]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/sfc/ef10.c
Merge branch 'for-next' into for-linus
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / sfc / ef10.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
5 */
6
7 #include "net_driver.h"
8 #include "rx_common.h"
9 #include "ef10_regs.h"
10 #include "io.h"
11 #include "mcdi.h"
12 #include "mcdi_pcol.h"
13 #include "mcdi_port_common.h"
14 #include "mcdi_functions.h"
15 #include "nic.h"
16 #include "mcdi_filters.h"
17 #include "workarounds.h"
18 #include "selftest.h"
19 #include "ef10_sriov.h"
20 #include <linux/in.h>
21 #include <linux/jhash.h>
22 #include <linux/wait.h>
23 #include <linux/workqueue.h>
24
25 /* Hardware control for EF10 architecture including 'Huntington'. */
26
27 #define EFX_EF10_DRVGEN_EV 7
28 enum {
29 EFX_EF10_TEST = 1,
30 EFX_EF10_REFILL,
31 };
32
33 /* VLAN list entry */
34 struct efx_ef10_vlan {
35 struct list_head list;
36 u16 vid;
37 };
38
39 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
40
41 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
42 {
43 efx_dword_t reg;
44
45 efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
46 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
47 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
48 }
49
50 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
51 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
52 * bar; PFs use BAR 0/1 for memory.
53 */
54 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
55 {
56 switch (efx->pci_dev->device) {
57 case 0x0b03: /* SFC9250 PF */
58 return 0;
59 default:
60 return 2;
61 }
62 }
63
64 /* All VFs use BAR 0/1 for memory */
65 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
66 {
67 return 0;
68 }
69
70 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
71 {
72 int bar;
73
74 bar = efx->type->mem_bar(efx);
75 return resource_size(&efx->pci_dev->resource[bar]);
76 }
77
78 static bool efx_ef10_is_vf(struct efx_nic *efx)
79 {
80 return efx->type->is_vf;
81 }
82
83 #ifdef CONFIG_SFC_SRIOV
84 static int efx_ef10_get_vf_index(struct efx_nic *efx)
85 {
86 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
87 struct efx_ef10_nic_data *nic_data = efx->nic_data;
88 size_t outlen;
89 int rc;
90
91 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
92 sizeof(outbuf), &outlen);
93 if (rc)
94 return rc;
95 if (outlen < sizeof(outbuf))
96 return -EIO;
97
98 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
99 return 0;
100 }
101 #endif
102
103 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
104 {
105 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
106 struct efx_ef10_nic_data *nic_data = efx->nic_data;
107 size_t outlen;
108 int rc;
109
110 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
111
112 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
113 outbuf, sizeof(outbuf), &outlen);
114 if (rc)
115 return rc;
116 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
117 netif_err(efx, drv, efx->net_dev,
118 "unable to read datapath firmware capabilities\n");
119 return -EIO;
120 }
121
122 nic_data->datapath_caps =
123 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
124
125 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
126 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
127 GET_CAPABILITIES_V2_OUT_FLAGS2);
128 nic_data->piobuf_size = MCDI_WORD(outbuf,
129 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
130 } else {
131 nic_data->datapath_caps2 = 0;
132 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
133 }
134
135 /* record the DPCPU firmware IDs to determine VEB vswitching support.
136 */
137 nic_data->rx_dpcpu_fw_id =
138 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
139 nic_data->tx_dpcpu_fw_id =
140 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
141
142 if (!(nic_data->datapath_caps &
143 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
144 netif_err(efx, probe, efx->net_dev,
145 "current firmware does not support an RX prefix\n");
146 return -ENODEV;
147 }
148
149 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
150 u8 vi_window_mode = MCDI_BYTE(outbuf,
151 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
152
153 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
154 if (rc)
155 return rc;
156 } else {
157 /* keep default VI stride */
158 netif_dbg(efx, probe, efx->net_dev,
159 "firmware did not report VI window mode, assuming vi_stride = %u\n",
160 efx->vi_stride);
161 }
162
163 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
164 efx->num_mac_stats = MCDI_WORD(outbuf,
165 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
166 netif_dbg(efx, probe, efx->net_dev,
167 "firmware reports num_mac_stats = %u\n",
168 efx->num_mac_stats);
169 } else {
170 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
171 netif_dbg(efx, probe, efx->net_dev,
172 "firmware did not report num_mac_stats, assuming %u\n",
173 efx->num_mac_stats);
174 }
175
176 return 0;
177 }
178
179 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
180 {
181 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
182 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
183 struct efx_ef10_nic_data *nic_data = efx->nic_data;
184 size_t outlen;
185 int rc;
186
187 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
188 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
189 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
190 outbuf, sizeof(outbuf), &outlen);
191 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
192 return;
193
194 nic_data->licensed_features = MCDI_QWORD(outbuf,
195 LICENSING_V3_OUT_LICENSED_FEATURES);
196 }
197
198 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
199 {
200 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
201 int rc;
202
203 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
204 outbuf, sizeof(outbuf), NULL);
205 if (rc)
206 return rc;
207 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
208 return rc > 0 ? rc : -ERANGE;
209 }
210
211 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
212 {
213 struct efx_ef10_nic_data *nic_data = efx->nic_data;
214 unsigned int implemented;
215 unsigned int enabled;
216 int rc;
217
218 nic_data->workaround_35388 = false;
219 nic_data->workaround_61265 = false;
220
221 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
222
223 if (rc == -ENOSYS) {
224 /* Firmware without GET_WORKAROUNDS - not a problem. */
225 rc = 0;
226 } else if (rc == 0) {
227 /* Bug61265 workaround is always enabled if implemented. */
228 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
229 nic_data->workaround_61265 = true;
230
231 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
232 nic_data->workaround_35388 = true;
233 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
234 /* Workaround is implemented but not enabled.
235 * Try to enable it.
236 */
237 rc = efx_mcdi_set_workaround(efx,
238 MC_CMD_WORKAROUND_BUG35388,
239 true, NULL);
240 if (rc == 0)
241 nic_data->workaround_35388 = true;
242 /* If we failed to set the workaround just carry on. */
243 rc = 0;
244 }
245 }
246
247 netif_dbg(efx, probe, efx->net_dev,
248 "workaround for bug 35388 is %sabled\n",
249 nic_data->workaround_35388 ? "en" : "dis");
250 netif_dbg(efx, probe, efx->net_dev,
251 "workaround for bug 61265 is %sabled\n",
252 nic_data->workaround_61265 ? "en" : "dis");
253
254 return rc;
255 }
256
257 static void efx_ef10_process_timer_config(struct efx_nic *efx,
258 const efx_dword_t *data)
259 {
260 unsigned int max_count;
261
262 if (EFX_EF10_WORKAROUND_61265(efx)) {
263 efx->timer_quantum_ns = MCDI_DWORD(data,
264 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
265 efx->timer_max_ns = MCDI_DWORD(data,
266 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
267 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
268 efx->timer_quantum_ns = MCDI_DWORD(data,
269 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
270 max_count = MCDI_DWORD(data,
271 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
272 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
273 } else {
274 efx->timer_quantum_ns = MCDI_DWORD(data,
275 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
276 max_count = MCDI_DWORD(data,
277 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
278 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
279 }
280
281 netif_dbg(efx, probe, efx->net_dev,
282 "got timer properties from MC: quantum %u ns; max %u ns\n",
283 efx->timer_quantum_ns, efx->timer_max_ns);
284 }
285
286 static int efx_ef10_get_timer_config(struct efx_nic *efx)
287 {
288 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
289 int rc;
290
291 rc = efx_ef10_get_timer_workarounds(efx);
292 if (rc)
293 return rc;
294
295 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
296 outbuf, sizeof(outbuf), NULL);
297
298 if (rc == 0) {
299 efx_ef10_process_timer_config(efx, outbuf);
300 } else if (rc == -ENOSYS || rc == -EPERM) {
301 /* Not available - fall back to Huntington defaults. */
302 unsigned int quantum;
303
304 rc = efx_ef10_get_sysclk_freq(efx);
305 if (rc < 0)
306 return rc;
307
308 quantum = 1536000 / rc; /* 1536 cycles */
309 efx->timer_quantum_ns = quantum;
310 efx->timer_max_ns = efx->type->timer_period_max * quantum;
311 rc = 0;
312 } else {
313 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
314 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
315 NULL, 0, rc);
316 }
317
318 return rc;
319 }
320
321 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
322 {
323 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
324 size_t outlen;
325 int rc;
326
327 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
328
329 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
330 outbuf, sizeof(outbuf), &outlen);
331 if (rc)
332 return rc;
333 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
334 return -EIO;
335
336 ether_addr_copy(mac_address,
337 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
338 return 0;
339 }
340
341 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
342 {
343 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
344 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
345 size_t outlen;
346 int num_addrs, rc;
347
348 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
349 EVB_PORT_ID_ASSIGNED);
350 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
351 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
352
353 if (rc)
354 return rc;
355 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
356 return -EIO;
357
358 num_addrs = MCDI_DWORD(outbuf,
359 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
360
361 WARN_ON(num_addrs != 1);
362
363 ether_addr_copy(mac_address,
364 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
365
366 return 0;
367 }
368
369 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
370 struct device_attribute *attr,
371 char *buf)
372 {
373 struct efx_nic *efx = dev_get_drvdata(dev);
374
375 return sprintf(buf, "%d\n",
376 ((efx->mcdi->fn_flags) &
377 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
378 ? 1 : 0);
379 }
380
381 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
382 struct device_attribute *attr,
383 char *buf)
384 {
385 struct efx_nic *efx = dev_get_drvdata(dev);
386
387 return sprintf(buf, "%d\n",
388 ((efx->mcdi->fn_flags) &
389 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
390 ? 1 : 0);
391 }
392
393 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
394 {
395 struct efx_ef10_nic_data *nic_data = efx->nic_data;
396 struct efx_ef10_vlan *vlan;
397
398 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
399
400 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
401 if (vlan->vid == vid)
402 return vlan;
403 }
404
405 return NULL;
406 }
407
408 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
409 {
410 struct efx_ef10_nic_data *nic_data = efx->nic_data;
411 struct efx_ef10_vlan *vlan;
412 int rc;
413
414 mutex_lock(&nic_data->vlan_lock);
415
416 vlan = efx_ef10_find_vlan(efx, vid);
417 if (vlan) {
418 /* We add VID 0 on init. 8021q adds it on module init
419 * for all interfaces with VLAN filtring feature.
420 */
421 if (vid == 0)
422 goto done_unlock;
423 netif_warn(efx, drv, efx->net_dev,
424 "VLAN %u already added\n", vid);
425 rc = -EALREADY;
426 goto fail_exist;
427 }
428
429 rc = -ENOMEM;
430 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
431 if (!vlan)
432 goto fail_alloc;
433
434 vlan->vid = vid;
435
436 list_add_tail(&vlan->list, &nic_data->vlan_list);
437
438 if (efx->filter_state) {
439 mutex_lock(&efx->mac_lock);
440 down_write(&efx->filter_sem);
441 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
442 up_write(&efx->filter_sem);
443 mutex_unlock(&efx->mac_lock);
444 if (rc)
445 goto fail_filter_add_vlan;
446 }
447
448 done_unlock:
449 mutex_unlock(&nic_data->vlan_lock);
450 return 0;
451
452 fail_filter_add_vlan:
453 list_del(&vlan->list);
454 kfree(vlan);
455 fail_alloc:
456 fail_exist:
457 mutex_unlock(&nic_data->vlan_lock);
458 return rc;
459 }
460
461 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
462 struct efx_ef10_vlan *vlan)
463 {
464 struct efx_ef10_nic_data *nic_data = efx->nic_data;
465
466 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
467
468 if (efx->filter_state) {
469 down_write(&efx->filter_sem);
470 efx_mcdi_filter_del_vlan(efx, vlan->vid);
471 up_write(&efx->filter_sem);
472 }
473
474 list_del(&vlan->list);
475 kfree(vlan);
476 }
477
478 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
479 {
480 struct efx_ef10_nic_data *nic_data = efx->nic_data;
481 struct efx_ef10_vlan *vlan;
482 int rc = 0;
483
484 /* 8021q removes VID 0 on module unload for all interfaces
485 * with VLAN filtering feature. We need to keep it to receive
486 * untagged traffic.
