]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/realtek/8139cp.c
Merge tag 'v4.20' into for-linus
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / realtek / 8139cp.c
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
54
55
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <linux/uaccess.h>
80
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
119
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
122
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
128
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
131
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
135
136 enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 TxDmaOkLowDesc = 0x82, /* Low 16 bit address of a Tx descriptor. */
161 Config5 = 0xD8, /* Config5 */
162 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
163 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
164 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
165 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
166 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
167 TxThresh = 0xEC, /* Early Tx threshold */
168 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
169 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
170
171 /* Tx and Rx status descriptors */
172 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
173 RingEnd = (1 << 30), /* End of descriptor ring */
174 FirstFrag = (1 << 29), /* First segment of a packet */
175 LastFrag = (1 << 28), /* Final segment of a packet */
176 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
177 MSSShift = 16, /* MSS value position */
178 MSSMask = 0x7ff, /* MSS value: 11 bits */
179 TxError = (1 << 23), /* Tx error summary */
180 RxError = (1 << 20), /* Rx error summary */
181 IPCS = (1 << 18), /* Calculate IP checksum */
182 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
183 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
184 TxVlanTag = (1 << 17), /* Add VLAN tag */
185 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
186 IPFail = (1 << 15), /* IP checksum failed */
187 UDPFail = (1 << 14), /* UDP/IP checksum failed */
188 TCPFail = (1 << 13), /* TCP/IP checksum failed */
189 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
190 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
191 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192 RxProtoTCP = 1,
193 RxProtoUDP = 2,
194 RxProtoIP = 3,
195 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
196 TxOWC = (1 << 22), /* Tx Out-of-window collision */
197 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
198 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
199 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
200 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 RxErrFrame = (1 << 27), /* Rx frame alignment error */
202 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
203 RxErrCRC = (1 << 18), /* Rx CRC error */
204 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
205 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
206 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207
208 /* StatsAddr register */
209 DumpStats = (1 << 3), /* Begin stats dump */
210
211 /* RxConfig register */
212 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
213 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
214 AcceptErr = 0x20, /* Accept packets with CRC errors */
215 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
216 AcceptBroadcast = 0x08, /* Accept broadcast packets */
217 AcceptMulticast = 0x04, /* Accept multicast packets */
218 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
219 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
220
221 /* IntrMask / IntrStatus registers */
222 PciErr = (1 << 15), /* System error on the PCI bus */
223 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 LenChg = (1 << 13), /* Cable length change */
225 SWInt = (1 << 8), /* Software-requested interrupt */
226 TxEmpty = (1 << 7), /* No Tx descriptors available */
227 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
228 LinkChg = (1 << 5), /* Packet underrun, or link change */
229 RxEmpty = (1 << 4), /* No Rx descriptors available */
230 TxErr = (1 << 3), /* Tx error */
231 TxOK = (1 << 2), /* Tx packet sent */
232 RxErr = (1 << 1), /* Rx error */
233 RxOK = (1 << 0), /* Rx packet received */
234 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
235 but hardware likes to raise it */
236
237 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239 RxErr | RxOK | IntrResvd,
240
241 /* C mode command register */
242 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
243 RxOn = (1 << 3), /* Rx mode enable */
244 TxOn = (1 << 2), /* Tx mode enable */
245
246 /* C+ mode command register */
247 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
248 RxChkSum = (1 << 5), /* Rx checksum offload enable */
249 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
250 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
251 CpRxOn = (1 << 1), /* Rx mode enable */
252 CpTxOn = (1 << 0), /* Tx mode enable */
253
254 /* Cfg9436 EEPROM control register */
255 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
256 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
257
258 /* TxConfig register */
259 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
261
262 /* Early Tx Threshold register */
263 TxThreshMask = 0x3f, /* Mask bits 5-0 */
264 TxThreshMax = 2048, /* Max early Tx threshold */
265
266 /* Config1 register */
267 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
268 LWACT = (1 << 4), /* LWAKE active mode */
269 PMEnable = (1 << 0), /* Enable various PM features of chip */
270
271 /* Config3 register */
272 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
273 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
274 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
275
276 /* Config4 register */
277 LWPTN = (1 << 1), /* LWAKE Pattern */
278 LWPME = (1 << 4), /* LANWAKE vs PMEB */
279
280 /* Config5 register */
281 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
282 MWF = (1 << 5), /* Accept Multicast wakeup frame */
283 UWF = (1 << 4), /* Accept Unicast wakeup frame */
284 LANWake = (1 << 1), /* Enable LANWake signal */
285 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
286
287 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290 };
291
292 static const unsigned int cp_rx_config =
293 (RX_FIFO_THRESH << RxCfgFIFOShift) |
294 (RX_DMA_BURST << RxCfgDMAShift);
295
296 struct cp_desc {
297 __le32 opts1;
298 __le32 opts2;
299 __le64 addr;
300 };
301
302 struct cp_dma_stats {
303 __le64 tx_ok;
304 __le64 rx_ok;
305 __le64 tx_err;
306 __le32 rx_err;
307 __le16 rx_fifo;
308 __le16 frame_align;
309 __le32 tx_ok_1col;
310 __le32 tx_ok_mcol;
311 __le64 rx_ok_phys;
312 __le64 rx_ok_bcast;
313 __le32 rx_ok_mcast;
314 __le16 tx_abort;
315 __le16 tx_underrun;
316 } __packed;
317
318 struct cp_extra_stats {
319 unsigned long rx_frags;
320 };
321
322 struct cp_private {
323 void __iomem *regs;
324 struct net_device *dev;
325 spinlock_t lock;
326 u32 msg_enable;
327
328 struct napi_struct napi;
329
330 struct pci_dev *pdev;
331 u32 rx_config;
332 u16 cpcmd;
333
334 struct cp_extra_stats cp_stats;
335
336 unsigned rx_head ____cacheline_aligned;
337 unsigned rx_tail;
338 struct cp_desc *rx_ring;
339 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
340
341 unsigned tx_head ____cacheline_aligned;
342 unsigned tx_tail;
343 struct cp_desc *tx_ring;
344 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
345 u32 tx_opts[CP_TX_RING_SIZE];
346
347 unsigned rx_buf_sz;
348 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349
