]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/realtek/8139cp.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / realtek / 8139cp.c
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
54
55
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
119
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
122
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
128
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
131
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
135
136 enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 TxDmaOkLowDesc = 0x82, /* Low 16 bit address of a Tx descriptor. */
161 Config5 = 0xD8, /* Config5 */
162 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
163 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
164 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
165 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
166 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
167 TxThresh = 0xEC, /* Early Tx threshold */
168 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
169 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
170
171 /* Tx and Rx status descriptors */
172 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
173 RingEnd = (1 << 30), /* End of descriptor ring */
174 FirstFrag = (1 << 29), /* First segment of a packet */
175 LastFrag = (1 << 28), /* Final segment of a packet */
176 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
177 MSSShift = 16, /* MSS value position */
178 MSSMask = 0x7ff, /* MSS value: 11 bits */
179 TxError = (1 << 23), /* Tx error summary */
180 RxError = (1 << 20), /* Rx error summary */
181 IPCS = (1 << 18), /* Calculate IP checksum */
182 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
183 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
184 TxVlanTag = (1 << 17), /* Add VLAN tag */
185 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
186 IPFail = (1 << 15), /* IP checksum failed */
187 UDPFail = (1 << 14), /* UDP/IP checksum failed */
188 TCPFail = (1 << 13), /* TCP/IP checksum failed */
189 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
190 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
191 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192 RxProtoTCP = 1,
193 RxProtoUDP = 2,
194 RxProtoIP = 3,
195 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
196 TxOWC = (1 << 22), /* Tx Out-of-window collision */
197 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
198 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
199 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
200 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 RxErrFrame = (1 << 27), /* Rx frame alignment error */
202 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
203 RxErrCRC = (1 << 18), /* Rx CRC error */
204 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
205 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
206 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207
208 /* StatsAddr register */
209 DumpStats = (1 << 3), /* Begin stats dump */
210
211 /* RxConfig register */
212 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
213 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
214 AcceptErr = 0x20, /* Accept packets with CRC errors */
215 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
216 AcceptBroadcast = 0x08, /* Accept broadcast packets */
217 AcceptMulticast = 0x04, /* Accept multicast packets */
218 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
219 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
220
221 /* IntrMask / IntrStatus registers */
222 PciErr = (1 << 15), /* System error on the PCI bus */
223 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 LenChg = (1 << 13), /* Cable length change */
225 SWInt = (1 << 8), /* Software-requested interrupt */
226 TxEmpty = (1 << 7), /* No Tx descriptors available */
227 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
228 LinkChg = (1 << 5), /* Packet underrun, or link change */
229 RxEmpty = (1 << 4), /* No Rx descriptors available */
230 TxErr = (1 << 3), /* Tx error */
231 TxOK = (1 << 2), /* Tx packet sent */
232 RxErr = (1 << 1), /* Rx error */
233 RxOK = (1 << 0), /* Rx packet received */
234 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
235 but hardware likes to raise it */
236
237 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239 RxErr | RxOK | IntrResvd,
240
241 /* C mode command register */
242 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
243 RxOn = (1 << 3), /* Rx mode enable */
244 TxOn = (1 << 2), /* Tx mode enable */
245
246 /* C+ mode command register */
247 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
248 RxChkSum = (1 << 5), /* Rx checksum offload enable */
249 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
250 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
251 CpRxOn = (1 << 1), /* Rx mode enable */
252 CpTxOn = (1 << 0), /* Tx mode enable */
253
254 /* Cfg9436 EEPROM control register */
255 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
256 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
257
258 /* TxConfig register */
259 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
261
262 /* Early Tx Threshold register */
263 TxThreshMask = 0x3f, /* Mask bits 5-0 */
264 TxThreshMax = 2048, /* Max early Tx threshold */
265
266 /* Config1 register */
267 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
268 LWACT = (1 << 4), /* LWAKE active mode */
269 PMEnable = (1 << 0), /* Enable various PM features of chip */
270
271 /* Config3 register */
272 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
273 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
274 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
275
276 /* Config4 register */
277 LWPTN = (1 << 1), /* LWAKE Pattern */
278 LWPME = (1 << 4), /* LANWAKE vs PMEB */
279
280 /* Config5 register */
281 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
282 MWF = (1 << 5), /* Accept Multicast wakeup frame */
283 UWF = (1 << 4), /* Accept Unicast wakeup frame */
284 LANWake = (1 << 1), /* Enable LANWake signal */
285 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
286
287 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290 };
291
292 static const unsigned int cp_rx_config =
293 (RX_FIFO_THRESH << RxCfgFIFOShift) |
294 (RX_DMA_BURST << RxCfgDMAShift);
295
296 struct cp_desc {
297 __le32 opts1;
298 __le32 opts2;
299 __le64 addr;
300 };
301
302 struct cp_dma_stats {
303 __le64 tx_ok;
304 __le64 rx_ok;
305 __le64 tx_err;
306 __le32 rx_err;
307 __le16 rx_fifo;
308 __le16 frame_align;
309 __le32 tx_ok_1col;
310 __le32 tx_ok_mcol;
311 __le64 rx_ok_phys;
312 __le64 rx_ok_bcast;
313 __le32 rx_ok_mcast;
314 __le16 tx_abort;
315 __le16 tx_underrun;
316 } __packed;
317
318 struct cp_extra_stats {
319 unsigned long rx_frags;
320 };
321
322 struct cp_private {
323 void __iomem *regs;
324 struct net_device *dev;
325 spinlock_t lock;
326 u32 msg_enable;
327
328 struct napi_struct napi;
329
330 struct pci_dev *pdev;
331 u32 rx_config;
332 u16 cpcmd;
333
334 struct cp_extra_stats cp_stats;
335
336 unsigned rx_head ____cacheline_aligned;
337 unsigned rx_tail;
338 struct cp_desc *rx_ring;
339 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
340
341 unsigned tx_head ____cacheline_aligned;
342 unsigned tx_tail;
343 struct cp_desc *tx_ring;
344 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
345 u32 tx_opts[CP_TX_RING_SIZE];
346
347 unsigned rx_buf_sz;
348 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349
350 dma_addr_t ring_dma;
351
352 struct mii_if_info mii_if;
353 };
354
