]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/renesas/sh_eth.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /* SuperH Ethernet device driver
2 *
3 * Copyright (C) 2014 Renesas Electronics Corporation
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2014 Renesas Solutions Corp.
6 * Copyright (C) 2013-2016 Cogent Embedded, Inc.
7 * Copyright (C) 2014 Codethink Limited
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46
47 #include "sh_eth.h"
48
49 #define SH_ETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_LINK | \
51 NETIF_MSG_TIMER | \
52 NETIF_MSG_RX_ERR| \
53 NETIF_MSG_TX_ERR)
54
55 #define SH_ETH_OFFSET_INVALID ((u16)~0)
56
57 #define SH_ETH_OFFSET_DEFAULTS \
58 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 SH_ETH_OFFSET_DEFAULTS,
62
63 [EDSR] = 0x0000,
64 [EDMR] = 0x0400,
65 [EDTRR] = 0x0408,
66 [EDRRR] = 0x0410,
67 [EESR] = 0x0428,
68 [EESIPR] = 0x0430,
69 [TDLAR] = 0x0010,
70 [TDFAR] = 0x0014,
71 [TDFXR] = 0x0018,
72 [TDFFR] = 0x001c,
73 [RDLAR] = 0x0030,
74 [RDFAR] = 0x0034,
75 [RDFXR] = 0x0038,
76 [RDFFR] = 0x003c,
77 [TRSCER] = 0x0438,
78 [RMFCR] = 0x0440,
79 [TFTR] = 0x0448,
80 [FDR] = 0x0450,
81 [RMCR] = 0x0458,
82 [RPADIR] = 0x0460,
83 [FCFTR] = 0x0468,
84 [CSMR] = 0x04E4,
85
86 [ECMR] = 0x0500,
87 [ECSR] = 0x0510,
88 [ECSIPR] = 0x0518,
89 [PIR] = 0x0520,
90 [PSR] = 0x0528,
91 [PIPR] = 0x052c,
92 [RFLR] = 0x0508,
93 [APR] = 0x0554,
94 [MPR] = 0x0558,
95 [PFTCR] = 0x055c,
96 [PFRCR] = 0x0560,
97 [TPAUSER] = 0x0564,
98 [GECMR] = 0x05b0,
99 [BCULR] = 0x05b4,
100 [MAHR] = 0x05c0,
101 [MALR] = 0x05c8,
102 [TROCR] = 0x0700,
103 [CDCR] = 0x0708,
104 [LCCR] = 0x0710,
105 [CEFCR] = 0x0740,
106 [FRECR] = 0x0748,
107 [TSFRCR] = 0x0750,
108 [TLFRCR] = 0x0758,
109 [RFCR] = 0x0760,
110 [CERCR] = 0x0768,
111 [CEECR] = 0x0770,
112 [MAFCR] = 0x0778,
113 [RMII_MII] = 0x0790,
114
115 [ARSTR] = 0x0000,
116 [TSU_CTRST] = 0x0004,
117 [TSU_FWEN0] = 0x0010,
118 [TSU_FWEN1] = 0x0014,
119 [TSU_FCM] = 0x0018,
120 [TSU_BSYSL0] = 0x0020,
121 [TSU_BSYSL1] = 0x0024,
122 [TSU_PRISL0] = 0x0028,
123 [TSU_PRISL1] = 0x002c,
124 [TSU_FWSL0] = 0x0030,
125 [TSU_FWSL1] = 0x0034,
126 [TSU_FWSLC] = 0x0038,
127 [TSU_QTAG0] = 0x0040,
128 [TSU_QTAG1] = 0x0044,
129 [TSU_FWSR] = 0x0050,
130 [TSU_FWINMK] = 0x0054,
131 [TSU_ADQT0] = 0x0048,
132 [TSU_ADQT1] = 0x004c,
133 [TSU_VTAG0] = 0x0058,
134 [TSU_VTAG1] = 0x005c,
135 [TSU_ADSBSY] = 0x0060,
136 [TSU_TEN] = 0x0064,
137 [TSU_POST1] = 0x0070,
138 [TSU_POST2] = 0x0074,
139 [TSU_POST3] = 0x0078,
140 [TSU_POST4] = 0x007c,
141 [TSU_ADRH0] = 0x0100,
142
143 [TXNLCR0] = 0x0080,
144 [TXALCR0] = 0x0084,
145 [RXNLCR0] = 0x0088,
146 [RXALCR0] = 0x008c,
147 [FWNLCR0] = 0x0090,
148 [FWALCR0] = 0x0094,
149 [TXNLCR1] = 0x00a0,
150 [TXALCR1] = 0x00a0,
151 [RXNLCR1] = 0x00a8,
152 [RXALCR1] = 0x00ac,
153 [FWNLCR1] = 0x00b0,
154 [FWALCR1] = 0x00b4,
155 };
156
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 SH_ETH_OFFSET_DEFAULTS,
159
160 [EDSR] = 0x0000,
161 [EDMR] = 0x0400,
162 [EDTRR] = 0x0408,
163 [EDRRR] = 0x0410,
164 [EESR] = 0x0428,
165 [EESIPR] = 0x0430,
166 [TDLAR] = 0x0010,
167 [TDFAR] = 0x0014,
168 [TDFXR] = 0x0018,
169 [TDFFR] = 0x001c,
170 [RDLAR] = 0x0030,
171 [RDFAR] = 0x0034,
172 [RDFXR] = 0x0038,
173 [RDFFR] = 0x003c,
174 [TRSCER] = 0x0438,
175 [RMFCR] = 0x0440,
176 [TFTR] = 0x0448,
177 [FDR] = 0x0450,
178 [RMCR] = 0x0458,
179 [RPADIR] = 0x0460,
180 [FCFTR] = 0x0468,
181 [CSMR] = 0x04E4,
182
183 [ECMR] = 0x0500,
184 [RFLR] = 0x0508,
185 [ECSR] = 0x0510,
186 [ECSIPR] = 0x0518,
187 [PIR] = 0x0520,
188 [APR] = 0x0554,
189 [MPR] = 0x0558,
190 [PFTCR] = 0x055c,
191 [PFRCR] = 0x0560,
192 [TPAUSER] = 0x0564,
193 [MAHR] = 0x05c0,
194 [MALR] = 0x05c8,
195 [CEFCR] = 0x0740,
196 [FRECR] = 0x0748,
197 [TSFRCR] = 0x0750,
198 [TLFRCR] = 0x0758,
199 [RFCR] = 0x0760,
200 [MAFCR] = 0x0778,
201
202 [ARSTR] = 0x0000,
203 [TSU_CTRST] = 0x0004,
204 [TSU_VTAG0] = 0x0058,
205 [TSU_ADSBSY] = 0x0060,
206 [TSU_TEN] = 0x0064,
207 [TSU_ADRH0] = 0x0100,
208
209 [TXNLCR0] = 0x0080,
210 [TXALCR0] = 0x0084,
211 [RXNLCR0] = 0x0088,
212 [RXALCR0] = 0x008C,
213 };
214
215 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
216 SH_ETH_OFFSET_DEFAULTS,
217
218 [ECMR] = 0x0300,
219 [RFLR] = 0x0308,
220 [ECSR] = 0x0310,
221 [ECSIPR] = 0x0318,
222 [PIR] = 0x0320,
223 [PSR] = 0x0328,
224 [RDMLR] = 0x0340,
225 [IPGR] = 0x0350,
226 [APR] = 0x0354,
227 [MPR] = 0x0358,
228 [RFCF] = 0x0360,
229 [TPAUSER] = 0x0364,
230 [TPAUSECR] = 0x0368,
231 [MAHR] = 0x03c0,
232 [MALR] = 0x03c8,
233 [TROCR] = 0x03d0,
234 [CDCR] = 0x03d4,
235 [LCCR] = 0x03d8,
236 [CNDCR] = 0x03dc,
237 [CEFCR] = 0x03e4,
238 [FRECR] = 0x03e8,
239 [TSFRCR] = 0x03ec,
240 [TLFRCR] = 0x03f0,
241 [RFCR] = 0x03f4,
242 [MAFCR] = 0x03f8,
243
244 [EDMR] = 0x0200,
245 [EDTRR] = 0x0208,
246 [EDRRR] = 0x0210,
247 [TDLAR] = 0x0218,
248 [RDLAR] = 0x0220,
249 [EESR] = 0x0228,
250 [EESIPR] = 0x0230,
251 [TRSCER] = 0x0238,
252 [RMFCR] = 0x0240,
253 [TFTR] = 0x0248,
254 [FDR] = 0x0250,
255 [RMCR] = 0x0258,
256 [TFUCR] = 0x0264,
257 [RFOCR] = 0x0268,
258 [RMIIMODE] = 0x026c,
259 [FCFTR] = 0x0270,
260 [TRIMD] = 0x027c,
261 };
262
263 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
264 SH_ETH_OFFSET_DEFAULTS,
265
266 [ECMR] = 0x0100,
267 [RFLR] = 0x0108,
268 [ECSR] = 0x0110,
269 [ECSIPR] = 0x0118,
270 [PIR] = 0x0120,
271 [PSR] = 0x0128,
272 [RDMLR] = 0x0140,
273 [IPGR] = 0x0150,
274 [APR] = 0x0154,
275 [MPR] = 0x0158,
276 [TPAUSER] = 0x0164,
277 [RFCF] = 0x0160,
278 [TPAUSECR] = 0x0168,
279 [BCFRR] = 0x016c,
280 [MAHR] = 0x01c0,
281 [MALR] = 0x01c8,
282 [TROCR] = 0x01d0,
283 [CDCR] = 0x01d4,
284 [LCCR] = 0x01d8,
285 [CNDCR] = 0x01dc,
286 [CEFCR] = 0x01e4,
287 [FRECR] = 0x01e8,
288 [TSFRCR] = 0x01ec,
289 [TLFRCR] = 0x01f0,
290 [RFCR] = 0x01f4,
291 [MAFCR] = 0x01f8,
292 [RTRATE] = 0x01fc,
293
294 [EDMR] = 0x0000,
295 [EDTRR] = 0x0008,
296 [EDRRR] = 0x0010,
297 [TDLAR] = 0x0018,
298 [RDLAR] = 0x0020,
299 [EESR] = 0x0028,
300 [EESIPR] = 0x0030,
301 [TRSCER] = 0x0038,
302 [RMFCR] = 0x0040,
303 [TFTR] = 0x0048,
304 [FDR] = 0x0050,
305 [RMCR] = 0x0058,
306 [TFUCR] = 0x0064,
307 [RFOCR] = 0x0068,
308 [FCFTR] = 0x0070,
309 [RPADIR] = 0x0078,
310 [TRIMD] = 0x007c,
311 [RBWAR] = 0x00c8,
312 [RDFAR] = 0x00cc,
313 [TBRAR] = 0x00d4,
314 [TDFAR] = 0x00d8,
315 };
316
317 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
318 SH_ETH_OFFSET_DEFAULTS,
319
320 [EDMR] = 0x0000,
321 [EDTRR] = 0x0004,
322 [EDRRR] = 0x0008,
323 [TDLAR] = 0x000c,
324 [RDLAR] = 0x0010,
325 [EESR] = 0x0014,
326 [EESIPR] = 0x0018,
327 [TRSCER] = 0x001c,
328 [RMFCR] = 0x0020,
329 [TFTR] = 0x0024,
330 [FDR] = 0x0028,
331 [RMCR] = 0x002c,
332 [EDOCR] = 0x0030,
333 [FCFTR] = 0x0034,
334 [RPADIR] = 0x0038,
335 [TRIMD] = 0x003c,
336 [RBWAR] = 0x0040,
337 [RDFAR] = 0x0044,
338 [TBRAR] = 0x004c,
339 [TDFAR] = 0x0050,
340
341 [ECMR] = 0x0160,
342 [ECSR] = 0x0164,
343 [ECSIPR] = 0x0168,
344 [PIR] = 0x016c,
345 [MAHR] = 0x0170,
346 [MALR] = 0x0174,
347 [RFLR] = 0x0178,
348 [PSR] = 0x017c,
349 [TROCR] = 0x0180,
350 [CDCR] = 0x0184,
351 [LCCR] = 0x0188,
352 [CNDCR] = 0x018c,
353 [CEFCR] = 0x0194,
354 [FRECR] = 0x0198,
355 [TSFRCR] = 0x019c,
356 [TLFRCR] = 0x01a0,
357 [RFCR] = 0x01a4,
358 [MAFCR] = 0x01a8,
359 [IPGR] = 0x01b4,
360 [APR] = 0x01b8,
361 [MPR] = 0x01bc,
362 [TPAUSER] = 0x01c4,
363 [BCFR] = 0x01cc,
364
365 [ARSTR] = 0x0000,
366 [TSU_CTRST] = 0x0004,
367 [TSU_FWEN0] = 0x0010,
368 [TSU_FWEN1] = 0x0014,
369 [TSU_FCM] = 0x0018,
370 [TSU_BSYSL0] = 0x0020,
371 [TSU_BSYSL1] = 0x0024,
372 [TSU_PRISL0] = 0x0028,
373 [TSU_PRISL1] = 0x002c,
374 [TSU_FWSL0] = 0x0030,
375 [TSU_FWSL1] = 0x0034,
376 [TSU_FWSLC] = 0x0038,
377 [TSU_QTAGM0] = 0x0040,
378 [TSU_QTAGM1] = 0x0044,
379 [TSU_ADQT0] = 0x0048,
380 [TSU_ADQT1] = 0x004c,
381 [TSU_FWSR] = 0x0050,
382 [TSU_FWINMK] = 0x0054,
383 [TSU_ADSBSY] = 0x0060,
384 [TSU_TEN] = 0x0064,
385 [TSU_POST1] = 0x0070,
386 [TSU_POST2] = 0x0074,
387 [TSU_POST3] = 0x0078,
388 [TSU_POST4] = 0x007c,
389
390 [TXNLCR0] = 0x0080,
391 [TXALCR0] = 0x0084,
392 [RXNLCR0] = 0x0088,
393 [RXALCR0] = 0x008c,
394 [FWNLCR0] = 0x0090,
395 [FWALCR0] = 0x0094,
396 [TXNLCR1] = 0x00a0,
397 [TXALCR1] = 0x00a0,
398 [RXNLCR1] = 0x00a8,
399 [RXALCR1] = 0x00ac,
400 [FWNLCR1] = 0x00b0,
401 [FWALCR1] = 0x00b4,
402
403 [TSU_ADRH0] = 0x0100,
404 };
405
406 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
407 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
408
409 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
410 {
411 struct sh_eth_private *mdp = netdev_priv(ndev);
412 u16 offset = mdp->reg_offset[enum_index];
413
414 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
415 return;
416
417 iowrite32(data, mdp->addr + offset);
418 }
419
420 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
421 {
422 struct sh_eth_private *mdp = netdev_priv(ndev);
423 u16 offset = mdp->reg_offset[enum_index];
424
425 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
426 return ~0U;
427
428 return ioread32(mdp->addr + offset);
429 }
430
431 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
432 u32 set)
433 {
434 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
435 enum_index);
436 }
437
438 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
439 {
440 return mdp->reg_offset == sh_eth_offset_gigabit;
441 }
442
443 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
444 {
445 return mdp->reg_offset == sh_eth_offset_fast_rz;
446 }
447
448 static void sh_eth_select_mii(struct net_device *ndev)
449 {
450 struct sh_eth_private *mdp = netdev_priv(ndev);
451 u32 value;
452
453 switch (mdp->phy_interface) {
454 case PHY_INTERFACE_MODE_GMII:
455 value = 0x2;
456 break;
457 case PHY_INTERFACE_MODE_MII:
458 value = 0x1;
459 break;
460 case PHY_INTERFACE_MODE_RMII:
461 value = 0x0;
462 break;
