]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/renesas/sh_eth.c
net: phy: remove flags argument from phy_{attach, connect, connect_direct}
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /*
2 * SuperH Ethernet device driver
3 *
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2012 Renesas Solutions Corp.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * The full GNU General Public License is included in this distribution in
20 * the file called "COPYING".
21 */
22
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/slab.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/clk.h>
42 #include <linux/sh_eth.h>
43
44 #include "sh_eth.h"
45
46 #define SH_ETH_DEF_MSG_ENABLE \
47 (NETIF_MSG_LINK | \
48 NETIF_MSG_TIMER | \
49 NETIF_MSG_RX_ERR| \
50 NETIF_MSG_TX_ERR)
51
52 #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
53 defined(CONFIG_CPU_SUBTYPE_SH7763) || \
54 defined(CONFIG_ARCH_R8A7740)
55 static void sh_eth_select_mii(struct net_device *ndev)
56 {
57 u32 value = 0x0;
58 struct sh_eth_private *mdp = netdev_priv(ndev);
59
60 switch (mdp->phy_interface) {
61 case PHY_INTERFACE_MODE_GMII:
62 value = 0x2;
63 break;
64 case PHY_INTERFACE_MODE_MII:
65 value = 0x1;
66 break;
67 case PHY_INTERFACE_MODE_RMII:
68 value = 0x0;
69 break;
70 default:
71 pr_warn("PHY interface mode was not setup. Set to MII.\n");
72 value = 0x1;
73 break;
74 }
75
76 sh_eth_write(ndev, value, RMII_MII);
77 }
78 #endif
79
80 /* There is CPU dependent code */
81 #if defined(CONFIG_CPU_SUBTYPE_SH7724) || defined(CONFIG_ARCH_R8A7779)
82 #define SH_ETH_RESET_DEFAULT 1
83 static void sh_eth_set_duplex(struct net_device *ndev)
84 {
85 struct sh_eth_private *mdp = netdev_priv(ndev);
86
87 if (mdp->duplex) /* Full */
88 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
89 else /* Half */
90 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
91 }
92
93 static void sh_eth_set_rate(struct net_device *ndev)
94 {
95 struct sh_eth_private *mdp = netdev_priv(ndev);
96 unsigned int bits = ECMR_RTM;
97
98 #if defined(CONFIG_ARCH_R8A7779)
99 bits |= ECMR_ELB;
100 #endif
101
102 switch (mdp->speed) {
103 case 10: /* 10BASE */
104 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~bits, ECMR);
105 break;
106 case 100:/* 100BASE */
107 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | bits, ECMR);
108 break;
109 default:
110 break;
111 }
112 }
113
114 /* SH7724 */
115 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
116 .set_duplex = sh_eth_set_duplex,
117 .set_rate = sh_eth_set_rate,
118
119 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
120 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
121 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
122
123 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
124 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
125 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
126 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
127
128 .apr = 1,
129 .mpr = 1,
130 .tpauser = 1,
131 .hw_swap = 1,
132 .rpadir = 1,
133 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
134 };
135 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
136 #define SH_ETH_HAS_BOTH_MODULES 1
137 #define SH_ETH_HAS_TSU 1
138 static int sh_eth_check_reset(struct net_device *ndev);
139
140 static void sh_eth_set_duplex(struct net_device *ndev)
141 {
142 struct sh_eth_private *mdp = netdev_priv(ndev);
143
144 if (mdp->duplex) /* Full */
145 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
146 else /* Half */
147 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
148 }
149
150 static void sh_eth_set_rate(struct net_device *ndev)
151 {
152 struct sh_eth_private *mdp = netdev_priv(ndev);
153
154 switch (mdp->speed) {
155 case 10: /* 10BASE */
156 sh_eth_write(ndev, 0, RTRATE);
157 break;
158 case 100:/* 100BASE */
159 sh_eth_write(ndev, 1, RTRATE);
160 break;
161 default:
162 break;
163 }
164 }
165
166 /* SH7757 */
167 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
168 .set_duplex = sh_eth_set_duplex,
169 .set_rate = sh_eth_set_rate,
170
171 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
172 .rmcr_value = 0x00000001,
173
174 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
175 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
176 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
177 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
178
179 .apr = 1,
180 .mpr = 1,
181 .tpauser = 1,
182 .hw_swap = 1,
183 .no_ade = 1,
184 .rpadir = 1,
185 .rpadir_value = 2 << 16,
186 };
187
188 #define SH_GIGA_ETH_BASE 0xfee00000
189 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
190 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
191 static void sh_eth_chip_reset_giga(struct net_device *ndev)
192 {
193 int i;
194 unsigned long mahr[2], malr[2];
195
196 /* save MAHR and MALR */
197 for (i = 0; i < 2; i++) {
198 malr[i] = ioread32((void *)GIGA_MALR(i));
199 mahr[i] = ioread32((void *)GIGA_MAHR(i));
200 }
201
202 /* reset device */
203 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
204 mdelay(1);
205
206 /* restore MAHR and MALR */
207 for (i = 0; i < 2; i++) {
208 iowrite32(malr[i], (void *)GIGA_MALR(i));
209 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
210 }
211 }
212
213 static int sh_eth_is_gether(struct sh_eth_private *mdp);
214 static int sh_eth_reset(struct net_device *ndev)
215 {
216 struct sh_eth_private *mdp = netdev_priv(ndev);
217 int ret = 0;
218
219 if (sh_eth_is_gether(mdp)) {
220 sh_eth_write(ndev, 0x03, EDSR);
221 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
222 EDMR);
223
224 ret = sh_eth_check_reset(ndev);
225 if (ret)
226 goto out;
227
228 /* Table Init */
229 sh_eth_write(ndev, 0x0, TDLAR);
230 sh_eth_write(ndev, 0x0, TDFAR);
231 sh_eth_write(ndev, 0x0, TDFXR);
232 sh_eth_write(ndev, 0x0, TDFFR);
233 sh_eth_write(ndev, 0x0, RDLAR);
234 sh_eth_write(ndev, 0x0, RDFAR);
235 sh_eth_write(ndev, 0x0, RDFXR);
236 sh_eth_write(ndev, 0x0, RDFFR);
237 } else {
238 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
239 EDMR);
240 mdelay(3);
241 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
242 EDMR);
243 }
244
245 out:
246 return ret;
247 }
248
249 static void sh_eth_set_duplex_giga(struct net_device *ndev)
250 {
251 struct sh_eth_private *mdp = netdev_priv(ndev);
252
253 if (mdp->duplex) /* Full */
254 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
255 else /* Half */
256 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
257 }
258
259 static void sh_eth_set_rate_giga(struct net_device *ndev)
260 {
261 struct sh_eth_private *mdp = netdev_priv(ndev);
262
263 switch (mdp->speed) {
264 case 10: /* 10BASE */
265 sh_eth_write(ndev, 0x00000000, GECMR);
266 break;
267 case 100:/* 100BASE */
268 sh_eth_write(ndev, 0x00000010, GECMR);
269 break;
270 case 1000: /* 1000BASE */
271 sh_eth_write(ndev, 0x00000020, GECMR);
272 break;
273 default:
274 break;
275 }
276 }
277
278 /* SH7757(GETHERC) */
279 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
280 .chip_reset = sh_eth_chip_reset_giga,
281 .set_duplex = sh_eth_set_duplex_giga,
282 .set_rate = sh_eth_set_rate_giga,
283
284 .ecsr_value = ECSR_ICD | ECSR_MPD,
285 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
286 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
287
288 .tx_check = EESR_TC1 | EESR_FTC,
289 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
290 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
291 EESR_ECI,
292 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
293 EESR_TFE,
294 .fdr_value = 0x0000072f,
295 .rmcr_value = 0x00000001,
296
297 .apr = 1,
298 .mpr = 1,
299 .tpauser = 1,
300 .bculr = 1,
301 .hw_swap = 1,
302 .rpadir = 1,
303 .rpadir_value = 2 << 16,
304 .no_trimd = 1,
305 .no_ade = 1,
306 .tsu = 1,
307 };
308
309 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
310 {
311 if (sh_eth_is_gether(mdp))
312 return &sh_eth_my_cpu_data_giga;
313 else
314 return &sh_eth_my_cpu_data;
315 }
316
317 #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
318 #define SH_ETH_HAS_TSU 1
319 static int sh_eth_check_reset(struct net_device *ndev);
320 static void sh_eth_reset_hw_crc(struct net_device *ndev);
321
322 static void sh_eth_chip_reset(struct net_device *ndev)
323 {
324 struct sh_eth_private *mdp = netdev_priv(ndev);
325
326 /* reset device */
327 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
328 mdelay(1);
329 }
330
