set_bit(QL_ADAPTER_UP, &qdev->flags);
4463 dev_close(qdev->ndev);
4464 rtnl_unlock();
4465 }
4466
4467 static const struct nic_operations qla8012_nic_ops = {
4468 .get_flash = ql_get_8012_flash_params,
4469 .port_initialize = ql_8012_port_initialize,
4470 };
4471
4472 static const struct nic_operations qla8000_nic_ops = {
4473 .get_flash = ql_get_8000_flash_params,
4474 .port_initialize = ql_8000_port_initialize,
4475 };
4476
4477 /* Find the pcie function number for the other NIC
4478 * on this chip. Since both NIC functions share a
4479 * common firmware we have the lowest enabled function
4480 * do any common work. Examples would be resetting
4481 * after a fatal firmware error, or doing a firmware
4482 * coredump.
4483 */
4484 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4485 {
4486 int status = 0;
4487 u32 temp;
4488 u32 nic_func1, nic_func2;
4489
4490 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4491 &temp);
4492 if (status)
4493 return status;
4494
4495 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4496 MPI_TEST_NIC_FUNC_MASK);
4497 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4498 MPI_TEST_NIC_FUNC_MASK);
4499
4500 if (qdev->func == nic_func1)
4501 qdev->alt_func = nic_func2;
4502 else if (qdev->func == nic_func2)
4503 qdev->alt_func = nic_func1;
4504 else
4505 status = -EIO;
4506
4507 return status;
4508 }
4509
4510 static int ql_get_board_info(struct ql_adapter *qdev)
4511 {
4512 int status;
4513 qdev->func =
4514 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4515 if (qdev->func > 3)
4516 return -EIO;
4517
4518 status = ql_get_alt_pcie_func(qdev);
4519 if (status)
4520 return status;
4521
4522 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4523 if (qdev->port) {
4524 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4525 qdev->port_link_up = STS_PL1;
4526 qdev->port_init = STS_PI1;
4527 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4528 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4529 } else {
4530 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4531 qdev->port_link_up = STS_PL0;
4532 qdev->port_init = STS_PI0;
4533 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4534 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4535 }
4536 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4537 qdev->device_id = qdev->pdev->device;
4538 if (qdev->device_id == QLGE_DEVICE_ID_8012)
4539 qdev->nic_ops = &qla8012_nic_ops;
4540 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4541 qdev->nic_ops = &qla8000_nic_ops;
4542 return status;
4543 }
4544
4545 static void ql_release_all(struct pci_dev *pdev)
4546 {
4547 struct net_device *ndev = pci_get_drvdata(pdev);
4548 struct ql_adapter *qdev = netdev_priv(ndev);
4549
4550 if (qdev->workqueue) {
4551 destroy_workqueue(qdev->workqueue);
4552 qdev->workqueue = NULL;
4553 }
4554
4555 if (qdev->reg_base)
4556 iounmap(qdev->reg_base);
4557 if (qdev->doorbell_area)
4558 iounmap(qdev->doorbell_area);
4559 vfree(qdev->mpi_coredump);
4560 pci_release_regions(pdev);
4561 }
4562
4563 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4564 int cards_found)
4565 {
4566 struct ql_adapter *qdev = netdev_priv(ndev);
4567 int err = 0;
4568
4569 memset((void *)qdev, 0, sizeof(*qdev));
4570 err = pci_enable_device(pdev);
4571 if (err) {
4572 dev_err(&pdev->dev, "PCI device enable failed.\n");
4573 return err;
4574 }
4575
4576 qdev->ndev = ndev;
4577 qdev->pdev = pdev;
4578 pci_set_drvdata(pdev, ndev);
4579
4580 /* Set PCIe read request size */
4581 err = pcie_set_readrq(pdev, 4096);
4582 if (err) {
4583 dev_err(&pdev->dev, "Set readrq failed.\n");
4584 goto err_out1;
4585 }
4586
4587 err = pci_request_regions(pdev, DRV_NAME);
4588 if (err) {
4589 dev_err(&pdev->dev, "PCI region request failed.\n");
4590 return err;
4591 }
4592
4593 pci_set_master(pdev);
4594 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4595 set_bit(QL_DMA64, &qdev->flags);
4596 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4597 } else {
4598 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4599 if (!err)
4600 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4601 }
4602
4603 if (err) {
4604 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4605 goto err_out2;
4606 }
4607
4608 /* Set PCIe reset type for EEH to fundamental. */
4609 pdev->needs_freset = 1;
4610 pci_save_state(pdev);
4611 qdev->reg_base =
4612 ioremap_nocache(pci_resource_start(pdev, 1),
4613 pci_resource_len(pdev, 1));
4614 if (!qdev->reg_base) {
4615 dev_err(&pdev->dev, "Register mapping failed.\n");
4616 err = -ENOMEM;
4617 goto err_out2;
4618 }
4619
