]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/renesas/sh_eth.c
Merge remote-tracking branches 'asoc/topic/sta529', 'asoc/topic/sti', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / renesas / sh_eth.c
1 /* SuperH Ethernet device driver
2 *
3 * Copyright (C) 2014 Renesas Electronics Corporation
4 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2014 Renesas Solutions Corp.
6 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
7 * Copyright (C) 2014 Codethink Limited
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46
47 #include "sh_eth.h"
48
49 #define SH_ETH_DEF_MSG_ENABLE \
50 (NETIF_MSG_LINK | \
51 NETIF_MSG_TIMER | \
52 NETIF_MSG_RX_ERR| \
53 NETIF_MSG_TX_ERR)
54
55 #define SH_ETH_OFFSET_INVALID ((u16)~0)
56
57 #define SH_ETH_OFFSET_DEFAULTS \
58 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
59
60 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
61 SH_ETH_OFFSET_DEFAULTS,
62
63 [EDSR] = 0x0000,
64 [EDMR] = 0x0400,
65 [EDTRR] = 0x0408,
66 [EDRRR] = 0x0410,
67 [EESR] = 0x0428,
68 [EESIPR] = 0x0430,
69 [TDLAR] = 0x0010,
70 [TDFAR] = 0x0014,
71 [TDFXR] = 0x0018,
72 [TDFFR] = 0x001c,
73 [RDLAR] = 0x0030,
74 [RDFAR] = 0x0034,
75 [RDFXR] = 0x0038,
76 [RDFFR] = 0x003c,
77 [TRSCER] = 0x0438,
78 [RMFCR] = 0x0440,
79 [TFTR] = 0x0448,
80 [FDR] = 0x0450,
81 [RMCR] = 0x0458,
82 [RPADIR] = 0x0460,
83 [FCFTR] = 0x0468,
84 [CSMR] = 0x04E4,
85
86 [ECMR] = 0x0500,
87 [ECSR] = 0x0510,
88 [ECSIPR] = 0x0518,
89 [PIR] = 0x0520,
90 [PSR] = 0x0528,
91 [PIPR] = 0x052c,
92 [RFLR] = 0x0508,
93 [APR] = 0x0554,
94 [MPR] = 0x0558,
95 [PFTCR] = 0x055c,
96 [PFRCR] = 0x0560,
97 [TPAUSER] = 0x0564,
98 [GECMR] = 0x05b0,
99 [BCULR] = 0x05b4,
100 [MAHR] = 0x05c0,
101 [MALR] = 0x05c8,
102 [TROCR] = 0x0700,
103 [CDCR] = 0x0708,
104 [LCCR] = 0x0710,
105 [CEFCR] = 0x0740,
106 [FRECR] = 0x0748,
107 [TSFRCR] = 0x0750,
108 [TLFRCR] = 0x0758,
109 [RFCR] = 0x0760,
110 [CERCR] = 0x0768,
111 [CEECR] = 0x0770,
112 [MAFCR] = 0x0778,
113 [RMII_MII] = 0x0790,
114
115 [ARSTR] = 0x0000,
116 [TSU_CTRST] = 0x0004,
117 [TSU_FWEN0] = 0x0010,
118 [TSU_FWEN1] = 0x0014,
119 [TSU_FCM] = 0x0018,
120 [TSU_BSYSL0] = 0x0020,
121 [TSU_BSYSL1] = 0x0024,
122 [TSU_PRISL0] = 0x0028,
123 [TSU_PRISL1] = 0x002c,
124 [TSU_FWSL0] = 0x0030,
125 [TSU_FWSL1] = 0x0034,
126 [TSU_FWSLC] = 0x0038,
127 [TSU_QTAG0] = 0x0040,
128 [TSU_QTAG1] = 0x0044,
129 [TSU_FWSR] = 0x0050,
130 [TSU_FWINMK] = 0x0054,
131 [TSU_ADQT0] = 0x0048,
132 [TSU_ADQT1] = 0x004c,
133 [TSU_VTAG0] = 0x0058,
134 [TSU_VTAG1] = 0x005c,
135 [TSU_ADSBSY] = 0x0060,
136 [TSU_TEN] = 0x0064,
137 [TSU_POST1] = 0x0070,
138 [TSU_POST2] = 0x0074,
139 [TSU_POST3] = 0x0078,
140 [TSU_POST4] = 0x007c,
141 [TSU_ADRH0] = 0x0100,
142
143 [TXNLCR0] = 0x0080,
144 [TXALCR0] = 0x0084,
145 [RXNLCR0] = 0x0088,
146 [RXALCR0] = 0x008c,
147 [FWNLCR0] = 0x0090,
148 [FWALCR0] = 0x0094,
149 [TXNLCR1] = 0x00a0,
150 [TXALCR1] = 0x00a0,
151 [RXNLCR1] = 0x00a8,
152 [RXALCR1] = 0x00ac,
153 [FWNLCR1] = 0x00b0,
154 [FWALCR1] = 0x00b4,
155 };
156
157 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
158 SH_ETH_OFFSET_DEFAULTS,
159
160 [EDSR] = 0x0000,
161 [EDMR] = 0x0400,
162 [EDTRR] = 0x0408,
163 [EDRRR] = 0x0410,
164 [EESR] = 0x0428,
165 [EESIPR] = 0x0430,
166 [TDLAR] = 0x0010,
167 [TDFAR] = 0x0014,
168 [TDFXR] = 0x0018,
169 [TDFFR] = 0x001c,
170 [RDLAR] = 0x0030,
171 [RDFAR] = 0x0034,
172 [RDFXR] = 0x0038,
173 [RDFFR] = 0x003c,
174 [TRSCER] = 0x0438,
175 [RMFCR] = 0x0440,
176 [TFTR] = 0x0448,
177 [FDR] = 0x0450,
178 [RMCR] = 0x0458,
179 [RPADIR] = 0x0460,
180 [FCFTR] = 0x0468,
181 [CSMR] = 0x04E4,
182
183 [ECMR] = 0x0500,
184 [RFLR] = 0x0508,
185 [ECSR] = 0x0510,
186 [ECSIPR] = 0x0518,
187 [PIR] = 0x0520,
188 [APR] = 0x0554,
189 [MPR] = 0x0558,
190 [PFTCR] = 0x055c,
191 [PFRCR] = 0x0560,
192 [TPAUSER] = 0x0564,
193 [MAHR] = 0x05c0,
194 [MALR] = 0x05c8,
195 [CEFCR] = 0x0740,
196 [FRECR] = 0x0748,
197 [TSFRCR] = 0x0750,
198 [TLFRCR] = 0x0758,
199 [RFCR] = 0x0760,
200 [MAFCR] = 0x0778,
201
202 [ARSTR] = 0x0000,
203 [TSU_CTRST] = 0x0004,
204 [TSU_FWSLC] = 0x0038,
205 [TSU_VTAG0] = 0x0058,
206 [TSU_ADSBSY] = 0x0060,
207 [TSU_TEN] = 0x0064,
208 [TSU_POST1] = 0x0070,
209 [TSU_POST2] = 0x0074,
210 [TSU_POST3] = 0x0078,
211 [TSU_POST4] = 0x007c,
212 [TSU_ADRH0] = 0x0100,
213
214 [TXNLCR0] = 0x0080,
215 [TXALCR0] = 0x0084,
216 [RXNLCR0] = 0x0088,
217 [RXALCR0] = 0x008C,
218 };
219
220 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
221 SH_ETH_OFFSET_DEFAULTS,
222
223 [ECMR] = 0x0300,
224 [RFLR] = 0x0308,
225 [ECSR] = 0x0310,
226 [ECSIPR] = 0x0318,
227 [PIR] = 0x0320,
228 [PSR] = 0x0328,
229 [RDMLR] = 0x0340,
230 [IPGR] = 0x0350,
231 [APR] = 0x0354,
232 [MPR] = 0x0358,
233 [RFCF] = 0x0360,
234 [TPAUSER] = 0x0364,
235 [TPAUSECR] = 0x0368,
236 [MAHR] = 0x03c0,
237 [MALR] = 0x03c8,
238 [TROCR] = 0x03d0,
239 [CDCR] = 0x03d4,
240 [LCCR] = 0x03d8,
241 [CNDCR] = 0x03dc,
242 [CEFCR] = 0x03e4,
243 [FRECR] = 0x03e8,
244 [TSFRCR] = 0x03ec,
245 [TLFRCR] = 0x03f0,
246 [RFCR] = 0x03f4,
247 [MAFCR] = 0x03f8,
248
249 [EDMR] = 0x0200,
250 [EDTRR] = 0x0208,
251 [EDRRR] = 0x0210,
252 [TDLAR] = 0x0218,
253 [RDLAR] = 0x0220,
254 [EESR] = 0x0228,
255 [EESIPR] = 0x0230,
256 [TRSCER] = 0x0238,
257 [RMFCR] = 0x0240,
258 [TFTR] = 0x0248,
259 [FDR] = 0x0250,
260 [RMCR] = 0x0258,
261 [TFUCR] = 0x0264,
262 [RFOCR] = 0x0268,
263 [RMIIMODE] = 0x026c,
264 [FCFTR] = 0x0270,
265 [TRIMD] = 0x027c,
266 };
267
268 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
269 SH_ETH_OFFSET_DEFAULTS,
270
271 [ECMR] = 0x0100,
272 [RFLR] = 0x0108,
273 [ECSR] = 0x0110,
274 [ECSIPR] = 0x0118,
275 [PIR] = 0x0120,
276 [PSR] = 0x0128,
277 [RDMLR] = 0x0140,
278 [IPGR] = 0x0150,
279 [APR] = 0x0154,
280 [MPR] = 0x0158,
281 [TPAUSER] = 0x0164,
282 [RFCF] = 0x0160,
283 [TPAUSECR] = 0x0168,
284 [BCFRR] = 0x016c,
285 [MAHR] = 0x01c0,
286 [MALR] = 0x01c8,
287 [TROCR] = 0x01d0,
288 [CDCR] = 0x01d4,
289 [LCCR] = 0x01d8,
290 [CNDCR] = 0x01dc,
291 [CEFCR] = 0x01e4,
292 [FRECR] = 0x01e8,
293 [TSFRCR] = 0x01ec,
294 [TLFRCR] = 0x01f0,
295 [RFCR] = 0x01f4,
296 [MAFCR] = 0x01f8,
297 [RTRATE] = 0x01fc,
298
299 [EDMR] = 0x0000,
300 [EDTRR] = 0x0008,
301 [EDRRR] = 0x0010,
302 [TDLAR] = 0x0018,
303 [RDLAR] = 0x0020,
304 [EESR] = 0x0028,
305 [EESIPR] = 0x0030,
306 [TRSCER] = 0x0038,
307 [RMFCR] = 0x0040,
308 [TFTR] = 0x0048,
309 [FDR] = 0x0050,
310 [RMCR] = 0x0058,
311 [TFUCR] = 0x0064,
312 [RFOCR] = 0x0068,
313 [FCFTR] = 0x0070,
314 [RPADIR] = 0x0078,
315 [TRIMD] = 0x007c,
316 [RBWAR] = 0x00c8,
317 [RDFAR] = 0x00cc,
318 [TBRAR] = 0x00d4,
319 [TDFAR] = 0x00d8,
320 };
321
322 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
323 SH_ETH_OFFSET_DEFAULTS,
324
325 [EDMR] = 0x0000,
326 [EDTRR] = 0x0004,
327 [EDRRR] = 0x0008,
328 [TDLAR] = 0x000c,
329 [RDLAR] = 0x0010,
330 [EESR] = 0x0014,
331 [EESIPR] = 0x0018,
332 [TRSCER] = 0x001c,
333 [RMFCR] = 0x0020,
334 [TFTR] = 0x0024,
335 [FDR] = 0x0028,
336 [RMCR] = 0x002c,
337 [EDOCR] = 0x0030,
338 [FCFTR] = 0x0034,
339 [RPADIR] = 0x0038,
340 [TRIMD] = 0x003c,
341 [RBWAR] = 0x0040,
342 [RDFAR] = 0x0044,
343 [TBRAR] = 0x004c,
344 [TDFAR] = 0x0050,
345
346 [ECMR] = 0x0160,
347 [ECSR] = 0x0164,
348 [ECSIPR] = 0x0168,
349 [PIR] = 0x016c,
350 [MAHR] = 0x0170,
351 [MALR] = 0x0174,
352 [RFLR] = 0x0178,
353 [PSR] = 0x017c,
354 [TROCR] = 0x0180,
355 [CDCR] = 0x0184,
356 [LCCR] = 0x0188,
357 [CNDCR] = 0x018c,
358 [CEFCR] = 0x0194,
359 [FRECR] = 0x0198,
360 [TSFRCR] = 0x019c,
361 [TLFRCR] = 0x01a0,
362 [RFCR] = 0x01a4,
363 [MAFCR] = 0x01a8,
364 [IPGR] = 0x01b4,
365 [APR] = 0x01b8,
366 [MPR] = 0x01bc,
367 [TPAUSER] = 0x01c4,
368 [BCFR] = 0x01cc,
369
370 [ARSTR] = 0x0000,
371 [TSU_CTRST] = 0x0004,
372 [TSU_FWEN0] = 0x0010,
373 [TSU_FWEN1] = 0x0014,
374 [TSU_FCM] = 0x0018,
375 [TSU_BSYSL0] = 0x0020,
376 [TSU_BSYSL1] = 0x0024,
377 [TSU_PRISL0] = 0x0028,
378 [TSU_PRISL1] = 0x002c,
379 [TSU_FWSL0] = 0x0030,
380 [TSU_FWSL1] = 0x0034,
381 [TSU_FWSLC] = 0x0038,
382 [TSU_QTAGM0] = 0x0040,
383 [TSU_QTAGM1] = 0x0044,
384 [TSU_ADQT0] = 0x0048,
385 [TSU_ADQT1] = 0x004c,
386 [TSU_FWSR] = 0x0050,
387 [TSU_FWINMK] = 0x0054,
388 [TSU_ADSBSY] = 0x0060,
389 [TSU_TEN] = 0x0064,
390 [TSU_POST1] = 0x0070,
391 [TSU_POST2] = 0x0074,
392 [TSU_POST3] = 0x0078,
393 [TSU_POST4] = 0x007c,
394
395 [TXNLCR0] = 0x0080,
396 [TXALCR0] = 0x0084,
397 [RXNLCR0] = 0x0088,
398 [RXALCR0] = 0x008c,
399 [FWNLCR0] = 0x0090,
400 [FWALCR0] = 0x0094,
401 [TXNLCR1] = 0x00a0,
402 [TXALCR1] = 0x00a0,
403 [RXNLCR1] = 0x00a8,
404 [RXALCR1] = 0x00ac,
405 [FWNLCR1] = 0x00b0,
406 [FWALCR1] = 0x00b4,
407
408 [TSU_ADRH0] = 0x0100,
409 };
410
411 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
412 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
413
414 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
415 {
416 struct sh_eth_private *mdp = netdev_priv(ndev);
417 u16 offset = mdp->reg_offset[enum_index];
418
419 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
420 return;
421
422 iowrite32(data, mdp->addr + offset);
423 }
424
425 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
426 {
427 struct sh_eth_private *mdp = netdev_priv(ndev);
428 u16 offset = mdp->reg_offset[enum_index];
429
430 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
431 return ~0U;
432
433 return ioread32(mdp->addr + offset);
434 }
435
436 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
437 u32 set)
438 {
439 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
440 enum_index);
441 }
442
443 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
444 {
445 return mdp->reg_offset == sh_eth_offset_gigabit;
446 }
447
448 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
449 {
450 return mdp->reg_offset == sh_eth_offset_fast_rz;
451 }
452
453 static void sh_eth_select_mii(struct net_device *ndev)
454 {
455 struct sh_eth_private *mdp = netdev_priv(ndev);
456 u32 value;
457
458 switch (mdp->phy_interface) {
459 case PHY_INTERFACE_MODE_GMII:
460 value = 0x2;
461 break;
462 case PHY_INTERFACE_MODE_MII:
463 value = 0x1;
464 break;
465 case PHY_INTERFACE_MODE_RMII:
466 value = 0x0;
467 break;
468 default:
469 netdev_warn(ndev,
470 "PHY interface mode was not setup. Set to MII.\n");
471 value = 0x1;
472 break;
473 }
474
475 sh_eth_write(ndev, value, RMII_MII);
476 }
477
478 static void sh_eth_set_duplex(struct net_device *ndev)
479 {
480 struct sh_eth_private *mdp = netdev_priv(ndev);
481
482 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
483 }
484
485 static void sh_eth_chip_reset(struct net_device *ndev)
486 {
487 struct sh_eth_private *mdp = netdev_priv(ndev);
488
489 /* reset device */
490 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
491 mdelay(1);
492 }
493
494 static void sh_eth_set_rate_gether(struct net_device *ndev)
495 {
496 struct sh_eth_private *mdp = netdev_priv(ndev);
497
498 switch (mdp->speed) {
499 case 10: /* 10BASE */
500 sh_eth_write(ndev, GECMR_10, GECMR);
501 break;
502 case 100:/* 100BASE */
503 sh_eth_write(ndev, GECMR_100, GECMR);
504 break;
505 case 1000: /* 1000BASE */
506 sh_eth_write(ndev, GECMR_1000, GECMR);
507 break;
508 }
509 }
510
511 #ifdef CONFIG_OF
512 /* R7S72100 */
513 static struct sh_eth_cpu_data r7s72100_data = {
514 .chip_reset = sh_eth_chip_reset,
515 .set_duplex = sh_eth_set_duplex,
516
517 .register_type = SH_ETH_REG_FAST_RZ,
518
519 .ecsr_value = ECSR_ICD,
520 .ecsipr_value = ECSIPR_ICDIP,
521 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
522 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
523 EESIPR_ECIIP |
524 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
