]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/renesas/sh_eth.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / renesas / sh_eth.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* SuperH Ethernet device driver
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6 * Copyright (C) 2008-2014 Renesas Solutions Corp.
7 * Copyright (C) 2013-2017 Cogent Embedded, Inc.
8 * Copyright (C) 2014 Codethink Limited
9 */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
34
35 #include "sh_eth.h"
36
37 #define SH_ETH_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR| \
41 NETIF_MSG_TX_ERR)
42
43 #define SH_ETH_OFFSET_INVALID ((u16)~0)
44
45 #define SH_ETH_OFFSET_DEFAULTS \
46 [0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
47
48 /* use some intentionally tricky logic here to initialize the whole struct to
49 * 0xffff, but then override certain fields, requiring us to indicate that we
50 * "know" that there are overrides in this structure, and we'll need to disable
51 * that warning from W=1 builds. GCC has supported this option since 4.2.X, but
52 * the macros available to do this only define GCC 8.
53 */
54 __diag_push();
55 __diag_ignore(GCC, 8, "-Woverride-init",
56 "logic to initialize all and then override some is OK");
57 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
58 SH_ETH_OFFSET_DEFAULTS,
59
60 [EDSR] = 0x0000,
61 [EDMR] = 0x0400,
62 [EDTRR] = 0x0408,
63 [EDRRR] = 0x0410,
64 [EESR] = 0x0428,
65 [EESIPR] = 0x0430,
66 [TDLAR] = 0x0010,
67 [TDFAR] = 0x0014,
68 [TDFXR] = 0x0018,
69 [TDFFR] = 0x001c,
70 [RDLAR] = 0x0030,
71 [RDFAR] = 0x0034,
72 [RDFXR] = 0x0038,
73 [RDFFR] = 0x003c,
74 [TRSCER] = 0x0438,
75 [RMFCR] = 0x0440,
76 [TFTR] = 0x0448,
77 [FDR] = 0x0450,
78 [RMCR] = 0x0458,
79 [RPADIR] = 0x0460,
80 [FCFTR] = 0x0468,
81 [CSMR] = 0x04E4,
82
83 [ECMR] = 0x0500,
84 [ECSR] = 0x0510,
85 [ECSIPR] = 0x0518,
86 [PIR] = 0x0520,
87 [PSR] = 0x0528,
88 [PIPR] = 0x052c,
89 [RFLR] = 0x0508,
90 [APR] = 0x0554,
91 [MPR] = 0x0558,
92 [PFTCR] = 0x055c,
93 [PFRCR] = 0x0560,
94 [TPAUSER] = 0x0564,
95 [GECMR] = 0x05b0,
96 [BCULR] = 0x05b4,
97 [MAHR] = 0x05c0,
98 [MALR] = 0x05c8,
99 [TROCR] = 0x0700,
100 [CDCR] = 0x0708,
101 [LCCR] = 0x0710,
102 [CEFCR] = 0x0740,
103 [FRECR] = 0x0748,
104 [TSFRCR] = 0x0750,
105 [TLFRCR] = 0x0758,
106 [RFCR] = 0x0760,
107 [CERCR] = 0x0768,
108 [CEECR] = 0x0770,
109 [MAFCR] = 0x0778,
110 [RMII_MII] = 0x0790,
111
112 [ARSTR] = 0x0000,
113 [TSU_CTRST] = 0x0004,
114 [TSU_FWEN0] = 0x0010,
115 [TSU_FWEN1] = 0x0014,
116 [TSU_FCM] = 0x0018,
117 [TSU_BSYSL0] = 0x0020,
118 [TSU_BSYSL1] = 0x0024,
119 [TSU_PRISL0] = 0x0028,
120 [TSU_PRISL1] = 0x002c,
121 [TSU_FWSL0] = 0x0030,
122 [TSU_FWSL1] = 0x0034,
123 [TSU_FWSLC] = 0x0038,
124 [TSU_QTAGM0] = 0x0040,
125 [TSU_QTAGM1] = 0x0044,
126 [TSU_FWSR] = 0x0050,
127 [TSU_FWINMK] = 0x0054,
128 [TSU_ADQT0] = 0x0048,
129 [TSU_ADQT1] = 0x004c,
130 [TSU_VTAG0] = 0x0058,
131 [TSU_VTAG1] = 0x005c,
132 [TSU_ADSBSY] = 0x0060,
133 [TSU_TEN] = 0x0064,
134 [TSU_POST1] = 0x0070,
135 [TSU_POST2] = 0x0074,
136 [TSU_POST3] = 0x0078,
137 [TSU_POST4] = 0x007c,
138 [TSU_ADRH0] = 0x0100,
139
140 [TXNLCR0] = 0x0080,
141 [TXALCR0] = 0x0084,
142 [RXNLCR0] = 0x0088,
143 [RXALCR0] = 0x008c,
144 [FWNLCR0] = 0x0090,
145 [FWALCR0] = 0x0094,
146 [TXNLCR1] = 0x00a0,
147 [TXALCR1] = 0x00a4,
148 [RXNLCR1] = 0x00a8,
149 [RXALCR1] = 0x00ac,
150 [FWNLCR1] = 0x00b0,
151 [FWALCR1] = 0x00b4,
152 };
153
154 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
155 SH_ETH_OFFSET_DEFAULTS,
156
157 [ECMR] = 0x0300,
158 [RFLR] = 0x0308,
159 [ECSR] = 0x0310,
160 [ECSIPR] = 0x0318,
161 [PIR] = 0x0320,
162 [PSR] = 0x0328,
163 [RDMLR] = 0x0340,
164 [IPGR] = 0x0350,
165 [APR] = 0x0354,
166 [MPR] = 0x0358,
167 [RFCF] = 0x0360,
168 [TPAUSER] = 0x0364,
169 [TPAUSECR] = 0x0368,
170 [MAHR] = 0x03c0,
171 [MALR] = 0x03c8,
172 [TROCR] = 0x03d0,
173 [CDCR] = 0x03d4,
174 [LCCR] = 0x03d8,
175 [CNDCR] = 0x03dc,
176 [CEFCR] = 0x03e4,
177 [FRECR] = 0x03e8,
178 [TSFRCR] = 0x03ec,
179 [TLFRCR] = 0x03f0,
180 [RFCR] = 0x03f4,
181 [MAFCR] = 0x03f8,
182
183 [EDMR] = 0x0200,
184 [EDTRR] = 0x0208,
185 [EDRRR] = 0x0210,
186 [TDLAR] = 0x0218,
187 [RDLAR] = 0x0220,
188 [EESR] = 0x0228,
189 [EESIPR] = 0x0230,
190 [TRSCER] = 0x0238,
191 [RMFCR] = 0x0240,
192 [TFTR] = 0x0248,
193 [FDR] = 0x0250,
194 [RMCR] = 0x0258,
195 [TFUCR] = 0x0264,
196 [RFOCR] = 0x0268,
197 [RMIIMODE] = 0x026c,
198 [FCFTR] = 0x0270,
199 [TRIMD] = 0x027c,
200 };
201
202 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
203 SH_ETH_OFFSET_DEFAULTS,
204
205 [ECMR] = 0x0100,
206 [RFLR] = 0x0108,
207 [ECSR] = 0x0110,
208 [ECSIPR] = 0x0118,
209 [PIR] = 0x0120,
210 [PSR] = 0x0128,
211 [RDMLR] = 0x0140,
212 [IPGR] = 0x0150,
213 [APR] = 0x0154,
214 [MPR] = 0x0158,
215 [TPAUSER] = 0x0164,
216 [RFCF] = 0x0160,
217 [TPAUSECR] = 0x0168,
218 [BCFRR] = 0x016c,
219 [MAHR] = 0x01c0,
220 [MALR] = 0x01c8,
221 [TROCR] = 0x01d0,
222 [CDCR] = 0x01d4,
223 [LCCR] = 0x01d8,
224 [CNDCR] = 0x01dc,
225 [CEFCR] = 0x01e4,
226 [FRECR] = 0x01e8,
227 [TSFRCR] = 0x01ec,
228 [TLFRCR] = 0x01f0,
229 [RFCR] = 0x01f4,
230 [MAFCR] = 0x01f8,
231 [RTRATE] = 0x01fc,
232
233 [EDMR] = 0x0000,
234 [EDTRR] = 0x0008,
235 [EDRRR] = 0x0010,
236 [TDLAR] = 0x0018,
237 [RDLAR] = 0x0020,
238 [EESR] = 0x0028,
239 [EESIPR] = 0x0030,
240 [TRSCER] = 0x0038,
241 [RMFCR] = 0x0040,
242 [TFTR] = 0x0048,
243 [FDR] = 0x0050,
244 [RMCR] = 0x0058,
245 [TFUCR] = 0x0064,
246 [RFOCR] = 0x0068,
247 [FCFTR] = 0x0070,
248 [RPADIR] = 0x0078,
249 [TRIMD] = 0x007c,
250 [RBWAR] = 0x00c8,
251 [RDFAR] = 0x00cc,
252 [TBRAR] = 0x00d4,
253 [TDFAR] = 0x00d8,
254 };
255
256 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
257 SH_ETH_OFFSET_DEFAULTS,
258
259 [EDMR] = 0x0000,
260 [EDTRR] = 0x0004,
261 [EDRRR] = 0x0008,
262 [TDLAR] = 0x000c,
263 [RDLAR] = 0x0010,
264 [EESR] = 0x0014,
265 [EESIPR] = 0x0018,
266 [TRSCER] = 0x001c,
267 [RMFCR] = 0x0020,
268 [TFTR] = 0x0024,
269 [FDR] = 0x0028,
270 [RMCR] = 0x002c,
271 [EDOCR] = 0x0030,
272 [FCFTR] = 0x0034,
273 [RPADIR] = 0x0038,
274 [TRIMD] = 0x003c,
275 [RBWAR] = 0x0040,
276 [RDFAR] = 0x0044,
277 [TBRAR] = 0x004c,
278 [TDFAR] = 0x0050,
279
280 [ECMR] = 0x0160,
281 [ECSR] = 0x0164,
282 [ECSIPR] = 0x0168,
283 [PIR] = 0x016c,
284 [MAHR] = 0x0170,
285 [MALR] = 0x0174,
286 [RFLR] = 0x0178,
287 [PSR] = 0x017c,
288 [TROCR] = 0x0180,
289 [CDCR] = 0x0184,
290 [LCCR] = 0x0188,
291 [CNDCR] = 0x018c,
292 [CEFCR] = 0x0194,
293 [FRECR] = 0x0198,
294 [TSFRCR] = 0x019c,
295 [TLFRCR] = 0x01a0,
296 [RFCR] = 0x01a4,
297 [MAFCR] = 0x01a8,
298 [IPGR] = 0x01b4,
299 [APR] = 0x01b8,
300 [MPR] = 0x01bc,
301 [TPAUSER] = 0x01c4,
302 [BCFR] = 0x01cc,
303
304 [ARSTR] = 0x0000,
305 [TSU_CTRST] = 0x0004,
306 [TSU_FWEN0] = 0x0010,
307 [TSU_FWEN1] = 0x0014,
308 [TSU_FCM] = 0x0018,
309 [TSU_BSYSL0] = 0x0020,
310 [TSU_BSYSL1] = 0x0024,
311 [TSU_PRISL0] = 0x0028,
312 [TSU_PRISL1] = 0x002c,
313 [TSU_FWSL0] = 0x0030,
314 [TSU_FWSL1] = 0x0034,
315 [TSU_FWSLC] = 0x0038,
316 [TSU_QTAGM0] = 0x0040,
317 [TSU_QTAGM1] = 0x0044,
318 [TSU_ADQT0] = 0x0048,
319 [TSU_ADQT1] = 0x004c,
320 [TSU_FWSR] = 0x0050,
321 [TSU_FWINMK] = 0x0054,
322 [TSU_ADSBSY] = 0x0060,
323 [TSU_TEN] = 0x0064,
324 [TSU_POST1] = 0x0070,
325 [TSU_POST2] = 0x0074,
326 [TSU_POST3] = 0x0078,
327 [TSU_POST4] = 0x007c,
328
329 [TXNLCR0] = 0x0080,
330 [TXALCR0] = 0x0084,
331 [RXNLCR0] = 0x0088,
332 [RXALCR0] = 0x008c,
333 [FWNLCR0] = 0x0090,
334 [FWALCR0] = 0x0094,
335 [TXNLCR1] = 0x00a0,
336 [TXALCR1] = 0x00a4,
337 [RXNLCR1] = 0x00a8,
338 [RXALCR1] = 0x00ac,
339 [FWNLCR1] = 0x00b0,
340 [FWALCR1] = 0x00b4,
341
342 [TSU_ADRH0] = 0x0100,
343 };
344 __diag_pop();
345
346 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
347 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
348
349 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
350 {
351 struct sh_eth_private *mdp = netdev_priv(ndev);
352 u16 offset = mdp->reg_offset[enum_index];
353
354 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
355 return;
356
357 iowrite32(data, mdp->addr + offset);
358 }
359
360 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
361 {
362 struct sh_eth_private *mdp = netdev_priv(ndev);
363 u16 offset = mdp->reg_offset[enum_index];
364
365 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
366 return ~0U;
367
368 return ioread32(mdp->addr + offset);
369 }
370
371 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
372 u32 set)
373 {
374 sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
375 enum_index);
376 }
377
378 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
379 {
380 return mdp->reg_offset[enum_index];
381 }
382
383 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
384 int enum_index)
385 {
386 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
387
388 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
389 return;
390
391 iowrite32(data, mdp->tsu_addr + offset);
392 }
393
394 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
395 {
396 u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
397
398 if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
399 return ~0U;
400
401 return ioread32(mdp->tsu_addr + offset);
402 }
403
404 static void sh_eth_soft_swap(char *src, int len)
405 {
406 #ifdef __LITTLE_ENDIAN
407 u32 *p = (u32 *)src;
408 u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
409
410 for (; p < maxp; p++)
411 *p = swab32(*p);
412 #endif
413 }
414
415 static void sh_eth_select_mii(struct net_device *ndev)
416 {
417 struct sh_eth_private *mdp = netdev_priv(ndev);
418 u32 value;
419
420 switch (mdp->phy_interface) {
421 case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
422 value = 0x3;
423 break;
424 case PHY_INTERFACE_MODE_GMII:
425 value = 0x2;
426 break;
427 case PHY_INTERFACE_MODE_MII:
428 value = 0x1;
429 break;
430 case PHY_INTERFACE_MODE_RMII:
431 value = 0x0;
432 break;
433 default:
434 netdev_warn(ndev,
435 "PHY interface mode was not setup. Set to MII.\n");
436 value = 0x1;
437 break;
438 }
439
440 sh_eth_write(ndev, value, RMII_MII);
441 }
442
443 static void sh_eth_set_duplex(struct net_device *ndev)
444 {
445 struct sh_eth_private *mdp = netdev_priv(ndev);
446
447 sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
448 }
449
450 static void sh_eth_chip_reset(struct net_device *ndev)
451 {
452 struct sh_eth_private *mdp = netdev_priv(ndev);
453
454 /* reset device */
455 sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
456 mdelay(1);
457 }
458
459 static int sh_eth_soft_reset(struct net_device *ndev)
460 {
461 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
462 mdelay(3);
463 sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
464
465 return 0;
466 }
467
468 static int sh_eth_check_soft_reset(struct net_device *ndev)
469 {
470 int cnt;
471
472 for (cnt = 100; cnt > 0; cnt--) {
473 if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
474 return 0;
475 mdelay(1);
476 }
477
478 netdev_err(ndev, "Device reset failed\n");
479 return -ETIMEDOUT;
480 }
481
482 static int sh_eth_soft_reset_gether(struct net_device *ndev)
483 {
484 struct sh_eth_private *mdp = netdev_priv(ndev);
485 int ret;
486
487 sh_eth_write(ndev, EDSR_ENALL, EDSR);
488 sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
489
490 ret = sh_eth_check_soft_reset(ndev);
491 if (ret)
492 return ret;
493
494 /* Table Init */
495 sh_eth_write(ndev, 0, TDLAR);
496 sh_eth_write(ndev, 0, TDFAR);
497 sh_eth_write(ndev, 0, TDFXR);
498 sh_eth_write(ndev, 0, TDFFR);
499 sh_eth_write(ndev, 0, RDLAR);
500 sh_eth_write(ndev, 0, RDFAR);
501 sh_eth_write(ndev, 0, RDFXR);
502 sh_eth_write(ndev, 0, RDFFR);
503
504 /* Reset HW CRC register */
505 if (mdp->cd->csmr)
506 sh_eth_write(ndev, 0, CSMR);
507
508 /* Select MII mode */
509 if (mdp->cd->select_mii)
510 sh_eth_select_mii(ndev);
511
512 return ret;
513 }
514
515 static void sh_eth_set_rate_gether(struct net_device *ndev)
516 {
517 struct sh_eth_private *mdp = netdev_priv(ndev);
518
519 if (WARN_ON(!mdp->cd->gecmr))
520 return;
521
522 switch (mdp->speed) {
523 case 10: /* 10BASE */
524 sh_eth_write(ndev, GECMR_10, GECMR);
525 break;
526 case 100:/* 100BASE */
527 sh_eth_write(ndev, GECMR_100, GECMR);
528 break;
529 case 1000: /* 1000BASE */
530 sh_eth_write(ndev, GECMR_1000, GECMR);
531 break;
532 }
533 }
534
535 #ifdef CONFIG_OF
536 /* R7S72100 */
537 static struct sh_eth_cpu_data r7s72100_data = {
538 .soft_reset = sh_eth_soft_reset_gether,
539
540 .chip_reset = sh_eth_chip_reset,
541 .set_duplex = sh_eth_set_duplex,
542
543 .register_type = SH_ETH_REG_GIGABIT,
544
545 .edtrr_trns = EDTRR_TRNS_GETHER,
546 .ecsr_value = ECSR_ICD,