487 */
488 if (vid == 0)
489 return 0;
490
491 mutex_lock(&nic_data->vlan_lock);
492
493 vlan = efx_ef10_find_vlan(efx, vid);
494 if (!vlan) {
495 netif_err(efx, drv, efx->net_dev,
496 "VLAN %u to be deleted not found\n", vid);
497 rc = -ENOENT;
498 } else {
499 efx_ef10_del_vlan_internal(efx, vlan);
500 }
501
502 mutex_unlock(&nic_data->vlan_lock);
503
504 return rc;
505 }
506
507 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
508 {
509 struct efx_ef10_nic_data *nic_data = efx->nic_data;
510 struct efx_ef10_vlan *vlan, *next_vlan;
511
512 mutex_lock(&nic_data->vlan_lock);
513 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
514 efx_ef10_del_vlan_internal(efx, vlan);
515 mutex_unlock(&nic_data->vlan_lock);
516 }
517
518 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
519 NULL);
520 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
521
522 static int efx_ef10_probe(struct efx_nic *efx)
523 {
524 struct efx_ef10_nic_data *nic_data;
525 int i, rc;
526
527 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
528 if (!nic_data)
529 return -ENOMEM;
530 efx->nic_data = nic_data;
531
532 /* we assume later that we can copy from this buffer in dwords */
533 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
534
535 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
536 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
537 if (rc)
538 goto fail1;
539
540 /* Get the MC's warm boot count. In case it's rebooting right
541 * now, be prepared to retry.
542 */
543 i = 0;
544 for (;;) {
545 rc = efx_ef10_get_warm_boot_count(efx);
546 if (rc >= 0)
547 break;
548 if (++i == 5)
549 goto fail2;
550 ssleep(1);
551 }
552 nic_data->warm_boot_count = rc;
553
554 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
555
556 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
557
558 /* In case we're recovering from a crash (kexec), we want to
559 * cancel any outstanding request by the previous user of this
560 * function. We send a special message using the least
561 * significant bits of the 'high' (doorbell) register.
562 */
563 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
564
565 rc = efx_mcdi_init(efx);
566 if (rc)
567 goto fail2;
568
569 mutex_init(&nic_data->udp_tunnels_lock);
570
571 /* Reset (most) configuration for this function */
572 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
573 if (rc)
574 goto fail3;
575
576 /* Enable event logging */
577 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
578 if (rc)
579 goto fail3;
580
581 rc = device_create_file(&efx->pci_dev->dev,
582 &dev_attr_link_control_flag);
583 if (rc)
584 goto fail3;
585
586 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
587 if (rc)
588 goto fail4;
589
590 rc = efx_get_pf_index(efx, &nic_data->pf_index);
591 if (rc)
592 goto fail5;
593
594 rc = efx_ef10_init_datapath_caps(efx);
595 if (rc < 0)
596 goto fail5;
597
598 efx_ef10_read_licensed_features(efx);
599
600 /* We can have one VI for each vi_stride-byte region.
601 * However, until we use TX option descriptors we need two TX queues
602 * per channel.
603 */
604 efx->max_channels = min_t(unsigned int,
605 EFX_MAX_CHANNELS,
606 efx_ef10_mem_map_size(efx) /
607 (efx->vi_stride * EFX_TXQ_TYPES));
608 efx->max_tx_channels = efx->max_channels;
609 if (WARN_ON(efx->max_channels == 0)) {
610 rc = -EIO;
611 goto fail5;
612 }
613
614 efx->rx_packet_len_offset =
615 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
616
617 if (nic_data->datapath_caps &
618 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
619 efx->net_dev->hw_features |= NETIF_F_RXFCS;
620
621 rc = efx_mcdi_port_get_number(efx);
622 if (rc < 0)
623 goto fail5;
624 efx->port_num = rc;
625
626 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
627 if (rc)
628 goto fail5;
629
630 rc = efx_ef10_get_timer_config(efx);
631 if (rc < 0)
632 goto fail5;
633
634 rc = efx_mcdi_mon_probe(efx);
635 if (rc && rc != -EPERM)
636 goto fail5;
637
638 efx_ptp_defer_probe_with_channel(efx);
639
640 #ifdef CONFIG_SFC_SRIOV
641 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
642 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
643 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
644
645 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
646 } else
647 #endif
648 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
649
650 INIT_LIST_HEAD(&nic_data->vlan_list);
651 mutex_init(&nic_data->vlan_lock);
652
653 /* Add unspecified VID to support VLAN filtering being disabled */
654 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
655 if (rc)
656 goto fail_add_vid_unspec;
657
658 /* If VLAN filtering is enabled, we need VID 0 to get untagged
659 * traffic. It is added automatically if 8021q module is loaded,
660 * but we can't rely on it since module may be not loaded.
661 */
662 rc = efx_ef10_add_vlan(efx, 0);
663 if (rc)
664 goto fail_add_vid_0;
665
666 return 0;
667
668 fail_add_vid_0:
669 efx_ef10_cleanup_vlans(efx);
670 fail_add_vid_unspec:
671 mutex_destroy(&nic_data->vlan_lock);
672 efx_ptp_remove(efx);
673 efx_mcdi_mon_remove(efx);
674 fail5:
675 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
676 fail4:
677 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
678 fail3:
679 efx_mcdi_detach(efx);
680
681 mutex_lock(&nic_data->udp_tunnels_lock);
682 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
683 (void)efx_ef10_set_udp_tnl_ports(efx, true);
684 mutex_unlock(&nic_data->udp_tunnels_lock);
685 mutex_destroy(&nic_data->udp_tunnels_lock);
686
687 efx_mcdi_fini(efx);
688 fail2:
689 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
690 fail1:
691 kfree(nic_data);
692 efx->nic_data = NULL;
693 return rc;
694 }
695
696 #ifdef EFX_USE_PIO
697
698 static void efx_ef10_free_piobufs(struct efx_nic *efx)
699 {
700 struct efx_ef10_nic_data *nic_data = efx->nic_data;
701 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
702 unsigned int i;
703 int rc;
704
705 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
706
707 for (i = 0; i < nic_data->n_piobufs; i++) {
708 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
709 nic_data->piobuf_handle[i]);
710 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
711 NULL, 0, NULL);
712 WARN_ON(rc);
713 }
714
715 nic_data->n_piobufs = 0;
716 }
717
718 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
719 {
720 struct efx_ef10_nic_data *nic_data = efx->nic_data;
721 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
722 unsigned int i;
723 size_t outlen;
724 int rc = 0;
725
726 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
727
728 for (i = 0; i < n; i++) {
729 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
730 outbuf, sizeof(outbuf), &outlen);
731 if (rc) {
732 /* Don't display the MC error if we didn't have space
733 * for a VF.
734 */
735 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
736 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
737 0, outbuf, outlen, rc);
738 break;
739 }
740 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
741 rc = -EIO;
742 break;
743 }
744 nic_data->piobuf_handle[i] =
745 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
746 netif_dbg(efx, probe, efx->net_dev,
747 "allocated PIO buffer %u handle %x\n", i,
748 nic_data->piobuf_handle[i]);
749 }
750
751 nic_data->n_piobufs = i;
752 if (rc)
753 efx_ef10_free_piobufs(efx);
754 return rc;
755 }
756
757 static int efx_ef10_link_piobufs(struct efx_nic *efx)
758 {
759 struct efx_ef10_nic_data *nic_data = efx->nic_data;
760 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
761 struct efx_channel *channel;
762 struct efx_tx_queue *tx_queue;
763 unsigned int offset, index;
764 int rc;
765
766 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
767 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
768
769 /* Link a buffer to each VI in the write-combining mapping */
770 for (index = 0; index < nic_data->n_piobufs; ++index) {
771 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
772 nic_data->piobuf_handle[index]);
773 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
774 nic_data->pio_write_vi_base + index);
775 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
776 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
777 NULL, 0, NULL);
778 if (rc) {
779 netif_err(efx, drv, efx->net_dev,
780 "failed to link VI %u to PIO buffer %u (%d)\n",
781 nic_data->pio_write_vi_base + index, index,
782 rc);
783 goto fail;
784 }
785 netif_dbg(efx, probe, efx->net_dev,
786 "linked VI %u to PIO buffer %u\n",
787 nic_data->pio_write_vi_base + index, index);
788 }
789
790 /* Link a buffer to each TX queue */
791 efx_for_each_channel(channel, efx) {
792 /* Extra channels, even those with TXQs (PTP), do not require
793 * PIO resources.
794 */
795 if (!channel->type->want_pio ||
796 channel->channel >= efx->xdp_channel_offset)
797 continue;
798
799 efx_for_each_channel_tx_queue(tx_queue, channel) {
800 /* We assign the PIO buffers to queues in
801 * reverse order to allow for the following
802 * special case.
803 */
804 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
805 tx_queue->channel->channel - 1) *
806 efx_piobuf_size);
807 index = offset / nic_data->piobuf_size;
808 offset = offset % nic_data->piobuf_size;
809
810 /* When the host page size is 4K, the first
811 * host page in the WC mapping may be within
812 * the same VI page as the last TX queue. We
813 * can only link one buffer to each VI.