525 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
526 EESIPR_RMAFIP | EESIPR_RRFIP |
527 EESIPR_RTLFIP | EESIPR_RTSFIP |
528 EESIPR_PREIP | EESIPR_CERFIP,
529
530 .tx_check = EESR_TC1 | EESR_FTC,
531 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
532 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
533 EESR_TDE,
534 .fdr_value = 0x0000070f,
535
536 .no_psr = 1,
537 .apr = 1,
538 .mpr = 1,
539 .tpauser = 1,
540 .hw_swap = 1,
541 .rpadir = 1,
542 .rpadir_value = 2 << 16,
543 .no_trimd = 1,
544 .no_ade = 1,
545 .hw_checksum = 1,
546 .tsu = 1,
547 };
548
549 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
550 {
551 sh_eth_chip_reset(ndev);
552
553 sh_eth_select_mii(ndev);
554 }
555
556 /* R8A7740 */
557 static struct sh_eth_cpu_data r8a7740_data = {
558 .chip_reset = sh_eth_chip_reset_r8a7740,
559 .set_duplex = sh_eth_set_duplex,
560 .set_rate = sh_eth_set_rate_gether,
561
562 .register_type = SH_ETH_REG_GIGABIT,
563
564 .ecsr_value = ECSR_ICD | ECSR_MPD,
565 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
566 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
567 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
568 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
569 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
570 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
571 EESIPR_CEEFIP | EESIPR_CELFIP |
572 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
573 EESIPR_PREIP | EESIPR_CERFIP,
574
575 .tx_check = EESR_TC1 | EESR_FTC,
576 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
577 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
578 EESR_TDE,
579 .fdr_value = 0x0000070f,
580
581 .apr = 1,
582 .mpr = 1,
583 .tpauser = 1,
584 .bculr = 1,
585 .hw_swap = 1,
586 .rpadir = 1,
587 .rpadir_value = 2 << 16,
588 .no_trimd = 1,
589 .no_ade = 1,
590 .hw_checksum = 1,
591 .tsu = 1,
592 .select_mii = 1,
593 .magic = 1,
594 };
595
596 /* There is CPU dependent code */
597 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
598 {
599 struct sh_eth_private *mdp = netdev_priv(ndev);
600
601 switch (mdp->speed) {
602 case 10: /* 10BASE */
603 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
604 break;
605 case 100:/* 100BASE */
606 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
607 break;
608 }
609 }
610
611 /* R8A7778/9 */
612 static struct sh_eth_cpu_data r8a777x_data = {
613 .set_duplex = sh_eth_set_duplex,
614 .set_rate = sh_eth_set_rate_r8a777x,
615
616 .register_type = SH_ETH_REG_FAST_RCAR,
617
618 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
619 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
620 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
621 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
622 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
623 EESIPR_RMAFIP | EESIPR_RRFIP |
624 EESIPR_RTLFIP | EESIPR_RTSFIP |
625 EESIPR_PREIP | EESIPR_CERFIP,
626
627 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
628 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
629 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
630 .fdr_value = 0x00000f0f,
631
632 .apr = 1,
633 .mpr = 1,
634 .tpauser = 1,
635 .hw_swap = 1,
636 };
637
638 /* R8A7790/1 */
639 static struct sh_eth_cpu_data r8a779x_data = {
640 .set_duplex = sh_eth_set_duplex,
641 .set_rate = sh_eth_set_rate_r8a777x,
642
643 .register_type = SH_ETH_REG_FAST_RCAR,
644
645 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
646 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
647 ECSIPR_MPDIP,
648 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
649 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
650 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
651 EESIPR_RMAFIP | EESIPR_RRFIP |
652 EESIPR_RTLFIP | EESIPR_RTSFIP |
653 EESIPR_PREIP | EESIPR_CERFIP,
654
655 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
656 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
657 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
658 .fdr_value = 0x00000f0f,
659
660 .trscer_err_mask = DESC_I_RINT8,
661
662 .apr = 1,
663 .mpr = 1,
664 .tpauser = 1,
665 .hw_swap = 1,
666 .rmiimode = 1,
667 .magic = 1,
668 };
669 #endif /* CONFIG_OF */
670
671 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
672 {
673 struct sh_eth_private *mdp = netdev_priv(ndev);
674
675 switch (mdp->speed) {
676 case 10: /* 10BASE */
677 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
678 break;
679 case 100:/* 100BASE */
680 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
681 break;
682 }
683 }
684
685 /* SH7724 */
686 static struct sh_eth_cpu_data sh7724_data = {
687 .set_duplex = sh_eth_set_duplex,
688 .set_rate = sh_eth_set_rate_sh7724,
689
690 .register_type = SH_ETH_REG_FAST_SH4,
691
692 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
693 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
694 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
695 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
696 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
697 EESIPR_RMAFIP | EESIPR_RRFIP |
698 EESIPR_RTLFIP | EESIPR_RTSFIP |
699 EESIPR_PREIP | EESIPR_CERFIP,
700
701 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
702 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
703 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
704
705 .apr = 1,
706 .mpr = 1,
707 .tpauser = 1,
708 .hw_swap = 1,
709 .rpadir = 1,
710 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
711 };
712
713 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
714 {
715 struct sh_eth_private *mdp = netdev_priv(ndev);
716
717 switch (mdp->speed) {
718 case 10: /* 10BASE */
719 sh_eth_write(ndev, 0, RTRATE);
720 break;
721 case 100:/* 100BASE */
722 sh_eth_write(ndev, 1, RTRATE);
723 break;
724 }
725 }
726
727 /* SH7757 */
728 static struct sh_eth_cpu_data sh7757_data = {
729 .set_duplex = sh_eth_set_duplex,
730 .set_rate = sh_eth_set_rate_sh7757,
731
732 .register_type = SH_ETH_REG_FAST_SH4,
733
734 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
735 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
736 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
737 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
738 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
739 EESIPR_CEEFIP | EESIPR_CELFIP |
740 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
741 EESIPR_PREIP | EESIPR_CERFIP,
742
743 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
744 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
745 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
746
747 .irq_flags = IRQF_SHARED,
748 .apr = 1,
749 .mpr = 1,
750 .tpauser = 1,
751 .hw_swap = 1,
752 .no_ade = 1,
753 .rpadir = 1,
754 .rpadir_value = 2 << 16,
755 .rtrate = 1,
756 };
757
758 #define SH_GIGA_ETH_BASE 0xfee00000UL
759 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
760 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
761 static void sh_eth_chip_reset_giga(struct net_device *ndev)
762 {
763 u32 mahr[2], malr[2];
764 int i;
765
766 /* save MAHR and MALR */
767 for (i = 0; i < 2; i++) {
768 malr[i] = ioread32((void *)GIGA_MALR(i));
769 mahr[i] = ioread32((void *)GIGA_MAHR(i));
770 }
771
772 sh_eth_chip_reset(ndev);
773
774 /* restore MAHR and MALR */
775 for (i = 0; i < 2; i++) {
776 iowrite32(malr[i], (void *)GIGA_MALR(i));
777 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
778 }
779 }
780
781 static void sh_eth_set_rate_giga(struct net_device *ndev)
782 {
783 struct sh_eth_private *mdp = netdev_priv(ndev);
784
785 switch (mdp->speed) {
786 case 10: /* 10BASE */
787 sh_eth_write(ndev, 0x00000000, GECMR);
788 break;
789 case 100:/* 100BASE */
790 sh_eth_write(ndev, 0x00000010, GECMR);
791 break;
792 case 1000: /* 1000BASE */
793 sh_eth_write(ndev, 0x00000020, GECMR);
794 break;
795 }
796 }
797
798 /* SH7757(GETHERC) */
799 static struct sh_eth_cpu_data sh7757_data_giga = {
800 .chip_reset = sh_eth_chip_reset_giga,
801 .set_duplex = sh_eth_set_duplex,
802 .set_rate = sh_eth_set_rate_giga,
803
804 .register_type = SH_ETH_REG_GIGABIT,
805
806 .ecsr_value = ECSR_ICD | ECSR_MPD,
807 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
808 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
809 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
810 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
811 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
812 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
813 EESIPR_CEEFIP | EESIPR_CELFIP |
814 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
815 EESIPR_PREIP | EESIPR_CERFIP,
816
817 .tx_check = EESR_TC1 | EESR_FTC,
818 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
819 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
820 EESR_TDE,
821 .fdr_value = 0x0000072f,
822
823 .irq_flags = IRQF_SHARED,
824 .apr = 1,
825 .mpr = 1,
826 .tpauser = 1,
827 .bculr = 1,
828 .hw_swap = 1,
829 .rpadir = 1,
830 .rpadir_value = 2 << 16,
831 .no_trimd = 1,
832 .no_ade = 1,
833 .tsu = 1,
834 };
835
836 /* SH7734 */
837 static struct sh_eth_cpu_data sh7734_data = {
838 .chip_reset = sh_eth_chip_reset,
839 .set_duplex = sh_eth_set_duplex,
840 .set_rate = sh_eth_set_rate_gether,
841
842 .register_type = SH_ETH_REG_GIGABIT,
843
844 .ecsr_value = ECSR_ICD | ECSR_MPD,
845 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
846 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
847 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
848 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
849 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
850 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
851 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
852 EESIPR_PREIP | EESIPR_CERFIP,
853
854 .tx_check = EESR_TC1 | EESR_FTC,
855 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
856 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
857 EESR_TDE,
858
859 .apr = 1,
860 .mpr = 1,
861 .tpauser = 1,
862 .bculr = 1,
863 .hw_swap = 1,
864 .no_trimd = 1,
865 .no_ade = 1,
866 .tsu = 1,
867 .hw_checksum = 1,
868 .select_mii = 1,
869 .magic = 1,
870 };
871
872 /* SH7763 */
873 static struct sh_eth_cpu_data sh7763_data = {
874 .chip_reset = sh_eth_chip_reset,
875 .set_duplex = sh_eth_set_duplex,
876 .set_rate = sh_eth_set_rate_gether,
877
878 .register_type = SH_ETH_REG_GIGABIT,
879
880 .ecsr_value = ECSR_ICD | ECSR_MPD,
881 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
882 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
883 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
884 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
885 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
886 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
887 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
888 EESIPR_PREIP | EESIPR_CERFIP,
889
890 .tx_check = EESR_TC1 | EESR_FTC,
891 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
892 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
893
894 .apr = 1,
895 .mpr = 1,
896 .tpauser = 1,
897 .bculr = 1,
898 .hw_swap = 1,
899 .no_trimd = 1,
900 .no_ade = 1,
901 .tsu = 1,
902 .irq_flags = IRQF_SHARED,
903 .magic = 1,
904 };
905
906 static struct sh_eth_cpu_data sh7619_data = {
907 .register_type = SH_ETH_REG_FAST_SH3_SH2,
908
909 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
910 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
911 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
912 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