547 .ecsipr_value = ECSIPR_ICDIP,
548 .eesipr_value = EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
549 EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
550 EESIPR_ECIIP |
551 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
552 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
553 EESIPR_RMAFIP | EESIPR_RRFIP |
554 EESIPR_RTLFIP | EESIPR_RTSFIP |
555 EESIPR_PREIP | EESIPR_CERFIP,
556
557 .tx_check = EESR_TC1 | EESR_FTC,
558 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
559 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
560 EESR_TDE,
561 .fdr_value = 0x0000070f,
562
563 .no_psr = 1,
564 .apr = 1,
565 .mpr = 1,
566 .tpauser = 1,
567 .hw_swap = 1,
568 .rpadir = 1,
569 .no_trimd = 1,
570 .no_ade = 1,
571 .xdfar_rw = 1,
572 .csmr = 1,
573 .rx_csum = 1,
574 .tsu = 1,
575 .no_tx_cntrs = 1,
576 };
577
578 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
579 {
580 sh_eth_chip_reset(ndev);
581
582 sh_eth_select_mii(ndev);
583 }
584
585 /* R8A7740 */
586 static struct sh_eth_cpu_data r8a7740_data = {
587 .soft_reset = sh_eth_soft_reset_gether,
588
589 .chip_reset = sh_eth_chip_reset_r8a7740,
590 .set_duplex = sh_eth_set_duplex,
591 .set_rate = sh_eth_set_rate_gether,
592
593 .register_type = SH_ETH_REG_GIGABIT,
594
595 .edtrr_trns = EDTRR_TRNS_GETHER,
596 .ecsr_value = ECSR_ICD | ECSR_MPD,
597 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
598 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
599 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
600 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
601 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
602 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
603 EESIPR_CEEFIP | EESIPR_CELFIP |
604 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
605 EESIPR_PREIP | EESIPR_CERFIP,
606
607 .tx_check = EESR_TC1 | EESR_FTC,
608 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
609 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
610 EESR_TDE,
611 .fdr_value = 0x0000070f,
612
613 .apr = 1,
614 .mpr = 1,
615 .tpauser = 1,
616 .gecmr = 1,
617 .bculr = 1,
618 .hw_swap = 1,
619 .rpadir = 1,
620 .no_trimd = 1,
621 .no_ade = 1,
622 .xdfar_rw = 1,
623 .csmr = 1,
624 .rx_csum = 1,
625 .tsu = 1,
626 .select_mii = 1,
627 .magic = 1,
628 .cexcr = 1,
629 };
630
631 /* There is CPU dependent code */
632 static void sh_eth_set_rate_rcar(struct net_device *ndev)
633 {
634 struct sh_eth_private *mdp = netdev_priv(ndev);
635
636 switch (mdp->speed) {
637 case 10: /* 10BASE */
638 sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
639 break;
640 case 100:/* 100BASE */
641 sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
642 break;
643 }
644 }
645
646 /* R-Car Gen1 */
647 static struct sh_eth_cpu_data rcar_gen1_data = {
648 .soft_reset = sh_eth_soft_reset,
649
650 .set_duplex = sh_eth_set_duplex,
651 .set_rate = sh_eth_set_rate_rcar,
652
653 .register_type = SH_ETH_REG_FAST_RCAR,
654
655 .edtrr_trns = EDTRR_TRNS_ETHER,
656 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
657 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
658 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
659 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
660 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
661 EESIPR_RMAFIP | EESIPR_RRFIP |
662 EESIPR_RTLFIP | EESIPR_RTSFIP |
663 EESIPR_PREIP | EESIPR_CERFIP,
664
665 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
666 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
667 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
668 .fdr_value = 0x00000f0f,
669
670 .apr = 1,
671 .mpr = 1,
672 .tpauser = 1,
673 .hw_swap = 1,
674 .no_xdfar = 1,
675 };
676
677 /* R-Car Gen2 and RZ/G1 */
678 static struct sh_eth_cpu_data rcar_gen2_data = {
679 .soft_reset = sh_eth_soft_reset,
680
681 .set_duplex = sh_eth_set_duplex,
682 .set_rate = sh_eth_set_rate_rcar,
683
684 .register_type = SH_ETH_REG_FAST_RCAR,
685
686 .edtrr_trns = EDTRR_TRNS_ETHER,
687 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
688 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
689 ECSIPR_MPDIP,
690 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
691 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
692 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
693 EESIPR_RMAFIP | EESIPR_RRFIP |
694 EESIPR_RTLFIP | EESIPR_RTSFIP |
695 EESIPR_PREIP | EESIPR_CERFIP,
696
697 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
698 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
699 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
700 .fdr_value = 0x00000f0f,
701
702 .trscer_err_mask = DESC_I_RINT8,
703
704 .apr = 1,
705 .mpr = 1,
706 .tpauser = 1,
707 .hw_swap = 1,
708 .no_xdfar = 1,
709 .rmiimode = 1,
710 .magic = 1,
711 };
712
713 /* R8A77980 */
714 static struct sh_eth_cpu_data r8a77980_data = {
715 .soft_reset = sh_eth_soft_reset_gether,
716
717 .set_duplex = sh_eth_set_duplex,
718 .set_rate = sh_eth_set_rate_gether,
719
720 .register_type = SH_ETH_REG_GIGABIT,
721
722 .edtrr_trns = EDTRR_TRNS_GETHER,
723 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
724 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
725 ECSIPR_MPDIP,
726 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
727 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
728 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
729 EESIPR_RMAFIP | EESIPR_RRFIP |
730 EESIPR_RTLFIP | EESIPR_RTSFIP |
731 EESIPR_PREIP | EESIPR_CERFIP,
732
733 .tx_check = EESR_FTC | EESR_CD | EESR_TRO,
734 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
735 EESR_RFE | EESR_RDE | EESR_RFRMER |
736 EESR_TFE | EESR_TDE | EESR_ECI,
737 .fdr_value = 0x0000070f,
738
739 .apr = 1,
740 .mpr = 1,
741 .tpauser = 1,
742 .gecmr = 1,
743 .bculr = 1,
744 .hw_swap = 1,
745 .nbst = 1,
746 .rpadir = 1,
747 .no_trimd = 1,
748 .no_ade = 1,
749 .xdfar_rw = 1,
750 .csmr = 1,
751 .rx_csum = 1,
752 .select_mii = 1,
753 .magic = 1,
754 .cexcr = 1,
755 };
756
757 /* R7S9210 */
758 static struct sh_eth_cpu_data r7s9210_data = {
759 .soft_reset = sh_eth_soft_reset,
760
761 .set_duplex = sh_eth_set_duplex,
762 .set_rate = sh_eth_set_rate_rcar,
763
764 .register_type = SH_ETH_REG_FAST_SH4,
765
766 .edtrr_trns = EDTRR_TRNS_ETHER,
767 .ecsr_value = ECSR_ICD,
768 .ecsipr_value = ECSIPR_ICDIP,
769 .eesipr_value = EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
770 EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
771 EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
772 EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
773 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
774 EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
775 EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
776
777 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
778 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
779 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
780
781 .fdr_value = 0x0000070f,
782
783 .apr = 1,
784 .mpr = 1,
785 .tpauser = 1,
786 .hw_swap = 1,
787 .rpadir = 1,
788 .no_ade = 1,
789 .xdfar_rw = 1,
790 };
791 #endif /* CONFIG_OF */
792
793 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
794 {
795 struct sh_eth_private *mdp = netdev_priv(ndev);
796
797 switch (mdp->speed) {
798 case 10: /* 10BASE */
799 sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
800 break;
801 case 100:/* 100BASE */
802 sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
803 break;
804 }
805 }
806
807 /* SH7724 */
808 static struct sh_eth_cpu_data sh7724_data = {
809 .soft_reset = sh_eth_soft_reset,
810
811 .set_duplex = sh_eth_set_duplex,
812 .set_rate = sh_eth_set_rate_sh7724,
813
814 .register_type = SH_ETH_REG_FAST_SH4,
815
816 .edtrr_trns = EDTRR_TRNS_ETHER,
817 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
818 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
819 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
820 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
821 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
822 EESIPR_RMAFIP | EESIPR_RRFIP |
823 EESIPR_RTLFIP | EESIPR_RTSFIP |
824 EESIPR_PREIP | EESIPR_CERFIP,
825
826 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
827 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
828 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
829
830 .apr = 1,
831 .mpr = 1,
832 .tpauser = 1,
833 .hw_swap = 1,
834 .rpadir = 1,
835 };
836
837 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
838 {
839 struct sh_eth_private *mdp = netdev_priv(ndev);
840
841 switch (mdp->speed) {
842 case 10: /* 10BASE */
843 sh_eth_write(ndev, 0, RTRATE);
844 break;
845 case 100:/* 100BASE */
846 sh_eth_write(ndev, 1, RTRATE);
847 break;
848 }
849 }
850
851 /* SH7757 */
852 static struct sh_eth_cpu_data sh7757_data = {
853 .soft_reset = sh_eth_soft_reset,
854
855 .set_duplex = sh_eth_set_duplex,
856 .set_rate = sh_eth_set_rate_sh7757,
857
858 .register_type = SH_ETH_REG_FAST_SH4,
859
860 .edtrr_trns = EDTRR_TRNS_ETHER,
861 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
862 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
863 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
864 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
865 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
866 EESIPR_CEEFIP | EESIPR_CELFIP |
867 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
868 EESIPR_PREIP | EESIPR_CERFIP,
869
870 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
871 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
872 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
873
874 .irq_flags = IRQF_SHARED,
875 .apr = 1,
876 .mpr = 1,
877 .tpauser = 1,
878 .hw_swap = 1,
879 .no_ade = 1,
880 .rpadir = 1,
881 .rtrate = 1,
882 .dual_port = 1,
883 };
884
885 #define SH_GIGA_ETH_BASE 0xfee00000UL
886 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
887 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
888 static void sh_eth_chip_reset_giga(struct net_device *ndev)
889 {
890 u32 mahr[2], malr[2];
891 int i;
892
893 /* save MAHR and MALR */
894 for (i = 0; i < 2; i++) {
895 malr[i] = ioread32((void *)GIGA_MALR(i));
896 mahr[i] = ioread32((void *)GIGA_MAHR(i));
897 }
898
899 sh_eth_chip_reset(ndev);
900
901 /* restore MAHR and MALR */
902 for (i = 0; i < 2; i++) {
903 iowrite32(malr[i], (void *)GIGA_MALR(i));
904 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
905 }
906 }
907
908 static void sh_eth_set_rate_giga(struct net_device *ndev)
909 {
910 struct sh_eth_private *mdp = netdev_priv(ndev);
911
912 if (WARN_ON(!mdp->cd->gecmr))
913 return;
914
915 switch (mdp->speed) {
916 case 10: /* 10BASE */
917 sh_eth_write(ndev, 0x00000000, GECMR);
918 break;
919 case 100:/* 100BASE */
920 sh_eth_write(ndev, 0x00000010, GECMR);
921 break;
922 case 1000: /* 1000BASE */
923 sh_eth_write(ndev, 0x00000020, GECMR);
924 break;
925 }
926 }
927
928 /* SH7757(GETHERC) */
929 static struct sh_eth_cpu_data sh7757_data_giga = {
930 .soft_reset = sh_eth_soft_reset_gether,
931
932 .chip_reset = sh_eth_chip_reset_giga,
933 .set_duplex = sh_eth_set_duplex,
934 .set_rate = sh_eth_set_rate_giga,
935
936 .register_type = SH_ETH_REG_GIGABIT,
937
938 .edtrr_trns = EDTRR_TRNS_GETHER,
939 .ecsr_value = ECSR_ICD | ECSR_MPD,
940 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
941 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
942 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
943 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
944 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
945 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
946 EESIPR_CEEFIP | EESIPR_CELFIP |
947 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
948 EESIPR_PREIP | EESIPR_CERFIP,
949
950 .tx_check = EESR_TC1 | EESR_FTC,
951 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
952 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
953 EESR_TDE,
954 .fdr_value = 0x0000072f,
955
956 .irq_flags = IRQF_SHARED,
957 .apr = 1,
958 .mpr = 1,
959 .tpauser = 1,
960 .gecmr = 1,
961 .bculr = 1,
962 .hw_swap = 1,
963 .rpadir = 1,
964 .no_trimd = 1,
965 .no_ade = 1,
966 .xdfar_rw = 1,
967 .tsu = 1,
968 .cexcr = 1,
969 .dual_port = 1,
970 };
971
972 /* SH7734 */
973 static struct sh_eth_cpu_data sh7734_data = {
974 .soft_reset = sh_eth_soft_reset_gether,
975
976 .chip_reset = sh_eth_chip_reset,
977 .set_duplex = sh_eth_set_duplex,
978 .set_rate = sh_eth_set_rate_gether,
979
980 .register_type = SH_ETH_REG_GIGABIT,
981
982 .edtrr_trns = EDTRR_TRNS_GETHER,
983 .ecsr_value = ECSR_ICD | ECSR_MPD,