814 */
815 if (tx_queue->queue == nic_data->pio_write_vi_base) {
816 BUG_ON(index != 0);
817 rc = 0;
818 } else {
819 MCDI_SET_DWORD(inbuf,
820 LINK_PIOBUF_IN_PIOBUF_HANDLE,
821 nic_data->piobuf_handle[index]);
822 MCDI_SET_DWORD(inbuf,
823 LINK_PIOBUF_IN_TXQ_INSTANCE,
824 tx_queue->queue);
825 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
826 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
827 NULL, 0, NULL);
828 }
829
830 if (rc) {
831 /* This is non-fatal; the TX path just
832 * won't use PIO for this queue
833 */
834 netif_err(efx, drv, efx->net_dev,
835 "failed to link VI %u to PIO buffer %u (%d)\n",
836 tx_queue->queue, index, rc);
837 tx_queue->piobuf = NULL;
838 } else {
839 tx_queue->piobuf =
840 nic_data->pio_write_base +
841 index * efx->vi_stride + offset;
842 tx_queue->piobuf_offset = offset;
843 netif_dbg(efx, probe, efx->net_dev,
844 "linked VI %u to PIO buffer %u offset %x addr %p\n",
845 tx_queue->queue, index,
846 tx_queue->piobuf_offset,
847 tx_queue->piobuf);
848 }
849 }
850 }
851
852 return 0;
853
854 fail:
855 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
856 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
857 */
858 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
859 while (index--) {
860 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
861 nic_data->pio_write_vi_base + index);
862 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
863 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
864 NULL, 0, NULL);
865 }
866 return rc;
867 }
868
869 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
870 {
871 struct efx_channel *channel;
872 struct efx_tx_queue *tx_queue;
873
874 /* All our existing PIO buffers went away */
875 efx_for_each_channel(channel, efx)
876 efx_for_each_channel_tx_queue(tx_queue, channel)
877 tx_queue->piobuf = NULL;
878 }
879
880 #else /* !EFX_USE_PIO */
881
882 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
883 {
884 return n == 0 ? 0 : -ENOBUFS;
885 }
886
887 static int efx_ef10_link_piobufs(struct efx_nic *efx)
888 {
889 return 0;
890 }
891
892 static void efx_ef10_free_piobufs(struct efx_nic *efx)
893 {
894 }
895
896 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
897 {
898 }
899
900 #endif /* EFX_USE_PIO */
901
902 static void efx_ef10_remove(struct efx_nic *efx)
903 {
904 struct efx_ef10_nic_data *nic_data = efx->nic_data;
905 int rc;
906
907 #ifdef CONFIG_SFC_SRIOV
908 struct efx_ef10_nic_data *nic_data_pf;
909 struct pci_dev *pci_dev_pf;
910 struct efx_nic *efx_pf;
911 struct ef10_vf *vf;
912
913 if (efx->pci_dev->is_virtfn) {
914 pci_dev_pf = efx->pci_dev->physfn;
915 if (pci_dev_pf) {
916 efx_pf = pci_get_drvdata(pci_dev_pf);
917 nic_data_pf = efx_pf->nic_data;
918 vf = nic_data_pf->vf + nic_data->vf_index;
919 vf->efx = NULL;
920 } else
921 netif_info(efx, drv, efx->net_dev,
922 "Could not get the PF id from VF\n");
923 }
924 #endif
925
926 efx_ef10_cleanup_vlans(efx);
927 mutex_destroy(&nic_data->vlan_lock);
928
929 efx_ptp_remove(efx);
930
931 efx_mcdi_mon_remove(efx);
932
933 efx_mcdi_rx_free_indir_table(efx);
934
935 if (nic_data->wc_membase)
936 iounmap(nic_data->wc_membase);
937
938 rc = efx_mcdi_free_vis(efx);
939 WARN_ON(rc != 0);
940
941 if (!nic_data->must_restore_piobufs)
942 efx_ef10_free_piobufs(efx);
943
944 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
945 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
946
947 efx_mcdi_detach(efx);
948
949 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
950 mutex_lock(&nic_data->udp_tunnels_lock);
951 (void)efx_ef10_set_udp_tnl_ports(efx, true);
952 mutex_unlock(&nic_data->udp_tunnels_lock);
953
954 mutex_destroy(&nic_data->udp_tunnels_lock);
955
956 efx_mcdi_fini(efx);
957 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
958 kfree(nic_data);
959 }
960
961 static int efx_ef10_probe_pf(struct efx_nic *efx)
962 {
963 return efx_ef10_probe(efx);
964 }
965
966 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
967 u32 *port_flags, u32 *vadaptor_flags,
968 unsigned int *vlan_tags)
969 {
970 struct efx_ef10_nic_data *nic_data = efx->nic_data;
971 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
972 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
973 size_t outlen;
974 int rc;
975
976 if (nic_data->datapath_caps &
977 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
978 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
979 port_id);
980
981 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
982 outbuf, sizeof(outbuf), &outlen);
983 if (rc)
984 return rc;
985
986 if (outlen < sizeof(outbuf)) {
987 rc = -EIO;
988 return rc;
989 }
990 }
991
992 if (port_flags)
993 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
994 if (vadaptor_flags)
995 *vadaptor_flags =
996 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
997 if (vlan_tags)
998 *vlan_tags =
999 MCDI_DWORD(outbuf,
1000 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1001
1002 return 0;
1003 }
1004
1005 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1006 {
1007 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1008
1009 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1010 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1011 NULL, 0, NULL);
1012 }
1013
1014 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1015 {
1016 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1017
1018 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1019 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1020 NULL, 0, NULL);
1021 }
1022
1023 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1024 unsigned int port_id, u8 *mac)
1025 {
1026 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1027
1028 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1029 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1030
1031 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1032 sizeof(inbuf), NULL, 0, NULL);
1033 }
1034
1035 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1036 unsigned int port_id, u8 *mac)
1037 {
1038 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1039
1040 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1041 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1042
1043 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1044 sizeof(inbuf), NULL, 0, NULL);
1045 }
1046
1047 #ifdef CONFIG_SFC_SRIOV
1048 static int efx_ef10_probe_vf(struct efx_nic *efx)
1049 {
1050 int rc;
1051 struct pci_dev *pci_dev_pf;
1052
1053 /* If the parent PF has no VF data structure, it doesn't know about this
1054 * VF so fail probe. The VF needs to be re-created. This can happen
1055 * if the PF driver is unloaded while the VF is assigned to a guest.
1056 */
1057 pci_dev_pf = efx->pci_dev->physfn;
1058 if (pci_dev_pf) {
1059 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1060 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1061
1062 if (!nic_data_pf->vf) {
1063 netif_info(efx, drv, efx->net_dev,
1064 "The VF cannot link to its parent PF; "
1065 "please destroy and re-create the VF\n");
1066 return -EBUSY;
1067 }
1068 }
1069
1070 rc = efx_ef10_probe(efx);
1071 if (rc)
1072 return rc;
1073
1074 rc = efx_ef10_get_vf_index(efx);
1075 if (rc)
1076 goto fail;
1077
1078 if (efx->pci_dev->is_virtfn) {
1079 if (efx->pci_dev->physfn) {
1080 struct efx_nic *efx_pf =
1081 pci_get_drvdata(efx->pci_dev->physfn);
1082 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1083 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1084
1085 nic_data_p->vf[nic_data->vf_index].efx = efx;
1086 nic_data_p->vf[nic_data->vf_index].pci_dev =
1087 efx->pci_dev;
1088 } else
1089 netif_info(efx, drv, efx->net_dev,
1090 "Could not get the PF id from VF\n");
1091 }
1092
1093 return 0;
1094
1095 fail:
1096 efx_ef10_remove(efx);
1097 return rc;
1098 }
1099 #else
1100 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1101 {
1102 return 0;
1103 }
1104 #endif
1105
1106 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1107 unsigned int min_vis, unsigned int max_vis)
1108 {
1109 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1110
1111 return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1112 &nic_data->n_allocated_vis);
1113 }
1114
1115 /* Note that the failure path of this function does not free
1116 * resources, as this will be done by efx_ef10_remove().
1117 */
1118 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1119 {
1120 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1121 unsigned int uc_mem_map_size, wc_mem_map_size;
1122 unsigned int min_vis = max(EFX_TXQ_TYPES,
1123 efx_separate_tx_channels ? 2 : 1);
1124 unsigned int channel_vis, pio_write_vi_base, max_vis;
1125 void __iomem *membase;
1126 int rc;
1127
1128 channel_vis = max(efx->n_channels,
1129 ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1130 EFX_TXQ_TYPES) +
1131 efx->n_xdp_channels * efx->xdp_tx_per_channel);
1132
1133 #ifdef EFX_USE_PIO
1134 /* Try to allocate PIO buffers if wanted and if the full
1135 * number of PIO buffers would be sufficient to allocate one
1136 * copy-buffer per TX channel. Failure is non-fatal, as there
1137 * are only a small number of PIO buffers shared between all
1138 * functions of the controller.
1139 */
1140 if (efx_piobuf_size != 0 &&
1141 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1142 efx->n_tx_channels) {
1143 unsigned int n_piobufs =
1144 DIV_ROUND_UP(efx->n_tx_channels,
1145 nic_data->piobuf_size / efx_piobuf_size);
1146
1147 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1148 if (rc == -ENOSPC)
1149 netif_dbg(efx, probe, efx->net_dev,
1150 "out of PIO buffers; cannot allocate more\n");
1151 else if (rc == -EPERM)
1152 netif_dbg(efx, probe, efx->net_dev,
1153 "not permitted to allocate PIO buffers\n");
1154 else if (rc)
1155 netif_err(efx, probe, efx->net_dev,
1156 "failed to allocate PIO buffers (%d)\n", rc);
1157 else
1158 netif_dbg(efx, probe, efx->net_dev,
1159 "allocated %u PIO buffers\n", n_piobufs);
1160 }
1161 #else
1162 nic_data->n_piobufs = 0;
1163 #endif
1164
1165 /* PIO buffers should be mapped with write-combining enabled,
1166 * and we want to make single UC and WC mappings rather than
1167 * several of each (in fact that's the only option if host
1168 * page size is >4K). So we may allocate some extra VIs just
1169 * for writing PIO buffers through.
1170 *
1171 * The UC mapping contains (channel_vis - 1) complete VIs and the
1172 * first 4K of the next VI. Then the WC mapping begins with
1173 * the remainder of this last VI.
1174 */
1175 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1176 ER_DZ_TX_PIOBUF);
1177 if (nic_data->n_piobufs) {
1178 /* pio_write_vi_base rounds down to give the number of complete
1179 * VIs inside the UC mapping.
1180 */
1181 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1182 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1183 nic_data->n_piobufs) *
1184 efx->vi_stride) -
1185 uc_mem_map_size);
1186 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1187 } else {
1188 pio_write_vi_base = 0;
1189 wc_mem_map_size = 0;
1190 max_vis = channel_vis;
1191 }
1192
1193 /* In case the last attached driver failed to free VIs, do it now */
1194 rc = efx_mcdi_free_vis(efx);
1195 if (rc != 0)
1196 return rc;
1197
1198 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1199 if (rc != 0)
1200 return rc;
1201
1202 if (nic_data->n_allocated_vis < channel_vis) {
1203 netif_info(efx, drv, efx->net_dev,
1204 "Could not allocate enough VIs to satisfy RSS"
1205 " requirements. Performance may not be optimal.\n");
1206 /* We didn't get the VIs to populate our channels.
1207 * We could keep what we got but then we'd have more
1208 * interrupts than we need.
1209 * Instead calculate new max_channels and restart
1210 */
1211 efx->max_channels = nic_data->n_allocated_vis;
1212 efx->max_tx_channels =
1213 nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1214
1215 efx_mcdi_free_vis(efx);
1216 return -EAGAIN;
1217 }
1218
1219 /* If we didn't get enough VIs to map all the PIO buffers, free the
1220 * PIO buffers
1221 */
1222 if (nic_data->n_piobufs &&
1223 nic_data->n_allocated_vis <
1224 pio_write_vi_base + nic_data->n_piobufs) {
1225 netif_dbg(efx, probe, efx->net_dev,
1226 "%u VIs are not sufficient to map %u PIO buffers\n",
1227 nic_data->n_allocated_vis, nic_data->n_piobufs);
1228 efx_ef10_free_piobufs(efx);
1229 }
1230
1231 /* Shrink the original UC mapping of the memory BAR */
1232 membase = ioremap(efx->membase_phys, uc_mem_map_size);
1233 if (!membase) {
1234 netif_err(efx, probe, efx->net_dev,
1235 "could not shrink memory BAR to %x\n",
1236 uc_mem_map_size);
1237 return -ENOMEM;
1238 }
1239 iounmap(efx->membase);
1240 efx->membase = membase;
1241
1242 /* Set up the WC mapping if needed */
1243 if (wc_mem_map_size) {
1244 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1245 uc_mem_map_size,
1246 wc_mem_map_size);
1247 if (!nic_data->wc_membase) {
1248 netif_err(efx, probe, efx->net_dev,
1249 "could not allocate WC mapping of size %x\n",
1250 wc_mem_map_size);
1251 return -ENOMEM;
1252 }
1253 nic_data->pio_write_vi_base = pio_write_vi_base;
1254 nic_data->pio_write_base =
1255 nic_data->wc_membase +
1256 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1257 uc_mem_map_size);
1258
1259 rc = efx_ef10_link_piobufs(efx);
1260 if (rc)
1261 efx_ef10_free_piobufs(efx);
1262 }
1263
1264 netif_dbg(efx, probe, efx->net_dev,
1265 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1266 &efx->membase_phys, efx->membase, uc_mem_map_size,
1267 nic_data->wc_membase, wc_mem_map_size);
1268
1269 return 0;
1270 }
1271
1272 static int efx_ef10_init_nic(struct efx_nic *efx)
1273 {
1274 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1275 int rc;
1276
1277 if (nic_data->must_check_datapath_caps) {
1278 rc = efx_ef10_init_datapath_caps(efx);
1279 if (rc)
1280 return rc;
1281 nic_data->must_check_datapath_caps = false;
1282 }
1283
1284 if (nic_data->must_realloc_vis) {
1285 /* We cannot let the number of VIs change now */
1286 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1287 nic_data->n_allocated_vis);
1288 if (rc)
1289 return rc;
1290 nic_data->must_realloc_vis = false;
1291 }
1292
1293 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1294 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1295 if (rc == 0) {
1296 rc = efx_ef10_link_piobufs(efx);
1297 if (rc)
1298 efx_ef10_free_piobufs(efx);
1299 }
1300
1301 /* Log an error on failure, but this is non-fatal.