913 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
914 EESIPR_CEEFIP | EESIPR_CELFIP |
915 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
916 EESIPR_PREIP | EESIPR_CERFIP,
917
918 .apr = 1,
919 .mpr = 1,
920 .tpauser = 1,
921 .hw_swap = 1,
922 };
923
924 static struct sh_eth_cpu_data sh771x_data = {
925 .register_type = SH_ETH_REG_FAST_SH3_SH2,
926
927 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
928 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
929 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
930 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
931 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
932 EESIPR_CEEFIP | EESIPR_CELFIP |
933 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
934 EESIPR_PREIP | EESIPR_CERFIP,
935 .tsu = 1,
936 };
937
938 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
939 {
940 if (!cd->ecsr_value)
941 cd->ecsr_value = DEFAULT_ECSR_INIT;
942
943 if (!cd->ecsipr_value)
944 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
945
946 if (!cd->fcftr_value)
947 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
948 DEFAULT_FIFO_F_D_RFD;
949
950 if (!cd->fdr_value)
951 cd->fdr_value = DEFAULT_FDR_INIT;
952
953 if (!cd->tx_check)
954 cd->tx_check = DEFAULT_TX_CHECK;
955
956 if (!cd->eesr_err_check)
957 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
958
959 if (!cd->trscer_err_mask)
960 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
961 }
962
963 static int sh_eth_check_reset(struct net_device *ndev)
964 {
965 int ret = 0;
966 int cnt = 100;
967
968 while (cnt > 0) {
969 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
970 break;
971 mdelay(1);
972 cnt--;
973 }
974 if (cnt <= 0) {
975 netdev_err(ndev, "Device reset failed\n");
976 ret = -ETIMEDOUT;
977 }
978 return ret;
979 }
980
981 static int sh_eth_reset(struct net_device *ndev)
982 {
983 struct sh_eth_private *mdp = netdev_priv(ndev);
984 int ret = 0;
985
986 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
987 sh_eth_write(ndev, EDSR_ENALL, EDSR);
988 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
989
990 ret = sh_eth_check_reset(ndev);
991 if (ret)
992 return ret;
993
994 /* Table Init */
995 sh_eth_write(ndev, 0x0, TDLAR);
996 sh_eth_write(ndev, 0x0, TDFAR);
997 sh_eth_write(ndev, 0x0, TDFXR);
998 sh_eth_write(ndev, 0x0, TDFFR);
999 sh_eth_write(ndev, 0x0, RDLAR);
1000 sh_eth_write(ndev, 0x0, RDFAR);
1001 sh_eth_write(ndev, 0x0, RDFXR);
1002 sh_eth_write(ndev, 0x0, RDFFR);
1003
1004 /* Reset HW CRC register */
1005 if (mdp->cd->hw_checksum)
1006 sh_eth_write(ndev, 0x0, CSMR);
1007
1008 /* Select MII mode */
1009 if (mdp->cd->select_mii)
1010 sh_eth_select_mii(ndev);
1011 } else {
1012 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
1013 mdelay(3);
1014 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
1015 }
1016
1017 return ret;
1018 }
1019
1020 static void sh_eth_set_receive_align(struct sk_buff *skb)
1021 {
1022 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1023
1024 if (reserve)
1025 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1026 }
1027
1028 /* Program the hardware MAC address from dev->dev_addr. */
1029 static void update_mac_address(struct net_device *ndev)
1030 {
1031 sh_eth_write(ndev,
1032 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1033 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1034 sh_eth_write(ndev,
1035 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1036 }
1037
1038 /* Get MAC address from SuperH MAC address register
1039 *
1040 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1041 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1042 * When you want use this device, you must set MAC address in bootloader.
1043 *
1044 */
1045 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1046 {
1047 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1048 memcpy(ndev->dev_addr, mac, ETH_ALEN);
1049 } else {
1050 u32 mahr = sh_eth_read(ndev, MAHR);
1051 u32 malr = sh_eth_read(ndev, MALR);
1052
1053 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1054 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1055 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
1056 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
1057 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
1058 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
1059 }
1060 }
1061
1062 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1063 {
1064 if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1065 return EDTRR_TRNS_GETHER;
1066 else
1067 return EDTRR_TRNS_ETHER;
1068 }
1069
1070 struct bb_info {
1071 void (*set_gate)(void *addr);
1072 struct mdiobb_ctrl ctrl;
1073 void *addr;
1074 };
1075
1076 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1077 {
1078 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1079 u32 pir;
1080
1081 if (bitbang->set_gate)
1082 bitbang->set_gate(bitbang->addr);
1083
1084 pir = ioread32(bitbang->addr);
1085 if (set)
1086 pir |= mask;
1087 else
1088 pir &= ~mask;
1089 iowrite32(pir, bitbang->addr);
1090 }
1091
1092 /* Data I/O pin control */
1093 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1094 {
1095 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1096 }
1097
1098 /* Set bit data*/
1099 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1100 {
1101 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1102 }
1103
1104 /* Get bit data*/
1105 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1106 {
1107 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1108
1109 if (bitbang->set_gate)
1110 bitbang->set_gate(bitbang->addr);
1111
1112 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1113 }
1114
1115 /* MDC pin control */
1116 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1117 {
1118 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1119 }
1120
1121 /* mdio bus control struct */
1122 static struct mdiobb_ops bb_ops = {
1123 .owner = THIS_MODULE,
1124 .set_mdc = sh_mdc_ctrl,
1125 .set_mdio_dir = sh_mmd_ctrl,
1126 .set_mdio_data = sh_set_mdio,
1127 .get_mdio_data = sh_get_mdio,
1128 };
1129
1130 /* free Tx skb function */
1131 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1132 {
1133 struct sh_eth_private *mdp = netdev_priv(ndev);
1134 struct sh_eth_txdesc *txdesc;
1135 int free_num = 0;
1136 int entry;
1137 bool sent;
1138
1139 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1140 entry = mdp->dirty_tx % mdp->num_tx_ring;
1141 txdesc = &mdp->tx_ring[entry];
1142 sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1143 if (sent_only && !sent)
1144 break;
1145 /* TACT bit must be checked before all the following reads */
1146 dma_rmb();
1147 netif_info(mdp, tx_done, ndev,
1148 "tx entry %d status 0x%08x\n",
1149 entry, le32_to_cpu(txdesc->status));
1150 /* Free the original skb. */
1151 if (mdp->tx_skbuff[entry]) {
1152 dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1153 le32_to_cpu(txdesc->len) >> 16,
1154 DMA_TO_DEVICE);
1155 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1156 mdp->tx_skbuff[entry] = NULL;
1157 free_num++;
1158 }
1159 txdesc->status = cpu_to_le32(TD_TFP);
1160 if (entry >= mdp->num_tx_ring - 1)
1161 txdesc->status |= cpu_to_le32(TD_TDLE);
1162
1163 if (sent) {
1164 ndev->stats.tx_packets++;
1165 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1166 }
1167 }
1168 return free_num;
1169 }
1170
1171 /* free skb and descriptor buffer */
1172 static void sh_eth_ring_free(struct net_device *ndev)
1173 {
1174 struct sh_eth_private *mdp = netdev_priv(ndev);
1175 int ringsize, i;
1176
1177 if (mdp->rx_ring) {
1178 for (i = 0; i < mdp->num_rx_ring; i++) {
1179 if (mdp->rx_skbuff[i]) {
1180 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1181
1182 dma_unmap_single(&ndev->dev,
1183 le32_to_cpu(rxdesc->addr),
1184 ALIGN(mdp->rx_buf_sz, 32),
1185 DMA_FROM_DEVICE);
1186 }
1187 }
1188 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1189 dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1190 mdp->rx_desc_dma);
1191 mdp->rx_ring = NULL;
1192 }
1193
1194 /* Free Rx skb ringbuffer */
1195 if (mdp->rx_skbuff) {
1196 for (i = 0; i < mdp->num_rx_ring; i++)
1197 dev_kfree_skb(mdp->rx_skbuff[i]);
1198 }
1199 kfree(mdp->rx_skbuff);
1200 mdp->rx_skbuff = NULL;
1201
1202 if (mdp->tx_ring) {
1203 sh_eth_tx_free(ndev, false);
1204
1205 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1206 dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1207 mdp->tx_desc_dma);
1208 mdp->tx_ring = NULL;
1209 }
1210
1211 /* Free Tx skb ringbuffer */
1212 kfree(mdp->tx_skbuff);
1213 mdp->tx_skbuff = NULL;
1214 }
1215
1216 /* format skb and descriptor buffer */
1217 static void sh_eth_ring_format(struct net_device *ndev)
1218 {
1219 struct sh_eth_private *mdp = netdev_priv(ndev);
1220 int i;
1221 struct sk_buff *skb;
1222 struct sh_eth_rxdesc *rxdesc = NULL;
1223 struct sh_eth_txdesc *txdesc = NULL;
1224 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1225 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1226 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1227 dma_addr_t dma_addr;
1228 u32 buf_len;
1229
1230 mdp->cur_rx = 0;
1231 mdp->cur_tx = 0;
1232 mdp->dirty_rx = 0;
1233 mdp->dirty_tx = 0;
1234
1235 memset(mdp->rx_ring, 0, rx_ringsize);
1236
1237 /* build Rx ring buffer */
1238 for (i = 0; i < mdp->num_rx_ring; i++) {
1239 /* skb */
1240 mdp->rx_skbuff[i] = NULL;
1241 skb = netdev_alloc_skb(ndev, skbuff_size);
1242 if (skb == NULL)
1243 break;
1244 sh_eth_set_receive_align(skb);
1245
1246 /* The size of the buffer is a multiple of 32 bytes. */
1247 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1248 dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1249 DMA_FROM_DEVICE);
1250 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1251 kfree_skb(skb);
1252 break;
1253 }
1254 mdp->rx_skbuff[i] = skb;
1255
1256 /* RX descriptor */
1257 rxdesc = &mdp->rx_ring[i];
1258 rxdesc->len = cpu_to_le32(buf_len << 16);
1259 rxdesc->addr = cpu_to_le32(dma_addr);
1260 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1261
1262 /* Rx descriptor address set */
1263 if (i == 0) {
1264 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1265 if (sh_eth_is_gether(mdp) ||
1266 sh_eth_is_rz_fast_ether(mdp))
1267 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1268 }
1269 }
1270
1271 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1272
1273 /* Mark the last entry as wrapping the ring. */
1274 if (rxdesc)
1275 rxdesc->status |= cpu_to_le32(RD_RDLE);
1276
1277 memset(mdp->tx_ring, 0, tx_ringsize);
1278
1279 /* build Tx ring buffer */
1280 for (i = 0; i < mdp->num_tx_ring; i++) {
1281 mdp->tx_skbuff[i] = NULL;
1282 txdesc = &mdp->tx_ring[i];
1283 txdesc->status = cpu_to_le32(TD_TFP);
1284 txdesc->len = cpu_to_le32(0);
1285 if (i == 0) {
1286 /* Tx descriptor address set */
1287 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1288 if (sh_eth_is_gether(mdp) ||
1289 sh_eth_is_rz_fast_ether(mdp))
1290 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1291 }
1292 }
1293
1294 txdesc->status |= cpu_to_le32(TD_TDLE);
1295 }
1296
1297 /* Get skb and descriptor buffer */
1298 static int sh_eth_ring_init(struct net_device *ndev)
1299 {
1300 struct sh_eth_private *mdp = netdev_priv(ndev);
1301 int rx_ringsize, tx_ringsize;
1302
1303 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1304 * card needs room to do 8 byte alignment, +2 so we can reserve
1305 * the first 2 bytes, and +16 gets room for the status word from the
1306 * card.
