]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/renesas/sh_eth.c
Merge remote-tracking branches 'asoc/topic/tas6424', 'asoc/topic/tfa9879', 'asoc...
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /* SuperH Ethernet device driver
2 *
3 * Copyright (C) 2014 Renesas Electronics Corporation
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2014 Renesas Solutions Corp.
6 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
7 * Copyright (C) 2014 Codethink Limited
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46
47 #include "sh_eth.h"
48
49 #define SH_ETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_LINK | \
51 NETIF_MSG_TIMER | \
52 NETIF_MSG_RX_ERR| \
53 NETIF_MSG_TX_ERR)
54
55 #define SH_ETH_OFFSET_INVALID ((u16)~0)
56
57 #define SH_ETH_OFFSET_DEFAULTS \
58 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 SH_ETH_OFFSET_DEFAULTS,
62
63 [EDSR] = 0x0000,
64 [EDMR] = 0x0400,
65 [EDTRR] = 0x0408,
66 [EDRRR] = 0x0410,
67 [EESR] = 0x0428,
68 [EESIPR] = 0x0430,
69 [TDLAR] = 0x0010,
70 [TDFAR] = 0x0014,
71 [TDFXR] = 0x0018,
72 [TDFFR] = 0x001c,
73 [RDLAR] = 0x0030,
74 [RDFAR] = 0x0034,
75 [RDFXR] = 0x0038,
76 [RDFFR] = 0x003c,
77 [TRSCER] = 0x0438,
78 [RMFCR] = 0x0440,
79 [TFTR] = 0x0448,
80 [FDR] = 0x0450,
81 [RMCR] = 0x0458,
82 [RPADIR] = 0x0460,
83 [FCFTR] = 0x0468,
84 [CSMR] = 0x04E4,
85
86 [ECMR] = 0x0500,
87 [ECSR] = 0x0510,
88 [ECSIPR] = 0x0518,
89 [PIR] = 0x0520,
90 [PSR] = 0x0528,
91 [PIPR] = 0x052c,
92 [RFLR] = 0x0508,
93 [APR] = 0x0554,
94 [MPR] = 0x0558,
95 [PFTCR] = 0x055c,
96 [PFRCR] = 0x0560,
97 [TPAUSER] = 0x0564,
98 [GECMR] = 0x05b0,
99 [BCULR] = 0x05b4,
100 [MAHR] = 0x05c0,
101 [MALR] = 0x05c8,
102 [TROCR] = 0x0700,
103 [CDCR] = 0x0708,
104 [LCCR] = 0x0710,
105 [CEFCR] = 0x0740,
106 [FRECR] = 0x0748,
107 [TSFRCR] = 0x0750,
108 [TLFRCR] = 0x0758,
109 [RFCR] = 0x0760,
110 [CERCR] = 0x0768,
111 [CEECR] = 0x0770,
112 [MAFCR] = 0x0778,
113 [RMII_MII] = 0x0790,
114
115 [ARSTR] = 0x0000,
116 [TSU_CTRST] = 0x0004,
117 [TSU_FWEN0] = 0x0010,
118 [TSU_FWEN1] = 0x0014,
119 [TSU_FCM] = 0x0018,
120 [TSU_BSYSL0] = 0x0020,
121 [TSU_BSYSL1] = 0x0024,
122 [TSU_PRISL0] = 0x0028,
123 [TSU_PRISL1] = 0x002c,
124 [TSU_FWSL0] = 0x0030,
125 [TSU_FWSL1] = 0x0034,
126 [TSU_FWSLC] = 0x0038,
127 [TSU_QTAG0] = 0x0040,
128 [TSU_QTAG1] = 0x0044,
129 [TSU_FWSR] = 0x0050,
130 [TSU_FWINMK] = 0x0054,
131 [TSU_ADQT0] = 0x0048,
132 [TSU_ADQT1] = 0x004c,
133 [TSU_VTAG0] = 0x0058,
134 [TSU_VTAG1] = 0x005c,
135 [TSU_ADSBSY] = 0x0060,
136 [TSU_TEN] = 0x0064,
137 [TSU_POST1] = 0x0070,
138 [TSU_POST2] = 0x0074,
139 [TSU_POST3] = 0x0078,
140 [TSU_POST4] = 0x007c,
141 [TSU_ADRH0] = 0x0100,
142
143 [TXNLCR0] = 0x0080,
144 [TXALCR0] = 0x0084,
145 [RXNLCR0] = 0x0088,
146 [RXALCR0] = 0x008c,
147 [FWNLCR0] = 0x0090,
148 [FWALCR0] = 0x0094,
149 [TXNLCR1] = 0x00a0,
150 [TXALCR1] = 0x00a4,
151 [RXNLCR1] = 0x00a8,
152 [RXALCR1] = 0x00ac,
153 [FWNLCR1] = 0x00b0,
154 [FWALCR1] = 0x00b4,
155 };
156
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 SH_ETH_OFFSET_DEFAULTS,
159
160 [EDSR] = 0x0000,
161 [EDMR] = 0x0400,
162 [EDTRR] = 0x0408,
163 [EDRRR] = 0x0410,
164 [EESR] = 0x0428,
165 [EESIPR] = 0x0430,
166 [TDLAR] = 0x0010,
167 [TDFAR] = 0x0014,
168 [TDFXR] = 0x0018,
169 [TDFFR] = 0x001c,
170 [RDLAR] = 0x0030,
171 [RDFAR] = 0x0034,
172 [RDFXR] = 0x0038,
173 [RDFFR] = 0x003c,
174 [TRSCER] = 0x0438,
175 [RMFCR] = 0x0440,
176 [TFTR] = 0x0448,
177 [FDR] = 0x0450,
178 [RMCR] = 0x0458,
179 [RPADIR] = 0x0460,
180 [FCFTR] = 0x0468,
181 [CSMR] = 0x04E4,
182
183 [ECMR] = 0x0500,
184 [RFLR] = 0x0508,
185 [ECSR] = 0x0510,
186 [ECSIPR] = 0x0518,
187 [PIR] = 0x0520,
188 [APR] = 0x0554,
189 [MPR] = 0x0558,
190 [PFTCR] = 0x055c,
191 [PFRCR] = 0x0560,
192 [TPAUSER] = 0x0564,
193 [MAHR] = 0x05c0,
194 [MALR] = 0x05c8,
195 [CEFCR] = 0x0740,
196 [FRECR] = 0x0748,
197 [TSFRCR] = 0x0750,
198 [TLFRCR] = 0x0758,
199 [RFCR] = 0x0760,
200 [MAFCR] = 0x0778,
201
202 [ARSTR] = 0x0000,
203 [TSU_CTRST] = 0x0004,
204 [TSU_FWSLC] = 0x0038,
205 [TSU_VTAG0] = 0x0058,
206 [TSU_ADSBSY] = 0x0060,
207 [TSU_TEN] = 0x0064,
208 [TSU_POST1] = 0x0070,
209 [TSU_POST2] = 0x0074,
210 [TSU_POST3] = 0x0078,
211 [TSU_POST4] = 0x007c,
212 [TSU_ADRH0] = 0x0100,
213
214 [TXNLCR0] = 0x0080,
215 [TXALCR0] = 0x0084,
216 [RXNLCR0] = 0x0088,
217 [RXALCR0] = 0x008C,
218 };
219
220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
221 SH_ETH_OFFSET_DEFAULTS,
222
223 [ECMR] = 0x0300,
224 [RFLR] = 0x0308,
225 [ECSR] = 0x0310,
226 [ECSIPR] = 0x0318,
227 [PIR] = 0x0320,
228 [PSR] = 0x0328,
229 [RDMLR] = 0x0340,
230 [IPGR] = 0x0350,
231 [APR] = 0x0354,
232 [MPR] = 0x0358,
233 [RFCF] = 0x0360,
234 [TPAUSER] = 0x0364,
235 [TPAUSECR] = 0x0368,
236 [MAHR] = 0x03c0,
237 [MALR] = 0x03c8,
238 [TROCR] = 0x03d0,
239 [CDCR] = 0x03d4,
240 [LCCR] = 0x03d8,
241 [CNDCR] = 0x03dc,
242 [CEFCR] = 0x03e4,
243 [FRECR] = 0x03e8,
244 [TSFRCR] = 0x03ec,
245 [TLFRCR] = 0x03f0,
246 [RFCR] = 0x03f4,
247 [MAFCR] = 0x03f8,
248
249 [EDMR] = 0x0200,
250 [EDTRR] = 0x0208,
251 [EDRRR] = 0x0210,
252 [TDLAR] = 0x0218,
253 [RDLAR] = 0x0220,
254 [EESR] = 0x0228,
255 [EESIPR] = 0x0230,
256 [TRSCER] = 0x0238,
257 [RMFCR] = 0x0240,
258 [TFTR] = 0x0248,
259 [FDR] = 0x0250,
260 [RMCR] = 0x0258,
261 [TFUCR] = 0x0264,
262 [RFOCR] = 0x0268,
263 [RMIIMODE] = 0x026c,
264 [FCFTR] = 0x0270,
265 [TRIMD] = 0x027c,
266 };
267
268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
269 SH_ETH_OFFSET_DEFAULTS,
270
271 [ECMR] = 0x0100,
272 [RFLR] = 0x0108,
273 [ECSR] = 0x0110,
274 [ECSIPR] = 0x0118,
275 [PIR] = 0x0120,
276 [PSR] = 0x0128,
277 [RDMLR] = 0x0140,
278 [IPGR] = 0x0150,
279 [APR] = 0x0154,
280 [MPR] = 0x0158,
281 [TPAUSER] = 0x0164,
282 [RFCF] = 0x0160,
283 [TPAUSECR] = 0x0168,
284 [BCFRR] = 0x016c,
285 [MAHR] = 0x01c0,
286 [MALR] = 0x01c8,
287 [TROCR] = 0x01d0,
288 [CDCR] = 0x01d4,
289 [LCCR] = 0x01d8,
290 [CNDCR] = 0x01dc,
291 [CEFCR] = 0x01e4,
292 [FRECR] = 0x01e8,
293 [TSFRCR] = 0x01ec,
294 [TLFRCR] = 0x01f0,
295 [RFCR] = 0x01f4,
296 [MAFCR] = 0x01f8,
297 [RTRATE] = 0x01fc,
298
299 [EDMR] = 0x0000,
300 [EDTRR] = 0x0008,
301 [EDRRR] = 0x0010,
302 [TDLAR] = 0x0018,
303 [RDLAR] = 0x0020,
304 [EESR] = 0x0028,
305 [EESIPR] = 0x0030,
306 [TRSCER] = 0x0038,
307 [RMFCR] = 0x0040,
308 [TFTR] = 0x0048,
309 [FDR] = 0x0050,
310 [RMCR] = 0x0058,
311 [TFUCR] = 0x0064,
312 [RFOCR] = 0x0068,
313 [FCFTR] = 0x0070,
314 [RPADIR] = 0x0078,
315 [TRIMD] = 0x007c,
316 [RBWAR] = 0x00c8,
317 [RDFAR] = 0x00cc,
318 [TBRAR] = 0x00d4,
319 [TDFAR] = 0x00d8,
320 };
321
322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
323 SH_ETH_OFFSET_DEFAULTS,
324
325 [EDMR] = 0x0000,
326 [EDTRR] = 0x0004,
327 [EDRRR] = 0x0008,
328 [TDLAR] = 0x000c,
329 [RDLAR] = 0x0010,
330 [EESR] = 0x0014,
331 [EESIPR] = 0x0018,
332 [TRSCER] = 0x001c,
333 [RMFCR] = 0x0020,
334 [TFTR] = 0x0024,
335 [FDR] = 0x0028,
336 [RMCR] = 0x002c,
337 [EDOCR] = 0x0030,
338 [FCFTR] = 0x0034,
339 [RPADIR] = 0x0038,
340 [TRIMD] = 0x003c,
341 [RBWAR] = 0x0040,
342 [RDFAR] = 0x0044,
343 [TBRAR] = 0x004c,
344 [TDFAR] = 0x0050,
345
346 [ECMR] = 0x0160,
347 [ECSR] = 0x0164,
348 [ECSIPR] = 0x0168,
349 [PIR] = 0x016c,
350 [MAHR] = 0x0170,
351 [MALR] = 0x0174,
352 [RFLR] = 0x0178,
353 [PSR] = 0x017c,
354 [TROCR] = 0x0180,
355 [CDCR] = 0x0184,
356 [LCCR] = 0x0188,
357 [CNDCR] = 0x018c,
358 [CEFCR] = 0x0194,
359 [FRECR] = 0x0198,
360 [TSFRCR] = 0x019c,
361 [TLFRCR] = 0x01a0,
362 [RFCR] = 0x01a4,
363 [MAFCR] = 0x01a8,
364 [IPGR] = 0x01b4,
365 [APR] = 0x01b8,
366 [MPR] = 0x01bc,
367 [TPAUSER] = 0x01c4,
368 [BCFR] = 0x01cc,
369
370 [ARSTR] = 0x0000,
371 [TSU_CTRST] = 0x0004,
372 [TSU_FWEN0] = 0x0010,
373 [TSU_FWEN1] = 0x0014,
374 [TSU_FCM] = 0x0018,
375 [TSU_BSYSL0] = 0x0020,
376 [TSU_BSYSL1] = 0x0024,
377 [TSU_PRISL0] = 0x0028,
378 [TSU_PRISL1] = 0x002c,
379 [TSU_FWSL0] = 0x0030,
380 [TSU_FWSL1] = 0x0034,
381 [TSU_FWSLC] = 0x0038,
382 [TSU_QTAGM0] = 0x0040,
383 [TSU_QTAGM1] = 0x0044,
384 [TSU_ADQT0] = 0x0048,
385 [TSU_ADQT1] = 0x004c,
386 [TSU_FWSR] = 0x0050,
387 [TSU_FWINMK] = 0x0054,
388 [TSU_ADSBSY] = 0x0060,
389 [TSU_TEN] = 0x0064,
390 [TSU_POST1] = 0x0070,
391 [TSU_POST2] = 0x0074,
392 [TSU_POST3] = 0x0078,
393 [TSU_POST4] = 0x007c,
394
395 [TXNLCR0] = 0x0080,
396 [TXALCR0] = 0x0084,
397 [RXNLCR0] = 0x0088,
398 [RXALCR0] = 0x008c,
399 [FWNLCR0] = 0x0090,
400 [FWALCR0] = 0x0094,
401 [TXNLCR1] = 0x00a0,
402 [TXALCR1] = 0x00a4,
403 [RXNLCR1] = 0x00a8,
404 [RXALCR1] = 0x00ac,
405 [FWNLCR1] = 0x00b0,
406 [FWALCR1] = 0x00b4,
407
408 [TSU_ADRH0] = 0x0100,
409 };
410
411 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
413
414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
415 {
416 struct sh_eth_private *mdp = netdev_priv(ndev);
417 u16 offset = mdp->reg_offset[enum_index];
418
419 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
420 return;
421
422 iowrite32(data, mdp->addr + offset);
423 }
424
425 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
426 {
427 struct sh_eth_private *mdp = netdev_priv(ndev);
428 u16 offset = mdp->reg_offset[enum_index];
429
430 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
431 return ~0U;
432
433 return ioread32(mdp->addr + offset);
434 }
435
436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
437 u32 set)
438 {
439 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
440 enum_index);
441 }
442
443 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
444 {
445 return mdp->reg_offset == sh_eth_offset_gigabit;
446 }
447
448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
449 {
450 return mdp->reg_offset == sh_eth_offset_fast_rz;
451 }
452
453 static void sh_eth_select_mii(struct net_device *ndev)
454 {
455 struct sh_eth_private *mdp = netdev_priv(ndev);
456 u32 value;
457
458 switch (mdp->phy_interface) {
459 case PHY_INTERFACE_MODE_GMII:
460 value = 0x2;
461 break;
462 case PHY_INTERFACE_MODE_MII:
463 value = 0x1;
464 break;
465 case PHY_INTERFACE_MODE_RMII:
466 value = 0x0;
467 break;
468 default:
469 netdev_warn(ndev,
470 "PHY interface mode was not setup. Set to MII.\n");
471 value = 0x1;
472 break;
473 }
474
475 sh_eth_write(ndev, value, RMII_MII);
476 }
477
478 static void sh_eth_set_duplex(struct net_device *ndev)
479 {
480 struct sh_eth_private *mdp = netdev_priv(ndev);
481
482 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
483 }
484
485 static void sh_eth_chip_reset(struct net_device *ndev)
486 {
487 struct sh_eth_private *mdp = netdev_priv(ndev);
488
489 /* reset device */
490 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
491 mdelay(1);
492 }
493
494 static void sh_eth_set_rate_gether(struct net_device *ndev)
495 {
496 struct sh_eth_private *mdp = netdev_priv(ndev);
497
498 switch (mdp->speed) {
499 case 10: /* 10BASE */
500 sh_eth_write(ndev, GECMR_10, GECMR);
501 break;
502 case 100:/* 100BASE */
503 sh_eth_write(ndev, GECMR_100, GECMR);
504 break;
505 case 1000: /* 1000BASE */
506 sh_eth_write(ndev, GECMR_1000, GECMR);
507 break;
508 }
509 }
510
511 #ifdef CONFIG_OF
512 /* R7S72100 */
513 static struct sh_eth_cpu_data r7s72100_data = {
514 .chip_reset = sh_eth_chip_reset,
515 .set_duplex = sh_eth_set_duplex,
516
517 .register_type = SH_ETH_REG_FAST_RZ,
518
519 .ecsr_value = ECSR_ICD,
520 .ecsipr_value = ECSIPR_ICDIP,
521 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
522 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
523 EESIPR_ECIIP |
524 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
525 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
526 EESIPR_RMAFIP | EESIPR_RRFIP |