1302 * Permission errors are less important - we've presumably
1303 * had the PIO buffer licence removed.
1304 */
1305 if (rc == -EPERM)
1306 netif_dbg(efx, drv, efx->net_dev,
1307 "not permitted to restore PIO buffers\n");
1308 else if (rc)
1309 netif_err(efx, drv, efx->net_dev,
1310 "failed to restore PIO buffers (%d)\n", rc);
1311 nic_data->must_restore_piobufs = false;
1312 }
1313
1314 /* don't fail init if RSS setup doesn't work */
1315 rc = efx->type->rx_push_rss_config(efx, false,
1316 efx->rss_context.rx_indir_table, NULL);
1317
1318 return 0;
1319 }
1320
1321 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1322 {
1323 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1324 #ifdef CONFIG_SFC_SRIOV
1325 unsigned int i;
1326 #endif
1327
1328 /* All our allocations have been reset */
1329 nic_data->must_realloc_vis = true;
1330 nic_data->must_restore_rss_contexts = true;
1331 nic_data->must_restore_filters = true;
1332 nic_data->must_restore_piobufs = true;
1333 efx_ef10_forget_old_piobufs(efx);
1334 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1335
1336 /* Driver-created vswitches and vports must be re-created */
1337 nic_data->must_probe_vswitching = true;
1338 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1339 #ifdef CONFIG_SFC_SRIOV
1340 if (nic_data->vf)
1341 for (i = 0; i < efx->vf_count; i++)
1342 nic_data->vf[i].vport_id = 0;
1343 #endif
1344 }
1345
1346 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1347 {
1348 if (reason == RESET_TYPE_MC_FAILURE)
1349 return RESET_TYPE_DATAPATH;
1350
1351 return efx_mcdi_map_reset_reason(reason);
1352 }
1353
1354 static int efx_ef10_map_reset_flags(u32 *flags)
1355 {
1356 enum {
1357 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1358 ETH_RESET_SHARED_SHIFT),
1359 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1360 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1361 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1362 ETH_RESET_SHARED_SHIFT)
1363 };
1364
1365 /* We assume for now that our PCI function is permitted to
1366 * reset everything.
1367 */
1368
1369 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1370 *flags &= ~EF10_RESET_MC;
1371 return RESET_TYPE_WORLD;
1372 }
1373
1374 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1375 *flags &= ~EF10_RESET_PORT;
1376 return RESET_TYPE_ALL;
1377 }
1378
1379 /* no invisible reset implemented */
1380
1381 return -EINVAL;
1382 }
1383
1384 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1385 {
1386 int rc = efx_mcdi_reset(efx, reset_type);
1387
1388 /* Unprivileged functions return -EPERM, but need to return success
1389 * here so that the datapath is brought back up.
1390 */
1391 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1392 rc = 0;
1393
1394 /* If it was a port reset, trigger reallocation of MC resources.
1395 * Note that on an MC reset nothing needs to be done now because we'll
1396 * detect the MC reset later and handle it then.
1397 * For an FLR, we never get an MC reset event, but the MC has reset all
1398 * resources assigned to us, so we have to trigger reallocation now.
1399 */
1400 if ((reset_type == RESET_TYPE_ALL ||
1401 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1402 efx_ef10_table_reset_mc_allocations(efx);
1403 return rc;
1404 }
1405
1406 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1407 [EF10_STAT_ ## ext_name] = \
1408 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1409 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1410 [EF10_STAT_ ## int_name] = \
1411 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1412 #define EF10_OTHER_STAT(ext_name) \
1413 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1414 #define GENERIC_SW_STAT(ext_name) \
1415 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1416
1417 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1418 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1419 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1420 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1421 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1422 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1423 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1424 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1425 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1426 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1427 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1428 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1429 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1430 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1431 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1432 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1433 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1434 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1435 EF10_OTHER_STAT(port_rx_good_bytes),
1436 EF10_OTHER_STAT(port_rx_bad_bytes),
1437 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1438 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1439 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1440 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1441 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1442 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1443 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1444 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1445 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1446 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1447 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1448 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1449 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1450 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1451 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1452 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1453 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1454 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1455 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1456 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1457 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1458 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1459 GENERIC_SW_STAT(rx_nodesc_trunc),
1460 GENERIC_SW_STAT(rx_noskb_drops),
1461 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1462 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1463 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1464 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1465 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1466 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1467 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1468 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1469 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1470 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1471 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1472 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1473 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1474 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1475 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1476 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1477 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1478 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1479 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1480 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1481 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1482 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1483 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1484 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1485 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1486 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1487 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1488 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1489 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1490 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1491 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1492 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1493 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1494 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1495 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1496 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1497 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1498 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1499 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1500 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1501 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1502 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1503 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1504 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1505 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1506 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1507 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1508 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1509 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1510 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1511 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1512 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1513 };
1514
1515 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1516 (1ULL << EF10_STAT_port_tx_packets) | \
1517 (1ULL << EF10_STAT_port_tx_pause) | \
1518 (1ULL << EF10_STAT_port_tx_unicast) | \
1519 (1ULL << EF10_STAT_port_tx_multicast) | \
1520 (1ULL << EF10_STAT_port_tx_broadcast) | \
1521 (1ULL << EF10_STAT_port_rx_bytes) | \
1522 (1ULL << \
1523 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1524 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1525 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1526 (1ULL << EF10_STAT_port_rx_packets) | \
1527 (1ULL << EF10_STAT_port_rx_good) | \
1528 (1ULL << EF10_STAT_port_rx_bad) | \
1529 (1ULL << EF10_STAT_port_rx_pause) | \
1530 (1ULL << EF10_STAT_port_rx_control) | \
1531 (1ULL << EF10_STAT_port_rx_unicast) | \
1532 (1ULL << EF10_STAT_port_rx_multicast) | \
1533 (1ULL << EF10_STAT_port_rx_broadcast) | \
1534 (1ULL << EF10_STAT_port_rx_lt64) | \
1535 (1ULL << EF10_STAT_port_rx_64) | \
1536 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1537 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1538 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1539 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1540 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1541 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1542 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1543 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1544 (1ULL << EF10_STAT_port_rx_overflow) | \
1545 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1546 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1547 (1ULL << GENERIC_STAT_rx_noskb_drops))
1548
1549 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1550 * For a 10G/40G switchable port we do not expose these because they might
1551 * not include all the packets they should.
1552 * On 8000 series NICs these statistics are always provided.
1553 */
1554 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1555 (1ULL << EF10_STAT_port_tx_lt64) | \
1556 (1ULL << EF10_STAT_port_tx_64) | \
1557 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1558 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1559 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1560 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1561 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1562 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1563
1564 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1565 * switchable port we do expose these because the errors will otherwise
1566 * be silent.
1567 */
1568 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1569 (1ULL << EF10_STAT_port_rx_length_error))
1570
1571 /* These statistics are only provided if the firmware supports the
1572 * capability PM_AND_RXDP_COUNTERS.
1573 */
1574 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1575 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1576 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1577 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1578 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1579 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1580 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1581 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1582 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1583 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1584 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1585 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1586 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1587
1588 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1589 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1590 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1591 * These bits are in the second u64 of the raw mask.
1592 */
1593 #define EF10_FEC_STAT_MASK ( \
1594 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1595 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1596 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1597 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1598 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1599 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1600
1601 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1602 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1603 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1604 * These bits are in the second u64 of the raw mask.
1605 */
1606 #define EF10_CTPIO_STAT_MASK ( \
1607 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1608 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1609 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1610 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1611 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1612 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1613 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1614 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1615 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1616 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1617 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1618 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1619 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1620 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1621 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1622 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1623
1624 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1625 {
1626 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1627 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1628 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1629
1630 if (!(efx->mcdi->fn_flags &
1631 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1632 return 0;
1633
1634 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1635 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1636 /* 8000 series have everything even at 40G */
1637 if (nic_data->datapath_caps2 &
1638 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1639 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1640 } else {
1641 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1642 }
1643
1644 if (nic_data->datapath_caps &
1645 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1646 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1647
1648 return raw_mask;
1649 }
1650
1651 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1652 {
1653 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1654 u64 raw_mask[2];
1655
1656 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1657
1658 /* Only show vadaptor stats when EVB capability is present */
1659 if (nic_data->datapath_caps &
1660 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1661 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1662 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1663 } else {
1664 raw_mask[1] = 0;
1665 }
1666 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1667 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1668 raw_mask[1] |= EF10_FEC_STAT_MASK;
1669
1670 /* CTPIO stats appear in V3. Only show them on devices that actually
1671 * support CTPIO. Although this driver doesn't use CTPIO others might,
1672 * and we may be reporting the stats for the underlying port.