1307 */
1308 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1309 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1310 if (mdp->cd->rpadir)
1311 mdp->rx_buf_sz += NET_IP_ALIGN;
1312
1313 /* Allocate RX and TX skb rings */
1314 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1315 GFP_KERNEL);
1316 if (!mdp->rx_skbuff)
1317 return -ENOMEM;
1318
1319 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1320 GFP_KERNEL);
1321 if (!mdp->tx_skbuff)
1322 goto ring_free;
1323
1324 /* Allocate all Rx descriptors. */
1325 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1326 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1327 GFP_KERNEL);
1328 if (!mdp->rx_ring)
1329 goto ring_free;
1330
1331 mdp->dirty_rx = 0;
1332
1333 /* Allocate all Tx descriptors. */
1334 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1335 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1336 GFP_KERNEL);
1337 if (!mdp->tx_ring)
1338 goto ring_free;
1339 return 0;
1340
1341 ring_free:
1342 /* Free Rx and Tx skb ring buffer and DMA buffer */
1343 sh_eth_ring_free(ndev);
1344
1345 return -ENOMEM;
1346 }
1347
1348 static int sh_eth_dev_init(struct net_device *ndev)
1349 {
1350 struct sh_eth_private *mdp = netdev_priv(ndev);
1351 int ret;
1352
1353 /* Soft Reset */
1354 ret = sh_eth_reset(ndev);
1355 if (ret)
1356 return ret;
1357
1358 if (mdp->cd->rmiimode)
1359 sh_eth_write(ndev, 0x1, RMIIMODE);
1360
1361 /* Descriptor format */
1362 sh_eth_ring_format(ndev);
1363 if (mdp->cd->rpadir)
1364 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1365
1366 /* all sh_eth int mask */
1367 sh_eth_write(ndev, 0, EESIPR);
1368
1369 #if defined(__LITTLE_ENDIAN)
1370 if (mdp->cd->hw_swap)
1371 sh_eth_write(ndev, EDMR_EL, EDMR);
1372 else
1373 #endif
1374 sh_eth_write(ndev, 0, EDMR);
1375
1376 /* FIFO size set */
1377 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1378 sh_eth_write(ndev, 0, TFTR);
1379
1380 /* Frame recv control (enable multiple-packets per rx irq) */
1381 sh_eth_write(ndev, RMCR_RNC, RMCR);
1382
1383 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1384
1385 if (mdp->cd->bculr)
1386 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
1387
1388 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1389
1390 if (!mdp->cd->no_trimd)
1391 sh_eth_write(ndev, 0, TRIMD);
1392
1393 /* Recv frame limit set register */
1394 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1395 RFLR);
1396
1397 sh_eth_modify(ndev, EESR, 0, 0);
1398 mdp->irq_enabled = true;
1399 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1400
1401 /* PAUSE Prohibition */
1402 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1403 ECMR_TE | ECMR_RE, ECMR);
1404
1405 if (mdp->cd->set_rate)
1406 mdp->cd->set_rate(ndev);
1407
1408 /* E-MAC Status Register clear */
1409 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1410
1411 /* E-MAC Interrupt Enable register */
1412 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1413
1414 /* Set MAC address */
1415 update_mac_address(ndev);
1416
1417 /* mask reset */
1418 if (mdp->cd->apr)
1419 sh_eth_write(ndev, APR_AP, APR);
1420 if (mdp->cd->mpr)
1421 sh_eth_write(ndev, MPR_MP, MPR);
1422 if (mdp->cd->tpauser)
1423 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1424
1425 /* Setting the Rx mode will start the Rx process. */
1426 sh_eth_write(ndev, EDRRR_R, EDRRR);
1427
1428 return ret;
1429 }
1430
1431 static void sh_eth_dev_exit(struct net_device *ndev)
1432 {
1433 struct sh_eth_private *mdp = netdev_priv(ndev);
1434 int i;
1435
1436 /* Deactivate all TX descriptors, so DMA should stop at next
1437 * packet boundary if it's currently running
1438 */
1439 for (i = 0; i < mdp->num_tx_ring; i++)
1440 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1441
1442 /* Disable TX FIFO egress to MAC */
1443 sh_eth_rcv_snd_disable(ndev);
1444
1445 /* Stop RX DMA at next packet boundary */
1446 sh_eth_write(ndev, 0, EDRRR);
1447
1448 /* Aside from TX DMA, we can't tell when the hardware is
1449 * really stopped, so we need to reset to make sure.
1450 * Before doing that, wait for long enough to *probably*
1451 * finish transmitting the last packet and poll stats.
1452 */
1453 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1454 sh_eth_get_stats(ndev);
1455 sh_eth_reset(ndev);
1456
1457 /* Set MAC address again */
1458 update_mac_address(ndev);
1459 }
1460
1461 /* Packet receive function */
1462 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1463 {
1464 struct sh_eth_private *mdp = netdev_priv(ndev);
1465 struct sh_eth_rxdesc *rxdesc;
1466
1467 int entry = mdp->cur_rx % mdp->num_rx_ring;
1468 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1469 int limit;
1470 struct sk_buff *skb;
1471 u32 desc_status;
1472 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1473 dma_addr_t dma_addr;
1474 u16 pkt_len;
1475 u32 buf_len;
1476
1477 boguscnt = min(boguscnt, *quota);
1478 limit = boguscnt;
1479 rxdesc = &mdp->rx_ring[entry];
1480 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1481 /* RACT bit must be checked before all the following reads */
1482 dma_rmb();
1483 desc_status = le32_to_cpu(rxdesc->status);
1484 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1485
1486 if (--boguscnt < 0)
1487 break;
1488
1489 netif_info(mdp, rx_status, ndev,
1490 "rx entry %d status 0x%08x len %d\n",
1491 entry, desc_status, pkt_len);
1492
1493 if (!(desc_status & RDFEND))
1494 ndev->stats.rx_length_errors++;
1495
1496 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1497 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1498 * bit 0. However, in case of the R8A7740 and R7S72100
1499 * the RFS bits are from bit 25 to bit 16. So, the
1500 * driver needs right shifting by 16.
1501 */
1502 if (mdp->cd->hw_checksum)
1503 desc_status >>= 16;
1504
1505 skb = mdp->rx_skbuff[entry];
1506 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1507 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1508 ndev->stats.rx_errors++;
1509 if (desc_status & RD_RFS1)
1510 ndev->stats.rx_crc_errors++;
1511 if (desc_status & RD_RFS2)
1512 ndev->stats.rx_frame_errors++;
1513 if (desc_status & RD_RFS3)
1514 ndev->stats.rx_length_errors++;
1515 if (desc_status & RD_RFS4)
1516 ndev->stats.rx_length_errors++;
1517 if (desc_status & RD_RFS6)
1518 ndev->stats.rx_missed_errors++;
1519 if (desc_status & RD_RFS10)
1520 ndev->stats.rx_over_errors++;
1521 } else if (skb) {
1522 dma_addr = le32_to_cpu(rxdesc->addr);
1523 if (!mdp->cd->hw_swap)
1524 sh_eth_soft_swap(
1525 phys_to_virt(ALIGN(dma_addr, 4)),
1526 pkt_len + 2);
1527 mdp->rx_skbuff[entry] = NULL;
1528 if (mdp->cd->rpadir)
1529 skb_reserve(skb, NET_IP_ALIGN);
1530 dma_unmap_single(&ndev->dev, dma_addr,
1531 ALIGN(mdp->rx_buf_sz, 32),
1532 DMA_FROM_DEVICE);
1533 skb_put(skb, pkt_len);
1534 skb->protocol = eth_type_trans(skb, ndev);
1535 netif_receive_skb(skb);
1536 ndev->stats.rx_packets++;
1537 ndev->stats.rx_bytes += pkt_len;
1538 if (desc_status & RD_RFS8)
1539 ndev->stats.multicast++;
1540 }
1541 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1542 rxdesc = &mdp->rx_ring[entry];
1543 }
1544
1545 /* Refill the Rx ring buffers. */
1546 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1547 entry = mdp->dirty_rx % mdp->num_rx_ring;
1548 rxdesc = &mdp->rx_ring[entry];
1549 /* The size of the buffer is 32 byte boundary. */
1550 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1551 rxdesc->len = cpu_to_le32(buf_len << 16);
1552
1553 if (mdp->rx_skbuff[entry] == NULL) {
1554 skb = netdev_alloc_skb(ndev, skbuff_size);
1555 if (skb == NULL)
1556 break; /* Better luck next round. */
1557 sh_eth_set_receive_align(skb);
1558 dma_addr = dma_map_single(&ndev->dev, skb->data,
1559 buf_len, DMA_FROM_DEVICE);
1560 if (dma_mapping_error(&ndev->dev, dma_addr)) {
1561 kfree_skb(skb);
1562 break;
1563 }
1564 mdp->rx_skbuff[entry] = skb;
1565
1566 skb_checksum_none_assert(skb);
1567 rxdesc->addr = cpu_to_le32(dma_addr);
1568 }
1569 dma_wmb(); /* RACT bit must be set after all the above writes */
1570 if (entry >= mdp->num_rx_ring - 1)
1571 rxdesc->status |=
1572 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1573 else
1574 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1575 }
1576
1577 /* Restart Rx engine if stopped. */
1578 /* If we don't need to check status, don't. -KDU */
1579 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1580 /* fix the values for the next receiving if RDE is set */
1581 if (intr_status & EESR_RDE &&
1582 mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1583 u32 count = (sh_eth_read(ndev, RDFAR) -
1584 sh_eth_read(ndev, RDLAR)) >> 4;
1585
1586 mdp->cur_rx = count;
1587 mdp->dirty_rx = count;
1588 }
1589 sh_eth_write(ndev, EDRRR_R, EDRRR);
1590 }
1591
1592 *quota -= limit - boguscnt - 1;
1593
1594 return *quota <= 0;
1595 }
1596
1597 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1598 {
1599 /* disable tx and rx */
1600 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1601 }
1602
1603 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1604 {
1605 /* enable tx and rx */
1606 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1607 }
1608
1609 /* E-MAC interrupt handler */
1610 static void sh_eth_emac_interrupt(struct net_device *ndev)
1611 {
1612 struct sh_eth_private *mdp = netdev_priv(ndev);
1613 u32 felic_stat;
1614 u32 link_stat;
1615
1616 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1617 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1618 if (felic_stat & ECSR_ICD)
1619 ndev->stats.tx_carrier_errors++;
1620 if (felic_stat & ECSR_MPD)
1621 pm_wakeup_event(&mdp->pdev->dev, 0);
1622 if (felic_stat & ECSR_LCHNG) {
1623 /* Link Changed */
1624 if (mdp->cd->no_psr || mdp->no_ether_link)
1625 return;
1626 link_stat = sh_eth_read(ndev, PSR);
1627 if (mdp->ether_link_active_low)
1628 link_stat = ~link_stat;
1629 if (!(link_stat & PHY_ST_LINK)) {
1630 sh_eth_rcv_snd_disable(ndev);
1631 } else {
1632 /* Link Up */
1633 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1634 /* clear int */
1635 sh_eth_modify(ndev, ECSR, 0, 0);
1636 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1637 /* enable tx and rx */
1638 sh_eth_rcv_snd_enable(ndev);
1639 }
1640 }
1641 }
1642
1643 /* error control function */
1644 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1645 {
1646 struct sh_eth_private *mdp = netdev_priv(ndev);
1647 u32 mask;
1648
1649 if (intr_status & EESR_TWB) {
1650 /* Unused write back interrupt */
1651 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1652 ndev->stats.tx_aborted_errors++;
1653 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1654 }
1655 }
1656
1657 if (intr_status & EESR_RABT) {
1658 /* Receive Abort int */
1659 if (intr_status & EESR_RFRMER) {
1660 /* Receive Frame Overflow int */
1661 ndev->stats.rx_frame_errors++;
1662 }
1663 }
1664
1665 if (intr_status & EESR_TDE) {
1666 /* Transmit Descriptor Empty int */
1667 ndev->stats.tx_fifo_errors++;
1668 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1669 }
1670
1671 if (intr_status & EESR_TFE) {
1672 /* FIFO under flow */
1673 ndev->stats.tx_fifo_errors++;
1674 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1675 }
1676
1677 if (intr_status & EESR_RDE) {
1678 /* Receive Descriptor Empty int */
1679 ndev->stats.rx_over_errors++;
1680 }
1681
1682 if (intr_status & EESR_RFE) {
1683 /* Receive FIFO Overflow int */
1684 ndev->stats.rx_fifo_errors++;
1685 }
1686
1687 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1688 /* Address Error */
1689 ndev->stats.tx_fifo_errors++;
1690 netif_err(mdp, tx_err, ndev, "Address Error\n");
1691 }
1692
1693 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1694 if (mdp->cd->no_ade)
1695 mask &= ~EESR_ADE;
1696 if (intr_status & mask) {
1697 /* Tx error */
1698 u32 edtrr = sh_eth_read(ndev, EDTRR);
1699
1700 /* dmesg */
1701 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1702 intr_status, mdp->cur_tx, mdp->dirty_tx,
1703 (u32)ndev->state, edtrr);
1704 /* dirty buffer free */
1705 sh_eth_tx_free(ndev, true);
1706
1707 /* SH7712 BUG */
1708 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1709 /* tx dma start */
1710 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1711 }
1712 /* wakeup */
1713 netif_wake_queue(ndev);
1714 }
1715 }
1716
1717 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1718 {
1719 struct net_device *ndev = netdev;
1720 struct sh_eth_private *mdp = netdev_priv(ndev);
1721 struct sh_eth_cpu_data *cd = mdp->cd;
1722 irqreturn_t ret = IRQ_NONE;
1723 u32 intr_status, intr_enable;
1724
1725 spin_lock(&mdp->lock);
1726
1727 /* Get interrupt status */
1728 intr_status = sh_eth_read(ndev, EESR);
1729 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1730 * enabled since it's the one that comes thru regardless of the mask,
1731 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1732 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1733 * bit...