527 EESIPR_RTLFIP | EESIPR_RTSFIP |
528 EESIPR_PREIP | EESIPR_CERFIP,
529
530 .tx_check = EESR_TC1 | EESR_FTC,
531 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
532 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
533 EESR_TDE,
534 .fdr_value = 0x0000070f,
535
536 .no_psr = 1,
537 .apr = 1,
538 .mpr = 1,
539 .tpauser = 1,
540 .hw_swap = 1,
541 .rpadir = 1,
542 .rpadir_value = 2 << 16,
543 .no_trimd = 1,
544 .no_ade = 1,
545 .hw_checksum = 1,
546 .tsu = 1,
547 };
548
549 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
550 {
551 sh_eth_chip_reset(ndev);
552
553 sh_eth_select_mii(ndev);
554 }
555
556 /* R8A7740 */
557 static struct sh_eth_cpu_data r8a7740_data = {
558 .chip_reset = sh_eth_chip_reset_r8a7740,
559 .set_duplex = sh_eth_set_duplex,
560 .set_rate = sh_eth_set_rate_gether,
561
562 .register_type = SH_ETH_REG_GIGABIT,
563
564 .ecsr_value = ECSR_ICD | ECSR_MPD,
565 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
566 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
567 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
568 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
569 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
570 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
571 EESIPR_CEEFIP | EESIPR_CELFIP |
572 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
573 EESIPR_PREIP | EESIPR_CERFIP,
574
575 .tx_check = EESR_TC1 | EESR_FTC,
576 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
577 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
578 EESR_TDE,
579 .fdr_value = 0x0000070f,
580
581 .apr = 1,
582 .mpr = 1,
583 .tpauser = 1,
584 .bculr = 1,
585 .hw_swap = 1,
586 .rpadir = 1,
587 .rpadir_value = 2 << 16,
588 .no_trimd = 1,
589 .no_ade = 1,
590 .hw_checksum = 1,
591 .tsu = 1,
592 .select_mii = 1,
593 .magic = 1,
594 };
595
596 /* There is CPU dependent code */
597 static void sh_eth_set_rate_rcar(struct net_device *ndev)
598 {
599 struct sh_eth_private *mdp = netdev_priv(ndev);
600
601 switch (mdp->speed) {
602 case 10: /* 10BASE */
603 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
604 break;
605 case 100:/* 100BASE */
606 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
607 break;
608 }
609 }
610
611 /* R-Car Gen1 */
612 static struct sh_eth_cpu_data rcar_gen1_data = {
613 .set_duplex = sh_eth_set_duplex,
614 .set_rate = sh_eth_set_rate_rcar,
615
616 .register_type = SH_ETH_REG_FAST_RCAR,
617
618 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
619 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
620 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
621 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
622 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
623 EESIPR_RMAFIP | EESIPR_RRFIP |
624 EESIPR_RTLFIP | EESIPR_RTSFIP |
625 EESIPR_PREIP | EESIPR_CERFIP,
626
627 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
628 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
629 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
630 .fdr_value = 0x00000f0f,
631
632 .apr = 1,
633 .mpr = 1,
634 .tpauser = 1,
635 .hw_swap = 1,
636 };
637
638 /* R-Car Gen2 and RZ/G1 */
639 static struct sh_eth_cpu_data rcar_gen2_data = {
640 .set_duplex = sh_eth_set_duplex,
641 .set_rate = sh_eth_set_rate_rcar,
642
643 .register_type = SH_ETH_REG_FAST_RCAR,
644
645 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
646 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
647 ECSIPR_MPDIP,
648 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
649 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 EESIPR_RMAFIP | EESIPR_RRFIP |
652 EESIPR_RTLFIP | EESIPR_RTSFIP |
653 EESIPR_PREIP | EESIPR_CERFIP,
654
655 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
656 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
657 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
658 .fdr_value = 0x00000f0f,
659
660 .trscer_err_mask = DESC_I_RINT8,
661
662 .apr = 1,
663 .mpr = 1,
664 .tpauser = 1,
665 .hw_swap = 1,
666 .rmiimode = 1,
667 .magic = 1,
668 };
669 #endif /* CONFIG_OF */
670
671 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
672 {
673 struct sh_eth_private *mdp = netdev_priv(ndev);
674
675 switch (mdp->speed) {
676 case 10: /* 10BASE */
677 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
678 break;
679 case 100:/* 100BASE */
680 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
681 break;
682 }
683 }
684
685 /* SH7724 */
686 static struct sh_eth_cpu_data sh7724_data = {
687 .set_duplex = sh_eth_set_duplex,
688 .set_rate = sh_eth_set_rate_sh7724,
689
690 .register_type = SH_ETH_REG_FAST_SH4,
691
692 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
693 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
694 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
695 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
696 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
697 EESIPR_RMAFIP | EESIPR_RRFIP |
698 EESIPR_RTLFIP | EESIPR_RTSFIP |
699 EESIPR_PREIP | EESIPR_CERFIP,
700
701 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
702 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
703 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
704
705 .apr = 1,
706 .mpr = 1,
707 .tpauser = 1,
708 .hw_swap = 1,
709 .rpadir = 1,
710 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
711 };
712
713 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
714 {
715 struct sh_eth_private *mdp = netdev_priv(ndev);
716
717 switch (mdp->speed) {
718 case 10: /* 10BASE */
719 sh_eth_write(ndev, 0, RTRATE);
720 break;
721 case 100:/* 100BASE */
722 sh_eth_write(ndev, 1, RTRATE);
723 break;
724 }
725 }
726
727 /* SH7757 */
728 static struct sh_eth_cpu_data sh7757_data = {
729 .set_duplex = sh_eth_set_duplex,
730 .set_rate = sh_eth_set_rate_sh7757,
731
732 .register_type = SH_ETH_REG_FAST_SH4,
733
734 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
735 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
736 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
737 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
738 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
739 EESIPR_CEEFIP | EESIPR_CELFIP |
740 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
741 EESIPR_PREIP | EESIPR_CERFIP,
742
743 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
744 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
745 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
746
747 .irq_flags = IRQF_SHARED,
748 .apr = 1,
749 .mpr = 1,
750 .tpauser = 1,
751 .hw_swap = 1,
752 .no_ade = 1,
753 .rpadir = 1,
754 .rpadir_value = 2 << 16,
755 .rtrate = 1,
756 };
757
758 #define SH_GIGA_ETH_BASE 0xfee00000UL
759 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
760 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
761 static void sh_eth_chip_reset_giga(struct net_device *ndev)
762 {
763 u32 mahr[2], malr[2];
764 int i;
765
766 /* save MAHR and MALR */
767 for (i = 0; i < 2; i++) {
768 malr[i] = ioread32((void *)GIGA_MALR(i));
769 mahr[i] = ioread32((void *)GIGA_MAHR(i));
770 }
771
772 sh_eth_chip_reset(ndev);
773
774 /* restore MAHR and MALR */
775 for (i = 0; i < 2; i++) {
776 iowrite32(malr[i], (void *)GIGA_MALR(i));
777 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
778 }
779 }
780
781 static void sh_eth_set_rate_giga(struct net_device *ndev)
782 {
783 struct sh_eth_private *mdp = netdev_priv(ndev);
784
785 switch (mdp->speed) {
786 case 10: /* 10BASE */
787 sh_eth_write(ndev, 0x00000000, GECMR);
788 break;
789 case 100:/* 100BASE */
790 sh_eth_write(ndev, 0x00000010, GECMR);
791 break;
792 case 1000: /* 1000BASE */
793 sh_eth_write(ndev, 0x00000020, GECMR);
794 break;
795 }
796 }
797
798 /* SH7757(GETHERC) */
799 static struct sh_eth_cpu_data sh7757_data_giga = {
800 .chip_reset = sh_eth_chip_reset_giga,
801 .set_duplex = sh_eth_set_duplex,
802 .set_rate = sh_eth_set_rate_giga,
803
804 .register_type = SH_ETH_REG_GIGABIT,
805
806 .ecsr_value = ECSR_ICD | ECSR_MPD,
807 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
808 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
809 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
810 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
811 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
812 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
813 EESIPR_CEEFIP | EESIPR_CELFIP |
814 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
815 EESIPR_PREIP | EESIPR_CERFIP,
816
817 .tx_check = EESR_TC1 | EESR_FTC,
818 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
819 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
820 EESR_TDE,
821 .fdr_value = 0x0000072f,
822
823 .irq_flags = IRQF_SHARED,
824 .apr = 1,
825 .mpr = 1,
826 .tpauser = 1,
827 .bculr = 1,
828 .hw_swap = 1,
829 .rpadir = 1,
830 .rpadir_value = 2 << 16,
831 .no_trimd = 1,
832 .no_ade = 1,
833 .tsu = 1,
834 };
835
836 /* SH7734 */
837 static struct sh_eth_cpu_data sh7734_data = {
838 .chip_reset = sh_eth_chip_reset,
839 .set_duplex = sh_eth_set_duplex,
840 .set_rate = sh_eth_set_rate_gether,
841
842 .register_type = SH_ETH_REG_GIGABIT,
843
844 .ecsr_value = ECSR_ICD | ECSR_MPD,
845 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
846 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
847 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
848 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
849 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
850 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
851 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
852 EESIPR_PREIP | EESIPR_CERFIP,
853
854 .tx_check = EESR_TC1 | EESR_FTC,
855 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
856 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
857 EESR_TDE,
858
859 .apr = 1,
860 .mpr = 1,
861 .tpauser = 1,
862 .bculr = 1,
863 .hw_swap = 1,
864 .no_trimd = 1,
865 .no_ade = 1,
866 .tsu = 1,
867 .hw_checksum = 1,
868 .select_mii = 1,
869 .magic = 1,
870 };
871
872 /* SH7763 */
873 static struct sh_eth_cpu_data sh7763_data = {
874 .chip_reset = sh_eth_chip_reset,
875 .set_duplex = sh_eth_set_duplex,
876 .set_rate = sh_eth_set_rate_gether,
877
878 .register_type = SH_ETH_REG_GIGABIT,
879
880 .ecsr_value = ECSR_ICD | ECSR_MPD,
881 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
882 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
883 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
884 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
885 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
886 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
887 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
888 EESIPR_PREIP | EESIPR_CERFIP,
889
890 .tx_check = EESR_TC1 | EESR_FTC,
891 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
892 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
893
894 .apr = 1,
895 .mpr = 1,
896 .tpauser = 1,
897 .bculr = 1,
898 .hw_swap = 1,
899 .no_trimd = 1,
900 .no_ade = 1,
901 .tsu = 1,
902 .irq_flags = IRQF_SHARED,
903 .magic = 1,
904 };
905
906 static struct sh_eth_cpu_data sh7619_data = {
907 .register_type = SH_ETH_REG_FAST_SH3_SH2,
908
909 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
910 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
911 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
912 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
913 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
