]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/renesas/sh_eth.c
crypto: qat - change the adf_ctl_stop_devices to void
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /* SuperH Ethernet device driver
2 *
3 * Copyright (C) 2014 Renesas Electronics Corporation
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2014 Renesas Solutions Corp.
6 * Copyright (C) 2013-2016 Cogent Embedded, Inc.
7 * Copyright (C) 2014 Codethink Limited
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46
47 #include "sh_eth.h"
48
49 #define SH_ETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_LINK | \
51 NETIF_MSG_TIMER | \
52 NETIF_MSG_RX_ERR| \
53 NETIF_MSG_TX_ERR)
54
55 #define SH_ETH_OFFSET_INVALID ((u16)~0)
56
57 #define SH_ETH_OFFSET_DEFAULTS \
58 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 SH_ETH_OFFSET_DEFAULTS,
62
63 [EDSR] = 0x0000,
64 [EDMR] = 0x0400,
65 [EDTRR] = 0x0408,
66 [EDRRR] = 0x0410,
67 [EESR] = 0x0428,
68 [EESIPR] = 0x0430,
69 [TDLAR] = 0x0010,
70 [TDFAR] = 0x0014,
71 [TDFXR] = 0x0018,
72 [TDFFR] = 0x001c,
73 [RDLAR] = 0x0030,
74 [RDFAR] = 0x0034,
75 [RDFXR] = 0x0038,
76 [RDFFR] = 0x003c,
77 [TRSCER] = 0x0438,
78 [RMFCR] = 0x0440,
79 [TFTR] = 0x0448,
80 [FDR] = 0x0450,
81 [RMCR] = 0x0458,
82 [RPADIR] = 0x0460,
83 [FCFTR] = 0x0468,
84 [CSMR] = 0x04E4,
85
86 [ECMR] = 0x0500,
87 [ECSR] = 0x0510,
88 [ECSIPR] = 0x0518,
89 [PIR] = 0x0520,
90 [PSR] = 0x0528,
91 [PIPR] = 0x052c,
92 [RFLR] = 0x0508,
93 [APR] = 0x0554,
94 [MPR] = 0x0558,
95 [PFTCR] = 0x055c,
96 [PFRCR] = 0x0560,
97 [TPAUSER] = 0x0564,
98 [GECMR] = 0x05b0,
99 [BCULR] = 0x05b4,
100 [MAHR] = 0x05c0,
101 [MALR] = 0x05c8,
102 [TROCR] = 0x0700,
103 [CDCR] = 0x0708,
104 [LCCR] = 0x0710,
105 [CEFCR] = 0x0740,
106 [FRECR] = 0x0748,
107 [TSFRCR] = 0x0750,
108 [TLFRCR] = 0x0758,
109 [RFCR] = 0x0760,
110 [CERCR] = 0x0768,
111 [CEECR] = 0x0770,
112 [MAFCR] = 0x0778,
113 [RMII_MII] = 0x0790,
114
115 [ARSTR] = 0x0000,
116 [TSU_CTRST] = 0x0004,
117 [TSU_FWEN0] = 0x0010,
118 [TSU_FWEN1] = 0x0014,
119 [TSU_FCM] = 0x0018,
120 [TSU_BSYSL0] = 0x0020,
121 [TSU_BSYSL1] = 0x0024,
122 [TSU_PRISL0] = 0x0028,
123 [TSU_PRISL1] = 0x002c,
124 [TSU_FWSL0] = 0x0030,
125 [TSU_FWSL1] = 0x0034,
126 [TSU_FWSLC] = 0x0038,
127 [TSU_QTAG0] = 0x0040,
128 [TSU_QTAG1] = 0x0044,
129 [TSU_FWSR] = 0x0050,
130 [TSU_FWINMK] = 0x0054,
131 [TSU_ADQT0] = 0x0048,
132 [TSU_ADQT1] = 0x004c,
133 [TSU_VTAG0] = 0x0058,
134 [TSU_VTAG1] = 0x005c,
135 [TSU_ADSBSY] = 0x0060,
136 [TSU_TEN] = 0x0064,
137 [TSU_POST1] = 0x0070,
138 [TSU_POST2] = 0x0074,
139 [TSU_POST3] = 0x0078,
140 [TSU_POST4] = 0x007c,
141 [TSU_ADRH0] = 0x0100,
142
143 [TXNLCR0] = 0x0080,
144 [TXALCR0] = 0x0084,
145 [RXNLCR0] = 0x0088,
146 [RXALCR0] = 0x008c,
147 [FWNLCR0] = 0x0090,
148 [FWALCR0] = 0x0094,
149 [TXNLCR1] = 0x00a0,
150 [TXALCR1] = 0x00a0,
151 [RXNLCR1] = 0x00a8,
152 [RXALCR1] = 0x00ac,
153 [FWNLCR1] = 0x00b0,
154 [FWALCR1] = 0x00b4,
155 };
156
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 SH_ETH_OFFSET_DEFAULTS,
159
160 [EDSR] = 0x0000,
161 [EDMR] = 0x0400,
162 [EDTRR] = 0x0408,
163 [EDRRR] = 0x0410,
164 [EESR] = 0x0428,
165 [EESIPR] = 0x0430,
166 [TDLAR] = 0x0010,
167 [TDFAR] = 0x0014,
168 [TDFXR] = 0x0018,
169 [TDFFR] = 0x001c,
170 [RDLAR] = 0x0030,
171 [RDFAR] = 0x0034,
172 [RDFXR] = 0x0038,
173 [RDFFR] = 0x003c,
174 [TRSCER] = 0x0438,
175 [RMFCR] = 0x0440,
176 [TFTR] = 0x0448,
177 [FDR] = 0x0450,
178 [RMCR] = 0x0458,
179 [RPADIR] = 0x0460,
180 [FCFTR] = 0x0468,
181 [CSMR] = 0x04E4,
182
183 [ECMR] = 0x0500,
184 [RFLR] = 0x0508,
185 [ECSR] = 0x0510,
186 [ECSIPR] = 0x0518,
187 [PIR] = 0x0520,
188 [APR] = 0x0554,
189 [MPR] = 0x0558,
190 [PFTCR] = 0x055c,
191 [PFRCR] = 0x0560,
192 [TPAUSER] = 0x0564,
193 [MAHR] = 0x05c0,
194 [MALR] = 0x05c8,
195 [CEFCR] = 0x0740,
196 [FRECR] = 0x0748,
197 [TSFRCR] = 0x0750,
198 [TLFRCR] = 0x0758,
199 [RFCR] = 0x0760,
200 [MAFCR] = 0x0778,
201
202 [ARSTR] = 0x0000,
203 [TSU_CTRST] = 0x0004,
204 [TSU_VTAG0] = 0x0058,
205 [TSU_ADSBSY] = 0x0060,
206 [TSU_TEN] = 0x0064,
207 [TSU_ADRH0] = 0x0100,
208
209 [TXNLCR0] = 0x0080,
210 [TXALCR0] = 0x0084,
211 [RXNLCR0] = 0x0088,
212 [RXALCR0] = 0x008C,
213 };
214
215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
216 SH_ETH_OFFSET_DEFAULTS,
217
218 [ECMR] = 0x0300,
219 [RFLR] = 0x0308,
220 [ECSR] = 0x0310,
221 [ECSIPR] = 0x0318,
222 [PIR] = 0x0320,
223 [PSR] = 0x0328,
224 [RDMLR] = 0x0340,
225 [IPGR] = 0x0350,
226 [APR] = 0x0354,
227 [MPR] = 0x0358,
228 [RFCF] = 0x0360,
229 [TPAUSER] = 0x0364,
230 [TPAUSECR] = 0x0368,
231 [MAHR] = 0x03c0,
232 [MALR] = 0x03c8,
233 [TROCR] = 0x03d0,
234 [CDCR] = 0x03d4,
235 [LCCR] = 0x03d8,
236 [CNDCR] = 0x03dc,
237 [CEFCR] = 0x03e4,
238 [FRECR] = 0x03e8,
239 [TSFRCR] = 0x03ec,
240 [TLFRCR] = 0x03f0,
241 [RFCR] = 0x03f4,
242 [MAFCR] = 0x03f8,
243
244 [EDMR] = 0x0200,
245 [EDTRR] = 0x0208,
246 [EDRRR] = 0x0210,
247 [TDLAR] = 0x0218,
248 [RDLAR] = 0x0220,
249 [EESR] = 0x0228,
250 [EESIPR] = 0x0230,
251 [TRSCER] = 0x0238,
252 [RMFCR] = 0x0240,
253 [TFTR] = 0x0248,
254 [FDR] = 0x0250,
255 [RMCR] = 0x0258,
256 [TFUCR] = 0x0264,
257 [RFOCR] = 0x0268,
258 [RMIIMODE] = 0x026c,
259 [FCFTR] = 0x0270,
260 [TRIMD] = 0x027c,
261 };
262
263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
264 SH_ETH_OFFSET_DEFAULTS,
265
266 [ECMR] = 0x0100,
267 [RFLR] = 0x0108,
268 [ECSR] = 0x0110,
269 [ECSIPR] = 0x0118,
270 [PIR] = 0x0120,
271 [PSR] = 0x0128,
272 [RDMLR] = 0x0140,
273 [IPGR] = 0x0150,
274 [APR] = 0x0154,
275 [MPR] = 0x0158,
276 [TPAUSER] = 0x0164,
277 [RFCF] = 0x0160,
278 [TPAUSECR] = 0x0168,
279 [BCFRR] = 0x016c,
280 [MAHR] = 0x01c0,
281 [MALR] = 0x01c8,
282 [TROCR] = 0x01d0,
283 [CDCR] = 0x01d4,
284 [LCCR] = 0x01d8,
285 [CNDCR] = 0x01dc,
286 [CEFCR] = 0x01e4,
287 [FRECR] = 0x01e8,
288 [TSFRCR] = 0x01ec,
289 [TLFRCR] = 0x01f0,
290 [RFCR] = 0x01f4,
291 [MAFCR] = 0x01f8,
292 [RTRATE] = 0x01fc,
293
294 [EDMR] = 0x0000,
295 [EDTRR] = 0x0008,
296 [EDRRR] = 0x0010,
297 [TDLAR] = 0x0018,
298 [RDLAR] = 0x0020,
299 [EESR] = 0x0028,
300 [EESIPR] = 0x0030,
301 [TRSCER] = 0x0038,
302 [RMFCR] = 0x0040,
303 [TFTR] = 0x0048,
304 [FDR] = 0x0050,
305 [RMCR] = 0x0058,
306 [TFUCR] = 0x0064,
307 [RFOCR] = 0x0068,
308 [FCFTR] = 0x0070,
309 [RPADIR] = 0x0078,
310 [TRIMD] = 0x007c,
311 [RBWAR] = 0x00c8,
312 [RDFAR] = 0x00cc,
313 [TBRAR] = 0x00d4,
314 [TDFAR] = 0x00d8,
315 };
316
317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
318 SH_ETH_OFFSET_DEFAULTS,
319
320 [EDMR] = 0x0000,
321 [EDTRR] = 0x0004,
322 [EDRRR] = 0x0008,
323 [TDLAR] = 0x000c,
324 [RDLAR] = 0x0010,
325 [EESR] = 0x0014,
326 [EESIPR] = 0x0018,
327 [TRSCER] = 0x001c,
328 [RMFCR] = 0x0020,
329 [TFTR] = 0x0024,
330 [FDR] = 0x0028,
331 [RMCR] = 0x002c,
332 [EDOCR] = 0x0030,
333 [FCFTR] = 0x0034,
334 [RPADIR] = 0x0038,
335 [TRIMD] = 0x003c,
336 [RBWAR] = 0x0040,
337 [RDFAR] = 0x0044,
338 [TBRAR] = 0x004c,
339 [TDFAR] = 0x0050,
340
341 [ECMR] = 0x0160,
342 [ECSR] = 0x0164,
343 [ECSIPR] = 0x0168,
344 [PIR] = 0x016c,
345 [MAHR] = 0x0170,
346 [MALR] = 0x0174,
347 [RFLR] = 0x0178,
348 [PSR] = 0x017c,
349 [TROCR] = 0x0180,
350 [CDCR] = 0x0184,
351 [LCCR] = 0x0188,
352 [CNDCR] = 0x018c,
353 [CEFCR] = 0x0194,
354 [FRECR] = 0x0198,
355 [TSFRCR] = 0x019c,
356 [TLFRCR] = 0x01a0,
357 [RFCR] = 0x01a4,
358 [MAFCR] = 0x01a8,
359 [IPGR] = 0x01b4,
360 [APR] = 0x01b8,
361 [MPR] = 0x01bc,
362 [TPAUSER] = 0x01c4,
363 [BCFR] = 0x01cc,
364
365 [ARSTR] = 0x0000,
366 [TSU_CTRST] = 0x0004,
367 [TSU_FWEN0] = 0x0010,
368 [TSU_FWEN1] = 0x0014,
369 [TSU_FCM] = 0x0018,
370 [TSU_BSYSL0] = 0x0020,
371 [TSU_BSYSL1] = 0x0024,
372 [TSU_PRISL0] = 0x0028,
373 [TSU_PRISL1] = 0x002c,
374 [TSU_FWSL0] = 0x0030,
375 [TSU_FWSL1] = 0x0034,
376 [TSU_FWSLC] = 0x0038,
377 [TSU_QTAGM0] = 0x0040,
378 [TSU_QTAGM1] = 0x0044,
379 [TSU_ADQT0] = 0x0048,
380 [TSU_ADQT1] = 0x004c,
381 [TSU_FWSR] = 0x0050,
382 [TSU_FWINMK] = 0x0054,
383 [TSU_ADSBSY] = 0x0060,
384 [TSU_TEN] = 0x0064,
385 [TSU_POST1] = 0x0070,
386 [TSU_POST2] = 0x0074,
387 [TSU_POST3] = 0x0078,
388 [TSU_POST4] = 0x007c,
389
390 [TXNLCR0] = 0x0080,
391 [TXALCR0] = 0x0084,
392 [RXNLCR0] = 0x0088,
393 [RXALCR0] = 0x008c,
394 [FWNLCR0] = 0x0090,
395 [FWALCR0] = 0x0094,
396 [TXNLCR1] = 0x00a0,
397 [TXALCR1] = 0x00a0,
398 [RXNLCR1] = 0x00a8,
399 [RXALCR1] = 0x00ac,
400 [FWNLCR1] = 0x00b0,
401 [FWALCR1] = 0x00b4,
402
403 [TSU_ADRH0] = 0x0100,
404 };
405
406 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
408
409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
410 {
411 struct sh_eth_private *mdp = netdev_priv(ndev);
412 u16 offset = mdp->reg_offset[enum_index];
413
414 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
415 return;
416
417 iowrite32(data, mdp->addr + offset);
418 }
419
420 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
421 {
422 struct sh_eth_private *mdp = netdev_priv(ndev);
423 u16 offset = mdp->reg_offset[enum_index];
424
425 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
426 return ~0U;
427
428 return ioread32(mdp->addr + offset);
429 }
430
431 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
432 u32 set)
433 {
434 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
435 enum_index);
436 }
437
438 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
439 {
440 return mdp->reg_offset == sh_eth_offset_gigabit;
441 }
442
443 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
444 {
445 return mdp->reg_offset == sh_eth_offset_fast_rz;
446 }
447
448 static void sh_eth_select_mii(struct net_device *ndev)
449 {
450 struct sh_eth_private *mdp = netdev_priv(ndev);
451 u32 value;
452
453 switch (mdp->phy_interface) {
454 case PHY_INTERFACE_MODE_GMII:
455 value = 0x2;
456 break;
457 case PHY_INTERFACE_MODE_MII:
458 value = 0x1;
459 break;
460 case PHY_INTERFACE_MODE_RMII:
461 value = 0x0;
462 break;
463 default:
464 netdev_warn(ndev,
465 "PHY interface mode was not setup. Set to MII.\n");