1734 */
1735 intr_enable = sh_eth_read(ndev, EESIPR);
1736 intr_status &= intr_enable | EESIPR_ECIIP;
1737 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1738 cd->eesr_err_check))
1739 ret = IRQ_HANDLED;
1740 else
1741 goto out;
1742
1743 if (unlikely(!mdp->irq_enabled)) {
1744 sh_eth_write(ndev, 0, EESIPR);
1745 goto out;
1746 }
1747
1748 if (intr_status & EESR_RX_CHECK) {
1749 if (napi_schedule_prep(&mdp->napi)) {
1750 /* Mask Rx interrupts */
1751 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1752 EESIPR);
1753 __napi_schedule(&mdp->napi);
1754 } else {
1755 netdev_warn(ndev,
1756 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1757 intr_status, intr_enable);
1758 }
1759 }
1760
1761 /* Tx Check */
1762 if (intr_status & cd->tx_check) {
1763 /* Clear Tx interrupts */
1764 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1765
1766 sh_eth_tx_free(ndev, true);
1767 netif_wake_queue(ndev);
1768 }
1769
1770 /* E-MAC interrupt */
1771 if (intr_status & EESR_ECI)
1772 sh_eth_emac_interrupt(ndev);
1773
1774 if (intr_status & cd->eesr_err_check) {
1775 /* Clear error interrupts */
1776 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1777
1778 sh_eth_error(ndev, intr_status);
1779 }
1780
1781 out:
1782 spin_unlock(&mdp->lock);
1783
1784 return ret;
1785 }
1786
1787 static int sh_eth_poll(struct napi_struct *napi, int budget)
1788 {
1789 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1790 napi);
1791 struct net_device *ndev = napi->dev;
1792 int quota = budget;
1793 u32 intr_status;
1794
1795 for (;;) {
1796 intr_status = sh_eth_read(ndev, EESR);
1797 if (!(intr_status & EESR_RX_CHECK))
1798 break;
1799 /* Clear Rx interrupts */
1800 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1801
1802 if (sh_eth_rx(ndev, intr_status, &quota))
1803 goto out;
1804 }
1805
1806 napi_complete(napi);
1807
1808 /* Reenable Rx interrupts */
1809 if (mdp->irq_enabled)
1810 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1811 out:
1812 return budget - quota;
1813 }
1814
1815 /* PHY state control function */
1816 static void sh_eth_adjust_link(struct net_device *ndev)
1817 {
1818 struct sh_eth_private *mdp = netdev_priv(ndev);
1819 struct phy_device *phydev = ndev->phydev;
1820 int new_state = 0;
1821
1822 if (phydev->link) {
1823 if (phydev->duplex != mdp->duplex) {
1824 new_state = 1;
1825 mdp->duplex = phydev->duplex;
1826 if (mdp->cd->set_duplex)
1827 mdp->cd->set_duplex(ndev);
1828 }
1829
1830 if (phydev->speed != mdp->speed) {
1831 new_state = 1;
1832 mdp->speed = phydev->speed;
1833 if (mdp->cd->set_rate)
1834 mdp->cd->set_rate(ndev);
1835 }
1836 if (!mdp->link) {
1837 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1838 new_state = 1;
1839 mdp->link = phydev->link;
1840 if (mdp->cd->no_psr || mdp->no_ether_link)
1841 sh_eth_rcv_snd_enable(ndev);
1842 }
1843 } else if (mdp->link) {
1844 new_state = 1;
1845 mdp->link = 0;
1846 mdp->speed = 0;
1847 mdp->duplex = -1;
1848 if (mdp->cd->no_psr || mdp->no_ether_link)
1849 sh_eth_rcv_snd_disable(ndev);
1850 }
1851
1852 if (new_state && netif_msg_link(mdp))
1853 phy_print_status(phydev);
1854 }
1855
1856 /* PHY init function */
1857 static int sh_eth_phy_init(struct net_device *ndev)
1858 {
1859 struct device_node *np = ndev->dev.parent->of_node;
1860 struct sh_eth_private *mdp = netdev_priv(ndev);
1861 struct phy_device *phydev;
1862
1863 mdp->link = 0;
1864 mdp->speed = 0;
1865 mdp->duplex = -1;
1866
1867 /* Try connect to PHY */
1868 if (np) {
1869 struct device_node *pn;
1870
1871 pn = of_parse_phandle(np, "phy-handle", 0);
1872 phydev = of_phy_connect(ndev, pn,
1873 sh_eth_adjust_link, 0,
1874 mdp->phy_interface);
1875
1876 of_node_put(pn);
1877 if (!phydev)
1878 phydev = ERR_PTR(-ENOENT);
1879 } else {
1880 char phy_id[MII_BUS_ID_SIZE + 3];
1881
1882 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1883 mdp->mii_bus->id, mdp->phy_id);
1884
1885 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1886 mdp->phy_interface);
1887 }
1888
1889 if (IS_ERR(phydev)) {
1890 netdev_err(ndev, "failed to connect PHY\n");
1891 return PTR_ERR(phydev);
1892 }
1893
1894 phy_attached_info(phydev);
1895
1896 return 0;
1897 }
1898
1899 /* PHY control start function */
1900 static int sh_eth_phy_start(struct net_device *ndev)
1901 {
1902 int ret;
1903
1904 ret = sh_eth_phy_init(ndev);
1905 if (ret)
1906 return ret;
1907
1908 phy_start(ndev->phydev);
1909
1910 return 0;
1911 }
1912
1913 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1914 struct ethtool_link_ksettings *cmd)
1915 {
1916 struct sh_eth_private *mdp = netdev_priv(ndev);
1917 unsigned long flags;
1918 int ret;
1919
1920 if (!ndev->phydev)
1921 return -ENODEV;
1922
1923 spin_lock_irqsave(&mdp->lock, flags);
1924 ret = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1925 spin_unlock_irqrestore(&mdp->lock, flags);
1926
1927 return ret;
1928 }
1929
1930 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1931 const struct ethtool_link_ksettings *cmd)
1932 {
1933 struct sh_eth_private *mdp = netdev_priv(ndev);
1934 unsigned long flags;
1935 int ret;
1936
1937 if (!ndev->phydev)
1938 return -ENODEV;
1939
1940 spin_lock_irqsave(&mdp->lock, flags);
1941
1942 /* disable tx and rx */
1943 sh_eth_rcv_snd_disable(ndev);
1944
1945 ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1946 if (ret)
1947 goto error_exit;
1948
1949 if (cmd->base.duplex == DUPLEX_FULL)
1950 mdp->duplex = 1;
1951 else
1952 mdp->duplex = 0;
1953
1954 if (mdp->cd->set_duplex)
1955 mdp->cd->set_duplex(ndev);
1956
1957 error_exit:
1958 mdelay(1);
1959
1960 /* enable tx and rx */
1961 sh_eth_rcv_snd_enable(ndev);
1962
1963 spin_unlock_irqrestore(&mdp->lock, flags);
1964
1965 return ret;
1966 }
1967
1968 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1969 * version must be bumped as well. Just adding registers up to that
1970 * limit is fine, as long as the existing register indices don't
1971 * change.
1972 */
1973 #define SH_ETH_REG_DUMP_VERSION 1
1974 #define SH_ETH_REG_DUMP_MAX_REGS 256
1975
1976 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1977 {
1978 struct sh_eth_private *mdp = netdev_priv(ndev);
1979 struct sh_eth_cpu_data *cd = mdp->cd;
1980 u32 *valid_map;
1981 size_t len;
1982
1983 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1984
1985 /* Dump starts with a bitmap that tells ethtool which
1986 * registers are defined for this chip.
1987 */
1988 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1989 if (buf) {
1990 valid_map = buf;
1991 buf += len;
1992 } else {
1993 valid_map = NULL;
1994 }
1995
1996 /* Add a register to the dump, if it has a defined offset.
1997 * This automatically skips most undefined registers, but for
1998 * some it is also necessary to check a capability flag in
1999 * struct sh_eth_cpu_data.
2000 */
2001 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2002 #define add_reg_from(reg, read_expr) do { \
2003 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
2004 if (buf) { \
2005 mark_reg_valid(reg); \
2006 *buf++ = read_expr; \
2007 } \
2008 ++len; \
2009 } \
2010 } while (0)
2011 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2012 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2013
2014 add_reg(EDSR);
2015 add_reg(EDMR);
2016 add_reg(EDTRR);
2017 add_reg(EDRRR);
2018 add_reg(EESR);
2019 add_reg(EESIPR);
2020 add_reg(TDLAR);
2021 add_reg(TDFAR);
2022 add_reg(TDFXR);
2023 add_reg(TDFFR);
2024 add_reg(RDLAR);
2025 add_reg(RDFAR);
2026 add_reg(RDFXR);
2027 add_reg(RDFFR);
2028 add_reg(TRSCER);
2029 add_reg(RMFCR);
2030 add_reg(TFTR);
2031 add_reg(FDR);
2032 add_reg(RMCR);
2033 add_reg(TFUCR);
2034 add_reg(RFOCR);
2035 if (cd->rmiimode)
2036 add_reg(RMIIMODE);
2037 add_reg(FCFTR);
2038 if (cd->rpadir)
2039 add_reg(RPADIR);
2040 if (!cd->no_trimd)
2041 add_reg(TRIMD);
2042 add_reg(ECMR);
2043 add_reg(ECSR);
2044 add_reg(ECSIPR);
2045 add_reg(PIR);
2046 if (!cd->no_psr)
2047 add_reg(PSR);
2048 add_reg(RDMLR);
2049 add_reg(RFLR);
2050 add_reg(IPGR);
2051 if (cd->apr)
2052 add_reg(APR);
2053 if (cd->mpr)
2054 add_reg(MPR);
2055 add_reg(RFCR);
2056 add_reg(RFCF);
2057 if (cd->tpauser)
2058 add_reg(TPAUSER);
2059 add_reg(TPAUSECR);
2060 add_reg(GECMR);
2061 if (cd->bculr)
2062 add_reg(BCULR);
2063 add_reg(MAHR);
2064 add_reg(MALR);
2065 add_reg(TROCR);
2066 add_reg(CDCR);
2067 add_reg(LCCR);
2068 add_reg(CNDCR);
2069 add_reg(CEFCR);
2070 add_reg(FRECR);
2071 add_reg(TSFRCR);
2072 add_reg(TLFRCR);
2073 add_reg(CERCR);
2074 add_reg(CEECR);
2075 add_reg(MAFCR);
2076 if (cd->rtrate)
2077 add_reg(RTRATE);
2078 if (cd->hw_checksum)
2079 add_reg(CSMR);
2080 if (cd->select_mii)
2081 add_reg(RMII_MII);
2082 add_reg(ARSTR);
2083 if (cd->tsu) {
2084 add_tsu_reg(TSU_CTRST);
2085 add_tsu_reg(TSU_FWEN0);
2086 add_tsu_reg(TSU_FWEN1);
2087 add_tsu_reg(TSU_FCM);
2088 add_tsu_reg(TSU_BSYSL0);
2089 add_tsu_reg(TSU_BSYSL1);
2090 add_tsu_reg(TSU_PRISL0);
2091 add_tsu_reg(TSU_PRISL1);
2092 add_tsu_reg(TSU_FWSL0);
2093 add_tsu_reg(TSU_FWSL1);
2094 add_tsu_reg(TSU_FWSLC);
2095 add_tsu_reg(TSU_QTAG0);
2096 add_tsu_reg(TSU_QTAG1);
2097 add_tsu_reg(TSU_QTAGM0);
2098 add_tsu_reg(TSU_QTAGM1);
2099 add_tsu_reg(TSU_FWSR);
2100 add_tsu_reg(TSU_FWINMK);
2101 add_tsu_reg(TSU_ADQT0);
2102 add_tsu_reg(TSU_ADQT1);
2103 add_tsu_reg(TSU_VTAG0);
2104 add_tsu_reg(TSU_VTAG1);
2105 add_tsu_reg(TSU_ADSBSY);
2106 add_tsu_reg(TSU_TEN);
2107 add_tsu_reg(TSU_POST1);
2108 add_tsu_reg(TSU_POST2);
2109 add_tsu_reg(TSU_POST3);
2110 add_tsu_reg(TSU_POST4);
2111 if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2112 /* This is the start of a table, not just a single
2113 * register.