914 EESIPR_CEEFIP | EESIPR_CELFIP |
915 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
916 EESIPR_PREIP | EESIPR_CERFIP,
917
918 .apr = 1,
919 .mpr = 1,
920 .tpauser = 1,
921 .hw_swap = 1,
922 };
923
924 static struct sh_eth_cpu_data sh771x_data = {
925 .register_type = SH_ETH_REG_FAST_SH3_SH2,
926
927 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
928 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
929 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
930 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
931 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
932 EESIPR_CEEFIP | EESIPR_CELFIP |
933 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
934 EESIPR_PREIP | EESIPR_CERFIP,
935 .tsu = 1,
936 };
937
938 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
939 {
940 if (!cd->ecsr_value)
941 cd->ecsr_value = DEFAULT_ECSR_INIT;
942
943 if (!cd->ecsipr_value)
944 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
945
946 if (!cd->fcftr_value)
947 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
948 DEFAULT_FIFO_F_D_RFD;
949
950 if (!cd->fdr_value)
951 cd->fdr_value = DEFAULT_FDR_INIT;
952
953 if (!cd->tx_check)
954 cd->tx_check = DEFAULT_TX_CHECK;
955
956 if (!cd->eesr_err_check)
957 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
958
959 if (!cd->trscer_err_mask)
960 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
961 }
962
963 static int sh_eth_check_reset(struct net_device *ndev)
964 {
965 int ret = 0;
966 int cnt = 100;
967
968 while (cnt > 0) {
969 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
970 break;
971 mdelay(1);
972 cnt--;
973 }
974 if (cnt <= 0) {
975 netdev_err(ndev, "Device reset failed\n");
976 ret = -ETIMEDOUT;
977 }
978 return ret;
979 }
980
981 static int sh_eth_reset(struct net_device *ndev)
982 {
983 struct sh_eth_private *mdp = netdev_priv(ndev);
984 int ret = 0;
985
986 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
987 sh_eth_write(ndev, EDSR_ENALL, EDSR);
988 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
989
990 ret = sh_eth_check_reset(ndev);
991 if (ret)
992 return ret;
993
994 /* Table Init */
995 sh_eth_write(ndev, 0x0, TDLAR);
996 sh_eth_write(ndev, 0x0, TDFAR);
997 sh_eth_write(ndev, 0x0, TDFXR);
998 sh_eth_write(ndev, 0x0, TDFFR);
999 sh_eth_write(ndev, 0x0, RDLAR);
1000 sh_eth_write(ndev, 0x0, RDFAR);
1001 sh_eth_write(ndev, 0x0, RDFXR);
1002 sh_eth_write(ndev, 0x0, RDFFR);
1003
1004 /* Reset HW CRC register */
1005 if (mdp->cd->hw_checksum)
1006 sh_eth_write(ndev, 0x0, CSMR);
1007
1008 /* Select MII mode */
1009 if (mdp->cd->select_mii)
1010 sh_eth_select_mii(ndev);
1011 } else {
1012 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
1013 mdelay(3);
1014 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
1015 }
1016
1017 return ret;
1018 }
1019
1020 static void sh_eth_set_receive_align(struct sk_buff *skb)
1021 {
1022 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1023
1024 if (reserve)
1025 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1026 }
1027
1028 /* Program the hardware MAC address from dev->dev_addr. */
1029 static void update_mac_address(struct net_device *ndev)
1030 {
1031 sh_eth_write(ndev,
1032 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1033 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1034 sh_eth_write(ndev,
1035 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1036 }
1037
1038 /* Get MAC address from SuperH MAC address register
1039 *
1040 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1041 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1042 * When you want use this device, you must set MAC address in bootloader.
1043 *
1044 */
1045 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1046 {
1047 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1048 memcpy(ndev->dev_addr, mac, ETH_ALEN);
1049 } else {
1050 u32 mahr = sh_eth_read(ndev, MAHR);
1051 u32 malr = sh_eth_read(ndev, MALR);
1052
1053 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1054 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1055 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
1056 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
1057 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
1058 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
1059 }
1060 }
1061
1062 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1063 {
1064 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1065 return EDTRR_TRNS_GETHER;
1066 else
1067 return EDTRR_TRNS_ETHER;
1068 }
1069
1070 struct bb_info {
1071 void (*set_gate)(void *addr);
1072 struct mdiobb_ctrl ctrl;
1073 void *addr;
1074 };
1075
1076 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1077 {
1078 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1079 u32 pir;
1080
1081 if (bitbang->set_gate)
1082 bitbang->set_gate(bitbang->addr);
1083
1084 pir = ioread32(bitbang->addr);
1085 if (set)
1086 pir |= mask;
1087 else
1088 pir &= ~mask;
1089 iowrite32(pir, bitbang->addr);
1090 }
1091
1092 /* Data I/O pin control */
1093 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1094 {
1095 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1096 }
1097
1098 /* Set bit data*/
1099 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1100 {
1101 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1102 }
1103
1104 /* Get bit data*/
1105 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1106 {
1107 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1108
1109 if (bitbang->set_gate)
1110 bitbang->set_gate(bitbang->addr);
1111
1112 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1113 }
1114
1115 /* MDC pin control */
1116 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1117 {
1118 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1119 }
1120
1121 /* mdio bus control struct */
1122 static struct mdiobb_ops bb_ops = {
1123 .owner = THIS_MODULE,
1124 .set_mdc = sh_mdc_ctrl,
1125 .set_mdio_dir = sh_mmd_ctrl,
1126 .set_mdio_data = sh_set_mdio,
1127 .get_mdio_data = sh_get_mdio,
1128 };
1129
1130 /* free Tx skb function */
1131 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1132 {
1133 struct sh_eth_private *mdp = netdev_priv(ndev);
1134 struct sh_eth_txdesc *txdesc;
1135 int free_num = 0;
1136 int entry;
1137 bool sent;
1138
1139 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1140 entry = mdp->dirty_tx % mdp->num_tx_ring;
1141 txdesc = &mdp->tx_ring[entry];
1142 sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1143 if (sent_only && !sent)
1144 break;
1145 /* TACT bit must be checked before all the following reads */
1146 dma_rmb();
1147 netif_info(mdp, tx_done, ndev,
1148 "tx entry %d status 0x%08x\n",
1149 entry, le32_to_cpu(txdesc->status));
1150 /* Free the original skb. */
1151 if (mdp->tx_skbuff[entry]) {
1152 dma_unmap_single(&mdp->pdev->dev,
1153 le32_to_cpu(txdesc->addr),
1154 le32_to_cpu(txdesc->len) >> 16,
1155 DMA_TO_DEVICE);
1156 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1157 mdp->tx_skbuff[entry] = NULL;
1158 free_num++;
1159 }
1160 txdesc->status = cpu_to_le32(TD_TFP);
1161 if (entry >= mdp->num_tx_ring - 1)
1162 txdesc->status |= cpu_to_le32(TD_TDLE);
1163
1164 if (sent) {
1165 ndev->stats.tx_packets++;
1166 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1167 }
1168 }
1169 return free_num;
1170 }
1171
1172 /* free skb and descriptor buffer */
1173 static void sh_eth_ring_free(struct net_device *ndev)
1174 {
1175 struct sh_eth_private *mdp = netdev_priv(ndev);
1176 int ringsize, i;
1177
1178 if (mdp->rx_ring) {
1179 for (i = 0; i < mdp->num_rx_ring; i++) {
1180 if (mdp->rx_skbuff[i]) {
1181 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1182
1183 dma_unmap_single(&mdp->pdev->dev,
1184 le32_to_cpu(rxdesc->addr),
1185 ALIGN(mdp->rx_buf_sz, 32),
1186 DMA_FROM_DEVICE);
1187 }
1188 }
1189 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1190 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1191 mdp->rx_desc_dma);
1192 mdp->rx_ring = NULL;
1193 }
1194
1195 /* Free Rx skb ringbuffer */
1196 if (mdp->rx_skbuff) {
1197 for (i = 0; i < mdp->num_rx_ring; i++)
1198 dev_kfree_skb(mdp->rx_skbuff[i]);
1199 }
1200 kfree(mdp->rx_skbuff);
1201 mdp->rx_skbuff = NULL;
1202
1203 if (mdp->tx_ring) {
1204 sh_eth_tx_free(ndev, false);
1205
1206 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1207 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1208 mdp->tx_desc_dma);
1209 mdp->tx_ring = NULL;
1210 }
1211
1212 /* Free Tx skb ringbuffer */
1213 kfree(mdp->tx_skbuff);
1214 mdp->tx_skbuff = NULL;
1215 }
1216
1217 /* format skb and descriptor buffer */
1218 static void sh_eth_ring_format(struct net_device *ndev)
1219 {
1220 struct sh_eth_private *mdp = netdev_priv(ndev);
1221 int i;
1222 struct sk_buff *skb;
1223 struct sh_eth_rxdesc *rxdesc = NULL;
1224 struct sh_eth_txdesc *txdesc = NULL;
1225 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1226 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1227 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1228 dma_addr_t dma_addr;
1229 u32 buf_len;
1230
1231 mdp->cur_rx = 0;
1232 mdp->cur_tx = 0;
1233 mdp->dirty_rx = 0;
1234 mdp->dirty_tx = 0;
1235
1236 memset(mdp->rx_ring, 0, rx_ringsize);
1237
1238 /* build Rx ring buffer */
1239 for (i = 0; i < mdp->num_rx_ring; i++) {
1240 /* skb */
1241 mdp->rx_skbuff[i] = NULL;
1242 skb = netdev_alloc_skb(ndev, skbuff_size);
1243 if (skb == NULL)
1244 break;
1245 sh_eth_set_receive_align(skb);
1246
1247 /* The size of the buffer is a multiple of 32 bytes. */
1248 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1249 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1250 DMA_FROM_DEVICE);
1251 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1252 kfree_skb(skb);
1253 break;
1254 }
1255 mdp->rx_skbuff[i] = skb;
1256
1257 /* RX descriptor */
1258 rxdesc = &mdp->rx_ring[i];
1259 rxdesc->len = cpu_to_le32(buf_len << 16);
1260 rxdesc->addr = cpu_to_le32(dma_addr);
1261 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1262
1263 /* Rx descriptor address set */
1264 if (i == 0) {
1265 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1266 if (sh_eth_is_gether(mdp) ||
1267 sh_eth_is_rz_fast_ether(mdp))
1268 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1269 }
1270 }
1271
1272 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1273
1274 /* Mark the last entry as wrapping the ring. */
1275 if (rxdesc)
1276 rxdesc->status |= cpu_to_le32(RD_RDLE);
1277
1278 memset(mdp->tx_ring, 0, tx_ringsize);
1279
1280 /* build Tx ring buffer */
1281 for (i = 0; i < mdp->num_tx_ring; i++) {
1282 mdp->tx_skbuff[i] = NULL;
1283 txdesc = &mdp->tx_ring[i];
1284 txdesc->status = cpu_to_le32(TD_TFP);
1285 txdesc->len = cpu_to_le32(0);
1286 if (i == 0) {
1287 /* Tx descriptor address set */
1288 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1289 if (sh_eth_is_gether(mdp) ||
1290 sh_eth_is_rz_fast_ether(mdp))
1291 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1292 }
1293 }
1294
1295 txdesc->status |= cpu_to_le32(TD_TDLE);
1296 }
1297
1298 /* Get skb and descriptor buffer */
1299 static int sh_eth_ring_init(struct net_device *ndev)
1300 {
1301 struct sh_eth_private *mdp = netdev_priv(ndev);
1302 int rx_ringsize, tx_ringsize;
1303
1304 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1305 * card needs room to do 8 byte alignment, +2 so we can reserve
1306 * the first 2 bytes, and +16 gets room for the status word from the
1307 * card.