1673 */
1674 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1675 (nic_data->datapath_caps2 &
1676 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1677 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1678
1679 #if BITS_PER_LONG == 64
1680 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1681 mask[0] = raw_mask[0];
1682 mask[1] = raw_mask[1];
1683 #else
1684 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1685 mask[0] = raw_mask[0] & 0xffffffff;
1686 mask[1] = raw_mask[0] >> 32;
1687 mask[2] = raw_mask[1] & 0xffffffff;
1688 #endif
1689 }
1690
1691 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1692 {
1693 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1694
1695 efx_ef10_get_stat_mask(efx, mask);
1696 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1697 mask, names);
1698 }
1699
1700 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1701 struct rtnl_link_stats64 *core_stats)
1702 {
1703 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1704 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1705 u64 *stats = nic_data->stats;
1706 size_t stats_count = 0, index;
1707
1708 efx_ef10_get_stat_mask(efx, mask);
1709
1710 if (full_stats) {
1711 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1712 if (efx_ef10_stat_desc[index].name) {
1713 *full_stats++ = stats[index];
1714 ++stats_count;
1715 }
1716 }
1717 }
1718
1719 if (!core_stats)
1720 return stats_count;
1721
1722 if (nic_data->datapath_caps &
1723 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1724 /* Use vadaptor stats. */
1725 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1726 stats[EF10_STAT_rx_multicast] +
1727 stats[EF10_STAT_rx_broadcast];
1728 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1729 stats[EF10_STAT_tx_multicast] +
1730 stats[EF10_STAT_tx_broadcast];
1731 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1732 stats[EF10_STAT_rx_multicast_bytes] +
1733 stats[EF10_STAT_rx_broadcast_bytes];
1734 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1735 stats[EF10_STAT_tx_multicast_bytes] +
1736 stats[EF10_STAT_tx_broadcast_bytes];
1737 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1738 stats[GENERIC_STAT_rx_noskb_drops];
1739 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1740 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1741 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1742 core_stats->rx_errors = core_stats->rx_crc_errors;
1743 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1744 } else {
1745 /* Use port stats. */
1746 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1747 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1748 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1749 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1750 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1751 stats[GENERIC_STAT_rx_nodesc_trunc] +
1752 stats[GENERIC_STAT_rx_noskb_drops];
1753 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1754 core_stats->rx_length_errors =
1755 stats[EF10_STAT_port_rx_gtjumbo] +
1756 stats[EF10_STAT_port_rx_length_error];
1757 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1758 core_stats->rx_frame_errors =
1759 stats[EF10_STAT_port_rx_align_error];
1760 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1761 core_stats->rx_errors = (core_stats->rx_length_errors +
1762 core_stats->rx_crc_errors +
1763 core_stats->rx_frame_errors);
1764 }
1765
1766 return stats_count;
1767 }
1768
1769 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1770 {
1771 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1772 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1773 __le64 generation_start, generation_end;
1774 u64 *stats = nic_data->stats;
1775 __le64 *dma_stats;
1776
1777 efx_ef10_get_stat_mask(efx, mask);
1778
1779 dma_stats = efx->stats_buffer.addr;
1780
1781 generation_end = dma_stats[efx->num_mac_stats - 1];
1782 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1783 return 0;
1784 rmb();
1785 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1786 stats, efx->stats_buffer.addr, false);
1787 rmb();
1788 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1789 if (generation_end != generation_start)
1790 return -EAGAIN;
1791
1792 /* Update derived statistics */
1793 efx_nic_fix_nodesc_drop_stat(efx,
1794 &stats[EF10_STAT_port_rx_nodesc_drops]);
1795 stats[EF10_STAT_port_rx_good_bytes] =
1796 stats[EF10_STAT_port_rx_bytes] -
1797 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1798 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1799 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1800 efx_update_sw_stats(efx, stats);
1801 return 0;
1802 }
1803
1804
1805 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1806 struct rtnl_link_stats64 *core_stats)
1807 {
1808 int retry;
1809
1810 /* If we're unlucky enough to read statistics during the DMA, wait
1811 * up to 10ms for it to finish (typically takes <500us)
1812 */
1813 for (retry = 0; retry < 100; ++retry) {
1814 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1815 break;
1816 udelay(100);
1817 }
1818
1819 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1820 }
1821
1822 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1823 {
1824 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1825 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1826 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1827 __le64 generation_start, generation_end;
1828 u64 *stats = nic_data->stats;
1829 u32 dma_len = efx->num_mac_stats * sizeof(u64);
1830 struct efx_buffer stats_buf;
1831 __le64 *dma_stats;
1832 int rc;
1833
1834 spin_unlock_bh(&efx->stats_lock);
1835
1836 if (in_interrupt()) {
1837 /* If in atomic context, cannot update stats. Just update the
1838 * software stats and return so the caller can continue.
1839 */
1840 spin_lock_bh(&efx->stats_lock);
1841 efx_update_sw_stats(efx, stats);
1842 return 0;
1843 }
1844
1845 efx_ef10_get_stat_mask(efx, mask);
1846
1847 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1848 if (rc) {
1849 spin_lock_bh(&efx->stats_lock);
1850 return rc;
1851 }
1852
1853 dma_stats = stats_buf.addr;
1854 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1855
1856 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1857 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1858 MAC_STATS_IN_DMA, 1);
1859 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1860 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1861
1862 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1863 NULL, 0, NULL);
1864 spin_lock_bh(&efx->stats_lock);
1865 if (rc) {
1866 /* Expect ENOENT if DMA queues have not been set up */
1867 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1868 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1869 sizeof(inbuf), NULL, 0, rc);
1870 goto out;
1871 }
1872
1873 generation_end = dma_stats[efx->num_mac_stats - 1];
1874 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1875 WARN_ON_ONCE(1);
1876 goto out;
1877 }
1878 rmb();
1879 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1880 stats, stats_buf.addr, false);
1881 rmb();
1882 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1883 if (generation_end != generation_start) {
1884 rc = -EAGAIN;
1885 goto out;
1886 }
1887
1888 efx_update_sw_stats(efx, stats);
1889 out:
1890 efx_nic_free_buffer(efx, &stats_buf);
1891 return rc;
1892 }
1893
1894 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1895 struct rtnl_link_stats64 *core_stats)
1896 {
1897 if (efx_ef10_try_update_nic_stats_vf(efx))
1898 return 0;
1899
1900 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1901 }
1902
1903 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1904 {
1905 struct efx_nic *efx = channel->efx;
1906 unsigned int mode, usecs;
1907 efx_dword_t timer_cmd;
1908
1909 if (channel->irq_moderation_us) {
1910 mode = 3;
1911 usecs = channel->irq_moderation_us;
1912 } else {
1913 mode = 0;
1914 usecs = 0;
1915 }
1916
1917 if (EFX_EF10_WORKAROUND_61265(efx)) {
1918 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1919 unsigned int ns = usecs * 1000;
1920
1921 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1922 channel->channel);
1923 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1924 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1925 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1926
1927 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1928 inbuf, sizeof(inbuf), 0, NULL, 0);
1929 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
1930 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1931
1932 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1933 EFE_DD_EVQ_IND_TIMER_FLAGS,
1934 ERF_DD_EVQ_IND_TIMER_MODE, mode,
1935 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1936 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1937 channel->channel);
1938 } else {
1939 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1940
1941 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1942 ERF_DZ_TC_TIMER_VAL, ticks,
1943 ERF_FZ_TC_TMR_REL_VAL, ticks);
1944 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1945 channel->channel);
1946 }
1947 }
1948
1949 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1950 struct ethtool_wolinfo *wol) {}
1951
1952 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1953 {
1954 return -EOPNOTSUPP;
1955 }
1956
1957 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1958 {
1959 wol->supported = 0;
1960 wol->wolopts = 0;
1961 memset(&wol->sopass, 0, sizeof(wol->sopass));
1962 }
1963
1964 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1965 {
1966 if (type != 0)
1967 return -EINVAL;
1968 return 0;
1969 }
1970
1971 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1972 const efx_dword_t *hdr, size_t hdr_len,
1973 const efx_dword_t *sdu, size_t sdu_len)
1974 {
1975 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1976 u8 *pdu = nic_data->mcdi_buf.addr;
1977
1978 memcpy(pdu, hdr, hdr_len);
1979 memcpy(pdu + hdr_len, sdu, sdu_len);
1980 wmb();
1981
1982 /* The hardware provides 'low' and 'high' (doorbell) registers
1983 * for passing the 64-bit address of an MCDI request to
1984 * firmware. However the dwords are swapped by firmware. The
1985 * least significant bits of the doorbell are then 0 for all
1986 * MCDI requests due to alignment.
1987 */
1988 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1989 ER_DZ_MC_DB_LWRD);
1990 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1991 ER_DZ_MC_DB_HWRD);
1992 }
1993
1994 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1995 {
1996 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1997 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1998
1999 rmb();
2000 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2001 }
2002
2003 static void
2004 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2005 size_t offset, size_t outlen)
2006 {
2007 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2008 const u8 *pdu = nic_data->mcdi_buf.addr;
2009
2010 memcpy(outbuf, pdu + offset, outlen);
2011 }
2012
2013 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2014 {
2015 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2016
2017 /* All our allocations have been reset */
2018 efx_ef10_table_reset_mc_allocations(efx);
2019
2020 /* The datapath firmware might have been changed */
2021 nic_data->must_check_datapath_caps = true;
2022
2023 /* MAC statistics have been cleared on the NIC; clear the local
2024 * statistic that we update with efx_update_diff_stat().
2025 */
2026 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2027 }
2028
2029 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2030 {
2031 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2032 int rc;
2033
2034 rc = efx_ef10_get_warm_boot_count(efx);
2035 if (rc < 0) {
2036 /* The firmware is presumably in the process of
2037 * rebooting. However, we are supposed to report each
2038 * reboot just once, so we must only do that once we
2039 * can read and store the updated warm boot count.
2040 */
2041 return 0;
2042 }
2043
2044 if (rc == nic_data->warm_boot_count)
2045 return 0;
2046
2047 nic_data->warm_boot_count = rc;
2048 efx_ef10_mcdi_reboot_detected(efx);
2049
2050 return -EIO;
2051 }
2052
2053 /* Handle an MSI interrupt
2054 *
2055 * Handle an MSI hardware interrupt. This routine schedules event
2056 * queue processing. No interrupt acknowledgement cycle is necessary.
2057 * Also, we never need to check that the interrupt is for us, since
2058 * MSI interrupts cannot be shared.
2059 */
2060 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2061 {
2062 struct efx_msi_context *context = dev_id;
2063 struct efx_nic *efx = context->efx;
2064
2065 netif_vdbg(efx, intr, efx->net_dev,
2066 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2067
2068 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2069 /* Note test interrupts */
2070 if (context->index == efx->irq_level)
2071 efx->last_irq_cpu = raw_smp_processor_id();
2072
2073 /* Schedule processing of the channel */
2074 efx_schedule_channel_irq(efx->channel[context->index]);
2075 }
2076
2077 return IRQ_HANDLED;
2078 }
2079
2080 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2081 {
2082 struct efx_nic *efx = dev_id;
2083 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2084 struct efx_channel *channel;
2085 efx_dword_t reg;
2086 u32 queues;
2087
2088 /* Read the ISR which also ACKs the interrupts */
2089 efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2090 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2091
2092 if (queues == 0)
2093 return IRQ_NONE;
2094
2095 if (likely(soft_enabled)) {
2096 /* Note test interrupts */
2097 if (queues & (1U << efx->irq_level))
2098 efx->last_irq_cpu = raw_smp_processor_id();
2099
2100 efx_for_each_channel(channel, efx) {
2101 if (queues & 1)
2102 efx_schedule_channel_irq(channel);
2103 queues >>= 1;
2104 }
2105 }
2106
2107 netif_vdbg(efx, intr, efx->net_dev,
2108 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2109 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2110
2111 return IRQ_HANDLED;
2112 }
2113
2114 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2115 {
2116 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2117
2118 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2119 NULL) == 0)
2120 return -ENOTSUPP;
2121
2122 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2123
2124 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2125 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2126 inbuf, sizeof(inbuf), NULL, 0, NULL);
2127 }
2128
2129 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2130 {
2131 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2132 (tx_queue->ptr_mask + 1) *
2133 sizeof(efx_qword_t),
2134 GFP_KERNEL);
2135 }
2136
2137 /* This writes to the TX_DESC_WPTR and also pushes data */
2138 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2139 const efx_qword_t *txd)
2140 {
2141 unsigned int write_ptr;
2142 efx_oword_t reg;
2143
2144 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2145 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2146 reg.qword[0] = *txd;
2147 efx_writeo_page(tx_queue->efx, &reg,
2148 ER_DZ_TX_DESC_UPD, tx_queue->queue);
2149 }
2150
2151 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2152 */
2153 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2154 struct sk_buff *skb,
2155 bool *data_mapped)
2156 {
2157 struct efx_tx_buffer *buffer;
2158 struct tcphdr *tcp;
2159 struct iphdr *ip;
2160
2161 u16 ipv4_id;
2162 u32 seqnum;
2163 u32 mss;
2164
2165 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2166
2167 mss = skb_shinfo(skb)->gso_size;
2168
2169 if (unlikely(mss < 4)) {
2170 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2171 return -EINVAL;
2172 }
2173
2174 ip = ip_hdr(skb);
2175 if (ip->version == 4) {
2176 /* Modify IPv4 header if needed. */
2177 ip->tot_len = 0;
2178 ip->check = 0;
2179 ipv4_id = ntohs(ip->id);
2180 } else {
2181 /* Modify IPv6 header if needed. */
2182 struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2183
2184 ipv6->payload_len = 0;
2185 ipv4_id = 0;
2186 }
2187
2188 tcp = tcp_hdr(skb);
2189 seqnum = ntohl(tcp->seq);
2190
2191 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2192
2193 buffer->flags = EFX_TX_BUF_OPTION;
2194 buffer->len = 0;
2195 buffer->unmap_len = 0;
2196 EFX_POPULATE_QWORD_5(buffer->option,
2197 ESF_DZ_TX_DESC_IS_OPT, 1,
2198 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2199 ESF_DZ_TX_TSO_OPTION_TYPE,
2200 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2201 ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2202 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2203 );
2204 ++tx_queue->insert_count;
2205
2206 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2207
2208 buffer->flags = EFX_TX_BUF_OPTION;
2209 buffer->len = 0;
2210 buffer->unmap_len = 0;
2211 EFX_POPULATE_QWORD_4(buffer->option,
2212 ESF_DZ_TX_DESC_IS_OPT, 1,
2213 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2214 ESF_DZ_TX_TSO_OPTION_TYPE,
2215 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2216 ESF_DZ_TX_TSO_TCP_MSS, mss
2217 );
2218 ++tx_queue->insert_count;
2219
2220 return 0;
2221 }
2222
2223 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2224 {
2225 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2226 u32 tso_versions = 0;
2227
2228 if (nic_data->datapath_caps &
2229 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2230 tso_versions |= BIT(1);
2231 if (nic_data->datapath_caps2 &
2232 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2233 tso_versions |= BIT(2);
2234 return tso_versions;
2235 }
2236
2237 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2238 {
2239 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2240 struct efx_channel *channel = tx_queue->channel;
2241 struct efx_nic *efx = tx_queue->efx;
2242 struct efx_ef10_nic_data *nic_data;
2243 bool tso_v2 = false;
2244 efx_qword_t *txd;
2245 int rc;
2246
2247 nic_data = efx->nic_data;
2248
2249 /* Only attempt to enable TX timestamping if we have the license for it,
2250 * otherwise TXQ init will fail
2251 */
2252 if (!(nic_data->licensed_features &
2253 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2254 tx_queue->timestamping = false;
2255 /* Disable sync events on this channel. */
2256 if (efx->type->ptp_set_ts_sync_events)
2257 efx->type->ptp_set_ts_sync_events(efx, false, false);
2258 }
2259
2260 /* TSOv2 is a limited resource that can only be configured on a limited
2261 * number of queues. TSO without checksum offload is not really a thing,
2262 * so we only enable it for those queues.