331 static void sh_eth_set_duplex(struct net_device *ndev)
332 {
333 struct sh_eth_private *mdp = netdev_priv(ndev);
334
335 if (mdp->duplex) /* Full */
336 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
337 else /* Half */
338 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
339 }
340
341 static void sh_eth_set_rate(struct net_device *ndev)
342 {
343 struct sh_eth_private *mdp = netdev_priv(ndev);
344
345 switch (mdp->speed) {
346 case 10: /* 10BASE */
347 sh_eth_write(ndev, GECMR_10, GECMR);
348 break;
349 case 100:/* 100BASE */
350 sh_eth_write(ndev, GECMR_100, GECMR);
351 break;
352 case 1000: /* 1000BASE */
353 sh_eth_write(ndev, GECMR_1000, GECMR);
354 break;
355 default:
356 break;
357 }
358 }
359
360 /* sh7763 */
361 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
362 .chip_reset = sh_eth_chip_reset,
363 .set_duplex = sh_eth_set_duplex,
364 .set_rate = sh_eth_set_rate,
365
366 .ecsr_value = ECSR_ICD | ECSR_MPD,
367 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
368 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
369
370 .tx_check = EESR_TC1 | EESR_FTC,
371 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
372 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
373 EESR_ECI,
374 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
375 EESR_TFE,
376
377 .apr = 1,
378 .mpr = 1,
379 .tpauser = 1,
380 .bculr = 1,
381 .hw_swap = 1,
382 .no_trimd = 1,
383 .no_ade = 1,
384 .tsu = 1,
385 #if defined(CONFIG_CPU_SUBTYPE_SH7734)
386 .hw_crc = 1,
387 .select_mii = 1,
388 #endif
389 };
390
391 static int sh_eth_reset(struct net_device *ndev)
392 {
393 int ret = 0;
394
395 sh_eth_write(ndev, EDSR_ENALL, EDSR);
396 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
397
398 ret = sh_eth_check_reset(ndev);
399 if (ret)
400 goto out;
401
402 /* Table Init */
403 sh_eth_write(ndev, 0x0, TDLAR);
404 sh_eth_write(ndev, 0x0, TDFAR);
405 sh_eth_write(ndev, 0x0, TDFXR);
406 sh_eth_write(ndev, 0x0, TDFFR);
407 sh_eth_write(ndev, 0x0, RDLAR);
408 sh_eth_write(ndev, 0x0, RDFAR);
409 sh_eth_write(ndev, 0x0, RDFXR);
410 sh_eth_write(ndev, 0x0, RDFFR);
411
412 /* Reset HW CRC register */
413 sh_eth_reset_hw_crc(ndev);
414
415 /* Select MII mode */
416 if (sh_eth_my_cpu_data.select_mii)
417 sh_eth_select_mii(ndev);
418 out:
419 return ret;
420 }
421
422 static void sh_eth_reset_hw_crc(struct net_device *ndev)
423 {
424 if (sh_eth_my_cpu_data.hw_crc)
425 sh_eth_write(ndev, 0x0, CSMR);
426 }
427
428 #elif defined(CONFIG_ARCH_R8A7740)
429 #define SH_ETH_HAS_TSU 1
430 static int sh_eth_check_reset(struct net_device *ndev);
431
432 static void sh_eth_chip_reset(struct net_device *ndev)
433 {
434 struct sh_eth_private *mdp = netdev_priv(ndev);
435
436 /* reset device */
437 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
438 mdelay(1);
439
440 sh_eth_select_mii(ndev);
441 }
442
443 static int sh_eth_reset(struct net_device *ndev)
444 {
445 int ret = 0;
446
447 sh_eth_write(ndev, EDSR_ENALL, EDSR);
448 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
449
450 ret = sh_eth_check_reset(ndev);
451 if (ret)
452 goto out;
453
454 /* Table Init */
455 sh_eth_write(ndev, 0x0, TDLAR);
456 sh_eth_write(ndev, 0x0, TDFAR);
457 sh_eth_write(ndev, 0x0, TDFXR);
458 sh_eth_write(ndev, 0x0, TDFFR);
459 sh_eth_write(ndev, 0x0, RDLAR);
460 sh_eth_write(ndev, 0x0, RDFAR);
461 sh_eth_write(ndev, 0x0, RDFXR);
462 sh_eth_write(ndev, 0x0, RDFFR);
463
464 out:
465 return ret;
466 }
467
468 static void sh_eth_set_duplex(struct net_device *ndev)
469 {
470 struct sh_eth_private *mdp = netdev_priv(ndev);
471
472 if (mdp->duplex) /* Full */
473 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
474 else /* Half */
475 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
476 }
477
478 static void sh_eth_set_rate(struct net_device *ndev)
479 {
480 struct sh_eth_private *mdp = netdev_priv(ndev);
481
482 switch (mdp->speed) {
483 case 10: /* 10BASE */
484 sh_eth_write(ndev, GECMR_10, GECMR);
485 break;
486 case 100:/* 100BASE */
487 sh_eth_write(ndev, GECMR_100, GECMR);
488 break;
489 case 1000: /* 1000BASE */
490 sh_eth_write(ndev, GECMR_1000, GECMR);
491 break;
492 default:
493 break;
494 }
495 }
496
497 /* R8A7740 */
498 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
499 .chip_reset = sh_eth_chip_reset,
500 .set_duplex = sh_eth_set_duplex,
501 .set_rate = sh_eth_set_rate,
502
503 .ecsr_value = ECSR_ICD | ECSR_MPD,
504 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
505 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
506
507 .tx_check = EESR_TC1 | EESR_FTC,
508 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
509 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
510 EESR_ECI,
511 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
512 EESR_TFE,
513
514 .apr = 1,
515 .mpr = 1,
516 .tpauser = 1,
517 .bculr = 1,
518 .hw_swap = 1,
519 .no_trimd = 1,
520 .no_ade = 1,
521 .tsu = 1,
522 .select_mii = 1,
523 };
524
525 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
526 #define SH_ETH_RESET_DEFAULT 1
527 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
528 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
529
530 .apr = 1,
531 .mpr = 1,
532 .tpauser = 1,
533 .hw_swap = 1,
534 };
535 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
536 #define SH_ETH_RESET_DEFAULT 1
537 #define SH_ETH_HAS_TSU 1
538 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
539 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
540 .tsu = 1,
541 };
542 #endif
543
544 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
545 {
546 if (!cd->ecsr_value)
547 cd->ecsr_value = DEFAULT_ECSR_INIT;
548
549 if (!cd->ecsipr_value)
550 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
551
552 if (!cd->fcftr_value)
553 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
554 DEFAULT_FIFO_F_D_RFD;
555
556 if (!cd->fdr_value)
557 cd->fdr_value = DEFAULT_FDR_INIT;
558
559 if (!cd->rmcr_value)
560 cd->rmcr_value = DEFAULT_RMCR_VALUE;
561
562 if (!cd->tx_check)
563 cd->tx_check = DEFAULT_TX_CHECK;
564
565 if (!cd->eesr_err_check)
566 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
567
568 if (!cd->tx_error_check)
569 cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
570 }
571
572 #if defined(SH_ETH_RESET_DEFAULT)
573 /* Chip Reset */
574 static int sh_eth_reset(struct net_device *ndev)
575 {
576 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
577 mdelay(3);
578 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
579
580 return 0;
581 }
582 #else
583 static int sh_eth_check_reset(struct net_device *ndev)
584 {
585 int ret = 0;
586 int cnt = 100;
587
588 while (cnt > 0) {
589 if (!(sh_eth_read(ndev, EDMR) & 0x3))
590 break;
591 mdelay(1);
592 cnt--;
593 }
594 if (cnt < 0) {
595 printk(KERN_ERR "Device reset fail\n");
596 ret = -ETIMEDOUT;
597 }
598 return ret;
599 }
600 #endif
601
602 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
603 static void sh_eth_set_receive_align(struct sk_buff *skb)
604 {
605 int reserve;
606
607 reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
608 if (reserve)
609 skb_reserve(skb, reserve);
610 }
611 #else
612 static void sh_eth_set_receive_align(struct sk_buff *skb)
613 {
614 skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
615 }
616 #endif
617
618
619 /* CPU <-> EDMAC endian convert */
620 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
621 {
622 switch (mdp->edmac_endian) {
623 case EDMAC_LITTLE_ENDIAN:
624 return cpu_to_le32(x);
625 case EDMAC_BIG_ENDIAN:
626 return cpu_to_be32(x);
627 }
628 return x;
629 }
630
631 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
632 {
633 switch (mdp->edmac_endian) {
634 case EDMAC_LITTLE_ENDIAN:
635 return le32_to_cpu(x);
636 case EDMAC_BIG_ENDIAN:
637 return be32_to_cpu(x);
638 }
639 return x;
640 }
641
642 /*
643 * Program the hardware MAC address from dev->dev_addr.
644 */
645 static void update_mac_address(struct net_device *ndev)
646 {
647 sh_eth_write(ndev,
648 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
649 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
650 sh_eth_write(ndev,
651 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
652 }
653
654 /*
655 * Get MAC address from SuperH MAC address register
656 *
657 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
658 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
659 * When you want use this device, you must set MAC address in bootloader.