2114 */
2115 if (buf) {
2116 unsigned int i;
2117
2118 mark_reg_valid(TSU_ADRH0);
2119 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2120 *buf++ = ioread32(
2121 mdp->tsu_addr +
2122 mdp->reg_offset[TSU_ADRH0] +
2123 i * 4);
2124 }
2125 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2126 }
2127 }
2128
2129 #undef mark_reg_valid
2130 #undef add_reg_from
2131 #undef add_reg
2132 #undef add_tsu_reg
2133
2134 return len * 4;
2135 }
2136
2137 static int sh_eth_get_regs_len(struct net_device *ndev)
2138 {
2139 return __sh_eth_get_regs(ndev, NULL);
2140 }
2141
2142 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2143 void *buf)
2144 {
2145 struct sh_eth_private *mdp = netdev_priv(ndev);
2146
2147 regs->version = SH_ETH_REG_DUMP_VERSION;
2148
2149 pm_runtime_get_sync(&mdp->pdev->dev);
2150 __sh_eth_get_regs(ndev, buf);
2151 pm_runtime_put_sync(&mdp->pdev->dev);
2152 }
2153
2154 static int sh_eth_nway_reset(struct net_device *ndev)
2155 {
2156 struct sh_eth_private *mdp = netdev_priv(ndev);
2157 unsigned long flags;
2158 int ret;
2159
2160 if (!ndev->phydev)
2161 return -ENODEV;
2162
2163 spin_lock_irqsave(&mdp->lock, flags);
2164 ret = phy_start_aneg(ndev->phydev);
2165 spin_unlock_irqrestore(&mdp->lock, flags);
2166
2167 return ret;
2168 }
2169
2170 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2171 {
2172 struct sh_eth_private *mdp = netdev_priv(ndev);
2173 return mdp->msg_enable;
2174 }
2175
2176 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2177 {
2178 struct sh_eth_private *mdp = netdev_priv(ndev);
2179 mdp->msg_enable = value;
2180 }
2181
2182 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2183 "rx_current", "tx_current",
2184 "rx_dirty", "tx_dirty",
2185 };
2186 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2187
2188 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2189 {
2190 switch (sset) {
2191 case ETH_SS_STATS:
2192 return SH_ETH_STATS_LEN;
2193 default:
2194 return -EOPNOTSUPP;
2195 }
2196 }
2197
2198 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2199 struct ethtool_stats *stats, u64 *data)
2200 {
2201 struct sh_eth_private *mdp = netdev_priv(ndev);
2202 int i = 0;
2203
2204 /* device-specific stats */
2205 data[i++] = mdp->cur_rx;
2206 data[i++] = mdp->cur_tx;
2207 data[i++] = mdp->dirty_rx;
2208 data[i++] = mdp->dirty_tx;
2209 }
2210
2211 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2212 {
2213 switch (stringset) {
2214 case ETH_SS_STATS:
2215 memcpy(data, *sh_eth_gstrings_stats,
2216 sizeof(sh_eth_gstrings_stats));
2217 break;
2218 }
2219 }
2220
2221 static void sh_eth_get_ringparam(struct net_device *ndev,
2222 struct ethtool_ringparam *ring)
2223 {
2224 struct sh_eth_private *mdp = netdev_priv(ndev);
2225
2226 ring->rx_max_pending = RX_RING_MAX;
2227 ring->tx_max_pending = TX_RING_MAX;
2228 ring->rx_pending = mdp->num_rx_ring;
2229 ring->tx_pending = mdp->num_tx_ring;
2230 }
2231
2232 static int sh_eth_set_ringparam(struct net_device *ndev,
2233 struct ethtool_ringparam *ring)
2234 {
2235 struct sh_eth_private *mdp = netdev_priv(ndev);
2236 int ret;
2237
2238 if (ring->tx_pending > TX_RING_MAX ||
2239 ring->rx_pending > RX_RING_MAX ||
2240 ring->tx_pending < TX_RING_MIN ||
2241 ring->rx_pending < RX_RING_MIN)
2242 return -EINVAL;
2243 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2244 return -EINVAL;
2245
2246 if (netif_running(ndev)) {
2247 netif_device_detach(ndev);
2248 netif_tx_disable(ndev);
2249
2250 /* Serialise with the interrupt handler and NAPI, then
2251 * disable interrupts. We have to clear the
2252 * irq_enabled flag first to ensure that interrupts
2253 * won't be re-enabled.
2254 */
2255 mdp->irq_enabled = false;
2256 synchronize_irq(ndev->irq);
2257 napi_synchronize(&mdp->napi);
2258 sh_eth_write(ndev, 0x0000, EESIPR);
2259
2260 sh_eth_dev_exit(ndev);
2261
2262 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2263 sh_eth_ring_free(ndev);
2264 }
2265
2266 /* Set new parameters */
2267 mdp->num_rx_ring = ring->rx_pending;
2268 mdp->num_tx_ring = ring->tx_pending;
2269
2270 if (netif_running(ndev)) {
2271 ret = sh_eth_ring_init(ndev);
2272 if (ret < 0) {
2273 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2274 __func__);
2275 return ret;
2276 }
2277 ret = sh_eth_dev_init(ndev);
2278 if (ret < 0) {
2279 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2280 __func__);
2281 return ret;
2282 }
2283
2284 netif_device_attach(ndev);
2285 }
2286
2287 return 0;
2288 }
2289
2290 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2291 {
2292 struct sh_eth_private *mdp = netdev_priv(ndev);
2293
2294 wol->supported = 0;
2295 wol->wolopts = 0;
2296
2297 if (mdp->cd->magic && mdp->clk) {
2298 wol->supported = WAKE_MAGIC;
2299 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2300 }
2301 }
2302
2303 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2304 {
2305 struct sh_eth_private *mdp = netdev_priv(ndev);
2306
2307 if (!mdp->cd->magic || !mdp->clk || wol->wolopts & ~WAKE_MAGIC)
2308 return -EOPNOTSUPP;
2309
2310 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2311
2312 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2313
2314 return 0;
2315 }
2316
2317 static const struct ethtool_ops sh_eth_ethtool_ops = {
2318 .get_regs_len = sh_eth_get_regs_len,
2319 .get_regs = sh_eth_get_regs,
2320 .nway_reset = sh_eth_nway_reset,
2321 .get_msglevel = sh_eth_get_msglevel,
2322 .set_msglevel = sh_eth_set_msglevel,
2323 .get_link = ethtool_op_get_link,
2324 .get_strings = sh_eth_get_strings,
2325 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2326 .get_sset_count = sh_eth_get_sset_count,
2327 .get_ringparam = sh_eth_get_ringparam,
2328 .set_ringparam = sh_eth_set_ringparam,
2329 .get_link_ksettings = sh_eth_get_link_ksettings,
2330 .set_link_ksettings = sh_eth_set_link_ksettings,
2331 .get_wol = sh_eth_get_wol,
2332 .set_wol = sh_eth_set_wol,
2333 };
2334
2335 /* network device open function */
2336 static int sh_eth_open(struct net_device *ndev)
2337 {
2338 struct sh_eth_private *mdp = netdev_priv(ndev);
2339 int ret;
2340
2341 pm_runtime_get_sync(&mdp->pdev->dev);
2342
2343 napi_enable(&mdp->napi);
2344
2345 ret = request_irq(ndev->irq, sh_eth_interrupt,
2346 mdp->cd->irq_flags, ndev->name, ndev);
2347 if (ret) {
2348 netdev_err(ndev, "Can not assign IRQ number\n");
2349 goto out_napi_off;
2350 }
2351
2352 /* Descriptor set */
2353 ret = sh_eth_ring_init(ndev);
2354 if (ret)
2355 goto out_free_irq;
2356
2357 /* device init */
2358 ret = sh_eth_dev_init(ndev);
2359 if (ret)
2360 goto out_free_irq;
2361
2362 /* PHY control start*/
2363 ret = sh_eth_phy_start(ndev);
2364 if (ret)
2365 goto out_free_irq;
2366
2367 netif_start_queue(ndev);
2368
2369 mdp->is_opened = 1;
2370
2371 return ret;
2372
2373 out_free_irq:
2374 free_irq(ndev->irq, ndev);
2375 out_napi_off:
2376 napi_disable(&mdp->napi);
2377 pm_runtime_put_sync(&mdp->pdev->dev);
2378 return ret;
2379 }
2380
2381 /* Timeout function */
2382 static void sh_eth_tx_timeout(struct net_device *ndev)
2383 {
2384 struct sh_eth_private *mdp = netdev_priv(ndev);
2385 struct sh_eth_rxdesc *rxdesc;
2386 int i;
2387
2388 netif_stop_queue(ndev);
2389
2390 netif_err(mdp, timer, ndev,
2391 "transmit timed out, status %8.8x, resetting...\n",
2392 sh_eth_read(ndev, EESR));
2393
2394 /* tx_errors count up */
2395 ndev->stats.tx_errors++;
2396
2397 /* Free all the skbuffs in the Rx queue. */
2398 for (i = 0; i < mdp->num_rx_ring; i++) {
2399 rxdesc = &mdp->rx_ring[i];
2400 rxdesc->status = cpu_to_le32(0);
2401 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2402 dev_kfree_skb(mdp->rx_skbuff[i]);
2403 mdp->rx_skbuff[i] = NULL;
2404 }
2405 for (i = 0; i < mdp->num_tx_ring; i++) {
2406 dev_kfree_skb(mdp->tx_skbuff[i]);
2407 mdp->tx_skbuff[i] = NULL;
2408 }
2409
2410 /* device init */
2411 sh_eth_dev_init(ndev);
2412
2413 netif_start_queue(ndev);
2414 }
2415
2416 /* Packet transmit function */
2417 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2418 {
2419 struct sh_eth_private *mdp = netdev_priv(ndev);
2420 struct sh_eth_txdesc *txdesc;
2421 dma_addr_t dma_addr;
2422 u32 entry;
2423 unsigned long flags;
2424
2425 spin_lock_irqsave(&mdp->lock, flags);
2426 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2427 if (!sh_eth_tx_free(ndev, true)) {
2428 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2429 netif_stop_queue(ndev);
2430 spin_unlock_irqrestore(&mdp->lock, flags);
2431 return NETDEV_TX_BUSY;
2432 }
2433 }
2434 spin_unlock_irqrestore(&mdp->lock, flags);
2435
2436 if (skb_put_padto(skb, ETH_ZLEN))
2437 return NETDEV_TX_OK;
2438
2439 entry = mdp->cur_tx % mdp->num_tx_ring;
2440 mdp->tx_skbuff[entry] = skb;
2441 txdesc = &mdp->tx_ring[entry];
2442 /* soft swap. */
2443 if (!mdp->cd->hw_swap)
2444 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2445 dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2446 DMA_TO_DEVICE);
2447 if (dma_mapping_error(&ndev->dev, dma_addr)) {
2448 kfree_skb(skb);
2449 return NETDEV_TX_OK;
2450 }
2451 txdesc->addr = cpu_to_le32(dma_addr);
2452 txdesc->len = cpu_to_le32(skb->len << 16);
2453
2454 dma_wmb(); /* TACT bit must be set after all the above writes */
2455 if (entry >= mdp->num_tx_ring - 1)
2456 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2457 else
2458 txdesc->status |= cpu_to_le32(TD_TACT);
2459
2460 mdp->cur_tx++;
2461
2462 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2463 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2464
2465 return NETDEV_TX_OK;
2466 }
2467
2468 /* The statistics registers have write-clear behaviour, which means we
2469 * will lose any increment between the read and write. We mitigate
2470 * this by only clearing when we read a non-zero value, so we will
2471 * never falsely report a total of zero.