984 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
985 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
986 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
987 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
988 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
989 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
990 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
991 EESIPR_PREIP | EESIPR_CERFIP,
992
993 .tx_check = EESR_TC1 | EESR_FTC,
994 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
995 EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
996 EESR_TDE,
997
998 .apr = 1,
999 .mpr = 1,
1000 .tpauser = 1,
1001 .gecmr = 1,
1002 .bculr = 1,
1003 .hw_swap = 1,
1004 .no_trimd = 1,
1005 .no_ade = 1,
1006 .xdfar_rw = 1,
1007 .tsu = 1,
1008 .csmr = 1,
1009 .rx_csum = 1,
1010 .select_mii = 1,
1011 .magic = 1,
1012 .cexcr = 1,
1013 };
1014
1015 /* SH7763 */
1016 static struct sh_eth_cpu_data sh7763_data = {
1017 .soft_reset = sh_eth_soft_reset_gether,
1018
1019 .chip_reset = sh_eth_chip_reset,
1020 .set_duplex = sh_eth_set_duplex,
1021 .set_rate = sh_eth_set_rate_gether,
1022
1023 .register_type = SH_ETH_REG_GIGABIT,
1024
1025 .edtrr_trns = EDTRR_TRNS_GETHER,
1026 .ecsr_value = ECSR_ICD | ECSR_MPD,
1027 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1028 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1029 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1030 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1031 EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1032 EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1033 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1034 EESIPR_PREIP | EESIPR_CERFIP,
1035
1036 .tx_check = EESR_TC1 | EESR_FTC,
1037 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1038 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1039
1040 .apr = 1,
1041 .mpr = 1,
1042 .tpauser = 1,
1043 .gecmr = 1,
1044 .bculr = 1,
1045 .hw_swap = 1,
1046 .no_trimd = 1,
1047 .no_ade = 1,
1048 .xdfar_rw = 1,
1049 .tsu = 1,
1050 .irq_flags = IRQF_SHARED,
1051 .magic = 1,
1052 .cexcr = 1,
1053 .rx_csum = 1,
1054 .dual_port = 1,
1055 };
1056
1057 static struct sh_eth_cpu_data sh7619_data = {
1058 .soft_reset = sh_eth_soft_reset,
1059
1060 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1061
1062 .edtrr_trns = EDTRR_TRNS_ETHER,
1063 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1064 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1065 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1066 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1067 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1068 EESIPR_CEEFIP | EESIPR_CELFIP |
1069 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1070 EESIPR_PREIP | EESIPR_CERFIP,
1071
1072 .apr = 1,
1073 .mpr = 1,
1074 .tpauser = 1,
1075 .hw_swap = 1,
1076 };
1077
1078 static struct sh_eth_cpu_data sh771x_data = {
1079 .soft_reset = sh_eth_soft_reset,
1080
1081 .register_type = SH_ETH_REG_FAST_SH3_SH2,
1082
1083 .edtrr_trns = EDTRR_TRNS_ETHER,
1084 .eesipr_value = EESIPR_RFCOFIP | EESIPR_ECIIP |
1085 EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1086 EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1087 0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1088 EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1089 EESIPR_CEEFIP | EESIPR_CELFIP |
1090 EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1091 EESIPR_PREIP | EESIPR_CERFIP,
1092 .tsu = 1,
1093 .dual_port = 1,
1094 };
1095
1096 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1097 {
1098 if (!cd->ecsr_value)
1099 cd->ecsr_value = DEFAULT_ECSR_INIT;
1100
1101 if (!cd->ecsipr_value)
1102 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1103
1104 if (!cd->fcftr_value)
1105 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1106 DEFAULT_FIFO_F_D_RFD;
1107
1108 if (!cd->fdr_value)
1109 cd->fdr_value = DEFAULT_FDR_INIT;
1110
1111 if (!cd->tx_check)
1112 cd->tx_check = DEFAULT_TX_CHECK;
1113
1114 if (!cd->eesr_err_check)
1115 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1116
1117 if (!cd->trscer_err_mask)
1118 cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1119 }
1120
1121 static void sh_eth_set_receive_align(struct sk_buff *skb)
1122 {
1123 uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1124
1125 if (reserve)
1126 skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1127 }
1128
1129 /* Program the hardware MAC address from dev->dev_addr. */
1130 static void update_mac_address(struct net_device *ndev)
1131 {
1132 sh_eth_write(ndev,
1133 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1134 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1135 sh_eth_write(ndev,
1136 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1137 }
1138
1139 /* Get MAC address from SuperH MAC address register
1140 *
1141 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1142 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1143 * When you want use this device, you must set MAC address in bootloader.
1144 *
1145 */
1146 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1147 {
1148 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1149 memcpy(ndev->dev_addr, mac, ETH_ALEN);
1150 } else {
1151 u32 mahr = sh_eth_read(ndev, MAHR);
1152 u32 malr = sh_eth_read(ndev, MALR);
1153
1154 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1155 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1156 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
1157 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
1158 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
1159 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
1160 }
1161 }
1162
1163 struct bb_info {
1164 void (*set_gate)(void *addr);
1165 struct mdiobb_ctrl ctrl;
1166 void *addr;
1167 };
1168
1169 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1170 {
1171 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1172 u32 pir;
1173
1174 if (bitbang->set_gate)
1175 bitbang->set_gate(bitbang->addr);
1176
1177 pir = ioread32(bitbang->addr);
1178 if (set)
1179 pir |= mask;
1180 else
1181 pir &= ~mask;
1182 iowrite32(pir, bitbang->addr);
1183 }
1184
1185 /* Data I/O pin control */
1186 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1187 {
1188 sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1189 }
1190
1191 /* Set bit data*/
1192 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1193 {
1194 sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1195 }
1196
1197 /* Get bit data*/
1198 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1199 {
1200 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1201
1202 if (bitbang->set_gate)
1203 bitbang->set_gate(bitbang->addr);
1204
1205 return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1206 }
1207
1208 /* MDC pin control */
1209 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1210 {
1211 sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1212 }
1213
1214 /* mdio bus control struct */
1215 static const struct mdiobb_ops bb_ops = {
1216 .owner = THIS_MODULE,
1217 .set_mdc = sh_mdc_ctrl,
1218 .set_mdio_dir = sh_mmd_ctrl,
1219 .set_mdio_data = sh_set_mdio,
1220 .get_mdio_data = sh_get_mdio,
1221 };
1222
1223 /* free Tx skb function */
1224 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1225 {
1226 struct sh_eth_private *mdp = netdev_priv(ndev);
1227 struct sh_eth_txdesc *txdesc;
1228 int free_num = 0;
1229 int entry;
1230 bool sent;
1231
1232 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1233 entry = mdp->dirty_tx % mdp->num_tx_ring;
1234 txdesc = &mdp->tx_ring[entry];
1235 sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1236 if (sent_only && !sent)
1237 break;
1238 /* TACT bit must be checked before all the following reads */
1239 dma_rmb();
1240 netif_info(mdp, tx_done, ndev,
1241 "tx entry %d status 0x%08x\n",
1242 entry, le32_to_cpu(txdesc->status));
1243 /* Free the original skb. */
1244 if (mdp->tx_skbuff[entry]) {
1245 dma_unmap_single(&mdp->pdev->dev,
1246 le32_to_cpu(txdesc->addr),
1247 le32_to_cpu(txdesc->len) >> 16,
1248 DMA_TO_DEVICE);
1249 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1250 mdp->tx_skbuff[entry] = NULL;
1251 free_num++;
1252 }
1253 txdesc->status = cpu_to_le32(TD_TFP);
1254 if (entry >= mdp->num_tx_ring - 1)
1255 txdesc->status |= cpu_to_le32(TD_TDLE);
1256
1257 if (sent) {
1258 ndev->stats.tx_packets++;
1259 ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1260 }
1261 }
1262 return free_num;
1263 }
1264
1265 /* free skb and descriptor buffer */
1266 static void sh_eth_ring_free(struct net_device *ndev)
1267 {
1268 struct sh_eth_private *mdp = netdev_priv(ndev);
1269 int ringsize, i;
1270
1271 if (mdp->rx_ring) {
1272 for (i = 0; i < mdp->num_rx_ring; i++) {
1273 if (mdp->rx_skbuff[i]) {
1274 struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1275
1276 dma_unmap_single(&mdp->pdev->dev,
1277 le32_to_cpu(rxdesc->addr),
1278 ALIGN(mdp->rx_buf_sz, 32),
1279 DMA_FROM_DEVICE);
1280 }
1281 }
1282 ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1283 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1284 mdp->rx_desc_dma);
1285 mdp->rx_ring = NULL;
1286 }
1287
1288 /* Free Rx skb ringbuffer */
1289 if (mdp->rx_skbuff) {
1290 for (i = 0; i < mdp->num_rx_ring; i++)
1291 dev_kfree_skb(mdp->rx_skbuff[i]);
1292 }
1293 kfree(mdp->rx_skbuff);
1294 mdp->rx_skbuff = NULL;
1295
1296 if (mdp->tx_ring) {
1297 sh_eth_tx_free(ndev, false);
1298
1299 ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1300 dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1301 mdp->tx_desc_dma);
1302 mdp->tx_ring = NULL;
1303 }
1304
1305 /* Free Tx skb ringbuffer */
1306 kfree(mdp->tx_skbuff);
1307 mdp->tx_skbuff = NULL;
1308 }
1309
1310 /* format skb and descriptor buffer */
1311 static void sh_eth_ring_format(struct net_device *ndev)
1312 {
1313 struct sh_eth_private *mdp = netdev_priv(ndev);
1314 int i;
1315 struct sk_buff *skb;
1316 struct sh_eth_rxdesc *rxdesc = NULL;
1317 struct sh_eth_txdesc *txdesc = NULL;
1318 int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1319 int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1320 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1321 dma_addr_t dma_addr;
1322 u32 buf_len;
1323
1324 mdp->cur_rx = 0;
1325 mdp->cur_tx = 0;
1326 mdp->dirty_rx = 0;
1327 mdp->dirty_tx = 0;
1328
1329 memset(mdp->rx_ring, 0, rx_ringsize);
1330
1331 /* build Rx ring buffer */
1332 for (i = 0; i < mdp->num_rx_ring; i++) {
1333 /* skb */
1334 mdp->rx_skbuff[i] = NULL;
1335 skb = netdev_alloc_skb(ndev, skbuff_size);
1336 if (skb == NULL)
1337 break;
1338 sh_eth_set_receive_align(skb);
1339
1340 /* The size of the buffer is a multiple of 32 bytes. */
1341 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1342 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1343 DMA_FROM_DEVICE);
1344 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1345 kfree_skb(skb);
1346 break;
1347 }
1348 mdp->rx_skbuff[i] = skb;
1349
1350 /* RX descriptor */
1351 rxdesc = &mdp->rx_ring[i];
1352 rxdesc->len = cpu_to_le32(buf_len << 16);
1353 rxdesc->addr = cpu_to_le32(dma_addr);
1354 rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1355
1356 /* Rx descriptor address set */
1357 if (i == 0) {
1358 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1359 if (mdp->cd->xdfar_rw)
1360 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1361 }
1362 }
1363
1364 mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1365
1366 /* Mark the last entry as wrapping the ring. */
1367 if (rxdesc)
1368 rxdesc->status |= cpu_to_le32(RD_RDLE);
1369
1370 memset(mdp->tx_ring, 0, tx_ringsize);
1371
1372 /* build Tx ring buffer */
1373 for (i = 0; i < mdp->num_tx_ring; i++) {
1374 mdp->tx_skbuff[i] = NULL;
1375 txdesc = &mdp->tx_ring[i];
1376 txdesc->status = cpu_to_le32(TD_TFP);
1377 txdesc->len = cpu_to_le32(0);
1378 if (i == 0) {
1379 /* Tx descriptor address set */
1380 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1381 if (mdp->cd->xdfar_rw)
1382 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1383 }
1384 }
1385
1386 txdesc->status |= cpu_to_le32(TD_TDLE);
1387 }
1388
1389 /* Get skb and descriptor buffer */
1390 static int sh_eth_ring_init(struct net_device *ndev)
1391 {
1392 struct sh_eth_private *mdp = netdev_priv(ndev);
1393 int rx_ringsize, tx_ringsize;
1394
1395 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1396 * card needs room to do 8 byte alignment, +2 so we can reserve
1397 * the first 2 bytes, and +16 gets room for the status word from the
1398 * card.