355 #define cpr8(reg) readb(cp->regs + (reg))
356 #define cpr16(reg) readw(cp->regs + (reg))
357 #define cpr32(reg) readl(cp->regs + (reg))
358 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val) writew((val), cp->regs + (reg))
360 #define cpw32(reg,val) writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do { \
362 writeb((val), cp->regs + (reg)); \
363 readb(cp->regs + (reg)); \
364 } while (0)
365 #define cpw16_f(reg,val) do { \
366 writew((val), cp->regs + (reg)); \
367 readw(cp->regs + (reg)); \
368 } while (0)
369 #define cpw32_f(reg,val) do { \
370 writel((val), cp->regs + (reg)); \
371 readl(cp->regs + (reg)); \
372 } while (0)
373
374
375 static void __cp_set_rx_mode (struct net_device *dev);
376 static void cp_tx (struct cp_private *cp);
377 static void cp_clean_rings (struct cp_private *cp);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device *dev);
380 #endif
381 static int cp_get_eeprom_len(struct net_device *dev);
382 static int cp_get_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
384 static int cp_set_eeprom(struct net_device *dev,
385 struct ethtool_eeprom *eeprom, u8 *data);
386
387 static struct {
388 const char str[ETH_GSTRING_LEN];
389 } ethtool_stats_keys[] = {
390 { "tx_ok" },
391 { "rx_ok" },
392 { "tx_err" },
393 { "rx_err" },
394 { "rx_fifo" },
395 { "frame_align" },
396 { "tx_ok_1col" },
397 { "tx_ok_mcol" },
398 { "rx_ok_phys" },
399 { "rx_ok_bcast" },
400 { "rx_ok_mcast" },
401 { "tx_abort" },
402 { "tx_underrun" },
403 { "rx_frags" },
404 };
405
406
407 static inline void cp_set_rxbufsize (struct cp_private *cp)
408 {
409 unsigned int mtu = cp->dev->mtu;
410
411 if (mtu > ETH_DATA_LEN)
412 /* MTU + ethernet header + FCS + optional VLAN tag */
413 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414 else
415 cp->rx_buf_sz = PKT_BUF_SZ;
416 }
417
418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419 struct cp_desc *desc)
420 {
421 u32 opts2 = le32_to_cpu(desc->opts2);
422
423 skb->protocol = eth_type_trans (skb, cp->dev);
424
425 cp->dev->stats.rx_packets++;
426 cp->dev->stats.rx_bytes += skb->len;
427
428 if (opts2 & RxVlanTagged)
429 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430
431 napi_gro_receive(&cp->napi, skb);
432 }
433
434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435 u32 status, u32 len)
436 {
437 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438 rx_tail, status, len);
439 cp->dev->stats.rx_errors++;
440 if (status & RxErrFrame)
441 cp->dev->stats.rx_frame_errors++;
442 if (status & RxErrCRC)
443 cp->dev->stats.rx_crc_errors++;
444 if ((status & RxErrRunt) || (status & RxErrLong))
445 cp->dev->stats.rx_length_errors++;
446 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447 cp->dev->stats.rx_length_errors++;
448 if (status & RxErrFIFO)
449 cp->dev->stats.rx_fifo_errors++;
450 }
451
452 static inline unsigned int cp_rx_csum_ok (u32 status)
453 {
454 unsigned int protocol = (status >> 16) & 0x3;
455
456 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457 ((protocol == RxProtoUDP) && !(status & UDPFail)))
458 return 1;
459 else
460 return 0;
461 }
462
463 static int cp_rx_poll(struct napi_struct *napi, int budget)
464 {
465 struct cp_private *cp = container_of(napi, struct cp_private, napi);
466 struct net_device *dev = cp->dev;
467 unsigned int rx_tail = cp->rx_tail;
468 int rx;
469
470 rx_status_loop:
471 rx = 0;
472 cpw16(IntrStatus, cp_rx_intr_mask);
473
474 while (rx < budget) {
475 u32 status, len;
476 dma_addr_t mapping, new_mapping;
477 struct sk_buff *skb, *new_skb;
478 struct cp_desc *desc;
479 const unsigned buflen = cp->rx_buf_sz;
480
481 skb = cp->rx_skb[rx_tail];
482 BUG_ON(!skb);
483
484 desc = &cp->rx_ring[rx_tail];
485 status = le32_to_cpu(desc->opts1);
486 if (status & DescOwn)
487 break;
488
489 len = (status & 0x1fff) - 4;
490 mapping = le64_to_cpu(desc->addr);
491
492 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
493 /* we don't support incoming fragmented frames.
494 * instead, we attempt to ensure that the
495 * pre-allocated RX skbs are properly sized such
496 * that RX fragments are never encountered
497 */
498 cp_rx_err_acct(cp, rx_tail, status, len);
499 dev->stats.rx_dropped++;
500 cp->cp_stats.rx_frags++;
501 goto rx_next;
502 }
503
504 if (status & (RxError | RxErrFIFO)) {
505 cp_rx_err_acct(cp, rx_tail, status, len);
506 goto rx_next;
507 }
508
509 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
510 rx_tail, status, len);
511
512 new_skb = napi_alloc_skb(napi, buflen);
513 if (!new_skb) {
514 dev->stats.rx_dropped++;
515 goto rx_next;
516 }
517
518 new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
519 PCI_DMA_FROMDEVICE);
520 if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
521 dev->stats.rx_dropped++;
522 kfree_skb(new_skb);
523 goto rx_next;
524 }
525
526 dma_unmap_single(&cp->pdev->dev, mapping,
527 buflen, PCI_DMA_FROMDEVICE);
528
529 /* Handle checksum offloading for incoming packets. */
530 if (cp_rx_csum_ok(status))
531 skb->ip_summed = CHECKSUM_UNNECESSARY;
532 else
533 skb_checksum_none_assert(skb);
534
535 skb_put(skb, len);
536
537 cp->rx_skb[rx_tail] = new_skb;
538
539 cp_rx_skb(cp, skb, desc);
540 rx++;
541 mapping = new_mapping;
542
543 rx_next:
544 cp->rx_ring[rx_tail].opts2 = 0;
545 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
546 if (rx_tail == (CP_RX_RING_SIZE - 1))
547 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
548 cp->rx_buf_sz);
549 else
550 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
551 rx_tail = NEXT_RX(rx_tail);
552 }
553
554 cp->rx_tail = rx_tail;
555
556 /* if we did not reach work limit, then we're done with
557 * this round of polling
558 */
559 if (rx < budget) {
560 unsigned long flags;
561
562 if (cpr16(IntrStatus) & cp_rx_intr_mask)
563 goto rx_status_loop;
564
565 napi_gro_flush(napi, false);
566 spin_lock_irqsave(&cp->lock, flags);
567 __napi_complete(napi);
568 cpw16_f(IntrMask, cp_intr_mask);
569 spin_unlock_irqrestore(&cp->lock, flags);
570 }
571
572 return rx;
573 }
574
575 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
576 {
577 struct net_device *dev = dev_instance;
578 struct cp_private *cp;
579 int handled = 0;
580 u16 status;
581
582 if (unlikely(dev == NULL))
583 return IRQ_NONE;
584 cp = netdev_priv(dev);
585
586 spin_lock(&cp->lock);
587
588 status = cpr16(IntrStatus);
589 if (!status || (status == 0xFFFF))
590 goto out_unlock;
591
592 handled = 1;
593
594 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
595 status, cpr8(Cmd), cpr16(CpCmd));
596
597 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
598
599 /* close possible race's with dev_close */
600 if (unlikely(!netif_running(dev))) {
601 cpw16(IntrMask, 0);
602 goto out_unlock;
603 }
604
605 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
606 if (napi_schedule_prep(&cp->napi)) {
607 cpw16_f(IntrMask, cp_norx_intr_mask);
608 __napi_schedule(&cp->napi);
609 }
610
611 if (status & (TxOK | TxErr | TxEmpty | SWInt))
612 cp_tx(cp);
613 if (status & LinkChg)
614 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
615
616
617 if (status & PciErr) {
618 u16 pci_status;
619
620 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
621 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
622 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
623 status, pci_status);
624
625 /* TODO: reset hardware */
626 }
627
628 out_unlock:
629 spin_unlock(&cp->lock);
630
631 return IRQ_RETVAL(handled);
632 }
633
634 #ifdef CONFIG_NET_POLL_CONTROLLER
635 /*
636 * Polling receive - used by netconsole and other diagnostic tools
637 * to allow network i/o with interrupts disabled.