660 *
661 */
662 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
663 {
664 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
665 memcpy(ndev->dev_addr, mac, 6);
666 } else {
667 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
668 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
669 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
670 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
671 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
672 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
673 }
674 }
675
676 static int sh_eth_is_gether(struct sh_eth_private *mdp)
677 {
678 if (mdp->reg_offset == sh_eth_offset_gigabit)
679 return 1;
680 else
681 return 0;
682 }
683
684 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
685 {
686 if (sh_eth_is_gether(mdp))
687 return EDTRR_TRNS_GETHER;
688 else
689 return EDTRR_TRNS_ETHER;
690 }
691
692 struct bb_info {
693 void (*set_gate)(void *addr);
694 struct mdiobb_ctrl ctrl;
695 void *addr;
696 u32 mmd_msk;/* MMD */
697 u32 mdo_msk;
698 u32 mdi_msk;
699 u32 mdc_msk;
700 };
701
702 /* PHY bit set */
703 static void bb_set(void *addr, u32 msk)
704 {
705 iowrite32(ioread32(addr) | msk, addr);
706 }
707
708 /* PHY bit clear */
709 static void bb_clr(void *addr, u32 msk)
710 {
711 iowrite32((ioread32(addr) & ~msk), addr);
712 }
713
714 /* PHY bit read */
715 static int bb_read(void *addr, u32 msk)
716 {
717 return (ioread32(addr) & msk) != 0;
718 }
719
720 /* Data I/O pin control */
721 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
722 {
723 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
724
725 if (bitbang->set_gate)
726 bitbang->set_gate(bitbang->addr);
727
728 if (bit)
729 bb_set(bitbang->addr, bitbang->mmd_msk);
730 else
731 bb_clr(bitbang->addr, bitbang->mmd_msk);
732 }
733
734 /* Set bit data*/
735 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
736 {
737 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
738
739 if (bitbang->set_gate)
740 bitbang->set_gate(bitbang->addr);
741
742 if (bit)
743 bb_set(bitbang->addr, bitbang->mdo_msk);
744 else
745 bb_clr(bitbang->addr, bitbang->mdo_msk);
746 }
747
748 /* Get bit data*/
749 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
750 {
751 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
752
753 if (bitbang->set_gate)
754 bitbang->set_gate(bitbang->addr);
755
756 return bb_read(bitbang->addr, bitbang->mdi_msk);
757 }
758
759 /* MDC pin control */
760 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
761 {
762 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
763
764 if (bitbang->set_gate)
765 bitbang->set_gate(bitbang->addr);
766
767 if (bit)
768 bb_set(bitbang->addr, bitbang->mdc_msk);
769 else
770 bb_clr(bitbang->addr, bitbang->mdc_msk);
771 }
772
773 /* mdio bus control struct */
774 static struct mdiobb_ops bb_ops = {
775 .owner = THIS_MODULE,
776 .set_mdc = sh_mdc_ctrl,
777 .set_mdio_dir = sh_mmd_ctrl,
778 .set_mdio_data = sh_set_mdio,
779 .get_mdio_data = sh_get_mdio,
780 };
781
782 /* free skb and descriptor buffer */
783 static void sh_eth_ring_free(struct net_device *ndev)
784 {
785 struct sh_eth_private *mdp = netdev_priv(ndev);
786 int i;
787
788 /* Free Rx skb ringbuffer */
789 if (mdp->rx_skbuff) {
790 for (i = 0; i < mdp->num_rx_ring; i++) {
791 if (mdp->rx_skbuff[i])
792 dev_kfree_skb(mdp->rx_skbuff[i]);
793 }
794 }
795 kfree(mdp->rx_skbuff);
796 mdp->rx_skbuff = NULL;
797
798 /* Free Tx skb ringbuffer */
799 if (mdp->tx_skbuff) {
800 for (i = 0; i < mdp->num_tx_ring; i++) {
801 if (mdp->tx_skbuff[i])
802 dev_kfree_skb(mdp->tx_skbuff[i]);
803 }
804 }
805 kfree(mdp->tx_skbuff);
806 mdp->tx_skbuff = NULL;
807 }
808
809 /* format skb and descriptor buffer */
810 static void sh_eth_ring_format(struct net_device *ndev)
811 {
812 struct sh_eth_private *mdp = netdev_priv(ndev);
813 int i;
814 struct sk_buff *skb;
815 struct sh_eth_rxdesc *rxdesc = NULL;
816 struct sh_eth_txdesc *txdesc = NULL;
817 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
818 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
819
820 mdp->cur_rx = mdp->cur_tx = 0;
821 mdp->dirty_rx = mdp->dirty_tx = 0;
822
823 memset(mdp->rx_ring, 0, rx_ringsize);
824
825 /* build Rx ring buffer */
826 for (i = 0; i < mdp->num_rx_ring; i++) {
827 /* skb */
828 mdp->rx_skbuff[i] = NULL;
829 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
830 mdp->rx_skbuff[i] = skb;
831 if (skb == NULL)
832 break;
833 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
834 DMA_FROM_DEVICE);
835 sh_eth_set_receive_align(skb);
836
837 /* RX descriptor */
838 rxdesc = &mdp->rx_ring[i];
839 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
840 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
841
842 /* The size of the buffer is 16 byte boundary. */
843 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
844 /* Rx descriptor address set */
845 if (i == 0) {
846 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
847 if (sh_eth_is_gether(mdp))
848 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
849 }
850 }
851
852 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
853
854 /* Mark the last entry as wrapping the ring. */
855 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
856
857 memset(mdp->tx_ring, 0, tx_ringsize);
858
859 /* build Tx ring buffer */
860 for (i = 0; i < mdp->num_tx_ring; i++) {
861 mdp->tx_skbuff[i] = NULL;
862 txdesc = &mdp->tx_ring[i];
863 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
864 txdesc->buffer_length = 0;
865 if (i == 0) {
866 /* Tx descriptor address set */
867 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
868 if (sh_eth_is_gether(mdp))
869 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
870 }
871 }
872
873 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
874 }
875
876 /* Get skb and descriptor buffer */
877 static int sh_eth_ring_init(struct net_device *ndev)
878 {
879 struct sh_eth_private *mdp = netdev_priv(ndev);
880 int rx_ringsize, tx_ringsize, ret = 0;
881
882 /*
883 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
884 * card needs room to do 8 byte alignment, +2 so we can reserve
885 * the first 2 bytes, and +16 gets room for the status word from the
886 * card.
887 */
888 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
889 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
890 if (mdp->cd->rpadir)
891 mdp->rx_buf_sz += NET_IP_ALIGN;
892
893 /* Allocate RX and TX skb rings */
894 mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * mdp->num_rx_ring,
895 GFP_KERNEL);
896 if (!mdp->rx_skbuff) {
897 dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
898 ret = -ENOMEM;
899 return ret;
900 }
901
902 mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * mdp->num_tx_ring,
903 GFP_KERNEL);
904 if (!mdp->tx_skbuff) {
905 dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
906 ret = -ENOMEM;
907 goto skb_ring_free;
908 }
909
910 /* Allocate all Rx descriptors. */
911 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
912 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
913 GFP_KERNEL);
914
915 if (!mdp->rx_ring) {
916 dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
917 rx_ringsize);
918 ret = -ENOMEM;
919 goto desc_ring_free;
920 }
921
922 mdp->dirty_rx = 0;
923
924 /* Allocate all Tx descriptors. */
925 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
926 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
927 GFP_KERNEL);
928 if (!mdp->tx_ring) {
929 dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
930 tx_ringsize);
931 ret = -ENOMEM;
932 goto desc_ring_free;
933 }
934 return ret;
935
936 desc_ring_free:
937 /* free DMA buffer */
938 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
939
940 skb_ring_free:
941 /* Free Rx and Tx skb ring buffer */
942 sh_eth_ring_free(ndev);
943 mdp->tx_ring = NULL;
944 mdp->rx_ring = NULL;
945
946 return ret;
947 }
948
949 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
950 {
951 int ringsize;
952
953 if (mdp->rx_ring) {
954 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
955 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
956 mdp->rx_desc_dma);
957 mdp->rx_ring = NULL;
958 }
959
960 if (mdp->tx_ring) {
961 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
962 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
963 mdp->tx_desc_dma);
964 mdp->tx_ring = NULL;
965 }
966 }
967
968 static int sh_eth_dev_init(struct net_device *ndev, bool start)
969 {
970 int ret = 0;
971 struct sh_eth_private *mdp = netdev_priv(ndev);
972 u32 val;
973
974 /* Soft Reset */
975 ret = sh_eth_reset(ndev);
976 if (ret)
977 goto out;
978
979 /* Descriptor format */
980 sh_eth_ring_format(ndev);
981 if (mdp->cd->rpadir)
982 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