1399 */
1400 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1401 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1402 if (mdp->cd->rpadir)
1403 mdp->rx_buf_sz += NET_IP_ALIGN;
1404
1405 /* Allocate RX and TX skb rings */
1406 mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1407 GFP_KERNEL);
1408 if (!mdp->rx_skbuff)
1409 return -ENOMEM;
1410
1411 mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1412 GFP_KERNEL);
1413 if (!mdp->tx_skbuff)
1414 goto ring_free;
1415
1416 /* Allocate all Rx descriptors. */
1417 rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1418 mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1419 &mdp->rx_desc_dma, GFP_KERNEL);
1420 if (!mdp->rx_ring)
1421 goto ring_free;
1422
1423 mdp->dirty_rx = 0;
1424
1425 /* Allocate all Tx descriptors. */
1426 tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1427 mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1428 &mdp->tx_desc_dma, GFP_KERNEL);
1429 if (!mdp->tx_ring)
1430 goto ring_free;
1431 return 0;
1432
1433 ring_free:
1434 /* Free Rx and Tx skb ring buffer and DMA buffer */
1435 sh_eth_ring_free(ndev);
1436
1437 return -ENOMEM;
1438 }
1439
1440 static int sh_eth_dev_init(struct net_device *ndev)
1441 {
1442 struct sh_eth_private *mdp = netdev_priv(ndev);
1443 int ret;
1444
1445 /* Soft Reset */
1446 ret = mdp->cd->soft_reset(ndev);
1447 if (ret)
1448 return ret;
1449
1450 if (mdp->cd->rmiimode)
1451 sh_eth_write(ndev, 0x1, RMIIMODE);
1452
1453 /* Descriptor format */
1454 sh_eth_ring_format(ndev);
1455 if (mdp->cd->rpadir)
1456 sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1457
1458 /* all sh_eth int mask */
1459 sh_eth_write(ndev, 0, EESIPR);
1460
1461 #if defined(__LITTLE_ENDIAN)
1462 if (mdp->cd->hw_swap)
1463 sh_eth_write(ndev, EDMR_EL, EDMR);
1464 else
1465 #endif
1466 sh_eth_write(ndev, 0, EDMR);
1467
1468 /* FIFO size set */
1469 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1470 sh_eth_write(ndev, 0, TFTR);
1471
1472 /* Frame recv control (enable multiple-packets per rx irq) */
1473 sh_eth_write(ndev, RMCR_RNC, RMCR);
1474
1475 sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1476
1477 /* DMA transfer burst mode */
1478 if (mdp->cd->nbst)
1479 sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1480
1481 /* Burst cycle count upper-limit */
1482 if (mdp->cd->bculr)
1483 sh_eth_write(ndev, 0x800, BCULR);
1484
1485 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1486
1487 if (!mdp->cd->no_trimd)
1488 sh_eth_write(ndev, 0, TRIMD);
1489
1490 /* Recv frame limit set register */
1491 sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1492 RFLR);
1493
1494 sh_eth_modify(ndev, EESR, 0, 0);
1495 mdp->irq_enabled = true;
1496 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1497
1498 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1499 sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1500 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1501 ECMR_TE | ECMR_RE, ECMR);
1502
1503 if (mdp->cd->set_rate)
1504 mdp->cd->set_rate(ndev);
1505
1506 /* E-MAC Status Register clear */
1507 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1508
1509 /* E-MAC Interrupt Enable register */
1510 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1511
1512 /* Set MAC address */
1513 update_mac_address(ndev);
1514
1515 /* mask reset */
1516 if (mdp->cd->apr)
1517 sh_eth_write(ndev, 1, APR);
1518 if (mdp->cd->mpr)
1519 sh_eth_write(ndev, 1, MPR);
1520 if (mdp->cd->tpauser)
1521 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1522
1523 /* Setting the Rx mode will start the Rx process. */
1524 sh_eth_write(ndev, EDRRR_R, EDRRR);
1525
1526 return ret;
1527 }
1528
1529 static void sh_eth_dev_exit(struct net_device *ndev)
1530 {
1531 struct sh_eth_private *mdp = netdev_priv(ndev);
1532 int i;
1533
1534 /* Deactivate all TX descriptors, so DMA should stop at next
1535 * packet boundary if it's currently running
1536 */
1537 for (i = 0; i < mdp->num_tx_ring; i++)
1538 mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1539
1540 /* Disable TX FIFO egress to MAC */
1541 sh_eth_rcv_snd_disable(ndev);
1542
1543 /* Stop RX DMA at next packet boundary */
1544 sh_eth_write(ndev, 0, EDRRR);
1545
1546 /* Aside from TX DMA, we can't tell when the hardware is
1547 * really stopped, so we need to reset to make sure.
1548 * Before doing that, wait for long enough to *probably*
1549 * finish transmitting the last packet and poll stats.
1550 */
1551 msleep(2); /* max frame time at 10 Mbps < 1250 us */
1552 sh_eth_get_stats(ndev);
1553 mdp->cd->soft_reset(ndev);
1554
1555 /* Set the RMII mode again if required */
1556 if (mdp->cd->rmiimode)
1557 sh_eth_write(ndev, 0x1, RMIIMODE);
1558
1559 /* Set MAC address again */
1560 update_mac_address(ndev);
1561 }
1562
1563 static void sh_eth_rx_csum(struct sk_buff *skb)
1564 {
1565 u8 *hw_csum;
1566
1567 /* The hardware checksum is 2 bytes appended to packet data */
1568 if (unlikely(skb->len < sizeof(__sum16)))
1569 return;
1570 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1571 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1572 skb->ip_summed = CHECKSUM_COMPLETE;
1573 skb_trim(skb, skb->len - sizeof(__sum16));
1574 }
1575
1576 /* Packet receive function */
1577 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1578 {
1579 struct sh_eth_private *mdp = netdev_priv(ndev);
1580 struct sh_eth_rxdesc *rxdesc;
1581
1582 int entry = mdp->cur_rx % mdp->num_rx_ring;
1583 int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1584 int limit;
1585 struct sk_buff *skb;
1586 u32 desc_status;
1587 int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1588 dma_addr_t dma_addr;
1589 u16 pkt_len;
1590 u32 buf_len;
1591
1592 boguscnt = min(boguscnt, *quota);
1593 limit = boguscnt;
1594 rxdesc = &mdp->rx_ring[entry];
1595 while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1596 /* RACT bit must be checked before all the following reads */
1597 dma_rmb();
1598 desc_status = le32_to_cpu(rxdesc->status);
1599 pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1600
1601 if (--boguscnt < 0)
1602 break;
1603
1604 netif_info(mdp, rx_status, ndev,
1605 "rx entry %d status 0x%08x len %d\n",
1606 entry, desc_status, pkt_len);
1607
1608 if (!(desc_status & RDFEND))
1609 ndev->stats.rx_length_errors++;
1610
1611 /* In case of almost all GETHER/ETHERs, the Receive Frame State
1612 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1613 * bit 0. However, in case of the R8A7740 and R7S72100
1614 * the RFS bits are from bit 25 to bit 16. So, the
1615 * driver needs right shifting by 16.
1616 */
1617 if (mdp->cd->csmr)
1618 desc_status >>= 16;
1619
1620 skb = mdp->rx_skbuff[entry];
1621 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1622 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1623 ndev->stats.rx_errors++;
1624 if (desc_status & RD_RFS1)
1625 ndev->stats.rx_crc_errors++;
1626 if (desc_status & RD_RFS2)
1627 ndev->stats.rx_frame_errors++;
1628 if (desc_status & RD_RFS3)
1629 ndev->stats.rx_length_errors++;
1630 if (desc_status & RD_RFS4)
1631 ndev->stats.rx_length_errors++;
1632 if (desc_status & RD_RFS6)
1633 ndev->stats.rx_missed_errors++;
1634 if (desc_status & RD_RFS10)
1635 ndev->stats.rx_over_errors++;
1636 } else if (skb) {
1637 dma_addr = le32_to_cpu(rxdesc->addr);
1638 if (!mdp->cd->hw_swap)
1639 sh_eth_soft_swap(
1640 phys_to_virt(ALIGN(dma_addr, 4)),
1641 pkt_len + 2);
1642 mdp->rx_skbuff[entry] = NULL;
1643 if (mdp->cd->rpadir)
1644 skb_reserve(skb, NET_IP_ALIGN);
1645 dma_unmap_single(&mdp->pdev->dev, dma_addr,
1646 ALIGN(mdp->rx_buf_sz, 32),
1647 DMA_FROM_DEVICE);
1648 skb_put(skb, pkt_len);
1649 skb->protocol = eth_type_trans(skb, ndev);
1650 if (ndev->features & NETIF_F_RXCSUM)
1651 sh_eth_rx_csum(skb);
1652 netif_receive_skb(skb);
1653 ndev->stats.rx_packets++;
1654 ndev->stats.rx_bytes += pkt_len;
1655 if (desc_status & RD_RFS8)
1656 ndev->stats.multicast++;
1657 }
1658 entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1659 rxdesc = &mdp->rx_ring[entry];
1660 }
1661
1662 /* Refill the Rx ring buffers. */
1663 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1664 entry = mdp->dirty_rx % mdp->num_rx_ring;
1665 rxdesc = &mdp->rx_ring[entry];
1666 /* The size of the buffer is 32 byte boundary. */
1667 buf_len = ALIGN(mdp->rx_buf_sz, 32);
1668 rxdesc->len = cpu_to_le32(buf_len << 16);
1669
1670 if (mdp->rx_skbuff[entry] == NULL) {
1671 skb = netdev_alloc_skb(ndev, skbuff_size);
1672 if (skb == NULL)
1673 break; /* Better luck next round. */
1674 sh_eth_set_receive_align(skb);
1675 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1676 buf_len, DMA_FROM_DEVICE);
1677 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1678 kfree_skb(skb);
1679 break;
1680 }
1681 mdp->rx_skbuff[entry] = skb;
1682
1683 skb_checksum_none_assert(skb);
1684 rxdesc->addr = cpu_to_le32(dma_addr);
1685 }
1686 dma_wmb(); /* RACT bit must be set after all the above writes */
1687 if (entry >= mdp->num_rx_ring - 1)
1688 rxdesc->status |=
1689 cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1690 else
1691 rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1692 }
1693
1694 /* Restart Rx engine if stopped. */
1695 /* If we don't need to check status, don't. -KDU */
1696 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1697 /* fix the values for the next receiving if RDE is set */
1698 if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1699 u32 count = (sh_eth_read(ndev, RDFAR) -
1700 sh_eth_read(ndev, RDLAR)) >> 4;
1701
1702 mdp->cur_rx = count;
1703 mdp->dirty_rx = count;
1704 }
1705 sh_eth_write(ndev, EDRRR_R, EDRRR);
1706 }
1707
1708 *quota -= limit - boguscnt - 1;
1709
1710 return *quota <= 0;
1711 }
1712
1713 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1714 {
1715 /* disable tx and rx */
1716 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1717 }
1718
1719 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1720 {
1721 /* enable tx and rx */
1722 sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1723 }
1724
1725 /* E-MAC interrupt handler */
1726 static void sh_eth_emac_interrupt(struct net_device *ndev)
1727 {
1728 struct sh_eth_private *mdp = netdev_priv(ndev);
1729 u32 felic_stat;
1730 u32 link_stat;
1731
1732 felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1733 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1734 if (felic_stat & ECSR_ICD)
1735 ndev->stats.tx_carrier_errors++;
1736 if (felic_stat & ECSR_MPD)
1737 pm_wakeup_event(&mdp->pdev->dev, 0);
1738 if (felic_stat & ECSR_LCHNG) {
1739 /* Link Changed */
1740 if (mdp->cd->no_psr || mdp->no_ether_link)
1741 return;
1742 link_stat = sh_eth_read(ndev, PSR);
1743 if (mdp->ether_link_active_low)
1744 link_stat = ~link_stat;
1745 if (!(link_stat & PHY_ST_LINK)) {
1746 sh_eth_rcv_snd_disable(ndev);
1747 } else {
1748 /* Link Up */
1749 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1750 /* clear int */
1751 sh_eth_modify(ndev, ECSR, 0, 0);
1752 sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1753 /* enable tx and rx */
1754 sh_eth_rcv_snd_enable(ndev);
1755 }
1756 }
1757 }
1758
1759 /* error control function */
1760 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1761 {
1762 struct sh_eth_private *mdp = netdev_priv(ndev);
1763 u32 mask;
1764
1765 if (intr_status & EESR_TWB) {
1766 /* Unused write back interrupt */
1767 if (intr_status & EESR_TABT) { /* Transmit Abort int */
1768 ndev->stats.tx_aborted_errors++;
1769 netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1770 }
1771 }
1772
1773 if (intr_status & EESR_RABT) {
1774 /* Receive Abort int */
1775 if (intr_status & EESR_RFRMER) {
1776 /* Receive Frame Overflow int */
1777 ndev->stats.rx_frame_errors++;
1778 }
1779 }
1780
1781 if (intr_status & EESR_TDE) {
1782 /* Transmit Descriptor Empty int */
1783 ndev->stats.tx_fifo_errors++;
1784 netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1785 }
1786
1787 if (intr_status & EESR_TFE) {
1788 /* FIFO under flow */
1789 ndev->stats.tx_fifo_errors++;
1790 netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1791 }
1792
1793 if (intr_status & EESR_RDE) {
1794 /* Receive Descriptor Empty int */
1795 ndev->stats.rx_over_errors++;
1796 }
1797
1798 if (intr_status & EESR_RFE) {
1799 /* Receive FIFO Overflow int */
1800 ndev->stats.rx_fifo_errors++;
1801 }
1802
1803 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1804 /* Address Error */
1805 ndev->stats.tx_fifo_errors++;
1806 netif_err(mdp, tx_err, ndev, "Address Error\n");
1807 }
1808
1809 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1810 if (mdp->cd->no_ade)
1811 mask &= ~EESR_ADE;
1812 if (intr_status & mask) {
1813 /* Tx error */
1814 u32 edtrr = sh_eth_read(ndev, EDTRR);
1815
1816 /* dmesg */
1817 netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1818 intr_status, mdp->cur_tx, mdp->dirty_tx,
1819 (u32)ndev->state, edtrr);
1820 /* dirty buffer free */
1821 sh_eth_tx_free(ndev, true);
1822
1823 /* SH7712 BUG */
1824 if (edtrr ^ mdp->cd->edtrr_trns) {
1825 /* tx dma start */
1826 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1827 }
1828 /* wakeup */
1829 netif_wake_queue(ndev);
1830 }
1831 }
1832
1833 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1834 {
1835 struct net_device *ndev = netdev;
1836 struct sh_eth_private *mdp = netdev_priv(ndev);
1837 struct sh_eth_cpu_data *cd = mdp->cd;
1838 irqreturn_t ret = IRQ_NONE;
1839 u32 intr_status, intr_enable;
1840
1841 spin_lock(&mdp->lock);
1842
1843 /* Get interrupt status */
1844 intr_status = sh_eth_read(ndev, EESR);
1845 /* Mask it with the interrupt mask, forcing ECI interrupt to be always
1846 * enabled since it's the one that comes thru regardless of the mask,
1847 * and we need to fully handle it in sh_eth_emac_interrupt() in order
1848 * to quench it as it doesn't get cleared by just writing 1 to the ECI
1849 * bit...