638 */
639 static void cp_poll_controller(struct net_device *dev)
640 {
641 struct cp_private *cp = netdev_priv(dev);
642 const int irq = cp->pdev->irq;
643
644 disable_irq(irq);
645 cp_interrupt(irq, dev);
646 enable_irq(irq);
647 }
648 #endif
649
650 static void cp_tx (struct cp_private *cp)
651 {
652 unsigned tx_head = cp->tx_head;
653 unsigned tx_tail = cp->tx_tail;
654 unsigned bytes_compl = 0, pkts_compl = 0;
655
656 while (tx_tail != tx_head) {
657 struct cp_desc *txd = cp->tx_ring + tx_tail;
658 struct sk_buff *skb;
659 u32 status;
660
661 rmb();
662 status = le32_to_cpu(txd->opts1);
663 if (status & DescOwn)
664 break;
665
666 skb = cp->tx_skb[tx_tail];
667 BUG_ON(!skb);
668
669 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
670 cp->tx_opts[tx_tail] & 0xffff,
671 PCI_DMA_TODEVICE);
672
673 if (status & LastFrag) {
674 if (status & (TxError | TxFIFOUnder)) {
675 netif_dbg(cp, tx_err, cp->dev,
676 "tx err, status 0x%x\n", status);
677 cp->dev->stats.tx_errors++;
678 if (status & TxOWC)
679 cp->dev->stats.tx_window_errors++;
680 if (status & TxMaxCol)
681 cp->dev->stats.tx_aborted_errors++;
682 if (status & TxLinkFail)
683 cp->dev->stats.tx_carrier_errors++;
684 if (status & TxFIFOUnder)
685 cp->dev->stats.tx_fifo_errors++;
686 } else {
687 cp->dev->stats.collisions +=
688 ((status >> TxColCntShift) & TxColCntMask);
689 cp->dev->stats.tx_packets++;
690 cp->dev->stats.tx_bytes += skb->len;
691 netif_dbg(cp, tx_done, cp->dev,
692 "tx done, slot %d\n", tx_tail);
693 }
694 bytes_compl += skb->len;
695 pkts_compl++;
696 dev_kfree_skb_irq(skb);
697 }
698
699 cp->tx_skb[tx_tail] = NULL;
700
701 tx_tail = NEXT_TX(tx_tail);
702 }
703
704 cp->tx_tail = tx_tail;
705
706 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
707 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
708 netif_wake_queue(cp->dev);
709 }
710
711 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
712 {
713 return skb_vlan_tag_present(skb) ?
714 TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
715 }
716
717 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
718 int first, int entry_last)
719 {
720 int frag, index;
721 struct cp_desc *txd;
722 skb_frag_t *this_frag;
723 for (frag = 0; frag+first < entry_last; frag++) {
724 index = first+frag;
725 cp->tx_skb[index] = NULL;
726 txd = &cp->tx_ring[index];
727 this_frag = &skb_shinfo(skb)->frags[frag];
728 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
729 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
730 }
731 }
732
733 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
734 struct net_device *dev)
735 {
736 struct cp_private *cp = netdev_priv(dev);
737 unsigned entry;
738 u32 eor, opts1;
739 unsigned long intr_flags;
740 __le32 opts2;
741 int mss = 0;
742
743 spin_lock_irqsave(&cp->lock, intr_flags);
744
745 /* This is a hard error, log it. */
746 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
747 netif_stop_queue(dev);
748 spin_unlock_irqrestore(&cp->lock, intr_flags);
749 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
750 return NETDEV_TX_BUSY;
751 }
752
753 entry = cp->tx_head;
754 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
755 mss = skb_shinfo(skb)->gso_size;
756
757 if (mss > MSSMask) {
758 WARN_ONCE(1, "Net bug: GSO size %d too large for 8139CP\n",
759 mss);
760 goto out_dma_error;
761 }
762
763 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
764 opts1 = DescOwn;
765 if (mss)
766 opts1 |= LargeSend | (mss << MSSShift);
767 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
768 const struct iphdr *ip = ip_hdr(skb);
769 if (ip->protocol == IPPROTO_TCP)
770 opts1 |= IPCS | TCPCS;
771 else if (ip->protocol == IPPROTO_UDP)
772 opts1 |= IPCS | UDPCS;
773 else {
774 WARN_ONCE(1,
775 "Net bug: asked to checksum invalid Legacy IP packet\n");
776 goto out_dma_error;
777 }
778 }
779
780 if (skb_shinfo(skb)->nr_frags == 0) {
781 struct cp_desc *txd = &cp->tx_ring[entry];
782 u32 len;
783 dma_addr_t mapping;
784
785 len = skb->len;
786 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
787 if (dma_mapping_error(&cp->pdev->dev, mapping))
788 goto out_dma_error;
789
790 txd->opts2 = opts2;
791 txd->addr = cpu_to_le64(mapping);
792 wmb();
793
794 opts1 |= eor | len | FirstFrag | LastFrag;
795
796 txd->opts1 = cpu_to_le32(opts1);
797 wmb();
798
799 cp->tx_skb[entry] = skb;
800 cp->tx_opts[entry] = opts1;
801 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
802 entry, skb->len);
803 } else {
804 struct cp_desc *txd;
805 u32 first_len, first_eor, ctrl;
806 dma_addr_t first_mapping;
807 int frag, first_entry = entry;
808
809 /* We must give this initial chunk to the device last.
810 * Otherwise we could race with the device.
811 */
812 first_eor = eor;
813 first_len = skb_headlen(skb);
814 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
815 first_len, PCI_DMA_TODEVICE);
816 if (dma_mapping_error(&cp->pdev->dev, first_mapping))
817 goto out_dma_error;
818
819 cp->tx_skb[entry] = skb;
820
821 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
822 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
823 u32 len;
824 dma_addr_t mapping;
825
826 entry = NEXT_TX(entry);
827
828 len = skb_frag_size(this_frag);
829 mapping = dma_map_single(&cp->pdev->dev,
830 skb_frag_address(this_frag),
831 len, PCI_DMA_TODEVICE);
832 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
833 unwind_tx_frag_mapping(cp, skb, first_entry, entry);
834 goto out_dma_error;
835 }
836
837 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
838
839 ctrl = opts1 | eor | len;
840
841 if (frag == skb_shinfo(skb)->nr_frags - 1)
842 ctrl |= LastFrag;
843
844 txd = &cp->tx_ring[entry];
845 txd->opts2 = opts2;
846 txd->addr = cpu_to_le64(mapping);
847 wmb();
848
849 txd->opts1 = cpu_to_le32(ctrl);
850 wmb();
851
852 cp->tx_opts[entry] = ctrl;
853 cp->tx_skb[entry] = skb;
854 }
855
856 txd = &cp->tx_ring[first_entry];
857 txd->opts2 = opts2;
858 txd->addr = cpu_to_le64(first_mapping);
859 wmb();
860
861 ctrl = opts1 | first_eor | first_len | FirstFrag;
862 txd->opts1 = cpu_to_le32(ctrl);
863 wmb();
864
865 cp->tx_opts[first_entry] = ctrl;
866 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
867 first_entry, entry, skb->len);
868 }
869 cp->tx_head = NEXT_TX(entry);
870
871 netdev_sent_queue(dev, skb->len);
872 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
873 netif_stop_queue(dev);
874
875 out_unlock:
876 spin_unlock_irqrestore(&cp->lock, intr_flags);
877
878 cpw8(TxPoll, NormalTxPoll);
879
880 return NETDEV_TX_OK;
881 out_dma_error:
882 dev_kfree_skb_any(skb);
883 cp->dev->stats.tx_dropped++;
884 goto out_unlock;
885 }
886
887 /* Set or clear the multicast filter for this adaptor.