463 default:
464 netdev_warn(ndev,
465 "PHY interface mode was not setup. Set to MII.\n");
466 value = 0x1;
467 break;
468 }
469
470 sh_eth_write(ndev, value, RMII_MII);
471 }
472
473 static void sh_eth_set_duplex(struct net_device *ndev)
474 {
475 struct sh_eth_private *mdp = netdev_priv(ndev);
476
477 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
478 }
479
480 static void sh_eth_chip_reset(struct net_device *ndev)
481 {
482 struct sh_eth_private *mdp = netdev_priv(ndev);
483
484 /* reset device */
485 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
486 mdelay(1);
487 }
488
489 static void sh_eth_set_rate_gether(struct net_device *ndev)
490 {
491 struct sh_eth_private *mdp = netdev_priv(ndev);
492
493 switch (mdp->speed) {
494 case 10: /* 10BASE */
495 sh_eth_write(ndev, GECMR_10, GECMR);
496 break;
497 case 100:/* 100BASE */
498 sh_eth_write(ndev, GECMR_100, GECMR);
499 break;
500 case 1000: /* 1000BASE */
501 sh_eth_write(ndev, GECMR_1000, GECMR);
502 break;
503 }
504 }
505
506 #ifdef CONFIG_OF
507 /* R7S72100 */
508 static struct sh_eth_cpu_data r7s72100_data = {
509 .chip_reset = sh_eth_chip_reset,
510 .set_duplex = sh_eth_set_duplex,
511
512 .register_type = SH_ETH_REG_FAST_RZ,
513
514 .ecsr_value = ECSR_ICD,
515 .ecsipr_value = ECSIPR_ICDIP,
516 .eesipr_value = 0xff7f009f,
517
518 .tx_check = EESR_TC1 | EESR_FTC,
519 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
520 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
521 EESR_TDE | EESR_ECI,
522 .fdr_value = 0x0000070f,
523
524 .no_psr = 1,
525 .apr = 1,
526 .mpr = 1,
527 .tpauser = 1,
528 .hw_swap = 1,
529 .rpadir = 1,
530 .rpadir_value = 2 << 16,
531 .no_trimd = 1,
532 .no_ade = 1,
533 .hw_crc = 1,
534 .tsu = 1,
535 .shift_rd0 = 1,
536 };
537
538 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
539 {
540 sh_eth_chip_reset(ndev);
541
542 sh_eth_select_mii(ndev);
543 }
544
545 /* R8A7740 */
546 static struct sh_eth_cpu_data r8a7740_data = {
547 .chip_reset = sh_eth_chip_reset_r8a7740,
548 .set_duplex = sh_eth_set_duplex,
549 .set_rate = sh_eth_set_rate_gether,
550
551 .register_type = SH_ETH_REG_GIGABIT,
552
553 .ecsr_value = ECSR_ICD | ECSR_MPD,
554 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
555 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
556
557 .tx_check = EESR_TC1 | EESR_FTC,
558 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
559 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
560 EESR_TDE | EESR_ECI,
561 .fdr_value = 0x0000070f,
562
563 .apr = 1,
564 .mpr = 1,
565 .tpauser = 1,
566 .bculr = 1,
567 .hw_swap = 1,
568 .rpadir = 1,
569 .rpadir_value = 2 << 16,
570 .no_trimd = 1,
571 .no_ade = 1,
572 .tsu = 1,
573 .select_mii = 1,
574 .shift_rd0 = 1,
575 };
576
577 /* There is CPU dependent code */
578 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
579 {
580 struct sh_eth_private *mdp = netdev_priv(ndev);
581
582 switch (mdp->speed) {
583 case 10: /* 10BASE */
584 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
585 break;
586 case 100:/* 100BASE */
587 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
588 break;
589 }
590 }
591
592 /* R8A7778/9 */
593 static struct sh_eth_cpu_data r8a777x_data = {
594 .set_duplex = sh_eth_set_duplex,
595 .set_rate = sh_eth_set_rate_r8a777x,
596
597 .register_type = SH_ETH_REG_FAST_RCAR,
598
599 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
600 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
601 .eesipr_value = 0x01ff009f,
602
603 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
604 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
605 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
606 EESR_ECI,
607 .fdr_value = 0x00000f0f,
608
609 .apr = 1,
610 .mpr = 1,
611 .tpauser = 1,
612 .hw_swap = 1,
613 };
614
615 /* R8A7790/1 */
616 static struct sh_eth_cpu_data r8a779x_data = {
617 .set_duplex = sh_eth_set_duplex,
618 .set_rate = sh_eth_set_rate_r8a777x,
619
620 .register_type = SH_ETH_REG_FAST_RCAR,
621
622 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
623 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
624 .eesipr_value = 0x01ff009f,
625
626 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
627 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
628 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
629 EESR_ECI,
630 .fdr_value = 0x00000f0f,
631
632 .trscer_err_mask = DESC_I_RINT8,
633
634 .apr = 1,
635 .mpr = 1,
636 .tpauser = 1,
637 .hw_swap = 1,
638 .rmiimode = 1,
639 };
640 #endif /* CONFIG_OF */
641
642 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
643 {
644 struct sh_eth_private *mdp = netdev_priv(ndev);
645
646 switch (mdp->speed) {
647 case 10: /* 10BASE */
648 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
649 break;
650 case 100:/* 100BASE */
651 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
652 break;
653 }
654 }
655
656 /* SH7724 */
657 static struct sh_eth_cpu_data sh7724_data = {
658 .set_duplex = sh_eth_set_duplex,
659 .set_rate = sh_eth_set_rate_sh7724,
660
661 .register_type = SH_ETH_REG_FAST_SH4,
662
663 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
664 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
665 .eesipr_value = 0x01ff009f,
666
667 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
668 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
669 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
670 EESR_ECI,
671
672 .apr = 1,
673 .mpr = 1,
674 .tpauser = 1,
675 .hw_swap = 1,
676 .rpadir = 1,
677 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
678 };
679
680 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
681 {
682 struct sh_eth_private *mdp = netdev_priv(ndev);
683
684 switch (mdp->speed) {
685 case 10: /* 10BASE */
686 sh_eth_write(ndev, 0, RTRATE);
687 break;
688 case 100:/* 100BASE */
689 sh_eth_write(ndev, 1, RTRATE);
690 break;
691 }
692 }
693
694 /* SH7757 */
695 static struct sh_eth_cpu_data sh7757_data = {
696 .set_duplex = sh_eth_set_duplex,
697 .set_rate = sh_eth_set_rate_sh7757,
698
699 .register_type = SH_ETH_REG_FAST_SH4,
700
701 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
702
703 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
704 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
705 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
706 EESR_ECI,
707
708 .irq_flags = IRQF_SHARED,
709 .apr = 1,
710 .mpr = 1,
711 .tpauser = 1,
712 .hw_swap = 1,
713 .no_ade = 1,
714 .rpadir = 1,
715 .rpadir_value = 2 << 16,
716 .rtrate = 1,
717 };
718
719 #define SH_GIGA_ETH_BASE 0xfee00000UL
720 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
721 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
722 static void sh_eth_chip_reset_giga(struct net_device *ndev)
723 {
724 u32 mahr[2], malr[2];
725 int i;
726
727 /* save MAHR and MALR */
728 for (i = 0; i < 2; i++) {
729 malr[i] = ioread32((void *)GIGA_MALR(i));
730 mahr[i] = ioread32((void *)GIGA_MAHR(i));
731 }
732
733 sh_eth_chip_reset(ndev);
734
735 /* restore MAHR and MALR */
736 for (i = 0; i < 2; i++) {
737 iowrite32(malr[i], (void *)GIGA_MALR(i));
738 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
739 }
740 }
741
742 static void sh_eth_set_rate_giga(struct net_device *ndev)
743 {
744 struct sh_eth_private *mdp = netdev_priv(ndev);
745
746 switch (mdp->speed) {
747 case 10: /* 10BASE */
748 sh_eth_write(ndev, 0x00000000, GECMR);
749 break;
750 case 100:/* 100BASE */
751 sh_eth_write(ndev, 0x00000010, GECMR);
752 break;
753 case 1000: /* 1000BASE */
754 sh_eth_write(ndev, 0x00000020, GECMR);
755 break;
756 }
757 }
758
759 /* SH7757(GETHERC) */
760 static struct sh_eth_cpu_data sh7757_data_giga = {
761 .chip_reset = sh_eth_chip_reset_giga,
762 .set_duplex = sh_eth_set_duplex,
763 .set_rate = sh_eth_set_rate_giga,
764
765 .register_type = SH_ETH_REG_GIGABIT,
766
767 .ecsr_value = ECSR_ICD | ECSR_MPD,
768 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
769 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
770
771 .tx_check = EESR_TC1 | EESR_FTC,
772 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
773 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
774 EESR_TDE | EESR_ECI,
775 .fdr_value = 0x0000072f,
776
777 .irq_flags = IRQF_SHARED,
778 .apr = 1,
779 .mpr = 1,
780 .tpauser = 1,
781 .bculr = 1,
782 .hw_swap = 1,
783 .rpadir = 1,
784 .rpadir_value = 2 << 16,
785 .no_trimd = 1,
786 .no_ade = 1,
787 .tsu = 1,
788 };
789
790 /* SH7734 */
791 static struct sh_eth_cpu_data sh7734_data = {
792 .chip_reset = sh_eth_chip_reset,
793 .set_duplex = sh_eth_set_duplex,
794 .set_rate = sh_eth_set_rate_gether,
795
796 .register_type = SH_ETH_REG_GIGABIT,
797
798 .ecsr_value = ECSR_ICD | ECSR_MPD,
799 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
800 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
801
802 .tx_check = EESR_TC1 | EESR_FTC,
803 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
804 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
805 EESR_TDE | EESR_ECI,
806
807 .apr = 1,
808 .mpr = 1,
809 .tpauser = 1,
810 .bculr = 1,
811 .hw_swap = 1,
812 .no_trimd = 1,
813 .no_ade = 1,
814 .tsu = 1,
815 .hw_crc = 1,
816 .select_mii = 1,
817 };
818
819 /* SH7763 */
820 static struct sh_eth_cpu_data sh7763_data = {
821 .chip_reset = sh_eth_chip_reset,
822 .set_duplex = sh_eth_set_duplex,
823 .set_rate = sh_eth_set_rate_gether,
824
825 .register_type = SH_ETH_REG_GIGABIT,
826
827 .ecsr_value = ECSR_ICD | ECSR_MPD,
828 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
829 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
830
831 .tx_check = EESR_TC1 | EESR_FTC,
832 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
833 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
834 EESR_ECI,
835
836 .apr = 1,