983
984 /* all sh_eth int mask */
985 sh_eth_write(ndev, 0, EESIPR);
986
987 #if defined(__LITTLE_ENDIAN)
988 if (mdp->cd->hw_swap)
989 sh_eth_write(ndev, EDMR_EL, EDMR);
990 else
991 #endif
992 sh_eth_write(ndev, 0, EDMR);
993
994 /* FIFO size set */
995 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
996 sh_eth_write(ndev, 0, TFTR);
997
998 /* Frame recv control */
999 sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1000
1001 sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1002
1003 if (mdp->cd->bculr)
1004 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1005
1006 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1007
1008 if (!mdp->cd->no_trimd)
1009 sh_eth_write(ndev, 0, TRIMD);
1010
1011 /* Recv frame limit set register */
1012 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1013 RFLR);
1014
1015 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1016 if (start)
1017 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1018
1019 /* PAUSE Prohibition */
1020 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1021 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1022
1023 sh_eth_write(ndev, val, ECMR);
1024
1025 if (mdp->cd->set_rate)
1026 mdp->cd->set_rate(ndev);
1027
1028 /* E-MAC Status Register clear */
1029 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1030
1031 /* E-MAC Interrupt Enable register */
1032 if (start)
1033 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1034
1035 /* Set MAC address */
1036 update_mac_address(ndev);
1037
1038 /* mask reset */
1039 if (mdp->cd->apr)
1040 sh_eth_write(ndev, APR_AP, APR);
1041 if (mdp->cd->mpr)
1042 sh_eth_write(ndev, MPR_MP, MPR);
1043 if (mdp->cd->tpauser)
1044 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1045
1046 if (start) {
1047 /* Setting the Rx mode will start the Rx process. */
1048 sh_eth_write(ndev, EDRRR_R, EDRRR);
1049
1050 netif_start_queue(ndev);
1051 }
1052
1053 out:
1054 return ret;
1055 }
1056
1057 /* free Tx skb function */
1058 static int sh_eth_txfree(struct net_device *ndev)
1059 {
1060 struct sh_eth_private *mdp = netdev_priv(ndev);
1061 struct sh_eth_txdesc *txdesc;
1062 int freeNum = 0;
1063 int entry = 0;
1064
1065 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1066 entry = mdp->dirty_tx % mdp->num_tx_ring;
1067 txdesc = &mdp->tx_ring[entry];
1068 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1069 break;
1070 /* Free the original skb. */
1071 if (mdp->tx_skbuff[entry]) {
1072 dma_unmap_single(&ndev->dev, txdesc->addr,
1073 txdesc->buffer_length, DMA_TO_DEVICE);
1074 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1075 mdp->tx_skbuff[entry] = NULL;
1076 freeNum++;
1077 }
1078 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1079 if (entry >= mdp->num_tx_ring - 1)
1080 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1081
1082 ndev->stats.tx_packets++;
1083 ndev->stats.tx_bytes += txdesc->buffer_length;
1084 }
1085 return freeNum;
1086 }
1087
1088 /* Packet receive function */
1089 static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1090 {
1091 struct sh_eth_private *mdp = netdev_priv(ndev);
1092 struct sh_eth_rxdesc *rxdesc;
1093
1094 int entry = mdp->cur_rx % mdp->num_rx_ring;
1095 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1096 struct sk_buff *skb;
1097 u16 pkt_len = 0;
1098 u32 desc_status;
1099
1100 rxdesc = &mdp->rx_ring[entry];
1101 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1102 desc_status = edmac_to_cpu(mdp, rxdesc->status);
1103 pkt_len = rxdesc->frame_length;
1104
1105 #if defined(CONFIG_ARCH_R8A7740)
1106 desc_status >>= 16;
1107 #endif
1108
1109 if (--boguscnt < 0)
1110 break;
1111
1112 if (!(desc_status & RDFEND))
1113 ndev->stats.rx_length_errors++;
1114
1115 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1116 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1117 ndev->stats.rx_errors++;
1118 if (desc_status & RD_RFS1)
1119 ndev->stats.rx_crc_errors++;
1120 if (desc_status & RD_RFS2)
1121 ndev->stats.rx_frame_errors++;
1122 if (desc_status & RD_RFS3)
1123 ndev->stats.rx_length_errors++;
1124 if (desc_status & RD_RFS4)
1125 ndev->stats.rx_length_errors++;
1126 if (desc_status & RD_RFS6)
1127 ndev->stats.rx_missed_errors++;
1128 if (desc_status & RD_RFS10)
1129 ndev->stats.rx_over_errors++;
1130 } else {
1131 if (!mdp->cd->hw_swap)
1132 sh_eth_soft_swap(
1133 phys_to_virt(ALIGN(rxdesc->addr, 4)),
1134 pkt_len + 2);
1135 skb = mdp->rx_skbuff[entry];
1136 mdp->rx_skbuff[entry] = NULL;
1137 if (mdp->cd->rpadir)
1138 skb_reserve(skb, NET_IP_ALIGN);
1139 skb_put(skb, pkt_len);
1140 skb->protocol = eth_type_trans(skb, ndev);
1141 netif_rx(skb);
1142 ndev->stats.rx_packets++;
1143 ndev->stats.rx_bytes += pkt_len;
1144 }
1145 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1146 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1147 rxdesc = &mdp->rx_ring[entry];
1148 }
1149
1150 /* Refill the Rx ring buffers. */
1151 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1152 entry = mdp->dirty_rx % mdp->num_rx_ring;
1153 rxdesc = &mdp->rx_ring[entry];
1154 /* The size of the buffer is 16 byte boundary. */
1155 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1156
1157 if (mdp->rx_skbuff[entry] == NULL) {
1158 skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1159 mdp->rx_skbuff[entry] = skb;
1160 if (skb == NULL)
1161 break; /* Better luck next round. */
1162 dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1163 DMA_FROM_DEVICE);
1164 sh_eth_set_receive_align(skb);
1165
1166 skb_checksum_none_assert(skb);
1167 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1168 }
1169 if (entry >= mdp->num_rx_ring - 1)
1170 rxdesc->status |=
1171 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1172 else
1173 rxdesc->status |=
1174 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1175 }
1176
1177 /* Restart Rx engine if stopped. */
1178 /* If we don't need to check status, don't. -KDU */
1179 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1180 /* fix the values for the next receiving if RDE is set */
1181 if (intr_status & EESR_RDE)
1182 mdp->cur_rx = mdp->dirty_rx =
1183 (sh_eth_read(ndev, RDFAR) -
1184 sh_eth_read(ndev, RDLAR)) >> 4;
1185 sh_eth_write(ndev, EDRRR_R, EDRRR);
1186 }
1187
1188 return 0;
1189 }
1190
1191 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1192 {
1193 /* disable tx and rx */
1194 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1195 ~(ECMR_RE | ECMR_TE), ECMR);
1196 }
1197
1198 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1199 {
1200 /* enable tx and rx */
1201 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1202 (ECMR_RE | ECMR_TE), ECMR);
1203 }
1204
1205 /* error control function */
1206 static void sh_eth_error(struct net_device *ndev, int intr_status)
1207 {
1208 struct sh_eth_private *mdp = netdev_priv(ndev);
1209 u32 felic_stat;
1210 u32 link_stat;
1211 u32 mask;
1212
1213 if (intr_status & EESR_ECI) {
1214 felic_stat = sh_eth_read(ndev, ECSR);
1215 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1216 if (felic_stat & ECSR_ICD)
1217 ndev->stats.tx_carrier_errors++;
1218 if (felic_stat & ECSR_LCHNG) {
1219 /* Link Changed */
1220 if (mdp->cd->no_psr || mdp->no_ether_link) {
1221 if (mdp->link == PHY_DOWN)
1222 link_stat = 0;
1223 else
1224 link_stat = PHY_ST_LINK;
1225 } else {
1226 link_stat = (sh_eth_read(ndev, PSR));
1227 if (mdp->ether_link_active_low)
1228 link_stat = ~link_stat;
1229 }
1230 if (!(link_stat & PHY_ST_LINK))
1231 sh_eth_rcv_snd_disable(ndev);
1232 else {
1233 /* Link Up */
1234 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1235 ~DMAC_M_ECI, EESIPR);
1236 /*clear int */
1237 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1238 ECSR);
1239 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1240 DMAC_M_ECI, EESIPR);
1241 /* enable tx and rx */
1242 sh_eth_rcv_snd_enable(ndev);
1243 }
1244 }
1245 }
1246
1247 if (intr_status & EESR_TWB) {
1248 /* Write buck end. unused write back interrupt */
1249 if (intr_status & EESR_TABT) /* Transmit Abort int */
1250 ndev->stats.tx_aborted_errors++;
1251 if (netif_msg_tx_err(mdp))
1252 dev_err(&ndev->dev, "Transmit Abort\n");
1253 }
1254
1255 if (intr_status & EESR_RABT) {
1256 /* Receive Abort int */
1257 if (intr_status & EESR_RFRMER) {
1258 /* Receive Frame Overflow int */
1259 ndev->stats.rx_frame_errors++;
1260 if (netif_msg_rx_err(mdp))
1261 dev_err(&ndev->dev, "Receive Abort\n");
1262 }
1263 }
1264
1265 if (intr_status & EESR_TDE) {
1266 /* Transmit Descriptor Empty int */
1267 ndev->stats.tx_fifo_errors++;
1268 if (netif_msg_tx_err(mdp))
1269 dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1270 }
1271
1272 if (intr_status & EESR_TFE) {
1273 /* FIFO under flow */