888 This routine is not state sensitive and need not be SMP locked. */
889
890 static void __cp_set_rx_mode (struct net_device *dev)
891 {
892 struct cp_private *cp = netdev_priv(dev);
893 u32 mc_filter[2]; /* Multicast hash filter */
894 int rx_mode;
895
896 /* Note: do not reorder, GCC is clever about common statements. */
897 if (dev->flags & IFF_PROMISC) {
898 /* Unconditionally log net taps. */
899 rx_mode =
900 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
901 AcceptAllPhys;
902 mc_filter[1] = mc_filter[0] = 0xffffffff;
903 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
904 (dev->flags & IFF_ALLMULTI)) {
905 /* Too many to filter perfectly -- accept all multicasts. */
906 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
907 mc_filter[1] = mc_filter[0] = 0xffffffff;
908 } else {
909 struct netdev_hw_addr *ha;
910 rx_mode = AcceptBroadcast | AcceptMyPhys;
911 mc_filter[1] = mc_filter[0] = 0;
912 netdev_for_each_mc_addr(ha, dev) {
913 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
914
915 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
916 rx_mode |= AcceptMulticast;
917 }
918 }
919
920 /* We can safely update without stopping the chip. */
921 cp->rx_config = cp_rx_config | rx_mode;
922 cpw32_f(RxConfig, cp->rx_config);
923
924 cpw32_f (MAR0 + 0, mc_filter[0]);
925 cpw32_f (MAR0 + 4, mc_filter[1]);
926 }
927
928 static void cp_set_rx_mode (struct net_device *dev)
929 {
930 unsigned long flags;
931 struct cp_private *cp = netdev_priv(dev);
932
933 spin_lock_irqsave (&cp->lock, flags);
934 __cp_set_rx_mode(dev);
935 spin_unlock_irqrestore (&cp->lock, flags);
936 }
937
938 static void __cp_get_stats(struct cp_private *cp)
939 {
940 /* only lower 24 bits valid; write any value to clear */
941 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
942 cpw32 (RxMissed, 0);
943 }
944
945 static struct net_device_stats *cp_get_stats(struct net_device *dev)
946 {
947 struct cp_private *cp = netdev_priv(dev);
948 unsigned long flags;
949
950 /* The chip only need report frame silently dropped. */
951 spin_lock_irqsave(&cp->lock, flags);
952 if (netif_running(dev) && netif_device_present(dev))
953 __cp_get_stats(cp);
954 spin_unlock_irqrestore(&cp->lock, flags);
955
956 return &dev->stats;
957 }
958
959 static void cp_stop_hw (struct cp_private *cp)
960 {
961 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
962 cpw16_f(IntrMask, 0);
963 cpw8(Cmd, 0);
964 cpw16_f(CpCmd, 0);
965 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
966
967 cp->rx_tail = 0;
968 cp->tx_head = cp->tx_tail = 0;
969
970 netdev_reset_queue(cp->dev);
971 }
972
973 static void cp_reset_hw (struct cp_private *cp)
974 {
975 unsigned work = 1000;
976
977 cpw8(Cmd, CmdReset);
978
979 while (work--) {
980 if (!(cpr8(Cmd) & CmdReset))
981 return;
982
983 schedule_timeout_uninterruptible(10);
984 }
985
986 netdev_err(cp->dev, "hardware reset timeout\n");
987 }
988
989 static inline void cp_start_hw (struct cp_private *cp)
990 {
991 dma_addr_t ring_dma;
992
993 cpw16(CpCmd, cp->cpcmd);
994
995 /*
996 * These (at least TxRingAddr) need to be configured after the
997 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
998 * (C+ Command Register) recommends that these and more be configured
999 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1000 * it's been observed that the TxRingAddr is actually reset to garbage
1001 * when C+ mode Tx is enabled in CpCmd.
1002 */
1003 cpw32_f(HiTxRingAddr, 0);
1004 cpw32_f(HiTxRingAddr + 4, 0);
1005
1006 ring_dma = cp->ring_dma;
1007 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1008 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1009
1010 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1011 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1012 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1013
1014 /*
1015 * Strictly speaking, the datasheet says this should be enabled
1016 * *before* setting the descriptor addresses. But what, then, would
1017 * prevent it from doing DMA to random unconfigured addresses?
1018 * This variant appears to work fine.
1019 */
1020 cpw8(Cmd, RxOn | TxOn);
1021
1022 netdev_reset_queue(cp->dev);
1023 }
1024
1025 static void cp_enable_irq(struct cp_private *cp)
1026 {
1027 cpw16_f(IntrMask, cp_intr_mask);
1028 }
1029
1030 static void cp_init_hw (struct cp_private *cp)
1031 {
1032 struct net_device *dev = cp->dev;
1033
1034 cp_reset_hw(cp);
1035
1036 cpw8_f (Cfg9346, Cfg9346_Unlock);
1037
1038 /* Restore our idea of the MAC address. */
1039 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1040 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1041
1042 cp_start_hw(cp);
1043 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1044
1045 __cp_set_rx_mode(dev);
1046 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1047
1048 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1049 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1050 cpw8(Config3, PARMEnable);
1051 cp->wol_enabled = 0;
1052
1053 cpw8(Config5, cpr8(Config5) & PMEStatus);
1054
1055 cpw16(MultiIntr, 0);
1056
1057 cpw8_f(Cfg9346, Cfg9346_Lock);
1058 }
1059
1060 static int cp_refill_rx(struct cp_private *cp)
1061 {
1062 struct net_device *dev = cp->dev;
1063 unsigned i;
1064
1065 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1066 struct sk_buff *skb;
1067 dma_addr_t mapping;
1068
1069 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1070 if (!skb)
1071 goto err_out;
1072
1073 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1074 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1075 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1076 kfree_skb(skb);
1077 goto err_out;
1078 }
1079 cp->rx_skb[i] = skb;
1080
1081 cp->rx_ring[i].opts2 = 0;
1082 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1083 if (i == (CP_RX_RING_SIZE - 1))
1084 cp->rx_ring[i].opts1 =
1085 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1086 else
1087 cp->rx_ring[i].opts1 =
1088 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1089 }
1090
1091 return 0;
1092
1093 err_out:
1094 cp_clean_rings(cp);
1095 return -ENOMEM;
1096 }
1097
1098 static void cp_init_rings_index (struct cp_private *cp)
1099 {
1100 cp->rx_tail = 0;
1101 cp->tx_head = cp->tx_tail = 0;
1102 }
1103
1104 static int cp_init_rings (struct cp_private *cp)
1105 {
1106 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1107 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1108 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1109
1110 cp_init_rings_index(cp);
1111
1112 return cp_refill_rx (cp);
1113 }
1114
1115 static int cp_alloc_rings (struct cp_private *cp)
1116 {
1117 struct device *d = &cp->pdev->dev;
1118 void *mem;
1119 int rc;
1120
1121 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1122 if (!mem)
1123 return -ENOMEM;
1124
1125 cp->rx_ring = mem;
1126 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1127
1128 rc = cp_init_rings(cp);
1129 if (rc < 0)
1130 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1131
1132 return rc;
1133 }
1134
1135 static void cp_clean_rings (struct cp_private *cp)
1136 {
1137 struct cp_desc *desc;
1138 unsigned i;
1139
1140 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1141 if (cp->rx_skb[i]) {
1142 desc = cp->rx_ring + i;