837 .mpr = 1,
838 .tpauser = 1,
839 .bculr = 1,
840 .hw_swap = 1,
841 .no_trimd = 1,
842 .no_ade = 1,
843 .tsu = 1,
844 .irq_flags = IRQF_SHARED,
845 };
846
847 static struct sh_eth_cpu_data sh7619_data = {
848 .register_type = SH_ETH_REG_FAST_SH3_SH2,
849
850 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
851
852 .apr = 1,
853 .mpr = 1,
854 .tpauser = 1,
855 .hw_swap = 1,
856 };
857
858 static struct sh_eth_cpu_data sh771x_data = {
859 .register_type = SH_ETH_REG_FAST_SH3_SH2,
860
861 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
862 .tsu = 1,
863 };
864
865 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
866 {
867 if (!cd->ecsr_value)
868 cd->ecsr_value = DEFAULT_ECSR_INIT;
869
870 if (!cd->ecsipr_value)
871 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
872
873 if (!cd->fcftr_value)
874 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
875 DEFAULT_FIFO_F_D_RFD;
876
877 if (!cd->fdr_value)
878 cd->fdr_value = DEFAULT_FDR_INIT;
879
880 if (!cd->tx_check)
881 cd->tx_check = DEFAULT_TX_CHECK;
882
883 if (!cd->eesr_err_check)
884 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
885
886 if (!cd->trscer_err_mask)
887 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
888 }
889
890 static int sh_eth_check_reset(struct net_device *ndev)
891 {
892 int ret = 0;
893 int cnt = 100;
894
895 while (cnt > 0) {
896 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
897 break;
898 mdelay(1);
899 cnt--;
900 }
901 if (cnt <= 0) {
902 netdev_err(ndev, "Device reset failed\n");
903 ret = -ETIMEDOUT;
904 }
905 return ret;
906 }
907
908 static int sh_eth_reset(struct net_device *ndev)
909 {
910 struct sh_eth_private *mdp = netdev_priv(ndev);
911 int ret = 0;
912
913 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
914 sh_eth_write(ndev, EDSR_ENALL, EDSR);
915 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
916
917 ret = sh_eth_check_reset(ndev);
918 if (ret)
919 return ret;
920
921 /* Table Init */
922 sh_eth_write(ndev, 0x0, TDLAR);
923 sh_eth_write(ndev, 0x0, TDFAR);
924 sh_eth_write(ndev, 0x0, TDFXR);
925 sh_eth_write(ndev, 0x0, TDFFR);
926 sh_eth_write(ndev, 0x0, RDLAR);
927 sh_eth_write(ndev, 0x0, RDFAR);
928 sh_eth_write(ndev, 0x0, RDFXR);
929 sh_eth_write(ndev, 0x0, RDFFR);
930
931 /* Reset HW CRC register */
932 if (mdp->cd->hw_crc)
933 sh_eth_write(ndev, 0x0, CSMR);
934
935 /* Select MII mode */
936 if (mdp->cd->select_mii)
937 sh_eth_select_mii(ndev);
938 } else {
939 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
940 mdelay(3);
941 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
942 }
943
944 return ret;
945 }
946
947 static void sh_eth_set_receive_align(struct sk_buff *skb)
948 {
949 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
950
951 if (reserve)
952 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
953 }
954
955 /* Program the hardware MAC address from dev->dev_addr. */
956 static void update_mac_address(struct net_device *ndev)
957 {
958 sh_eth_write(ndev,
959 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
960 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
961 sh_eth_write(ndev,
962 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
963 }
964
965 /* Get MAC address from SuperH MAC address register
966 *
967 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
968 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
969 * When you want use this device, you must set MAC address in bootloader.
970 *
971 */
972 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
973 {
974 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
975 memcpy(ndev->dev_addr, mac, ETH_ALEN);
976 } else {
977 u32 mahr = sh_eth_read(ndev, MAHR);
978 u32 malr = sh_eth_read(ndev, MALR);
979
980 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
981 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
982 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
983 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
984 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
985 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
986 }
987 }
988
989 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
990 {
991 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
992 return EDTRR_TRNS_GETHER;
993 else
994 return EDTRR_TRNS_ETHER;
995 }
996
997 struct bb_info {
998 void (*set_gate)(void *addr);
999 struct mdiobb_ctrl ctrl;
1000 void *addr;
1001 };
1002
1003 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1004 {
1005 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1006 u32 pir;
1007
1008 if (bitbang->set_gate)
1009 bitbang->set_gate(bitbang->addr);
1010
1011 pir = ioread32(bitbang->addr);
1012 if (set)
1013 pir |= mask;
1014 else
1015 pir &= ~mask;
1016 iowrite32(pir, bitbang->addr);
1017 }
1018
1019 /* Data I/O pin control */
1020 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1021 {
1022 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1023 }
1024
1025 /* Set bit data*/
1026 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1027 {
1028 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1029 }
1030
1031 /* Get bit data*/
1032 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1033 {
1034 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1035
1036 if (bitbang->set_gate)
1037 bitbang->set_gate(bitbang->addr);
1038
1039 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1040 }
1041
1042 /* MDC pin control */
1043 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1044 {
1045 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1046 }
1047
1048 /* mdio bus control struct */
1049 static struct mdiobb_ops bb_ops = {
1050 .owner = THIS_MODULE,
1051 .set_mdc = sh_mdc_ctrl,
1052 .set_mdio_dir = sh_mmd_ctrl,
1053 .set_mdio_data = sh_set_mdio,
1054 .get_mdio_data = sh_get_mdio,
1055 };
1056
1057 /* free skb and descriptor buffer */
1058 static void sh_eth_ring_free(struct net_device *ndev)
1059 {
1060 struct sh_eth_private *mdp = netdev_priv(ndev);
1061 int ringsize, i;
1062
1063 /* Free Rx skb ringbuffer */
1064 if (mdp->rx_skbuff) {
1065 for (i = 0; i < mdp->num_rx_ring; i++)
1066 dev_kfree_skb(mdp->rx_skbuff[i]);
1067 }
1068 kfree(mdp->rx_skbuff);
1069 mdp->rx_skbuff = NULL;
1070
1071 /* Free Tx skb ringbuffer */
1072 if (mdp->tx_skbuff) {
1073 for (i = 0; i < mdp->num_tx_ring; i++)
1074 dev_kfree_skb(mdp->tx_skbuff[i]);
1075 }
1076 kfree(mdp->tx_skbuff);
1077 mdp->tx_skbuff = NULL;
1078
1079 if (mdp->rx_ring) {
1080 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1081 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1082 mdp->rx_desc_dma);
1083 mdp->rx_ring = NULL;
1084 }
1085
1086 if (mdp->tx_ring) {
1087 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1088 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1089 mdp->tx_desc_dma);
1090 mdp->tx_ring = NULL;
1091 }
1092 }
1093
1094 /* format skb and descriptor buffer */
1095 static void sh_eth_ring_format(struct net_device *ndev)
1096 {
1097 struct sh_eth_private *mdp = netdev_priv(ndev);
1098 int i;
1099 struct sk_buff *skb;
1100 struct sh_eth_rxdesc *rxdesc = NULL;
1101 struct sh_eth_txdesc *txdesc = NULL;
1102 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1103 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1104 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1105 dma_addr_t dma_addr;
1106 u32 buf_len;
1107
1108 mdp->cur_rx = 0;
1109 mdp->cur_tx = 0;
1110 mdp->dirty_rx = 0;
1111 mdp->dirty_tx = 0;
1112
1113 memset(mdp->rx_ring, 0, rx_ringsize);
1114
1115 /* build Rx ring buffer */
1116 for (i = 0; i < mdp->num_rx_ring; i++) {
1117 /* skb */
1118 mdp->rx_skbuff[i] = NULL;
1119 skb = netdev_alloc_skb(ndev, skbuff_size);
1120 if (skb == NULL)
1121 break;
1122 sh_eth_set_receive_align(skb);
1123
1124 /* The size of the buffer is a multiple of 32 bytes. */
1125 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1126 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1127 DMA_FROM_DEVICE);
1128 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1129 kfree_skb(skb);
1130 break;
1131 }
1132 mdp->rx_skbuff[i] = skb;
1133
1134 /* RX descriptor */
1135 rxdesc = &mdp->rx_ring[i];
1136 rxdesc->len = cpu_to_le32(buf_len << 16);
1137 rxdesc->addr = cpu_to_le32(dma_addr);
1138 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1139
1140 /* Rx descriptor address set */
1141 if (i == 0) {
1142 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1143 if (sh_eth_is_gether(mdp) ||
1144 sh_eth_is_rz_fast_ether(mdp))
1145 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1146 }
1147 }
1148
1149 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1150
1151 /* Mark the last entry as wrapping the ring. */
1152 if (rxdesc)
1153 rxdesc->status |= cpu_to_le32(RD_RDLE);
1154
1155 memset(mdp->tx_ring, 0, tx_ringsize);
1156
1157 /* build Tx ring buffer */
1158 for (i = 0; i < mdp->num_tx_ring; i++) {
1159 mdp->tx_skbuff[i] = NULL;
1160 txdesc = &mdp->tx_ring[i];
1161 txdesc->status = cpu_to_le32(TD_TFP);
1162 txdesc->len = cpu_to_le32(0);
1163 if (i == 0) {
1164 /* Tx descriptor address set */
1165 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1166 if (sh_eth_is_gether(mdp) ||
1167 sh_eth_is_rz_fast_ether(mdp))
1168 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1169 }
1170 }
1171
1172 txdesc->status |= cpu_to_le32(TD_TDLE);
1173 }
1174
1175 /* Get skb and descriptor buffer */
1176 static int sh_eth_ring_init(struct net_device *ndev)
1177 {
1178 struct sh_eth_private *mdp = netdev_priv(ndev);
1179 int rx_ringsize, tx_ringsize;
1180
1181 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1182 * card needs room to do 8 byte alignment, +2 so we can reserve
1183 * the first 2 bytes, and +16 gets room for the status word from the
1184 * card.