466 value = 0x1;
467 break;
468 }
469
470 sh_eth_write(ndev, value, RMII_MII);
471 }
472
473 static void sh_eth_set_duplex(struct net_device *ndev)
474 {
475 struct sh_eth_private *mdp = netdev_priv(ndev);
476
477 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
478 }
479
480 static void sh_eth_chip_reset(struct net_device *ndev)
481 {
482 struct sh_eth_private *mdp = netdev_priv(ndev);
483
484 /* reset device */
485 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
486 mdelay(1);
487 }
488
489 static void sh_eth_set_rate_gether(struct net_device *ndev)
490 {
491 struct sh_eth_private *mdp = netdev_priv(ndev);
492
493 switch (mdp->speed) {
494 case 10: /* 10BASE */
495 sh_eth_write(ndev, GECMR_10, GECMR);
496 break;
497 case 100:/* 100BASE */
498 sh_eth_write(ndev, GECMR_100, GECMR);
499 break;
500 case 1000: /* 1000BASE */
501 sh_eth_write(ndev, GECMR_1000, GECMR);
502 break;
503 }
504 }
505
506 #ifdef CONFIG_OF
507 /* R7S72100 */
508 static struct sh_eth_cpu_data r7s72100_data = {
509 .chip_reset = sh_eth_chip_reset,
510 .set_duplex = sh_eth_set_duplex,
511
512 .register_type = SH_ETH_REG_FAST_RZ,
513
514 .ecsr_value = ECSR_ICD,
515 .ecsipr_value = ECSIPR_ICDIP,
516 .eesipr_value = 0xff7f009f,
517
518 .tx_check = EESR_TC1 | EESR_FTC,
519 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
520 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
521 EESR_TDE | EESR_ECI,
522 .fdr_value = 0x0000070f,
523
524 .no_psr = 1,
525 .apr = 1,
526 .mpr = 1,
527 .tpauser = 1,
528 .hw_swap = 1,
529 .rpadir = 1,
530 .rpadir_value = 2 << 16,
531 .no_trimd = 1,
532 .no_ade = 1,
533 .hw_crc = 1,
534 .tsu = 1,
535 .shift_rd0 = 1,
536 };
537
538 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
539 {
540 struct sh_eth_private *mdp = netdev_priv(ndev);
541
542 /* reset device */
543 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
544 mdelay(1);
545
546 sh_eth_select_mii(ndev);
547 }
548
549 /* R8A7740 */
550 static struct sh_eth_cpu_data r8a7740_data = {
551 .chip_reset = sh_eth_chip_reset_r8a7740,
552 .set_duplex = sh_eth_set_duplex,
553 .set_rate = sh_eth_set_rate_gether,
554
555 .register_type = SH_ETH_REG_GIGABIT,
556
557 .ecsr_value = ECSR_ICD | ECSR_MPD,
558 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
559 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
560
561 .tx_check = EESR_TC1 | EESR_FTC,
562 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
563 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
564 EESR_TDE | EESR_ECI,
565 .fdr_value = 0x0000070f,
566
567 .apr = 1,
568 .mpr = 1,
569 .tpauser = 1,
570 .bculr = 1,
571 .hw_swap = 1,
572 .rpadir = 1,
573 .rpadir_value = 2 << 16,
574 .no_trimd = 1,
575 .no_ade = 1,
576 .tsu = 1,
577 .select_mii = 1,
578 .shift_rd0 = 1,
579 };
580
581 /* There is CPU dependent code */
582 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
583 {
584 struct sh_eth_private *mdp = netdev_priv(ndev);
585
586 switch (mdp->speed) {
587 case 10: /* 10BASE */
588 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
589 break;
590 case 100:/* 100BASE */
591 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
592 break;
593 }
594 }
595
596 /* R8A7778/9 */
597 static struct sh_eth_cpu_data r8a777x_data = {
598 .set_duplex = sh_eth_set_duplex,
599 .set_rate = sh_eth_set_rate_r8a777x,
600
601 .register_type = SH_ETH_REG_FAST_RCAR,
602
603 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
604 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
605 .eesipr_value = 0x01ff009f,
606
607 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
608 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
609 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
610 EESR_ECI,
611 .fdr_value = 0x00000f0f,
612
613 .apr = 1,
614 .mpr = 1,
615 .tpauser = 1,
616 .hw_swap = 1,
617 };
618
619 /* R8A7790/1 */
620 static struct sh_eth_cpu_data r8a779x_data = {
621 .set_duplex = sh_eth_set_duplex,
622 .set_rate = sh_eth_set_rate_r8a777x,
623
624 .register_type = SH_ETH_REG_FAST_RCAR,
625
626 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
627 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
628 .eesipr_value = 0x01ff009f,
629
630 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
631 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
632 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
633 EESR_ECI,
634 .fdr_value = 0x00000f0f,
635
636 .trscer_err_mask = DESC_I_RINT8,
637
638 .apr = 1,
639 .mpr = 1,
640 .tpauser = 1,
641 .hw_swap = 1,
642 .rmiimode = 1,
643 };
644 #endif /* CONFIG_OF */
645
646 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
647 {
648 struct sh_eth_private *mdp = netdev_priv(ndev);
649
650 switch (mdp->speed) {
651 case 10: /* 10BASE */
652 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
653 break;
654 case 100:/* 100BASE */
655 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
656 break;
657 }
658 }
659
660 /* SH7724 */
661 static struct sh_eth_cpu_data sh7724_data = {
662 .set_duplex = sh_eth_set_duplex,
663 .set_rate = sh_eth_set_rate_sh7724,
664
665 .register_type = SH_ETH_REG_FAST_SH4,
666
667 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
668 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
669 .eesipr_value = 0x01ff009f,
670
671 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
672 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
673 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
674 EESR_ECI,
675
676 .apr = 1,
677 .mpr = 1,
678 .tpauser = 1,
679 .hw_swap = 1,
680 .rpadir = 1,
681 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
682 };
683
684 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
685 {
686 struct sh_eth_private *mdp = netdev_priv(ndev);
687
688 switch (mdp->speed) {
689 case 10: /* 10BASE */
690 sh_eth_write(ndev, 0, RTRATE);
691 break;
692 case 100:/* 100BASE */
693 sh_eth_write(ndev, 1, RTRATE);
694 break;
695 }
696 }
697
698 /* SH7757 */
699 static struct sh_eth_cpu_data sh7757_data = {
700 .set_duplex = sh_eth_set_duplex,
701 .set_rate = sh_eth_set_rate_sh7757,
702
703 .register_type = SH_ETH_REG_FAST_SH4,
704
705 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
706
707 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
708 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
709 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
710 EESR_ECI,
711
712 .irq_flags = IRQF_SHARED,
713 .apr = 1,
714 .mpr = 1,
715 .tpauser = 1,
716 .hw_swap = 1,
717 .no_ade = 1,
718 .rpadir = 1,
719 .rpadir_value = 2 << 16,
720 .rtrate = 1,
721 };
722
723 #define SH_GIGA_ETH_BASE 0xfee00000UL
724 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
725 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
726 static void sh_eth_chip_reset_giga(struct net_device *ndev)
727 {
728 int i;
729 u32 mahr[2], malr[2];
730
731 /* save MAHR and MALR */
732 for (i = 0; i < 2; i++) {
733 malr[i] = ioread32((void *)GIGA_MALR(i));
734 mahr[i] = ioread32((void *)GIGA_MAHR(i));
735 }
736
737 /* reset device */
738 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
739 mdelay(1);
740
741 /* restore MAHR and MALR */
742 for (i = 0; i < 2; i++) {
743 iowrite32(malr[i], (void *)GIGA_MALR(i));
744 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
745 }
746 }
747
748 static void sh_eth_set_rate_giga(struct net_device *ndev)
749 {
750 struct sh_eth_private *mdp = netdev_priv(ndev);
751
752 switch (mdp->speed) {
753 case 10: /* 10BASE */
754 sh_eth_write(ndev, 0x00000000, GECMR);
755 break;
756 case 100:/* 100BASE */
757 sh_eth_write(ndev, 0x00000010, GECMR);
758 break;
759 case 1000: /* 1000BASE */
760 sh_eth_write(ndev, 0x00000020, GECMR);
761 break;
762 }
763 }
764
765 /* SH7757(GETHERC) */
766 static struct sh_eth_cpu_data sh7757_data_giga = {
767 .chip_reset = sh_eth_chip_reset_giga,
768 .set_duplex = sh_eth_set_duplex,
769 .set_rate = sh_eth_set_rate_giga,
770
771 .register_type = SH_ETH_REG_GIGABIT,
772
773 .ecsr_value = ECSR_ICD | ECSR_MPD,
774 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
775 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
776
777 .tx_check = EESR_TC1 | EESR_FTC,
778 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
779 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
780 EESR_TDE | EESR_ECI,
781 .fdr_value = 0x0000072f,
782
783 .irq_flags = IRQF_SHARED,
784 .apr = 1,
785 .mpr = 1,
786 .tpauser = 1,
787 .bculr = 1,
788 .hw_swap = 1,
789 .rpadir = 1,
790 .rpadir_value = 2 << 16,
791 .no_trimd = 1,
792 .no_ade = 1,
793 .tsu = 1,
794 };
795
796 /* SH7734 */
797 static struct sh_eth_cpu_data sh7734_data = {
798 .chip_reset = sh_eth_chip_reset,
799 .set_duplex = sh_eth_set_duplex,
800 .set_rate = sh_eth_set_rate_gether,
801
802 .register_type = SH_ETH_REG_GIGABIT,
803
804 .ecsr_value = ECSR_ICD | ECSR_MPD,
805 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
806 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
807
808 .tx_check = EESR_TC1 | EESR_FTC,
809 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
810 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
811 EESR_TDE | EESR_ECI,
812
813 .apr = 1,
814 .mpr = 1,
815 .tpauser = 1,
816 .bculr = 1,
817 .hw_swap = 1,
818 .no_trimd = 1,
819 .no_ade = 1,
820 .tsu = 1,
821 .hw_crc = 1,
822 .select_mii = 1,
823 };
824
825 /* SH7763 */
826 static struct sh_eth_cpu_data sh7763_data = {
827 .chip_reset = sh_eth_chip_reset,
828 .set_duplex = sh_eth_set_duplex,
829 .set_rate = sh_eth_set_rate_gether,
830
831 .register_type = SH_ETH_REG_GIGABIT,
832
833 .ecsr_value = ECSR_ICD | ECSR_MPD,
834 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
835 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
836
837 .tx_check = EESR_TC1 | EESR_FTC,
838 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