2472 */
2473 static void
2474 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2475 {
2476 u32 delta = sh_eth_read(ndev, reg);
2477
2478 if (delta) {
2479 *stat += delta;
2480 sh_eth_write(ndev, 0, reg);
2481 }
2482 }
2483
2484 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2485 {
2486 struct sh_eth_private *mdp = netdev_priv(ndev);
2487
2488 if (sh_eth_is_rz_fast_ether(mdp))
2489 return &ndev->stats;
2490
2491 if (!mdp->is_opened)
2492 return &ndev->stats;
2493
2494 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2495 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2496 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2497
2498 if (sh_eth_is_gether(mdp)) {
2499 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2500 CERCR);
2501 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2502 CEECR);
2503 } else {
2504 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2505 CNDCR);
2506 }
2507
2508 return &ndev->stats;
2509 }
2510
2511 /* device close function */
2512 static int sh_eth_close(struct net_device *ndev)
2513 {
2514 struct sh_eth_private *mdp = netdev_priv(ndev);
2515
2516 netif_stop_queue(ndev);
2517
2518 /* Serialise with the interrupt handler and NAPI, then disable
2519 * interrupts. We have to clear the irq_enabled flag first to
2520 * ensure that interrupts won't be re-enabled.
2521 */
2522 mdp->irq_enabled = false;
2523 synchronize_irq(ndev->irq);
2524 napi_disable(&mdp->napi);
2525 sh_eth_write(ndev, 0x0000, EESIPR);
2526
2527 sh_eth_dev_exit(ndev);
2528
2529 /* PHY Disconnect */
2530 if (ndev->phydev) {
2531 phy_stop(ndev->phydev);
2532 phy_disconnect(ndev->phydev);
2533 }
2534
2535 free_irq(ndev->irq, ndev);
2536
2537 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2538 sh_eth_ring_free(ndev);
2539
2540 pm_runtime_put_sync(&mdp->pdev->dev);
2541
2542 mdp->is_opened = 0;
2543
2544 return 0;
2545 }
2546
2547 /* ioctl to device function */
2548 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2549 {
2550 struct phy_device *phydev = ndev->phydev;
2551
2552 if (!netif_running(ndev))
2553 return -EINVAL;
2554
2555 if (!phydev)
2556 return -ENODEV;
2557
2558 return phy_mii_ioctl(phydev, rq, cmd);
2559 }
2560
2561 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2562 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2563 int entry)
2564 {
2565 return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2566 }
2567
2568 static u32 sh_eth_tsu_get_post_mask(int entry)
2569 {
2570 return 0x0f << (28 - ((entry % 8) * 4));
2571 }
2572
2573 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2574 {
2575 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2576 }
2577
2578 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2579 int entry)
2580 {
2581 struct sh_eth_private *mdp = netdev_priv(ndev);
2582 u32 tmp;
2583 void *reg_offset;
2584
2585 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2586 tmp = ioread32(reg_offset);
2587 iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2588 }
2589
2590 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2591 int entry)
2592 {
2593 struct sh_eth_private *mdp = netdev_priv(ndev);
2594 u32 post_mask, ref_mask, tmp;
2595 void *reg_offset;
2596
2597 reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2598 post_mask = sh_eth_tsu_get_post_mask(entry);
2599 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2600
2601 tmp = ioread32(reg_offset);
2602 iowrite32(tmp & ~post_mask, reg_offset);
2603
2604 /* If other port enables, the function returns "true" */
2605 return tmp & ref_mask;
2606 }
2607
2608 static int sh_eth_tsu_busy(struct net_device *ndev)
2609 {
2610 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2611 struct sh_eth_private *mdp = netdev_priv(ndev);
2612
2613 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2614 udelay(10);
2615 timeout--;
2616 if (timeout <= 0) {
2617 netdev_err(ndev, "%s: timeout\n", __func__);
2618 return -ETIMEDOUT;
2619 }
2620 }
2621
2622 return 0;
2623 }
2624
2625 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2626 const u8 *addr)
2627 {
2628 u32 val;
2629
2630 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2631 iowrite32(val, reg);
2632 if (sh_eth_tsu_busy(ndev) < 0)
2633 return -EBUSY;
2634
2635 val = addr[4] << 8 | addr[5];
2636 iowrite32(val, reg + 4);
2637 if (sh_eth_tsu_busy(ndev) < 0)
2638 return -EBUSY;
2639
2640 return 0;
2641 }
2642
2643 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2644 {
2645 u32 val;
2646
2647 val = ioread32(reg);
2648 addr[0] = (val >> 24) & 0xff;
2649 addr[1] = (val >> 16) & 0xff;
2650 addr[2] = (val >> 8) & 0xff;
2651 addr[3] = val & 0xff;
2652 val = ioread32(reg + 4);
2653 addr[4] = (val >> 8) & 0xff;
2654 addr[5] = val & 0xff;
2655 }
2656
2657
2658 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2659 {
2660 struct sh_eth_private *mdp = netdev_priv(ndev);
2661 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2662 int i;
2663 u8 c_addr[ETH_ALEN];
2664
2665 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2666 sh_eth_tsu_read_entry(reg_offset, c_addr);
2667 if (ether_addr_equal(addr, c_addr))
2668 return i;
2669 }
2670
2671 return -ENOENT;
2672 }
2673
2674 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2675 {
2676 u8 blank[ETH_ALEN];
2677 int entry;
2678
2679 memset(blank, 0, sizeof(blank));
2680 entry = sh_eth_tsu_find_entry(ndev, blank);
2681 return (entry < 0) ? -ENOMEM : entry;
2682 }
2683
2684 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2685 int entry)
2686 {
2687 struct sh_eth_private *mdp = netdev_priv(ndev);
2688 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2689 int ret;
2690 u8 blank[ETH_ALEN];
2691
2692 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2693 ~(1 << (31 - entry)), TSU_TEN);
2694
2695 memset(blank, 0, sizeof(blank));
2696 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2697 if (ret < 0)
2698 return ret;
2699 return 0;
2700 }
2701
2702 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2703 {
2704 struct sh_eth_private *mdp = netdev_priv(ndev);
2705 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2706 int i, ret;
2707
2708 if (!mdp->cd->tsu)
2709 return 0;
2710
2711 i = sh_eth_tsu_find_entry(ndev, addr);
2712 if (i < 0) {
2713 /* No entry found, create one */
2714 i = sh_eth_tsu_find_empty(ndev);
2715 if (i < 0)
2716 return -ENOMEM;
2717 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2718 if (ret < 0)
2719 return ret;
2720
2721 /* Enable the entry */
2722 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2723 (1 << (31 - i)), TSU_TEN);
2724 }
2725
2726 /* Entry found or created, enable POST */
2727 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2728
2729 return 0;
2730 }
2731
2732 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2733 {
2734 struct sh_eth_private *mdp = netdev_priv(ndev);
2735 int i, ret;
2736
2737 if (!mdp->cd->tsu)
2738 return 0;
2739
2740 i = sh_eth_tsu_find_entry(ndev, addr);
2741 if (i) {
2742 /* Entry found */
2743 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2744 goto done;
2745
2746 /* Disable the entry if both ports was disabled */
2747 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2748 if (ret < 0)
2749 return ret;
2750 }
2751 done:
2752 return 0;
2753 }
2754
2755 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2756 {
2757 struct sh_eth_private *mdp = netdev_priv(ndev);
2758 int i, ret;
2759
2760 if (!mdp->cd->tsu)
2761 return 0;
2762
2763 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2764 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2765 continue;
2766
2767 /* Disable the entry if both ports was disabled */
2768 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2769 if (ret < 0)
2770 return ret;
2771 }
2772
2773 return 0;
2774 }
2775
2776 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2777 {
2778 struct sh_eth_private *mdp = netdev_priv(ndev);
2779 u8 addr[ETH_ALEN];
2780 void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2781 int i;
2782
2783 if (!mdp->cd->tsu)
2784 return;
2785
2786 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2787 sh_eth_tsu_read_entry(reg_offset, addr);
2788 if (is_multicast_ether_addr(addr))
2789 sh_eth_tsu_del_entry(ndev, addr);
2790 }
2791 }
2792
2793 /* Update promiscuous flag and multicast filter */
2794 static void sh_eth_set_rx_mode(struct net_device *ndev)
2795 {
2796 struct sh_eth_private *mdp = netdev_priv(ndev);
2797 u32 ecmr_bits;
2798 int mcast_all = 0;
2799 unsigned long flags;
2800
2801 spin_lock_irqsave(&mdp->lock, flags);
2802 /* Initial condition is MCT = 1, PRM = 0.
2803 * Depending on ndev->flags, set PRM or clear MCT
2804 */
2805 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2806 if (mdp->cd->tsu)
2807 ecmr_bits |= ECMR_MCT;
2808
2809 if (!(ndev->flags & IFF_MULTICAST)) {
2810 sh_eth_tsu_purge_mcast(ndev);
2811 mcast_all = 1;
2812 }
2813 if (ndev->flags & IFF_ALLMULTI) {
2814 sh_eth_tsu_purge_mcast(ndev);
2815 ecmr_bits &= ~ECMR_MCT;
2816 mcast_all = 1;
2817 }
2818
2819 if (ndev->flags & IFF_PROMISC) {
2820 sh_eth_tsu_purge_all(ndev);
2821 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2822 } else if (mdp->cd->tsu) {
2823 struct netdev_hw_addr *ha;
2824 netdev_for_each_mc_addr(ha, ndev) {
2825 if (mcast_all && is_multicast_ether_addr(ha->addr))
2826 continue;
2827
2828 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2829 if (!mcast_all) {
2830 sh_eth_tsu_purge_mcast(ndev);
2831 ecmr_bits &= ~ECMR_MCT;
2832 mcast_all = 1;
2833 }
2834 }
2835 }
2836 }
2837
2838 /* update the ethernet mode */
2839 sh_eth_write(ndev, ecmr_bits, ECMR);
2840
2841 spin_unlock_irqrestore(&mdp->lock, flags);
2842 }
2843
2844 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2845 {
2846 if (!mdp->port)
2847 return TSU_VTAG0;
2848 else
2849 return TSU_VTAG1;
2850 }
2851
2852 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2853 __be16 proto, u16 vid)
2854 {
2855 struct sh_eth_private *mdp = netdev_priv(ndev);
2856 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2857
2858 if (unlikely(!mdp->cd->tsu))
2859 return -EPERM;
2860
2861 /* No filtering if vid = 0 */
2862 if (!vid)
2863 return 0;
2864
2865 mdp->vlan_num_ids++;
2866
2867 /* The controller has one VLAN tag HW filter. So, if the filter is
2868 * already enabled, the driver disables it and the filte
2869 */
2870 if (mdp->vlan_num_ids > 1) {
2871 /* disable VLAN filter */
2872 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2873 return 0;
2874 }
2875
2876 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2877 vtag_reg_index);
2878
2879 return 0;
2880 }
2881
2882 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2883 __be16 proto, u16 vid)
2884 {
2885 struct sh_eth_private *mdp = netdev_priv(ndev);
2886 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2887
2888 if (unlikely(!mdp->cd->tsu))
2889 return -EPERM;
2890
2891 /* No filtering if vid = 0 */
2892 if (!vid)
2893 return 0;
2894
2895 mdp->vlan_num_ids--;
2896 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2897
2898 return 0;
2899 }
2900
2901 /* SuperH's TSU register init function */
2902 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2903 {
2904 if (sh_eth_is_rz_fast_ether(mdp)) {
2905 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2906 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2907 TSU_FWSLC); /* Enable POST registers */
2908 return;
2909 }
2910
2911 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
2912 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
2913 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
2914 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2915 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2916 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2917 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2918 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2919 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2920 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2921 if (sh_eth_is_gether(mdp)) {
2922 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
2923 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
2924 } else {
2925 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
2926 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
2927 }
2928 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
2929 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
2930 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2931 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
2932 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
2933 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
2934 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
2935 }
2936
2937 /* MDIO bus release function */
2938 static int sh_mdio_release(struct sh_eth_private *mdp)
2939 {
2940 /* unregister mdio bus */
2941 mdiobus_unregister(mdp->mii_bus);
2942
2943 /* free bitbang info */
2944 free_mdio_bitbang(mdp->mii_bus);
2945
2946 return 0;
2947 }
2948
2949 /* MDIO bus init function */
2950 static int sh_mdio_init(struct sh_eth_private *mdp,
2951 struct sh_eth_plat_data *pd)
2952 {
2953 int ret;
2954 struct bb_info *bitbang;
2955 struct platform_device *pdev = mdp->pdev;