1274 ndev->stats.tx_fifo_errors++;
1275 if (netif_msg_tx_err(mdp))
1276 dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1277 }
1278
1279 if (intr_status & EESR_RDE) {
1280 /* Receive Descriptor Empty int */
1281 ndev->stats.rx_over_errors++;
1282
1283 if (netif_msg_rx_err(mdp))
1284 dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1285 }
1286
1287 if (intr_status & EESR_RFE) {
1288 /* Receive FIFO Overflow int */
1289 ndev->stats.rx_fifo_errors++;
1290 if (netif_msg_rx_err(mdp))
1291 dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1292 }
1293
1294 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1295 /* Address Error */
1296 ndev->stats.tx_fifo_errors++;
1297 if (netif_msg_tx_err(mdp))
1298 dev_err(&ndev->dev, "Address Error\n");
1299 }
1300
1301 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1302 if (mdp->cd->no_ade)
1303 mask &= ~EESR_ADE;
1304 if (intr_status & mask) {
1305 /* Tx error */
1306 u32 edtrr = sh_eth_read(ndev, EDTRR);
1307 /* dmesg */
1308 dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1309 intr_status, mdp->cur_tx);
1310 dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1311 mdp->dirty_tx, (u32) ndev->state, edtrr);
1312 /* dirty buffer free */
1313 sh_eth_txfree(ndev);
1314
1315 /* SH7712 BUG */
1316 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1317 /* tx dma start */
1318 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1319 }
1320 /* wakeup */
1321 netif_wake_queue(ndev);
1322 }
1323 }
1324
1325 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1326 {
1327 struct net_device *ndev = netdev;
1328 struct sh_eth_private *mdp = netdev_priv(ndev);
1329 struct sh_eth_cpu_data *cd = mdp->cd;
1330 irqreturn_t ret = IRQ_NONE;
1331 u32 intr_status = 0;
1332
1333 spin_lock(&mdp->lock);
1334
1335 /* Get interrpt stat */
1336 intr_status = sh_eth_read(ndev, EESR);
1337 /* Clear interrupt */
1338 if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1339 EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1340 cd->tx_check | cd->eesr_err_check)) {
1341 sh_eth_write(ndev, intr_status, EESR);
1342 ret = IRQ_HANDLED;
1343 } else
1344 goto other_irq;
1345
1346 if (intr_status & (EESR_FRC | /* Frame recv*/
1347 EESR_RMAF | /* Multi cast address recv*/
1348 EESR_RRF | /* Bit frame recv */
1349 EESR_RTLF | /* Long frame recv*/
1350 EESR_RTSF | /* short frame recv */
1351 EESR_PRE | /* PHY-LSI recv error */
1352 EESR_CERF)){ /* recv frame CRC error */
1353 sh_eth_rx(ndev, intr_status);
1354 }
1355
1356 /* Tx Check */
1357 if (intr_status & cd->tx_check) {
1358 sh_eth_txfree(ndev);
1359 netif_wake_queue(ndev);
1360 }
1361
1362 if (intr_status & cd->eesr_err_check)
1363 sh_eth_error(ndev, intr_status);
1364
1365 other_irq:
1366 spin_unlock(&mdp->lock);
1367
1368 return ret;
1369 }
1370
1371 /* PHY state control function */
1372 static void sh_eth_adjust_link(struct net_device *ndev)
1373 {
1374 struct sh_eth_private *mdp = netdev_priv(ndev);
1375 struct phy_device *phydev = mdp->phydev;
1376 int new_state = 0;
1377
1378 if (phydev->link != PHY_DOWN) {
1379 if (phydev->duplex != mdp->duplex) {
1380 new_state = 1;
1381 mdp->duplex = phydev->duplex;
1382 if (mdp->cd->set_duplex)
1383 mdp->cd->set_duplex(ndev);
1384 }
1385
1386 if (phydev->speed != mdp->speed) {
1387 new_state = 1;
1388 mdp->speed = phydev->speed;
1389 if (mdp->cd->set_rate)
1390 mdp->cd->set_rate(ndev);
1391 }
1392 if (mdp->link == PHY_DOWN) {
1393 sh_eth_write(ndev,
1394 (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1395 new_state = 1;
1396 mdp->link = phydev->link;
1397 }
1398 } else if (mdp->link) {
1399 new_state = 1;
1400 mdp->link = PHY_DOWN;
1401 mdp->speed = 0;
1402 mdp->duplex = -1;
1403 }
1404
1405 if (new_state && netif_msg_link(mdp))
1406 phy_print_status(phydev);
1407 }
1408
1409 /* PHY init function */
1410 static int sh_eth_phy_init(struct net_device *ndev)
1411 {
1412 struct sh_eth_private *mdp = netdev_priv(ndev);
1413 char phy_id[MII_BUS_ID_SIZE + 3];
1414 struct phy_device *phydev = NULL;
1415
1416 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1417 mdp->mii_bus->id , mdp->phy_id);
1418
1419 mdp->link = PHY_DOWN;
1420 mdp->speed = 0;
1421 mdp->duplex = -1;
1422
1423 /* Try connect to PHY */
1424 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1425 mdp->phy_interface);
1426 if (IS_ERR(phydev)) {
1427 dev_err(&ndev->dev, "phy_connect failed\n");
1428 return PTR_ERR(phydev);
1429 }
1430
1431 dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1432 phydev->addr, phydev->drv->name);
1433
1434 mdp->phydev = phydev;
1435
1436 return 0;
1437 }
1438
1439 /* PHY control start function */
1440 static int sh_eth_phy_start(struct net_device *ndev)
1441 {
1442 struct sh_eth_private *mdp = netdev_priv(ndev);
1443 int ret;
1444
1445 ret = sh_eth_phy_init(ndev);
1446 if (ret)
1447 return ret;
1448
1449 /* reset phy - this also wakes it from PDOWN */
1450 phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1451 phy_start(mdp->phydev);
1452
1453 return 0;
1454 }
1455
1456 static int sh_eth_get_settings(struct net_device *ndev,
1457 struct ethtool_cmd *ecmd)
1458 {
1459 struct sh_eth_private *mdp = netdev_priv(ndev);
1460 unsigned long flags;
1461 int ret;
1462
1463 spin_lock_irqsave(&mdp->lock, flags);
1464 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1465 spin_unlock_irqrestore(&mdp->lock, flags);
1466
1467 return ret;
1468 }
1469
1470 static int sh_eth_set_settings(struct net_device *ndev,
1471 struct ethtool_cmd *ecmd)
1472 {
1473 struct sh_eth_private *mdp = netdev_priv(ndev);
1474 unsigned long flags;
1475 int ret;
1476
1477 spin_lock_irqsave(&mdp->lock, flags);
1478
1479 /* disable tx and rx */
1480 sh_eth_rcv_snd_disable(ndev);
1481
1482 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1483 if (ret)
1484 goto error_exit;
1485
1486 if (ecmd->duplex == DUPLEX_FULL)
1487 mdp->duplex = 1;
1488 else
1489 mdp->duplex = 0;
1490
1491 if (mdp->cd->set_duplex)
1492 mdp->cd->set_duplex(ndev);
1493
1494 error_exit:
1495 mdelay(1);
1496
1497 /* enable tx and rx */
1498 sh_eth_rcv_snd_enable(ndev);
1499
1500 spin_unlock_irqrestore(&mdp->lock, flags);
1501
1502 return ret;
1503 }
1504
1505 static int sh_eth_nway_reset(struct net_device *ndev)
1506 {
1507 struct sh_eth_private *mdp = netdev_priv(ndev);
1508 unsigned long flags;
1509 int ret;
1510
1511 spin_lock_irqsave(&mdp->lock, flags);
1512 ret = phy_start_aneg(mdp->phydev);
1513 spin_unlock_irqrestore(&mdp->lock, flags);
1514
1515 return ret;
1516 }
1517
1518 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1519 {
1520 struct sh_eth_private *mdp = netdev_priv(ndev);
1521 return mdp->msg_enable;
1522 }
1523
1524 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1525 {
1526 struct sh_eth_private *mdp = netdev_priv(ndev);
1527 mdp->msg_enable = value;
1528 }
1529
1530 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1531 "rx_current", "tx_current",
1532 "rx_dirty", "tx_dirty",
1533 };
1534 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
1535
1536 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1537 {
1538 switch (sset) {
1539 case ETH_SS_STATS:
1540 return SH_ETH_STATS_LEN;
1541 default:
1542 return -EOPNOTSUPP;
1543 }
1544 }
1545
1546 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1547 struct ethtool_stats *stats, u64 *data)
1548 {
1549 struct sh_eth_private *mdp = netdev_priv(ndev);
1550 int i = 0;
1551
1552 /* device-specific stats */
1553 data[i++] = mdp->cur_rx;
1554 data[i++] = mdp->cur_tx;
1555 data[i++] = mdp->dirty_rx;
1556 data[i++] = mdp->dirty_tx;
1557 }
1558
1559 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1560 {
1561 switch (stringset) {
1562 case ETH_SS_STATS:
1563 memcpy(data, *sh_eth_gstrings_stats,
1564 sizeof(sh_eth_gstrings_stats));
1565 break;
1566 }
1567 }
1568
1569 static void sh_eth_get_ringparam(struct net_device *ndev,
1570 struct ethtool_ringparam *ring)
1571 {
1572 struct sh_eth_private *mdp = netdev_priv(ndev);
1573
1574 ring->rx_max_pending = RX_RING_MAX;
1575 ring->tx_max_pending = TX_RING_MAX;
1576 ring->rx_pending = mdp->num_rx_ring;
1577 ring->tx_pending = mdp->num_tx_ring;
1578 }
1579
1580 static int sh_eth_set_ringparam(struct net_device *ndev,
1581 struct ethtool_ringparam *ring)
1582 {
1583 struct sh_eth_private *mdp = netdev_priv(ndev);
1584 int ret;
1585
1586 if (ring->tx_pending > TX_RING_MAX ||
1587 ring->rx_pending > RX_RING_MAX ||
1588 ring->tx_pending < TX_RING_MIN ||
1589 ring->rx_pending < RX_RING_MIN)
1590 return -EINVAL;
1591 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1592 return -EINVAL;
1593
1594 if (netif_running(ndev)) {
1595 netif_tx_disable(ndev);
1596 /* Disable interrupts by clearing the interrupt mask. */
1597 sh_eth_write(ndev, 0x0000, EESIPR);