1143 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1144 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1145 dev_kfree_skb_any(cp->rx_skb[i]);
1146 }
1147 }
1148
1149 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1150 if (cp->tx_skb[i]) {
1151 struct sk_buff *skb = cp->tx_skb[i];
1152
1153 desc = cp->tx_ring + i;
1154 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1155 le32_to_cpu(desc->opts1) & 0xffff,
1156 PCI_DMA_TODEVICE);
1157 if (le32_to_cpu(desc->opts1) & LastFrag)
1158 dev_kfree_skb_any(skb);
1159 cp->dev->stats.tx_dropped++;
1160 }
1161 }
1162 netdev_reset_queue(cp->dev);
1163
1164 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1165 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1166 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1167
1168 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1169 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1170 }
1171
1172 static void cp_free_rings (struct cp_private *cp)
1173 {
1174 cp_clean_rings(cp);
1175 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1176 cp->ring_dma);
1177 cp->rx_ring = NULL;
1178 cp->tx_ring = NULL;
1179 }
1180
1181 static int cp_open (struct net_device *dev)
1182 {
1183 struct cp_private *cp = netdev_priv(dev);
1184 const int irq = cp->pdev->irq;
1185 int rc;
1186
1187 netif_dbg(cp, ifup, dev, "enabling interface\n");
1188
1189 rc = cp_alloc_rings(cp);
1190 if (rc)
1191 return rc;
1192
1193 napi_enable(&cp->napi);
1194
1195 cp_init_hw(cp);
1196
1197 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1198 if (rc)
1199 goto err_out_hw;
1200
1201 cp_enable_irq(cp);
1202
1203 netif_carrier_off(dev);
1204 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1205 netif_start_queue(dev);
1206
1207 return 0;
1208
1209 err_out_hw:
1210 napi_disable(&cp->napi);
1211 cp_stop_hw(cp);
1212 cp_free_rings(cp);
1213 return rc;
1214 }
1215
1216 static int cp_close (struct net_device *dev)
1217 {
1218 struct cp_private *cp = netdev_priv(dev);
1219 unsigned long flags;
1220
1221 napi_disable(&cp->napi);
1222
1223 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1224
1225 spin_lock_irqsave(&cp->lock, flags);
1226
1227 netif_stop_queue(dev);
1228 netif_carrier_off(dev);
1229
1230 cp_stop_hw(cp);
1231
1232 spin_unlock_irqrestore(&cp->lock, flags);
1233
1234 free_irq(cp->pdev->irq, dev);
1235
1236 cp_free_rings(cp);
1237 return 0;
1238 }
1239
1240 static void cp_tx_timeout(struct net_device *dev)
1241 {
1242 struct cp_private *cp = netdev_priv(dev);
1243 unsigned long flags;
1244 int rc, i;
1245
1246 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1247 cpr8(Cmd), cpr16(CpCmd),
1248 cpr16(IntrStatus), cpr16(IntrMask));
1249
1250 spin_lock_irqsave(&cp->lock, flags);
1251
1252 netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1253 cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1254 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1255 netif_dbg(cp, tx_err, cp->dev,
1256 "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1257 i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1258 cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1259 le64_to_cpu(cp->tx_ring[i].addr),
1260 cp->tx_skb[i]);
1261 }
1262
1263 cp_stop_hw(cp);
1264 cp_clean_rings(cp);
1265 rc = cp_init_rings(cp);
1266 cp_start_hw(cp);
1267 __cp_set_rx_mode(dev);
1268 cpw16_f(IntrMask, cp_norx_intr_mask);
1269
1270 netif_wake_queue(dev);
1271 napi_schedule_irqoff(&cp->napi);
1272
1273 spin_unlock_irqrestore(&cp->lock, flags);
1274 }
1275
1276 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1277 {
1278 struct cp_private *cp = netdev_priv(dev);
1279
1280 /* check for invalid MTU, according to hardware limits */
1281 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1282 return -EINVAL;
1283
1284 /* if network interface not up, no need for complexity */
1285 if (!netif_running(dev)) {
1286 dev->mtu = new_mtu;
1287 cp_set_rxbufsize(cp); /* set new rx buf size */
1288 return 0;
1289 }
1290
1291 /* network IS up, close it, reset MTU, and come up again. */
1292 cp_close(dev);
1293 dev->mtu = new_mtu;
1294 cp_set_rxbufsize(cp);
1295 return cp_open(dev);
1296 }
1297
1298 static const char mii_2_8139_map[8] = {
1299 BasicModeCtrl,
1300 BasicModeStatus,
1301 0,
1302 0,
1303 NWayAdvert,
1304 NWayLPAR,
1305 NWayExpansion,
1306 0
1307 };
1308
1309 static int mdio_read(struct net_device *dev, int phy_id, int location)
1310 {
1311 struct cp_private *cp = netdev_priv(dev);
1312
1313 return location < 8 && mii_2_8139_map[location] ?
1314 readw(cp->regs + mii_2_8139_map[location]) : 0;
1315 }
1316
1317
1318 static void mdio_write(struct net_device *dev, int phy_id, int location,
1319 int value)
1320 {
1321 struct cp_private *cp = netdev_priv(dev);
1322
1323 if (location == 0) {
1324 cpw8(Cfg9346, Cfg9346_Unlock);
1325 cpw16(BasicModeCtrl, value);
1326 cpw8(Cfg9346, Cfg9346_Lock);
1327 } else if (location < 8 && mii_2_8139_map[location])
1328 cpw16(mii_2_8139_map[location], value);
1329 }
1330
1331 /* Set the ethtool Wake-on-LAN settings */
1332 static int netdev_set_wol (struct cp_private *cp,
1333 const struct ethtool_wolinfo *wol)
1334 {
1335 u8 options;
1336
1337 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1338 /* If WOL is being disabled, no need for complexity */
1339 if (wol->wolopts) {
1340 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1341 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1342 }
1343
1344 cpw8 (Cfg9346, Cfg9346_Unlock);
1345 cpw8 (Config3, options);
1346 cpw8 (Cfg9346, Cfg9346_Lock);
1347
1348 options = 0; /* Paranoia setting */
1349 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1350 /* If WOL is being disabled, no need for complexity */
1351 if (wol->wolopts) {
1352 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1353 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1354 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1355 }
1356
1357 cpw8 (Config5, options);
1358
1359 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1360
1361 return 0;
1362 }
1363
1364 /* Get the ethtool Wake-on-LAN settings */
1365 static void netdev_get_wol (struct cp_private *cp,
1366 struct ethtool_wolinfo *wol)
1367 {
1368 u8 options;
1369
1370 wol->wolopts = 0; /* Start from scratch */
1371 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1372 WAKE_MCAST | WAKE_UCAST;
1373 /* We don't need to go on if WOL is disabled */
1374 if (!cp->wol_enabled) return;
1375
1376 options = cpr8 (Config3);
1377 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1378 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1379
1380 options = 0; /* Paranoia setting */
1381 options = cpr8 (Config5);
1382 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1383 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1384 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1385 }
1386
1387 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1388 {
1389 struct cp_private *cp = netdev_priv(dev);
1390
1391 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1392 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1393 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1394 }
1395
1396 static void cp_get_ringparam(struct net_device *dev,
1397 struct ethtool_ringparam *ring)
1398 {
1399 ring->rx_max_pending = CP_RX_RING_SIZE;