839 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
840 EESR_ECI,
841
842 .apr = 1,
843 .mpr = 1,
844 .tpauser = 1,
845 .bculr = 1,
846 .hw_swap = 1,
847 .no_trimd = 1,
848 .no_ade = 1,
849 .tsu = 1,
850 .irq_flags = IRQF_SHARED,
851 };
852
853 static struct sh_eth_cpu_data sh7619_data = {
854 .register_type = SH_ETH_REG_FAST_SH3_SH2,
855
856 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
857
858 .apr = 1,
859 .mpr = 1,
860 .tpauser = 1,
861 .hw_swap = 1,
862 };
863
864 static struct sh_eth_cpu_data sh771x_data = {
865 .register_type = SH_ETH_REG_FAST_SH3_SH2,
866
867 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
868 .tsu = 1,
869 };
870
871 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
872 {
873 if (!cd->ecsr_value)
874 cd->ecsr_value = DEFAULT_ECSR_INIT;
875
876 if (!cd->ecsipr_value)
877 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
878
879 if (!cd->fcftr_value)
880 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
881 DEFAULT_FIFO_F_D_RFD;
882
883 if (!cd->fdr_value)
884 cd->fdr_value = DEFAULT_FDR_INIT;
885
886 if (!cd->tx_check)
887 cd->tx_check = DEFAULT_TX_CHECK;
888
889 if (!cd->eesr_err_check)
890 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
891
892 if (!cd->trscer_err_mask)
893 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
894 }
895
896 static int sh_eth_check_reset(struct net_device *ndev)
897 {
898 int ret = 0;
899 int cnt = 100;
900
901 while (cnt > 0) {
902 if (!(sh_eth_read(ndev, EDMR) & 0x3))
903 break;
904 mdelay(1);
905 cnt--;
906 }
907 if (cnt <= 0) {
908 netdev_err(ndev, "Device reset failed\n");
909 ret = -ETIMEDOUT;
910 }
911 return ret;
912 }
913
914 static int sh_eth_reset(struct net_device *ndev)
915 {
916 struct sh_eth_private *mdp = netdev_priv(ndev);
917 int ret = 0;
918
919 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
920 sh_eth_write(ndev, EDSR_ENALL, EDSR);
921 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
922
923 ret = sh_eth_check_reset(ndev);
924 if (ret)
925 return ret;
926
927 /* Table Init */
928 sh_eth_write(ndev, 0x0, TDLAR);
929 sh_eth_write(ndev, 0x0, TDFAR);
930 sh_eth_write(ndev, 0x0, TDFXR);
931 sh_eth_write(ndev, 0x0, TDFFR);
932 sh_eth_write(ndev, 0x0, RDLAR);
933 sh_eth_write(ndev, 0x0, RDFAR);
934 sh_eth_write(ndev, 0x0, RDFXR);
935 sh_eth_write(ndev, 0x0, RDFFR);
936
937 /* Reset HW CRC register */
938 if (mdp->cd->hw_crc)
939 sh_eth_write(ndev, 0x0, CSMR);
940
941 /* Select MII mode */
942 if (mdp->cd->select_mii)
943 sh_eth_select_mii(ndev);
944 } else {
945 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
946 mdelay(3);
947 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
948 }
949
950 return ret;
951 }
952
953 static void sh_eth_set_receive_align(struct sk_buff *skb)
954 {
955 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
956
957 if (reserve)
958 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
959 }
960
961 /* Program the hardware MAC address from dev->dev_addr. */
962 static void update_mac_address(struct net_device *ndev)
963 {
964 sh_eth_write(ndev,
965 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
966 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
967 sh_eth_write(ndev,
968 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
969 }
970
971 /* Get MAC address from SuperH MAC address register
972 *
973 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
974 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
975 * When you want use this device, you must set MAC address in bootloader.
976 *
977 */
978 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
979 {
980 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
981 memcpy(ndev->dev_addr, mac, ETH_ALEN);
982 } else {
983 u32 mahr = sh_eth_read(ndev, MAHR);
984 u32 malr = sh_eth_read(ndev, MALR);
985
986 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
987 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
988 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
989 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
990 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
991 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
992 }
993 }
994
995 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
996 {
997 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
998 return EDTRR_TRNS_GETHER;
999 else
1000 return EDTRR_TRNS_ETHER;
1001 }
1002
1003 struct bb_info {
1004 void (*set_gate)(void *addr);
1005 struct mdiobb_ctrl ctrl;
1006 void *addr;
1007 };
1008
1009 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1010 {
1011 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1012 u32 pir;
1013
1014 if (bitbang->set_gate)
1015 bitbang->set_gate(bitbang->addr);
1016
1017 pir = ioread32(bitbang->addr);
1018 if (set)
1019 pir |= mask;
1020 else
1021 pir &= ~mask;
1022 iowrite32(pir, bitbang->addr);
1023 }
1024
1025 /* Data I/O pin control */
1026 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1027 {
1028 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1029 }
1030
1031 /* Set bit data*/
1032 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1033 {
1034 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1035 }
1036
1037 /* Get bit data*/
1038 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1039 {
1040 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1041
1042 if (bitbang->set_gate)
1043 bitbang->set_gate(bitbang->addr);
1044
1045 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1046 }
1047
1048 /* MDC pin control */
1049 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1050 {
1051 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1052 }
1053
1054 /* mdio bus control struct */
1055 static struct mdiobb_ops bb_ops = {
1056 .owner = THIS_MODULE,
1057 .set_mdc = sh_mdc_ctrl,
1058 .set_mdio_dir = sh_mmd_ctrl,
1059 .set_mdio_data = sh_set_mdio,
1060 .get_mdio_data = sh_get_mdio,
1061 };
1062
1063 /* free skb and descriptor buffer */
1064 static void sh_eth_ring_free(struct net_device *ndev)
1065 {
1066 struct sh_eth_private *mdp = netdev_priv(ndev);
1067 int ringsize, i;
1068
1069 /* Free Rx skb ringbuffer */
1070 if (mdp->rx_skbuff) {
1071 for (i = 0; i < mdp->num_rx_ring; i++)
1072 dev_kfree_skb(mdp->rx_skbuff[i]);
1073 }
1074 kfree(mdp->rx_skbuff);
1075 mdp->rx_skbuff = NULL;
1076
1077 /* Free Tx skb ringbuffer */
1078 if (mdp->tx_skbuff) {
1079 for (i = 0; i < mdp->num_tx_ring; i++)
1080 dev_kfree_skb(mdp->tx_skbuff[i]);
1081 }
1082 kfree(mdp->tx_skbuff);
1083 mdp->tx_skbuff = NULL;
1084
1085 if (mdp->rx_ring) {
1086 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1087 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1088 mdp->rx_desc_dma);
1089 mdp->rx_ring = NULL;
1090 }
1091
1092 if (mdp->tx_ring) {
1093 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1094 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1095 mdp->tx_desc_dma);
1096 mdp->tx_ring = NULL;
1097 }
1098 }
1099
1100 /* format skb and descriptor buffer */
1101 static void sh_eth_ring_format(struct net_device *ndev)
1102 {
1103 struct sh_eth_private *mdp = netdev_priv(ndev);
1104 int i;
1105 struct sk_buff *skb;
1106 struct sh_eth_rxdesc *rxdesc = NULL;
1107 struct sh_eth_txdesc *txdesc = NULL;
1108 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1109 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1110 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1111 dma_addr_t dma_addr;
1112 u32 buf_len;
1113
1114 mdp->cur_rx = 0;
1115 mdp->cur_tx = 0;
1116 mdp->dirty_rx = 0;
1117 mdp->dirty_tx = 0;
1118
1119 memset(mdp->rx_ring, 0, rx_ringsize);
1120
1121 /* build Rx ring buffer */
1122 for (i = 0; i < mdp->num_rx_ring; i++) {
1123 /* skb */
1124 mdp->rx_skbuff[i] = NULL;
1125 skb = netdev_alloc_skb(ndev, skbuff_size);
1126 if (skb == NULL)
1127 break;
1128 sh_eth_set_receive_align(skb);
1129
1130 /* The size of the buffer is a multiple of 32 bytes. */
1131 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1132 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1133 DMA_FROM_DEVICE);
1134 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1135 kfree_skb(skb);
1136 break;
1137 }
1138 mdp->rx_skbuff[i] = skb;
1139
1140 /* RX descriptor */
1141 rxdesc = &mdp->rx_ring[i];
1142 rxdesc->len = cpu_to_le32(buf_len << 16);
1143 rxdesc->addr = cpu_to_le32(dma_addr);
1144 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1145
1146 /* Rx descriptor address set */
1147 if (i == 0) {
1148 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1149 if (sh_eth_is_gether(mdp) ||
1150 sh_eth_is_rz_fast_ether(mdp))
1151 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1152 }
1153 }
1154
1155 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1156
1157 /* Mark the last entry as wrapping the ring. */
1158 if (rxdesc)
1159 rxdesc->status |= cpu_to_le32(RD_RDLE);
1160
1161 memset(mdp->tx_ring, 0, tx_ringsize);
1162
1163 /* build Tx ring buffer */
1164 for (i = 0; i < mdp->num_tx_ring; i++) {
1165 mdp->tx_skbuff[i] = NULL;
1166 txdesc = &mdp->tx_ring[i];
1167 txdesc->status = cpu_to_le32(TD_TFP);
1168 txdesc->len = cpu_to_le32(0);
1169 if (i == 0) {
1170 /* Tx descriptor address set */
1171 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1172 if (sh_eth_is_gether(mdp) ||
1173 sh_eth_is_rz_fast_ether(mdp))
1174 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1175 }
1176 }
1177
1178 txdesc->status |= cpu_to_le32(TD_TDLE);
1179 }
1180
1181 /* Get skb and descriptor buffer */
1182 static int sh_eth_ring_init(struct net_device *ndev)
1183 {
1184 struct sh_eth_private *mdp = netdev_priv(ndev);
1185 int rx_ringsize, tx_ringsize;
1186
1187 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1188 * card needs room to do 8 byte alignment, +2 so we can reserve
1189 * the first 2 bytes, and +16 gets room for the status word from the
1190 * card.