2263 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2264 * for XDP tx.
2265 */
2266 if (csum_offload && (nic_data->datapath_caps2 &
2267 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2268 !tx_queue->timestamping && !tx_queue->xdp_tx) {
2269 tso_v2 = true;
2270 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2271 channel->channel);
2272 }
2273
2274 rc = efx_mcdi_tx_init(tx_queue, tso_v2);
2275 if (rc)
2276 goto fail;
2277
2278 /* A previous user of this TX queue might have set us up the
2279 * bomb by writing a descriptor to the TX push collector but
2280 * not the doorbell. (Each collector belongs to a port, not a
2281 * queue or function, so cannot easily be reset.) We must
2282 * attempt to push a no-op descriptor in its place.
2283 */
2284 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2285 tx_queue->insert_count = 1;
2286 txd = efx_tx_desc(tx_queue, 0);
2287 EFX_POPULATE_QWORD_5(*txd,
2288 ESF_DZ_TX_DESC_IS_OPT, true,
2289 ESF_DZ_TX_OPTION_TYPE,
2290 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2291 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2292 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2293 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2294 tx_queue->write_count = 1;
2295
2296 if (tso_v2) {
2297 tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2298 tx_queue->tso_version = 2;
2299 } else if (nic_data->datapath_caps &
2300 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2301 tx_queue->tso_version = 1;
2302 }
2303
2304 wmb();
2305 efx_ef10_push_tx_desc(tx_queue, txd);
2306
2307 return;
2308
2309 fail:
2310 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2311 tx_queue->queue);
2312 }
2313
2314 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2315 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2316 {
2317 unsigned int write_ptr;
2318 efx_dword_t reg;
2319
2320 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2321 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2322 efx_writed_page(tx_queue->efx, &reg,
2323 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2324 }
2325
2326 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2327
2328 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2329 dma_addr_t dma_addr, unsigned int len)
2330 {
2331 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2332 /* If we need to break across multiple descriptors we should
2333 * stop at a page boundary. This assumes the length limit is
2334 * greater than the page size.
2335 */
2336 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2337
2338 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2339 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2340 }
2341
2342 return len;
2343 }
2344
2345 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2346 {
2347 unsigned int old_write_count = tx_queue->write_count;
2348 struct efx_tx_buffer *buffer;
2349 unsigned int write_ptr;
2350 efx_qword_t *txd;
2351
2352 tx_queue->xmit_more_available = false;
2353 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2354 return;
2355
2356 do {
2357 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2358 buffer = &tx_queue->buffer[write_ptr];
2359 txd = efx_tx_desc(tx_queue, write_ptr);
2360 ++tx_queue->write_count;
2361
2362 /* Create TX descriptor ring entry */
2363 if (buffer->flags & EFX_TX_BUF_OPTION) {
2364 *txd = buffer->option;
2365 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2366 /* PIO descriptor */
2367 tx_queue->packet_write_count = tx_queue->write_count;
2368 } else {
2369 tx_queue->packet_write_count = tx_queue->write_count;
2370 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2371 EFX_POPULATE_QWORD_3(
2372 *txd,
2373 ESF_DZ_TX_KER_CONT,
2374 buffer->flags & EFX_TX_BUF_CONT,
2375 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2376 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2377 }
2378 } while (tx_queue->write_count != tx_queue->insert_count);
2379
2380 wmb(); /* Ensure descriptors are written before they are fetched */
2381
2382 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2383 txd = efx_tx_desc(tx_queue,
2384 old_write_count & tx_queue->ptr_mask);
2385 efx_ef10_push_tx_desc(tx_queue, txd);
2386 ++tx_queue->pushes;
2387 } else {
2388 efx_ef10_notify_tx_desc(tx_queue);
2389 }
2390 }
2391
2392 /* This creates an entry in the RX descriptor queue */
2393 static inline void
2394 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2395 {
2396 struct efx_rx_buffer *rx_buf;
2397 efx_qword_t *rxd;
2398
2399 rxd = efx_rx_desc(rx_queue, index);
2400 rx_buf = efx_rx_buffer(rx_queue, index);
2401 EFX_POPULATE_QWORD_2(*rxd,
2402 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2403 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2404 }
2405
2406 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2407 {
2408 struct efx_nic *efx = rx_queue->efx;
2409 unsigned int write_count;
2410 efx_dword_t reg;
2411
2412 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2413 write_count = rx_queue->added_count & ~7;
2414 if (rx_queue->notified_count == write_count)
2415 return;
2416
2417 do
2418 efx_ef10_build_rx_desc(
2419 rx_queue,
2420 rx_queue->notified_count & rx_queue->ptr_mask);
2421 while (++rx_queue->notified_count != write_count);
2422
2423 wmb();
2424 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2425 write_count & rx_queue->ptr_mask);
2426 efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2427 efx_rx_queue_index(rx_queue));
2428 }
2429
2430 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2431
2432 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2433 {
2434 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2435 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2436 efx_qword_t event;
2437
2438 EFX_POPULATE_QWORD_2(event,
2439 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2440 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2441
2442 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2443
2444 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2445 * already swapped the data to little-endian order.
2446 */
2447 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2448 sizeof(efx_qword_t));
2449
2450 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2451 inbuf, sizeof(inbuf), 0,
2452 efx_ef10_rx_defer_refill_complete, 0);
2453 }
2454
2455 static void
2456 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2457 int rc, efx_dword_t *outbuf,
2458 size_t outlen_actual)
2459 {
2460 /* nothing to do */
2461 }
2462
2463 static int efx_ef10_ev_init(struct efx_channel *channel)
2464 {
2465 struct efx_nic *efx = channel->efx;
2466 struct efx_ef10_nic_data *nic_data;
2467 unsigned int enabled, implemented;
2468 bool use_v2, cut_thru;
2469 int rc;
2470
2471 nic_data = efx->nic_data;
2472 use_v2 = nic_data->datapath_caps2 &
2473 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2474 cut_thru = !(nic_data->datapath_caps &
2475 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2476 rc = efx_mcdi_ev_init(channel, cut_thru, use_v2);
2477
2478 /* IRQ return is ignored */
2479 if (channel->channel || rc)
2480 return rc;
2481
2482 /* Successfully created event queue on channel 0 */
2483 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2484 if (rc == -ENOSYS) {
2485 /* GET_WORKAROUNDS was implemented before this workaround,
2486 * thus it must be unavailable in this firmware.
2487 */
2488 nic_data->workaround_26807 = false;
2489 rc = 0;
2490 } else if (rc) {
2491 goto fail;
2492 } else {
2493 nic_data->workaround_26807 =
2494 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2495
2496 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2497 !nic_data->workaround_26807) {
2498 unsigned int flags;
2499
2500 rc = efx_mcdi_set_workaround(efx,
2501 MC_CMD_WORKAROUND_BUG26807,
2502 true, &flags);
2503
2504 if (!rc) {
2505 if (flags &
2506 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2507 netif_info(efx, drv, efx->net_dev,
2508 "other functions on NIC have been reset\n");
2509
2510 /* With MCFW v4.6.x and earlier, the
2511 * boot count will have incremented,
2512 * so re-read the warm_boot_count
2513 * value now to ensure this function
2514 * doesn't think it has changed next
2515 * time it checks.
2516 */
2517 rc = efx_ef10_get_warm_boot_count(efx);
2518 if (rc >= 0) {
2519 nic_data->warm_boot_count = rc;
2520 rc = 0;
2521 }
2522 }
2523 nic_data->workaround_26807 = true;
2524 } else if (rc == -EPERM) {
2525 rc = 0;
2526 }
2527 }
2528 }
2529
2530 if (!rc)
2531 return 0;
2532
2533 fail:
2534 efx_mcdi_ev_fini(channel);
2535 return rc;
2536 }
2537
2538 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2539 unsigned int rx_queue_label)
2540 {
2541 struct efx_nic *efx = rx_queue->efx;
2542
2543 netif_info(efx, hw, efx->net_dev,
2544 "rx event arrived on queue %d labeled as queue %u\n",
2545 efx_rx_queue_index(rx_queue), rx_queue_label);
2546
2547 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2548 }
2549
2550 static void
2551 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2552 unsigned int actual, unsigned int expected)
2553 {
2554 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2555 struct efx_nic *efx = rx_queue->efx;
2556
2557 netif_info(efx, hw, efx->net_dev,
2558 "dropped %d events (index=%d expected=%d)\n",
2559 dropped, actual, expected);
2560
2561 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2562 }
2563
2564 /* partially received RX was aborted. clean up. */
2565 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2566 {
2567 unsigned int rx_desc_ptr;
2568
2569 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2570 "scattered RX aborted (dropping %u buffers)\n",
2571 rx_queue->scatter_n);
2572
2573 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2574
2575 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2576 0, EFX_RX_PKT_DISCARD);
2577
2578 rx_queue->removed_count += rx_queue->scatter_n;
2579 rx_queue->scatter_n = 0;
2580 rx_queue->scatter_len = 0;
2581 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2582 }
2583
2584 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2585 unsigned int n_packets,
2586 unsigned int rx_encap_hdr,
2587 unsigned int rx_l3_class,
2588 unsigned int rx_l4_class,
2589 const efx_qword_t *event)
2590 {
2591 struct efx_nic *efx = channel->efx;
2592 bool handled = false;
2593
2594 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2595 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2596 if (!efx->loopback_selftest)
2597 channel->n_rx_eth_crc_err += n_packets;
2598 return EFX_RX_PKT_DISCARD;
2599 }
2600 handled = true;
2601 }
2602 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2603 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2604 rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2605 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2606 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2607 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2608 netdev_WARN(efx->net_dev,
2609 "invalid class for RX_IPCKSUM_ERR: event="
2610 EFX_QWORD_FMT "\n",
2611 EFX_QWORD_VAL(*event));
2612 if (!efx->loopback_selftest)
2613 *(rx_encap_hdr ?