4620 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4621 qdev->doorbell_area =
4622 ioremap_nocache(pci_resource_start(pdev, 3),
4623 pci_resource_len(pdev, 3));
4624 if (!qdev->doorbell_area) {
4625 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4626 err = -ENOMEM;
4627 goto err_out2;
4628 }
4629
4630 err = ql_get_board_info(qdev);
4631 if (err) {
4632 dev_err(&pdev->dev, "Register access failed.\n");
4633 err = -EIO;
4634 goto err_out2;
4635 }
4636 qdev->msg_enable = netif_msg_init(debug, default_msg);
4637 spin_lock_init(&qdev->hw_lock);
4638 spin_lock_init(&qdev->stats_lock);
4639
4640 if (qlge_mpi_coredump) {
4641 qdev->mpi_coredump =
4642 vmalloc(sizeof(struct ql_mpi_coredump));
4643 if (qdev->mpi_coredump == NULL) {
4644 err = -ENOMEM;
4645 goto err_out2;
4646 }
4647 if (qlge_force_coredump)
4648 set_bit(QL_FRC_COREDUMP, &qdev->flags);
4649 }
4650 /* make sure the EEPROM is good */
4651 err = qdev->nic_ops->get_flash(qdev);
4652 if (err) {
4653 dev_err(&pdev->dev, "Invalid FLASH.\n");
4654 goto err_out2;
4655 }
4656
4657 /* Keep local copy of current mac address. */
4658 memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4659
4660 /* Set up the default ring sizes. */
4661 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4662 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4663
4664 /* Set up the coalescing parameters. */
4665 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4666 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4667 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4668 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4669
4670 /*
4671 * Set up the operating parameters.
4672 */
4673 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4674 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4675 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4676 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4677 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4678 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4679 INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4680 init_completion(&qdev->ide_completion);
4681 mutex_init(&qdev->mpi_mutex);
4682
4683 if (!cards_found) {
4684 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4685 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4686 DRV_NAME, DRV_VERSION);
4687 }
4688 return 0;
4689 err_out2:
4690 ql_release_all(pdev);
4691 err_out1:
4692 pci_disable_device(pdev);
4693 return err;
4694 }
4695
4696 static const struct net_device_ops qlge_netdev_ops = {
4697 .ndo_open = qlge_open,
4698 .ndo_stop = qlge_close,
4699 .ndo_start_xmit = qlge_send,
4700 .ndo_change_mtu = qlge_change_mtu,
4701 .ndo_get_stats = qlge_get_stats,
4702 .ndo_set_rx_mode = qlge_set_multicast_list,
4703 .ndo_set_mac_address = qlge_set_mac_address,
4704 .ndo_validate_addr = eth_validate_addr,
4705 .ndo_tx_timeout = qlge_tx_timeout,
4706 .ndo_fix_features = qlge_fix_features,
4707 .ndo_set_features = qlge_set_features,
4708 .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
4709 .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
4710 };
4711
4712 static void ql_timer(unsigned long data)
4713 {
4714 struct ql_adapter *qdev = (struct ql_adapter *)data;
4715 u32 var = 0;
4716
4717 var = ql_read32(qdev, STS);
4718 if (pci_channel_offline(qdev->pdev)) {
4719 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4720 return;
4721 }
4722
4723 mod_timer(&qdev->timer, jiffies + (5*HZ));
4724 }
4725
4726 static int qlge_probe(struct pci_dev *pdev,
4727 const struct pci_device_id *pci_entry)
4728 {
4729 struct net_device *ndev = NULL;
4730 struct ql_adapter *qdev = NULL;
4731 static int cards_found = 0;
4732 int err = 0;
4733
4734 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4735 min(MAX_CPUS, netif_get_num_default_rss_queues()));
4736 if (!ndev)
4737 return -ENOMEM;
4738
4739 err = ql_init_device(pdev, ndev, cards_found);
4740 if (err < 0) {
4741 free_netdev(ndev);
4742 return err;
4743 }
4744
4745 qdev = netdev_priv(ndev);
4746 SET_NETDEV_DEV(ndev, &pdev->dev);
4747 ndev->hw_features = NETIF_F_SG |
4748 NETIF_F_IP_CSUM |
4749 NETIF_F_TSO |
4750 NETIF_F_TSO_ECN |
4751 NETIF_F_HW_VLAN_CTAG_TX |
4752 NETIF_F_HW_VLAN_CTAG_RX |
4753 NETIF_F_HW_VLAN_CTAG_FILTER |
4754 NETIF_F_RXCSUM;
4755 ndev->features = ndev->hw_features;
4756 ndev->vlan_features = ndev->hw_features;
4757 /* vlan gets same features (except vlan filter) */
4758 ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4759 NETIF_F_HW_VLAN_CTAG_TX |
4760 NETIF_F_HW_VLAN_CTAG_RX);
4761
4762 if (test_bit(QL_DMA64, &qdev->flags))
4763 ndev->features |= NETIF_F_HIGHDMA;
4764
4765 /*
4766 * Set up net_device structure.