1191 */
1192 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1193 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1194 if (mdp->cd->rpadir)
1195 mdp->rx_buf_sz += NET_IP_ALIGN;
1196
1197 /* Allocate RX and TX skb rings */
1198 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1199 GFP_KERNEL);
1200 if (!mdp->rx_skbuff)
1201 return -ENOMEM;
1202
1203 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1204 GFP_KERNEL);
1205 if (!mdp->tx_skbuff)
1206 goto ring_free;
1207
1208 /* Allocate all Rx descriptors. */
1209 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1210 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1211 GFP_KERNEL);
1212 if (!mdp->rx_ring)
1213 goto ring_free;
1214
1215 mdp->dirty_rx = 0;
1216
1217 /* Allocate all Tx descriptors. */
1218 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1219 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1220 GFP_KERNEL);
1221 if (!mdp->tx_ring)
1222 goto ring_free;
1223 return 0;
1224
1225 ring_free:
1226 /* Free Rx and Tx skb ring buffer and DMA buffer */
1227 sh_eth_ring_free(ndev);
1228
1229 return -ENOMEM;
1230 }
1231
1232 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1233 {
1234 struct sh_eth_private *mdp = netdev_priv(ndev);
1235 int ret;
1236
1237 /* Soft Reset */
1238 ret = sh_eth_reset(ndev);
1239 if (ret)
1240 return ret;
1241
1242 if (mdp->cd->rmiimode)
1243 sh_eth_write(ndev, 0x1, RMIIMODE);
1244
1245 /* Descriptor format */
1246 sh_eth_ring_format(ndev);
1247 if (mdp->cd->rpadir)
1248 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1249
1250 /* all sh_eth int mask */
1251 sh_eth_write(ndev, 0, EESIPR);
1252
1253 #if defined(__LITTLE_ENDIAN)
1254 if (mdp->cd->hw_swap)
1255 sh_eth_write(ndev, EDMR_EL, EDMR);
1256 else
1257 #endif
1258 sh_eth_write(ndev, 0, EDMR);
1259
1260 /* FIFO size set */
1261 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1262 sh_eth_write(ndev, 0, TFTR);
1263
1264 /* Frame recv control (enable multiple-packets per rx irq) */
1265 sh_eth_write(ndev, RMCR_RNC, RMCR);
1266
1267 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1268
1269 if (mdp->cd->bculr)
1270 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1271
1272 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1273
1274 if (!mdp->cd->no_trimd)
1275 sh_eth_write(ndev, 0, TRIMD);
1276
1277 /* Recv frame limit set register */
1278 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1279 RFLR);
1280
1281 sh_eth_modify(ndev, EESR, 0, 0);
1282 if (start) {
1283 mdp->irq_enabled = true;
1284 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1285 }
1286
1287 /* PAUSE Prohibition */
1288 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1289 ECMR_TE | ECMR_RE, ECMR);
1290
1291 if (mdp->cd->set_rate)
1292 mdp->cd->set_rate(ndev);
1293
1294 /* E-MAC Status Register clear */
1295 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1296
1297 /* E-MAC Interrupt Enable register */
1298 if (start)
1299 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1300
1301 /* Set MAC address */
1302 update_mac_address(ndev);
1303
1304 /* mask reset */
1305 if (mdp->cd->apr)
1306 sh_eth_write(ndev, APR_AP, APR);
1307 if (mdp->cd->mpr)
1308 sh_eth_write(ndev, MPR_MP, MPR);
1309 if (mdp->cd->tpauser)
1310 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1311
1312 if (start) {
1313 /* Setting the Rx mode will start the Rx process. */
1314 sh_eth_write(ndev, EDRRR_R, EDRRR);
1315 }
1316
1317 return ret;
1318 }
1319
1320 static void sh_eth_dev_exit(struct net_device *ndev)
1321 {
1322 struct sh_eth_private *mdp = netdev_priv(ndev);
1323 int i;
1324
1325 /* Deactivate all TX descriptors, so DMA should stop at next
1326 * packet boundary if it's currently running
1327 */
1328 for (i = 0; i < mdp->num_tx_ring; i++)
1329 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1330
1331 /* Disable TX FIFO egress to MAC */
1332 sh_eth_rcv_snd_disable(ndev);
1333
1334 /* Stop RX DMA at next packet boundary */
1335 sh_eth_write(ndev, 0, EDRRR);
1336
1337 /* Aside from TX DMA, we can't tell when the hardware is
1338 * really stopped, so we need to reset to make sure.
1339 * Before doing that, wait for long enough to *probably*
1340 * finish transmitting the last packet and poll stats.
1341 */
1342 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1343 sh_eth_get_stats(ndev);
1344 sh_eth_reset(ndev);
1345
1346 /* Set MAC address again */
1347 update_mac_address(ndev);
1348 }
1349
1350 /* free Tx skb function */
1351 static int sh_eth_txfree(struct net_device *ndev)
1352 {
1353 struct sh_eth_private *mdp = netdev_priv(ndev);
1354 struct sh_eth_txdesc *txdesc;
1355 int free_num = 0;
1356 int entry;
1357
1358 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1359 entry = mdp->dirty_tx % mdp->num_tx_ring;
1360 txdesc = &mdp->tx_ring[entry];
1361 if (txdesc->status & cpu_to_le32(TD_TACT))
1362 break;
1363 /* TACT bit must be checked before all the following reads */
1364 dma_rmb();
1365 netif_info(mdp, tx_done, ndev,
1366 "tx entry %d status 0x%08x\n",
1367 entry, le32_to_cpu(txdesc->status));
1368 /* Free the original skb. */
1369 if (mdp->tx_skbuff[entry]) {
1370 dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1371 le32_to_cpu(txdesc->len) >> 16,
1372 DMA_TO_DEVICE);
1373 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1374 mdp->tx_skbuff[entry] = NULL;
1375 free_num++;
1376 }
1377 txdesc->status = cpu_to_le32(TD_TFP);
1378 if (entry >= mdp->num_tx_ring - 1)
1379 txdesc->status |= cpu_to_le32(TD_TDLE);
1380
1381 ndev->stats.tx_packets++;
1382 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1383 }
1384 return free_num;
1385 }
1386
1387 /* Packet receive function */
1388 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1389 {
1390 struct sh_eth_private *mdp = netdev_priv(ndev);
1391 struct sh_eth_rxdesc *rxdesc;
1392
1393 int entry = mdp->cur_rx % mdp->num_rx_ring;
1394 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1395 int limit;
1396 struct sk_buff *skb;
1397 u32 desc_status;
1398 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1399 dma_addr_t dma_addr;
1400 u16 pkt_len;
1401 u32 buf_len;
1402
1403 boguscnt = min(boguscnt, *quota);
1404 limit = boguscnt;
1405 rxdesc = &mdp->rx_ring[entry];
1406 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1407 /* RACT bit must be checked before all the following reads */
1408 dma_rmb();
1409 desc_status = le32_to_cpu(rxdesc->status);
1410 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1411
1412 if (--boguscnt < 0)
1413 break;
1414
1415 netif_info(mdp, rx_status, ndev,
1416 "rx entry %d status 0x%08x len %d\n",
1417 entry, desc_status, pkt_len);
1418
1419 if (!(desc_status & RDFEND))
1420 ndev->stats.rx_length_errors++;
1421
1422 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1423 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1424 * bit 0. However, in case of the R8A7740 and R7S72100
1425 * the RFS bits are from bit 25 to bit 16. So, the
1426 * driver needs right shifting by 16.
1427 */
1428 if (mdp->cd->shift_rd0)
1429 desc_status >>= 16;
1430
1431 skb = mdp->rx_skbuff[entry];
1432 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1433 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1434 ndev->stats.rx_errors++;
1435 if (desc_status & RD_RFS1)
1436 ndev->stats.rx_crc_errors++;
1437 if (desc_status & RD_RFS2)
1438 ndev->stats.rx_frame_errors++;
1439 if (desc_status & RD_RFS3)
1440 ndev->stats.rx_length_errors++;
1441 if (desc_status & RD_RFS4)
1442 ndev->stats.rx_length_errors++;
1443 if (desc_status & RD_RFS6)
1444 ndev->stats.rx_missed_errors++;
1445 if (desc_status & RD_RFS10)
1446 ndev->stats.rx_over_errors++;
1447 } else if (skb) {
1448 dma_addr = le32_to_cpu(rxdesc->addr);
1449 if (!mdp->cd->hw_swap)
1450 sh_eth_soft_swap(
1451 phys_to_virt(ALIGN(dma_addr, 4)),
1452 pkt_len + 2);
1453 mdp->rx_skbuff[entry] = NULL;
1454 if (mdp->cd->rpadir)
1455 skb_reserve(skb, NET_IP_ALIGN);
1456 dma_unmap_single(&ndev->dev, dma_addr,
1457 ALIGN(mdp->rx_buf_sz, 32),
1458 DMA_FROM_DEVICE);
1459 skb_put(skb, pkt_len);
1460 skb->protocol = eth_type_trans(skb, ndev);
1461 netif_receive_skb(skb);
1462 ndev->stats.rx_packets++;
1463 ndev->stats.rx_bytes += pkt_len;
1464 if (desc_status & RD_RFS8)
1465 ndev->stats.multicast++;
1466 }
1467 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1468 rxdesc = &mdp->rx_ring[entry];
1469 }
1470
1471 /* Refill the Rx ring buffers. */
1472 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1473 entry = mdp->dirty_rx % mdp->num_rx_ring;
1474 rxdesc = &mdp->rx_ring[entry];
1475 /* The size of the buffer is 32 byte boundary. */
1476 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1477 rxdesc->len = cpu_to_le32(buf_len << 16);
1478
1479 if (mdp->rx_skbuff[entry] == NULL) {
1480 skb = netdev_alloc_skb(ndev, skbuff_size);
1481 if (skb == NULL)
1482 break; /* Better luck next round. */
1483 sh_eth_set_receive_align(skb);
1484 dma_addr = dma_map_single(&ndev->dev, skb->data,
1485 buf_len, DMA_FROM_DEVICE);
1486 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1487 kfree_skb(skb);
1488 break;
1489 }
1490 mdp->rx_skbuff[entry] = skb;
1491
1492 skb_checksum_none_assert(skb);
1493 rxdesc->addr = cpu_to_le32(dma_addr);
1494 }
1495 dma_wmb(); /* RACT bit must be set after all the above writes */
1496 if (entry >= mdp->num_rx_ring - 1)
1497 rxdesc->status |=
1498 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1499 else
1500 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1501 }
1502
1503 /* Restart Rx engine if stopped. */
1504 /* If we don't need to check status, don't. -KDU */
1505 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1506 /* fix the values for the next receiving if RDE is set */
1507 if (intr_status & EESR_RDE &&
1508 mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1509 u32 count = (sh_eth_read(ndev, RDFAR) -
1510 sh_eth_read(ndev, RDLAR)) >> 4;
1511
1512 mdp->cur_rx = count;
1513 mdp->dirty_rx = count;
1514 }
1515 sh_eth_write(ndev, EDRRR_R, EDRRR);
1516 }
1517
1518 *quota -= limit - boguscnt - 1;
1519
1520 return *quota <= 0;
1521 }
1522
1523 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1524 {
1525 /* disable tx and rx */
1526 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1527 }
1528
1529 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1530 {
1531 /* enable tx and rx */
1532 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1533 }
1534
1535 /* error control function */
1536 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1537 {
1538 struct sh_eth_private *mdp = netdev_priv(ndev);
1539 u32 felic_stat;
1540 u32 link_stat;
1541 u32 mask;
1542
1543 if (intr_status & EESR_ECI) {
1544 felic_stat = sh_eth_read(ndev, ECSR);
1545 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1546 if (felic_stat & ECSR_ICD)
1547 ndev->stats.tx_carrier_errors++;
1548 if (felic_stat & ECSR_LCHNG) {
1549 /* Link Changed */
1550 if (mdp->cd->no_psr || mdp->no_ether_link) {
1551 goto ignore_link;
1552 } else {
1553 link_stat = (sh_eth_read(ndev, PSR));
1554 if (mdp->ether_link_active_low)
1555 link_stat = ~link_stat;
1556 }
1557 if (!(link_stat & PHY_ST_LINK)) {
1558 sh_eth_rcv_snd_disable(ndev);
1559 } else {
1560 /* Link Up */
1561 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1562 /* clear int */
1563 sh_eth_modify(ndev, ECSR, 0, 0);
1564 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI,
1565 DMAC_M_ECI);
1566 /* enable tx and rx */
1567 sh_eth_rcv_snd_enable(ndev);
1568 }
1569 }
1570 }
1571
1572 ignore_link:
1573 if (intr_status & EESR_TWB) {
1574 /* Unused write back interrupt */
1575 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1576 ndev->stats.tx_aborted_errors++;
1577 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1578 }
1579 }
1580