1185 */
1186 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1187 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1188 if (mdp->cd->rpadir)
1189 mdp->rx_buf_sz += NET_IP_ALIGN;
1190
1191 /* Allocate RX and TX skb rings */
1192 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1193 GFP_KERNEL);
1194 if (!mdp->rx_skbuff)
1195 return -ENOMEM;
1196
1197 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1198 GFP_KERNEL);
1199 if (!mdp->tx_skbuff)
1200 goto ring_free;
1201
1202 /* Allocate all Rx descriptors. */
1203 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1204 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1205 GFP_KERNEL);
1206 if (!mdp->rx_ring)
1207 goto ring_free;
1208
1209 mdp->dirty_rx = 0;
1210
1211 /* Allocate all Tx descriptors. */
1212 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1213 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1214 GFP_KERNEL);
1215 if (!mdp->tx_ring)
1216 goto ring_free;
1217 return 0;
1218
1219 ring_free:
1220 /* Free Rx and Tx skb ring buffer and DMA buffer */
1221 sh_eth_ring_free(ndev);
1222
1223 return -ENOMEM;
1224 }
1225
1226 static int sh_eth_dev_init(struct net_device *ndev)
1227 {
1228 struct sh_eth_private *mdp = netdev_priv(ndev);
1229 int ret;
1230
1231 /* Soft Reset */
1232 ret = sh_eth_reset(ndev);
1233 if (ret)
1234 return ret;
1235
1236 if (mdp->cd->rmiimode)
1237 sh_eth_write(ndev, 0x1, RMIIMODE);
1238
1239 /* Descriptor format */
1240 sh_eth_ring_format(ndev);
1241 if (mdp->cd->rpadir)
1242 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1243
1244 /* all sh_eth int mask */
1245 sh_eth_write(ndev, 0, EESIPR);
1246
1247 #if defined(__LITTLE_ENDIAN)
1248 if (mdp->cd->hw_swap)
1249 sh_eth_write(ndev, EDMR_EL, EDMR);
1250 else
1251 #endif
1252 sh_eth_write(ndev, 0, EDMR);
1253
1254 /* FIFO size set */
1255 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1256 sh_eth_write(ndev, 0, TFTR);
1257
1258 /* Frame recv control (enable multiple-packets per rx irq) */
1259 sh_eth_write(ndev, RMCR_RNC, RMCR);
1260
1261 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1262
1263 if (mdp->cd->bculr)
1264 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1265
1266 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1267
1268 if (!mdp->cd->no_trimd)
1269 sh_eth_write(ndev, 0, TRIMD);
1270
1271 /* Recv frame limit set register */
1272 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1273 RFLR);
1274
1275 sh_eth_modify(ndev, EESR, 0, 0);
1276 mdp->irq_enabled = true;
1277 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1278
1279 /* PAUSE Prohibition */
1280 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1281 ECMR_TE | ECMR_RE, ECMR);
1282
1283 if (mdp->cd->set_rate)
1284 mdp->cd->set_rate(ndev);
1285
1286 /* E-MAC Status Register clear */
1287 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1288
1289 /* E-MAC Interrupt Enable register */
1290 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1291
1292 /* Set MAC address */
1293 update_mac_address(ndev);
1294
1295 /* mask reset */
1296 if (mdp->cd->apr)
1297 sh_eth_write(ndev, APR_AP, APR);
1298 if (mdp->cd->mpr)
1299 sh_eth_write(ndev, MPR_MP, MPR);
1300 if (mdp->cd->tpauser)
1301 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1302
1303 /* Setting the Rx mode will start the Rx process. */
1304 sh_eth_write(ndev, EDRRR_R, EDRRR);
1305
1306 return ret;
1307 }
1308
1309 static void sh_eth_dev_exit(struct net_device *ndev)
1310 {
1311 struct sh_eth_private *mdp = netdev_priv(ndev);
1312 int i;
1313
1314 /* Deactivate all TX descriptors, so DMA should stop at next
1315 * packet boundary if it's currently running
1316 */
1317 for (i = 0; i < mdp->num_tx_ring; i++)
1318 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1319
1320 /* Disable TX FIFO egress to MAC */
1321 sh_eth_rcv_snd_disable(ndev);
1322
1323 /* Stop RX DMA at next packet boundary */
1324 sh_eth_write(ndev, 0, EDRRR);
1325
1326 /* Aside from TX DMA, we can't tell when the hardware is
1327 * really stopped, so we need to reset to make sure.
1328 * Before doing that, wait for long enough to *probably*
1329 * finish transmitting the last packet and poll stats.
1330 */
1331 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1332 sh_eth_get_stats(ndev);
1333 sh_eth_reset(ndev);
1334
1335 /* Set MAC address again */
1336 update_mac_address(ndev);
1337 }
1338
1339 /* free Tx skb function */
1340 static int sh_eth_txfree(struct net_device *ndev)
1341 {
1342 struct sh_eth_private *mdp = netdev_priv(ndev);
1343 struct sh_eth_txdesc *txdesc;
1344 int free_num = 0;
1345 int entry;
1346
1347 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1348 entry = mdp->dirty_tx % mdp->num_tx_ring;
1349 txdesc = &mdp->tx_ring[entry];
1350 if (txdesc->status & cpu_to_le32(TD_TACT))
1351 break;
1352 /* TACT bit must be checked before all the following reads */
1353 dma_rmb();
1354 netif_info(mdp, tx_done, ndev,
1355 "tx entry %d status 0x%08x\n",
1356 entry, le32_to_cpu(txdesc->status));
1357 /* Free the original skb. */
1358 if (mdp->tx_skbuff[entry]) {
1359 dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1360 le32_to_cpu(txdesc->len) >> 16,
1361 DMA_TO_DEVICE);
1362 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1363 mdp->tx_skbuff[entry] = NULL;
1364 free_num++;
1365 }
1366 txdesc->status = cpu_to_le32(TD_TFP);
1367 if (entry >= mdp->num_tx_ring - 1)
1368 txdesc->status |= cpu_to_le32(TD_TDLE);
1369
1370 ndev->stats.tx_packets++;
1371 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1372 }
1373 return free_num;
1374 }
1375
1376 /* Packet receive function */
1377 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1378 {
1379 struct sh_eth_private *mdp = netdev_priv(ndev);
1380 struct sh_eth_rxdesc *rxdesc;
1381
1382 int entry = mdp->cur_rx % mdp->num_rx_ring;
1383 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1384 int limit;
1385 struct sk_buff *skb;
1386 u32 desc_status;
1387 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1388 dma_addr_t dma_addr;
1389 u16 pkt_len;
1390 u32 buf_len;
1391
1392 boguscnt = min(boguscnt, *quota);
1393 limit = boguscnt;
1394 rxdesc = &mdp->rx_ring[entry];
1395 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1396 /* RACT bit must be checked before all the following reads */
1397 dma_rmb();
1398 desc_status = le32_to_cpu(rxdesc->status);
1399 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1400
1401 if (--boguscnt < 0)
1402 break;
1403
1404 netif_info(mdp, rx_status, ndev,
1405 "rx entry %d status 0x%08x len %d\n",
1406 entry, desc_status, pkt_len);
1407
1408 if (!(desc_status & RDFEND))
1409 ndev->stats.rx_length_errors++;
1410
1411 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1412 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1413 * bit 0. However, in case of the R8A7740 and R7S72100
1414 * the RFS bits are from bit 25 to bit 16. So, the
1415 * driver needs right shifting by 16.
1416 */
1417 if (mdp->cd->shift_rd0)
1418 desc_status >>= 16;
1419
1420 skb = mdp->rx_skbuff[entry];
1421 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1422 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1423 ndev->stats.rx_errors++;
1424 if (desc_status & RD_RFS1)
1425 ndev->stats.rx_crc_errors++;
1426 if (desc_status & RD_RFS2)
1427 ndev->stats.rx_frame_errors++;
1428 if (desc_status & RD_RFS3)
1429 ndev->stats.rx_length_errors++;
1430 if (desc_status & RD_RFS4)
1431 ndev->stats.rx_length_errors++;
1432 if (desc_status & RD_RFS6)
1433 ndev->stats.rx_missed_errors++;
1434 if (desc_status & RD_RFS10)
1435 ndev->stats.rx_over_errors++;
1436 } else if (skb) {
1437 dma_addr = le32_to_cpu(rxdesc->addr);
1438 if (!mdp->cd->hw_swap)
1439 sh_eth_soft_swap(
1440 phys_to_virt(ALIGN(dma_addr, 4)),
1441 pkt_len + 2);
1442 mdp->rx_skbuff[entry] = NULL;
1443 if (mdp->cd->rpadir)
1444 skb_reserve(skb, NET_IP_ALIGN);
1445 dma_unmap_single(&ndev->dev, dma_addr,
1446 ALIGN(mdp->rx_buf_sz, 32),
1447 DMA_FROM_DEVICE);
1448 skb_put(skb, pkt_len);
1449 skb->protocol = eth_type_trans(skb, ndev);
1450 netif_receive_skb(skb);
1451 ndev->stats.rx_packets++;
1452 ndev->stats.rx_bytes += pkt_len;
1453 if (desc_status & RD_RFS8)
1454 ndev->stats.multicast++;
1455 }
1456 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1457 rxdesc = &mdp->rx_ring[entry];
1458 }
1459
1460 /* Refill the Rx ring buffers. */
1461 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1462 entry = mdp->dirty_rx % mdp->num_rx_ring;
1463 rxdesc = &mdp->rx_ring[entry];
1464 /* The size of the buffer is 32 byte boundary. */
1465 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1466 rxdesc->len = cpu_to_le32(buf_len << 16);
1467
1468 if (mdp->rx_skbuff[entry] == NULL) {
1469 skb = netdev_alloc_skb(ndev, skbuff_size);
1470 if (skb == NULL)
1471 break; /* Better luck next round. */
1472 sh_eth_set_receive_align(skb);
1473 dma_addr = dma_map_single(&ndev->dev, skb->data,
1474 buf_len, DMA_FROM_DEVICE);
1475 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1476 kfree_skb(skb);
1477 break;
1478 }
1479 mdp->rx_skbuff[entry] = skb;
1480
1481 skb_checksum_none_assert(skb);
1482 rxdesc->addr = cpu_to_le32(dma_addr);
1483 }
1484 dma_wmb(); /* RACT bit must be set after all the above writes */
1485 if (entry >= mdp->num_rx_ring - 1)
1486 rxdesc->status |=
1487 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1488 else
1489 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1490 }
1491
1492 /* Restart Rx engine if stopped. */
1493 /* If we don't need to check status, don't. -KDU */
1494 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1495 /* fix the values for the next receiving if RDE is set */
1496 if (intr_status & EESR_RDE &&
1497 mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1498 u32 count = (sh_eth_read(ndev, RDFAR) -
1499 sh_eth_read(ndev, RDLAR)) >> 4;
1500
1501 mdp->cur_rx = count;
1502 mdp->dirty_rx = count;
1503 }
1504 sh_eth_write(ndev, EDRRR_R, EDRRR);
1505 }
1506
1507 *quota -= limit - boguscnt - 1;
1508
1509 return *quota <= 0;
1510 }
1511
1512 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1513 {
1514 /* disable tx and rx */
1515 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1516 }
1517
1518 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1519 {
1520 /* enable tx and rx */
1521 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1522 }
1523
1524 /* error control function */
1525 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1526 {
1527 struct sh_eth_private *mdp = netdev_priv(ndev);
1528 u32 felic_stat;
1529 u32 link_stat;
1530 u32 mask;
1531
1532 if (intr_status & EESR_ECI) {
1533 felic_stat = sh_eth_read(ndev, ECSR);
1534 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1535 if (felic_stat & ECSR_ICD)
1536 ndev->stats.tx_carrier_errors++;
1537 if (felic_stat & ECSR_LCHNG) {
1538 /* Link Changed */
1539 if (mdp->cd->no_psr || mdp->no_ether_link) {
1540 goto ignore_link;
1541 } else {
1542 link_stat = (sh_eth_read(ndev, PSR));
1543 if (mdp->ether_link_active_low)
1544 link_stat = ~link_stat;
1545 }
1546 if (!(link_stat & PHY_ST_LINK)) {
1547 sh_eth_rcv_snd_disable(ndev);
1548 } else {
1549 /* Link Up */
1550 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1551 /* clear int */
1552 sh_eth_modify(ndev, ECSR, 0, 0);
1553 sh_eth_modify(ndev, EESIPR, DMAC_M_ECI,
1554 DMAC_M_ECI);
1555 /* enable tx and rx */
1556 sh_eth_rcv_snd_enable(ndev);
1557 }
1558 }
1559 }
1560
1561 ignore_link:
1562 if (intr_status & EESR_TWB) {
1563 /* Unused write back interrupt */
1564 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1565 ndev->stats.tx_aborted_errors++;
1566 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1567 }
1568 }
1569
1570 if (intr_status & EESR_RABT) {
1571 /* Receive Abort int */