1400 ring->tx_max_pending = CP_TX_RING_SIZE;
1401 ring->rx_pending = CP_RX_RING_SIZE;
1402 ring->tx_pending = CP_TX_RING_SIZE;
1403 }
1404
1405 static int cp_get_regs_len(struct net_device *dev)
1406 {
1407 return CP_REGS_SIZE;
1408 }
1409
1410 static int cp_get_sset_count (struct net_device *dev, int sset)
1411 {
1412 switch (sset) {
1413 case ETH_SS_STATS:
1414 return CP_NUM_STATS;
1415 default:
1416 return -EOPNOTSUPP;
1417 }
1418 }
1419
1420 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1421 {
1422 struct cp_private *cp = netdev_priv(dev);
1423 int rc;
1424 unsigned long flags;
1425
1426 spin_lock_irqsave(&cp->lock, flags);
1427 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1428 spin_unlock_irqrestore(&cp->lock, flags);
1429
1430 return rc;
1431 }
1432
1433 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1434 {
1435 struct cp_private *cp = netdev_priv(dev);
1436 int rc;
1437 unsigned long flags;
1438
1439 spin_lock_irqsave(&cp->lock, flags);
1440 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1441 spin_unlock_irqrestore(&cp->lock, flags);
1442
1443 return rc;
1444 }
1445
1446 static int cp_nway_reset(struct net_device *dev)
1447 {
1448 struct cp_private *cp = netdev_priv(dev);
1449 return mii_nway_restart(&cp->mii_if);
1450 }
1451
1452 static u32 cp_get_msglevel(struct net_device *dev)
1453 {
1454 struct cp_private *cp = netdev_priv(dev);
1455 return cp->msg_enable;
1456 }
1457
1458 static void cp_set_msglevel(struct net_device *dev, u32 value)
1459 {
1460 struct cp_private *cp = netdev_priv(dev);
1461 cp->msg_enable = value;
1462 }
1463
1464 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1465 {
1466 struct cp_private *cp = netdev_priv(dev);
1467 unsigned long flags;
1468
1469 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1470 return 0;
1471
1472 spin_lock_irqsave(&cp->lock, flags);
1473
1474 if (features & NETIF_F_RXCSUM)
1475 cp->cpcmd |= RxChkSum;
1476 else
1477 cp->cpcmd &= ~RxChkSum;
1478
1479 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1480 cp->cpcmd |= RxVlanOn;
1481 else
1482 cp->cpcmd &= ~RxVlanOn;
1483
1484 cpw16_f(CpCmd, cp->cpcmd);
1485 spin_unlock_irqrestore(&cp->lock, flags);
1486
1487 return 0;
1488 }
1489
1490 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1491 void *p)
1492 {
1493 struct cp_private *cp = netdev_priv(dev);
1494 unsigned long flags;
1495
1496 if (regs->len < CP_REGS_SIZE)
1497 return /* -EINVAL */;
1498
1499 regs->version = CP_REGS_VER;
1500
1501 spin_lock_irqsave(&cp->lock, flags);
1502 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1503 spin_unlock_irqrestore(&cp->lock, flags);
1504 }
1505
1506 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1507 {
1508 struct cp_private *cp = netdev_priv(dev);
1509 unsigned long flags;
1510
1511 spin_lock_irqsave (&cp->lock, flags);
1512 netdev_get_wol (cp, wol);
1513 spin_unlock_irqrestore (&cp->lock, flags);
1514 }
1515
1516 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1517 {
1518 struct cp_private *cp = netdev_priv(dev);
1519 unsigned long flags;
1520 int rc;
1521
1522 spin_lock_irqsave (&cp->lock, flags);
1523 rc = netdev_set_wol (cp, wol);
1524 spin_unlock_irqrestore (&cp->lock, flags);
1525
1526 return rc;
1527 }
1528
1529 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1530 {
1531 switch (stringset) {
1532 case ETH_SS_STATS:
1533 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1534 break;
1535 default:
1536 BUG();
1537 break;
1538 }
1539 }
1540
1541 static void cp_get_ethtool_stats (struct net_device *dev,
1542 struct ethtool_stats *estats, u64 *tmp_stats)
1543 {
1544 struct cp_private *cp = netdev_priv(dev);
1545 struct cp_dma_stats *nic_stats;
1546 dma_addr_t dma;
1547 int i;
1548
1549 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1550 &dma, GFP_KERNEL);
1551 if (!nic_stats)
1552 return;
1553
1554 /* begin NIC statistics dump */
1555 cpw32(StatsAddr + 4, (u64)dma >> 32);
1556 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1557 cpr32(StatsAddr);
1558
1559 for (i = 0; i < 1000; i++) {
1560 if ((cpr32(StatsAddr) & DumpStats) == 0)
1561 break;
1562 udelay(10);
1563 }
1564 cpw32(StatsAddr, 0);
1565 cpw32(StatsAddr + 4, 0);
1566 cpr32(StatsAddr);
1567
1568 i = 0;
1569 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1570 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1571 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1572 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1573 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1574 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1575 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1576 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1577 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1578 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1579 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1580 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1581 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1582 tmp_stats[i++] = cp->cp_stats.rx_frags;
1583 BUG_ON(i != CP_NUM_STATS);
1584
1585 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1586 }
1587
1588 static const struct ethtool_ops cp_ethtool_ops = {
1589 .get_drvinfo = cp_get_drvinfo,
1590 .get_regs_len = cp_get_regs_len,
1591 .get_sset_count = cp_get_sset_count,
1592 .get_settings = cp_get_settings,
1593 .set_settings = cp_set_settings,
1594 .nway_reset = cp_nway_reset,
1595 .get_link = ethtool_op_get_link,
1596 .get_msglevel = cp_get_msglevel,
1597 .set_msglevel = cp_set_msglevel,
1598 .get_regs = cp_get_regs,
1599 .get_wol = cp_get_wol,
1600 .set_wol = cp_set_wol,
1601 .get_strings = cp_get_strings,
1602 .get_ethtool_stats = cp_get_ethtool_stats,
1603 .get_eeprom_len = cp_get_eeprom_len,
1604 .get_eeprom = cp_get_eeprom,
1605 .set_eeprom = cp_set_eeprom,
1606 .get_ringparam = cp_get_ringparam,
1607 };
1608
1609 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1610 {
1611 struct cp_private *cp = netdev_priv(dev);
1612 int rc;
1613 unsigned long flags;
1614
1615 if (!netif_running(dev))
1616 return -EINVAL;
1617
1618 spin_lock_irqsave(&cp->lock, flags);
1619 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1620 spin_unlock_irqrestore(&cp->lock, flags);
1621 return rc;
1622 }
1623
1624 static int cp_set_mac_address(struct net_device *dev, void *p)
1625 {
1626 struct cp_private *cp = netdev_priv(dev);
1627 struct sockaddr *addr = p;
1628
1629 if (!is_valid_ether_addr(addr->sa_data))
1630 return -EADDRNOTAVAIL;
1631
1632 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1633
1634 spin_lock_irq(&cp->lock);
1635
1636 cpw8_f(Cfg9346, Cfg9346_Unlock);
1637 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1638 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1639 cpw8_f(Cfg9346, Cfg9346_Lock);
1640
1641 spin_unlock_irq(&cp->lock);
1642
1643 return 0;
1644 }
1645
1646 /* Serial EEPROM section. */
1647
1648 /* EEPROM_Ctrl bits. */
1649 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1650 #define EE_CS 0x08 /* EEPROM chip select. */
1651 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1652 #define EE_WRITE_0 0x00
1653 #define EE_WRITE_1 0x02
1654 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1655 #define EE_ENB (0x80 | EE_CS)
1656
1657 /* Delay between EEPROM clock transitions.