1581 if (intr_status & EESR_RABT) {
1582 /* Receive Abort int */
1583 if (intr_status & EESR_RFRMER) {
1584 /* Receive Frame Overflow int */
1585 ndev->stats.rx_frame_errors++;
1586 }
1587 }
1588
1589 if (intr_status & EESR_TDE) {
1590 /* Transmit Descriptor Empty int */
1591 ndev->stats.tx_fifo_errors++;
1592 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1593 }
1594
1595 if (intr_status & EESR_TFE) {
1596 /* FIFO under flow */
1597 ndev->stats.tx_fifo_errors++;
1598 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1599 }
1600
1601 if (intr_status & EESR_RDE) {
1602 /* Receive Descriptor Empty int */
1603 ndev->stats.rx_over_errors++;
1604 }
1605
1606 if (intr_status & EESR_RFE) {
1607 /* Receive FIFO Overflow int */
1608 ndev->stats.rx_fifo_errors++;
1609 }
1610
1611 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1612 /* Address Error */
1613 ndev->stats.tx_fifo_errors++;
1614 netif_err(mdp, tx_err, ndev, "Address Error\n");
1615 }
1616
1617 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1618 if (mdp->cd->no_ade)
1619 mask &= ~EESR_ADE;
1620 if (intr_status & mask) {
1621 /* Tx error */
1622 u32 edtrr = sh_eth_read(ndev, EDTRR);
1623
1624 /* dmesg */
1625 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1626 intr_status, mdp->cur_tx, mdp->dirty_tx,
1627 (u32)ndev->state, edtrr);
1628 /* dirty buffer free */
1629 sh_eth_txfree(ndev);
1630
1631 /* SH7712 BUG */
1632 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1633 /* tx dma start */
1634 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1635 }
1636 /* wakeup */
1637 netif_wake_queue(ndev);
1638 }
1639 }
1640
1641 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1642 {
1643 struct net_device *ndev = netdev;
1644 struct sh_eth_private *mdp = netdev_priv(ndev);
1645 struct sh_eth_cpu_data *cd = mdp->cd;
1646 irqreturn_t ret = IRQ_NONE;
1647 u32 intr_status, intr_enable;
1648
1649 spin_lock(&mdp->lock);
1650
1651 /* Get interrupt status */
1652 intr_status = sh_eth_read(ndev, EESR);
1653 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1654 * enabled since it's the one that comes thru regardless of the mask,
1655 * and we need to fully handle it in sh_eth_error() in order to quench
1656 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1657 */
1658 intr_enable = sh_eth_read(ndev, EESIPR);
1659 intr_status &= intr_enable | DMAC_M_ECI;
1660 if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1661 ret = IRQ_HANDLED;
1662 else
1663 goto out;
1664
1665 if (!likely(mdp->irq_enabled)) {
1666 sh_eth_write(ndev, 0, EESIPR);
1667 goto out;
1668 }
1669
1670 if (intr_status & EESR_RX_CHECK) {
1671 if (napi_schedule_prep(&mdp->napi)) {
1672 /* Mask Rx interrupts */
1673 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1674 EESIPR);
1675 __napi_schedule(&mdp->napi);
1676 } else {
1677 netdev_warn(ndev,
1678 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1679 intr_status, intr_enable);
1680 }
1681 }
1682
1683 /* Tx Check */
1684 if (intr_status & cd->tx_check) {
1685 /* Clear Tx interrupts */
1686 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1687
1688 sh_eth_txfree(ndev);
1689 netif_wake_queue(ndev);
1690 }
1691
1692 if (intr_status & cd->eesr_err_check) {
1693 /* Clear error interrupts */
1694 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1695
1696 sh_eth_error(ndev, intr_status);
1697 }
1698
1699 out:
1700 spin_unlock(&mdp->lock);
1701
1702 return ret;
1703 }
1704
1705 static int sh_eth_poll(struct napi_struct *napi, int budget)
1706 {
1707 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1708 napi);
1709 struct net_device *ndev = napi->dev;
1710 int quota = budget;
1711 u32 intr_status;
1712
1713 for (;;) {
1714 intr_status = sh_eth_read(ndev, EESR);
1715 if (!(intr_status & EESR_RX_CHECK))
1716 break;
1717 /* Clear Rx interrupts */
1718 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1719
1720 if (sh_eth_rx(ndev, intr_status, &quota))
1721 goto out;
1722 }
1723
1724 napi_complete(napi);
1725
1726 /* Reenable Rx interrupts */
1727 if (mdp->irq_enabled)
1728 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1729 out:
1730 return budget - quota;
1731 }
1732
1733 /* PHY state control function */
1734 static void sh_eth_adjust_link(struct net_device *ndev)
1735 {
1736 struct sh_eth_private *mdp = netdev_priv(ndev);
1737 struct phy_device *phydev = mdp->phydev;
1738 int new_state = 0;
1739
1740 if (phydev->link) {
1741 if (phydev->duplex != mdp->duplex) {
1742 new_state = 1;
1743 mdp->duplex = phydev->duplex;
1744 if (mdp->cd->set_duplex)
1745 mdp->cd->set_duplex(ndev);
1746 }
1747
1748 if (phydev->speed != mdp->speed) {
1749 new_state = 1;
1750 mdp->speed = phydev->speed;
1751 if (mdp->cd->set_rate)
1752 mdp->cd->set_rate(ndev);
1753 }
1754 if (!mdp->link) {
1755 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1756 new_state = 1;
1757 mdp->link = phydev->link;
1758 if (mdp->cd->no_psr || mdp->no_ether_link)
1759 sh_eth_rcv_snd_enable(ndev);
1760 }
1761 } else if (mdp->link) {
1762 new_state = 1;
1763 mdp->link = 0;
1764 mdp->speed = 0;
1765 mdp->duplex = -1;
1766 if (mdp->cd->no_psr || mdp->no_ether_link)
1767 sh_eth_rcv_snd_disable(ndev);
1768 }
1769
1770 if (new_state && netif_msg_link(mdp))
1771 phy_print_status(phydev);
1772 }
1773
1774 /* PHY init function */
1775 static int sh_eth_phy_init(struct net_device *ndev)
1776 {
1777 struct device_node *np = ndev->dev.parent->of_node;
1778 struct sh_eth_private *mdp = netdev_priv(ndev);
1779 struct phy_device *phydev;
1780
1781 mdp->link = 0;
1782 mdp->speed = 0;
1783 mdp->duplex = -1;
1784
1785 /* Try connect to PHY */
1786 if (np) {
1787 struct device_node *pn;
1788
1789 pn = of_parse_phandle(np, "phy-handle", 0);
1790 phydev = of_phy_connect(ndev, pn,
1791 sh_eth_adjust_link, 0,
1792 mdp->phy_interface);
1793
1794 if (!phydev)
1795 phydev = ERR_PTR(-ENOENT);
1796 } else {
1797 char phy_id[MII_BUS_ID_SIZE + 3];
1798
1799 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1800 mdp->mii_bus->id, mdp->phy_id);
1801
1802 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1803 mdp->phy_interface);
1804 }
1805
1806 if (IS_ERR(phydev)) {
1807 netdev_err(ndev, "failed to connect PHY\n");
1808 return PTR_ERR(phydev);
1809 }
1810
1811 phy_attached_info(phydev);
1812
1813 mdp->phydev = phydev;
1814
1815 return 0;
1816 }
1817
1818 /* PHY control start function */
1819 static int sh_eth_phy_start(struct net_device *ndev)
1820 {
1821 struct sh_eth_private *mdp = netdev_priv(ndev);
1822 int ret;
1823
1824 ret = sh_eth_phy_init(ndev);
1825 if (ret)
1826 return ret;
1827
1828 phy_start(mdp->phydev);
1829
1830 return 0;
1831 }
1832
1833 static int sh_eth_get_settings(struct net_device *ndev,
1834 struct ethtool_cmd *ecmd)
1835 {
1836 struct sh_eth_private *mdp = netdev_priv(ndev);
1837 unsigned long flags;
1838 int ret;
1839
1840 if (!mdp->phydev)
1841 return -ENODEV;
1842
1843 spin_lock_irqsave(&mdp->lock, flags);
1844 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1845 spin_unlock_irqrestore(&mdp->lock, flags);
1846
1847 return ret;
1848 }
1849
1850 static int sh_eth_set_settings(struct net_device *ndev,
1851 struct ethtool_cmd *ecmd)
1852 {
1853 struct sh_eth_private *mdp = netdev_priv(ndev);
1854 unsigned long flags;
1855 int ret;
1856
1857 if (!mdp->phydev)
1858 return -ENODEV;
1859
1860 spin_lock_irqsave(&mdp->lock, flags);
1861
1862 /* disable tx and rx */
1863 sh_eth_rcv_snd_disable(ndev);
1864
1865 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1866 if (ret)
1867 goto error_exit;
1868
1869 if (ecmd->duplex == DUPLEX_FULL)
1870 mdp->duplex = 1;
1871 else
1872 mdp->duplex = 0;
1873
1874 if (mdp->cd->set_duplex)
1875 mdp->cd->set_duplex(ndev);
1876
1877 error_exit:
1878 mdelay(1);
1879
1880 /* enable tx and rx */
1881 sh_eth_rcv_snd_enable(ndev);
1882
1883 spin_unlock_irqrestore(&mdp->lock, flags);
1884
1885 return ret;
1886 }
1887
1888 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1889 * version must be bumped as well. Just adding registers up to that
1890 * limit is fine, as long as the existing register indices don't
1891 * change.
1892 */
1893 #define SH_ETH_REG_DUMP_VERSION 1
1894 #define SH_ETH_REG_DUMP_MAX_REGS 256
1895
1896 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1897 {
1898 struct sh_eth_private *mdp = netdev_priv(ndev);
1899 struct sh_eth_cpu_data *cd = mdp->cd;
1900 u32 *valid_map;
1901 size_t len;
1902
1903 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1904
1905 /* Dump starts with a bitmap that tells ethtool which
1906 * registers are defined for this chip.
1907 */
1908 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1909 if (buf) {
1910 valid_map = buf;
1911 buf += len;
1912 } else {
1913 valid_map = NULL;
1914 }
1915
1916 /* Add a register to the dump, if it has a defined offset.
1917 * This automatically skips most undefined registers, but for
1918 * some it is also necessary to check a capability flag in
1919 * struct sh_eth_cpu_data.
1920 */
1921 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1922 #define add_reg_from(reg, read_expr) do { \
1923 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
1924 if (buf) { \
1925 mark_reg_valid(reg); \
1926 *buf++ = read_expr; \
1927 } \
1928 ++len; \
1929 } \
1930 } while (0)
1931 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1932 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1933
1934 add_reg(EDSR);
1935 add_reg(EDMR);
1936 add_reg(EDTRR);
1937 add_reg(EDRRR);
1938 add_reg(EESR);
1939 add_reg(EESIPR);
1940 add_reg(TDLAR);
1941 add_reg(TDFAR);
1942 add_reg(TDFXR);
1943 add_reg(TDFFR);
1944 add_reg(RDLAR);
1945 add_reg(RDFAR);
1946 add_reg(RDFXR);
1947 add_reg(RDFFR);
1948 add_reg(TRSCER);
1949 add_reg(RMFCR);
1950 add_reg(TFTR);
1951 add_reg(FDR);
1952 add_reg(RMCR);
1953 add_reg(TFUCR);
1954 add_reg(RFOCR);
1955 if (cd->rmiimode)
1956 add_reg(RMIIMODE);
1957 add_reg(FCFTR);
1958 if (cd->rpadir)
1959 add_reg(RPADIR);
1960 if (!cd->no_trimd)
1961 add_reg(TRIMD);
1962 add_reg(ECMR);
1963 add_reg(ECSR);
1964 add_reg(ECSIPR);
1965 add_reg(PIR);
1966 if (!cd->no_psr)
1967 add_reg(PSR);
1968 add_reg(RDMLR);
1969 add_reg(RFLR);
1970 add_reg(IPGR);
1971 if (cd->apr)
1972 add_reg(APR);
1973 if (cd->mpr)
1974 add_reg(MPR);
1975 add_reg(RFCR);
1976 add_reg(RFCF);
1977 if (cd->tpauser)
1978 add_reg(TPAUSER);
1979 add_reg(TPAUSECR);
1980 add_reg(GECMR);
1981 if (cd->bculr)
1982 add_reg(BCULR);
1983 add_reg(MAHR);
1984 add_reg(MALR);
1985 add_reg(TROCR);
1986 add_reg(CDCR);
1987 add_reg(LCCR);
1988 add_reg(CNDCR);
1989 add_reg(CEFCR);
1990 add_reg(FRECR);
1991 add_reg(TSFRCR);
1992 add_reg(TLFRCR);
1993 add_reg(CERCR);
1994 add_reg(CEECR);
1995 add_reg(MAFCR);
1996 if (cd->rtrate)
1997 add_reg(RTRATE);
1998 if (cd->hw_crc)
1999 add_reg(CSMR);
2000 if (cd->select_mii)
2001 add_reg(RMII_MII);
2002 add_reg(ARSTR);
2003 if (cd->tsu) {
2004 add_tsu_reg(TSU_CTRST);
2005 add_tsu_reg(TSU_FWEN0);
2006 add_tsu_reg(TSU_FWEN1);
2007 add_tsu_reg(TSU_FCM);
2008 add_tsu_reg(TSU_BSYSL0);
2009 add_tsu_reg(TSU_BSYSL1);
2010 add_tsu_reg(TSU_PRISL0);
2011 add_tsu_reg(TSU_PRISL1);
2012 add_tsu_reg(TSU_FWSL0);
2013 add_tsu_reg(TSU_FWSL1);
2014 add_tsu_reg(TSU_FWSLC);
2015 add_tsu_reg(TSU_QTAG0);
2016 add_tsu_reg(TSU_QTAG1);
2017 add_tsu_reg(TSU_QTAGM0);
2018 add_tsu_reg(TSU_QTAGM1);
2019 add_tsu_reg(TSU_FWSR);
2020 add_tsu_reg(TSU_FWINMK);
2021 add_tsu_reg(TSU_ADQT0);
2022 add_tsu_reg(TSU_ADQT1);
2023 add_tsu_reg(TSU_VTAG0);
2024 add_tsu_reg(TSU_VTAG1);
2025 add_tsu_reg(TSU_ADSBSY);
2026 add_tsu_reg(TSU_TEN);
2027 add_tsu_reg(TSU_POST1);
2028 add_tsu_reg(TSU_POST2);
2029 add_tsu_reg(TSU_POST3);
2030 add_tsu_reg(TSU_POST4);
2031 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2032 /* This is the start of a table, not just a single
2033 * register.