1308 */
1309 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1310 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1311 if (mdp->cd->rpadir)
1312 mdp->rx_buf_sz += NET_IP_ALIGN;
1313
1314 /* Allocate RX and TX skb rings */
1315 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1316 GFP_KERNEL);
1317 if (!mdp->rx_skbuff)
1318 return -ENOMEM;
1319
1320 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1321 GFP_KERNEL);
1322 if (!mdp->tx_skbuff)
1323 goto ring_free;
1324
1325 /* Allocate all Rx descriptors. */
1326 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1327 mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1328 &mdp->rx_desc_dma, GFP_KERNEL);
1329 if (!mdp->rx_ring)
1330 goto ring_free;
1331
1332 mdp->dirty_rx = 0;
1333
1334 /* Allocate all Tx descriptors. */
1335 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1336 mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1337 &mdp->tx_desc_dma, GFP_KERNEL);
1338 if (!mdp->tx_ring)
1339 goto ring_free;
1340 return 0;
1341
1342 ring_free:
1343 /* Free Rx and Tx skb ring buffer and DMA buffer */
1344 sh_eth_ring_free(ndev);
1345
1346 return -ENOMEM;
1347 }
1348
1349 static int sh_eth_dev_init(struct net_device *ndev)
1350 {
1351 struct sh_eth_private *mdp = netdev_priv(ndev);
1352 int ret;
1353
1354 /* Soft Reset */
1355 ret = sh_eth_reset(ndev);
1356 if (ret)
1357 return ret;
1358
1359 if (mdp->cd->rmiimode)
1360 sh_eth_write(ndev, 0x1, RMIIMODE);
1361
1362 /* Descriptor format */
1363 sh_eth_ring_format(ndev);
1364 if (mdp->cd->rpadir)
1365 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1366
1367 /* all sh_eth int mask */
1368 sh_eth_write(ndev, 0, EESIPR);
1369
1370 #if defined(__LITTLE_ENDIAN)
1371 if (mdp->cd->hw_swap)
1372 sh_eth_write(ndev, EDMR_EL, EDMR);
1373 else
1374 #endif
1375 sh_eth_write(ndev, 0, EDMR);
1376
1377 /* FIFO size set */
1378 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1379 sh_eth_write(ndev, 0, TFTR);
1380
1381 /* Frame recv control (enable multiple-packets per rx irq) */
1382 sh_eth_write(ndev, RMCR_RNC, RMCR);
1383
1384 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1385
1386 if (mdp->cd->bculr)
1387 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1388
1389 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1390
1391 if (!mdp->cd->no_trimd)
1392 sh_eth_write(ndev, 0, TRIMD);
1393
1394 /* Recv frame limit set register */
1395 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1396 RFLR);
1397
1398 sh_eth_modify(ndev, EESR, 0, 0);
1399 mdp->irq_enabled = true;
1400 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1401
1402 /* PAUSE Prohibition */
1403 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1404 ECMR_TE | ECMR_RE, ECMR);
1405
1406 if (mdp->cd->set_rate)
1407 mdp->cd->set_rate(ndev);
1408
1409 /* E-MAC Status Register clear */
1410 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1411
1412 /* E-MAC Interrupt Enable register */
1413 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1414
1415 /* Set MAC address */
1416 update_mac_address(ndev);
1417
1418 /* mask reset */
1419 if (mdp->cd->apr)
1420 sh_eth_write(ndev, APR_AP, APR);
1421 if (mdp->cd->mpr)
1422 sh_eth_write(ndev, MPR_MP, MPR);
1423 if (mdp->cd->tpauser)
1424 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1425
1426 /* Setting the Rx mode will start the Rx process. */
1427 sh_eth_write(ndev, EDRRR_R, EDRRR);
1428
1429 return ret;
1430 }
1431
1432 static void sh_eth_dev_exit(struct net_device *ndev)
1433 {
1434 struct sh_eth_private *mdp = netdev_priv(ndev);
1435 int i;
1436
1437 /* Deactivate all TX descriptors, so DMA should stop at next
1438 * packet boundary if it's currently running
1439 */
1440 for (i = 0; i < mdp->num_tx_ring; i++)
1441 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1442
1443 /* Disable TX FIFO egress to MAC */
1444 sh_eth_rcv_snd_disable(ndev);
1445
1446 /* Stop RX DMA at next packet boundary */
1447 sh_eth_write(ndev, 0, EDRRR);
1448
1449 /* Aside from TX DMA, we can't tell when the hardware is
1450 * really stopped, so we need to reset to make sure.
1451 * Before doing that, wait for long enough to *probably*
1452 * finish transmitting the last packet and poll stats.
1453 */
1454 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1455 sh_eth_get_stats(ndev);
1456 sh_eth_reset(ndev);
1457
1458 /* Set MAC address again */
1459 update_mac_address(ndev);
1460 }
1461
1462 /* Packet receive function */
1463 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1464 {
1465 struct sh_eth_private *mdp = netdev_priv(ndev);
1466 struct sh_eth_rxdesc *rxdesc;
1467
1468 int entry = mdp->cur_rx % mdp->num_rx_ring;
1469 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1470 int limit;
1471 struct sk_buff *skb;
1472 u32 desc_status;
1473 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1474 dma_addr_t dma_addr;
1475 u16 pkt_len;
1476 u32 buf_len;
1477
1478 boguscnt = min(boguscnt, *quota);
1479 limit = boguscnt;
1480 rxdesc = &mdp->rx_ring[entry];
1481 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1482 /* RACT bit must be checked before all the following reads */
1483 dma_rmb();
1484 desc_status = le32_to_cpu(rxdesc->status);
1485 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1486
1487 if (--boguscnt < 0)
1488 break;
1489
1490 netif_info(mdp, rx_status, ndev,
1491 "rx entry %d status 0x%08x len %d\n",
1492 entry, desc_status, pkt_len);
1493
1494 if (!(desc_status & RDFEND))
1495 ndev->stats.rx_length_errors++;
1496
1497 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1498 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1499 * bit 0. However, in case of the R8A7740 and R7S72100
1500 * the RFS bits are from bit 25 to bit 16. So, the
1501 * driver needs right shifting by 16.
1502 */
1503 if (mdp->cd->hw_checksum)
1504 desc_status >>= 16;
1505
1506 skb = mdp->rx_skbuff[entry];
1507 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1508 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1509 ndev->stats.rx_errors++;
1510 if (desc_status & RD_RFS1)
1511 ndev->stats.rx_crc_errors++;
1512 if (desc_status & RD_RFS2)
1513 ndev->stats.rx_frame_errors++;
1514 if (desc_status & RD_RFS3)
1515 ndev->stats.rx_length_errors++;
1516 if (desc_status & RD_RFS4)
1517 ndev->stats.rx_length_errors++;
1518 if (desc_status & RD_RFS6)
1519 ndev->stats.rx_missed_errors++;
1520 if (desc_status & RD_RFS10)
1521 ndev->stats.rx_over_errors++;
1522 } else if (skb) {
1523 dma_addr = le32_to_cpu(rxdesc->addr);
1524 if (!mdp->cd->hw_swap)
1525 sh_eth_soft_swap(
1526 phys_to_virt(ALIGN(dma_addr, 4)),
1527 pkt_len + 2);
1528 mdp->rx_skbuff[entry] = NULL;
1529 if (mdp->cd->rpadir)
1530 skb_reserve(skb, NET_IP_ALIGN);
1531 dma_unmap_single(&mdp->pdev->dev, dma_addr,
1532 ALIGN(mdp->rx_buf_sz, 32),
1533 DMA_FROM_DEVICE);
1534 skb_put(skb, pkt_len);
1535 skb->protocol = eth_type_trans(skb, ndev);
1536 netif_receive_skb(skb);
1537 ndev->stats.rx_packets++;
1538 ndev->stats.rx_bytes += pkt_len;
1539 if (desc_status & RD_RFS8)
1540 ndev->stats.multicast++;
1541 }
1542 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1543 rxdesc = &mdp->rx_ring[entry];
1544 }
1545
1546 /* Refill the Rx ring buffers. */
1547 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1548 entry = mdp->dirty_rx % mdp->num_rx_ring;
1549 rxdesc = &mdp->rx_ring[entry];
1550 /* The size of the buffer is 32 byte boundary. */
1551 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1552 rxdesc->len = cpu_to_le32(buf_len << 16);
1553
1554 if (mdp->rx_skbuff[entry] == NULL) {
1555 skb = netdev_alloc_skb(ndev, skbuff_size);
1556 if (skb == NULL)
1557 break; /* Better luck next round. */
1558 sh_eth_set_receive_align(skb);
1559 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1560 buf_len, DMA_FROM_DEVICE);
1561 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1562 kfree_skb(skb);
1563 break;
1564 }
1565 mdp->rx_skbuff[entry] = skb;
1566
1567 skb_checksum_none_assert(skb);
1568 rxdesc->addr = cpu_to_le32(dma_addr);
1569 }
1570 dma_wmb(); /* RACT bit must be set after all the above writes */
1571 if (entry >= mdp->num_rx_ring - 1)
1572 rxdesc->status |=
1573 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1574 else
1575 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1576 }
1577
1578 /* Restart Rx engine if stopped. */
1579 /* If we don't need to check status, don't. -KDU */
1580 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1581 /* fix the values for the next receiving if RDE is set */
1582 if (intr_status & EESR_RDE &&
1583 mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1584 u32 count = (sh_eth_read(ndev, RDFAR) -
1585 sh_eth_read(ndev, RDLAR)) >> 4;
1586
1587 mdp->cur_rx = count;
1588 mdp->dirty_rx = count;
1589 }
1590 sh_eth_write(ndev, EDRRR_R, EDRRR);
1591 }
1592
1593 *quota -= limit - boguscnt - 1;
1594
1595 return *quota <= 0;
1596 }
1597
1598 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1599 {
1600 /* disable tx and rx */
1601 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1602 }
1603
1604 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1605 {
1606 /* enable tx and rx */
1607 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1608 }
1609
1610 /* E-MAC interrupt handler */
1611 static void sh_eth_emac_interrupt(struct net_device *ndev)
1612 {
1613 struct sh_eth_private *mdp = netdev_priv(ndev);
1614 u32 felic_stat;
1615 u32 link_stat;
1616
1617 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1618 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1619 if (felic_stat & ECSR_ICD)
1620 ndev->stats.tx_carrier_errors++;
1621 if (felic_stat & ECSR_MPD)
1622 pm_wakeup_event(&mdp->pdev->dev, 0);
1623 if (felic_stat & ECSR_LCHNG) {
1624 /* Link Changed */
1625 if (mdp->cd->no_psr || mdp->no_ether_link)
1626 return;
1627 link_stat = sh_eth_read(ndev, PSR);
1628 if (mdp->ether_link_active_low)
1629 link_stat = ~link_stat;
1630 if (!(link_stat & PHY_ST_LINK)) {
1631 sh_eth_rcv_snd_disable(ndev);
1632 } else {
1633 /* Link Up */
1634 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1635 /* clear int */
1636 sh_eth_modify(ndev, ECSR, 0, 0);
1637 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1638 /* enable tx and rx */
1639 sh_eth_rcv_snd_enable(ndev);
1640 }
1641 }
1642 }
1643
1644 /* error control function */
1645 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1646 {
1647 struct sh_eth_private *mdp = netdev_priv(ndev);
1648 u32 mask;
1649
1650 if (intr_status & EESR_TWB) {
1651 /* Unused write back interrupt */
1652 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1653 ndev->stats.tx_aborted_errors++;
1654 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1655 }
1656 }
1657
1658 if (intr_status & EESR_RABT) {
1659 /* Receive Abort int */
1660 if (intr_status & EESR_RFRMER) {
1661 /* Receive Frame Overflow int */
1662 ndev->stats.rx_frame_errors++;
1663 }
1664 }
1665
1666 if (intr_status & EESR_TDE) {
1667 /* Transmit Descriptor Empty int */
1668 ndev->stats.tx_fifo_errors++;
1669 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1670 }
1671
1672 if (intr_status & EESR_TFE) {
1673 /* FIFO under flow */
1674 ndev->stats.tx_fifo_errors++;
1675 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1676 }
1677
1678 if (intr_status & EESR_RDE) {
1679 /* Receive Descriptor Empty int */
1680 ndev->stats.rx_over_errors++;
1681 }
1682
1683 if (intr_status & EESR_RFE) {
1684 /* Receive FIFO Overflow int */
1685 ndev->stats.rx_fifo_errors++;
1686 }
1687
1688 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1689 /* Address Error */
1690 ndev->stats.tx_fifo_errors++;
1691 netif_err(mdp, tx_err, ndev, "Address Error\n");
1692 }
1693
1694 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1695 if (mdp->cd->no_ade)
1696 mask &= ~EESR_ADE;
1697 if (intr_status & mask) {
1698 /* Tx error */
1699 u32 edtrr = sh_eth_read(ndev, EDTRR);
1700
1701 /* dmesg */
1702 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1703 intr_status, mdp->cur_tx, mdp->dirty_tx,
1704 (u32)ndev->state, edtrr);
1705 /* dirty buffer free */
1706 sh_eth_tx_free(ndev, true);
1707
1708 /* SH7712 BUG */
1709 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1710 /* tx dma start */
1711 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1712 }
1713 /* wakeup */
1714 netif_wake_queue(ndev);
1715 }
1716 }
1717
1718 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1719 {
1720 struct net_device *ndev = netdev;
1721 struct sh_eth_private *mdp = netdev_priv(ndev);
1722 struct sh_eth_cpu_data *cd = mdp->cd;
1723 irqreturn_t ret = IRQ_NONE;
1724 u32 intr_status, intr_enable;
1725
1726 spin_lock(&mdp->lock);
1727
1728 /* Get interrupt status */
1729 intr_status = sh_eth_read(ndev, EESR);
1730 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1731 * enabled since it's the one that comes thru regardless of the mask,
1732 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1733 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1734 * bit...