1850 */
1851 intr_enable = sh_eth_read(ndev, EESIPR);
1852 intr_status &= intr_enable | EESIPR_ECIIP;
1853 if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1854 cd->eesr_err_check))
1855 ret = IRQ_HANDLED;
1856 else
1857 goto out;
1858
1859 if (unlikely(!mdp->irq_enabled)) {
1860 sh_eth_write(ndev, 0, EESIPR);
1861 goto out;
1862 }
1863
1864 if (intr_status & EESR_RX_CHECK) {
1865 if (napi_schedule_prep(&mdp->napi)) {
1866 /* Mask Rx interrupts */
1867 sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1868 EESIPR);
1869 __napi_schedule(&mdp->napi);
1870 } else {
1871 netdev_warn(ndev,
1872 "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1873 intr_status, intr_enable);
1874 }
1875 }
1876
1877 /* Tx Check */
1878 if (intr_status & cd->tx_check) {
1879 /* Clear Tx interrupts */
1880 sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1881
1882 sh_eth_tx_free(ndev, true);
1883 netif_wake_queue(ndev);
1884 }
1885
1886 /* E-MAC interrupt */
1887 if (intr_status & EESR_ECI)
1888 sh_eth_emac_interrupt(ndev);
1889
1890 if (intr_status & cd->eesr_err_check) {
1891 /* Clear error interrupts */
1892 sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1893
1894 sh_eth_error(ndev, intr_status);
1895 }
1896
1897 out:
1898 spin_unlock(&mdp->lock);
1899
1900 return ret;
1901 }
1902
1903 static int sh_eth_poll(struct napi_struct *napi, int budget)
1904 {
1905 struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1906 napi);
1907 struct net_device *ndev = napi->dev;
1908 int quota = budget;
1909 u32 intr_status;
1910
1911 for (;;) {
1912 intr_status = sh_eth_read(ndev, EESR);
1913 if (!(intr_status & EESR_RX_CHECK))
1914 break;
1915 /* Clear Rx interrupts */
1916 sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1917
1918 if (sh_eth_rx(ndev, intr_status, &quota))
1919 goto out;
1920 }
1921
1922 napi_complete(napi);
1923
1924 /* Reenable Rx interrupts */
1925 if (mdp->irq_enabled)
1926 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1927 out:
1928 return budget - quota;
1929 }
1930
1931 /* PHY state control function */
1932 static void sh_eth_adjust_link(struct net_device *ndev)
1933 {
1934 struct sh_eth_private *mdp = netdev_priv(ndev);
1935 struct phy_device *phydev = ndev->phydev;
1936 unsigned long flags;
1937 int new_state = 0;
1938
1939 spin_lock_irqsave(&mdp->lock, flags);
1940
1941 /* Disable TX and RX right over here, if E-MAC change is ignored */
1942 if (mdp->cd->no_psr || mdp->no_ether_link)
1943 sh_eth_rcv_snd_disable(ndev);
1944
1945 if (phydev->link) {
1946 if (phydev->duplex != mdp->duplex) {
1947 new_state = 1;
1948 mdp->duplex = phydev->duplex;
1949 if (mdp->cd->set_duplex)
1950 mdp->cd->set_duplex(ndev);
1951 }
1952
1953 if (phydev->speed != mdp->speed) {
1954 new_state = 1;
1955 mdp->speed = phydev->speed;
1956 if (mdp->cd->set_rate)
1957 mdp->cd->set_rate(ndev);
1958 }
1959 if (!mdp->link) {
1960 sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1961 new_state = 1;
1962 mdp->link = phydev->link;
1963 }
1964 } else if (mdp->link) {
1965 new_state = 1;
1966 mdp->link = 0;
1967 mdp->speed = 0;
1968 mdp->duplex = -1;
1969 }
1970
1971 /* Enable TX and RX right over here, if E-MAC change is ignored */
1972 if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1973 sh_eth_rcv_snd_enable(ndev);
1974
1975 spin_unlock_irqrestore(&mdp->lock, flags);
1976
1977 if (new_state && netif_msg_link(mdp))
1978 phy_print_status(phydev);
1979 }
1980
1981 /* PHY init function */
1982 static int sh_eth_phy_init(struct net_device *ndev)
1983 {
1984 struct device_node *np = ndev->dev.parent->of_node;
1985 struct sh_eth_private *mdp = netdev_priv(ndev);
1986 struct phy_device *phydev;
1987
1988 mdp->link = 0;
1989 mdp->speed = 0;
1990 mdp->duplex = -1;
1991
1992 /* Try connect to PHY */
1993 if (np) {
1994 struct device_node *pn;
1995
1996 pn = of_parse_phandle(np, "phy-handle", 0);
1997 phydev = of_phy_connect(ndev, pn,
1998 sh_eth_adjust_link, 0,
1999 mdp->phy_interface);
2000
2001 of_node_put(pn);
2002 if (!phydev)
2003 phydev = ERR_PTR(-ENOENT);
2004 } else {
2005 char phy_id[MII_BUS_ID_SIZE + 3];
2006
2007 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2008 mdp->mii_bus->id, mdp->phy_id);
2009
2010 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2011 mdp->phy_interface);
2012 }
2013
2014 if (IS_ERR(phydev)) {
2015 netdev_err(ndev, "failed to connect PHY\n");
2016 return PTR_ERR(phydev);
2017 }
2018
2019 /* mask with MAC supported features */
2020 if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2021 int err = phy_set_max_speed(phydev, SPEED_100);
2022 if (err) {
2023 netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2024 phy_disconnect(phydev);
2025 return err;
2026 }
2027 }
2028
2029 phy_attached_info(phydev);
2030
2031 return 0;
2032 }
2033
2034 /* PHY control start function */
2035 static int sh_eth_phy_start(struct net_device *ndev)
2036 {
2037 int ret;
2038
2039 ret = sh_eth_phy_init(ndev);
2040 if (ret)
2041 return ret;
2042
2043 phy_start(ndev->phydev);
2044
2045 return 0;
2046 }
2047
2048 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2049 * version must be bumped as well. Just adding registers up to that
2050 * limit is fine, as long as the existing register indices don't
2051 * change.
2052 */
2053 #define SH_ETH_REG_DUMP_VERSION 1
2054 #define SH_ETH_REG_DUMP_MAX_REGS 256
2055
2056 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2057 {
2058 struct sh_eth_private *mdp = netdev_priv(ndev);
2059 struct sh_eth_cpu_data *cd = mdp->cd;
2060 u32 *valid_map;
2061 size_t len;
2062
2063 BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2064
2065 /* Dump starts with a bitmap that tells ethtool which
2066 * registers are defined for this chip.
2067 */
2068 len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2069 if (buf) {
2070 valid_map = buf;
2071 buf += len;
2072 } else {
2073 valid_map = NULL;
2074 }
2075
2076 /* Add a register to the dump, if it has a defined offset.
2077 * This automatically skips most undefined registers, but for
2078 * some it is also necessary to check a capability flag in
2079 * struct sh_eth_cpu_data.