350 dma_addr_t ring_dma;
351
352 struct mii_if_info mii_if;
353 };
354
355 #define cpr8(reg) readb(cp->regs + (reg))
356 #define cpr16(reg) readw(cp->regs + (reg))
357 #define cpr32(reg) readl(cp->regs + (reg))
358 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val) writew((val), cp->regs + (reg))
360 #define cpw32(reg,val) writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do { \
362 writeb((val), cp->regs + (reg)); \
363 readb(cp->regs + (reg)); \
364 } while (0)
365 #define cpw16_f(reg,val) do { \
366 writew((val), cp->regs + (reg)); \
367 readw(cp->regs + (reg)); \
368 } while (0)
369 #define cpw32_f(reg,val) do { \
370 writel((val), cp->regs + (reg)); \
371 readl(cp->regs + (reg)); \
372 } while (0)
373
374
375 static void __cp_set_rx_mode (struct net_device *dev);
376 static void cp_tx (struct cp_private *cp);
377 static void cp_clean_rings (struct cp_private *cp);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device *dev);
380 #endif
381 static int cp_get_eeprom_len(struct net_device *dev);
382 static int cp_get_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
384 static int cp_set_eeprom(struct net_device *dev,
385 struct ethtool_eeprom *eeprom, u8 *data);
386
387 static struct {
388 const char str[ETH_GSTRING_LEN];
389 } ethtool_stats_keys[] = {
390 { "tx_ok" },
391 { "rx_ok" },
392 { "tx_err" },
393 { "rx_err" },
394 { "rx_fifo" },
395 { "frame_align" },
396 { "tx_ok_1col" },
397 { "tx_ok_mcol" },
398 { "rx_ok_phys" },
399 { "rx_ok_bcast" },
400 { "rx_ok_mcast" },
401 { "tx_abort" },
402 { "tx_underrun" },
403 { "rx_frags" },
404 };
405
406
407 static inline void cp_set_rxbufsize (struct cp_private *cp)
408 {
409 unsigned int mtu = cp->dev->mtu;
410
411 if (mtu > ETH_DATA_LEN)
412 /* MTU + ethernet header + FCS + optional VLAN tag */
413 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414 else
415 cp->rx_buf_sz = PKT_BUF_SZ;
416 }
417
418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419 struct cp_desc *desc)
420 {
421 u32 opts2 = le32_to_cpu(desc->opts2);
422
423 skb->protocol = eth_type_trans (skb, cp->dev);
424
425 cp->dev->stats.rx_packets++;
426 cp->dev->stats.rx_bytes += skb->len;
427
428 if (opts2 & RxVlanTagged)
429 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430
431 napi_gro_receive(&cp->napi, skb);
432 }
433
434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435 u32 status, u32 len)
436 {
437 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438 rx_tail, status, len);
439 cp->dev->stats.rx_errors++;
440 if (status & RxErrFrame)
441 cp->dev->stats.rx_frame_errors++;
442 if (status & RxErrCRC)
443 cp->dev->stats.rx_crc_errors++;
444 if ((status & RxErrRunt) || (status & RxErrLong))
445 cp->dev->stats.rx_length_errors++;
446 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447 cp->dev->stats.rx_length_errors++;
448 if (status & RxErrFIFO)
449 cp->dev->stats.rx_fifo_errors++;
450 }
451
452 static inline unsigned int cp_rx_csum_ok (u32 status)
453 {
454 unsigned int protocol = (status >> 16) & 0x3;
455
456 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457 ((protocol == RxProtoUDP) && !(status & UDPFail)))
458 return 1;
459 else
460 return 0;
461 }
462
463 static int cp_rx_poll(struct napi_struct *napi, int budget)
464 {
465 struct cp_private *cp = container_of(napi, struct cp_private, napi);
466 struct net_device *dev = cp->dev;
467 unsigned int rx_tail = cp->rx_tail;
468 int rx = 0;
469
470 cpw16(IntrStatus, cp_rx_intr_mask);
471
472 while (rx < budget) {
473 u32 status, len;
474 dma_addr_t mapping, new_mapping;
475 struct sk_buff *skb, *new_skb;
476 struct cp_desc *desc;
477 const unsigned buflen = cp->rx_buf_sz;
478
479 skb = cp->rx_skb[rx_tail];
480 BUG_ON(!skb);
481
482 desc = &cp->rx_ring[rx_tail];
483 status = le32_to_cpu(desc->opts1);
484 if (status & DescOwn)
485 break;
486
487 len = (status & 0x1fff) - 4;
488 mapping = le64_to_cpu(desc->addr);
489
490 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
491 /* we don't support incoming fragmented frames.
492 * instead, we attempt to ensure that the
493 * pre-allocated RX skbs are properly sized such
494 * that RX fragments are never encountered
495 */
496 cp_rx_err_acct(cp, rx_tail, status, len);
497 dev->stats.rx_dropped++;
498 cp->cp_stats.rx_frags++;
499 goto rx_next;
500 }
501
502 if (status & (RxError | RxErrFIFO)) {
503 cp_rx_err_acct(cp, rx_tail, status, len);
504 goto rx_next;
505 }
506
507 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
508 rx_tail, status, len);
509
510 new_skb = napi_alloc_skb(napi, buflen);
511 if (!new_skb) {
512 dev->stats.rx_dropped++;
513 goto rx_next;
514 }
515
516 new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
517 PCI_DMA_FROMDEVICE);
518 if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
519 dev->stats.rx_dropped++;
520 kfree_skb(new_skb);
521 goto rx_next;
522 }
523
524 dma_unmap_single(&cp->pdev->dev, mapping,
525 buflen, PCI_DMA_FROMDEVICE);
526
527 /* Handle checksum offloading for incoming packets. */
528 if (cp_rx_csum_ok(status))
529 skb->ip_summed = CHECKSUM_UNNECESSARY;
530 else
531 skb_checksum_none_assert(skb);
532
533 skb_put(skb, len);
534
535 cp->rx_skb[rx_tail] = new_skb;
536
537 cp_rx_skb(cp, skb, desc);
538 rx++;
539 mapping = new_mapping;
540
541 rx_next:
542 cp->rx_ring[rx_tail].opts2 = 0;
543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 if (rx_tail == (CP_RX_RING_SIZE - 1))
545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 cp->rx_buf_sz);
547 else
548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 rx_tail = NEXT_RX(rx_tail);
550 }
551
552 cp->rx_tail = rx_tail;
553
554 /* if we did not reach work limit, then we're done with
555 * this round of polling
556 */
557 if (rx < budget && napi_complete_done(napi, rx)) {
558 unsigned long flags;
559
560 spin_lock_irqsave(&cp->lock, flags);
561 cpw16_f(IntrMask, cp_intr_mask);
562 spin_unlock_irqrestore(&cp->lock, flags);
563 }
564
565 return rx;
566 }
567
568 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
569 {
570 struct net_device *dev = dev_instance;
571 struct cp_private *cp;
572 int handled = 0;
573 u16 status;
574 u16 mask;
575
576 if (unlikely(dev == NULL))
577 return IRQ_NONE;
578 cp = netdev_priv(dev);
579
580 spin_lock(&cp->lock);
581
582 mask = cpr16(IntrMask);
583 if (!mask)
584 goto out_unlock;
585
586 status = cpr16(IntrStatus);
587 if (!status || (status == 0xFFFF))
588 goto out_unlock;
589
590 handled = 1;
591
592 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
593 status, cpr8(Cmd), cpr16(CpCmd));
594
595 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
596
597 /* close possible race's with dev_close */
598 if (unlikely(!netif_running(dev))) {
599 cpw16(IntrMask, 0);
600 goto out_unlock;
601 }
602
603 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
604 if (napi_schedule_prep(&cp->napi)) {
605 cpw16_f(IntrMask, cp_norx_intr_mask);
606 __napi_schedule(&cp->napi);
607 }
608
609 if (status & (TxOK | TxErr | TxEmpty | SWInt))
610 cp_tx(cp);
611 if (status & LinkChg)
612 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
613
614
615 if (status & PciErr) {
616 u16 pci_status;
617
618 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
619 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
620 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
621 status, pci_status);
622
623 /* TODO: reset hardware */
624 }
625
626 out_unlock:
627 spin_unlock(&cp->lock);
628
629 return IRQ_RETVAL(handled);
630 }
631
632 #ifdef CONFIG_NET_POLL_CONTROLLER
633 /*
634 * Polling receive - used by netconsole and other diagnostic tools
635 * to allow network i/o with interrupts disabled.