2956 struct device *dev = &mdp->pdev->dev;
2957
2958 /* create bit control struct for PHY */
2959 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2960 if (!bitbang)
2961 return -ENOMEM;
2962
2963 /* bitbang init */
2964 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2965 bitbang->set_gate = pd->set_mdio_gate;
2966 bitbang->ctrl.ops = &bb_ops;
2967
2968 /* MII controller setting */
2969 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2970 if (!mdp->mii_bus)
2971 return -ENOMEM;
2972
2973 /* Hook up MII support for ethtool */
2974 mdp->mii_bus->name = "sh_mii";
2975 mdp->mii_bus->parent = dev;
2976 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2977 pdev->name, pdev->id);
2978
2979 /* register MDIO bus */
2980 if (dev->of_node) {
2981 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2982 } else {
2983 if (pd->phy_irq > 0)
2984 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2985
2986 ret = mdiobus_register(mdp->mii_bus);
2987 }
2988
2989 if (ret)
2990 goto out_free_bus;
2991
2992 return 0;
2993
2994 out_free_bus:
2995 free_mdio_bitbang(mdp->mii_bus);
2996 return ret;
2997 }
2998
2999 static const u16 *sh_eth_get_register_offset(int register_type)
3000 {
3001 const u16 *reg_offset = NULL;
3002
3003 switch (register_type) {
3004 case SH_ETH_REG_GIGABIT:
3005 reg_offset = sh_eth_offset_gigabit;
3006 break;
3007 case SH_ETH_REG_FAST_RZ:
3008 reg_offset = sh_eth_offset_fast_rz;
3009 break;
3010 case SH_ETH_REG_FAST_RCAR:
3011 reg_offset = sh_eth_offset_fast_rcar;
3012 break;
3013 case SH_ETH_REG_FAST_SH4:
3014 reg_offset = sh_eth_offset_fast_sh4;
3015 break;
3016 case SH_ETH_REG_FAST_SH3_SH2:
3017 reg_offset = sh_eth_offset_fast_sh3_sh2;
3018 break;
3019 }
3020
3021 return reg_offset;
3022 }
3023
3024 static const struct net_device_ops sh_eth_netdev_ops = {
3025 .ndo_open = sh_eth_open,
3026 .ndo_stop = sh_eth_close,
3027 .ndo_start_xmit = sh_eth_start_xmit,
3028 .ndo_get_stats = sh_eth_get_stats,
3029 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3030 .ndo_tx_timeout = sh_eth_tx_timeout,
3031 .ndo_do_ioctl = sh_eth_do_ioctl,
3032 .ndo_validate_addr = eth_validate_addr,
3033 .ndo_set_mac_address = eth_mac_addr,
3034 };
3035
3036 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3037 .ndo_open = sh_eth_open,
3038 .ndo_stop = sh_eth_close,
3039 .ndo_start_xmit = sh_eth_start_xmit,
3040 .ndo_get_stats = sh_eth_get_stats,
3041 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3042 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
3043 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
3044 .ndo_tx_timeout = sh_eth_tx_timeout,
3045 .ndo_do_ioctl = sh_eth_do_ioctl,
3046 .ndo_validate_addr = eth_validate_addr,
3047 .ndo_set_mac_address = eth_mac_addr,
3048 };
3049
3050 #ifdef CONFIG_OF
3051 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3052 {
3053 struct device_node *np = dev->of_node;
3054 struct sh_eth_plat_data *pdata;
3055 const char *mac_addr;
3056
3057 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3058 if (!pdata)
3059 return NULL;
3060
3061 pdata->phy_interface = of_get_phy_mode(np);
3062
3063 mac_addr = of_get_mac_address(np);
3064 if (mac_addr)
3065 memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3066
3067 pdata->no_ether_link =
3068 of_property_read_bool(np, "renesas,no-ether-link");
3069 pdata->ether_link_active_low =
3070 of_property_read_bool(np, "renesas,ether-link-active-low");
3071
3072 return pdata;
3073 }
3074
3075 static const struct of_device_id sh_eth_match_table[] = {
3076 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3077 { .compatible = "renesas,ether-r8a7743", .data = &r8a779x_data },
3078 { .compatible = "renesas,ether-r8a7745", .data = &r8a779x_data },
3079 { .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3080 { .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3081 { .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3082 { .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3083 { .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3084 { .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3085 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3086 { }
3087 };
3088 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3089 #else
3090 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3091 {
3092 return NULL;
3093 }
3094 #endif
3095
3096 static int sh_eth_drv_probe(struct platform_device *pdev)
3097 {
3098 struct resource *res;
3099 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3100 const struct platform_device_id *id = platform_get_device_id(pdev);
3101 struct sh_eth_private *mdp;
3102 struct net_device *ndev;
3103 int ret, devno;
3104
3105 /* get base addr */
3106 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3107
3108 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3109 if (!ndev)
3110 return -ENOMEM;
3111
3112 pm_runtime_enable(&pdev->dev);
3113 pm_runtime_get_sync(&pdev->dev);
3114
3115 devno = pdev->id;
3116 if (devno < 0)
3117 devno = 0;
3118
3119 ret = platform_get_irq(pdev, 0);
3120 if (ret < 0)
3121 goto out_release;
3122 ndev->irq = ret;
3123
3124 SET_NETDEV_DEV(ndev, &pdev->dev);
3125
3126 mdp = netdev_priv(ndev);
3127 mdp->num_tx_ring = TX_RING_SIZE;
3128 mdp->num_rx_ring = RX_RING_SIZE;
3129 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3130 if (IS_ERR(mdp->addr)) {
3131 ret = PTR_ERR(mdp->addr);
3132 goto out_release;
3133 }
3134
3135 /* Get clock, if not found that's OK but Wake-On-Lan is unavailable */
3136 mdp->clk = devm_clk_get(&pdev->dev, NULL);
3137 if (IS_ERR(mdp->clk))
3138 mdp->clk = NULL;
3139
3140 ndev->base_addr = res->start;
3141
3142 spin_lock_init(&mdp->lock);
3143 mdp->pdev = pdev;
3144
3145 if (pdev->dev.of_node)
3146 pd = sh_eth_parse_dt(&pdev->dev);
3147 if (!pd) {
3148 dev_err(&pdev->dev, "no platform data\n");
3149 ret = -EINVAL;
3150 goto out_release;
3151 }
3152
3153 /* get PHY ID */
3154 mdp->phy_id = pd->phy;
3155 mdp->phy_interface = pd->phy_interface;
3156 mdp->no_ether_link = pd->no_ether_link;
3157 mdp->ether_link_active_low = pd->ether_link_active_low;
3158
3159 /* set cpu data */
3160 if (id)
3161 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3162 else
3163 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3164
3165 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3166 if (!mdp->reg_offset) {
3167 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3168 mdp->cd->register_type);
3169 ret = -EINVAL;
3170 goto out_release;
3171 }
3172 sh_eth_set_default_cpu_data(mdp->cd);
3173
3174 /* set function */
3175 if (mdp->cd->tsu)
3176 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3177 else
3178 ndev->netdev_ops = &sh_eth_netdev_ops;
3179 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3180 ndev->watchdog_timeo = TX_TIMEOUT;
3181
3182 /* debug message level */
3183 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3184
3185 /* read and set MAC address */
3186 read_mac_address(ndev, pd->mac_addr);
3187 if (!is_valid_ether_addr(ndev->dev_addr)) {
3188 dev_warn(&pdev->dev,
3189 "no valid MAC address supplied, using a random one.\n");
3190 eth_hw_addr_random(ndev);
3191 }
3192
3193 /* ioremap the TSU registers */
3194 if (mdp->cd->tsu) {
3195 struct resource *rtsu;
3196 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3197 mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3198 if (IS_ERR(mdp->tsu_addr)) {
3199 ret = PTR_ERR(mdp->tsu_addr);
3200 goto out_release;
3201 }
3202 mdp->port = devno % 2;
3203 ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3204 }
3205
3206 /* initialize first or needed device */
3207 if (!devno || pd->needs_init) {
3208 if (mdp->cd->chip_reset)
3209 mdp->cd->chip_reset(ndev);
3210
3211 if (mdp->cd->tsu) {
3212 /* TSU init (Init only)*/
3213 sh_eth_tsu_init(mdp);
3214 }
3215 }
3216
3217 if (mdp->cd->rmiimode)
3218 sh_eth_write(ndev, 0x1, RMIIMODE);
3219
3220 /* MDIO bus init */
3221 ret = sh_mdio_init(mdp, pd);
3222 if (ret) {
3223 dev_err(&ndev->dev, "failed to initialise MDIO\n");
3224 goto out_release;
3225 }
3226
3227 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3228
3229 /* network device register */
3230 ret = register_netdev(ndev);
3231 if (ret)
3232 goto out_napi_del;
3233
3234 if (mdp->cd->magic && mdp->clk)
3235 device_set_wakeup_capable(&pdev->dev, 1);
3236
3237 /* print device information */
3238 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3239 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3240
3241 pm_runtime_put(&pdev->dev);
3242 platform_set_drvdata(pdev, ndev);
3243
3244 return ret;
3245
3246 out_napi_del:
3247 netif_napi_del(&mdp->napi);
3248 sh_mdio_release(mdp);
3249
3250 out_release:
3251 /* net_dev free */
3252 if (ndev)
3253 free_netdev(ndev);
3254
3255 pm_runtime_put(&pdev->dev);
3256 pm_runtime_disable(&pdev->dev);
3257 return ret;
3258 }
3259
3260 static int sh_eth_drv_remove(struct platform_device *pdev)
3261 {
3262 struct net_device *ndev = platform_get_drvdata(pdev);
3263 struct sh_eth_private *mdp = netdev_priv(ndev);
3264
3265 unregister_netdev(ndev);
3266 netif_napi_del(&mdp->napi);
3267 sh_mdio_release(mdp);
3268 pm_runtime_disable(&pdev->dev);
3269 free_netdev(ndev);
3270
3271 return 0;
3272 }
3273
3274 #ifdef CONFIG_PM
3275 #ifdef CONFIG_PM_SLEEP
3276 static int sh_eth_wol_setup(struct net_device *ndev)
3277 {
3278 struct sh_eth_private *mdp = netdev_priv(ndev);
3279
3280 /* Only allow ECI interrupts */
3281 synchronize_irq(ndev->irq);
3282 napi_disable(&mdp->napi);
3283 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3284
3285 /* Enable MagicPacket */
3286 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3287
3288 /* Increased clock usage so device won't be suspended */
3289 clk_enable(mdp->clk);
3290
3291 return enable_irq_wake(ndev->irq);
3292 }
3293
3294 static int sh_eth_wol_restore(struct net_device *ndev)
3295 {
3296 struct sh_eth_private *mdp = netdev_priv(ndev);
3297 int ret;
3298
3299 napi_enable(&mdp->napi);
3300
3301 /* Disable MagicPacket */
3302 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3303
3304 /* The device needs to be reset to restore MagicPacket logic
3305 * for next wakeup. If we close and open the device it will
3306 * both be reset and all registers restored. This is what
3307 * happens during suspend and resume without WoL enabled.
3308 */
3309 ret = sh_eth_close(ndev);
3310 if (ret < 0)
3311 return ret;
3312 ret = sh_eth_open(ndev);
3313 if (ret < 0)
3314 return ret;
3315
3316 /* Restore clock usage count */
3317 clk_disable(mdp->clk);
3318
3319 return disable_irq_wake(ndev->irq);
3320 }
3321
3322 static int sh_eth_suspend(struct device *dev)
3323 {
3324 struct net_device *ndev = dev_get_drvdata(dev);
3325 struct sh_eth_private *mdp = netdev_priv(ndev);
3326 int ret = 0;
3327
3328 if (!netif_running(ndev))
3329 return 0;
3330
3331 netif_device_detach(ndev);
3332
3333 if (mdp->wol_enabled)
3334 ret = sh_eth_wol_setup(ndev);
3335 else
3336 ret = sh_eth_close(ndev);
3337
3338 return ret;
3339 }
3340
3341 static int sh_eth_resume(struct device *dev)
3342 {
3343 struct net_device *ndev = dev_get_drvdata(dev);
3344 struct sh_eth_private *mdp = netdev_priv(ndev);
3345 int ret = 0;
3346
3347 if (!netif_running(ndev))
3348 return 0;
3349
3350 if (mdp->wol_enabled)
3351 ret = sh_eth_wol_restore(ndev);
3352 else
3353 ret = sh_eth_open(ndev);
3354
3355 if (ret < 0)
3356 return ret;
3357
3358 netif_device_attach(ndev);
3359
3360 return ret;
3361 }
3362 #endif
3363
3364 static int sh_eth_runtime_nop(struct device *dev)
3365 {
3366 /* Runtime PM callback shared between ->runtime_suspend()
3367 * and ->runtime_resume(). Simply returns success.
3368 *
3369 * This driver re-initializes all registers after
3370 * pm_runtime_get_sync() anyway so there is no need
3371 * to save and restore registers here.
3372 */
3373 return 0;
3374 }
3375
3376 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3377 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3378 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3379 };
3380 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3381 #else
3382 #define SH_ETH_PM_OPS NULL
3383 #endif
3384
3385 static struct platform_device_id sh_eth_id_table[] = {
3386 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3387 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3388 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3389 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3390 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3391 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3392 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3393 { }
3394 };
3395 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3396
3397 static struct platform_driver sh_eth_driver = {
3398 .probe = sh_eth_drv_probe,
3399 .remove = sh_eth_drv_remove,
3400 .id_table = sh_eth_id_table,
3401 .driver = {
3402 .name = CARDNAME,
3403 .pm = SH_ETH_PM_OPS,
3404 .of_match_table = of_match_ptr(sh_eth_match_table),
3405 },
3406 };
3407
3408 module_platform_driver(sh_eth_driver);
3409
3410 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3411 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3412 MODULE_LICENSE("GPL v2");