2034 */
2035 if (buf) {
2036 unsigned int i;
2037
2038 mark_reg_valid(TSU_ADRH0);
2039 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2040 *buf++ = ioread32(
2041 mdp->tsu_addr +
2042 mdp->reg_offset[TSU_ADRH0] +
2043 i * 4);
2044 }
2045 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2046 }
2047 }
2048
2049 #undef mark_reg_valid
2050 #undef add_reg_from
2051 #undef add_reg
2052 #undef add_tsu_reg
2053
2054 return len * 4;
2055 }
2056
2057 static int sh_eth_get_regs_len(struct net_device *ndev)
2058 {
2059 return __sh_eth_get_regs(ndev, NULL);
2060 }
2061
2062 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2063 void *buf)
2064 {
2065 struct sh_eth_private *mdp = netdev_priv(ndev);
2066
2067 regs->version = SH_ETH_REG_DUMP_VERSION;
2068
2069 pm_runtime_get_sync(&mdp->pdev->dev);
2070 __sh_eth_get_regs(ndev, buf);
2071 pm_runtime_put_sync(&mdp->pdev->dev);
2072 }
2073
2074 static int sh_eth_nway_reset(struct net_device *ndev)
2075 {
2076 struct sh_eth_private *mdp = netdev_priv(ndev);
2077 unsigned long flags;
2078 int ret;
2079
2080 if (!mdp->phydev)
2081 return -ENODEV;
2082
2083 spin_lock_irqsave(&mdp->lock, flags);
2084 ret = phy_start_aneg(mdp->phydev);
2085 spin_unlock_irqrestore(&mdp->lock, flags);
2086
2087 return ret;
2088 }
2089
2090 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2091 {
2092 struct sh_eth_private *mdp = netdev_priv(ndev);
2093 return mdp->msg_enable;
2094 }
2095
2096 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2097 {
2098 struct sh_eth_private *mdp = netdev_priv(ndev);
2099 mdp->msg_enable = value;
2100 }
2101
2102 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2103 "rx_current", "tx_current",
2104 "rx_dirty", "tx_dirty",
2105 };
2106 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2107
2108 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2109 {
2110 switch (sset) {
2111 case ETH_SS_STATS:
2112 return SH_ETH_STATS_LEN;
2113 default:
2114 return -EOPNOTSUPP;
2115 }
2116 }
2117
2118 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2119 struct ethtool_stats *stats, u64 *data)
2120 {
2121 struct sh_eth_private *mdp = netdev_priv(ndev);
2122 int i = 0;
2123
2124 /* device-specific stats */
2125 data[i++] = mdp->cur_rx;
2126 data[i++] = mdp->cur_tx;
2127 data[i++] = mdp->dirty_rx;
2128 data[i++] = mdp->dirty_tx;
2129 }
2130
2131 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2132 {
2133 switch (stringset) {
2134 case ETH_SS_STATS:
2135 memcpy(data, *sh_eth_gstrings_stats,
2136 sizeof(sh_eth_gstrings_stats));
2137 break;
2138 }
2139 }
2140
2141 static void sh_eth_get_ringparam(struct net_device *ndev,
2142 struct ethtool_ringparam *ring)
2143 {
2144 struct sh_eth_private *mdp = netdev_priv(ndev);
2145
2146 ring->rx_max_pending = RX_RING_MAX;
2147 ring->tx_max_pending = TX_RING_MAX;
2148 ring->rx_pending = mdp->num_rx_ring;
2149 ring->tx_pending = mdp->num_tx_ring;
2150 }
2151
2152 static int sh_eth_set_ringparam(struct net_device *ndev,
2153 struct ethtool_ringparam *ring)
2154 {
2155 struct sh_eth_private *mdp = netdev_priv(ndev);
2156 int ret;
2157
2158 if (ring->tx_pending > TX_RING_MAX ||
2159 ring->rx_pending > RX_RING_MAX ||
2160 ring->tx_pending < TX_RING_MIN ||
2161 ring->rx_pending < RX_RING_MIN)
2162 return -EINVAL;
2163 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2164 return -EINVAL;
2165
2166 if (netif_running(ndev)) {
2167 netif_device_detach(ndev);
2168 netif_tx_disable(ndev);
2169
2170 /* Serialise with the interrupt handler and NAPI, then
2171 * disable interrupts. We have to clear the
2172 * irq_enabled flag first to ensure that interrupts
2173 * won't be re-enabled.
2174 */
2175 mdp->irq_enabled = false;
2176 synchronize_irq(ndev->irq);
2177 napi_synchronize(&mdp->napi);
2178 sh_eth_write(ndev, 0x0000, EESIPR);
2179
2180 sh_eth_dev_exit(ndev);
2181
2182 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2183 sh_eth_ring_free(ndev);
2184 }
2185
2186 /* Set new parameters */
2187 mdp->num_rx_ring = ring->rx_pending;
2188 mdp->num_tx_ring = ring->tx_pending;
2189
2190 if (netif_running(ndev)) {
2191 ret = sh_eth_ring_init(ndev);
2192 if (ret < 0) {
2193 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2194 __func__);
2195 return ret;
2196 }
2197 ret = sh_eth_dev_init(ndev, false);
2198 if (ret < 0) {
2199 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2200 __func__);
2201 return ret;
2202 }
2203
2204 mdp->irq_enabled = true;
2205 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2206 /* Setting the Rx mode will start the Rx process. */
2207 sh_eth_write(ndev, EDRRR_R, EDRRR);
2208 netif_device_attach(ndev);
2209 }
2210
2211 return 0;
2212 }
2213
2214 static const struct ethtool_ops sh_eth_ethtool_ops = {
2215 .get_settings = sh_eth_get_settings,
2216 .set_settings = sh_eth_set_settings,
2217 .get_regs_len = sh_eth_get_regs_len,
2218 .get_regs = sh_eth_get_regs,
2219 .nway_reset = sh_eth_nway_reset,
2220 .get_msglevel = sh_eth_get_msglevel,
2221 .set_msglevel = sh_eth_set_msglevel,
2222 .get_link = ethtool_op_get_link,
2223 .get_strings = sh_eth_get_strings,
2224 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2225 .get_sset_count = sh_eth_get_sset_count,
2226 .get_ringparam = sh_eth_get_ringparam,
2227 .set_ringparam = sh_eth_set_ringparam,
2228 };
2229
2230 /* network device open function */
2231 static int sh_eth_open(struct net_device *ndev)
2232 {
2233 struct sh_eth_private *mdp = netdev_priv(ndev);
2234 int ret;
2235
2236 pm_runtime_get_sync(&mdp->pdev->dev);
2237
2238 napi_enable(&mdp->napi);
2239
2240 ret = request_irq(ndev->irq, sh_eth_interrupt,
2241 mdp->cd->irq_flags, ndev->name, ndev);
2242 if (ret) {
2243 netdev_err(ndev, "Can not assign IRQ number\n");
2244 goto out_napi_off;
2245 }
2246
2247 /* Descriptor set */
2248 ret = sh_eth_ring_init(ndev);
2249 if (ret)
2250 goto out_free_irq;
2251
2252 /* device init */
2253 ret = sh_eth_dev_init(ndev, true);
2254 if (ret)
2255 goto out_free_irq;
2256
2257 /* PHY control start*/
2258 ret = sh_eth_phy_start(ndev);
2259 if (ret)
2260 goto out_free_irq;
2261
2262 netif_start_queue(ndev);
2263
2264 mdp->is_opened = 1;
2265
2266 return ret;
2267
2268 out_free_irq:
2269 free_irq(ndev->irq, ndev);
2270 out_napi_off:
2271 napi_disable(&mdp->napi);
2272 pm_runtime_put_sync(&mdp->pdev->dev);
2273 return ret;
2274 }
2275
2276 /* Timeout function */
2277 static void sh_eth_tx_timeout(struct net_device *ndev)
2278 {
2279 struct sh_eth_private *mdp = netdev_priv(ndev);
2280 struct sh_eth_rxdesc *rxdesc;
2281 int i;
2282
2283 netif_stop_queue(ndev);
2284
2285 netif_err(mdp, timer, ndev,
2286 "transmit timed out, status %8.8x, resetting...\n",
2287 sh_eth_read(ndev, EESR));
2288
2289 /* tx_errors count up */
2290 ndev->stats.tx_errors++;
2291
2292 /* Free all the skbuffs in the Rx queue. */
2293 for (i = 0; i < mdp->num_rx_ring; i++) {
2294 rxdesc = &mdp->rx_ring[i];
2295 rxdesc->status = cpu_to_le32(0);
2296 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2297 dev_kfree_skb(mdp->rx_skbuff[i]);
2298 mdp->rx_skbuff[i] = NULL;
2299 }
2300 for (i = 0; i < mdp->num_tx_ring; i++) {
2301 dev_kfree_skb(mdp->tx_skbuff[i]);
2302 mdp->tx_skbuff[i] = NULL;
2303 }
2304
2305 /* device init */
2306 sh_eth_dev_init(ndev, true);
2307
2308 netif_start_queue(ndev);
2309 }
2310
2311 /* Packet transmit function */
2312 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2313 {
2314 struct sh_eth_private *mdp = netdev_priv(ndev);
2315 struct sh_eth_txdesc *txdesc;
2316 dma_addr_t dma_addr;
2317 u32 entry;
2318 unsigned long flags;
2319
2320 spin_lock_irqsave(&mdp->lock, flags);
2321 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2322 if (!sh_eth_txfree(ndev)) {
2323 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2324 netif_stop_queue(ndev);
2325 spin_unlock_irqrestore(&mdp->lock, flags);
2326 return NETDEV_TX_BUSY;
2327 }
2328 }
2329 spin_unlock_irqrestore(&mdp->lock, flags);
2330
2331 if (skb_put_padto(skb, ETH_ZLEN))
2332 return NETDEV_TX_OK;
2333
2334 entry = mdp->cur_tx % mdp->num_tx_ring;
2335 mdp->tx_skbuff[entry] = skb;
2336 txdesc = &mdp->tx_ring[entry];
2337 /* soft swap. */
2338 if (!mdp->cd->hw_swap)
2339 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2340 dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2341 DMA_TO_DEVICE);
2342 if (dma_mapping_error(&ndev->dev, dma_addr)) {
2343 kfree_skb(skb);
2344 return NETDEV_TX_OK;
2345 }
2346 txdesc->addr = cpu_to_le32(dma_addr);
2347 txdesc->len = cpu_to_le32(skb->len << 16);
2348
2349 dma_wmb(); /* TACT bit must be set after all the above writes */
2350 if (entry >= mdp->num_tx_ring - 1)
2351 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2352 else
2353 txdesc->status |= cpu_to_le32(TD_TACT);
2354
2355 mdp->cur_tx++;
2356
2357 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2358 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2359
2360 return NETDEV_TX_OK;
2361 }
2362
2363 /* The statistics registers have write-clear behaviour, which means we
2364 * will lose any increment between the read and write. We mitigate
2365 * this by only clearing when we read a non-zero value, so we will
2366 * never falsely report a total of zero.