636 */
637 static void cp_poll_controller(struct net_device *dev)
638 {
639 struct cp_private *cp = netdev_priv(dev);
640 const int irq = cp->pdev->irq;
641
642 disable_irq(irq);
643 cp_interrupt(irq, dev);
644 enable_irq(irq);
645 }
646 #endif
647
648 static void cp_tx (struct cp_private *cp)
649 {
650 unsigned tx_head = cp->tx_head;
651 unsigned tx_tail = cp->tx_tail;
652 unsigned bytes_compl = 0, pkts_compl = 0;
653
654 while (tx_tail != tx_head) {
655 struct cp_desc *txd = cp->tx_ring + tx_tail;
656 struct sk_buff *skb;
657 u32 status;
658
659 rmb();
660 status = le32_to_cpu(txd->opts1);
661 if (status & DescOwn)
662 break;
663
664 skb = cp->tx_skb[tx_tail];
665 BUG_ON(!skb);
666
667 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
668 cp->tx_opts[tx_tail] & 0xffff,
669 PCI_DMA_TODEVICE);
670
671 if (status & LastFrag) {
672 if (status & (TxError | TxFIFOUnder)) {
673 netif_dbg(cp, tx_err, cp->dev,
674 "tx err, status 0x%x\n", status);
675 cp->dev->stats.tx_errors++;
676 if (status & TxOWC)
677 cp->dev->stats.tx_window_errors++;
678 if (status & TxMaxCol)
679 cp->dev->stats.tx_aborted_errors++;
680 if (status & TxLinkFail)
681 cp->dev->stats.tx_carrier_errors++;
682 if (status & TxFIFOUnder)
683 cp->dev->stats.tx_fifo_errors++;
684 } else {
685 cp->dev->stats.collisions +=
686 ((status >> TxColCntShift) & TxColCntMask);
687 cp->dev->stats.tx_packets++;
688 cp->dev->stats.tx_bytes += skb->len;
689 netif_dbg(cp, tx_done, cp->dev,
690 "tx done, slot %d\n", tx_tail);
691 }
692 bytes_compl += skb->len;
693 pkts_compl++;
694 dev_kfree_skb_irq(skb);
695 }
696
697 cp->tx_skb[tx_tail] = NULL;
698
699 tx_tail = NEXT_TX(tx_tail);
700 }
701
702 cp->tx_tail = tx_tail;
703
704 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
705 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
706 netif_wake_queue(cp->dev);
707 }
708
709 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
710 {
711 return skb_vlan_tag_present(skb) ?
712 TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
713 }
714
715 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
716 int first, int entry_last)
717 {
718 int frag, index;
719 struct cp_desc *txd;
720 skb_frag_t *this_frag;
721 for (frag = 0; frag+first < entry_last; frag++) {
722 index = first+frag;
723 cp->tx_skb[index] = NULL;
724 txd = &cp->tx_ring[index];
725 this_frag = &skb_shinfo(skb)->frags[frag];
726 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
727 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
728 }
729 }
730
731 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
732 struct net_device *dev)
733 {
734 struct cp_private *cp = netdev_priv(dev);
735 unsigned entry;
736 u32 eor, opts1;
737 unsigned long intr_flags;
738 __le32 opts2;
739 int mss = 0;
740
741 spin_lock_irqsave(&cp->lock, intr_flags);
742
743 /* This is a hard error, log it. */
744 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
745 netif_stop_queue(dev);
746 spin_unlock_irqrestore(&cp->lock, intr_flags);
747 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
748 return NETDEV_TX_BUSY;
749 }
750
751 entry = cp->tx_head;
752 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
753 mss = skb_shinfo(skb)->gso_size;
754
755 if (mss > MSSMask) {
756 netdev_WARN_ONCE(dev, "Net bug: GSO size %d too large for 8139CP\n",
757 mss);
758 goto out_dma_error;
759 }
760
761 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
762 opts1 = DescOwn;
763 if (mss)
764 opts1 |= LargeSend | (mss << MSSShift);
765 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
766 const struct iphdr *ip = ip_hdr(skb);
767 if (ip->protocol == IPPROTO_TCP)
768 opts1 |= IPCS | TCPCS;
769 else if (ip->protocol == IPPROTO_UDP)
770 opts1 |= IPCS | UDPCS;
771 else {
772 WARN_ONCE(1,
773 "Net bug: asked to checksum invalid Legacy IP packet\n");
774 goto out_dma_error;
775 }
776 }
777
778 if (skb_shinfo(skb)->nr_frags == 0) {
779 struct cp_desc *txd = &cp->tx_ring[entry];
780 u32 len;
781 dma_addr_t mapping;
782
783 len = skb->len;
784 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
785 if (dma_mapping_error(&cp->pdev->dev, mapping))
786 goto out_dma_error;
787
788 txd->opts2 = opts2;
789 txd->addr = cpu_to_le64(mapping);
790 wmb();
791
792 opts1 |= eor | len | FirstFrag | LastFrag;
793
794 txd->opts1 = cpu_to_le32(opts1);
795 wmb();
796
797 cp->tx_skb[entry] = skb;
798 cp->tx_opts[entry] = opts1;
799 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
800 entry, skb->len);
801 } else {
802 struct cp_desc *txd;
803 u32 first_len, first_eor, ctrl;
804 dma_addr_t first_mapping;
805 int frag, first_entry = entry;
806
807 /* We must give this initial chunk to the device last.
808 * Otherwise we could race with the device.
809 */
810 first_eor = eor;
811 first_len = skb_headlen(skb);
812 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
813 first_len, PCI_DMA_TODEVICE);
814 if (dma_mapping_error(&cp->pdev->dev, first_mapping))
815 goto out_dma_error;
816
817 cp->tx_skb[entry] = skb;
818
819 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
820 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
821 u32 len;
822 dma_addr_t mapping;
823
824 entry = NEXT_TX(entry);
825
826 len = skb_frag_size(this_frag);
827 mapping = dma_map_single(&cp->pdev->dev,
828 skb_frag_address(this_frag),
829 len, PCI_DMA_TODEVICE);
830 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
831 unwind_tx_frag_mapping(cp, skb, first_entry, entry);
832 goto out_dma_error;
833 }
834
835 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
836
837 ctrl = opts1 | eor | len;
838
839 if (frag == skb_shinfo(skb)->nr_frags - 1)
840 ctrl |= LastFrag;
841
842 txd = &cp->tx_ring[entry];
843 txd->opts2 = opts2;
844 txd->addr = cpu_to_le64(mapping);
845 wmb();
846
847 txd->opts1 = cpu_to_le32(ctrl);
848 wmb();
849
850 cp->tx_opts[entry] = ctrl;
851 cp->tx_skb[entry] = skb;
852 }
853
854 txd = &cp->tx_ring[first_entry];
855 txd->opts2 = opts2;
856 txd->addr = cpu_to_le64(first_mapping);
857 wmb();
858
859 ctrl = opts1 | first_eor | first_len | FirstFrag;
860 txd->opts1 = cpu_to_le32(ctrl);
861 wmb();
862
863 cp->tx_opts[first_entry] = ctrl;
864 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
865 first_entry, entry, skb->len);
866 }
867 cp->tx_head = NEXT_TX(entry);
868
869 netdev_sent_queue(dev, skb->len);
870 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
871 netif_stop_queue(dev);
872
873 out_unlock:
874 spin_unlock_irqrestore(&cp->lock, intr_flags);
875
876 cpw8(TxPoll, NormalTxPoll);
877
878 return NETDEV_TX_OK;
879 out_dma_error:
880 dev_kfree_skb_any(skb);
881 cp->dev->stats.tx_dropped++;
882 goto out_unlock;
883 }
884
885 /* Set or clear the multicast filter for this adaptor.