2080 */
2081 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2082 #define add_reg_from(reg, read_expr) do { \
2083 if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) { \
2084 if (buf) { \
2085 mark_reg_valid(reg); \
2086 *buf++ = read_expr; \
2087 } \
2088 ++len; \
2089 } \
2090 } while (0)
2091 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2092 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2093
2094 add_reg(EDSR);
2095 add_reg(EDMR);
2096 add_reg(EDTRR);
2097 add_reg(EDRRR);
2098 add_reg(EESR);
2099 add_reg(EESIPR);
2100 add_reg(TDLAR);
2101 if (!cd->no_xdfar)
2102 add_reg(TDFAR);
2103 add_reg(TDFXR);
2104 add_reg(TDFFR);
2105 add_reg(RDLAR);
2106 if (!cd->no_xdfar)
2107 add_reg(RDFAR);
2108 add_reg(RDFXR);
2109 add_reg(RDFFR);
2110 add_reg(TRSCER);
2111 add_reg(RMFCR);
2112 add_reg(TFTR);
2113 add_reg(FDR);
2114 add_reg(RMCR);
2115 add_reg(TFUCR);
2116 add_reg(RFOCR);
2117 if (cd->rmiimode)
2118 add_reg(RMIIMODE);
2119 add_reg(FCFTR);
2120 if (cd->rpadir)
2121 add_reg(RPADIR);
2122 if (!cd->no_trimd)
2123 add_reg(TRIMD);
2124 add_reg(ECMR);
2125 add_reg(ECSR);
2126 add_reg(ECSIPR);
2127 add_reg(PIR);
2128 if (!cd->no_psr)
2129 add_reg(PSR);
2130 add_reg(RDMLR);
2131 add_reg(RFLR);
2132 add_reg(IPGR);
2133 if (cd->apr)
2134 add_reg(APR);
2135 if (cd->mpr)
2136 add_reg(MPR);
2137 add_reg(RFCR);
2138 add_reg(RFCF);
2139 if (cd->tpauser)
2140 add_reg(TPAUSER);
2141 add_reg(TPAUSECR);
2142 if (cd->gecmr)
2143 add_reg(GECMR);
2144 if (cd->bculr)
2145 add_reg(BCULR);
2146 add_reg(MAHR);
2147 add_reg(MALR);
2148 if (!cd->no_tx_cntrs) {
2149 add_reg(TROCR);
2150 add_reg(CDCR);
2151 add_reg(LCCR);
2152 add_reg(CNDCR);
2153 }
2154 add_reg(CEFCR);
2155 add_reg(FRECR);
2156 add_reg(TSFRCR);
2157 add_reg(TLFRCR);
2158 if (cd->cexcr) {
2159 add_reg(CERCR);
2160 add_reg(CEECR);
2161 }
2162 add_reg(MAFCR);
2163 if (cd->rtrate)
2164 add_reg(RTRATE);
2165 if (cd->csmr)
2166 add_reg(CSMR);
2167 if (cd->select_mii)
2168 add_reg(RMII_MII);
2169 if (cd->tsu) {
2170 add_tsu_reg(ARSTR);
2171 add_tsu_reg(TSU_CTRST);
2172 if (cd->dual_port) {
2173 add_tsu_reg(TSU_FWEN0);
2174 add_tsu_reg(TSU_FWEN1);
2175 add_tsu_reg(TSU_FCM);
2176 add_tsu_reg(TSU_BSYSL0);
2177 add_tsu_reg(TSU_BSYSL1);
2178 add_tsu_reg(TSU_PRISL0);
2179 add_tsu_reg(TSU_PRISL1);
2180 add_tsu_reg(TSU_FWSL0);
2181 add_tsu_reg(TSU_FWSL1);
2182 }
2183 add_tsu_reg(TSU_FWSLC);
2184 if (cd->dual_port) {
2185 add_tsu_reg(TSU_QTAGM0);
2186 add_tsu_reg(TSU_QTAGM1);
2187 add_tsu_reg(TSU_FWSR);
2188 add_tsu_reg(TSU_FWINMK);
2189 add_tsu_reg(TSU_ADQT0);
2190 add_tsu_reg(TSU_ADQT1);
2191 add_tsu_reg(TSU_VTAG0);
2192 add_tsu_reg(TSU_VTAG1);
2193 }
2194 add_tsu_reg(TSU_ADSBSY);
2195 add_tsu_reg(TSU_TEN);
2196 add_tsu_reg(TSU_POST1);
2197 add_tsu_reg(TSU_POST2);
2198 add_tsu_reg(TSU_POST3);
2199 add_tsu_reg(TSU_POST4);
2200 /* This is the start of a table, not just a single register. */
2201 if (buf) {
2202 unsigned int i;
2203
2204 mark_reg_valid(TSU_ADRH0);
2205 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2206 *buf++ = ioread32(mdp->tsu_addr +
2207 mdp->reg_offset[TSU_ADRH0] +
2208 i * 4);
2209 }
2210 len += SH_ETH_TSU_CAM_ENTRIES * 2;
2211 }
2212
2213 #undef mark_reg_valid
2214 #undef add_reg_from
2215 #undef add_reg
2216 #undef add_tsu_reg
2217
2218 return len * 4;
2219 }
2220
2221 static int sh_eth_get_regs_len(struct net_device *ndev)
2222 {
2223 return __sh_eth_get_regs(ndev, NULL);
2224 }
2225
2226 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2227 void *buf)
2228 {
2229 struct sh_eth_private *mdp = netdev_priv(ndev);
2230
2231 regs->version = SH_ETH_REG_DUMP_VERSION;
2232
2233 pm_runtime_get_sync(&mdp->pdev->dev);
2234 __sh_eth_get_regs(ndev, buf);
2235 pm_runtime_put_sync(&mdp->pdev->dev);
2236 }
2237
2238 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2239 {
2240 struct sh_eth_private *mdp = netdev_priv(ndev);
2241 return mdp->msg_enable;
2242 }
2243
2244 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2245 {
2246 struct sh_eth_private *mdp = netdev_priv(ndev);
2247 mdp->msg_enable = value;
2248 }
2249
2250 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2251 "rx_current", "tx_current",
2252 "rx_dirty", "tx_dirty",
2253 };
2254 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
2255
2256 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2257 {
2258 switch (sset) {
2259 case ETH_SS_STATS:
2260 return SH_ETH_STATS_LEN;
2261 default:
2262 return -EOPNOTSUPP;
2263 }
2264 }
2265
2266 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2267 struct ethtool_stats *stats, u64 *data)
2268 {
2269 struct sh_eth_private *mdp = netdev_priv(ndev);
2270 int i = 0;
2271
2272 /* device-specific stats */
2273 data[i++] = mdp->cur_rx;
2274 data[i++] = mdp->cur_tx;
2275 data[i++] = mdp->dirty_rx;
2276 data[i++] = mdp->dirty_tx;
2277 }
2278
2279 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2280 {
2281 switch (stringset) {
2282 case ETH_SS_STATS:
2283 memcpy(data, *sh_eth_gstrings_stats,
2284 sizeof(sh_eth_gstrings_stats));
2285 break;
2286 }
2287 }
2288
2289 static void sh_eth_get_ringparam(struct net_device *ndev,
2290 struct ethtool_ringparam *ring)
2291 {
2292 struct sh_eth_private *mdp = netdev_priv(ndev);
2293
2294 ring->rx_max_pending = RX_RING_MAX;
2295 ring->tx_max_pending = TX_RING_MAX;
2296 ring->rx_pending = mdp->num_rx_ring;
2297 ring->tx_pending = mdp->num_tx_ring;
2298 }
2299
2300 static int sh_eth_set_ringparam(struct net_device *ndev,
2301 struct ethtool_ringparam *ring)
2302 {
2303 struct sh_eth_private *mdp = netdev_priv(ndev);
2304 int ret;
2305
2306 if (ring->tx_pending > TX_RING_MAX ||
2307 ring->rx_pending > RX_RING_MAX ||
2308 ring->tx_pending < TX_RING_MIN ||
2309 ring->rx_pending < RX_RING_MIN)
2310 return -EINVAL;
2311 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2312 return -EINVAL;
2313
2314 if (netif_running(ndev)) {
2315 netif_device_detach(ndev);
2316 netif_tx_disable(ndev);
2317
2318 /* Serialise with the interrupt handler and NAPI, then
2319 * disable interrupts. We have to clear the
2320 * irq_enabled flag first to ensure that interrupts
2321 * won't be re-enabled.
2322 */
2323 mdp->irq_enabled = false;
2324 synchronize_irq(ndev->irq);
2325 napi_synchronize(&mdp->napi);
2326 sh_eth_write(ndev, 0x0000, EESIPR);
2327
2328 sh_eth_dev_exit(ndev);
2329
2330 /* Free all the skbuffs in the Rx queue and the DMA buffers. */
2331 sh_eth_ring_free(ndev);
2332 }
2333
2334 /* Set new parameters */
2335 mdp->num_rx_ring = ring->rx_pending;
2336 mdp->num_tx_ring = ring->tx_pending;
2337
2338 if (netif_running(ndev)) {
2339 ret = sh_eth_ring_init(ndev);
2340 if (ret < 0) {
2341 netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2342 __func__);
2343 return ret;
2344 }
2345 ret = sh_eth_dev_init(ndev);
2346 if (ret < 0) {
2347 netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2348 __func__);
2349 return ret;
2350 }
2351
2352 netif_device_attach(ndev);
2353 }
2354
2355 return 0;
2356 }
2357
2358 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2359 {
2360 struct sh_eth_private *mdp = netdev_priv(ndev);
2361
2362 wol->supported = 0;
2363 wol->wolopts = 0;
2364
2365 if (mdp->cd->magic) {
2366 wol->supported = WAKE_MAGIC;
2367 wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2368 }
2369 }
2370
2371 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2372 {
2373 struct sh_eth_private *mdp = netdev_priv(ndev);
2374
2375 if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2376 return -EOPNOTSUPP;
2377
2378 mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2379
2380 device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2381
2382 return 0;
2383 }
2384
2385 static const struct ethtool_ops sh_eth_ethtool_ops = {
2386 .get_regs_len = sh_eth_get_regs_len,
2387 .get_regs = sh_eth_get_regs,
2388 .nway_reset = phy_ethtool_nway_reset,
2389 .get_msglevel = sh_eth_get_msglevel,
2390 .set_msglevel = sh_eth_set_msglevel,
2391 .get_link = ethtool_op_get_link,
2392 .get_strings = sh_eth_get_strings,
2393 .get_ethtool_stats = sh_eth_get_ethtool_stats,
2394 .get_sset_count = sh_eth_get_sset_count,
2395 .get_ringparam = sh_eth_get_ringparam,
2396 .set_ringparam = sh_eth_set_ringparam,
2397 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2398 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2399 .get_wol = sh_eth_get_wol,
2400 .set_wol = sh_eth_set_wol,
2401 };
2402
2403 /* network device open function */
2404 static int sh_eth_open(struct net_device *ndev)
2405 {
2406 struct sh_eth_private *mdp = netdev_priv(ndev);
2407 int ret;
2408
2409 pm_runtime_get_sync(&mdp->pdev->dev);
2410
2411 napi_enable(&mdp->napi);
2412
2413 ret = request_irq(ndev->irq, sh_eth_interrupt,
2414 mdp->cd->irq_flags, ndev->name, ndev);
2415 if (ret) {
2416 netdev_err(ndev, "Can not assign IRQ number\n");
2417 goto out_napi_off;
2418 }
2419
2420 /* Descriptor set */
2421 ret = sh_eth_ring_init(ndev);
2422 if (ret)
2423 goto out_free_irq;
2424
2425 /* device init */
2426 ret = sh_eth_dev_init(ndev);
2427 if (ret)
2428 goto out_free_irq;
2429
2430 /* PHY control start*/
2431 ret = sh_eth_phy_start(ndev);
2432 if (ret)
2433 goto out_free_irq;
2434
2435 netif_start_queue(ndev);
2436
2437 mdp->is_opened = 1;
2438
2439 return ret;
2440
2441 out_free_irq:
2442 free_irq(ndev->irq, ndev);
2443 out_napi_off:
2444 napi_disable(&mdp->napi);
2445 pm_runtime_put_sync(&mdp->pdev->dev);
2446 return ret;
2447 }
2448
2449 /* Timeout function */
2450 static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2451 {
2452 struct sh_eth_private *mdp = netdev_priv(ndev);
2453 struct sh_eth_rxdesc *rxdesc;
2454 int i;
2455
2456 netif_stop_queue(ndev);
2457
2458 netif_err(mdp, timer, ndev,
2459 "transmit timed out, status %8.8x, resetting...\n",
2460 sh_eth_read(ndev, EESR));
2461
2462 /* tx_errors count up */
2463 ndev->stats.tx_errors++;
2464
2465 /* Free all the skbuffs in the Rx queue. */
2466 for (i = 0; i < mdp->num_rx_ring; i++) {
2467 rxdesc = &mdp->rx_ring[i];
2468 rxdesc->status = cpu_to_le32(0);
2469 rxdesc->addr = cpu_to_le32(0xBADF00D0);
2470 dev_kfree_skb(mdp->rx_skbuff[i]);
2471 mdp->rx_skbuff[i] = NULL;
2472 }
2473 for (i = 0; i < mdp->num_tx_ring; i++) {
2474 dev_kfree_skb(mdp->tx_skbuff[i]);
2475 mdp->tx_skbuff[i] = NULL;
2476 }
2477
2478 /* device init */
2479 sh_eth_dev_init(ndev);
2480
2481 netif_start_queue(ndev);
2482 }
2483
2484 /* Packet transmit function */
2485 static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb,
2486 struct net_device *ndev)
2487 {
2488 struct sh_eth_private *mdp = netdev_priv(ndev);
2489 struct sh_eth_txdesc *txdesc;
2490 dma_addr_t dma_addr;
2491 u32 entry;
2492 unsigned long flags;
2493
2494 spin_lock_irqsave(&mdp->lock, flags);
2495 if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2496 if (!sh_eth_tx_free(ndev, true)) {
2497 netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2498 netif_stop_queue(ndev);
2499 spin_unlock_irqrestore(&mdp->lock, flags);
2500 return NETDEV_TX_BUSY;
2501 }
2502 }
2503 spin_unlock_irqrestore(&mdp->lock, flags);
2504
2505 if (skb_put_padto(skb, ETH_ZLEN))
2506 return NETDEV_TX_OK;
2507
2508 entry = mdp->cur_tx % mdp->num_tx_ring;
2509 mdp->tx_skbuff[entry] = skb;
2510 txdesc = &mdp->tx_ring[entry];
2511 /* soft swap. */
2512 if (!mdp->cd->hw_swap)
2513 sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2514 dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2515 DMA_TO_DEVICE);
2516 if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2517 kfree_skb(skb);
2518 return NETDEV_TX_OK;
2519 }
2520 txdesc->addr = cpu_to_le32(dma_addr);
2521 txdesc->len = cpu_to_le32(skb->len << 16);
2522
2523 dma_wmb(); /* TACT bit must be set after all the above writes */
2524 if (entry >= mdp->num_tx_ring - 1)
2525 txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2526 else
2527 txdesc->status |= cpu_to_le32(TD_TACT);
2528
2529 mdp->cur_tx++;
2530
2531 if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2532 sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2533
2534 return NETDEV_TX_OK;
2535 }
2536
2537 /* The statistics registers have write-clear behaviour, which means we
2538 * will lose any increment between the read and write. We mitigate
2539 * this by only clearing when we read a non-zero value, so we will
2540 * never falsely report a total of zero.
2541 */
2542 static void
2543 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2544 {
2545 u32 delta = sh_eth_read(ndev, reg);
2546
2547 if (delta) {
2548 *stat += delta;
2549 sh_eth_write(ndev, 0, reg);
2550 }
2551 }
2552
2553 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2554 {
2555 struct sh_eth_private *mdp = netdev_priv(ndev);
2556
2557 if (mdp->cd->no_tx_cntrs)
2558 return &ndev->stats;
2559
2560 if (!mdp->is_opened)
2561 return &ndev->stats;
2562
2563 sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2564 sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2565 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2566
2567 if (mdp->cd->cexcr) {
2568 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2569 CERCR);
2570 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2571 CEECR);
2572 } else {
2573 sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2574 CNDCR);
2575 }
2576
2577 return &ndev->stats;
2578 }
2579
2580 /* device close function */
2581 static int sh_eth_close(struct net_device *ndev)
2582 {
2583 struct sh_eth_private *mdp = netdev_priv(ndev);
2584
2585 netif_stop_queue(ndev);
2586
2587 /* Serialise with the interrupt handler and NAPI, then disable
2588 * interrupts. We have to clear the irq_enabled flag first to
2589 * ensure that interrupts won't be re-enabled.