1735 */
1736 intr_enable = sh_eth_read(ndev, EESIPR);
1737 intr_status &= intr_enable | EESIPR_ECIIP;
1738 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1739 cd->eesr_err_check))
1740 ret = IRQ_HANDLED;
1741 else
1742 goto out;
1743
1744 if (unlikely(!mdp->irq_enabled)) {
1745 sh_eth_write(ndev, 0, EESIPR);
1746 goto out;
1747 }
1748
1749 if (intr_status & EESR_RX_CHECK) {
1750 if (napi_schedule_prep(&mdp->napi)) {
1751 /* Mask Rx interrupts */
1752 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1753 EESIPR);
1754 __napi_schedule(&mdp->napi);
1755 } else {
1756 netdev_warn(ndev,
1757 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1758 intr_status, intr_enable);
1759 }
1760 }
1761
1762 /* Tx Check */
1763 if (intr_status & cd->tx_check) {
1764 /* Clear Tx interrupts */
1765 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1766
1767 sh_eth_tx_free(ndev, true);
1768 netif_wake_queue(ndev);
1769 }
1770
1771 /* E-MAC interrupt */
1772 if (intr_status & EESR_ECI)
1773 sh_eth_emac_interrupt(ndev);
1774
1775 if (intr_status & cd->eesr_err_check) {
1776 /* Clear error interrupts */
1777 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1778
1779 sh_eth_error(ndev, intr_status);
1780 }
1781
1782 out:
1783 spin_unlock(&mdp->lock);
1784
1785 return ret;
1786 }
1787
1788 static int sh_eth_poll(struct napi_struct *napi, int budget)
1789 {
1790 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1791 napi);
1792 struct net_device *ndev = napi->dev;
1793 int quota = budget;
1794 u32 intr_status;
1795
1796 for (;;) {
1797 intr_status = sh_eth_read(ndev, EESR);
1798 if (!(intr_status & EESR_RX_CHECK))
1799 break;
1800 /* Clear Rx interrupts */
1801 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1802
1803 if (sh_eth_rx(ndev, intr_status, &quota))
1804 goto out;
1805 }
1806
1807 napi_complete(napi);
1808
1809 /* Reenable Rx interrupts */
1810 if (mdp->irq_enabled)
1811 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1812 out:
1813 return budget - quota;
1814 }
1815
1816 /* PHY state control function */
1817 static void sh_eth_adjust_link(struct net_device *ndev)
1818 {
1819 struct sh_eth_private *mdp = netdev_priv(ndev);
1820 struct phy_device *phydev = ndev->phydev;
1821 int new_state = 0;
1822
1823 if (phydev->link) {
1824 if (phydev->duplex != mdp->duplex) {
1825 new_state = 1;
1826 mdp->duplex = phydev->duplex;
1827 if (mdp->cd->set_duplex)
1828 mdp->cd->set_duplex(ndev);
1829 }
1830
1831 if (phydev->speed != mdp->speed) {
1832 new_state = 1;
1833 mdp->speed = phydev->speed;
1834 if (mdp->cd->set_rate)
1835 mdp->cd->set_rate(ndev);
1836 }
1837 if (!mdp->link) {
1838 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1839 new_state = 1;
1840 mdp->link = phydev->link;
1841 if (mdp->cd->no_psr || mdp->no_ether_link)
1842 sh_eth_rcv_snd_enable(ndev);
1843 }
1844 } else if (mdp->link) {
1845 new_state = 1;
1846 mdp->link = 0;
1847 mdp->speed = 0;
1848 mdp->duplex = -1;
1849 if (mdp->cd->no_psr || mdp->no_ether_link)
1850 sh_eth_rcv_snd_disable(ndev);
1851 }
1852
1853 if (new_state && netif_msg_link(mdp))
1854 phy_print_status(phydev);
1855 }
1856
1857 /* PHY init function */
1858 static int sh_eth_phy_init(struct net_device *ndev)
1859 {
1860 struct device_node *np = ndev->dev.parent->of_node;
1861 struct sh_eth_private *mdp = netdev_priv(ndev);
1862 struct phy_device *phydev;
1863
1864 mdp->link = 0;
1865 mdp->speed = 0;
1866 mdp->duplex = -1;
1867
1868 /* Try connect to PHY */
1869 if (np) {
1870 struct device_node *pn;
1871
1872 pn = of_parse_phandle(np, "phy-handle", 0);
1873 phydev = of_phy_connect(ndev, pn,
1874 sh_eth_adjust_link, 0,
1875 mdp->phy_interface);
1876
1877 of_node_put(pn);
1878 if (!phydev)
1879 phydev = ERR_PTR(-ENOENT);
1880 } else {
1881 char phy_id[MII_BUS_ID_SIZE + 3];
1882
1883 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1884 mdp->mii_bus->id, mdp->phy_id);
1885
1886 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1887 mdp->phy_interface);
1888 }
1889
1890 if (IS_ERR(phydev)) {
1891 netdev_err(ndev, "failed to connect PHY\n");
1892 return PTR_ERR(phydev);
1893 }
1894
1895 /* mask with MAC supported features */
1896 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
1897 int err = phy_set_max_speed(phydev, SPEED_100);
1898 if (err) {
1899 netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
1900 phy_disconnect(phydev);
1901 return err;
1902 }
1903 }
1904
1905 phy_attached_info(phydev);
1906
1907 return 0;
1908 }
1909
1910 /* PHY control start function */
1911 static int sh_eth_phy_start(struct net_device *ndev)
1912 {
1913 int ret;
1914
1915 ret = sh_eth_phy_init(ndev);
1916 if (ret)
1917 return ret;
1918
1919 phy_start(ndev->phydev);
1920
1921 return 0;
1922 }
1923
1924 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1925 struct ethtool_link_ksettings *cmd)
1926 {
1927 struct sh_eth_private *mdp = netdev_priv(ndev);
1928 unsigned long flags;
1929
1930 if (!ndev->phydev)
1931 return -ENODEV;
1932
1933 spin_lock_irqsave(&mdp->lock, flags);
1934 phy_ethtool_ksettings_get(ndev->phydev, cmd);
1935 spin_unlock_irqrestore(&mdp->lock, flags);
1936
1937 return 0;
1938 }
1939
1940 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1941 const struct ethtool_link_ksettings *cmd)
1942 {
1943 struct sh_eth_private *mdp = netdev_priv(ndev);
1944 unsigned long flags;
1945 int ret;
1946
1947 if (!ndev->phydev)
1948 return -ENODEV;
1949
1950 spin_lock_irqsave(&mdp->lock, flags);
1951
1952 /* disable tx and rx */
1953 sh_eth_rcv_snd_disable(ndev);
1954
1955 ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1956 if (ret)
1957 goto error_exit;
1958
1959 if (cmd->base.duplex == DUPLEX_FULL)
1960 mdp->duplex = 1;
1961 else
1962 mdp->duplex = 0;
1963
1964 if (mdp->cd->set_duplex)
1965 mdp->cd->set_duplex(ndev);
1966
1967 error_exit:
1968 mdelay(1);
1969
1970 /* enable tx and rx */
1971 sh_eth_rcv_snd_enable(ndev);
1972
1973 spin_unlock_irqrestore(&mdp->lock, flags);
1974
1975 return ret;
1976 }
1977
1978 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1979 * version must be bumped as well. Just adding registers up to that
1980 * limit is fine, as long as the existing register indices don't
1981 * change.
1982 */
1983 #define SH_ETH_REG_DUMP_VERSION 1
1984 #define SH_ETH_REG_DUMP_MAX_REGS 256
1985
1986 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1987 {
1988 struct sh_eth_private *mdp = netdev_priv(ndev);
1989 struct sh_eth_cpu_data *cd = mdp->cd;
1990 u32 *valid_map;
1991 size_t len;
1992
1993 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1994
1995 /* Dump starts with a bitmap that tells ethtool which
1996 * registers are defined for this chip.
1997 */
1998 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1999 if (buf) {
2000 valid_map = buf;
2001 buf += len;
2002 } else {
2003 valid_map = NULL;
2004 }
2005
2006 /* Add a register to the dump, if it has a defined offset.
2007 * This automatically skips most undefined registers, but for
2008 * some it is also necessary to check a capability flag in
2009 * struct sh_eth_cpu_data.
2010 */
2011 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2012 #define add_reg_from(reg, read_expr) do { \
2013 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
2014 if (buf) { \
2015 mark_reg_valid(reg); \
2016 *buf++ = read_expr; \
2017 } \
2018 ++len; \
2019 } \
2020 } while (0)
2021 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2022 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2023
2024 add_reg(EDSR);
2025 add_reg(EDMR);
2026 add_reg(EDTRR);
2027 add_reg(EDRRR);
2028 add_reg(EESR);
2029 add_reg(EESIPR);
2030 add_reg(TDLAR);
2031 add_reg(TDFAR);
2032 add_reg(TDFXR);
2033 add_reg(TDFFR);
2034 add_reg(RDLAR);
2035 add_reg(RDFAR);
2036 add_reg(RDFXR);
2037 add_reg(RDFFR);
2038 add_reg(TRSCER);
2039 add_reg(RMFCR);
2040 add_reg(TFTR);
2041 add_reg(FDR);
2042 add_reg(RMCR);
2043 add_reg(TFUCR);
2044 add_reg(RFOCR);
2045 if (cd->rmiimode)
2046 add_reg(RMIIMODE);
2047 add_reg(FCFTR);
2048 if (cd->rpadir)
2049 add_reg(RPADIR);
2050 if (!cd->no_trimd)
2051 add_reg(TRIMD);
2052 add_reg(ECMR);
2053 add_reg(ECSR);
2054 add_reg(ECSIPR);
2055 add_reg(PIR);
2056 if (!cd->no_psr)
2057 add_reg(PSR);
2058 add_reg(RDMLR);
2059 add_reg(RFLR);
2060 add_reg(IPGR);
2061 if (cd->apr)
2062 add_reg(APR);
2063 if (cd->mpr)
2064 add_reg(MPR);
2065 add_reg(RFCR);
2066 add_reg(RFCF);
2067 if (cd->tpauser)
2068 add_reg(TPAUSER);
2069 add_reg(TPAUSECR);
2070 add_reg(GECMR);
2071 if (cd->bculr)
2072 add_reg(BCULR);
2073 add_reg(MAHR);
2074 add_reg(MALR);
2075 add_reg(TROCR);
2076 add_reg(CDCR);
2077 add_reg(LCCR);
2078 add_reg(CNDCR);
2079 add_reg(CEFCR);
2080 add_reg(FRECR);
2081 add_reg(TSFRCR);
2082 add_reg(TLFRCR);
2083 add_reg(CERCR);
2084 add_reg(CEECR);
2085 add_reg(MAFCR);
2086 if (cd->rtrate)
2087 add_reg(RTRATE);
2088 if (cd->hw_checksum)
2089 add_reg(CSMR);
2090 if (cd->select_mii)
2091 add_reg(RMII_MII);
2092 add_reg(ARSTR);
2093 if (cd->tsu) {
2094 add_tsu_reg(TSU_CTRST);
2095 add_tsu_reg(TSU_FWEN0);
2096 add_tsu_reg(TSU_FWEN1);
2097 add_tsu_reg(TSU_FCM);
2098 add_tsu_reg(TSU_BSYSL0);
2099 add_tsu_reg(TSU_BSYSL1);
2100 add_tsu_reg(TSU_PRISL0);
2101 add_tsu_reg(TSU_PRISL1);
2102 add_tsu_reg(TSU_FWSL0);
2103 add_tsu_reg(TSU_FWSL1);
2104 add_tsu_reg(TSU_FWSLC);
2105 add_tsu_reg(TSU_QTAG0);
2106 add_tsu_reg(TSU_QTAG1);
2107 add_tsu_reg(TSU_QTAGM0);
2108 add_tsu_reg(TSU_QTAGM1);
2109 add_tsu_reg(TSU_FWSR);
2110 add_tsu_reg(TSU_FWINMK);
2111 add_tsu_reg(TSU_ADQT0);
2112 add_tsu_reg(TSU_ADQT1);
2113 add_tsu_reg(TSU_VTAG0);
2114 add_tsu_reg(TSU_VTAG1);
2115 add_tsu_reg(TSU_ADSBSY);
2116 add_tsu_reg(TSU_TEN);
2117 add_tsu_reg(TSU_POST1);
2118 add_tsu_reg(TSU_POST2);
2119 add_tsu_reg(TSU_POST3);
2120 add_tsu_reg(TSU_POST4);
2121 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2122 /* This is the start of a table, not just a single
2123 * register.