1598 /* Stop the chip's Tx and Rx processes. */
1599 sh_eth_write(ndev, 0, EDTRR);
1600 sh_eth_write(ndev, 0, EDRRR);
1601 synchronize_irq(ndev->irq);
1602 }
1603
1604 /* Free all the skbuffs in the Rx queue. */
1605 sh_eth_ring_free(ndev);
1606 /* Free DMA buffer */
1607 sh_eth_free_dma_buffer(mdp);
1608
1609 /* Set new parameters */
1610 mdp->num_rx_ring = ring->rx_pending;
1611 mdp->num_tx_ring = ring->tx_pending;
1612
1613 ret = sh_eth_ring_init(ndev);
1614 if (ret < 0) {
1615 dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1616 return ret;
1617 }
1618 ret = sh_eth_dev_init(ndev, false);
1619 if (ret < 0) {
1620 dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1621 return ret;
1622 }
1623
1624 if (netif_running(ndev)) {
1625 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1626 /* Setting the Rx mode will start the Rx process. */
1627 sh_eth_write(ndev, EDRRR_R, EDRRR);
1628 netif_wake_queue(ndev);
1629 }
1630
1631 return 0;
1632 }
1633
1634 static const struct ethtool_ops sh_eth_ethtool_ops = {
1635 .get_settings = sh_eth_get_settings,
1636 .set_settings = sh_eth_set_settings,
1637 .nway_reset = sh_eth_nway_reset,
1638 .get_msglevel = sh_eth_get_msglevel,
1639 .set_msglevel = sh_eth_set_msglevel,
1640 .get_link = ethtool_op_get_link,
1641 .get_strings = sh_eth_get_strings,
1642 .get_ethtool_stats = sh_eth_get_ethtool_stats,
1643 .get_sset_count = sh_eth_get_sset_count,
1644 .get_ringparam = sh_eth_get_ringparam,
1645 .set_ringparam = sh_eth_set_ringparam,
1646 };
1647
1648 /* network device open function */
1649 static int sh_eth_open(struct net_device *ndev)
1650 {
1651 int ret = 0;
1652 struct sh_eth_private *mdp = netdev_priv(ndev);
1653
1654 pm_runtime_get_sync(&mdp->pdev->dev);
1655
1656 ret = request_irq(ndev->irq, sh_eth_interrupt,
1657 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1658 defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1659 defined(CONFIG_CPU_SUBTYPE_SH7757)
1660 IRQF_SHARED,
1661 #else
1662 0,
1663 #endif
1664 ndev->name, ndev);
1665 if (ret) {
1666 dev_err(&ndev->dev, "Can not assign IRQ number\n");
1667 return ret;
1668 }
1669
1670 /* Descriptor set */
1671 ret = sh_eth_ring_init(ndev);
1672 if (ret)
1673 goto out_free_irq;
1674
1675 /* device init */
1676 ret = sh_eth_dev_init(ndev, true);
1677 if (ret)
1678 goto out_free_irq;
1679
1680 /* PHY control start*/
1681 ret = sh_eth_phy_start(ndev);
1682 if (ret)
1683 goto out_free_irq;
1684
1685 return ret;
1686
1687 out_free_irq:
1688 free_irq(ndev->irq, ndev);
1689 pm_runtime_put_sync(&mdp->pdev->dev);
1690 return ret;
1691 }
1692
1693 /* Timeout function */
1694 static void sh_eth_tx_timeout(struct net_device *ndev)
1695 {
1696 struct sh_eth_private *mdp = netdev_priv(ndev);
1697 struct sh_eth_rxdesc *rxdesc;
1698 int i;
1699
1700 netif_stop_queue(ndev);
1701
1702 if (netif_msg_timer(mdp))
1703 dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1704 " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1705
1706 /* tx_errors count up */
1707 ndev->stats.tx_errors++;
1708
1709 /* Free all the skbuffs in the Rx queue. */
1710 for (i = 0; i < mdp->num_rx_ring; i++) {
1711 rxdesc = &mdp->rx_ring[i];
1712 rxdesc->status = 0;
1713 rxdesc->addr = 0xBADF00D0;
1714 if (mdp->rx_skbuff[i])
1715 dev_kfree_skb(mdp->rx_skbuff[i]);
1716 mdp->rx_skbuff[i] = NULL;
1717 }
1718 for (i = 0; i < mdp->num_tx_ring; i++) {
1719 if (mdp->tx_skbuff[i])
1720 dev_kfree_skb(mdp->tx_skbuff[i]);
1721 mdp->tx_skbuff[i] = NULL;
1722 }
1723
1724 /* device init */
1725 sh_eth_dev_init(ndev, true);
1726 }
1727
1728 /* Packet transmit function */
1729 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1730 {
1731 struct sh_eth_private *mdp = netdev_priv(ndev);
1732 struct sh_eth_txdesc *txdesc;
1733 u32 entry;
1734 unsigned long flags;
1735
1736 spin_lock_irqsave(&mdp->lock, flags);
1737 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1738 if (!sh_eth_txfree(ndev)) {
1739 if (netif_msg_tx_queued(mdp))
1740 dev_warn(&ndev->dev, "TxFD exhausted.\n");
1741 netif_stop_queue(ndev);
1742 spin_unlock_irqrestore(&mdp->lock, flags);
1743 return NETDEV_TX_BUSY;
1744 }
1745 }
1746 spin_unlock_irqrestore(&mdp->lock, flags);
1747
1748 entry = mdp->cur_tx % mdp->num_tx_ring;
1749 mdp->tx_skbuff[entry] = skb;
1750 txdesc = &mdp->tx_ring[entry];
1751 /* soft swap. */
1752 if (!mdp->cd->hw_swap)
1753 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1754 skb->len + 2);
1755 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1756 DMA_TO_DEVICE);
1757 if (skb->len < ETHERSMALL)
1758 txdesc->buffer_length = ETHERSMALL;
1759 else
1760 txdesc->buffer_length = skb->len;
1761
1762 if (entry >= mdp->num_tx_ring - 1)
1763 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1764 else
1765 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1766
1767 mdp->cur_tx++;
1768
1769 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1770 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1771
1772 return NETDEV_TX_OK;
1773 }
1774
1775 /* device close function */
1776 static int sh_eth_close(struct net_device *ndev)
1777 {
1778 struct sh_eth_private *mdp = netdev_priv(ndev);
1779
1780 netif_stop_queue(ndev);
1781
1782 /* Disable interrupts by clearing the interrupt mask. */
1783 sh_eth_write(ndev, 0x0000, EESIPR);
1784
1785 /* Stop the chip's Tx and Rx processes. */
1786 sh_eth_write(ndev, 0, EDTRR);
1787 sh_eth_write(ndev, 0, EDRRR);
1788
1789 /* PHY Disconnect */
1790 if (mdp->phydev) {
1791 phy_stop(mdp->phydev);
1792 phy_disconnect(mdp->phydev);
1793 }
1794
1795 free_irq(ndev->irq, ndev);
1796
1797 /* Free all the skbuffs in the Rx queue. */
1798 sh_eth_ring_free(ndev);
1799
1800 /* free DMA buffer */
1801 sh_eth_free_dma_buffer(mdp);
1802
1803 pm_runtime_put_sync(&mdp->pdev->dev);
1804
1805 return 0;
1806 }
1807
1808 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1809 {
1810 struct sh_eth_private *mdp = netdev_priv(ndev);
1811
1812 pm_runtime_get_sync(&mdp->pdev->dev);
1813
1814 ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1815 sh_eth_write(ndev, 0, TROCR); /* (write clear) */
1816 ndev->stats.collisions += sh_eth_read(ndev, CDCR);
1817 sh_eth_write(ndev, 0, CDCR); /* (write clear) */
1818 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1819 sh_eth_write(ndev, 0, LCCR); /* (write clear) */
1820 if (sh_eth_is_gether(mdp)) {
1821 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1822 sh_eth_write(ndev, 0, CERCR); /* (write clear) */
1823 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1824 sh_eth_write(ndev, 0, CEECR); /* (write clear) */
1825 } else {
1826 ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1827 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
1828 }
1829 pm_runtime_put_sync(&mdp->pdev->dev);
1830
1831 return &ndev->stats;
1832 }
1833
1834 /* ioctl to device function */
1835 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1836 int cmd)
1837 {
1838 struct sh_eth_private *mdp = netdev_priv(ndev);
1839 struct phy_device *phydev = mdp->phydev;
1840
1841 if (!netif_running(ndev))
1842 return -EINVAL;
1843
1844 if (!phydev)
1845 return -ENODEV;
1846
1847 return phy_mii_ioctl(phydev, rq, cmd);
1848 }
1849
1850 #if defined(SH_ETH_HAS_TSU)
1851 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
1852 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
1853 int entry)
1854 {
1855 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
1856 }
1857
1858 static u32 sh_eth_tsu_get_post_mask(int entry)
1859 {
1860 return 0x0f << (28 - ((entry % 8) * 4));
1861 }
1862
1863 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
1864 {
1865 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
1866 }
1867
1868 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
1869 int entry)
1870 {
1871 struct sh_eth_private *mdp = netdev_priv(ndev);
1872 u32 tmp;
1873 void *reg_offset;
1874
1875 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1876 tmp = ioread32(reg_offset);
1877 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
1878 }
1879
1880 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
1881 int entry)
1882 {
1883 struct sh_eth_private *mdp = netdev_priv(ndev);
1884 u32 post_mask, ref_mask, tmp;
1885 void *reg_offset;
1886
1887 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1888 post_mask = sh_eth_tsu_get_post_mask(entry);
1889 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
1890
1891 tmp = ioread32(reg_offset);
1892 iowrite32(tmp & ~post_mask, reg_offset);
1893
1894 /* If other port enables, the function returns "true" */
1895 return tmp & ref_mask;
1896 }
1897
1898 static int sh_eth_tsu_busy(struct net_device *ndev)
1899 {
1900 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
1901 struct sh_eth_private *mdp = netdev_priv(ndev);