2590 */
2591 mdp->irq_enabled = false;
2592 synchronize_irq(ndev->irq);
2593 napi_disable(&mdp->napi);
2594 sh_eth_write(ndev, 0x0000, EESIPR);
2595
2596 sh_eth_dev_exit(ndev);
2597
2598 /* PHY Disconnect */
2599 if (ndev->phydev) {
2600 phy_stop(ndev->phydev);
2601 phy_disconnect(ndev->phydev);
2602 }
2603
2604 free_irq(ndev->irq, ndev);
2605
2606 /* Free all the skbuffs in the Rx queue and the DMA buffer. */
2607 sh_eth_ring_free(ndev);
2608
2609 mdp->is_opened = 0;
2610
2611 pm_runtime_put(&mdp->pdev->dev);
2612
2613 return 0;
2614 }
2615
2616 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2617 {
2618 if (netif_running(ndev))
2619 return -EBUSY;
2620
2621 ndev->mtu = new_mtu;
2622 netdev_update_features(ndev);
2623
2624 return 0;
2625 }
2626
2627 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2628 static u32 sh_eth_tsu_get_post_mask(int entry)
2629 {
2630 return 0x0f << (28 - ((entry % 8) * 4));
2631 }
2632
2633 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2634 {
2635 return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2636 }
2637
2638 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2639 int entry)
2640 {
2641 struct sh_eth_private *mdp = netdev_priv(ndev);
2642 int reg = TSU_POST1 + entry / 8;
2643 u32 tmp;
2644
2645 tmp = sh_eth_tsu_read(mdp, reg);
2646 sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2647 }
2648
2649 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2650 int entry)
2651 {
2652 struct sh_eth_private *mdp = netdev_priv(ndev);
2653 int reg = TSU_POST1 + entry / 8;
2654 u32 post_mask, ref_mask, tmp;
2655
2656 post_mask = sh_eth_tsu_get_post_mask(entry);
2657 ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2658
2659 tmp = sh_eth_tsu_read(mdp, reg);
2660 sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2661
2662 /* If other port enables, the function returns "true" */
2663 return tmp & ref_mask;
2664 }
2665
2666 static int sh_eth_tsu_busy(struct net_device *ndev)
2667 {
2668 int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2669 struct sh_eth_private *mdp = netdev_priv(ndev);
2670
2671 while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2672 udelay(10);
2673 timeout--;
2674 if (timeout <= 0) {
2675 netdev_err(ndev, "%s: timeout\n", __func__);
2676 return -ETIMEDOUT;
2677 }
2678 }
2679
2680 return 0;
2681 }
2682
2683 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2684 const u8 *addr)
2685 {
2686 struct sh_eth_private *mdp = netdev_priv(ndev);
2687 u32 val;
2688
2689 val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2690 iowrite32(val, mdp->tsu_addr + offset);
2691 if (sh_eth_tsu_busy(ndev) < 0)
2692 return -EBUSY;
2693
2694 val = addr[4] << 8 | addr[5];
2695 iowrite32(val, mdp->tsu_addr + offset + 4);
2696 if (sh_eth_tsu_busy(ndev) < 0)
2697 return -EBUSY;
2698
2699 return 0;
2700 }
2701
2702 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2703 {
2704 struct sh_eth_private *mdp = netdev_priv(ndev);
2705 u32 val;
2706
2707 val = ioread32(mdp->tsu_addr + offset);
2708 addr[0] = (val >> 24) & 0xff;
2709 addr[1] = (val >> 16) & 0xff;
2710 addr[2] = (val >> 8) & 0xff;
2711 addr[3] = val & 0xff;
2712 val = ioread32(mdp->tsu_addr + offset + 4);
2713 addr[4] = (val >> 8) & 0xff;
2714 addr[5] = val & 0xff;
2715 }
2716
2717
2718 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2719 {
2720 struct sh_eth_private *mdp = netdev_priv(ndev);
2721 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2722 int i;
2723 u8 c_addr[ETH_ALEN];
2724
2725 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2726 sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2727 if (ether_addr_equal(addr, c_addr))
2728 return i;
2729 }
2730
2731 return -ENOENT;
2732 }
2733
2734 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2735 {
2736 u8 blank[ETH_ALEN];
2737 int entry;
2738
2739 memset(blank, 0, sizeof(blank));
2740 entry = sh_eth_tsu_find_entry(ndev, blank);
2741 return (entry < 0) ? -ENOMEM : entry;
2742 }
2743
2744 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2745 int entry)
2746 {
2747 struct sh_eth_private *mdp = netdev_priv(ndev);
2748 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2749 int ret;
2750 u8 blank[ETH_ALEN];
2751
2752 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2753 ~(1 << (31 - entry)), TSU_TEN);
2754
2755 memset(blank, 0, sizeof(blank));
2756 ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2757 if (ret < 0)
2758 return ret;
2759 return 0;
2760 }
2761
2762 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2763 {
2764 struct sh_eth_private *mdp = netdev_priv(ndev);
2765 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2766 int i, ret;
2767
2768 if (!mdp->cd->tsu)
2769 return 0;
2770
2771 i = sh_eth_tsu_find_entry(ndev, addr);
2772 if (i < 0) {
2773 /* No entry found, create one */
2774 i = sh_eth_tsu_find_empty(ndev);
2775 if (i < 0)
2776 return -ENOMEM;
2777 ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2778 if (ret < 0)
2779 return ret;
2780
2781 /* Enable the entry */
2782 sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2783 (1 << (31 - i)), TSU_TEN);
2784 }
2785
2786 /* Entry found or created, enable POST */
2787 sh_eth_tsu_enable_cam_entry_post(ndev, i);
2788
2789 return 0;
2790 }
2791
2792 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2793 {
2794 struct sh_eth_private *mdp = netdev_priv(ndev);
2795 int i, ret;
2796
2797 if (!mdp->cd->tsu)
2798 return 0;
2799
2800 i = sh_eth_tsu_find_entry(ndev, addr);
2801 if (i) {
2802 /* Entry found */
2803 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2804 goto done;
2805
2806 /* Disable the entry if both ports was disabled */
2807 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2808 if (ret < 0)
2809 return ret;
2810 }
2811 done:
2812 return 0;
2813 }
2814
2815 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2816 {
2817 struct sh_eth_private *mdp = netdev_priv(ndev);
2818 int i, ret;
2819
2820 if (!mdp->cd->tsu)
2821 return 0;
2822
2823 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2824 if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2825 continue;
2826
2827 /* Disable the entry if both ports was disabled */
2828 ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2829 if (ret < 0)
2830 return ret;
2831 }
2832
2833 return 0;
2834 }
2835
2836 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2837 {
2838 struct sh_eth_private *mdp = netdev_priv(ndev);
2839 u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2840 u8 addr[ETH_ALEN];
2841 int i;
2842
2843 if (!mdp->cd->tsu)
2844 return;
2845
2846 for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2847 sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2848 if (is_multicast_ether_addr(addr))
2849 sh_eth_tsu_del_entry(ndev, addr);
2850 }
2851 }
2852
2853 /* Update promiscuous flag and multicast filter */
2854 static void sh_eth_set_rx_mode(struct net_device *ndev)
2855 {
2856 struct sh_eth_private *mdp = netdev_priv(ndev);
2857 u32 ecmr_bits;
2858 int mcast_all = 0;
2859 unsigned long flags;
2860
2861 spin_lock_irqsave(&mdp->lock, flags);
2862 /* Initial condition is MCT = 1, PRM = 0.
2863 * Depending on ndev->flags, set PRM or clear MCT
2864 */
2865 ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2866 if (mdp->cd->tsu)
2867 ecmr_bits |= ECMR_MCT;
2868
2869 if (!(ndev->flags & IFF_MULTICAST)) {
2870 sh_eth_tsu_purge_mcast(ndev);
2871 mcast_all = 1;
2872 }
2873 if (ndev->flags & IFF_ALLMULTI) {
2874 sh_eth_tsu_purge_mcast(ndev);
2875 ecmr_bits &= ~ECMR_MCT;
2876 mcast_all = 1;
2877 }
2878
2879 if (ndev->flags & IFF_PROMISC) {
2880 sh_eth_tsu_purge_all(ndev);
2881 ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2882 } else if (mdp->cd->tsu) {
2883 struct netdev_hw_addr *ha;
2884 netdev_for_each_mc_addr(ha, ndev) {
2885 if (mcast_all && is_multicast_ether_addr(ha->addr))
2886 continue;
2887
2888 if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2889 if (!mcast_all) {
2890 sh_eth_tsu_purge_mcast(ndev);
2891 ecmr_bits &= ~ECMR_MCT;
2892 mcast_all = 1;
2893 }
2894 }
2895 }
2896 }
2897
2898 /* update the ethernet mode */
2899 sh_eth_write(ndev, ecmr_bits, ECMR);
2900
2901 spin_unlock_irqrestore(&mdp->lock, flags);
2902 }
2903
2904 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2905 {
2906 struct sh_eth_private *mdp = netdev_priv(ndev);
2907 unsigned long flags;
2908
2909 spin_lock_irqsave(&mdp->lock, flags);
2910
2911 /* Disable TX and RX */
2912 sh_eth_rcv_snd_disable(ndev);
2913
2914 /* Modify RX Checksum setting */
2915 sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2916
2917 /* Enable TX and RX */
2918 sh_eth_rcv_snd_enable(ndev);
2919
2920 spin_unlock_irqrestore(&mdp->lock, flags);
2921 }
2922
2923 static int sh_eth_set_features(struct net_device *ndev,
2924 netdev_features_t features)
2925 {
2926 netdev_features_t changed = ndev->features ^ features;
2927 struct sh_eth_private *mdp = netdev_priv(ndev);
2928
2929 if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2930 sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2931
2932 ndev->features = features;
2933
2934 return 0;
2935 }
2936
2937 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2938 {
2939 if (!mdp->port)
2940 return TSU_VTAG0;
2941 else
2942 return TSU_VTAG1;
2943 }
2944
2945 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2946 __be16 proto, u16 vid)
2947 {
2948 struct sh_eth_private *mdp = netdev_priv(ndev);
2949 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2950
2951 if (unlikely(!mdp->cd->tsu))
2952 return -EPERM;
2953
2954 /* No filtering if vid = 0 */
2955 if (!vid)
2956 return 0;
2957
2958 mdp->vlan_num_ids++;
2959
2960 /* The controller has one VLAN tag HW filter. So, if the filter is
2961 * already enabled, the driver disables it and the filte
2962 */
2963 if (mdp->vlan_num_ids > 1) {
2964 /* disable VLAN filter */
2965 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2966 return 0;
2967 }
2968
2969 sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2970 vtag_reg_index);
2971
2972 return 0;
2973 }
2974
2975 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2976 __be16 proto, u16 vid)
2977 {
2978 struct sh_eth_private *mdp = netdev_priv(ndev);
2979 int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2980
2981 if (unlikely(!mdp->cd->tsu))
2982 return -EPERM;
2983
2984 /* No filtering if vid = 0 */
2985 if (!vid)
2986 return 0;
2987
2988 mdp->vlan_num_ids--;
2989 sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2990
2991 return 0;
2992 }
2993
2994 /* SuperH's TSU register init function */
2995 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2996 {
2997 if (!mdp->cd->dual_port) {
2998 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2999 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3000 TSU_FWSLC); /* Enable POST registers */
3001 return;
3002 }
3003
3004 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
3005 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
3006 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
3007 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3008 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3009 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3010 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3011 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3012 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3013 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3014 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
3015 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
3016 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
3017 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
3018 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3019 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
3020 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
3021 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
3022 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
3023 }
3024
3025 /* MDIO bus release function */
3026 static int sh_mdio_release(struct sh_eth_private *mdp)
3027 {
3028 /* unregister mdio bus */
3029 mdiobus_unregister(mdp->mii_bus);
3030
3031 /* free bitbang info */
3032 free_mdio_bitbang(mdp->mii_bus);
3033
3034 return 0;
3035 }
3036
3037 static int sh_mdiobb_read(struct mii_bus *bus, int phy, int reg)
3038 {
3039 int res;
3040
3041 pm_runtime_get_sync(bus->parent);
3042 res = mdiobb_read(bus, phy, reg);
3043 pm_runtime_put(bus->parent);
3044
3045 return res;
3046 }
3047
3048 static int sh_mdiobb_write(struct mii_bus *bus, int phy, int reg, u16 val)
3049 {
3050 int res;
3051
3052 pm_runtime_get_sync(bus->parent);
3053 res = mdiobb_write(bus, phy, reg, val);
3054 pm_runtime_put(bus->parent);
3055
3056 return res;
3057 }
3058
3059 /* MDIO bus init function */
3060 static int sh_mdio_init(struct sh_eth_private *mdp,
3061 struct sh_eth_plat_data *pd)
3062 {
3063 int ret;
3064 struct bb_info *bitbang;
3065 struct platform_device *pdev = mdp->pdev;
3066 struct device *dev = &mdp->pdev->dev;
3067
3068 /* create bit control struct for PHY */
3069 bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3070 if (!bitbang)
3071 return -ENOMEM;
3072
3073 /* bitbang init */
3074 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3075 bitbang->set_gate = pd->set_mdio_gate;
3076 bitbang->ctrl.ops = &bb_ops;
3077
3078 /* MII controller setting */
3079 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3080 if (!mdp->mii_bus)
3081 return -ENOMEM;
3082
3083 /* Wrap accessors with Runtime PM-aware ops */
3084 mdp->mii_bus->read = sh_mdiobb_read;
3085 mdp->mii_bus->write = sh_mdiobb_write;
3086