2614 &channel->n_rx_outer_ip_hdr_chksum_err :
2615 &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2616 return 0;
2617 }
2618 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2619 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2620 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2621 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2622 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2623 rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2624 netdev_WARN(efx->net_dev,
2625 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2626 EFX_QWORD_FMT "\n",
2627 EFX_QWORD_VAL(*event));
2628 if (!efx->loopback_selftest)
2629 *(rx_encap_hdr ?
2630 &channel->n_rx_outer_tcp_udp_chksum_err :
2631 &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2632 return 0;
2633 }
2634 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2635 if (unlikely(!rx_encap_hdr))
2636 netdev_WARN(efx->net_dev,
2637 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2638 EFX_QWORD_FMT "\n",
2639 EFX_QWORD_VAL(*event));
2640 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2641 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2642 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2643 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2644 netdev_WARN(efx->net_dev,
2645 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2646 EFX_QWORD_FMT "\n",
2647 EFX_QWORD_VAL(*event));
2648 if (!efx->loopback_selftest)
2649 channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2650 return 0;
2651 }
2652 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2653 if (unlikely(!rx_encap_hdr))
2654 netdev_WARN(efx->net_dev,
2655 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2656 EFX_QWORD_FMT "\n",
2657 EFX_QWORD_VAL(*event));
2658 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2659 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2660 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2661 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2662 netdev_WARN(efx->net_dev,
2663 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2664 EFX_QWORD_FMT "\n",
2665 EFX_QWORD_VAL(*event));
2666 if (!efx->loopback_selftest)
2667 channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2668 return 0;
2669 }
2670
2671 WARN_ON(!handled); /* No error bits were recognised */
2672 return 0;
2673 }
2674
2675 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2676 const efx_qword_t *event)
2677 {
2678 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2679 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2680 unsigned int n_descs, n_packets, i;
2681 struct efx_nic *efx = channel->efx;
2682 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2683 struct efx_rx_queue *rx_queue;
2684 efx_qword_t errors;
2685 bool rx_cont;
2686 u16 flags = 0;
2687
2688 if (unlikely(READ_ONCE(efx->reset_pending)))
2689 return 0;
2690
2691 /* Basic packet information */
2692 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2693 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2694 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2695 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2696 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2697 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2698 rx_encap_hdr =
2699 nic_data->datapath_caps &
2700 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2701 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2702 ESE_EZ_ENCAP_HDR_NONE;
2703
2704 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2705 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2706 EFX_QWORD_FMT "\n",
2707 EFX_QWORD_VAL(*event));
2708
2709 rx_queue = efx_channel_get_rx_queue(channel);
2710
2711 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2712 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2713
2714 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2715 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2716
2717 if (n_descs != rx_queue->scatter_n + 1) {
2718 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2719
2720 /* detect rx abort */
2721 if (unlikely(n_descs == rx_queue->scatter_n)) {
2722 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2723 netdev_WARN(efx->net_dev,
2724 "invalid RX abort: scatter_n=%u event="
2725 EFX_QWORD_FMT "\n",
2726 rx_queue->scatter_n,
2727 EFX_QWORD_VAL(*event));
2728 efx_ef10_handle_rx_abort(rx_queue);
2729 return 0;
2730 }
2731
2732 /* Check that RX completion merging is valid, i.e.
2733 * the current firmware supports it and this is a
2734 * non-scattered packet.
2735 */
2736 if (!(nic_data->datapath_caps &
2737 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2738 rx_queue->scatter_n != 0 || rx_cont) {
2739 efx_ef10_handle_rx_bad_lbits(
2740 rx_queue, next_ptr_lbits,
2741 (rx_queue->removed_count +
2742 rx_queue->scatter_n + 1) &
2743 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2744 return 0;
2745 }
2746
2747 /* Merged completion for multiple non-scattered packets */
2748 rx_queue->scatter_n = 1;
2749 rx_queue->scatter_len = 0;
2750 n_packets = n_descs;
2751 ++channel->n_rx_merge_events;
2752 channel->n_rx_merge_packets += n_packets;
2753 flags |= EFX_RX_PKT_PREFIX_LEN;
2754 } else {
2755 ++rx_queue->scatter_n;
2756 rx_queue->scatter_len += rx_bytes;
2757 if (rx_cont)
2758 return 0;
2759 n_packets = 1;
2760 }
2761
2762 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2763 ESF_DZ_RX_IPCKSUM_ERR, 1,
2764 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2765 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2766 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2767 EFX_AND_QWORD(errors, *event, errors);
2768 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2769 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2770 rx_encap_hdr,
2771 rx_l3_class, rx_l4_class,
2772 event);
2773 } else {
2774 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2775 rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2776
2777 switch (rx_encap_hdr) {
2778 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2779 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2780 if (tcpudp)
2781 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2782 break;
2783 case ESE_EZ_ENCAP_HDR_GRE:
2784 case ESE_EZ_ENCAP_HDR_NONE:
2785 if (tcpudp)
2786 flags |= EFX_RX_PKT_CSUMMED;
2787 break;
2788 default:
2789 netdev_WARN(efx->net_dev,
2790 "unknown encapsulation type: event="
2791 EFX_QWORD_FMT "\n",
2792 EFX_QWORD_VAL(*event));
2793 }
2794 }
2795
2796 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2797 flags |= EFX_RX_PKT_TCP;
2798
2799 channel->irq_mod_score += 2 * n_packets;
2800
2801 /* Handle received packet(s) */
2802 for (i = 0; i < n_packets; i++) {
2803 efx_rx_packet(rx_queue,
2804 rx_queue->removed_count & rx_queue->ptr_mask,
2805 rx_queue->scatter_n, rx_queue->scatter_len,
2806 flags);
2807 rx_queue->removed_count += rx_queue->scatter_n;
2808 }
2809
2810 rx_queue->scatter_n = 0;
2811 rx_queue->scatter_len = 0;
2812
2813 return n_packets;
2814 }
2815
2816 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2817 {
2818 u32 tstamp;
2819
2820 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2821 tstamp <<= 16;
2822 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2823
2824 return tstamp;
2825 }
2826
2827 static void
2828 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2829 {
2830 struct efx_nic *efx = channel->efx;
2831 struct efx_tx_queue *tx_queue;
2832 unsigned int tx_ev_desc_ptr;
2833 unsigned int tx_ev_q_label;
2834 unsigned int tx_ev_type;
2835 u64 ts_part;
2836
2837 if (unlikely(READ_ONCE(efx->reset_pending)))
2838 return;
2839
2840 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2841 return;
2842
2843 /* Get the transmit queue */
2844 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2845 tx_queue = efx_channel_get_tx_queue(channel,
2846 tx_ev_q_label % EFX_TXQ_TYPES);
2847
2848 if (!tx_queue->timestamping) {
2849 /* Transmit completion */
2850 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2851 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2852 return;
2853 }
2854
2855 /* Transmit timestamps are only available for 8XXX series. They result
2856 * in three events per packet. These occur in order, and are:
2857 * - the normal completion event
2858 * - the low part of the timestamp
2859 * - the high part of the timestamp
2860 *
2861 * Each part of the timestamp is itself split across two 16 bit
2862 * fields in the event.
2863 */
2864 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2865
2866 switch (tx_ev_type) {
2867 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2868 /* In case of Queue flush or FLR, we might have received
2869 * the previous TX completion event but not the Timestamp
2870 * events.
2871 */
2872 if (tx_queue->completed_desc_ptr != tx_queue->ptr_mask)
2873 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
2874
2875 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event,
2876 ESF_DZ_TX_DESCR_INDX);
2877 tx_queue->completed_desc_ptr =
2878 tx_ev_desc_ptr & tx_queue->ptr_mask;
2879 break;
2880
2881 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2882 ts_part = efx_ef10_extract_event_ts(event);
2883 tx_queue->completed_timestamp_minor = ts_part;
2884 break;
2885
2886 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
2887 ts_part = efx_ef10_extract_event_ts(event);
2888 tx_queue->completed_timestamp_major = ts_part;
2889
2890 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
2891 tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
2892 break;
2893
2894 default:
2895 netif_err(efx, hw, efx->net_dev,
2896 "channel %d unknown tx event type %d (data "
2897 EFX_QWORD_FMT ")\n",
2898 channel->channel, tx_ev_type,
2899 EFX_QWORD_VAL(*event));
2900 break;
2901 }
2902 }
2903
2904 static void
2905 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2906 {
2907 struct efx_nic *efx = channel->efx;
2908 int subcode;
2909
2910 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2911
2912 switch (subcode) {
2913 case ESE_DZ_DRV_TIMER_EV:
2914 case ESE_DZ_DRV_WAKE_UP_EV:
2915 break;
2916 case ESE_DZ_DRV_START_UP_EV:
2917 /* event queue init complete. ok. */
2918 break;
2919 default:
2920 netif_err(efx, hw, efx->net_dev,
2921 "channel %d unknown driver event type %d"
2922 " (data " EFX_QWORD_FMT ")\n",
2923 channel->channel, subcode,
2924 EFX_QWORD_VAL(*event));
2925
2926 }
2927 }
2928
2929 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2930 efx_qword_t *event)
2931 {
2932 struct efx_nic *efx = channel->efx;
2933 u32 subcode;
2934
2935 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2936
2937 switch (subcode) {
2938 case EFX_EF10_TEST:
2939 channel->event_test_cpu = raw_smp_processor_id();
2940 break;
2941 case EFX_EF10_REFILL:
2942 /* The queue must be empty, so we won't receive any rx
2943 * events, so efx_process_channel() won't refill the
2944 * queue. Refill it here
2945 */
2946 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2947 break;
2948 default:
2949 netif_err(efx, hw, efx->net_dev,
2950 "channel %d unknown driver event type %u"
2951 " (data " EFX_QWORD_FMT ")\n",
2952 channel->channel, (unsigned) subcode,
2953 EFX_QWORD_VAL(*event));
2954 }
2955 }
2956
2957 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2958 {
2959 struct efx_nic *efx = channel->efx;
2960 efx_qword_t event, *p_event;
2961 unsigned int read_ptr;
2962 int ev_code;
2963 int spent = 0;
2964
2965 if (quota <= 0)
2966 return spent;
2967
2968 read_ptr = channel->eventq_read_ptr;
2969
2970 for (;;) {
2971 p_event = efx_event(channel, read_ptr);
2972 event = *p_event;
2973
2974 if (!efx_event_present(&event))
2975 break;
2976
2977 EFX_SET_QWORD(*p_event);
2978
2979 ++read_ptr;
2980
2981 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2982
2983 netif_vdbg(efx, drv, efx->net_dev,
2984 "processing event on %d " EFX_QWORD_FMT "\n",
2985 channel->channel, EFX_QWORD_VAL(event));
2986
2987 switch (ev_code) {
2988 case ESE_DZ_EV_CODE_MCDI_EV:
2989 efx_mcdi_process_event(channel, &event);
2990 break;
2991 case ESE_DZ_EV_CODE_RX_EV:
2992 spent += efx_ef10_handle_rx_event(channel, &event);
2993 if (spent >= quota) {
2994 /* XXX can we split a merged event to
2995 * avoid going over-quota?