1572 if (intr_status & EESR_RFRMER) {
1573 /* Receive Frame Overflow int */
1574 ndev->stats.rx_frame_errors++;
1575 }
1576 }
1577
1578 if (intr_status & EESR_TDE) {
1579 /* Transmit Descriptor Empty int */
1580 ndev->stats.tx_fifo_errors++;
1581 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1582 }
1583
1584 if (intr_status & EESR_TFE) {
1585 /* FIFO under flow */
1586 ndev->stats.tx_fifo_errors++;
1587 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1588 }
1589
1590 if (intr_status & EESR_RDE) {
1591 /* Receive Descriptor Empty int */
1592 ndev->stats.rx_over_errors++;
1593 }
1594
1595 if (intr_status & EESR_RFE) {
1596 /* Receive FIFO Overflow int */
1597 ndev->stats.rx_fifo_errors++;
1598 }
1599
1600 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1601 /* Address Error */
1602 ndev->stats.tx_fifo_errors++;
1603 netif_err(mdp, tx_err, ndev, "Address Error\n");
1604 }
1605
1606 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1607 if (mdp->cd->no_ade)
1608 mask &= ~EESR_ADE;
1609 if (intr_status & mask) {
1610 /* Tx error */
1611 u32 edtrr = sh_eth_read(ndev, EDTRR);
1612
1613 /* dmesg */
1614 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1615 intr_status, mdp->cur_tx, mdp->dirty_tx,
1616 (u32)ndev->state, edtrr);
1617 /* dirty buffer free */
1618 sh_eth_txfree(ndev);
1619
1620 /* SH7712 BUG */
1621 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1622 /* tx dma start */
1623 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1624 }
1625 /* wakeup */
1626 netif_wake_queue(ndev);
1627 }
1628 }
1629
1630 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1631 {
1632 struct net_device *ndev = netdev;
1633 struct sh_eth_private *mdp = netdev_priv(ndev);
1634 struct sh_eth_cpu_data *cd = mdp->cd;
1635 irqreturn_t ret = IRQ_NONE;
1636 u32 intr_status, intr_enable;
1637
1638 spin_lock(&mdp->lock);
1639
1640 /* Get interrupt status */
1641 intr_status = sh_eth_read(ndev, EESR);
1642 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1643 * enabled since it's the one that comes thru regardless of the mask,
1644 * and we need to fully handle it in sh_eth_error() in order to quench
1645 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1646 */
1647 intr_enable = sh_eth_read(ndev, EESIPR);
1648 intr_status &= intr_enable | DMAC_M_ECI;
1649 if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1650 ret = IRQ_HANDLED;
1651 else
1652 goto out;
1653
1654 if (!likely(mdp->irq_enabled)) {
1655 sh_eth_write(ndev, 0, EESIPR);
1656 goto out;
1657 }
1658
1659 if (intr_status & EESR_RX_CHECK) {
1660 if (napi_schedule_prep(&mdp->napi)) {
1661 /* Mask Rx interrupts */
1662 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1663 EESIPR);
1664 __napi_schedule(&mdp->napi);
1665 } else {
1666 netdev_warn(ndev,
1667 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1668 intr_status, intr_enable);
1669 }
1670 }
1671
1672 /* Tx Check */
1673 if (intr_status & cd->tx_check) {
1674 /* Clear Tx interrupts */
1675 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1676
1677 sh_eth_txfree(ndev);
1678 netif_wake_queue(ndev);
1679 }
1680
1681 if (intr_status & cd->eesr_err_check) {
1682 /* Clear error interrupts */
1683 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1684
1685 sh_eth_error(ndev, intr_status);
1686 }
1687
1688 out:
1689 spin_unlock(&mdp->lock);
1690
1691 return ret;
1692 }
1693
1694 static int sh_eth_poll(struct napi_struct *napi, int budget)
1695 {
1696 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1697 napi);
1698 struct net_device *ndev = napi->dev;
1699 int quota = budget;
1700 u32 intr_status;
1701
1702 for (;;) {
1703 intr_status = sh_eth_read(ndev, EESR);
1704 if (!(intr_status & EESR_RX_CHECK))
1705 break;
1706 /* Clear Rx interrupts */
1707 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1708
1709 if (sh_eth_rx(ndev, intr_status, &quota))
1710 goto out;
1711 }
1712
1713 napi_complete(napi);
1714
1715 /* Reenable Rx interrupts */
1716 if (mdp->irq_enabled)
1717 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1718 out:
1719 return budget - quota;
1720 }
1721
1722 /* PHY state control function */
1723 static void sh_eth_adjust_link(struct net_device *ndev)
1724 {
1725 struct sh_eth_private *mdp = netdev_priv(ndev);
1726 struct phy_device *phydev = mdp->phydev;
1727 int new_state = 0;
1728
1729 if (phydev->link) {
1730 if (phydev->duplex != mdp->duplex) {
1731 new_state = 1;
1732 mdp->duplex = phydev->duplex;
1733 if (mdp->cd->set_duplex)
1734 mdp->cd->set_duplex(ndev);
1735 }
1736
1737 if (phydev->speed != mdp->speed) {
1738 new_state = 1;
1739 mdp->speed = phydev->speed;
1740 if (mdp->cd->set_rate)
1741 mdp->cd->set_rate(ndev);
1742 }
1743 if (!mdp->link) {
1744 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1745 new_state = 1;
1746 mdp->link = phydev->link;
1747 if (mdp->cd->no_psr || mdp->no_ether_link)
1748 sh_eth_rcv_snd_enable(ndev);
1749 }
1750 } else if (mdp->link) {
1751 new_state = 1;
1752 mdp->link = 0;
1753 mdp->speed = 0;
1754 mdp->duplex = -1;
1755 if (mdp->cd->no_psr || mdp->no_ether_link)
1756 sh_eth_rcv_snd_disable(ndev);
1757 }
1758
1759 if (new_state && netif_msg_link(mdp))
1760 phy_print_status(phydev);
1761 }
1762
1763 /* PHY init function */
1764 static int sh_eth_phy_init(struct net_device *ndev)
1765 {
1766 struct device_node *np = ndev->dev.parent->of_node;
1767 struct sh_eth_private *mdp = netdev_priv(ndev);
1768 struct phy_device *phydev;
1769
1770 mdp->link = 0;
1771 mdp->speed = 0;
1772 mdp->duplex = -1;
1773
1774 /* Try connect to PHY */
1775 if (np) {
1776 struct device_node *pn;
1777
1778 pn = of_parse_phandle(np, "phy-handle", 0);
1779 phydev = of_phy_connect(ndev, pn,
1780 sh_eth_adjust_link, 0,
1781 mdp->phy_interface);
1782
1783 of_node_put(pn);
1784 if (!phydev)
1785 phydev = ERR_PTR(-ENOENT);
1786 } else {
1787 char phy_id[MII_BUS_ID_SIZE + 3];
1788
1789 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1790 mdp->mii_bus->id, mdp->phy_id);
1791
1792 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1793 mdp->phy_interface);
1794 }
1795
1796 if (IS_ERR(phydev)) {
1797 netdev_err(ndev, "failed to connect PHY\n");
1798 return PTR_ERR(phydev);
1799 }
1800
1801 phy_attached_info(phydev);
1802
1803 mdp->phydev = phydev;
1804
1805 return 0;
1806 }
1807
1808 /* PHY control start function */
1809 static int sh_eth_phy_start(struct net_device *ndev)
1810 {
1811 struct sh_eth_private *mdp = netdev_priv(ndev);
1812 int ret;
1813
1814 ret = sh_eth_phy_init(ndev);
1815 if (ret)
1816 return ret;
1817
1818 phy_start(mdp->phydev);
1819
1820 return 0;
1821 }
1822
1823 static int sh_eth_get_settings(struct net_device *ndev,
1824 struct ethtool_cmd *ecmd)
1825 {
1826 struct sh_eth_private *mdp = netdev_priv(ndev);
1827 unsigned long flags;
1828 int ret;
1829
1830 if (!mdp->phydev)
1831 return -ENODEV;
1832
1833 spin_lock_irqsave(&mdp->lock, flags);
1834 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1835 spin_unlock_irqrestore(&mdp->lock, flags);
1836
1837 return ret;
1838 }
1839
1840 static int sh_eth_set_settings(struct net_device *ndev,
1841 struct ethtool_cmd *ecmd)
1842 {
1843 struct sh_eth_private *mdp = netdev_priv(ndev);
1844 unsigned long flags;
1845 int ret;
1846
1847 if (!mdp->phydev)
1848 return -ENODEV;
1849
1850 spin_lock_irqsave(&mdp->lock, flags);
1851
1852 /* disable tx and rx */
1853 sh_eth_rcv_snd_disable(ndev);
1854
1855 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1856 if (ret)
1857 goto error_exit;
1858
1859 if (ecmd->duplex == DUPLEX_FULL)
1860 mdp->duplex = 1;
1861 else
1862 mdp->duplex = 0;
1863
1864 if (mdp->cd->set_duplex)
1865 mdp->cd->set_duplex(ndev);
1866
1867 error_exit:
1868 mdelay(1);
1869
1870 /* enable tx and rx */
1871 sh_eth_rcv_snd_enable(ndev);
1872
1873 spin_unlock_irqrestore(&mdp->lock, flags);
1874
1875 return ret;
1876 }
1877
1878 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1879 * version must be bumped as well. Just adding registers up to that
1880 * limit is fine, as long as the existing register indices don't
1881 * change.
1882 */
1883 #define SH_ETH_REG_DUMP_VERSION 1
1884 #define SH_ETH_REG_DUMP_MAX_REGS 256
1885
1886 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1887 {
1888 struct sh_eth_private *mdp = netdev_priv(ndev);
1889 struct sh_eth_cpu_data *cd = mdp->cd;
1890 u32 *valid_map;
1891 size_t len;
1892
1893 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1894
1895 /* Dump starts with a bitmap that tells ethtool which
1896 * registers are defined for this chip.
1897 */
1898 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1899 if (buf) {
1900 valid_map = buf;
1901 buf += len;
1902 } else {
1903 valid_map = NULL;
1904 }
1905
1906 /* Add a register to the dump, if it has a defined offset.
1907 * This automatically skips most undefined registers, but for
1908 * some it is also necessary to check a capability flag in
1909 * struct sh_eth_cpu_data.
1910 */
1911 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1912 #define add_reg_from(reg, read_expr) do { \
1913 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
1914 if (buf) { \
1915 mark_reg_valid(reg); \
1916 *buf++ = read_expr; \
1917 } \
1918 ++len; \
1919 } \
1920 } while (0)
1921 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1922 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1923
1924 add_reg(EDSR);
1925 add_reg(EDMR);
1926 add_reg(EDTRR);
1927 add_reg(EDRRR);
1928 add_reg(EESR);
1929 add_reg(EESIPR);
1930 add_reg(TDLAR);
1931 add_reg(TDFAR);
1932 add_reg(TDFXR);
1933 add_reg(TDFFR);
1934 add_reg(RDLAR);
1935 add_reg(RDFAR);
1936 add_reg(RDFXR);
1937 add_reg(RDFFR);
1938 add_reg(TRSCER);
1939 add_reg(RMFCR);
1940 add_reg(TFTR);
1941 add_reg(FDR);
1942 add_reg(RMCR);
1943 add_reg(TFUCR);
1944 add_reg(RFOCR);
1945 if (cd->rmiimode)
1946 add_reg(RMIIMODE);
1947 add_reg(FCFTR);
1948 if (cd->rpadir)
1949 add_reg(RPADIR);
1950 if (!cd->no_trimd)
1951 add_reg(TRIMD);
1952 add_reg(ECMR);
1953 add_reg(ECSR);
1954 add_reg(ECSIPR);
1955 add_reg(PIR);
1956 if (!cd->no_psr)
1957 add_reg(PSR);
1958 add_reg(RDMLR);
1959 add_reg(RFLR);
1960 add_reg(IPGR);
1961 if (cd->apr)
1962 add_reg(APR);
1963 if (cd->mpr)
1964 add_reg(MPR);
1965 add_reg(RFCR);
1966 add_reg(RFCF);
1967 if (cd->tpauser)
1968 add_reg(TPAUSER);
1969 add_reg(TPAUSECR);
1970 add_reg(GECMR);
1971 if (cd->bculr)
1972 add_reg(BCULR);
1973 add_reg(MAHR);
1974 add_reg(MALR);
1975 add_reg(TROCR);
1976 add_reg(CDCR);
1977 add_reg(LCCR);
1978 add_reg(CNDCR);
1979 add_reg(CEFCR);
1980 add_reg(FRECR);
1981 add_reg(TSFRCR);
1982 add_reg(TLFRCR);
1983 add_reg(CERCR);
1984 add_reg(CEECR);
1985 add_reg(MAFCR);
1986 if (cd->rtrate)
1987 add_reg(RTRATE);
1988 if (cd->hw_crc)
1989 add_reg(CSMR);
1990 if (cd->select_mii)
1991 add_reg(RMII_MII);
1992 add_reg(ARSTR);
1993 if (cd->tsu) {
1994 add_tsu_reg(TSU_CTRST);
1995 add_tsu_reg(TSU_FWEN0);
1996 add_tsu_reg(TSU_FWEN1);
1997 add_tsu_reg(TSU_FCM);
1998 add_tsu_reg(TSU_BSYSL0);
1999 add_tsu_reg(TSU_BSYSL1);
2000 add_tsu_reg(TSU_PRISL0);
2001 add_tsu_reg(TSU_PRISL1);
2002 add_tsu_reg(TSU_FWSL0);
2003 add_tsu_reg(TSU_FWSL1);
2004 add_tsu_reg(TSU_FWSLC);
2005 add_tsu_reg(TSU_QTAG0);
2006 add_tsu_reg(TSU_QTAG1);
2007 add_tsu_reg(TSU_QTAGM0);
2008 add_tsu_reg(TSU_QTAGM1);
2009 add_tsu_reg(TSU_FWSR);
2010 add_tsu_reg(TSU_FWINMK);
2011 add_tsu_reg(TSU_ADQT0);
2012 add_tsu_reg(TSU_ADQT1);
2013 add_tsu_reg(TSU_VTAG0);
2014 add_tsu_reg(TSU_VTAG1);
2015 add_tsu_reg(TSU_ADSBSY);
2016 add_tsu_reg(TSU_TEN);
2017 add_tsu_reg(TSU_POST1);
2018 add_tsu_reg(TSU_POST2);
2019 add_tsu_reg(TSU_POST3);
2020 add_tsu_reg(TSU_POST4);
2021 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2022 /* This is the start of a table, not just a single
2023 * register.