2367 */
2368 static void
2369 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2370 {
2371 u32 delta = sh_eth_read(ndev, reg);
2372
2373 if (delta) {
2374 *stat += delta;
2375 sh_eth_write(ndev, 0, reg);
2376 }
2377 }
2378
2379 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2380 {
2381 struct sh_eth_private *mdp = netdev_priv(ndev);
2382
2383 if (sh_eth_is_rz_fast_ether(mdp))
2384 return &ndev->stats;
2385
2386 if (!mdp->is_opened)
2387 return &ndev->stats;
2388
2389 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2390 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2391 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2392
2393 if (sh_eth_is_gether(mdp)) {
2394 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2395 CERCR);
2396 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2397 CEECR);
2398 } else {
2399 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2400 CNDCR);
2401 }
2402
2403 return &ndev->stats;
2404 }
2405
2406 /* device close function */
2407 static int sh_eth_close(struct net_device *ndev)
2408 {
2409 struct sh_eth_private *mdp = netdev_priv(ndev);
2410
2411 netif_stop_queue(ndev);
2412
2413 /* Serialise with the interrupt handler and NAPI, then disable
2414 * interrupts. We have to clear the irq_enabled flag first to
2415 * ensure that interrupts won't be re-enabled.
2416 */
2417 mdp->irq_enabled = false;
2418 synchronize_irq(ndev->irq);
2419 napi_disable(&mdp->napi);
2420 sh_eth_write(ndev, 0x0000, EESIPR);
2421
2422 sh_eth_dev_exit(ndev);
2423
2424 /* PHY Disconnect */
2425 if (mdp->phydev) {
2426 phy_stop(mdp->phydev);
2427 phy_disconnect(mdp->phydev);
2428 mdp->phydev = NULL;
2429 }
2430
2431 free_irq(ndev->irq, ndev);
2432
2433 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2434 sh_eth_ring_free(ndev);
2435
2436 pm_runtime_put_sync(&mdp->pdev->dev);
2437
2438 mdp->is_opened = 0;
2439
2440 return 0;
2441 }
2442
2443 /* ioctl to device function */
2444 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2445 {
2446 struct sh_eth_private *mdp = netdev_priv(ndev);
2447 struct phy_device *phydev = mdp->phydev;
2448
2449 if (!netif_running(ndev))
2450 return -EINVAL;
2451
2452 if (!phydev)
2453 return -ENODEV;
2454
2455 return phy_mii_ioctl(phydev, rq, cmd);
2456 }
2457
2458 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2459 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2460 int entry)
2461 {
2462 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2463 }
2464
2465 static u32 sh_eth_tsu_get_post_mask(int entry)
2466 {
2467 return 0x0f << (28 - ((entry % 8) * 4));
2468 }
2469
2470 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2471 {
2472 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2473 }
2474
2475 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2476 int entry)
2477 {
2478 struct sh_eth_private *mdp = netdev_priv(ndev);
2479 u32 tmp;
2480 void *reg_offset;
2481
2482 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2483 tmp = ioread32(reg_offset);
2484 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2485 }
2486
2487 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2488 int entry)
2489 {
2490 struct sh_eth_private *mdp = netdev_priv(ndev);
2491 u32 post_mask, ref_mask, tmp;
2492 void *reg_offset;
2493
2494 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2495 post_mask = sh_eth_tsu_get_post_mask(entry);
2496 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2497
2498 tmp = ioread32(reg_offset);
2499 iowrite32(tmp & ~post_mask, reg_offset);
2500
2501 /* If other port enables, the function returns "true" */
2502 return tmp & ref_mask;
2503 }
2504
2505 static int sh_eth_tsu_busy(struct net_device *ndev)
2506 {
2507 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2508 struct sh_eth_private *mdp = netdev_priv(ndev);
2509
2510 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2511 udelay(10);
2512 timeout--;
2513 if (timeout <= 0) {
2514 netdev_err(ndev, "%s: timeout\n", __func__);
2515 return -ETIMEDOUT;
2516 }
2517 }
2518
2519 return 0;
2520 }
2521
2522 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2523 const u8 *addr)
2524 {
2525 u32 val;
2526
2527 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2528 iowrite32(val, reg);
2529 if (sh_eth_tsu_busy(ndev) < 0)
2530 return -EBUSY;
2531
2532 val = addr[4] << 8 | addr[5];
2533 iowrite32(val, reg + 4);
2534 if (sh_eth_tsu_busy(ndev) < 0)
2535 return -EBUSY;
2536
2537 return 0;
2538 }
2539
2540 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2541 {
2542 u32 val;
2543
2544 val = ioread32(reg);
2545 addr[0] = (val >> 24) & 0xff;
2546 addr[1] = (val >> 16) & 0xff;
2547 addr[2] = (val >> 8) & 0xff;
2548 addr[3] = val & 0xff;
2549 val = ioread32(reg + 4);
2550 addr[4] = (val >> 8) & 0xff;
2551 addr[5] = val & 0xff;
2552 }
2553
2554
2555 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2556 {
2557 struct sh_eth_private *mdp = netdev_priv(ndev);
2558 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2559 int i;
2560 u8 c_addr[ETH_ALEN];
2561
2562 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2563 sh_eth_tsu_read_entry(reg_offset, c_addr);
2564 if (ether_addr_equal(addr, c_addr))
2565 return i;
2566 }
2567
2568 return -ENOENT;
2569 }
2570
2571 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2572 {
2573 u8 blank[ETH_ALEN];
2574 int entry;
2575
2576 memset(blank, 0, sizeof(blank));
2577 entry = sh_eth_tsu_find_entry(ndev, blank);
2578 return (entry < 0) ? -ENOMEM : entry;
2579 }
2580
2581 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2582 int entry)
2583 {
2584 struct sh_eth_private *mdp = netdev_priv(ndev);
2585 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2586 int ret;
2587 u8 blank[ETH_ALEN];
2588
2589 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2590 ~(1 << (31 - entry)), TSU_TEN);
2591
2592 memset(blank, 0, sizeof(blank));
2593 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2594 if (ret < 0)
2595 return ret;
2596 return 0;
2597 }
2598
2599 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2600 {
2601 struct sh_eth_private *mdp = netdev_priv(ndev);
2602 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2603 int i, ret;
2604
2605 if (!mdp->cd->tsu)
2606 return 0;
2607
2608 i = sh_eth_tsu_find_entry(ndev, addr);
2609 if (i < 0) {
2610 /* No entry found, create one */
2611 i = sh_eth_tsu_find_empty(ndev);
2612 if (i < 0)
2613 return -ENOMEM;
2614 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2615 if (ret < 0)
2616 return ret;
2617
2618 /* Enable the entry */
2619 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2620 (1 << (31 - i)), TSU_TEN);
2621 }
2622
2623 /* Entry found or created, enable POST */
2624 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2625
2626 return 0;
2627 }
2628
2629 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2630 {
2631 struct sh_eth_private *mdp = netdev_priv(ndev);
2632 int i, ret;
2633
2634 if (!mdp->cd->tsu)
2635 return 0;
2636
2637 i = sh_eth_tsu_find_entry(ndev, addr);
2638 if (i) {
2639 /* Entry found */
2640 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2641 goto done;
2642
2643 /* Disable the entry if both ports was disabled */
2644 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2645 if (ret < 0)
2646 return ret;
2647 }
2648 done:
2649 return 0;
2650 }
2651
2652 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2653 {
2654 struct sh_eth_private *mdp = netdev_priv(ndev);
2655 int i, ret;
2656
2657 if (!mdp->cd->tsu)
2658 return 0;
2659
2660 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2661 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2662 continue;
2663
2664 /* Disable the entry if both ports was disabled */
2665 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2666 if (ret < 0)
2667 return ret;
2668 }
2669
2670 return 0;
2671 }
2672
2673 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2674 {
2675 struct sh_eth_private *mdp = netdev_priv(ndev);
2676 u8 addr[ETH_ALEN];
2677 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2678 int i;
2679
2680 if (!mdp->cd->tsu)
2681 return;
2682
2683 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2684 sh_eth_tsu_read_entry(reg_offset, addr);
2685 if (is_multicast_ether_addr(addr))
2686 sh_eth_tsu_del_entry(ndev, addr);
2687 }
2688 }
2689
2690 /* Update promiscuous flag and multicast filter */
2691 static void sh_eth_set_rx_mode(struct net_device *ndev)
2692 {
2693 struct sh_eth_private *mdp = netdev_priv(ndev);
2694 u32 ecmr_bits;
2695 int mcast_all = 0;
2696 unsigned long flags;
2697
2698 spin_lock_irqsave(&mdp->lock, flags);
2699 /* Initial condition is MCT = 1, PRM = 0.