886 This routine is not state sensitive and need not be SMP locked. */
887
888 static void __cp_set_rx_mode (struct net_device *dev)
889 {
890 struct cp_private *cp = netdev_priv(dev);
891 u32 mc_filter[2]; /* Multicast hash filter */
892 int rx_mode;
893
894 /* Note: do not reorder, GCC is clever about common statements. */
895 if (dev->flags & IFF_PROMISC) {
896 /* Unconditionally log net taps. */
897 rx_mode =
898 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
899 AcceptAllPhys;
900 mc_filter[1] = mc_filter[0] = 0xffffffff;
901 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
902 (dev->flags & IFF_ALLMULTI)) {
903 /* Too many to filter perfectly -- accept all multicasts. */
904 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
905 mc_filter[1] = mc_filter[0] = 0xffffffff;
906 } else {
907 struct netdev_hw_addr *ha;
908 rx_mode = AcceptBroadcast | AcceptMyPhys;
909 mc_filter[1] = mc_filter[0] = 0;
910 netdev_for_each_mc_addr(ha, dev) {
911 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
912
913 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
914 rx_mode |= AcceptMulticast;
915 }
916 }
917
918 /* We can safely update without stopping the chip. */
919 cp->rx_config = cp_rx_config | rx_mode;
920 cpw32_f(RxConfig, cp->rx_config);
921
922 cpw32_f (MAR0 + 0, mc_filter[0]);
923 cpw32_f (MAR0 + 4, mc_filter[1]);
924 }
925
926 static void cp_set_rx_mode (struct net_device *dev)
927 {
928 unsigned long flags;
929 struct cp_private *cp = netdev_priv(dev);
930
931 spin_lock_irqsave (&cp->lock, flags);
932 __cp_set_rx_mode(dev);
933 spin_unlock_irqrestore (&cp->lock, flags);
934 }
935
936 static void __cp_get_stats(struct cp_private *cp)
937 {
938 /* only lower 24 bits valid; write any value to clear */
939 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
940 cpw32 (RxMissed, 0);
941 }
942
943 static struct net_device_stats *cp_get_stats(struct net_device *dev)
944 {
945 struct cp_private *cp = netdev_priv(dev);
946 unsigned long flags;
947
948 /* The chip only need report frame silently dropped. */
949 spin_lock_irqsave(&cp->lock, flags);
950 if (netif_running(dev) && netif_device_present(dev))
951 __cp_get_stats(cp);
952 spin_unlock_irqrestore(&cp->lock, flags);
953
954 return &dev->stats;
955 }
956
957 static void cp_stop_hw (struct cp_private *cp)
958 {
959 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
960 cpw16_f(IntrMask, 0);
961 cpw8(Cmd, 0);
962 cpw16_f(CpCmd, 0);
963 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
964
965 cp->rx_tail = 0;
966 cp->tx_head = cp->tx_tail = 0;
967
968 netdev_reset_queue(cp->dev);
969 }
970
971 static void cp_reset_hw (struct cp_private *cp)
972 {
973 unsigned work = 1000;
974
975 cpw8(Cmd, CmdReset);
976
977 while (work--) {
978 if (!(cpr8(Cmd) & CmdReset))
979 return;
980
981 schedule_timeout_uninterruptible(10);
982 }
983
984 netdev_err(cp->dev, "hardware reset timeout\n");
985 }
986
987 static inline void cp_start_hw (struct cp_private *cp)
988 {
989 dma_addr_t ring_dma;
990
991 cpw16(CpCmd, cp->cpcmd);
992
993 /*
994 * These (at least TxRingAddr) need to be configured after the
995 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
996 * (C+ Command Register) recommends that these and more be configured
997 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
998 * it's been observed that the TxRingAddr is actually reset to garbage
999 * when C+ mode Tx is enabled in CpCmd.
1000 */
1001 cpw32_f(HiTxRingAddr, 0);
1002 cpw32_f(HiTxRingAddr + 4, 0);
1003
1004 ring_dma = cp->ring_dma;
1005 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1006 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1007
1008 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1009 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1010 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1011
1012 /*
1013 * Strictly speaking, the datasheet says this should be enabled
1014 * *before* setting the descriptor addresses. But what, then, would
1015 * prevent it from doing DMA to random unconfigured addresses?
1016 * This variant appears to work fine.
1017 */
1018 cpw8(Cmd, RxOn | TxOn);
1019
1020 netdev_reset_queue(cp->dev);
1021 }
1022
1023 static void cp_enable_irq(struct cp_private *cp)
1024 {
1025 cpw16_f(IntrMask, cp_intr_mask);
1026 }
1027
1028 static void cp_init_hw (struct cp_private *cp)
1029 {
1030 struct net_device *dev = cp->dev;
1031
1032 cp_reset_hw(cp);
1033
1034 cpw8_f (Cfg9346, Cfg9346_Unlock);
1035
1036 /* Restore our idea of the MAC address. */
1037 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1038 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1039
1040 cp_start_hw(cp);
1041 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1042
1043 __cp_set_rx_mode(dev);
1044 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1045
1046 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1047 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1048 cpw8(Config3, PARMEnable);
1049 cp->wol_enabled = 0;
1050
1051 cpw8(Config5, cpr8(Config5) & PMEStatus);
1052
1053 cpw16(MultiIntr, 0);
1054
1055 cpw8_f(Cfg9346, Cfg9346_Lock);
1056 }
1057
1058 static int cp_refill_rx(struct cp_private *cp)
1059 {
1060 struct net_device *dev = cp->dev;
1061 unsigned i;
1062
1063 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1064 struct sk_buff *skb;
1065 dma_addr_t mapping;
1066
1067 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1068 if (!skb)
1069 goto err_out;
1070
1071 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1072 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1073 if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1074 kfree_skb(skb);
1075 goto err_out;
1076 }
1077 cp->rx_skb[i] = skb;
1078
1079 cp->rx_ring[i].opts2 = 0;
1080 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1081 if (i == (CP_RX_RING_SIZE - 1))
1082 cp->rx_ring[i].opts1 =
1083 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1084 else
1085 cp->rx_ring[i].opts1 =
1086 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1087 }
1088
1089 return 0;
1090
1091 err_out:
1092 cp_clean_rings(cp);
1093 return -ENOMEM;
1094 }
1095
1096 static void cp_init_rings_index (struct cp_private *cp)
1097 {
1098 cp->rx_tail = 0;
1099 cp->tx_head = cp->tx_tail = 0;
1100 }
1101
1102 static int cp_init_rings (struct cp_private *cp)
1103 {
1104 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1105 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1106 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1107
1108 cp_init_rings_index(cp);
1109
1110 return cp_refill_rx (cp);
1111 }
1112
1113 static int cp_alloc_rings (struct cp_private *cp)
1114 {
1115 struct device *d = &cp->pdev->dev;
1116 void *mem;
1117 int rc;
1118
1119 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1120 if (!mem)
1121 return -ENOMEM;
1122
1123 cp->rx_ring = mem;
1124 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1125
1126 rc = cp_init_rings(cp);
1127 if (rc < 0)
1128 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1129
1130 return rc;
1131 }
1132
1133 static void cp_clean_rings (struct cp_private *cp)
1134 {
1135 struct cp_desc *desc;
1136 unsigned i;
1137
1138 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1139 if (cp->rx_skb[i]) {
1140 desc = cp->rx_ring + i;