4767 */
4768 ndev->tx_queue_len = qdev->tx_ring_size;
4769 ndev->irq = pdev->irq;
4770
4771 ndev->netdev_ops = &qlge_netdev_ops;
4772 ndev->ethtool_ops = &qlge_ethtool_ops;
4773 ndev->watchdog_timeo = 10 * HZ;
4774
4775 err = register_netdev(ndev);
4776 if (err) {
4777 dev_err(&pdev->dev, "net device registration failed.\n");
4778 ql_release_all(pdev);
4779 pci_disable_device(pdev);
4780 free_netdev(ndev);
4781 return err;
4782 }
4783 /* Start up the timer to trigger EEH if
4784 * the bus goes dead
4785 */
4786 init_timer_deferrable(&qdev->timer);
4787 qdev->timer.data = (unsigned long)qdev;
4788 qdev->timer.function = ql_timer;
4789 qdev->timer.expires = jiffies + (5*HZ);
4790 add_timer(&qdev->timer);
4791 ql_link_off(qdev);
4792 ql_display_dev_info(ndev);
4793 atomic_set(&qdev->lb_count, 0);
4794 cards_found++;
4795 return 0;
4796 }
4797
4798 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4799 {
4800 return qlge_send(skb, ndev);
4801 }
4802
4803 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4804 {
4805 return ql_clean_inbound_rx_ring(rx_ring, budget);
4806 }
4807
4808 static void qlge_remove(struct pci_dev *pdev)
4809 {
4810 struct net_device *ndev = pci_get_drvdata(pdev);
4811 struct ql_adapter *qdev = netdev_priv(ndev);
4812 del_timer_sync(&qdev->timer);
4813 ql_cancel_all_work_sync(qdev);
4814 unregister_netdev(ndev);
4815 ql_release_all(pdev);
4816 pci_disable_device(pdev);
4817 free_netdev(ndev);
4818 }
4819
4820 /* Clean up resources without touching hardware. */
4821 static void ql_eeh_close(struct net_device *ndev)
4822 {
4823 int i;
4824 struct ql_adapter *qdev = netdev_priv(ndev);
4825
4826 if (netif_carrier_ok(ndev)) {
4827 netif_carrier_off(ndev);
4828 netif_stop_queue(ndev);
4829 }
4830
4831 /* Disabling the timer */
4832 del_timer_sync(&qdev->timer);
4833 ql_cancel_all_work_sync(qdev);
4834
4835 for (i = 0; i < qdev->rss_ring_count; i++)
4836 netif_napi_del(&qdev->rx_ring[i].napi);
4837
4838 clear_bit(QL_ADAPTER_UP, &qdev->flags);
4839 ql_tx_ring_clean(qdev);
4840 ql_free_rx_buffers(qdev);
4841 ql_release_adapter_resources(qdev);
4842 }
4843
4844 /*
4845 * This callback is called by the PCI subsystem whenever
4846 * a PCI bus error is detected.
4847 */
4848 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4849 enum pci_channel_state state)
4850 {
4851 struct net_device *ndev = pci_get_drvdata(pdev);
4852 struct ql_adapter *qdev = netdev_priv(ndev);
4853
4854 switch (state) {
4855 case pci_channel_io_normal:
4856 return PCI_ERS_RESULT_CAN_RECOVER;
4857 case pci_channel_io_frozen:
4858 netif_device_detach(ndev);
4859 if (netif_running(ndev))
4860 ql_eeh_close(ndev);
4861 pci_disable_device(pdev);
4862 return PCI_ERS_RESULT_NEED_RESET;
4863 case pci_channel_io_perm_failure:
4864 dev_err(&pdev->dev,
4865 "%s: pci_channel_io_perm_failure.\n", __func__);
4866 ql_eeh_close(ndev);
4867 set_bit(QL_EEH_FATAL, &qdev->flags);
4868 return PCI_ERS_RESULT_DISCONNECT;
4869 }
4870
4871 /* Request a slot reset. */
4872 return PCI_ERS_RESULT_NEED_RESET;
4873 }
4874
4875 /*
4876 * This callback is called after the PCI buss has been reset.