1658 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1659 */
1660
1661 #define eeprom_delay() readb(ee_addr)
1662
1663 /* The EEPROM commands include the alway-set leading bit. */
1664 #define EE_EXTEND_CMD (4)
1665 #define EE_WRITE_CMD (5)
1666 #define EE_READ_CMD (6)
1667 #define EE_ERASE_CMD (7)
1668
1669 #define EE_EWDS_ADDR (0)
1670 #define EE_WRAL_ADDR (1)
1671 #define EE_ERAL_ADDR (2)
1672 #define EE_EWEN_ADDR (3)
1673
1674 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1675
1676 static void eeprom_cmd_start(void __iomem *ee_addr)
1677 {
1678 writeb (EE_ENB & ~EE_CS, ee_addr);
1679 writeb (EE_ENB, ee_addr);
1680 eeprom_delay ();
1681 }
1682
1683 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1684 {
1685 int i;
1686
1687 /* Shift the command bits out. */
1688 for (i = cmd_len - 1; i >= 0; i--) {
1689 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1690 writeb (EE_ENB | dataval, ee_addr);
1691 eeprom_delay ();
1692 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1693 eeprom_delay ();
1694 }
1695 writeb (EE_ENB, ee_addr);
1696 eeprom_delay ();
1697 }
1698
1699 static void eeprom_cmd_end(void __iomem *ee_addr)
1700 {
1701 writeb(0, ee_addr);
1702 eeprom_delay ();
1703 }
1704
1705 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1706 int addr_len)
1707 {
1708 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1709
1710 eeprom_cmd_start(ee_addr);
1711 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1712 eeprom_cmd_end(ee_addr);
1713 }
1714
1715 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1716 {
1717 int i;
1718 u16 retval = 0;
1719 void __iomem *ee_addr = ioaddr + Cfg9346;
1720 int read_cmd = location | (EE_READ_CMD << addr_len);
1721
1722 eeprom_cmd_start(ee_addr);
1723 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1724
1725 for (i = 16; i > 0; i--) {
1726 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1727 eeprom_delay ();
1728 retval =
1729 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1730 0);
1731 writeb (EE_ENB, ee_addr);
1732 eeprom_delay ();
1733 }
1734
1735 eeprom_cmd_end(ee_addr);
1736
1737 return retval;
1738 }
1739
1740 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1741 int addr_len)
1742 {
1743 int i;
1744 void __iomem *ee_addr = ioaddr + Cfg9346;
1745 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1746
1747 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1748
1749 eeprom_cmd_start(ee_addr);
1750 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1751 eeprom_cmd(ee_addr, val, 16);
1752 eeprom_cmd_end(ee_addr);
1753
1754 eeprom_cmd_start(ee_addr);
1755 for (i = 0; i < 20000; i++)
1756 if (readb(ee_addr) & EE_DATA_READ)
1757 break;
1758 eeprom_cmd_end(ee_addr);
1759
1760 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1761 }
1762
1763 static int cp_get_eeprom_len(struct net_device *dev)
1764 {
1765 struct cp_private *cp = netdev_priv(dev);
1766 int size;
1767
1768 spin_lock_irq(&cp->lock);
1769 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1770 spin_unlock_irq(&cp->lock);
1771
1772 return size;
1773 }
1774
1775 static int cp_get_eeprom(struct net_device *dev,
1776 struct ethtool_eeprom *eeprom, u8 *data)
1777 {
1778 struct cp_private *cp = netdev_priv(dev);
1779 unsigned int addr_len;
1780 u16 val;
1781 u32 offset = eeprom->offset >> 1;
1782 u32 len = eeprom->len;
1783 u32 i = 0;
1784
1785 eeprom->magic = CP_EEPROM_MAGIC;
1786
1787 spin_lock_irq(&cp->lock);
1788
1789 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1790
1791 if (eeprom->offset & 1) {
1792 val = read_eeprom(cp->regs, offset, addr_len);
1793 data[i++] = (u8)(val >> 8);
1794 offset++;
1795 }
1796
1797 while (i < len - 1) {
1798 val = read_eeprom(cp->regs, offset, addr_len);
1799 data[i++] = (u8)val;
1800 data[i++] = (u8)(val >> 8);
1801 offset++;
1802 }
1803
1804 if (i < len) {
1805 val = read_eeprom(cp->regs, offset, addr_len);
1806 data[i] = (u8)val;
1807 }
1808
1809 spin_unlock_irq(&cp->lock);
1810 return 0;
1811 }
1812
1813 static int cp_set_eeprom(struct net_device *dev,
1814 struct ethtool_eeprom *eeprom, u8 *data)
1815 {
1816 struct cp_private *cp = netdev_priv(dev);
1817 unsigned int addr_len;
1818 u16 val;
1819 u32 offset = eeprom->offset >> 1;
1820 u32 len = eeprom->len;
1821 u32 i = 0;
1822
1823 if (eeprom->magic != CP_EEPROM_MAGIC)
1824 return -EINVAL;
1825
1826 spin_lock_irq(&cp->lock);
1827
1828 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1829
1830 if (eeprom->offset & 1) {
1831 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1832 val |= (u16)data[i++] << 8;
1833 write_eeprom(cp->regs, offset, val, addr_len);
1834 offset++;
1835 }
1836
1837 while (i < len - 1) {
1838 val = (u16)data[i++];
1839 val |= (u16)data[i++] << 8;
1840 write_eeprom(cp->regs, offset, val, addr_len);
1841 offset++;
1842 }
1843
1844 if (i < len) {
1845 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1846 val |= (u16)data[i];
1847 write_eeprom(cp->regs, offset, val, addr_len);
1848 }
1849
1850 spin_unlock_irq(&cp->lock);
1851 return 0;
1852 }
1853
1854 /* Put the board into D3cold state and wait for WakeUp signal */
1855 static void cp_set_d3_state (struct cp_private *cp)
1856 {
1857 pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1858 pci_set_power_state (cp->pdev, PCI_D3hot);
1859 }
1860
1861 static netdev_features_t cp_features_check(struct sk_buff *skb,
1862 struct net_device *dev,
1863 netdev_features_t features)
1864 {
1865 if (skb_shinfo(skb)->gso_size > MSSMask)
1866 features &= ~NETIF_F_TSO;
1867
1868 return vlan_features_check(skb, features);
1869 }
1870 static const struct net_device_ops cp_netdev_ops = {
1871 .ndo_open = cp_open,
1872 .ndo_stop = cp_close,
1873 .ndo_validate_addr = eth_validate_addr,
1874 .ndo_set_mac_address = cp_set_mac_address,
1875 .ndo_set_rx_mode = cp_set_rx_mode,
1876 .ndo_get_stats = cp_get_stats,
1877 .ndo_do_ioctl = cp_ioctl,
1878 .ndo_start_xmit = cp_start_xmit,
1879 .ndo_tx_timeout = cp_tx_timeout,
1880 .ndo_set_features = cp_set_features,
1881 .ndo_change_mtu = cp_change_mtu,
1882 .ndo_features_check = cp_features_check,
1883
1884 #ifdef CONFIG_NET_POLL_CONTROLLER
1885 .ndo_poll_controller = cp_poll_controller,
1886 #endif
1887 };
1888
1889 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1890 {
1891 struct net_device *dev;
1892 struct cp_private *cp;
1893 int rc;
1894 void __iomem *regs;
1895 resource_size_t pciaddr;
1896 unsigned int addr_len, i, pci_using_dac;
1897
1898 pr_info_once("%s", version);
1899