1141 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1142 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1143 dev_kfree_skb_any(cp->rx_skb[i]);
1144 }
1145 }
1146
1147 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1148 if (cp->tx_skb[i]) {
1149 struct sk_buff *skb = cp->tx_skb[i];
1150
1151 desc = cp->tx_ring + i;
1152 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1153 le32_to_cpu(desc->opts1) & 0xffff,
1154 PCI_DMA_TODEVICE);
1155 if (le32_to_cpu(desc->opts1) & LastFrag)
1156 dev_kfree_skb_any(skb);
1157 cp->dev->stats.tx_dropped++;
1158 }
1159 }
1160 netdev_reset_queue(cp->dev);
1161
1162 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1163 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1164 memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1165
1166 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1167 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1168 }
1169
1170 static void cp_free_rings (struct cp_private *cp)
1171 {
1172 cp_clean_rings(cp);
1173 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1174 cp->ring_dma);
1175 cp->rx_ring = NULL;
1176 cp->tx_ring = NULL;
1177 }
1178
1179 static int cp_open (struct net_device *dev)
1180 {
1181 struct cp_private *cp = netdev_priv(dev);
1182 const int irq = cp->pdev->irq;
1183 int rc;
1184
1185 netif_dbg(cp, ifup, dev, "enabling interface\n");
1186
1187 rc = cp_alloc_rings(cp);
1188 if (rc)
1189 return rc;
1190
1191 napi_enable(&cp->napi);
1192
1193 cp_init_hw(cp);
1194
1195 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1196 if (rc)
1197 goto err_out_hw;
1198
1199 cp_enable_irq(cp);
1200
1201 netif_carrier_off(dev);
1202 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1203 netif_start_queue(dev);
1204
1205 return 0;
1206
1207 err_out_hw:
1208 napi_disable(&cp->napi);
1209 cp_stop_hw(cp);
1210 cp_free_rings(cp);
1211 return rc;
1212 }
1213
1214 static int cp_close (struct net_device *dev)
1215 {
1216 struct cp_private *cp = netdev_priv(dev);
1217 unsigned long flags;
1218
1219 napi_disable(&cp->napi);
1220
1221 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1222
1223 spin_lock_irqsave(&cp->lock, flags);
1224
1225 netif_stop_queue(dev);
1226 netif_carrier_off(dev);
1227
1228 cp_stop_hw(cp);
1229
1230 spin_unlock_irqrestore(&cp->lock, flags);
1231
1232 free_irq(cp->pdev->irq, dev);
1233
1234 cp_free_rings(cp);
1235 return 0;
1236 }
1237
1238 static void cp_tx_timeout(struct net_device *dev)
1239 {
1240 struct cp_private *cp = netdev_priv(dev);
1241 unsigned long flags;
1242 int rc, i;
1243
1244 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1245 cpr8(Cmd), cpr16(CpCmd),
1246 cpr16(IntrStatus), cpr16(IntrMask));
1247
1248 spin_lock_irqsave(&cp->lock, flags);
1249
1250 netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1251 cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1252 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1253 netif_dbg(cp, tx_err, cp->dev,
1254 "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1255 i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1256 cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1257 le64_to_cpu(cp->tx_ring[i].addr),
1258 cp->tx_skb[i]);
1259 }
1260
1261 cp_stop_hw(cp);
1262 cp_clean_rings(cp);
1263 rc = cp_init_rings(cp);
1264 cp_start_hw(cp);
1265 __cp_set_rx_mode(dev);
1266 cpw16_f(IntrMask, cp_norx_intr_mask);
1267
1268 netif_wake_queue(dev);
1269 napi_schedule_irqoff(&cp->napi);
1270
1271 spin_unlock_irqrestore(&cp->lock, flags);
1272 }
1273
1274 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1275 {
1276 struct cp_private *cp = netdev_priv(dev);
1277
1278 /* if network interface not up, no need for complexity */
1279 if (!netif_running(dev)) {
1280 dev->mtu = new_mtu;
1281 cp_set_rxbufsize(cp); /* set new rx buf size */
1282 return 0;
1283 }
1284
1285 /* network IS up, close it, reset MTU, and come up again. */
1286 cp_close(dev);
1287 dev->mtu = new_mtu;
1288 cp_set_rxbufsize(cp);
1289 return cp_open(dev);
1290 }
1291
1292 static const char mii_2_8139_map[8] = {
1293 BasicModeCtrl,
1294 BasicModeStatus,
1295 0,
1296 0,
1297 NWayAdvert,
1298 NWayLPAR,
1299 NWayExpansion,
1300 0
1301 };
1302
1303 static int mdio_read(struct net_device *dev, int phy_id, int location)
1304 {
1305 struct cp_private *cp = netdev_priv(dev);
1306
1307 return location < 8 && mii_2_8139_map[location] ?
1308 readw(cp->regs + mii_2_8139_map[location]) : 0;
1309 }
1310
1311
1312 static void mdio_write(struct net_device *dev, int phy_id, int location,
1313 int value)
1314 {
1315 struct cp_private *cp = netdev_priv(dev);
1316
1317 if (location == 0) {
1318 cpw8(Cfg9346, Cfg9346_Unlock);
1319 cpw16(BasicModeCtrl, value);
1320 cpw8(Cfg9346, Cfg9346_Lock);
1321 } else if (location < 8 && mii_2_8139_map[location])
1322 cpw16(mii_2_8139_map[location], value);
1323 }
1324
1325 /* Set the ethtool Wake-on-LAN settings */
1326 static int netdev_set_wol (struct cp_private *cp,
1327 const struct ethtool_wolinfo *wol)
1328 {
1329 u8 options;
1330
1331 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1332 /* If WOL is being disabled, no need for complexity */
1333 if (wol->wolopts) {
1334 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1335 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1336 }
1337
1338 cpw8 (Cfg9346, Cfg9346_Unlock);
1339 cpw8 (Config3, options);
1340 cpw8 (Cfg9346, Cfg9346_Lock);
1341
1342 options = 0; /* Paranoia setting */
1343 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1344 /* If WOL is being disabled, no need for complexity */
1345 if (wol->wolopts) {
1346 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1347 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1348 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1349 }
1350
1351 cpw8 (Config5, options);
1352
1353 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1354
1355 return 0;
1356 }
1357
1358 /* Get the ethtool Wake-on-LAN settings */
1359 static void netdev_get_wol (struct cp_private *cp,
1360 struct ethtool_wolinfo *wol)
1361 {
1362 u8 options;
1363
1364 wol->wolopts = 0; /* Start from scratch */
1365 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1366 WAKE_MCAST | WAKE_UCAST;
1367 /* We don't need to go on if WOL is disabled */
1368 if (!cp->wol_enabled) return;
1369
1370 options = cpr8 (Config3);
1371 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1372 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1373
1374 options = 0; /* Paranoia setting */
1375 options = cpr8 (Config5);
1376 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1377 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1378 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1379 }
1380
1381 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1382 {
1383 struct cp_private *cp = netdev_priv(dev);
1384
1385 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1386 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1387 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1388 }
1389
1390 static void cp_get_ringparam(struct net_device *dev,
1391 struct ethtool_ringparam *ring)
1392 {
1393 ring->rx_max_pending = CP_RX_RING_SIZE;
1394 ring->tx_max_pending = CP_TX_RING_SIZE;
1395 ring->rx_pending = CP_RX_RING_SIZE;
1396 ring->tx_pending = CP_TX_RING_SIZE;