1902
1903 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
1904 udelay(10);
1905 timeout--;
1906 if (timeout <= 0) {
1907 dev_err(&ndev->dev, "%s: timeout\n", __func__);
1908 return -ETIMEDOUT;
1909 }
1910 }
1911
1912 return 0;
1913 }
1914
1915 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
1916 const u8 *addr)
1917 {
1918 u32 val;
1919
1920 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
1921 iowrite32(val, reg);
1922 if (sh_eth_tsu_busy(ndev) < 0)
1923 return -EBUSY;
1924
1925 val = addr[4] << 8 | addr[5];
1926 iowrite32(val, reg + 4);
1927 if (sh_eth_tsu_busy(ndev) < 0)
1928 return -EBUSY;
1929
1930 return 0;
1931 }
1932
1933 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
1934 {
1935 u32 val;
1936
1937 val = ioread32(reg);
1938 addr[0] = (val >> 24) & 0xff;
1939 addr[1] = (val >> 16) & 0xff;
1940 addr[2] = (val >> 8) & 0xff;
1941 addr[3] = val & 0xff;
1942 val = ioread32(reg + 4);
1943 addr[4] = (val >> 8) & 0xff;
1944 addr[5] = val & 0xff;
1945 }
1946
1947
1948 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
1949 {
1950 struct sh_eth_private *mdp = netdev_priv(ndev);
1951 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1952 int i;
1953 u8 c_addr[ETH_ALEN];
1954
1955 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1956 sh_eth_tsu_read_entry(reg_offset, c_addr);
1957 if (memcmp(addr, c_addr, ETH_ALEN) == 0)
1958 return i;
1959 }
1960
1961 return -ENOENT;
1962 }
1963
1964 static int sh_eth_tsu_find_empty(struct net_device *ndev)
1965 {
1966 u8 blank[ETH_ALEN];
1967 int entry;
1968
1969 memset(blank, 0, sizeof(blank));
1970 entry = sh_eth_tsu_find_entry(ndev, blank);
1971 return (entry < 0) ? -ENOMEM : entry;
1972 }
1973
1974 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
1975 int entry)
1976 {
1977 struct sh_eth_private *mdp = netdev_priv(ndev);
1978 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1979 int ret;
1980 u8 blank[ETH_ALEN];
1981
1982 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
1983 ~(1 << (31 - entry)), TSU_TEN);
1984
1985 memset(blank, 0, sizeof(blank));
1986 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
1987 if (ret < 0)
1988 return ret;
1989 return 0;
1990 }
1991
1992 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
1993 {
1994 struct sh_eth_private *mdp = netdev_priv(ndev);
1995 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1996 int i, ret;
1997
1998 if (!mdp->cd->tsu)
1999 return 0;
2000
2001 i = sh_eth_tsu_find_entry(ndev, addr);
2002 if (i < 0) {
2003 /* No entry found, create one */
2004 i = sh_eth_tsu_find_empty(ndev);
2005 if (i < 0)
2006 return -ENOMEM;
2007 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2008 if (ret < 0)
2009 return ret;
2010
2011 /* Enable the entry */
2012 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2013 (1 << (31 - i)), TSU_TEN);
2014 }
2015
2016 /* Entry found or created, enable POST */
2017 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2018
2019 return 0;
2020 }
2021
2022 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2023 {
2024 struct sh_eth_private *mdp = netdev_priv(ndev);
2025 int i, ret;
2026
2027 if (!mdp->cd->tsu)
2028 return 0;
2029
2030 i = sh_eth_tsu_find_entry(ndev, addr);
2031 if (i) {
2032 /* Entry found */
2033 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2034 goto done;
2035
2036 /* Disable the entry if both ports was disabled */
2037 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2038 if (ret < 0)
2039 return ret;
2040 }
2041 done:
2042 return 0;
2043 }
2044
2045 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2046 {
2047 struct sh_eth_private *mdp = netdev_priv(ndev);
2048 int i, ret;
2049
2050 if (unlikely(!mdp->cd->tsu))
2051 return 0;
2052
2053 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2054 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2055 continue;
2056
2057 /* Disable the entry if both ports was disabled */
2058 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2059 if (ret < 0)
2060 return ret;
2061 }
2062
2063 return 0;
2064 }
2065
2066 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2067 {
2068 struct sh_eth_private *mdp = netdev_priv(ndev);
2069 u8 addr[ETH_ALEN];
2070 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2071 int i;
2072
2073 if (unlikely(!mdp->cd->tsu))
2074 return;
2075
2076 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2077 sh_eth_tsu_read_entry(reg_offset, addr);
2078 if (is_multicast_ether_addr(addr))
2079 sh_eth_tsu_del_entry(ndev, addr);
2080 }
2081 }
2082
2083 /* Multicast reception directions set */
2084 static void sh_eth_set_multicast_list(struct net_device *ndev)
2085 {
2086 struct sh_eth_private *mdp = netdev_priv(ndev);
2087 u32 ecmr_bits;
2088 int mcast_all = 0;
2089 unsigned long flags;
2090
2091 spin_lock_irqsave(&mdp->lock, flags);
2092 /*
2093 * Initial condition is MCT = 1, PRM = 0.
2094 * Depending on ndev->flags, set PRM or clear MCT
2095 */
2096 ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2097
2098 if (!(ndev->flags & IFF_MULTICAST)) {
2099 sh_eth_tsu_purge_mcast(ndev);
2100 mcast_all = 1;
2101 }
2102 if (ndev->flags & IFF_ALLMULTI) {
2103 sh_eth_tsu_purge_mcast(ndev);
2104 ecmr_bits &= ~ECMR_MCT;
2105 mcast_all = 1;
2106 }
2107
2108 if (ndev->flags & IFF_PROMISC) {
2109 sh_eth_tsu_purge_all(ndev);
2110 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2111 } else if (mdp->cd->tsu) {
2112 struct netdev_hw_addr *ha;
2113 netdev_for_each_mc_addr(ha, ndev) {
2114 if (mcast_all && is_multicast_ether_addr(ha->addr))
2115 continue;
2116
2117 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2118 if (!mcast_all) {
2119 sh_eth_tsu_purge_mcast(ndev);
2120 ecmr_bits &= ~ECMR_MCT;
2121 mcast_all = 1;
2122 }
2123 }
2124 }
2125 } else {
2126 /* Normal, unicast/broadcast-only mode. */
2127 ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2128 }
2129
2130 /* update the ethernet mode */
2131 sh_eth_write(ndev, ecmr_bits, ECMR);
2132
2133 spin_unlock_irqrestore(&mdp->lock, flags);
2134 }
2135
2136 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2137 {
2138 if (!mdp->port)
2139 return TSU_VTAG0;
2140 else
2141 return TSU_VTAG1;
2142 }
2143
2144 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2145 {
2146 struct sh_eth_private *mdp = netdev_priv(ndev);
2147 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2148
2149 if (unlikely(!mdp->cd->tsu))
2150 return -EPERM;
2151
2152 /* No filtering if vid = 0 */
2153 if (!vid)
2154 return 0;
2155
2156 mdp->vlan_num_ids++;
2157
2158 /*
2159 * The controller has one VLAN tag HW filter. So, if the filter is
2160 * already enabled, the driver disables it and the filte
2161 */
2162 if (mdp->vlan_num_ids > 1) {
2163 /* disable VLAN filter */
2164 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2165 return 0;
2166 }
2167
2168 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2169 vtag_reg_index);
2170
2171 return 0;
2172 }
2173
2174 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2175 {
2176 struct sh_eth_private *mdp = netdev_priv(ndev);
2177 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2178
2179 if (unlikely(!mdp->cd->tsu))
2180 return -EPERM;
2181
2182 /* No filtering if vid = 0 */
2183 if (!vid)
2184 return 0;
2185
2186 mdp->vlan_num_ids--;
2187 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2188
2189 return 0;
2190 }
2191 #endif /* SH_ETH_HAS_TSU */
2192
2193 /* SuperH's TSU register init function */
2194 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2195 {
2196 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2197 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2198 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2199 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2200 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2201 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2202 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2203 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2204 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2205 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2206 if (sh_eth_is_gether(mdp)) {
2207 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2208 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2209 } else {
2210 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2211 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2212 }
2213 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2214 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2215 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2216 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2217 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2218 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2219 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2220 }