2024 */
2025 if (buf) {
2026 unsigned int i;
2027
2028 mark_reg_valid(TSU_ADRH0);
2029 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2030 *buf++ = ioread32(
2031 mdp->tsu_addr +
2032 mdp->reg_offset[TSU_ADRH0] +
2033 i * 4);
2034 }
2035 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2036 }
2037 }
2038
2039 #undef mark_reg_valid
2040 #undef add_reg_from
2041 #undef add_reg
2042 #undef add_tsu_reg
2043
2044 return len * 4;
2045 }
2046
2047 static int sh_eth_get_regs_len(struct net_device *ndev)
2048 {
2049 return __sh_eth_get_regs(ndev, NULL);
2050 }
2051
2052 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2053 void *buf)
2054 {
2055 struct sh_eth_private *mdp = netdev_priv(ndev);
2056
2057 regs->version = SH_ETH_REG_DUMP_VERSION;
2058
2059 pm_runtime_get_sync(&mdp->pdev->dev);
2060 __sh_eth_get_regs(ndev, buf);
2061 pm_runtime_put_sync(&mdp->pdev->dev);
2062 }
2063
2064 static int sh_eth_nway_reset(struct net_device *ndev)
2065 {
2066 struct sh_eth_private *mdp = netdev_priv(ndev);
2067 unsigned long flags;
2068 int ret;
2069
2070 if (!mdp->phydev)
2071 return -ENODEV;
2072
2073 spin_lock_irqsave(&mdp->lock, flags);
2074 ret = phy_start_aneg(mdp->phydev);
2075 spin_unlock_irqrestore(&mdp->lock, flags);
2076
2077 return ret;
2078 }
2079
2080 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2081 {
2082 struct sh_eth_private *mdp = netdev_priv(ndev);
2083 return mdp->msg_enable;
2084 }
2085
2086 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2087 {
2088 struct sh_eth_private *mdp = netdev_priv(ndev);
2089 mdp->msg_enable = value;
2090 }
2091
2092 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2093 "rx_current", "tx_current",
2094 "rx_dirty", "tx_dirty",
2095 };
2096 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2097
2098 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2099 {
2100 switch (sset) {
2101 case ETH_SS_STATS:
2102 return SH_ETH_STATS_LEN;
2103 default:
2104 return -EOPNOTSUPP;
2105 }
2106 }
2107
2108 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2109 struct ethtool_stats *stats, u64 *data)
2110 {
2111 struct sh_eth_private *mdp = netdev_priv(ndev);
2112 int i = 0;
2113
2114 /* device-specific stats */
2115 data[i++] = mdp->cur_rx;
2116 data[i++] = mdp->cur_tx;
2117 data[i++] = mdp->dirty_rx;
2118 data[i++] = mdp->dirty_tx;
2119 }
2120
2121 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2122 {
2123 switch (stringset) {
2124 case ETH_SS_STATS:
2125 memcpy(data, *sh_eth_gstrings_stats,
2126 sizeof(sh_eth_gstrings_stats));
2127 break;
2128 }
2129 }
2130
2131 static void sh_eth_get_ringparam(struct net_device *ndev,
2132 struct ethtool_ringparam *ring)
2133 {
2134 struct sh_eth_private *mdp = netdev_priv(ndev);
2135
2136 ring->rx_max_pending = RX_RING_MAX;
2137 ring->tx_max_pending = TX_RING_MAX;
2138 ring->rx_pending = mdp->num_rx_ring;
2139 ring->tx_pending = mdp->num_tx_ring;
2140 }
2141
2142 static int sh_eth_set_ringparam(struct net_device *ndev,
2143 struct ethtool_ringparam *ring)
2144 {
2145 struct sh_eth_private *mdp = netdev_priv(ndev);
2146 int ret;
2147
2148 if (ring->tx_pending > TX_RING_MAX ||
2149 ring->rx_pending > RX_RING_MAX ||
2150 ring->tx_pending < TX_RING_MIN ||
2151 ring->rx_pending < RX_RING_MIN)
2152 return -EINVAL;
2153 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2154 return -EINVAL;
2155
2156 if (netif_running(ndev)) {
2157 netif_device_detach(ndev);
2158 netif_tx_disable(ndev);
2159
2160 /* Serialise with the interrupt handler and NAPI, then
2161 * disable interrupts. We have to clear the
2162 * irq_enabled flag first to ensure that interrupts
2163 * won't be re-enabled.
2164 */
2165 mdp->irq_enabled = false;
2166 synchronize_irq(ndev->irq);
2167 napi_synchronize(&mdp->napi);
2168 sh_eth_write(ndev, 0x0000, EESIPR);
2169
2170 sh_eth_dev_exit(ndev);
2171
2172 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2173 sh_eth_ring_free(ndev);
2174 }
2175
2176 /* Set new parameters */
2177 mdp->num_rx_ring = ring->rx_pending;
2178 mdp->num_tx_ring = ring->tx_pending;
2179
2180 if (netif_running(ndev)) {
2181 ret = sh_eth_ring_init(ndev);
2182 if (ret < 0) {
2183 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2184 __func__);
2185 return ret;
2186 }
2187 ret = sh_eth_dev_init(ndev);
2188 if (ret < 0) {
2189 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2190 __func__);
2191 return ret;
2192 }
2193
2194 netif_device_attach(ndev);
2195 }
2196
2197 return 0;
2198 }
2199
2200 static const struct ethtool_ops sh_eth_ethtool_ops = {
2201 .get_settings = sh_eth_get_settings,
2202 .set_settings = sh_eth_set_settings,
2203 .get_regs_len = sh_eth_get_regs_len,
2204 .get_regs = sh_eth_get_regs,
2205 .nway_reset = sh_eth_nway_reset,
2206 .get_msglevel = sh_eth_get_msglevel,
2207 .set_msglevel = sh_eth_set_msglevel,
2208 .get_link = ethtool_op_get_link,
2209 .get_strings = sh_eth_get_strings,
2210 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2211 .get_sset_count = sh_eth_get_sset_count,
2212 .get_ringparam = sh_eth_get_ringparam,
2213 .set_ringparam = sh_eth_set_ringparam,
2214 };
2215
2216 /* network device open function */
2217 static int sh_eth_open(struct net_device *ndev)
2218 {
2219 struct sh_eth_private *mdp = netdev_priv(ndev);
2220 int ret;
2221
2222 pm_runtime_get_sync(&mdp->pdev->dev);
2223
2224 napi_enable(&mdp->napi);
2225
2226 ret = request_irq(ndev->irq, sh_eth_interrupt,
2227 mdp->cd->irq_flags, ndev->name, ndev);
2228 if (ret) {
2229 netdev_err(ndev, "Can not assign IRQ number\n");
2230 goto out_napi_off;
2231 }
2232
2233 /* Descriptor set */
2234 ret = sh_eth_ring_init(ndev);
2235 if (ret)
2236 goto out_free_irq;
2237
2238 /* device init */
2239 ret = sh_eth_dev_init(ndev);
2240 if (ret)
2241 goto out_free_irq;
2242
2243 /* PHY control start*/
2244 ret = sh_eth_phy_start(ndev);
2245 if (ret)
2246 goto out_free_irq;
2247
2248 netif_start_queue(ndev);
2249
2250 mdp->is_opened = 1;
2251
2252 return ret;
2253
2254 out_free_irq:
2255 free_irq(ndev->irq, ndev);
2256 out_napi_off:
2257 napi_disable(&mdp->napi);
2258 pm_runtime_put_sync(&mdp->pdev->dev);
2259 return ret;
2260 }
2261
2262 /* Timeout function */
2263 static void sh_eth_tx_timeout(struct net_device *ndev)
2264 {
2265 struct sh_eth_private *mdp = netdev_priv(ndev);
2266 struct sh_eth_rxdesc *rxdesc;
2267 int i;
2268
2269 netif_stop_queue(ndev);
2270
2271 netif_err(mdp, timer, ndev,
2272 "transmit timed out, status %8.8x, resetting...\n",
2273 sh_eth_read(ndev, EESR));
2274
2275 /* tx_errors count up */
2276 ndev->stats.tx_errors++;
2277
2278 /* Free all the skbuffs in the Rx queue. */
2279 for (i = 0; i < mdp->num_rx_ring; i++) {
2280 rxdesc = &mdp->rx_ring[i];
2281 rxdesc->status = cpu_to_le32(0);
2282 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2283 dev_kfree_skb(mdp->rx_skbuff[i]);
2284 mdp->rx_skbuff[i] = NULL;
2285 }
2286 for (i = 0; i < mdp->num_tx_ring; i++) {
2287 dev_kfree_skb(mdp->tx_skbuff[i]);
2288 mdp->tx_skbuff[i] = NULL;
2289 }
2290
2291 /* device init */
2292 sh_eth_dev_init(ndev);
2293
2294 netif_start_queue(ndev);
2295 }
2296
2297 /* Packet transmit function */
2298 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2299 {
2300 struct sh_eth_private *mdp = netdev_priv(ndev);
2301 struct sh_eth_txdesc *txdesc;
2302 dma_addr_t dma_addr;
2303 u32 entry;
2304 unsigned long flags;
2305
2306 spin_lock_irqsave(&mdp->lock, flags);
2307 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2308 if (!sh_eth_txfree(ndev)) {
2309 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2310 netif_stop_queue(ndev);
2311 spin_unlock_irqrestore(&mdp->lock, flags);
2312 return NETDEV_TX_BUSY;
2313 }
2314 }
2315 spin_unlock_irqrestore(&mdp->lock, flags);
2316
2317 if (skb_put_padto(skb, ETH_ZLEN))
2318 return NETDEV_TX_OK;
2319
2320 entry = mdp->cur_tx % mdp->num_tx_ring;
2321 mdp->tx_skbuff[entry] = skb;
2322 txdesc = &mdp->tx_ring[entry];
2323 /* soft swap. */
2324 if (!mdp->cd->hw_swap)
2325 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2326 dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2327 DMA_TO_DEVICE);
2328 if (dma_mapping_error(&ndev->dev, dma_addr)) {
2329 kfree_skb(skb);
2330 return NETDEV_TX_OK;
2331 }
2332 txdesc->addr = cpu_to_le32(dma_addr);
2333 txdesc->len = cpu_to_le32(skb->len << 16);
2334
2335 dma_wmb(); /* TACT bit must be set after all the above writes */
2336 if (entry >= mdp->num_tx_ring - 1)
2337 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2338 else
2339 txdesc->status |= cpu_to_le32(TD_TACT);
2340
2341 mdp->cur_tx++;
2342
2343 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2344 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2345
2346 return NETDEV_TX_OK;
2347 }
2348
2349 /* The statistics registers have write-clear behaviour, which means we
2350 * will lose any increment between the read and write. We mitigate
2351 * this by only clearing when we read a non-zero value, so we will
2352 * never falsely report a total of zero.