1397 }
1398
1399 static int cp_get_regs_len(struct net_device *dev)
1400 {
1401 return CP_REGS_SIZE;
1402 }
1403
1404 static int cp_get_sset_count (struct net_device *dev, int sset)
1405 {
1406 switch (sset) {
1407 case ETH_SS_STATS:
1408 return CP_NUM_STATS;
1409 default:
1410 return -EOPNOTSUPP;
1411 }
1412 }
1413
1414 static int cp_get_link_ksettings(struct net_device *dev,
1415 struct ethtool_link_ksettings *cmd)
1416 {
1417 struct cp_private *cp = netdev_priv(dev);
1418 unsigned long flags;
1419
1420 spin_lock_irqsave(&cp->lock, flags);
1421 mii_ethtool_get_link_ksettings(&cp->mii_if, cmd);
1422 spin_unlock_irqrestore(&cp->lock, flags);
1423
1424 return 0;
1425 }
1426
1427 static int cp_set_link_ksettings(struct net_device *dev,
1428 const struct ethtool_link_ksettings *cmd)
1429 {
1430 struct cp_private *cp = netdev_priv(dev);
1431 int rc;
1432 unsigned long flags;
1433
1434 spin_lock_irqsave(&cp->lock, flags);
1435 rc = mii_ethtool_set_link_ksettings(&cp->mii_if, cmd);
1436 spin_unlock_irqrestore(&cp->lock, flags);
1437
1438 return rc;
1439 }
1440
1441 static int cp_nway_reset(struct net_device *dev)
1442 {
1443 struct cp_private *cp = netdev_priv(dev);
1444 return mii_nway_restart(&cp->mii_if);
1445 }
1446
1447 static u32 cp_get_msglevel(struct net_device *dev)
1448 {
1449 struct cp_private *cp = netdev_priv(dev);
1450 return cp->msg_enable;
1451 }
1452
1453 static void cp_set_msglevel(struct net_device *dev, u32 value)
1454 {
1455 struct cp_private *cp = netdev_priv(dev);
1456 cp->msg_enable = value;
1457 }
1458
1459 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1460 {
1461 struct cp_private *cp = netdev_priv(dev);
1462 unsigned long flags;
1463
1464 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1465 return 0;
1466
1467 spin_lock_irqsave(&cp->lock, flags);
1468
1469 if (features & NETIF_F_RXCSUM)
1470 cp->cpcmd |= RxChkSum;
1471 else
1472 cp->cpcmd &= ~RxChkSum;
1473
1474 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1475 cp->cpcmd |= RxVlanOn;
1476 else
1477 cp->cpcmd &= ~RxVlanOn;
1478
1479 cpw16_f(CpCmd, cp->cpcmd);
1480 spin_unlock_irqrestore(&cp->lock, flags);
1481
1482 return 0;
1483 }
1484
1485 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1486 void *p)
1487 {
1488 struct cp_private *cp = netdev_priv(dev);
1489 unsigned long flags;
1490
1491 if (regs->len < CP_REGS_SIZE)
1492 return /* -EINVAL */;
1493
1494 regs->version = CP_REGS_VER;
1495
1496 spin_lock_irqsave(&cp->lock, flags);
1497 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1498 spin_unlock_irqrestore(&cp->lock, flags);
1499 }
1500
1501 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1502 {
1503 struct cp_private *cp = netdev_priv(dev);
1504 unsigned long flags;
1505
1506 spin_lock_irqsave (&cp->lock, flags);
1507 netdev_get_wol (cp, wol);
1508 spin_unlock_irqrestore (&cp->lock, flags);
1509 }
1510
1511 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1512 {
1513 struct cp_private *cp = netdev_priv(dev);
1514 unsigned long flags;
1515 int rc;
1516
1517 spin_lock_irqsave (&cp->lock, flags);
1518 rc = netdev_set_wol (cp, wol);
1519 spin_unlock_irqrestore (&cp->lock, flags);
1520
1521 return rc;
1522 }
1523
1524 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1525 {
1526 switch (stringset) {
1527 case ETH_SS_STATS:
1528 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1529 break;
1530 default:
1531 BUG();
1532 break;
1533 }
1534 }
1535
1536 static void cp_get_ethtool_stats (struct net_device *dev,
1537 struct ethtool_stats *estats, u64 *tmp_stats)
1538 {
1539 struct cp_private *cp = netdev_priv(dev);
1540 struct cp_dma_stats *nic_stats;
1541 dma_addr_t dma;
1542 int i;
1543
1544 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1545 &dma, GFP_KERNEL);
1546 if (!nic_stats)
1547 return;
1548
1549 /* begin NIC statistics dump */
1550 cpw32(StatsAddr + 4, (u64)dma >> 32);
1551 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1552 cpr32(StatsAddr);
1553
1554 for (i = 0; i < 1000; i++) {
1555 if ((cpr32(StatsAddr) & DumpStats) == 0)
1556 break;
1557 udelay(10);
1558 }
1559 cpw32(StatsAddr, 0);
1560 cpw32(StatsAddr + 4, 0);
1561 cpr32(StatsAddr);
1562
1563 i = 0;
1564 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1565 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1566 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1567 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1568 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1569 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1570 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1571 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1572 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1573 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1574 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1575 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1576 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1577 tmp_stats[i++] = cp->cp_stats.rx_frags;
1578 BUG_ON(i != CP_NUM_STATS);
1579
1580 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1581 }
1582
1583 static const struct ethtool_ops cp_ethtool_ops = {
1584 .get_drvinfo = cp_get_drvinfo,
1585 .get_regs_len = cp_get_regs_len,
1586 .get_sset_count = cp_get_sset_count,
1587 .nway_reset = cp_nway_reset,
1588 .get_link = ethtool_op_get_link,
1589 .get_msglevel = cp_get_msglevel,
1590 .set_msglevel = cp_set_msglevel,
1591 .get_regs = cp_get_regs,
1592 .get_wol = cp_get_wol,
1593 .set_wol = cp_set_wol,
1594 .get_strings = cp_get_strings,
1595 .get_ethtool_stats = cp_get_ethtool_stats,
1596 .get_eeprom_len = cp_get_eeprom_len,
1597 .get_eeprom = cp_get_eeprom,
1598 .set_eeprom = cp_set_eeprom,
1599 .get_ringparam = cp_get_ringparam,
1600 .get_link_ksettings = cp_get_link_ksettings,
1601 .set_link_ksettings = cp_set_link_ksettings,
1602 };
1603
1604 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1605 {
1606 struct cp_private *cp = netdev_priv(dev);
1607 int rc;
1608 unsigned long flags;
1609
1610 if (!netif_running(dev))
1611 return -EINVAL;
1612
1613 spin_lock_irqsave(&cp->lock, flags);
1614 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1615 spin_unlock_irqrestore(&cp->lock, flags);
1616 return rc;
1617 }
1618
1619 static int cp_set_mac_address(struct net_device *dev, void *p)
1620 {
1621 struct cp_private *cp = netdev_priv(dev);
1622 struct sockaddr *addr = p;
1623
1624 if (!is_valid_ether_addr(addr->sa_data))
1625 return -EADDRNOTAVAIL;
1626
1627 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1628
1629 spin_lock_irq(&cp->lock);
1630
1631 cpw8_f(Cfg9346, Cfg9346_Unlock);
1632 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1633 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1634 cpw8_f(Cfg9346, Cfg9346_Lock);
1635
1636 spin_unlock_irq(&cp->lock);
1637
1638 return 0;
1639 }
1640
1641 /* Serial EEPROM section. */
1642
1643 /* EEPROM_Ctrl bits. */
1644 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1645 #define EE_CS 0x08 /* EEPROM chip select. */
1646 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1647 #define EE_WRITE_0 0x00
1648 #define EE_WRITE_1 0x02
1649 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1650 #define EE_ENB (0x80 | EE_CS)
1651
1652 /* Delay between EEPROM clock transitions.