2124 */
2125 if (buf) {
2126 unsigned int i;
2127
2128 mark_reg_valid(TSU_ADRH0);
2129 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2130 *buf++ = ioread32(
2131 mdp->tsu_addr +
2132 mdp->reg_offset[TSU_ADRH0] +
2133 i * 4);
2134 }
2135 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2136 }
2137 }
2138
2139 #undef mark_reg_valid
2140 #undef add_reg_from
2141 #undef add_reg
2142 #undef add_tsu_reg
2143
2144 return len * 4;
2145 }
2146
2147 static int sh_eth_get_regs_len(struct net_device *ndev)
2148 {
2149 return __sh_eth_get_regs(ndev, NULL);
2150 }
2151
2152 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2153 void *buf)
2154 {
2155 struct sh_eth_private *mdp = netdev_priv(ndev);
2156
2157 regs->version = SH_ETH_REG_DUMP_VERSION;
2158
2159 pm_runtime_get_sync(&mdp->pdev->dev);
2160 __sh_eth_get_regs(ndev, buf);
2161 pm_runtime_put_sync(&mdp->pdev->dev);
2162 }
2163
2164 static int sh_eth_nway_reset(struct net_device *ndev)
2165 {
2166 struct sh_eth_private *mdp = netdev_priv(ndev);
2167 unsigned long flags;
2168 int ret;
2169
2170 if (!ndev->phydev)
2171 return -ENODEV;
2172
2173 spin_lock_irqsave(&mdp->lock, flags);
2174 ret = phy_start_aneg(ndev->phydev);
2175 spin_unlock_irqrestore(&mdp->lock, flags);
2176
2177 return ret;
2178 }
2179
2180 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2181 {
2182 struct sh_eth_private *mdp = netdev_priv(ndev);
2183 return mdp->msg_enable;
2184 }
2185
2186 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2187 {
2188 struct sh_eth_private *mdp = netdev_priv(ndev);
2189 mdp->msg_enable = value;
2190 }
2191
2192 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2193 "rx_current", "tx_current",
2194 "rx_dirty", "tx_dirty",
2195 };
2196 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2197
2198 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2199 {
2200 switch (sset) {
2201 case ETH_SS_STATS:
2202 return SH_ETH_STATS_LEN;
2203 default:
2204 return -EOPNOTSUPP;
2205 }
2206 }
2207
2208 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2209 struct ethtool_stats *stats, u64 *data)
2210 {
2211 struct sh_eth_private *mdp = netdev_priv(ndev);
2212 int i = 0;
2213
2214 /* device-specific stats */
2215 data[i++] = mdp->cur_rx;
2216 data[i++] = mdp->cur_tx;
2217 data[i++] = mdp->dirty_rx;
2218 data[i++] = mdp->dirty_tx;
2219 }
2220
2221 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2222 {
2223 switch (stringset) {
2224 case ETH_SS_STATS:
2225 memcpy(data, *sh_eth_gstrings_stats,
2226 sizeof(sh_eth_gstrings_stats));
2227 break;
2228 }
2229 }
2230
2231 static void sh_eth_get_ringparam(struct net_device *ndev,
2232 struct ethtool_ringparam *ring)
2233 {
2234 struct sh_eth_private *mdp = netdev_priv(ndev);
2235
2236 ring->rx_max_pending = RX_RING_MAX;
2237 ring->tx_max_pending = TX_RING_MAX;
2238 ring->rx_pending = mdp->num_rx_ring;
2239 ring->tx_pending = mdp->num_tx_ring;
2240 }
2241
2242 static int sh_eth_set_ringparam(struct net_device *ndev,
2243 struct ethtool_ringparam *ring)
2244 {
2245 struct sh_eth_private *mdp = netdev_priv(ndev);
2246 int ret;
2247
2248 if (ring->tx_pending > TX_RING_MAX ||
2249 ring->rx_pending > RX_RING_MAX ||
2250 ring->tx_pending < TX_RING_MIN ||
2251 ring->rx_pending < RX_RING_MIN)
2252 return -EINVAL;
2253 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2254 return -EINVAL;
2255
2256 if (netif_running(ndev)) {
2257 netif_device_detach(ndev);
2258 netif_tx_disable(ndev);
2259
2260 /* Serialise with the interrupt handler and NAPI, then
2261 * disable interrupts. We have to clear the
2262 * irq_enabled flag first to ensure that interrupts
2263 * won't be re-enabled.
2264 */
2265 mdp->irq_enabled = false;
2266 synchronize_irq(ndev->irq);
2267 napi_synchronize(&mdp->napi);
2268 sh_eth_write(ndev, 0x0000, EESIPR);
2269
2270 sh_eth_dev_exit(ndev);
2271
2272 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2273 sh_eth_ring_free(ndev);
2274 }
2275
2276 /* Set new parameters */
2277 mdp->num_rx_ring = ring->rx_pending;
2278 mdp->num_tx_ring = ring->tx_pending;
2279
2280 if (netif_running(ndev)) {
2281 ret = sh_eth_ring_init(ndev);
2282 if (ret < 0) {
2283 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2284 __func__);
2285 return ret;
2286 }
2287 ret = sh_eth_dev_init(ndev);
2288 if (ret < 0) {
2289 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2290 __func__);
2291 return ret;
2292 }
2293
2294 netif_device_attach(ndev);
2295 }
2296
2297 return 0;
2298 }
2299
2300 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2301 {
2302 struct sh_eth_private *mdp = netdev_priv(ndev);
2303
2304 wol->supported = 0;
2305 wol->wolopts = 0;
2306
2307 if (mdp->cd->magic && mdp->clk) {
2308 wol->supported = WAKE_MAGIC;
2309 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2310 }
2311 }
2312
2313 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2314 {
2315 struct sh_eth_private *mdp = netdev_priv(ndev);
2316
2317 if (!mdp->cd->magic || !mdp->clk || wol->wolopts & ~WAKE_MAGIC)
2318 return -EOPNOTSUPP;
2319
2320 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2321
2322 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2323
2324 return 0;
2325 }
2326
2327 static const struct ethtool_ops sh_eth_ethtool_ops = {
2328 .get_regs_len = sh_eth_get_regs_len,
2329 .get_regs = sh_eth_get_regs,
2330 .nway_reset = sh_eth_nway_reset,
2331 .get_msglevel = sh_eth_get_msglevel,
2332 .set_msglevel = sh_eth_set_msglevel,
2333 .get_link = ethtool_op_get_link,
2334 .get_strings = sh_eth_get_strings,
2335 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2336 .get_sset_count = sh_eth_get_sset_count,
2337 .get_ringparam = sh_eth_get_ringparam,
2338 .set_ringparam = sh_eth_set_ringparam,
2339 .get_link_ksettings = sh_eth_get_link_ksettings,
2340 .set_link_ksettings = sh_eth_set_link_ksettings,
2341 .get_wol = sh_eth_get_wol,
2342 .set_wol = sh_eth_set_wol,
2343 };
2344
2345 /* network device open function */
2346 static int sh_eth_open(struct net_device *ndev)
2347 {
2348 struct sh_eth_private *mdp = netdev_priv(ndev);
2349 int ret;
2350
2351 pm_runtime_get_sync(&mdp->pdev->dev);
2352
2353 napi_enable(&mdp->napi);
2354
2355 ret = request_irq(ndev->irq, sh_eth_interrupt,
2356 mdp->cd->irq_flags, ndev->name, ndev);
2357 if (ret) {
2358 netdev_err(ndev, "Can not assign IRQ number\n");
2359 goto out_napi_off;
2360 }
2361
2362 /* Descriptor set */
2363 ret = sh_eth_ring_init(ndev);
2364 if (ret)
2365 goto out_free_irq;
2366
2367 /* device init */
2368 ret = sh_eth_dev_init(ndev);
2369 if (ret)
2370 goto out_free_irq;
2371
2372 /* PHY control start*/
2373 ret = sh_eth_phy_start(ndev);
2374 if (ret)
2375 goto out_free_irq;
2376
2377 netif_start_queue(ndev);
2378
2379 mdp->is_opened = 1;
2380
2381 return ret;
2382
2383 out_free_irq:
2384 free_irq(ndev->irq, ndev);
2385 out_napi_off:
2386 napi_disable(&mdp->napi);
2387 pm_runtime_put_sync(&mdp->pdev->dev);
2388 return ret;
2389 }
2390
2391 /* Timeout function */
2392 static void sh_eth_tx_timeout(struct net_device *ndev)
2393 {
2394 struct sh_eth_private *mdp = netdev_priv(ndev);
2395 struct sh_eth_rxdesc *rxdesc;
2396 int i;
2397
2398 netif_stop_queue(ndev);
2399
2400 netif_err(mdp, timer, ndev,
2401 "transmit timed out, status %8.8x, resetting...\n",
2402 sh_eth_read(ndev, EESR));
2403
2404 /* tx_errors count up */
2405 ndev->stats.tx_errors++;
2406
2407 /* Free all the skbuffs in the Rx queue. */
2408 for (i = 0; i < mdp->num_rx_ring; i++) {
2409 rxdesc = &mdp->rx_ring[i];
2410 rxdesc->status = cpu_to_le32(0);
2411 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2412 dev_kfree_skb(mdp->rx_skbuff[i]);
2413 mdp->rx_skbuff[i] = NULL;
2414 }
2415 for (i = 0; i < mdp->num_tx_ring; i++) {
2416 dev_kfree_skb(mdp->tx_skbuff[i]);
2417 mdp->tx_skbuff[i] = NULL;
2418 }
2419
2420 /* device init */
2421 sh_eth_dev_init(ndev);
2422
2423 netif_start_queue(ndev);
2424 }
2425
2426 /* Packet transmit function */
2427 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2428 {
2429 struct sh_eth_private *mdp = netdev_priv(ndev);
2430 struct sh_eth_txdesc *txdesc;
2431 dma_addr_t dma_addr;
2432 u32 entry;
2433 unsigned long flags;
2434
2435 spin_lock_irqsave(&mdp->lock, flags);
2436 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2437 if (!sh_eth_tx_free(ndev, true)) {
2438 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2439 netif_stop_queue(ndev);
2440 spin_unlock_irqrestore(&mdp->lock, flags);
2441 return NETDEV_TX_BUSY;
2442 }
2443 }
2444 spin_unlock_irqrestore(&mdp->lock, flags);
2445
2446 if (skb_put_padto(skb, ETH_ZLEN))
2447 return NETDEV_TX_OK;
2448
2449 entry = mdp->cur_tx % mdp->num_tx_ring;
2450 mdp->tx_skbuff[entry] = skb;
2451 txdesc = &mdp->tx_ring[entry];
2452 /* soft swap. */
2453 if (!mdp->cd->hw_swap)
2454 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2455 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2456 DMA_TO_DEVICE);
2457 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2458 kfree_skb(skb);
2459 return NETDEV_TX_OK;
2460 }
2461 txdesc->addr = cpu_to_le32(dma_addr);
2462 txdesc->len = cpu_to_le32(skb->len << 16);
2463
2464 dma_wmb(); /* TACT bit must be set after all the above writes */
2465 if (entry >= mdp->num_tx_ring - 1)
2466 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2467 else
2468 txdesc->status |= cpu_to_le32(TD_TACT);
2469
2470 mdp->cur_tx++;
2471
2472 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2473 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2474
2475 return NETDEV_TX_OK;
2476 }
2477
2478 /* The statistics registers have write-clear behaviour, which means we
2479 * will lose any increment between the read and write. We mitigate
2480 * this by only clearing when we read a non-zero value, so we will
2481 * never falsely report a total of zero.
2482 */
2483 static void
2484 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2485 {
2486 u32 delta = sh_eth_read(ndev, reg);
2487
2488 if (delta) {
2489 *stat += delta;
2490 sh_eth_write(ndev, 0, reg);
2491 }
2492 }
2493
2494 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2495 {
2496 struct sh_eth_private *mdp = netdev_priv(ndev);
2497
2498 if (sh_eth_is_rz_fast_ether(mdp))
2499 return &ndev->stats;
2500
2501 if (!mdp->is_opened)
2502 return &ndev->stats;
2503
2504 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2505 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2506 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2507
2508 if (sh_eth_is_gether(mdp)) {
2509 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2510 CERCR);
2511 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2512 CEECR);
2513 } else {
2514 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2515 CNDCR);
2516 }
2517
2518 return &ndev->stats;
2519 }
2520
2521 /* device close function */
2522 static int sh_eth_close(struct net_device *ndev)
2523 {
2524 struct sh_eth_private *mdp = netdev_priv(ndev);
2525
2526 netif_stop_queue(ndev);
2527
2528 /* Serialise with the interrupt handler and NAPI, then disable
2529 * interrupts. We have to clear the irq_enabled flag first to
2530 * ensure that interrupts won't be re-enabled.