2700 * Depending on ndev->flags, set PRM or clear MCT
2701 */
2702 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2703 if (mdp->cd->tsu)
2704 ecmr_bits |= ECMR_MCT;
2705
2706 if (!(ndev->flags & IFF_MULTICAST)) {
2707 sh_eth_tsu_purge_mcast(ndev);
2708 mcast_all = 1;
2709 }
2710 if (ndev->flags & IFF_ALLMULTI) {
2711 sh_eth_tsu_purge_mcast(ndev);
2712 ecmr_bits &= ~ECMR_MCT;
2713 mcast_all = 1;
2714 }
2715
2716 if (ndev->flags & IFF_PROMISC) {
2717 sh_eth_tsu_purge_all(ndev);
2718 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2719 } else if (mdp->cd->tsu) {
2720 struct netdev_hw_addr *ha;
2721 netdev_for_each_mc_addr(ha, ndev) {
2722 if (mcast_all && is_multicast_ether_addr(ha->addr))
2723 continue;
2724
2725 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2726 if (!mcast_all) {
2727 sh_eth_tsu_purge_mcast(ndev);
2728 ecmr_bits &= ~ECMR_MCT;
2729 mcast_all = 1;
2730 }
2731 }
2732 }
2733 }
2734
2735 /* update the ethernet mode */
2736 sh_eth_write(ndev, ecmr_bits, ECMR);
2737
2738 spin_unlock_irqrestore(&mdp->lock, flags);
2739 }
2740
2741 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2742 {
2743 if (!mdp->port)
2744 return TSU_VTAG0;
2745 else
2746 return TSU_VTAG1;
2747 }
2748
2749 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2750 __be16 proto, u16 vid)
2751 {
2752 struct sh_eth_private *mdp = netdev_priv(ndev);
2753 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2754
2755 if (unlikely(!mdp->cd->tsu))
2756 return -EPERM;
2757
2758 /* No filtering if vid = 0 */
2759 if (!vid)
2760 return 0;
2761
2762 mdp->vlan_num_ids++;
2763
2764 /* The controller has one VLAN tag HW filter. So, if the filter is
2765 * already enabled, the driver disables it and the filte
2766 */
2767 if (mdp->vlan_num_ids > 1) {
2768 /* disable VLAN filter */
2769 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2770 return 0;
2771 }
2772
2773 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2774 vtag_reg_index);
2775
2776 return 0;
2777 }
2778
2779 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2780 __be16 proto, u16 vid)
2781 {
2782 struct sh_eth_private *mdp = netdev_priv(ndev);
2783 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2784
2785 if (unlikely(!mdp->cd->tsu))
2786 return -EPERM;
2787
2788 /* No filtering if vid = 0 */
2789 if (!vid)
2790 return 0;
2791
2792 mdp->vlan_num_ids--;
2793 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2794
2795 return 0;
2796 }
2797
2798 /* SuperH's TSU register init function */
2799 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2800 {
2801 if (sh_eth_is_rz_fast_ether(mdp)) {
2802 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2803 return;
2804 }
2805
2806 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2807 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2808 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2809 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2810 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2811 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2812 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2813 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2814 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2815 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2816 if (sh_eth_is_gether(mdp)) {
2817 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2818 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2819 } else {
2820 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2821 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2822 }
2823 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2824 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2825 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2826 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2827 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2828 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2829 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2830 }
2831
2832 /* MDIO bus release function */
2833 static int sh_mdio_release(struct sh_eth_private *mdp)
2834 {
2835 /* unregister mdio bus */
2836 mdiobus_unregister(mdp->mii_bus);
2837
2838 /* free bitbang info */
2839 free_mdio_bitbang(mdp->mii_bus);
2840
2841 return 0;
2842 }
2843
2844 /* MDIO bus init function */
2845 static int sh_mdio_init(struct sh_eth_private *mdp,
2846 struct sh_eth_plat_data *pd)
2847 {
2848 int ret;
2849 struct bb_info *bitbang;
2850 struct platform_device *pdev = mdp->pdev;
2851 struct device *dev = &mdp->pdev->dev;
2852
2853 /* create bit control struct for PHY */
2854 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2855 if (!bitbang)
2856 return -ENOMEM;
2857
2858 /* bitbang init */
2859 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2860 bitbang->set_gate = pd->set_mdio_gate;
2861 bitbang->ctrl.ops = &bb_ops;
2862
2863 /* MII controller setting */
2864 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2865 if (!mdp->mii_bus)
2866 return -ENOMEM;
2867
2868 /* Hook up MII support for ethtool */
2869 mdp->mii_bus->name = "sh_mii";
2870 mdp->mii_bus->parent = dev;
2871 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2872 pdev->name, pdev->id);
2873
2874 /* register MDIO bus */
2875 if (dev->of_node) {
2876 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2877 } else {
2878 if (pd->phy_irq > 0)
2879 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2880
2881 ret = mdiobus_register(mdp->mii_bus);
2882 }
2883
2884 if (ret)
2885 goto out_free_bus;
2886
2887 return 0;
2888
2889 out_free_bus:
2890 free_mdio_bitbang(mdp->mii_bus);
2891 return ret;
2892 }
2893
2894 static const u16 *sh_eth_get_register_offset(int register_type)
2895 {
2896 const u16 *reg_offset = NULL;
2897
2898 switch (register_type) {
2899 case SH_ETH_REG_GIGABIT:
2900 reg_offset = sh_eth_offset_gigabit;
2901 break;
2902 case SH_ETH_REG_FAST_RZ:
2903 reg_offset = sh_eth_offset_fast_rz;
2904 break;
2905 case SH_ETH_REG_FAST_RCAR:
2906 reg_offset = sh_eth_offset_fast_rcar;
2907 break;
2908 case SH_ETH_REG_FAST_SH4:
2909 reg_offset = sh_eth_offset_fast_sh4;
2910 break;
2911 case SH_ETH_REG_FAST_SH3_SH2:
2912 reg_offset = sh_eth_offset_fast_sh3_sh2;
2913 break;
2914 }
2915
2916 return reg_offset;
2917 }
2918
2919 static const struct net_device_ops sh_eth_netdev_ops = {
2920 .ndo_open = sh_eth_open,
2921 .ndo_stop = sh_eth_close,
2922 .ndo_start_xmit = sh_eth_start_xmit,
2923 .ndo_get_stats = sh_eth_get_stats,
2924 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2925 .ndo_tx_timeout = sh_eth_tx_timeout,
2926 .ndo_do_ioctl = sh_eth_do_ioctl,
2927 .ndo_validate_addr = eth_validate_addr,
2928 .ndo_set_mac_address = eth_mac_addr,
2929 .ndo_change_mtu = eth_change_mtu,
2930 };
2931
2932 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2933 .ndo_open = sh_eth_open,
2934 .ndo_stop = sh_eth_close,
2935 .ndo_start_xmit = sh_eth_start_xmit,
2936 .ndo_get_stats = sh_eth_get_stats,
2937 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2938 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2939 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2940 .ndo_tx_timeout = sh_eth_tx_timeout,
2941 .ndo_do_ioctl = sh_eth_do_ioctl,
2942 .ndo_validate_addr = eth_validate_addr,
2943 .ndo_set_mac_address = eth_mac_addr,
2944 .ndo_change_mtu = eth_change_mtu,
2945 };
2946
2947 #ifdef CONFIG_OF
2948 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2949 {
2950 struct device_node *np = dev->of_node;
2951 struct sh_eth_plat_data *pdata;
2952 const char *mac_addr;
2953
2954 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2955 if (!pdata)
2956 return NULL;
2957
2958 pdata->phy_interface = of_get_phy_mode(np);
2959
2960 mac_addr = of_get_mac_address(np);
2961 if (mac_addr)
2962 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2963
2964 pdata->no_ether_link =
2965 of_property_read_bool(np, "renesas,no-ether-link");
2966 pdata->ether_link_active_low =
2967 of_property_read_bool(np, "renesas,ether-link-active-low");
2968
2969 return pdata;
2970 }
2971
2972 static const struct of_device_id sh_eth_match_table[] = {
2973 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2974 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2975 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2976 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2977 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2978 { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2979 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2980 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2981 { }
2982 };
2983 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2984 #else
2985 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2986 {
2987 return NULL;
2988 }
2989 #endif
2990
2991 static int sh_eth_drv_probe(struct platform_device *pdev)
2992 {
2993 struct resource *res;
2994 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2995 const struct platform_device_id *id = platform_get_device_id(pdev);
2996 struct sh_eth_private *mdp;
2997 struct net_device *ndev;
2998 int ret, devno;
2999
3000 /* get base addr */
3001 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3002
3003 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3004 if (!ndev)
3005 return -ENOMEM;
3006
3007 pm_runtime_enable(&pdev->dev);
3008 pm_runtime_get_sync(&pdev->dev);
3009
3010 devno = pdev->id;
3011 if (devno < 0)
3012 devno = 0;
3013
3014 ndev->dma = -1;
3015 ret = platform_get_irq(pdev, 0);
3016 if (ret < 0)
3017 goto out_release;
3018 ndev->irq = ret;
3019
3020 SET_NETDEV_DEV(ndev, &pdev->dev);
3021
3022 mdp = netdev_priv(ndev);
3023 mdp->num_tx_ring = TX_RING_SIZE;
3024 mdp->num_rx_ring = RX_RING_SIZE;
3025 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3026 if (IS_ERR(mdp->addr)) {
3027 ret = PTR_ERR(mdp->addr);
3028 goto out_release;
3029 }
3030
3031 ndev->base_addr = res->start;
3032
3033 spin_lock_init(&mdp->lock);
3034 mdp->pdev = pdev;
3035
3036 if (pdev->dev.of_node)
3037 pd = sh_eth_parse_dt(&pdev->dev);
3038 if (!pd) {
3039 dev_err(&pdev->dev, "no platform data\n");
3040 ret = -EINVAL;
3041 goto out_release;
3042 }
3043
3044 /* get PHY ID */
3045 mdp->phy_id = pd->phy;
3046 mdp->phy_interface = pd->phy_interface;
3047 mdp->no_ether_link = pd->no_ether_link;
3048 mdp->ether_link_active_low = pd->ether_link_active_low;
3049
3050 /* set cpu data */
3051 if (id)
3052 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3053 else
3054 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3055
3056 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3057 if (!mdp->reg_offset) {
3058 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3059 mdp->cd->register_type);
3060 ret = -EINVAL;
3061 goto out_release;
3062 }
3063 sh_eth_set_default_cpu_data(mdp->cd);
3064
3065 /* set function */
3066 if (mdp->cd->tsu)
3067 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3068 else
3069 ndev->netdev_ops = &sh_eth_netdev_ops;
3070 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3071 ndev->watchdog_timeo = TX_TIMEOUT;
3072
3073 /* debug message level */
3074 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3075
3076 /* read and set MAC address */
3077 read_mac_address(ndev, pd->mac_addr);
3078 if (!is_valid_ether_addr(ndev->dev_addr)) {
3079 dev_warn(&pdev->dev,
3080 "no valid MAC address supplied, using a random one.\n");
3081 eth_hw_addr_random(ndev);
3082 }
3083
3084 /* ioremap the TSU registers */
3085 if (mdp->cd->tsu) {
3086 struct resource *rtsu;
3087 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3088 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3089 if (IS_ERR(mdp->tsu_addr)) {
3090 ret = PTR_ERR(mdp->tsu_addr);
3091 goto out_release;
3092 }
3093 mdp->port = devno % 2;
3094 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3095 }
3096
3097 /* initialize first or needed device */
3098 if (!devno || pd->needs_init) {
3099 if (mdp->cd->chip_reset)
3100 mdp->cd->chip_reset(ndev);
3101
3102 if (mdp->cd->tsu) {
3103 /* TSU init (Init only)*/
3104 sh_eth_tsu_init(mdp);
3105 }
3106 }
3107
3108 if (mdp->cd->rmiimode)
3109 sh_eth_write(ndev, 0x1, RMIIMODE);
3110
3111 /* MDIO bus init */
3112 ret = sh_mdio_init(mdp, pd);
3113 if (ret) {
3114 dev_err(&ndev->dev, "failed to initialise MDIO\n");
3115 goto out_release;
3116 }
3117
3118 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3119
3120 /* network device register */
3121 ret = register_netdev(ndev);
3122 if (ret)
3123 goto out_napi_del;
3124
3125 /* print device information */
3126 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3127 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3128
3129 pm_runtime_put(&pdev->dev);
3130 platform_set_drvdata(pdev, ndev);
3131
3132 return ret;
3133
3134 out_napi_del:
3135 netif_napi_del(&mdp->napi);
3136 sh_mdio_release(mdp);
3137
3138 out_release:
3139 /* net_dev free */
3140 if (ndev)
3141 free_netdev(ndev);
3142
3143 pm_runtime_put(&pdev->dev);
3144 pm_runtime_disable(&pdev->dev);
3145 return ret;
3146 }
3147
3148 static int sh_eth_drv_remove(struct platform_device *pdev)
3149 {
3150 struct net_device *ndev = platform_get_drvdata(pdev);
3151 struct sh_eth_private *mdp = netdev_priv(ndev);
3152
3153 unregister_netdev(ndev);
3154 netif_napi_del(&mdp->napi);
3155 sh_mdio_release(mdp);
3156 pm_runtime_disable(&pdev->dev);
3157 free_netdev(ndev);
3158
3159 return 0;
3160 }
3161
3162 #ifdef CONFIG_PM
3163 #ifdef CONFIG_PM_SLEEP
3164 static int sh_eth_suspend(struct device *dev)
3165 {
3166 struct net_device *ndev = dev_get_drvdata(dev);
3167 int ret = 0;
3168
3169 if (netif_running(ndev)) {
3170 netif_device_detach(ndev);
3171 ret = sh_eth_close(ndev);
3172 }
3173
3174 return ret;
3175 }
3176
3177 static int sh_eth_resume(struct device *dev)
3178 {
3179 struct net_device *ndev = dev_get_drvdata(dev);
3180 int ret = 0;
3181
3182 if (netif_running(ndev)) {
3183 ret = sh_eth_open(ndev);
3184 if (ret < 0)
3185 return ret;
3186 netif_device_attach(ndev);
3187 }
3188
3189 return ret;
3190 }
3191 #endif
3192
3193 static int sh_eth_runtime_nop(struct device *dev)
3194 {
3195 /* Runtime PM callback shared between ->runtime_suspend()
3196 * and ->runtime_resume(). Simply returns success.
3197 *
3198 * This driver re-initializes all registers after
3199 * pm_runtime_get_sync() anyway so there is no need
3200 * to save and restore registers here.
3201 */
3202 return 0;
3203 }
3204
3205 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3206 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3207 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3208 };
3209 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3210 #else
3211 #define SH_ETH_PM_OPS NULL
3212 #endif
3213
3214 static struct platform_device_id sh_eth_id_table[] = {
3215 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3216 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3217 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3218 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3219 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3220 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3221 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3222 { }
3223 };
3224 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3225
3226 static struct platform_driver sh_eth_driver = {
3227 .probe = sh_eth_drv_probe,
3228 .remove = sh_eth_drv_remove,
3229 .id_table = sh_eth_id_table,
3230 .driver = {
3231 .name = CARDNAME,
3232 .pm = SH_ETH_PM_OPS,
3233 .of_match_table = of_match_ptr(sh_eth_match_table),
3234 },
3235 };
3236
3237 module_platform_driver(sh_eth_driver);
3238
3239 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3240 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3241 MODULE_LICENSE("GPL v2");