1653 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1654 */
1655
1656 #define eeprom_delay() readb(ee_addr)
1657
1658 /* The EEPROM commands include the alway-set leading bit. */
1659 #define EE_EXTEND_CMD (4)
1660 #define EE_WRITE_CMD (5)
1661 #define EE_READ_CMD (6)
1662 #define EE_ERASE_CMD (7)
1663
1664 #define EE_EWDS_ADDR (0)
1665 #define EE_WRAL_ADDR (1)
1666 #define EE_ERAL_ADDR (2)
1667 #define EE_EWEN_ADDR (3)
1668
1669 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1670
1671 static void eeprom_cmd_start(void __iomem *ee_addr)
1672 {
1673 writeb (EE_ENB & ~EE_CS, ee_addr);
1674 writeb (EE_ENB, ee_addr);
1675 eeprom_delay ();
1676 }
1677
1678 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1679 {
1680 int i;
1681
1682 /* Shift the command bits out. */
1683 for (i = cmd_len - 1; i >= 0; i--) {
1684 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1685 writeb (EE_ENB | dataval, ee_addr);
1686 eeprom_delay ();
1687 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1688 eeprom_delay ();
1689 }
1690 writeb (EE_ENB, ee_addr);
1691 eeprom_delay ();
1692 }
1693
1694 static void eeprom_cmd_end(void __iomem *ee_addr)
1695 {
1696 writeb(0, ee_addr);
1697 eeprom_delay ();
1698 }
1699
1700 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1701 int addr_len)
1702 {
1703 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1704
1705 eeprom_cmd_start(ee_addr);
1706 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1707 eeprom_cmd_end(ee_addr);
1708 }
1709
1710 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1711 {
1712 int i;
1713 u16 retval = 0;
1714 void __iomem *ee_addr = ioaddr + Cfg9346;
1715 int read_cmd = location | (EE_READ_CMD << addr_len);
1716
1717 eeprom_cmd_start(ee_addr);
1718 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1719
1720 for (i = 16; i > 0; i--) {
1721 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1722 eeprom_delay ();
1723 retval =
1724 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1725 0);
1726 writeb (EE_ENB, ee_addr);
1727 eeprom_delay ();
1728 }
1729
1730 eeprom_cmd_end(ee_addr);
1731
1732 return retval;
1733 }
1734
1735 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1736 int addr_len)
1737 {
1738 int i;
1739 void __iomem *ee_addr = ioaddr + Cfg9346;
1740 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1741
1742 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1743
1744 eeprom_cmd_start(ee_addr);
1745 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1746 eeprom_cmd(ee_addr, val, 16);
1747 eeprom_cmd_end(ee_addr);
1748
1749 eeprom_cmd_start(ee_addr);
1750 for (i = 0; i < 20000; i++)
1751 if (readb(ee_addr) & EE_DATA_READ)
1752 break;
1753 eeprom_cmd_end(ee_addr);
1754
1755 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1756 }
1757
1758 static int cp_get_eeprom_len(struct net_device *dev)
1759 {
1760 struct cp_private *cp = netdev_priv(dev);
1761 int size;
1762
1763 spin_lock_irq(&cp->lock);
1764 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1765 spin_unlock_irq(&cp->lock);
1766
1767 return size;
1768 }
1769
1770 static int cp_get_eeprom(struct net_device *dev,
1771 struct ethtool_eeprom *eeprom, u8 *data)
1772 {
1773 struct cp_private *cp = netdev_priv(dev);
1774 unsigned int addr_len;
1775 u16 val;
1776 u32 offset = eeprom->offset >> 1;
1777 u32 len = eeprom->len;
1778 u32 i = 0;
1779
1780 eeprom->magic = CP_EEPROM_MAGIC;
1781
1782 spin_lock_irq(&cp->lock);
1783
1784 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1785
1786 if (eeprom->offset & 1) {
1787 val = read_eeprom(cp->regs, offset, addr_len);
1788 data[i++] = (u8)(val >> 8);
1789 offset++;
1790 }
1791
1792 while (i < len - 1) {
1793 val = read_eeprom(cp->regs, offset, addr_len);
1794 data[i++] = (u8)val;
1795 data[i++] = (u8)(val >> 8);
1796 offset++;
1797 }
1798
1799 if (i < len) {
1800 val = read_eeprom(cp->regs, offset, addr_len);
1801 data[i] = (u8)val;
1802 }
1803
1804 spin_unlock_irq(&cp->lock);
1805 return 0;
1806 }
1807
1808 static int cp_set_eeprom(struct net_device *dev,
1809 struct ethtool_eeprom *eeprom, u8 *data)
1810 {
1811 struct cp_private *cp = netdev_priv(dev);
1812 unsigned int addr_len;
1813 u16 val;
1814 u32 offset = eeprom->offset >> 1;
1815 u32 len = eeprom->len;
1816 u32 i = 0;
1817
1818 if (eeprom->magic != CP_EEPROM_MAGIC)
1819 return -EINVAL;
1820
1821 spin_lock_irq(&cp->lock);
1822
1823 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1824
1825 if (eeprom->offset & 1) {
1826 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1827 val |= (u16)data[i++] << 8;
1828 write_eeprom(cp->regs, offset, val, addr_len);
1829 offset++;
1830 }
1831
1832 while (i < len - 1) {
1833 val = (u16)data[i++];
1834 val |= (u16)data[i++] << 8;
1835 write_eeprom(cp->regs, offset, val, addr_len);
1836 offset++;
1837 }
1838
1839 if (i < len) {
1840 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1841 val |= (u16)data[i];
1842 write_eeprom(cp->regs, offset, val, addr_len);
1843 }
1844
1845 spin_unlock_irq(&cp->lock);
1846 return 0;
1847 }
1848
1849 /* Put the board into D3cold state and wait for WakeUp signal */
1850 static void cp_set_d3_state (struct cp_private *cp)
1851 {
1852 pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1853 pci_set_power_state (cp->pdev, PCI_D3hot);
1854 }
1855
1856 static netdev_features_t cp_features_check(struct sk_buff *skb,
1857 struct net_device *dev,
1858 netdev_features_t features)
1859 {
1860 if (skb_shinfo(skb)->gso_size > MSSMask)
1861 features &= ~NETIF_F_TSO;
1862
1863 return vlan_features_check(skb, features);
1864 }
1865 static const struct net_device_ops cp_netdev_ops = {
1866 .ndo_open = cp_open,
1867 .ndo_stop = cp_close,
1868 .ndo_validate_addr = eth_validate_addr,
1869 .ndo_set_mac_address = cp_set_mac_address,
1870 .ndo_set_rx_mode = cp_set_rx_mode,
1871 .ndo_get_stats = cp_get_stats,
1872 .ndo_do_ioctl = cp_ioctl,
1873 .ndo_start_xmit = cp_start_xmit,
1874 .ndo_tx_timeout = cp_tx_timeout,
1875 .ndo_set_features = cp_set_features,
1876 .ndo_change_mtu = cp_change_mtu,
1877 .ndo_features_check = cp_features_check,
1878
1879 #ifdef CONFIG_NET_POLL_CONTROLLER
1880 .ndo_poll_controller = cp_poll_controller,
1881 #endif
1882 };
1883
1884 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1885 {
1886 struct net_device *dev;
1887 struct cp_private *cp;
1888 int rc;
1889 void __iomem *regs;
1890 resource_size_t pciaddr;
1891 unsigned int addr_len, i, pci_using_dac;
1892
1893 pr_info_once("%s", version);
1894
1895 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1896 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1897 dev_info(&pdev->dev,