2531 */
2532 mdp->irq_enabled = false;
2533 synchronize_irq(ndev->irq);
2534 napi_disable(&mdp->napi);
2535 sh_eth_write(ndev, 0x0000, EESIPR);
2536
2537 sh_eth_dev_exit(ndev);
2538
2539 /* PHY Disconnect */
2540 if (ndev->phydev) {
2541 phy_stop(ndev->phydev);
2542 phy_disconnect(ndev->phydev);
2543 }
2544
2545 free_irq(ndev->irq, ndev);
2546
2547 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2548 sh_eth_ring_free(ndev);
2549
2550 pm_runtime_put_sync(&mdp->pdev->dev);
2551
2552 mdp->is_opened = 0;
2553
2554 return 0;
2555 }
2556
2557 /* ioctl to device function */
2558 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2559 {
2560 struct phy_device *phydev = ndev->phydev;
2561
2562 if (!netif_running(ndev))
2563 return -EINVAL;
2564
2565 if (!phydev)
2566 return -ENODEV;
2567
2568 return phy_mii_ioctl(phydev, rq, cmd);
2569 }
2570
2571 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2572 {
2573 if (netif_running(ndev))
2574 return -EBUSY;
2575
2576 ndev->mtu = new_mtu;
2577 netdev_update_features(ndev);
2578
2579 return 0;
2580 }
2581
2582 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2583 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2584 int entry)
2585 {
2586 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2587 }
2588
2589 static u32 sh_eth_tsu_get_post_mask(int entry)
2590 {
2591 return 0x0f << (28 - ((entry % 8) * 4));
2592 }
2593
2594 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2595 {
2596 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2597 }
2598
2599 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2600 int entry)
2601 {
2602 struct sh_eth_private *mdp = netdev_priv(ndev);
2603 u32 tmp;
2604 void *reg_offset;
2605
2606 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2607 tmp = ioread32(reg_offset);
2608 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2609 }
2610
2611 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2612 int entry)
2613 {
2614 struct sh_eth_private *mdp = netdev_priv(ndev);
2615 u32 post_mask, ref_mask, tmp;
2616 void *reg_offset;
2617
2618 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2619 post_mask = sh_eth_tsu_get_post_mask(entry);
2620 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2621
2622 tmp = ioread32(reg_offset);
2623 iowrite32(tmp & ~post_mask, reg_offset);
2624
2625 /* If other port enables, the function returns "true" */
2626 return tmp & ref_mask;
2627 }
2628
2629 static int sh_eth_tsu_busy(struct net_device *ndev)
2630 {
2631 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2632 struct sh_eth_private *mdp = netdev_priv(ndev);
2633
2634 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2635 udelay(10);
2636 timeout--;
2637 if (timeout <= 0) {
2638 netdev_err(ndev, "%s: timeout\n", __func__);
2639 return -ETIMEDOUT;
2640 }
2641 }
2642
2643 return 0;
2644 }
2645
2646 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2647 const u8 *addr)
2648 {
2649 u32 val;
2650
2651 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2652 iowrite32(val, reg);
2653 if (sh_eth_tsu_busy(ndev) < 0)
2654 return -EBUSY;
2655
2656 val = addr[4] << 8 | addr[5];
2657 iowrite32(val, reg + 4);
2658 if (sh_eth_tsu_busy(ndev) < 0)
2659 return -EBUSY;
2660
2661 return 0;
2662 }
2663
2664 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2665 {
2666 u32 val;
2667
2668 val = ioread32(reg);
2669 addr[0] = (val >> 24) & 0xff;
2670 addr[1] = (val >> 16) & 0xff;
2671 addr[2] = (val >> 8) & 0xff;
2672 addr[3] = val & 0xff;
2673 val = ioread32(reg + 4);
2674 addr[4] = (val >> 8) & 0xff;
2675 addr[5] = val & 0xff;
2676 }
2677
2678
2679 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2680 {
2681 struct sh_eth_private *mdp = netdev_priv(ndev);
2682 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2683 int i;
2684 u8 c_addr[ETH_ALEN];
2685
2686 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2687 sh_eth_tsu_read_entry(reg_offset, c_addr);
2688 if (ether_addr_equal(addr, c_addr))
2689 return i;
2690 }
2691
2692 return -ENOENT;
2693 }
2694
2695 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2696 {
2697 u8 blank[ETH_ALEN];
2698 int entry;
2699
2700 memset(blank, 0, sizeof(blank));
2701 entry = sh_eth_tsu_find_entry(ndev, blank);
2702 return (entry < 0) ? -ENOMEM : entry;
2703 }
2704
2705 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2706 int entry)
2707 {
2708 struct sh_eth_private *mdp = netdev_priv(ndev);
2709 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2710 int ret;
2711 u8 blank[ETH_ALEN];
2712
2713 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2714 ~(1 << (31 - entry)), TSU_TEN);
2715
2716 memset(blank, 0, sizeof(blank));
2717 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2718 if (ret < 0)
2719 return ret;
2720 return 0;
2721 }
2722
2723 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2724 {
2725 struct sh_eth_private *mdp = netdev_priv(ndev);
2726 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2727 int i, ret;
2728
2729 if (!mdp->cd->tsu)
2730 return 0;
2731
2732 i = sh_eth_tsu_find_entry(ndev, addr);
2733 if (i < 0) {
2734 /* No entry found, create one */
2735 i = sh_eth_tsu_find_empty(ndev);
2736 if (i < 0)
2737 return -ENOMEM;
2738 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2739 if (ret < 0)
2740 return ret;
2741
2742 /* Enable the entry */
2743 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2744 (1 << (31 - i)), TSU_TEN);
2745 }
2746
2747 /* Entry found or created, enable POST */
2748 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2749
2750 return 0;
2751 }
2752
2753 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2754 {
2755 struct sh_eth_private *mdp = netdev_priv(ndev);
2756 int i, ret;
2757
2758 if (!mdp->cd->tsu)
2759 return 0;
2760
2761 i = sh_eth_tsu_find_entry(ndev, addr);
2762 if (i) {
2763 /* Entry found */
2764 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2765 goto done;
2766
2767 /* Disable the entry if both ports was disabled */
2768 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2769 if (ret < 0)
2770 return ret;
2771 }
2772 done:
2773 return 0;
2774 }
2775
2776 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2777 {
2778 struct sh_eth_private *mdp = netdev_priv(ndev);
2779 int i, ret;
2780
2781 if (!mdp->cd->tsu)
2782 return 0;
2783
2784 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2785 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2786 continue;
2787
2788 /* Disable the entry if both ports was disabled */
2789 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2790 if (ret < 0)
2791 return ret;
2792 }
2793
2794 return 0;
2795 }
2796
2797 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2798 {
2799 struct sh_eth_private *mdp = netdev_priv(ndev);
2800 u8 addr[ETH_ALEN];
2801 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2802 int i;
2803
2804 if (!mdp->cd->tsu)
2805 return;
2806
2807 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2808 sh_eth_tsu_read_entry(reg_offset, addr);
2809 if (is_multicast_ether_addr(addr))
2810 sh_eth_tsu_del_entry(ndev, addr);
2811 }
2812 }
2813
2814 /* Update promiscuous flag and multicast filter */
2815 static void sh_eth_set_rx_mode(struct net_device *ndev)
2816 {
2817 struct sh_eth_private *mdp = netdev_priv(ndev);
2818 u32 ecmr_bits;
2819 int mcast_all = 0;
2820 unsigned long flags;
2821
2822 spin_lock_irqsave(&mdp->lock, flags);
2823 /* Initial condition is MCT = 1, PRM = 0.
2824 * Depending on ndev->flags, set PRM or clear MCT
2825 */
2826 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2827 if (mdp->cd->tsu)
2828 ecmr_bits |= ECMR_MCT;
2829
2830 if (!(ndev->flags & IFF_MULTICAST)) {
2831 sh_eth_tsu_purge_mcast(ndev);
2832 mcast_all = 1;
2833 }
2834 if (ndev->flags & IFF_ALLMULTI) {
2835 sh_eth_tsu_purge_mcast(ndev);
2836 ecmr_bits &= ~ECMR_MCT;
2837 mcast_all = 1;
2838 }
2839
2840 if (ndev->flags & IFF_PROMISC) {
2841 sh_eth_tsu_purge_all(ndev);
2842 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2843 } else if (mdp->cd->tsu) {
2844 struct netdev_hw_addr *ha;
2845 netdev_for_each_mc_addr(ha, ndev) {
2846 if (mcast_all && is_multicast_ether_addr(ha->addr))
2847 continue;
2848
2849 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2850 if (!mcast_all) {
2851 sh_eth_tsu_purge_mcast(ndev);
2852 ecmr_bits &= ~ECMR_MCT;
2853 mcast_all = 1;
2854 }
2855 }
2856 }
2857 }
2858
2859 /* update the ethernet mode */
2860 sh_eth_write(ndev, ecmr_bits, ECMR);
2861
2862 spin_unlock_irqrestore(&mdp->lock, flags);
2863 }
2864
2865 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2866 {
2867 if (!mdp->port)
2868 return TSU_VTAG0;
2869 else
2870 return TSU_VTAG1;
2871 }
2872
2873 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2874 __be16 proto, u16 vid)
2875 {
2876 struct sh_eth_private *mdp = netdev_priv(ndev);
2877 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2878
2879 if (unlikely(!mdp->cd->tsu))
2880 return -EPERM;
2881
2882 /* No filtering if vid = 0 */
2883 if (!vid)
2884 return 0;
2885
2886 mdp->vlan_num_ids++;
2887
2888 /* The controller has one VLAN tag HW filter. So, if the filter is
2889 * already enabled, the driver disables it and the filte
2890 */
2891 if (mdp->vlan_num_ids > 1) {
2892 /* disable VLAN filter */
2893 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2894 return 0;
2895 }
2896
2897 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2898 vtag_reg_index);
2899
2900 return 0;
2901 }
2902
2903 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2904 __be16 proto, u16 vid)
2905 {
2906 struct sh_eth_private *mdp = netdev_priv(ndev);
2907 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2908
2909 if (unlikely(!mdp->cd->tsu))
2910 return -EPERM;
2911
2912 /* No filtering if vid = 0 */
2913 if (!vid)
2914 return 0;
2915
2916 mdp->vlan_num_ids--;
2917 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2918
2919 return 0;
2920 }
2921
2922 /* SuperH's TSU register init function */
2923 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2924 {
2925 if (sh_eth_is_rz_fast_ether(mdp)) {
2926 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2927 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2928 TSU_FWSLC); /* Enable POST registers */
2929 return;
2930 }
2931
2932 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2933 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2934 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2935 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2936 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2937 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2938 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2939 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2940 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2941 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2942 if (sh_eth_is_gether(mdp)) {
2943 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2944 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2945 } else {
2946 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2947 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2948 }
2949 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2950 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2951 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2952 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2953 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2954 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2955 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2956 }
2957
2958 /* MDIO bus release function */
2959 static int sh_mdio_release(struct sh_eth_private *mdp)
2960 {
2961 /* unregister mdio bus */
2962 mdiobus_unregister(mdp->mii_bus);
2963
2964 /* free bitbang info */
2965 free_mdio_bitbang(mdp->mii_bus);
2966
2967 return 0;
2968 }
2969
2970 /* MDIO bus init function */
2971 static int sh_mdio_init(struct sh_eth_private *mdp,
2972 struct sh_eth_plat_data *pd)
2973 {
2974 int ret;
2975 struct bb_info *bitbang;
2976 struct platform_device *pdev = mdp->pdev;
2977 struct device *dev = &mdp->pdev->dev;
2978
2979 /* create bit control struct for PHY */
2980 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2981 if (!bitbang)
2982 return -ENOMEM;
2983
2984 /* bitbang init */
2985 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2986 bitbang->set_gate = pd->set_mdio_gate;
2987 bitbang->ctrl.ops = &bb_ops;
2988
2989 /* MII controller setting */
2990 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2991 if (!mdp->mii_bus)
2992 return -ENOMEM;
2993
2994 /* Hook up MII support for ethtool */
2995 mdp->mii_bus->name = "sh_mii";
2996 mdp->mii_bus->parent = dev;
2997 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2998 pdev->name, pdev->id);
2999
3000 /* register MDIO bus */
3001 if (dev->of_node) {
3002 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3003 } else {
3004 if (pd->phy_irq > 0)
3005 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3006
3007 ret = mdiobus_register(mdp->mii_bus);
3008 }
3009
3010 if (ret)
3011 goto out_free_bus;
3012
3013 return 0;
3014
3015 out_free_bus:
3016 free_mdio_bitbang(mdp->mii_bus);
3017 return ret;