2353 */
2354 static void
2355 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2356 {
2357 u32 delta = sh_eth_read(ndev, reg);
2358
2359 if (delta) {
2360 *stat += delta;
2361 sh_eth_write(ndev, 0, reg);
2362 }
2363 }
2364
2365 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2366 {
2367 struct sh_eth_private *mdp = netdev_priv(ndev);
2368
2369 if (sh_eth_is_rz_fast_ether(mdp))
2370 return &ndev->stats;
2371
2372 if (!mdp->is_opened)
2373 return &ndev->stats;
2374
2375 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2376 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2377 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2378
2379 if (sh_eth_is_gether(mdp)) {
2380 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2381 CERCR);
2382 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2383 CEECR);
2384 } else {
2385 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2386 CNDCR);
2387 }
2388
2389 return &ndev->stats;
2390 }
2391
2392 /* device close function */
2393 static int sh_eth_close(struct net_device *ndev)
2394 {
2395 struct sh_eth_private *mdp = netdev_priv(ndev);
2396
2397 netif_stop_queue(ndev);
2398
2399 /* Serialise with the interrupt handler and NAPI, then disable
2400 * interrupts. We have to clear the irq_enabled flag first to
2401 * ensure that interrupts won't be re-enabled.
2402 */
2403 mdp->irq_enabled = false;
2404 synchronize_irq(ndev->irq);
2405 napi_disable(&mdp->napi);
2406 sh_eth_write(ndev, 0x0000, EESIPR);
2407
2408 sh_eth_dev_exit(ndev);
2409
2410 /* PHY Disconnect */
2411 if (mdp->phydev) {
2412 phy_stop(mdp->phydev);
2413 phy_disconnect(mdp->phydev);
2414 mdp->phydev = NULL;
2415 }
2416
2417 free_irq(ndev->irq, ndev);
2418
2419 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2420 sh_eth_ring_free(ndev);
2421
2422 pm_runtime_put_sync(&mdp->pdev->dev);
2423
2424 mdp->is_opened = 0;
2425
2426 return 0;
2427 }
2428
2429 /* ioctl to device function */
2430 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2431 {
2432 struct sh_eth_private *mdp = netdev_priv(ndev);
2433 struct phy_device *phydev = mdp->phydev;
2434
2435 if (!netif_running(ndev))
2436 return -EINVAL;
2437
2438 if (!phydev)
2439 return -ENODEV;
2440
2441 return phy_mii_ioctl(phydev, rq, cmd);
2442 }
2443
2444 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2445 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2446 int entry)
2447 {
2448 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2449 }
2450
2451 static u32 sh_eth_tsu_get_post_mask(int entry)
2452 {
2453 return 0x0f << (28 - ((entry % 8) * 4));
2454 }
2455
2456 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2457 {
2458 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2459 }
2460
2461 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2462 int entry)
2463 {
2464 struct sh_eth_private *mdp = netdev_priv(ndev);
2465 u32 tmp;
2466 void *reg_offset;
2467
2468 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2469 tmp = ioread32(reg_offset);
2470 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2471 }
2472
2473 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2474 int entry)
2475 {
2476 struct sh_eth_private *mdp = netdev_priv(ndev);
2477 u32 post_mask, ref_mask, tmp;
2478 void *reg_offset;
2479
2480 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2481 post_mask = sh_eth_tsu_get_post_mask(entry);
2482 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2483
2484 tmp = ioread32(reg_offset);
2485 iowrite32(tmp & ~post_mask, reg_offset);
2486
2487 /* If other port enables, the function returns "true" */
2488 return tmp & ref_mask;
2489 }
2490
2491 static int sh_eth_tsu_busy(struct net_device *ndev)
2492 {
2493 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2494 struct sh_eth_private *mdp = netdev_priv(ndev);
2495
2496 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2497 udelay(10);
2498 timeout--;
2499 if (timeout <= 0) {
2500 netdev_err(ndev, "%s: timeout\n", __func__);
2501 return -ETIMEDOUT;
2502 }
2503 }
2504
2505 return 0;
2506 }
2507
2508 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2509 const u8 *addr)
2510 {
2511 u32 val;
2512
2513 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2514 iowrite32(val, reg);
2515 if (sh_eth_tsu_busy(ndev) < 0)
2516 return -EBUSY;
2517
2518 val = addr[4] << 8 | addr[5];
2519 iowrite32(val, reg + 4);
2520 if (sh_eth_tsu_busy(ndev) < 0)
2521 return -EBUSY;
2522
2523 return 0;
2524 }
2525
2526 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2527 {
2528 u32 val;
2529
2530 val = ioread32(reg);
2531 addr[0] = (val >> 24) & 0xff;
2532 addr[1] = (val >> 16) & 0xff;
2533 addr[2] = (val >> 8) & 0xff;
2534 addr[3] = val & 0xff;
2535 val = ioread32(reg + 4);
2536 addr[4] = (val >> 8) & 0xff;
2537 addr[5] = val & 0xff;
2538 }
2539
2540
2541 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2542 {
2543 struct sh_eth_private *mdp = netdev_priv(ndev);
2544 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2545 int i;
2546 u8 c_addr[ETH_ALEN];
2547
2548 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2549 sh_eth_tsu_read_entry(reg_offset, c_addr);
2550 if (ether_addr_equal(addr, c_addr))
2551 return i;
2552 }
2553
2554 return -ENOENT;
2555 }
2556
2557 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2558 {
2559 u8 blank[ETH_ALEN];
2560 int entry;
2561
2562 memset(blank, 0, sizeof(blank));
2563 entry = sh_eth_tsu_find_entry(ndev, blank);
2564 return (entry < 0) ? -ENOMEM : entry;
2565 }
2566
2567 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2568 int entry)
2569 {
2570 struct sh_eth_private *mdp = netdev_priv(ndev);
2571 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2572 int ret;
2573 u8 blank[ETH_ALEN];
2574
2575 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2576 ~(1 << (31 - entry)), TSU_TEN);
2577
2578 memset(blank, 0, sizeof(blank));
2579 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2580 if (ret < 0)
2581 return ret;
2582 return 0;
2583 }
2584
2585 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2586 {
2587 struct sh_eth_private *mdp = netdev_priv(ndev);
2588 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2589 int i, ret;
2590
2591 if (!mdp->cd->tsu)
2592 return 0;
2593
2594 i = sh_eth_tsu_find_entry(ndev, addr);
2595 if (i < 0) {
2596 /* No entry found, create one */
2597 i = sh_eth_tsu_find_empty(ndev);
2598 if (i < 0)
2599 return -ENOMEM;
2600 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2601 if (ret < 0)
2602 return ret;
2603
2604 /* Enable the entry */
2605 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2606 (1 << (31 - i)), TSU_TEN);
2607 }
2608
2609 /* Entry found or created, enable POST */
2610 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2611
2612 return 0;
2613 }
2614
2615 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2616 {
2617 struct sh_eth_private *mdp = netdev_priv(ndev);
2618 int i, ret;
2619
2620 if (!mdp->cd->tsu)
2621 return 0;
2622
2623 i = sh_eth_tsu_find_entry(ndev, addr);
2624 if (i) {
2625 /* Entry found */
2626 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2627 goto done;
2628
2629 /* Disable the entry if both ports was disabled */
2630 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2631 if (ret < 0)
2632 return ret;
2633 }
2634 done:
2635 return 0;
2636 }
2637
2638 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2639 {
2640 struct sh_eth_private *mdp = netdev_priv(ndev);
2641 int i, ret;
2642
2643 if (!mdp->cd->tsu)
2644 return 0;
2645
2646 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2647 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2648 continue;
2649
2650 /* Disable the entry if both ports was disabled */
2651 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2652 if (ret < 0)
2653 return ret;
2654 }
2655
2656 return 0;
2657 }
2658
2659 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2660 {
2661 struct sh_eth_private *mdp = netdev_priv(ndev);
2662 u8 addr[ETH_ALEN];
2663 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2664 int i;
2665
2666 if (!mdp->cd->tsu)
2667 return;
2668
2669 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2670 sh_eth_tsu_read_entry(reg_offset, addr);
2671 if (is_multicast_ether_addr(addr))
2672 sh_eth_tsu_del_entry(ndev, addr);
2673 }
2674 }
2675
2676 /* Update promiscuous flag and multicast filter */
2677 static void sh_eth_set_rx_mode(struct net_device *ndev)
2678 {
2679 struct sh_eth_private *mdp = netdev_priv(ndev);
2680 u32 ecmr_bits;
2681 int mcast_all = 0;
2682 unsigned long flags;
2683
2684 spin_lock_irqsave(&mdp->lock, flags);
2685 /* Initial condition is MCT = 1, PRM = 0.