1900 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1901 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1902 dev_info(&pdev->dev,
1903 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1904 pdev->vendor, pdev->device, pdev->revision);
1905 return -ENODEV;
1906 }
1907
1908 dev = alloc_etherdev(sizeof(struct cp_private));
1909 if (!dev)
1910 return -ENOMEM;
1911 SET_NETDEV_DEV(dev, &pdev->dev);
1912
1913 cp = netdev_priv(dev);
1914 cp->pdev = pdev;
1915 cp->dev = dev;
1916 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1917 spin_lock_init (&cp->lock);
1918 cp->mii_if.dev = dev;
1919 cp->mii_if.mdio_read = mdio_read;
1920 cp->mii_if.mdio_write = mdio_write;
1921 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1922 cp->mii_if.phy_id_mask = 0x1f;
1923 cp->mii_if.reg_num_mask = 0x1f;
1924 cp_set_rxbufsize(cp);
1925
1926 rc = pci_enable_device(pdev);
1927 if (rc)
1928 goto err_out_free;
1929
1930 rc = pci_set_mwi(pdev);
1931 if (rc)
1932 goto err_out_disable;
1933
1934 rc = pci_request_regions(pdev, DRV_NAME);
1935 if (rc)
1936 goto err_out_mwi;
1937
1938 pciaddr = pci_resource_start(pdev, 1);
1939 if (!pciaddr) {
1940 rc = -EIO;
1941 dev_err(&pdev->dev, "no MMIO resource\n");
1942 goto err_out_res;
1943 }
1944 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1945 rc = -EIO;
1946 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1947 (unsigned long long)pci_resource_len(pdev, 1));
1948 goto err_out_res;
1949 }
1950
1951 /* Configure DMA attributes. */
1952 if ((sizeof(dma_addr_t) > 4) &&
1953 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1954 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1955 pci_using_dac = 1;
1956 } else {
1957 pci_using_dac = 0;
1958
1959 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1960 if (rc) {
1961 dev_err(&pdev->dev,
1962 "No usable DMA configuration, aborting\n");
1963 goto err_out_res;
1964 }
1965 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1966 if (rc) {
1967 dev_err(&pdev->dev,
1968 "No usable consistent DMA configuration, aborting\n");
1969 goto err_out_res;
1970 }
1971 }
1972
1973 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1974 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1975
1976 dev->features |= NETIF_F_RXCSUM;
1977 dev->hw_features |= NETIF_F_RXCSUM;
1978
1979 regs = ioremap(pciaddr, CP_REGS_SIZE);
1980 if (!regs) {
1981 rc = -EIO;
1982 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1983 (unsigned long long)pci_resource_len(pdev, 1),
1984 (unsigned long long)pciaddr);
1985 goto err_out_res;
1986 }
1987 cp->regs = regs;
1988
1989 cp_stop_hw(cp);
1990
1991 /* read MAC address from EEPROM */
1992 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1993 for (i = 0; i < 3; i++)
1994 ((__le16 *) (dev->dev_addr))[i] =
1995 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1996
1997 dev->netdev_ops = &cp_netdev_ops;
1998 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1999 dev->ethtool_ops = &cp_ethtool_ops;
2000 dev->watchdog_timeo = TX_TIMEOUT;
2001
2002 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2003 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2004
2005 if (pci_using_dac)
2006 dev->features |= NETIF_F_HIGHDMA;
2007
2008 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2009 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2010 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2011 NETIF_F_HIGHDMA;
2012
2013 rc = register_netdev(dev);
2014 if (rc)
2015 goto err_out_iomap;
2016
2017 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2018 regs, dev->dev_addr, pdev->irq);
2019
2020 pci_set_drvdata(pdev, dev);
2021
2022 /* enable busmastering and memory-write-invalidate */
2023 pci_set_master(pdev);
2024
2025 if (cp->wol_enabled)
2026 cp_set_d3_state (cp);
2027
2028 return 0;
2029
2030 err_out_iomap:
2031 iounmap(regs);
2032 err_out_res:
2033 pci_release_regions(pdev);
2034 err_out_mwi:
2035 pci_clear_mwi(pdev);
2036 err_out_disable:
2037 pci_disable_device(pdev);
2038 err_out_free:
2039 free_netdev(dev);
2040 return rc;
2041 }
2042
2043 static void cp_remove_one (struct pci_dev *pdev)
2044 {
2045 struct net_device *dev = pci_get_drvdata(pdev);
2046 struct cp_private *cp = netdev_priv(dev);
2047
2048 unregister_netdev(dev);
2049 iounmap(cp->regs);
2050 if (cp->wol_enabled)
2051 pci_set_power_state (pdev, PCI_D0);
2052 pci_release_regions(pdev);
2053 pci_clear_mwi(pdev);
2054 pci_disable_device(pdev);
2055 free_netdev(dev);
2056 }
2057
2058 #ifdef CONFIG_PM
2059 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2060 {
2061 struct net_device *dev = pci_get_drvdata(pdev);
2062 struct cp_private *cp = netdev_priv(dev);
2063 unsigned long flags;
2064
2065 if (!netif_running(dev))
2066 return 0;
2067
2068 netif_device_detach (dev);
2069 netif_stop_queue (dev);
2070
2071 spin_lock_irqsave (&cp->lock, flags);
2072
2073 /* Disable Rx and Tx */
2074 cpw16 (IntrMask, 0);
2075 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2076
2077 spin_unlock_irqrestore (&cp->lock, flags);
2078
2079 pci_save_state(pdev);
2080 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2081 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2082
2083 return 0;
2084 }
2085
2086 static int cp_resume (struct pci_dev *pdev)
2087 {
2088 struct net_device *dev = pci_get_drvdata (pdev);
2089 struct cp_private *cp = netdev_priv(dev);
2090 unsigned long flags;
2091
2092 if (!netif_running(dev))
2093 return 0;
2094
2095 netif_device_attach (dev);
2096
2097 pci_set_power_state(pdev, PCI_D0);
2098 pci_restore_state(pdev);
2099 pci_enable_wake(pdev, PCI_D0, 0);
2100
2101 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2102 cp_init_rings_index (cp);
2103 cp_init_hw (cp);
2104 cp_enable_irq(cp);
2105 netif_start_queue (dev);
2106
2107 spin_lock_irqsave (&cp->lock, flags);
2108
2109 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2110
2111 spin_unlock_irqrestore (&cp->lock, flags);
2112
2113 return 0;
2114 }
2115 #endif /* CONFIG_PM */
2116
2117 static const struct pci_device_id cp_pci_tbl[] = {
2118 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
2119 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
2120 { },
2121 };
2122 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2123
2124 static struct pci_driver cp_driver = {
2125 .name = DRV_NAME,
2126 .id_table = cp_pci_tbl,
2127 .probe = cp_init_one,
2128 .remove = cp_remove_one,
2129 #ifdef CONFIG_PM
2130 .resume = cp_resume,
2131 .suspend = cp_suspend,
2132 #endif
2133 };
2134
2135 module_pci_driver(cp_driver);