3018 }
3019
3020 static const u16 *sh_eth_get_register_offset(int register_type)
3021 {
3022 const u16 *reg_offset = NULL;
3023
3024 switch (register_type) {
3025 case SH_ETH_REG_GIGABIT:
3026 reg_offset = sh_eth_offset_gigabit;
3027 break;
3028 case SH_ETH_REG_FAST_RZ:
3029 reg_offset = sh_eth_offset_fast_rz;
3030 break;
3031 case SH_ETH_REG_FAST_RCAR:
3032 reg_offset = sh_eth_offset_fast_rcar;
3033 break;
3034 case SH_ETH_REG_FAST_SH4:
3035 reg_offset = sh_eth_offset_fast_sh4;
3036 break;
3037 case SH_ETH_REG_FAST_SH3_SH2:
3038 reg_offset = sh_eth_offset_fast_sh3_sh2;
3039 break;
3040 }
3041
3042 return reg_offset;
3043 }
3044
3045 static const struct net_device_ops sh_eth_netdev_ops = {
3046 .ndo_open = sh_eth_open,
3047 .ndo_stop = sh_eth_close,
3048 .ndo_start_xmit = sh_eth_start_xmit,
3049 .ndo_get_stats = sh_eth_get_stats,
3050 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3051 .ndo_tx_timeout = sh_eth_tx_timeout,
3052 .ndo_do_ioctl = sh_eth_do_ioctl,
3053 .ndo_change_mtu = sh_eth_change_mtu,
3054 .ndo_validate_addr = eth_validate_addr,
3055 .ndo_set_mac_address = eth_mac_addr,
3056 };
3057
3058 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3059 .ndo_open = sh_eth_open,
3060 .ndo_stop = sh_eth_close,
3061 .ndo_start_xmit = sh_eth_start_xmit,
3062 .ndo_get_stats = sh_eth_get_stats,
3063 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3064 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
3065 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
3066 .ndo_tx_timeout = sh_eth_tx_timeout,
3067 .ndo_do_ioctl = sh_eth_do_ioctl,
3068 .ndo_change_mtu = sh_eth_change_mtu,
3069 .ndo_validate_addr = eth_validate_addr,
3070 .ndo_set_mac_address = eth_mac_addr,
3071 };
3072
3073 #ifdef CONFIG_OF
3074 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3075 {
3076 struct device_node *np = dev->of_node;
3077 struct sh_eth_plat_data *pdata;
3078 const char *mac_addr;
3079
3080 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3081 if (!pdata)
3082 return NULL;
3083
3084 pdata->phy_interface = of_get_phy_mode(np);
3085
3086 mac_addr = of_get_mac_address(np);
3087 if (mac_addr)
3088 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3089
3090 pdata->no_ether_link =
3091 of_property_read_bool(np, "renesas,no-ether-link");
3092 pdata->ether_link_active_low =
3093 of_property_read_bool(np, "renesas,ether-link-active-low");
3094
3095 return pdata;
3096 }
3097
3098 static const struct of_device_id sh_eth_match_table[] = {
3099 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3100 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3101 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3102 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3103 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3104 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3105 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3106 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3107 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3108 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3109 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3110 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3111 { }
3112 };
3113 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3114 #else
3115 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3116 {
3117 return NULL;
3118 }
3119 #endif
3120
3121 static int sh_eth_drv_probe(struct platform_device *pdev)
3122 {
3123 struct resource *res;
3124 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3125 const struct platform_device_id *id = platform_get_device_id(pdev);
3126 struct sh_eth_private *mdp;
3127 struct net_device *ndev;
3128 int ret, devno;
3129
3130 /* get base addr */
3131 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3132
3133 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3134 if (!ndev)
3135 return -ENOMEM;
3136
3137 pm_runtime_enable(&pdev->dev);
3138 pm_runtime_get_sync(&pdev->dev);
3139
3140 devno = pdev->id;
3141 if (devno < 0)
3142 devno = 0;
3143
3144 ret = platform_get_irq(pdev, 0);
3145 if (ret < 0)
3146 goto out_release;
3147 ndev->irq = ret;
3148
3149 SET_NETDEV_DEV(ndev, &pdev->dev);
3150
3151 mdp = netdev_priv(ndev);
3152 mdp->num_tx_ring = TX_RING_SIZE;
3153 mdp->num_rx_ring = RX_RING_SIZE;
3154 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3155 if (IS_ERR(mdp->addr)) {
3156 ret = PTR_ERR(mdp->addr);
3157 goto out_release;
3158 }
3159
3160 /* Get clock, if not found that's OK but Wake-On-Lan is unavailable */
3161 mdp->clk = devm_clk_get(&pdev->dev, NULL);
3162 if (IS_ERR(mdp->clk))
3163 mdp->clk = NULL;
3164
3165 ndev->base_addr = res->start;
3166
3167 spin_lock_init(&mdp->lock);
3168 mdp->pdev = pdev;
3169
3170 if (pdev->dev.of_node)
3171 pd = sh_eth_parse_dt(&pdev->dev);
3172 if (!pd) {
3173 dev_err(&pdev->dev, "no platform data\n");
3174 ret = -EINVAL;
3175 goto out_release;
3176 }
3177
3178 /* get PHY ID */
3179 mdp->phy_id = pd->phy;
3180 mdp->phy_interface = pd->phy_interface;
3181 mdp->no_ether_link = pd->no_ether_link;
3182 mdp->ether_link_active_low = pd->ether_link_active_low;
3183
3184 /* set cpu data */
3185 if (id)
3186 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3187 else
3188 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3189
3190 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3191 if (!mdp->reg_offset) {
3192 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3193 mdp->cd->register_type);
3194 ret = -EINVAL;
3195 goto out_release;
3196 }
3197 sh_eth_set_default_cpu_data(mdp->cd);
3198
3199 /* User's manual states max MTU should be 2048 but due to the
3200 * alignment calculations in sh_eth_ring_init() the practical
3201 * MTU is a bit less. Maybe this can be optimized some more.
3202 */
3203 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3204 ndev->min_mtu = ETH_MIN_MTU;
3205
3206 /* set function */
3207 if (mdp->cd->tsu)
3208 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3209 else
3210 ndev->netdev_ops = &sh_eth_netdev_ops;
3211 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3212 ndev->watchdog_timeo = TX_TIMEOUT;
3213
3214 /* debug message level */
3215 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3216
3217 /* read and set MAC address */
3218 read_mac_address(ndev, pd->mac_addr);
3219 if (!is_valid_ether_addr(ndev->dev_addr)) {
3220 dev_warn(&pdev->dev,
3221 "no valid MAC address supplied, using a random one.\n");
3222 eth_hw_addr_random(ndev);
3223 }
3224
3225 /* ioremap the TSU registers */
3226 if (mdp->cd->tsu) {
3227 struct resource *rtsu;
3228
3229 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3230 if (!rtsu) {
3231 dev_err(&pdev->dev, "no TSU resource\n");
3232 ret = -ENODEV;
3233 goto out_release;
3234 }
3235 /* We can only request the TSU region for the first port
3236 * of the two sharing this TSU for the probe to succeed...
3237 */
3238 if (devno % 2 == 0 &&
3239 !devm_request_mem_region(&pdev->dev, rtsu->start,
3240 resource_size(rtsu),
3241 dev_name(&pdev->dev))) {
3242 dev_err(&pdev->dev, "can't request TSU resource.\n");
3243 ret = -EBUSY;
3244 goto out_release;
3245 }
3246 mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3247 resource_size(rtsu));
3248 if (!mdp->tsu_addr) {
3249 dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3250 ret = -ENOMEM;
3251 goto out_release;
3252 }
3253 mdp->port = devno % 2;
3254 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3255 }
3256
3257 /* Need to init only the first port of the two sharing a TSU */
3258 if (devno % 2 == 0) {
3259 if (mdp->cd->chip_reset)
3260 mdp->cd->chip_reset(ndev);
3261
3262 if (mdp->cd->tsu) {
3263 /* TSU init (Init only)*/
3264 sh_eth_tsu_init(mdp);
3265 }
3266 }
3267
3268 if (mdp->cd->rmiimode)
3269 sh_eth_write(ndev, 0x1, RMIIMODE);
3270
3271 /* MDIO bus init */
3272 ret = sh_mdio_init(mdp, pd);
3273 if (ret) {
3274 if (ret != -EPROBE_DEFER)
3275 dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3276 goto out_release;
3277 }
3278
3279 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3280
3281 /* network device register */
3282 ret = register_netdev(ndev);
3283 if (ret)
3284 goto out_napi_del;
3285
3286 if (mdp->cd->magic && mdp->clk)
3287 device_set_wakeup_capable(&pdev->dev, 1);
3288
3289 /* print device information */
3290 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3291 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3292
3293 pm_runtime_put(&pdev->dev);
3294 platform_set_drvdata(pdev, ndev);
3295
3296 return ret;
3297
3298 out_napi_del:
3299 netif_napi_del(&mdp->napi);
3300 sh_mdio_release(mdp);
3301
3302 out_release:
3303 /* net_dev free */
3304 if (ndev)
3305 free_netdev(ndev);
3306
3307 pm_runtime_put(&pdev->dev);
3308 pm_runtime_disable(&pdev->dev);
3309 return ret;
3310 }
3311
3312 static int sh_eth_drv_remove(struct platform_device *pdev)
3313 {
3314 struct net_device *ndev = platform_get_drvdata(pdev);
3315 struct sh_eth_private *mdp = netdev_priv(ndev);
3316
3317 unregister_netdev(ndev);
3318 netif_napi_del(&mdp->napi);
3319 sh_mdio_release(mdp);
3320 pm_runtime_disable(&pdev->dev);
3321 free_netdev(ndev);
3322
3323 return 0;
3324 }
3325
3326 #ifdef CONFIG_PM
3327 #ifdef CONFIG_PM_SLEEP
3328 static int sh_eth_wol_setup(struct net_device *ndev)
3329 {
3330 struct sh_eth_private *mdp = netdev_priv(ndev);
3331
3332 /* Only allow ECI interrupts */
3333 synchronize_irq(ndev->irq);
3334 napi_disable(&mdp->napi);
3335 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3336
3337 /* Enable MagicPacket */
3338 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3339
3340 /* Increased clock usage so device won't be suspended */
3341 clk_enable(mdp->clk);
3342
3343 return enable_irq_wake(ndev->irq);
3344 }
3345
3346 static int sh_eth_wol_restore(struct net_device *ndev)
3347 {
3348 struct sh_eth_private *mdp = netdev_priv(ndev);
3349 int ret;
3350
3351 napi_enable(&mdp->napi);
3352
3353 /* Disable MagicPacket */
3354 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3355
3356 /* The device needs to be reset to restore MagicPacket logic
3357 * for next wakeup. If we close and open the device it will
3358 * both be reset and all registers restored. This is what
3359 * happens during suspend and resume without WoL enabled.
3360 */
3361 ret = sh_eth_close(ndev);
3362 if (ret < 0)
3363 return ret;
3364 ret = sh_eth_open(ndev);
3365 if (ret < 0)
3366 return ret;
3367
3368 /* Restore clock usage count */
3369 clk_disable(mdp->clk);
3370
3371 return disable_irq_wake(ndev->irq);
3372 }
3373
3374 static int sh_eth_suspend(struct device *dev)
3375 {
3376 struct net_device *ndev = dev_get_drvdata(dev);
3377 struct sh_eth_private *mdp = netdev_priv(ndev);
3378 int ret = 0;
3379
3380 if (!netif_running(ndev))
3381 return 0;
3382
3383 netif_device_detach(ndev);
3384
3385 if (mdp->wol_enabled)
3386 ret = sh_eth_wol_setup(ndev);
3387 else
3388 ret = sh_eth_close(ndev);
3389
3390 return ret;
3391 }
3392
3393 static int sh_eth_resume(struct device *dev)
3394 {
3395 struct net_device *ndev = dev_get_drvdata(dev);
3396 struct sh_eth_private *mdp = netdev_priv(ndev);
3397 int ret = 0;
3398
3399 if (!netif_running(ndev))
3400 return 0;
3401
3402 if (mdp->wol_enabled)
3403 ret = sh_eth_wol_restore(ndev);
3404 else
3405 ret = sh_eth_open(ndev);
3406
3407 if (ret < 0)
3408 return ret;
3409
3410 netif_device_attach(ndev);
3411
3412 return ret;
3413 }
3414 #endif
3415
3416 static int sh_eth_runtime_nop(struct device *dev)
3417 {
3418 /* Runtime PM callback shared between ->runtime_suspend()
3419 * and ->runtime_resume(). Simply returns success.
3420 *
3421 * This driver re-initializes all registers after
3422 * pm_runtime_get_sync() anyway so there is no need
3423 * to save and restore registers here.
3424 */
3425 return 0;
3426 }
3427
3428 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3429 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3430 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3431 };
3432 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3433 #else
3434 #define SH_ETH_PM_OPS NULL
3435 #endif
3436
3437 static const struct platform_device_id sh_eth_id_table[] = {
3438 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3439 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3440 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3441 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3442 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3443 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3444 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3445 { }
3446 };
3447 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3448
3449 static struct platform_driver sh_eth_driver = {
3450 .probe = sh_eth_drv_probe,
3451 .remove = sh_eth_drv_remove,
3452 .id_table = sh_eth_id_table,
3453 .driver = {
3454 .name = CARDNAME,
3455 .pm = SH_ETH_PM_OPS,
3456 .of_match_table = of_match_ptr(sh_eth_match_table),
3457 },
3458 };
3459
3460 module_platform_driver(sh_eth_driver);
3461
3462 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3463 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3464 MODULE_LICENSE("GPL v2");