2686 * Depending on ndev->flags, set PRM or clear MCT
2687 */
2688 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2689 if (mdp->cd->tsu)
2690 ecmr_bits |= ECMR_MCT;
2691
2692 if (!(ndev->flags & IFF_MULTICAST)) {
2693 sh_eth_tsu_purge_mcast(ndev);
2694 mcast_all = 1;
2695 }
2696 if (ndev->flags & IFF_ALLMULTI) {
2697 sh_eth_tsu_purge_mcast(ndev);
2698 ecmr_bits &= ~ECMR_MCT;
2699 mcast_all = 1;
2700 }
2701
2702 if (ndev->flags & IFF_PROMISC) {
2703 sh_eth_tsu_purge_all(ndev);
2704 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2705 } else if (mdp->cd->tsu) {
2706 struct netdev_hw_addr *ha;
2707 netdev_for_each_mc_addr(ha, ndev) {
2708 if (mcast_all && is_multicast_ether_addr(ha->addr))
2709 continue;
2710
2711 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2712 if (!mcast_all) {
2713 sh_eth_tsu_purge_mcast(ndev);
2714 ecmr_bits &= ~ECMR_MCT;
2715 mcast_all = 1;
2716 }
2717 }
2718 }
2719 }
2720
2721 /* update the ethernet mode */
2722 sh_eth_write(ndev, ecmr_bits, ECMR);
2723
2724 spin_unlock_irqrestore(&mdp->lock, flags);
2725 }
2726
2727 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2728 {
2729 if (!mdp->port)
2730 return TSU_VTAG0;
2731 else
2732 return TSU_VTAG1;
2733 }
2734
2735 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2736 __be16 proto, u16 vid)
2737 {
2738 struct sh_eth_private *mdp = netdev_priv(ndev);
2739 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2740
2741 if (unlikely(!mdp->cd->tsu))
2742 return -EPERM;
2743
2744 /* No filtering if vid = 0 */
2745 if (!vid)
2746 return 0;
2747
2748 mdp->vlan_num_ids++;
2749
2750 /* The controller has one VLAN tag HW filter. So, if the filter is
2751 * already enabled, the driver disables it and the filte
2752 */
2753 if (mdp->vlan_num_ids > 1) {
2754 /* disable VLAN filter */
2755 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2756 return 0;
2757 }
2758
2759 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2760 vtag_reg_index);
2761
2762 return 0;
2763 }
2764
2765 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2766 __be16 proto, u16 vid)
2767 {
2768 struct sh_eth_private *mdp = netdev_priv(ndev);
2769 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2770
2771 if (unlikely(!mdp->cd->tsu))
2772 return -EPERM;
2773
2774 /* No filtering if vid = 0 */
2775 if (!vid)
2776 return 0;
2777
2778 mdp->vlan_num_ids--;
2779 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2780
2781 return 0;
2782 }
2783
2784 /* SuperH's TSU register init function */
2785 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2786 {
2787 if (sh_eth_is_rz_fast_ether(mdp)) {
2788 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2789 return;
2790 }
2791
2792 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2793 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2794 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2795 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2796 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2797 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2798 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2799 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2800 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2801 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2802 if (sh_eth_is_gether(mdp)) {
2803 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2804 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2805 } else {
2806 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2807 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2808 }
2809 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2810 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2811 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2812 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2813 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2814 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2815 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2816 }
2817
2818 /* MDIO bus release function */
2819 static int sh_mdio_release(struct sh_eth_private *mdp)
2820 {
2821 /* unregister mdio bus */
2822 mdiobus_unregister(mdp->mii_bus);
2823
2824 /* free bitbang info */
2825 free_mdio_bitbang(mdp->mii_bus);
2826
2827 return 0;
2828 }
2829
2830 /* MDIO bus init function */
2831 static int sh_mdio_init(struct sh_eth_private *mdp,
2832 struct sh_eth_plat_data *pd)
2833 {
2834 int ret;
2835 struct bb_info *bitbang;
2836 struct platform_device *pdev = mdp->pdev;
2837 struct device *dev = &mdp->pdev->dev;
2838
2839 /* create bit control struct for PHY */
2840 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2841 if (!bitbang)
2842 return -ENOMEM;
2843
2844 /* bitbang init */
2845 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2846 bitbang->set_gate = pd->set_mdio_gate;
2847 bitbang->ctrl.ops = &bb_ops;
2848
2849 /* MII controller setting */
2850 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2851 if (!mdp->mii_bus)
2852 return -ENOMEM;
2853
2854 /* Hook up MII support for ethtool */
2855 mdp->mii_bus->name = "sh_mii";
2856 mdp->mii_bus->parent = dev;
2857 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2858 pdev->name, pdev->id);
2859
2860 /* register MDIO bus */
2861 if (dev->of_node) {
2862 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2863 } else {
2864 if (pd->phy_irq > 0)
2865 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2866
2867 ret = mdiobus_register(mdp->mii_bus);
2868 }
2869
2870 if (ret)
2871 goto out_free_bus;
2872
2873 return 0;
2874
2875 out_free_bus:
2876 free_mdio_bitbang(mdp->mii_bus);
2877 return ret;
2878 }
2879
2880 static const u16 *sh_eth_get_register_offset(int register_type)
2881 {
2882 const u16 *reg_offset = NULL;
2883
2884 switch (register_type) {
2885 case SH_ETH_REG_GIGABIT:
2886 reg_offset = sh_eth_offset_gigabit;
2887 break;
2888 case SH_ETH_REG_FAST_RZ:
2889 reg_offset = sh_eth_offset_fast_rz;
2890 break;
2891 case SH_ETH_REG_FAST_RCAR:
2892 reg_offset = sh_eth_offset_fast_rcar;
2893 break;
2894 case SH_ETH_REG_FAST_SH4:
2895 reg_offset = sh_eth_offset_fast_sh4;
2896 break;
2897 case SH_ETH_REG_FAST_SH3_SH2:
2898 reg_offset = sh_eth_offset_fast_sh3_sh2;
2899 break;
2900 }
2901
2902 return reg_offset;
2903 }
2904
2905 static const struct net_device_ops sh_eth_netdev_ops = {
2906 .ndo_open = sh_eth_open,
2907 .ndo_stop = sh_eth_close,
2908 .ndo_start_xmit = sh_eth_start_xmit,
2909 .ndo_get_stats = sh_eth_get_stats,
2910 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2911 .ndo_tx_timeout = sh_eth_tx_timeout,
2912 .ndo_do_ioctl = sh_eth_do_ioctl,
2913 .ndo_validate_addr = eth_validate_addr,
2914 .ndo_set_mac_address = eth_mac_addr,
2915 .ndo_change_mtu = eth_change_mtu,
2916 };
2917
2918 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2919 .ndo_open = sh_eth_open,
2920 .ndo_stop = sh_eth_close,
2921 .ndo_start_xmit = sh_eth_start_xmit,
2922 .ndo_get_stats = sh_eth_get_stats,
2923 .ndo_set_rx_mode = sh_eth_set_rx_mode,
2924 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2925 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2926 .ndo_tx_timeout = sh_eth_tx_timeout,
2927 .ndo_do_ioctl = sh_eth_do_ioctl,
2928 .ndo_validate_addr = eth_validate_addr,
2929 .ndo_set_mac_address = eth_mac_addr,
2930 .ndo_change_mtu = eth_change_mtu,
2931 };
2932
2933 #ifdef CONFIG_OF
2934 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2935 {
2936 struct device_node *np = dev->of_node;
2937 struct sh_eth_plat_data *pdata;
2938 const char *mac_addr;
2939
2940 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2941 if (!pdata)
2942 return NULL;
2943
2944 pdata->phy_interface = of_get_phy_mode(np);
2945
2946 mac_addr = of_get_mac_address(np);
2947 if (mac_addr)
2948 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2949
2950 pdata->no_ether_link =
2951 of_property_read_bool(np, "renesas,no-ether-link");
2952 pdata->ether_link_active_low =
2953 of_property_read_bool(np, "renesas,ether-link-active-low");
2954
2955 return pdata;
2956 }
2957
2958 static const struct of_device_id sh_eth_match_table[] = {
2959 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2960 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2961 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2962 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2963 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2964 { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2965 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2966 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2967 { }
2968 };
2969 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2970 #else
2971 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2972 {
2973 return NULL;
2974 }
2975 #endif
2976
2977 static int sh_eth_drv_probe(struct platform_device *pdev)
2978 {
2979 struct resource *res;
2980 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2981 const struct platform_device_id *id = platform_get_device_id(pdev);
2982 struct sh_eth_private *mdp;
2983 struct net_device *ndev;
2984 int ret, devno;
2985
2986 /* get base addr */
2987 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2988
2989 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2990 if (!ndev)
2991 return -ENOMEM;
2992
2993 pm_runtime_enable(&pdev->dev);
2994 pm_runtime_get_sync(&pdev->dev);
2995
2996 devno = pdev->id;
2997 if (devno < 0)
2998 devno = 0;
2999
3000 ret = platform_get_irq(pdev, 0);
3001 if (ret < 0)
3002 goto out_release;
3003 ndev->irq = ret;
3004
3005 SET_NETDEV_DEV(ndev, &pdev->dev);
3006
3007 mdp = netdev_priv(ndev);
3008 mdp->num_tx_ring = TX_RING_SIZE;
3009 mdp->num_rx_ring = RX_RING_SIZE;
3010 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3011 if (IS_ERR(mdp->addr)) {
3012 ret = PTR_ERR(mdp->addr);
3013 goto out_release;
3014 }
3015
3016 ndev->base_addr = res->start;
3017
3018 spin_lock_init(&mdp->lock);
3019 mdp->pdev = pdev;
3020
3021 if (pdev->dev.of_node)
3022 pd = sh_eth_parse_dt(&pdev->dev);
3023 if (!pd) {
3024 dev_err(&pdev->dev, "no platform data\n");
3025 ret = -EINVAL;
3026 goto out_release;
3027 }
3028
3029 /* get PHY ID */
3030 mdp->phy_id = pd->phy;
3031 mdp->phy_interface = pd->phy_interface;
3032 mdp->no_ether_link = pd->no_ether_link;
3033 mdp->ether_link_active_low = pd->ether_link_active_low;
3034
3035 /* set cpu data */
3036 if (id)
3037 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3038 else
3039 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3040
3041 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3042 if (!mdp->reg_offset) {
3043 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3044 mdp->cd->register_type);
3045 ret = -EINVAL;
3046 goto out_release;
3047 }
3048 sh_eth_set_default_cpu_data(mdp->cd);
3049
3050 /* set function */
3051 if (mdp->cd->tsu)
3052 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3053 else
3054 ndev->netdev_ops = &sh_eth_netdev_ops;
3055 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3056 ndev->watchdog_timeo = TX_TIMEOUT;
3057
3058 /* debug message level */
3059 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3060
3061 /* read and set MAC address */
3062 read_mac_address(ndev, pd->mac_addr);
3063 if (!is_valid_ether_addr(ndev->dev_addr)) {
3064 dev_warn(&pdev->dev,
3065 "no valid MAC address supplied, using a random one.\n");
3066 eth_hw_addr_random(ndev);
3067 }
3068
3069 /* ioremap the TSU registers */
3070 if (mdp->cd->tsu) {
3071 struct resource *rtsu;
3072 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3073 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3074 if (IS_ERR(mdp->tsu_addr)) {
3075 ret = PTR_ERR(mdp->tsu_addr);
3076 goto out_release;
3077 }
3078 mdp->port = devno % 2;
3079 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3080 }
3081
3082 /* initialize first or needed device */
3083 if (!devno || pd->needs_init) {
3084 if (mdp->cd->chip_reset)
3085 mdp->cd->chip_reset(ndev);
3086
3087 if (mdp->cd->tsu) {
3088 /* TSU init (Init only)*/
3089 sh_eth_tsu_init(mdp);
3090 }
3091 }
3092
3093 if (mdp->cd->rmiimode)
3094 sh_eth_write(ndev, 0x1, RMIIMODE);
3095
3096 /* MDIO bus init */
3097 ret = sh_mdio_init(mdp, pd);
3098 if (ret) {
3099 dev_err(&ndev->dev, "failed to initialise MDIO\n");
3100 goto out_release;
3101 }
3102
3103 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3104
3105 /* network device register */
3106 ret = register_netdev(ndev);
3107 if (ret)
3108 goto out_napi_del;
3109
3110 /* print device information */
3111 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3112 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3113
3114 pm_runtime_put(&pdev->dev);
3115 platform_set_drvdata(pdev, ndev);
3116
3117 return ret;
3118
3119 out_napi_del:
3120 netif_napi_del(&mdp->napi);
3121 sh_mdio_release(mdp);
3122
3123 out_release:
3124 /* net_dev free */
3125 if (ndev)
3126 free_netdev(ndev);
3127
3128 pm_runtime_put(&pdev->dev);
3129 pm_runtime_disable(&pdev->dev);
3130 return ret;
3131 }
3132
3133 static int sh_eth_drv_remove(struct platform_device *pdev)
3134 {
3135 struct net_device *ndev = platform_get_drvdata(pdev);
3136 struct sh_eth_private *mdp = netdev_priv(ndev);
3137
3138 unregister_netdev(ndev);
3139 netif_napi_del(&mdp->napi);
3140 sh_mdio_release(mdp);
3141 pm_runtime_disable(&pdev->dev);
3142 free_netdev(ndev);
3143
3144 return 0;
3145 }
3146
3147 #ifdef CONFIG_PM
3148 #ifdef CONFIG_PM_SLEEP
3149 static int sh_eth_suspend(struct device *dev)
3150 {
3151 struct net_device *ndev = dev_get_drvdata(dev);
3152 int ret = 0;
3153
3154 if (netif_running(ndev)) {
3155 netif_device_detach(ndev);
3156 ret = sh_eth_close(ndev);
3157 }
3158
3159 return ret;
3160 }
3161
3162 static int sh_eth_resume(struct device *dev)
3163 {
3164 struct net_device *ndev = dev_get_drvdata(dev);
3165 int ret = 0;
3166
3167 if (netif_running(ndev)) {
3168 ret = sh_eth_open(ndev);
3169 if (ret < 0)
3170 return ret;
3171 netif_device_attach(ndev);
3172 }
3173
3174 return ret;
3175 }
3176 #endif
3177
3178 static int sh_eth_runtime_nop(struct device *dev)
3179 {
3180 /* Runtime PM callback shared between ->runtime_suspend()
3181 * and ->runtime_resume(). Simply returns success.
3182 *
3183 * This driver re-initializes all registers after
3184 * pm_runtime_get_sync() anyway so there is no need
3185 * to save and restore registers here.
3186 */
3187 return 0;
3188 }
3189
3190 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3191 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3192 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3193 };
3194 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3195 #else
3196 #define SH_ETH_PM_OPS NULL
3197 #endif
3198
3199 static struct platform_device_id sh_eth_id_table[] = {
3200 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3201 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3202 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3203 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3204 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3205 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3206 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3207 { }
3208 };
3209 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3210
3211 static struct platform_driver sh_eth_driver = {
3212 .probe = sh_eth_drv_probe,
3213 .remove = sh_eth_drv_remove,
3214 .id_table = sh_eth_id_table,
3215 .driver = {
3216 .name = CARDNAME,
3217 .pm = SH_ETH_PM_OPS,
3218 .of_match_table = of_match_ptr(sh_eth_match_table),
3219 },
3220 };
3221
3222 module_platform_driver(sh_eth_driver);
3223
3224 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3225 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3226 MODULE_LICENSE("GPL v2");