3087 /* Hook up MII support for ethtool */
3088 mdp->mii_bus->name = "sh_mii";
3089 mdp->mii_bus->parent = dev;
3090 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3091 pdev->name, pdev->id);
3092
3093 /* register MDIO bus */
3094 if (pd->phy_irq > 0)
3095 mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3096
3097 ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3098 if (ret)
3099 goto out_free_bus;
3100
3101 return 0;
3102
3103 out_free_bus:
3104 free_mdio_bitbang(mdp->mii_bus);
3105 return ret;
3106 }
3107
3108 static const u16 *sh_eth_get_register_offset(int register_type)
3109 {
3110 const u16 *reg_offset = NULL;
3111
3112 switch (register_type) {
3113 case SH_ETH_REG_GIGABIT:
3114 reg_offset = sh_eth_offset_gigabit;
3115 break;
3116 case SH_ETH_REG_FAST_RCAR:
3117 reg_offset = sh_eth_offset_fast_rcar;
3118 break;
3119 case SH_ETH_REG_FAST_SH4:
3120 reg_offset = sh_eth_offset_fast_sh4;
3121 break;
3122 case SH_ETH_REG_FAST_SH3_SH2:
3123 reg_offset = sh_eth_offset_fast_sh3_sh2;
3124 break;
3125 }
3126
3127 return reg_offset;
3128 }
3129
3130 static const struct net_device_ops sh_eth_netdev_ops = {
3131 .ndo_open = sh_eth_open,
3132 .ndo_stop = sh_eth_close,
3133 .ndo_start_xmit = sh_eth_start_xmit,
3134 .ndo_get_stats = sh_eth_get_stats,
3135 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3136 .ndo_tx_timeout = sh_eth_tx_timeout,
3137 .ndo_do_ioctl = phy_do_ioctl_running,
3138 .ndo_change_mtu = sh_eth_change_mtu,
3139 .ndo_validate_addr = eth_validate_addr,
3140 .ndo_set_mac_address = eth_mac_addr,
3141 .ndo_set_features = sh_eth_set_features,
3142 };
3143
3144 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3145 .ndo_open = sh_eth_open,
3146 .ndo_stop = sh_eth_close,
3147 .ndo_start_xmit = sh_eth_start_xmit,
3148 .ndo_get_stats = sh_eth_get_stats,
3149 .ndo_set_rx_mode = sh_eth_set_rx_mode,
3150 .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
3151 .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
3152 .ndo_tx_timeout = sh_eth_tx_timeout,
3153 .ndo_do_ioctl = phy_do_ioctl_running,
3154 .ndo_change_mtu = sh_eth_change_mtu,
3155 .ndo_validate_addr = eth_validate_addr,
3156 .ndo_set_mac_address = eth_mac_addr,
3157 .ndo_set_features = sh_eth_set_features,
3158 };
3159
3160 #ifdef CONFIG_OF
3161 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3162 {
3163 struct device_node *np = dev->of_node;
3164 struct sh_eth_plat_data *pdata;
3165 phy_interface_t interface;
3166 const char *mac_addr;
3167 int ret;
3168
3169 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3170 if (!pdata)
3171 return NULL;
3172
3173 ret = of_get_phy_mode(np, &interface);
3174 if (ret)
3175 return NULL;
3176 pdata->phy_interface = interface;
3177
3178 mac_addr = of_get_mac_address(np);
3179 if (!IS_ERR(mac_addr))
3180 ether_addr_copy(pdata->mac_addr, mac_addr);
3181
3182 pdata->no_ether_link =
3183 of_property_read_bool(np, "renesas,no-ether-link");
3184 pdata->ether_link_active_low =
3185 of_property_read_bool(np, "renesas,ether-link-active-low");
3186
3187 return pdata;
3188 }
3189
3190 static const struct of_device_id sh_eth_match_table[] = {
3191 { .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3192 { .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3193 { .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3194 { .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3195 { .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3196 { .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3197 { .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3198 { .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3199 { .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3200 { .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3201 { .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3202 { .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3203 { .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3204 { .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3205 { }
3206 };
3207 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3208 #else
3209 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3210 {
3211 return NULL;
3212 }
3213 #endif
3214
3215 static int sh_eth_drv_probe(struct platform_device *pdev)
3216 {
3217 struct resource *res;
3218 struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3219 const struct platform_device_id *id = platform_get_device_id(pdev);
3220 struct sh_eth_private *mdp;
3221 struct net_device *ndev;
3222 int ret;
3223
3224 /* get base addr */
3225 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3226
3227 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3228 if (!ndev)
3229 return -ENOMEM;
3230
3231 pm_runtime_enable(&pdev->dev);
3232 pm_runtime_get_sync(&pdev->dev);
3233
3234 ret = platform_get_irq(pdev, 0);
3235 if (ret < 0)
3236 goto out_release;
3237 ndev->irq = ret;
3238
3239 SET_NETDEV_DEV(ndev, &pdev->dev);
3240
3241 mdp = netdev_priv(ndev);
3242 mdp->num_tx_ring = TX_RING_SIZE;
3243 mdp->num_rx_ring = RX_RING_SIZE;
3244 mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3245 if (IS_ERR(mdp->addr)) {
3246 ret = PTR_ERR(mdp->addr);
3247 goto out_release;
3248 }
3249
3250 ndev->base_addr = res->start;
3251
3252 spin_lock_init(&mdp->lock);
3253 mdp->pdev = pdev;
3254
3255 if (pdev->dev.of_node)
3256 pd = sh_eth_parse_dt(&pdev->dev);
3257 if (!pd) {
3258 dev_err(&pdev->dev, "no platform data\n");
3259 ret = -EINVAL;
3260 goto out_release;
3261 }
3262
3263 /* get PHY ID */
3264 mdp->phy_id = pd->phy;
3265 mdp->phy_interface = pd->phy_interface;
3266 mdp->no_ether_link = pd->no_ether_link;
3267 mdp->ether_link_active_low = pd->ether_link_active_low;
3268
3269 /* set cpu data */
3270 if (id)
3271 mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3272 else
3273 mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3274
3275 mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3276 if (!mdp->reg_offset) {
3277 dev_err(&pdev->dev, "Unknown register type (%d)\n",
3278 mdp->cd->register_type);
3279 ret = -EINVAL;
3280 goto out_release;
3281 }
3282 sh_eth_set_default_cpu_data(mdp->cd);
3283
3284 /* User's manual states max MTU should be 2048 but due to the
3285 * alignment calculations in sh_eth_ring_init() the practical
3286 * MTU is a bit less. Maybe this can be optimized some more.
3287 */
3288 ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3289 ndev->min_mtu = ETH_MIN_MTU;
3290
3291 if (mdp->cd->rx_csum) {
3292 ndev->features = NETIF_F_RXCSUM;
3293 ndev->hw_features = NETIF_F_RXCSUM;
3294 }
3295
3296 /* set function */
3297 if (mdp->cd->tsu)
3298 ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3299 else
3300 ndev->netdev_ops = &sh_eth_netdev_ops;
3301 ndev->ethtool_ops = &sh_eth_ethtool_ops;
3302 ndev->watchdog_timeo = TX_TIMEOUT;
3303
3304 /* debug message level */
3305 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3306
3307 /* read and set MAC address */
3308 read_mac_address(ndev, pd->mac_addr);
3309 if (!is_valid_ether_addr(ndev->dev_addr)) {
3310 dev_warn(&pdev->dev,
3311 "no valid MAC address supplied, using a random one.\n");
3312 eth_hw_addr_random(ndev);
3313 }
3314
3315 if (mdp->cd->tsu) {
3316 int port = pdev->id < 0 ? 0 : pdev->id % 2;
3317 struct resource *rtsu;
3318
3319 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3320 if (!rtsu) {
3321 dev_err(&pdev->dev, "no TSU resource\n");
3322 ret = -ENODEV;
3323 goto out_release;
3324 }
3325 /* We can only request the TSU region for the first port
3326 * of the two sharing this TSU for the probe to succeed...
3327 */
3328 if (port == 0 &&
3329 !devm_request_mem_region(&pdev->dev, rtsu->start,
3330 resource_size(rtsu),
3331 dev_name(&pdev->dev))) {
3332 dev_err(&pdev->dev, "can't request TSU resource.\n");
3333 ret = -EBUSY;
3334 goto out_release;
3335 }
3336 /* ioremap the TSU registers */
3337 mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3338 resource_size(rtsu));
3339 if (!mdp->tsu_addr) {
3340 dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3341 ret = -ENOMEM;
3342 goto out_release;
3343 }
3344 mdp->port = port;
3345 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3346
3347 /* Need to init only the first port of the two sharing a TSU */
3348 if (port == 0) {
3349 if (mdp->cd->chip_reset)
3350 mdp->cd->chip_reset(ndev);
3351
3352 /* TSU init (Init only)*/
3353 sh_eth_tsu_init(mdp);
3354 }
3355 }
3356
3357 if (mdp->cd->rmiimode)
3358 sh_eth_write(ndev, 0x1, RMIIMODE);
3359
3360 /* MDIO bus init */
3361 ret = sh_mdio_init(mdp, pd);
3362 if (ret) {
3363 if (ret != -EPROBE_DEFER)
3364 dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3365 goto out_release;
3366 }
3367
3368 netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3369
3370 /* network device register */
3371 ret = register_netdev(ndev);
3372 if (ret)
3373 goto out_napi_del;
3374
3375 if (mdp->cd->magic)
3376 device_set_wakeup_capable(&pdev->dev, 1);
3377
3378 /* print device information */
3379 netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3380 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3381
3382 pm_runtime_put(&pdev->dev);
3383 platform_set_drvdata(pdev, ndev);
3384
3385 return ret;
3386
3387 out_napi_del:
3388 netif_napi_del(&mdp->napi);
3389 sh_mdio_release(mdp);
3390
3391 out_release:
3392 /* net_dev free */
3393 free_netdev(ndev);
3394
3395 pm_runtime_put(&pdev->dev);
3396 pm_runtime_disable(&pdev->dev);
3397 return ret;
3398 }
3399
3400 static int sh_eth_drv_remove(struct platform_device *pdev)
3401 {
3402 struct net_device *ndev = platform_get_drvdata(pdev);
3403 struct sh_eth_private *mdp = netdev_priv(ndev);
3404
3405 unregister_netdev(ndev);
3406 netif_napi_del(&mdp->napi);
3407 sh_mdio_release(mdp);
3408 pm_runtime_disable(&pdev->dev);
3409 free_netdev(ndev);
3410
3411 return 0;
3412 }
3413
3414 #ifdef CONFIG_PM
3415 #ifdef CONFIG_PM_SLEEP
3416 static int sh_eth_wol_setup(struct net_device *ndev)
3417 {
3418 struct sh_eth_private *mdp = netdev_priv(ndev);
3419
3420 /* Only allow ECI interrupts */
3421 synchronize_irq(ndev->irq);
3422 napi_disable(&mdp->napi);
3423 sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3424
3425 /* Enable MagicPacket */
3426 sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3427
3428 return enable_irq_wake(ndev->irq);
3429 }
3430
3431 static int sh_eth_wol_restore(struct net_device *ndev)
3432 {
3433 struct sh_eth_private *mdp = netdev_priv(ndev);
3434 int ret;
3435
3436 napi_enable(&mdp->napi);
3437
3438 /* Disable MagicPacket */
3439 sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3440
3441 /* The device needs to be reset to restore MagicPacket logic
3442 * for next wakeup. If we close and open the device it will
3443 * both be reset and all registers restored. This is what
3444 * happens during suspend and resume without WoL enabled.
3445 */
3446 ret = sh_eth_close(ndev);
3447 if (ret < 0)
3448 return ret;
3449 ret = sh_eth_open(ndev);
3450 if (ret < 0)
3451 return ret;
3452
3453 return disable_irq_wake(ndev->irq);
3454 }
3455
3456 static int sh_eth_suspend(struct device *dev)
3457 {
3458 struct net_device *ndev = dev_get_drvdata(dev);
3459 struct sh_eth_private *mdp = netdev_priv(ndev);
3460 int ret = 0;
3461
3462 if (!netif_running(ndev))
3463 return 0;
3464
3465 netif_device_detach(ndev);
3466
3467 if (mdp->wol_enabled)
3468 ret = sh_eth_wol_setup(ndev);
3469 else
3470 ret = sh_eth_close(ndev);
3471
3472 return ret;
3473 }
3474
3475 static int sh_eth_resume(struct device *dev)
3476 {
3477 struct net_device *ndev = dev_get_drvdata(dev);
3478 struct sh_eth_private *mdp = netdev_priv(ndev);
3479 int ret = 0;
3480
3481 if (!netif_running(ndev))
3482 return 0;
3483
3484 if (mdp->wol_enabled)
3485 ret = sh_eth_wol_restore(ndev);
3486 else
3487 ret = sh_eth_open(ndev);
3488
3489 if (ret < 0)
3490 return ret;
3491
3492 netif_device_attach(ndev);
3493
3494 return ret;
3495 }
3496 #endif
3497
3498 static int sh_eth_runtime_nop(struct device *dev)
3499 {
3500 /* Runtime PM callback shared between ->runtime_suspend()
3501 * and ->runtime_resume(). Simply returns success.
3502 *
3503 * This driver re-initializes all registers after
3504 * pm_runtime_get_sync() anyway so there is no need
3505 * to save and restore registers here.
3506 */
3507 return 0;
3508 }
3509
3510 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3511 SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3512 SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3513 };
3514 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3515 #else
3516 #define SH_ETH_PM_OPS NULL
3517 #endif
3518
3519 static const struct platform_device_id sh_eth_id_table[] = {
3520 { "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3521 { "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3522 { "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3523 { "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3524 { "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3525 { "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3526 { "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3527 { }
3528 };
3529 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3530
3531 static struct platform_driver sh_eth_driver = {
3532 .probe = sh_eth_drv_probe,
3533 .remove = sh_eth_drv_remove,
3534 .id_table = sh_eth_id_table,
3535 .driver = {
3536 .name = CARDNAME,
3537 .pm = SH_ETH_PM_OPS,
3538 .of_match_table = of_match_ptr(sh_eth_match_table),
3539 },
3540 };
3541
3542 module_platform_driver(sh_eth_driver);
3543
3544 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3545 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3546 MODULE_LICENSE("GPL v2");