4877 * Basically, this tries to restart the card from scratch.
4878 * This is a shortened version of the device probe/discovery code,
4879 * it resembles the first-half of the () routine.
4880 */
4881 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4882 {
4883 struct net_device *ndev = pci_get_drvdata(pdev);
4884 struct ql_adapter *qdev = netdev_priv(ndev);
4885
4886 pdev->error_state = pci_channel_io_normal;
4887
4888 pci_restore_state(pdev);
4889 if (pci_enable_device(pdev)) {
4890 netif_err(qdev, ifup, qdev->ndev,
4891 "Cannot re-enable PCI device after reset.\n");
4892 return PCI_ERS_RESULT_DISCONNECT;
4893 }
4894 pci_set_master(pdev);
4895
4896 if (ql_adapter_reset(qdev)) {
4897 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4898 set_bit(QL_EEH_FATAL, &qdev->flags);
4899 return PCI_ERS_RESULT_DISCONNECT;
4900 }
4901
4902 return PCI_ERS_RESULT_RECOVERED;
4903 }
4904
4905 static void qlge_io_resume(struct pci_dev *pdev)
4906 {
4907 struct net_device *ndev = pci_get_drvdata(pdev);
4908 struct ql_adapter *qdev = netdev_priv(ndev);
4909 int err = 0;
4910
4911 if (netif_running(ndev)) {
4912 err = qlge_open(ndev);
4913 if (err) {
4914 netif_err(qdev, ifup, qdev->ndev,
4915 "Device initialization failed after reset.\n");
4916 return;
4917 }
4918 } else {
4919 netif_err(qdev, ifup, qdev->ndev,
4920 "Device was not running prior to EEH.\n");
4921 }
4922 mod_timer(&qdev->timer, jiffies + (5*HZ));
4923 netif_device_attach(ndev);
4924 }
4925
4926 static const struct pci_error_handlers qlge_err_handler = {
4927 .error_detected = qlge_io_error_detected,
4928 .slot_reset = qlge_io_slot_reset,
4929 .resume = qlge_io_resume,
4930 };
4931
4932 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4933 {
4934 struct net_device *ndev = pci_get_drvdata(pdev);
4935 struct ql_adapter *qdev = netdev_priv(ndev);
4936 int err;
4937
4938 netif_device_detach(ndev);
4939 del_timer_sync(&qdev->timer);
4940
4941 if (netif_running(ndev)) {
4942 err = ql_adapter_down(qdev);
4943 if (!err)
4944 return err;
4945 }
4946
4947 ql_wol(qdev);
4948 err = pci_save_state(pdev);
4949 if (err)
4950 return err;
4951
4952 pci_disable_device(pdev);
4953
4954 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4955
4956 return 0;
4957 }
4958
4959 #ifdef CONFIG_PM
4960 static int qlge_resume(struct pci_dev *pdev)
4961 {
4962 struct net_device *ndev = pci_get_drvdata(pdev);
4963 struct ql_adapter *qdev = netdev_priv(ndev);
4964 int err;
4965
4966 pci_set_power_state(pdev, PCI_D0);
4967 pci_restore_state(pdev);
4968 err = pci_enable_device(pdev);
4969 if (err) {
4970 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4971 return err;
4972 }
4973 pci_set_master(pdev);
4974
4975 pci_enable_wake(pdev, PCI_D3hot, 0);
4976 pci_enable_wake(pdev, PCI_D3cold, 0);
4977
4978 if (netif_running(ndev)) {
4979 err = ql_adapter_up(qdev);
4980 if (err)
4981 return err;
4982 }
4983
4984 mod_timer(&qdev->timer, jiffies + (5*HZ));
4985 netif_device_attach(ndev);
4986
4987 return 0;
4988 }
4989 #endif /* CONFIG_PM */
4990
4991 static void qlge_shutdown(struct pci_dev *pdev)
4992 {
4993 qlge_suspend(pdev, PMSG_SUSPEND);
4994 }
4995
4996 static struct pci_driver qlge_driver = {
4997 .name = DRV_NAME,
4998 .id_table = qlge_pci_tbl,
4999 .probe = qlge_probe,
5000 .remove = qlge_remove,
5001 #ifdef CONFIG_PM
5002 .suspend = qlge_suspend,
5003 .resume = qlge_resume,
5004 #endif
5005 .shutdown = qlge_shutdown,
5006 .err_handler = &qlge_err_handler
5007 };
5008
5009 module_pci_driver(qlge_driver);