2221
2222 /* MDIO bus release function */
2223 static int sh_mdio_release(struct net_device *ndev)
2224 {
2225 struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2226
2227 /* unregister mdio bus */
2228 mdiobus_unregister(bus);
2229
2230 /* remove mdio bus info from net_device */
2231 dev_set_drvdata(&ndev->dev, NULL);
2232
2233 /* free interrupts memory */
2234 kfree(bus->irq);
2235
2236 /* free bitbang info */
2237 free_mdio_bitbang(bus);
2238
2239 return 0;
2240 }
2241
2242 /* MDIO bus init function */
2243 static int sh_mdio_init(struct net_device *ndev, int id,
2244 struct sh_eth_plat_data *pd)
2245 {
2246 int ret, i;
2247 struct bb_info *bitbang;
2248 struct sh_eth_private *mdp = netdev_priv(ndev);
2249
2250 /* create bit control struct for PHY */
2251 bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
2252 if (!bitbang) {
2253 ret = -ENOMEM;
2254 goto out;
2255 }
2256
2257 /* bitbang init */
2258 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2259 bitbang->set_gate = pd->set_mdio_gate;
2260 bitbang->mdi_msk = 0x08;
2261 bitbang->mdo_msk = 0x04;
2262 bitbang->mmd_msk = 0x02;/* MMD */
2263 bitbang->mdc_msk = 0x01;
2264 bitbang->ctrl.ops = &bb_ops;
2265
2266 /* MII controller setting */
2267 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2268 if (!mdp->mii_bus) {
2269 ret = -ENOMEM;
2270 goto out_free_bitbang;
2271 }
2272
2273 /* Hook up MII support for ethtool */
2274 mdp->mii_bus->name = "sh_mii";
2275 mdp->mii_bus->parent = &ndev->dev;
2276 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2277 mdp->pdev->name, id);
2278
2279 /* PHY IRQ */
2280 mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
2281 if (!mdp->mii_bus->irq) {
2282 ret = -ENOMEM;
2283 goto out_free_bus;
2284 }
2285
2286 for (i = 0; i < PHY_MAX_ADDR; i++)
2287 mdp->mii_bus->irq[i] = PHY_POLL;
2288
2289 /* register mdio bus */
2290 ret = mdiobus_register(mdp->mii_bus);
2291 if (ret)
2292 goto out_free_irq;
2293
2294 dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2295
2296 return 0;
2297
2298 out_free_irq:
2299 kfree(mdp->mii_bus->irq);
2300
2301 out_free_bus:
2302 free_mdio_bitbang(mdp->mii_bus);
2303
2304 out_free_bitbang:
2305 kfree(bitbang);
2306
2307 out:
2308 return ret;
2309 }
2310
2311 static const u16 *sh_eth_get_register_offset(int register_type)
2312 {
2313 const u16 *reg_offset = NULL;
2314
2315 switch (register_type) {
2316 case SH_ETH_REG_GIGABIT:
2317 reg_offset = sh_eth_offset_gigabit;
2318 break;
2319 case SH_ETH_REG_FAST_SH4:
2320 reg_offset = sh_eth_offset_fast_sh4;
2321 break;
2322 case SH_ETH_REG_FAST_SH3_SH2:
2323 reg_offset = sh_eth_offset_fast_sh3_sh2;
2324 break;
2325 default:
2326 printk(KERN_ERR "Unknown register type (%d)\n", register_type);
2327 break;
2328 }
2329
2330 return reg_offset;
2331 }
2332
2333 static const struct net_device_ops sh_eth_netdev_ops = {
2334 .ndo_open = sh_eth_open,
2335 .ndo_stop = sh_eth_close,
2336 .ndo_start_xmit = sh_eth_start_xmit,
2337 .ndo_get_stats = sh_eth_get_stats,
2338 #if defined(SH_ETH_HAS_TSU)
2339 .ndo_set_rx_mode = sh_eth_set_multicast_list,
2340 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
2341 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
2342 #endif
2343 .ndo_tx_timeout = sh_eth_tx_timeout,
2344 .ndo_do_ioctl = sh_eth_do_ioctl,
2345 .ndo_validate_addr = eth_validate_addr,
2346 .ndo_set_mac_address = eth_mac_addr,
2347 .ndo_change_mtu = eth_change_mtu,
2348 };
2349
2350 static int sh_eth_drv_probe(struct platform_device *pdev)
2351 {
2352 int ret, devno = 0;
2353 struct resource *res;
2354 struct net_device *ndev = NULL;
2355 struct sh_eth_private *mdp = NULL;
2356 struct sh_eth_plat_data *pd;
2357
2358 /* get base addr */
2359 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2360 if (unlikely(res == NULL)) {
2361 dev_err(&pdev->dev, "invalid resource\n");
2362 ret = -EINVAL;
2363 goto out;
2364 }
2365
2366 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2367 if (!ndev) {
2368 ret = -ENOMEM;
2369 goto out;
2370 }
2371
2372 /* The sh Ether-specific entries in the device structure. */
2373 ndev->base_addr = res->start;
2374 devno = pdev->id;
2375 if (devno < 0)
2376 devno = 0;
2377
2378 ndev->dma = -1;
2379 ret = platform_get_irq(pdev, 0);
2380 if (ret < 0) {
2381 ret = -ENODEV;
2382 goto out_release;
2383 }
2384 ndev->irq = ret;
2385
2386 SET_NETDEV_DEV(ndev, &pdev->dev);
2387
2388 /* Fill in the fields of the device structure with ethernet values. */
2389 ether_setup(ndev);
2390
2391 mdp = netdev_priv(ndev);
2392 mdp->num_tx_ring = TX_RING_SIZE;
2393 mdp->num_rx_ring = RX_RING_SIZE;
2394 mdp->addr = ioremap(res->start, resource_size(res));
2395 if (mdp->addr == NULL) {
2396 ret = -ENOMEM;
2397 dev_err(&pdev->dev, "ioremap failed.\n");
2398 goto out_release;
2399 }
2400
2401 spin_lock_init(&mdp->lock);
2402 mdp->pdev = pdev;
2403 pm_runtime_enable(&pdev->dev);
2404 pm_runtime_resume(&pdev->dev);
2405
2406 pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
2407 /* get PHY ID */
2408 mdp->phy_id = pd->phy;
2409 mdp->phy_interface = pd->phy_interface;
2410 /* EDMAC endian */
2411 mdp->edmac_endian = pd->edmac_endian;
2412 mdp->no_ether_link = pd->no_ether_link;
2413 mdp->ether_link_active_low = pd->ether_link_active_low;
2414 mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2415
2416 /* set cpu data */
2417 #if defined(SH_ETH_HAS_BOTH_MODULES)
2418 mdp->cd = sh_eth_get_cpu_data(mdp);
2419 #else
2420 mdp->cd = &sh_eth_my_cpu_data;
2421 #endif
2422 sh_eth_set_default_cpu_data(mdp->cd);
2423
2424 /* set function */
2425 ndev->netdev_ops = &sh_eth_netdev_ops;
2426 SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2427 ndev->watchdog_timeo = TX_TIMEOUT;
2428
2429 /* debug message level */
2430 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2431
2432 /* read and set MAC address */
2433 read_mac_address(ndev, pd->mac_addr);
2434
2435 /* ioremap the TSU registers */
2436 if (mdp->cd->tsu) {
2437 struct resource *rtsu;
2438 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2439 if (!rtsu) {
2440 dev_err(&pdev->dev, "Not found TSU resource\n");
2441 ret = -ENODEV;
2442 goto out_release;
2443 }
2444 mdp->tsu_addr = ioremap(rtsu->start,
2445 resource_size(rtsu));
2446 mdp->port = devno % 2;
2447 ndev->features = NETIF_F_HW_VLAN_FILTER;
2448 }
2449
2450 /* initialize first or needed device */
2451 if (!devno || pd->needs_init) {
2452 if (mdp->cd->chip_reset)
2453 mdp->cd->chip_reset(ndev);
2454
2455 if (mdp->cd->tsu) {
2456 /* TSU init (Init only)*/
2457 sh_eth_tsu_init(mdp);
2458 }
2459 }
2460
2461 /* network device register */
2462 ret = register_netdev(ndev);
2463 if (ret)
2464 goto out_release;
2465
2466 /* mdio bus init */
2467 ret = sh_mdio_init(ndev, pdev->id, pd);
2468 if (ret)
2469 goto out_unregister;
2470
2471 /* print device information */
2472 pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2473 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2474
2475 platform_set_drvdata(pdev, ndev);
2476
2477 return ret;
2478
2479 out_unregister:
2480 unregister_netdev(ndev);
2481
2482 out_release:
2483 /* net_dev free */
2484 if (mdp && mdp->addr)
2485 iounmap(mdp->addr);
2486 if (mdp && mdp->tsu_addr)
2487 iounmap(mdp->tsu_addr);
2488 if (ndev)
2489 free_netdev(ndev);
2490
2491 out:
2492 return ret;
2493 }
2494
2495 static int sh_eth_drv_remove(struct platform_device *pdev)
2496 {
2497 struct net_device *ndev = platform_get_drvdata(pdev);
2498 struct sh_eth_private *mdp = netdev_priv(ndev);
2499
2500 if (mdp->cd->tsu)
2501 iounmap(mdp->tsu_addr);
2502 sh_mdio_release(ndev);
2503 unregister_netdev(ndev);
2504 pm_runtime_disable(&pdev->dev);
2505 iounmap(mdp->addr);
2506 free_netdev(ndev);
2507 platform_set_drvdata(pdev, NULL);
2508
2509 return 0;
2510 }
2511
2512 static int sh_eth_runtime_nop(struct device *dev)
2513 {
2514 /*
2515 * Runtime PM callback shared between ->runtime_suspend()
2516 * and ->runtime_resume(). Simply returns success.
2517 *
2518 * This driver re-initializes all registers after
2519 * pm_runtime_get_sync() anyway so there is no need
2520 * to save and restore registers here.
2521 */
2522 return 0;
2523 }
2524
2525 static struct dev_pm_ops sh_eth_dev_pm_ops = {
2526 .runtime_suspend = sh_eth_runtime_nop,
2527 .runtime_resume = sh_eth_runtime_nop,
2528 };
2529
2530 static struct platform_driver sh_eth_driver = {
2531 .probe = sh_eth_drv_probe,
2532 .remove = sh_eth_drv_remove,
2533 .driver = {
2534 .name = CARDNAME,
2535 .pm = &sh_eth_dev_pm_ops,
2536 },
2537 };
2538
2539 module_platform_driver(sh_eth_driver);
2540
2541 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2542 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2543 MODULE_LICENSE("GPL v2");