1898 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1899 pdev->vendor, pdev->device, pdev->revision);
1900 return -ENODEV;
1901 }
1902
1903 dev = alloc_etherdev(sizeof(struct cp_private));
1904 if (!dev)
1905 return -ENOMEM;
1906 SET_NETDEV_DEV(dev, &pdev->dev);
1907
1908 cp = netdev_priv(dev);
1909 cp->pdev = pdev;
1910 cp->dev = dev;
1911 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1912 spin_lock_init (&cp->lock);
1913 cp->mii_if.dev = dev;
1914 cp->mii_if.mdio_read = mdio_read;
1915 cp->mii_if.mdio_write = mdio_write;
1916 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1917 cp->mii_if.phy_id_mask = 0x1f;
1918 cp->mii_if.reg_num_mask = 0x1f;
1919 cp_set_rxbufsize(cp);
1920
1921 rc = pci_enable_device(pdev);
1922 if (rc)
1923 goto err_out_free;
1924
1925 rc = pci_set_mwi(pdev);
1926 if (rc)
1927 goto err_out_disable;
1928
1929 rc = pci_request_regions(pdev, DRV_NAME);
1930 if (rc)
1931 goto err_out_mwi;
1932
1933 pciaddr = pci_resource_start(pdev, 1);
1934 if (!pciaddr) {
1935 rc = -EIO;
1936 dev_err(&pdev->dev, "no MMIO resource\n");
1937 goto err_out_res;
1938 }
1939 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1940 rc = -EIO;
1941 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1942 (unsigned long long)pci_resource_len(pdev, 1));
1943 goto err_out_res;
1944 }
1945
1946 /* Configure DMA attributes. */
1947 if ((sizeof(dma_addr_t) > 4) &&
1948 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1949 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1950 pci_using_dac = 1;
1951 } else {
1952 pci_using_dac = 0;
1953
1954 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1955 if (rc) {
1956 dev_err(&pdev->dev,
1957 "No usable DMA configuration, aborting\n");
1958 goto err_out_res;
1959 }
1960 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1961 if (rc) {
1962 dev_err(&pdev->dev,
1963 "No usable consistent DMA configuration, aborting\n");
1964 goto err_out_res;
1965 }
1966 }
1967
1968 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1969 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1970
1971 dev->features |= NETIF_F_RXCSUM;
1972 dev->hw_features |= NETIF_F_RXCSUM;
1973
1974 regs = ioremap(pciaddr, CP_REGS_SIZE);
1975 if (!regs) {
1976 rc = -EIO;
1977 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1978 (unsigned long long)pci_resource_len(pdev, 1),
1979 (unsigned long long)pciaddr);
1980 goto err_out_res;
1981 }
1982 cp->regs = regs;
1983
1984 cp_stop_hw(cp);
1985
1986 /* read MAC address from EEPROM */
1987 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1988 for (i = 0; i < 3; i++)
1989 ((__le16 *) (dev->dev_addr))[i] =
1990 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1991
1992 dev->netdev_ops = &cp_netdev_ops;
1993 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1994 dev->ethtool_ops = &cp_ethtool_ops;
1995 dev->watchdog_timeo = TX_TIMEOUT;
1996
1997 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1998 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1999
2000 if (pci_using_dac)
2001 dev->features |= NETIF_F_HIGHDMA;
2002
2003 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2004 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2005 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
2006 NETIF_F_HIGHDMA;
2007
2008 /* MTU range: 60 - 4096 */
2009 dev->min_mtu = CP_MIN_MTU;
2010 dev->max_mtu = CP_MAX_MTU;
2011
2012 rc = register_netdev(dev);
2013 if (rc)
2014 goto err_out_iomap;
2015
2016 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2017 regs, dev->dev_addr, pdev->irq);
2018
2019 pci_set_drvdata(pdev, dev);
2020
2021 /* enable busmastering and memory-write-invalidate */
2022 pci_set_master(pdev);
2023
2024 if (cp->wol_enabled)
2025 cp_set_d3_state (cp);
2026
2027 return 0;
2028
2029 err_out_iomap:
2030 iounmap(regs);
2031 err_out_res:
2032 pci_release_regions(pdev);
2033 err_out_mwi:
2034 pci_clear_mwi(pdev);
2035 err_out_disable:
2036 pci_disable_device(pdev);
2037 err_out_free:
2038 free_netdev(dev);
2039 return rc;
2040 }
2041
2042 static void cp_remove_one (struct pci_dev *pdev)
2043 {
2044 struct net_device *dev = pci_get_drvdata(pdev);
2045 struct cp_private *cp = netdev_priv(dev);
2046
2047 unregister_netdev(dev);
2048 iounmap(cp->regs);
2049 if (cp->wol_enabled)
2050 pci_set_power_state (pdev, PCI_D0);
2051 pci_release_regions(pdev);
2052 pci_clear_mwi(pdev);
2053 pci_disable_device(pdev);
2054 free_netdev(dev);
2055 }
2056
2057 #ifdef CONFIG_PM
2058 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2059 {
2060 struct net_device *dev = pci_get_drvdata(pdev);
2061 struct cp_private *cp = netdev_priv(dev);
2062 unsigned long flags;
2063
2064 if (!netif_running(dev))
2065 return 0;
2066
2067 netif_device_detach (dev);
2068 netif_stop_queue (dev);
2069
2070 spin_lock_irqsave (&cp->lock, flags);
2071
2072 /* Disable Rx and Tx */
2073 cpw16 (IntrMask, 0);
2074 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2075
2076 spin_unlock_irqrestore (&cp->lock, flags);
2077
2078 pci_save_state(pdev);
2079 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2080 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2081
2082 return 0;
2083 }
2084
2085 static int cp_resume (struct pci_dev *pdev)
2086 {
2087 struct net_device *dev = pci_get_drvdata (pdev);
2088 struct cp_private *cp = netdev_priv(dev);
2089 unsigned long flags;
2090
2091 if (!netif_running(dev))
2092 return 0;
2093
2094 netif_device_attach (dev);
2095
2096 pci_set_power_state(pdev, PCI_D0);
2097 pci_restore_state(pdev);
2098 pci_enable_wake(pdev, PCI_D0, 0);
2099
2100 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2101 cp_init_rings_index (cp);
2102 cp_init_hw (cp);
2103 cp_enable_irq(cp);
2104 netif_start_queue (dev);
2105
2106 spin_lock_irqsave (&cp->lock, flags);
2107
2108 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2109
2110 spin_unlock_irqrestore (&cp->lock, flags);
2111
2112 return 0;
2113 }
2114 #endif /* CONFIG_PM */
2115
2116 static const struct pci_device_id cp_pci_tbl[] = {
2117 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
2118 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
2119 { },
2120 };
2121 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2122
2123 static struct pci_driver cp_driver = {
2124 .name = DRV_NAME,
2125 .id_table = cp_pci_tbl,
2126 .probe = cp_init_one,
2127 .remove = cp_remove_one,
2128 #ifdef CONFIG_PM
2129 .resume = cp_resume,
2130 .suspend = cp_suspend,
2131 #endif
2132 };
2133
2134 module_pci_driver(cp_driver);