2996 */
2997 spent = quota;
2998 goto out;
2999 }
3000 break;
3001 case ESE_DZ_EV_CODE_TX_EV:
3002 efx_ef10_handle_tx_event(channel, &event);
3003 break;
3004 case ESE_DZ_EV_CODE_DRIVER_EV:
3005 efx_ef10_handle_driver_event(channel, &event);
3006 if (++spent == quota)
3007 goto out;
3008 break;
3009 case EFX_EF10_DRVGEN_EV:
3010 efx_ef10_handle_driver_generated_event(channel, &event);
3011 break;
3012 default:
3013 netif_err(efx, hw, efx->net_dev,
3014 "channel %d unknown event type %d"
3015 " (data " EFX_QWORD_FMT ")\n",
3016 channel->channel, ev_code,
3017 EFX_QWORD_VAL(event));
3018 }
3019 }
3020
3021 out:
3022 channel->eventq_read_ptr = read_ptr;
3023 return spent;
3024 }
3025
3026 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3027 {
3028 struct efx_nic *efx = channel->efx;
3029 efx_dword_t rptr;
3030
3031 if (EFX_EF10_WORKAROUND_35388(efx)) {
3032 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3033 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3034 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3035 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3036
3037 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3038 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3039 ERF_DD_EVQ_IND_RPTR,
3040 (channel->eventq_read_ptr &
3041 channel->eventq_mask) >>
3042 ERF_DD_EVQ_IND_RPTR_WIDTH);
3043 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3044 channel->channel);
3045 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3046 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3047 ERF_DD_EVQ_IND_RPTR,
3048 channel->eventq_read_ptr &
3049 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3050 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3051 channel->channel);
3052 } else {
3053 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3054 channel->eventq_read_ptr &
3055 channel->eventq_mask);
3056 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3057 }
3058 }
3059
3060 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3061 {
3062 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3063 struct efx_nic *efx = channel->efx;
3064 efx_qword_t event;
3065 int rc;
3066
3067 EFX_POPULATE_QWORD_2(event,
3068 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3069 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3070
3071 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3072
3073 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3074 * already swapped the data to little-endian order.
3075 */
3076 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3077 sizeof(efx_qword_t));
3078
3079 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3080 NULL, 0, NULL);
3081 if (rc != 0)
3082 goto fail;
3083
3084 return;
3085
3086 fail:
3087 WARN_ON(true);
3088 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3089 }
3090
3091 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3092 {
3093 if (atomic_dec_and_test(&efx->active_queues))
3094 wake_up(&efx->flush_wq);
3095
3096 WARN_ON(atomic_read(&efx->active_queues) < 0);
3097 }
3098
3099 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3100 {
3101 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3102 struct efx_channel *channel;
3103 struct efx_tx_queue *tx_queue;
3104 struct efx_rx_queue *rx_queue;
3105 int pending;
3106
3107 /* If the MC has just rebooted, the TX/RX queues will have already been
3108 * torn down, but efx->active_queues needs to be set to zero.
3109 */
3110 if (nic_data->must_realloc_vis) {
3111 atomic_set(&efx->active_queues, 0);
3112 return 0;
3113 }
3114
3115 /* Do not attempt to write to the NIC during EEH recovery */
3116 if (efx->state != STATE_RECOVERY) {
3117 efx_for_each_channel(channel, efx) {
3118 efx_for_each_channel_rx_queue(rx_queue, channel)
3119 efx_mcdi_rx_fini(rx_queue);
3120 efx_for_each_channel_tx_queue(tx_queue, channel)
3121 efx_mcdi_tx_fini(tx_queue);
3122 }
3123
3124 wait_event_timeout(efx->flush_wq,
3125 atomic_read(&efx->active_queues) == 0,
3126 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3127 pending = atomic_read(&efx->active_queues);
3128 if (pending) {
3129 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3130 pending);
3131 return -ETIMEDOUT;
3132 }
3133 }
3134
3135 return 0;
3136 }
3137
3138 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3139 {
3140 atomic_set(&efx->active_queues, 0);
3141 }
3142
3143 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3144 {
3145 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3146 u8 mac_old[ETH_ALEN];
3147 int rc, rc2;
3148
3149 /* Only reconfigure a PF-created vport */
3150 if (is_zero_ether_addr(nic_data->vport_mac))
3151 return 0;
3152
3153 efx_device_detach_sync(efx);
3154 efx_net_stop(efx->net_dev);
3155 down_write(&efx->filter_sem);
3156 efx_mcdi_filter_table_remove(efx);
3157 up_write(&efx->filter_sem);
3158
3159 rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
3160 if (rc)
3161 goto restore_filters;
3162
3163 ether_addr_copy(mac_old, nic_data->vport_mac);
3164 rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
3165 nic_data->vport_mac);
3166 if (rc)
3167 goto restore_vadaptor;
3168
3169 rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
3170 efx->net_dev->dev_addr);
3171 if (!rc) {
3172 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3173 } else {
3174 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
3175 if (rc2) {
3176 /* Failed to add original MAC, so clear vport_mac */
3177 eth_zero_addr(nic_data->vport_mac);
3178 goto reset_nic;
3179 }
3180 }
3181
3182 restore_vadaptor:
3183 rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
3184 if (rc2)
3185 goto reset_nic;
3186 restore_filters:
3187 down_write(&efx->filter_sem);
3188 rc2 = efx_mcdi_filter_table_probe(efx);
3189 up_write(&efx->filter_sem);
3190 if (rc2)
3191 goto reset_nic;
3192
3193 rc2 = efx_net_open(efx->net_dev);
3194 if (rc2)
3195 goto reset_nic;
3196
3197 efx_device_attach_if_not_resetting(efx);
3198
3199 return rc;
3200
3201 reset_nic:
3202 netif_err(efx, drv, efx->net_dev,
3203 "Failed to restore when changing MAC address - scheduling reset\n");
3204 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3205
3206 return rc ? rc : rc2;
3207 }
3208
3209 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3210 {
3211 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3212 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3213 bool was_enabled = efx->port_enabled;
3214 int rc;
3215
3216 efx_device_detach_sync(efx);
3217 efx_net_stop(efx->net_dev);
3218
3219 mutex_lock(&efx->mac_lock);
3220 down_write(&efx->filter_sem);
3221 efx_mcdi_filter_table_remove(efx);
3222
3223 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3224 efx->net_dev->dev_addr);
3225 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3226 nic_data->vport_id);
3227 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3228 sizeof(inbuf), NULL, 0, NULL);
3229
3230 efx_mcdi_filter_table_probe(efx);
3231 up_write(&efx->filter_sem);
3232 mutex_unlock(&efx->mac_lock);
3233
3234 if (was_enabled)
3235 efx_net_open(efx->net_dev);
3236 efx_device_attach_if_not_resetting(efx);
3237
3238 #ifdef CONFIG_SFC_SRIOV
3239 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3240 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3241
3242 if (rc == -EPERM) {
3243 struct efx_nic *efx_pf;
3244
3245 /* Switch to PF and change MAC address on vport */
3246 efx_pf = pci_get_drvdata(pci_dev_pf);
3247
3248 rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3249 nic_data->vf_index,
3250 efx->net_dev->dev_addr);
3251 } else if (!rc) {
3252 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3253 struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3254 unsigned int i;
3255
3256 /* MAC address successfully changed by VF (with MAC
3257 * spoofing) so update the parent PF if possible.
3258 */
3259 for (i = 0; i < efx_pf->vf_count; ++i) {
3260 struct ef10_vf *vf = nic_data->vf + i;
3261
3262 if (vf->efx == efx) {
3263 ether_addr_copy(vf->mac,
3264 efx->net_dev->dev_addr);
3265 return 0;
3266 }
3267 }
3268 }
3269 } else
3270 #endif
3271 if (rc == -EPERM) {
3272 netif_err(efx, drv, efx->net_dev,
3273 "Cannot change MAC address; use sfboot to enable"
3274 " mac-spoofing on this interface\n");
3275 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3276 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3277 * fall-back to the method of changing the MAC address on the
3278 * vport. This only applies to PFs because such versions of
3279 * MCFW do not support VFs.
3280 */
3281 rc = efx_ef10_vport_set_mac_address(efx);
3282 } else if (rc) {
3283 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3284 sizeof(inbuf), NULL, 0, rc);
3285 }
3286
3287 return rc;
3288 }
3289
3290 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3291 {
3292 efx_mcdi_filter_sync_rx_mode(efx);
3293
3294 return efx_mcdi_set_mac(efx);
3295 }
3296
3297 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
3298 {
3299 efx_mcdi_filter_sync_rx_mode(efx);
3300
3301 return 0;
3302 }
3303
3304 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3305 {
3306 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3307
3308 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3309 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3310 NULL, 0, NULL);
3311 }
3312
3313 /* MC BISTs follow a different poll mechanism to phy BISTs.
3314 * The BIST is done in the poll handler on the MC, and the MCDI command
3315 * will block until the BIST is done.
3316 */
3317 static int efx_ef10_poll_bist(struct efx_nic *efx)
3318 {
3319 int rc;
3320 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3321 size_t outlen;
3322 u32 result;
3323
3324 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3325 outbuf, sizeof(outbuf), &outlen);
3326 if (rc != 0)
3327 return rc;
3328
3329 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3330 return -EIO;
3331
3332 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3333 switch (result) {
3334 case MC_CMD_POLL_BIST_PASSED:
3335 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3336 return 0;
3337 case MC_CMD_POLL_BIST_TIMEOUT:
3338 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3339 return -EIO;
3340 case MC_CMD_POLL_BIST_FAILED:
3341 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3342 return -EIO;
3343 default:
3344 netif_err(efx, hw, efx->net_dev,
3345 "BIST returned unknown result %u", result);
3346 return -EIO;
3347 }
3348 }
3349
3350 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3351 {
3352 int rc;
3353
3354 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3355
3356 rc = efx_ef10_start_bist(efx, bist_type);
3357 if (rc != 0)
3358 return rc;
3359
3360 return efx_ef10_poll_bist(efx);
3361 }
3362
3363 static int
3364 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3365 {
3366 int rc, rc2;
3367
3368 efx_reset_down(efx, RESET_TYPE_WORLD);
3369
3370 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3371 NULL, 0, NULL, 0, NULL);
3372 if (rc != 0)
3373 goto out;
3374
3375 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3376 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3377
3378 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3379
3380 out:
3381 if (rc == -EPERM)
3382 rc = 0;
3383 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3384 return rc ? rc : rc2;
3385 }
3386
3387 #ifdef CONFIG_SFC_MTD
3388
3389 struct efx_ef10_nvram_type_info {
3390 u16 type, type_mask;
3391 u8 port;
3392 const char *name;
3393 };
3394
3395 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3396 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3397 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3398 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3399 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3400 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3401 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3402 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3403 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3404 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3405 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
3406 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3407 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
3408 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
3409 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
3410 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
3411 { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
3412 { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
3413 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
3414 };
3415 #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
3416
3417 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3418 struct efx_mcdi_mtd_partition *part,
3419 unsigned int type,
3420 unsigned long *found)
3421 {
3422 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3423 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3424 const struct efx_ef10_nvram_type_info *info;
3425 size_t size, erase_size, outlen;
3426 int type_idx = 0;
3427 bool protected;
3428 int rc;
3429
3430 for (type_idx = 0; ; type_idx++) {
3431 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3432 return -ENODEV;
3433 info = efx_ef10_nvram_types + type_idx;
3434 if ((type & ~info->type_mask) == info->type)
3435 break;
3436 }
3437 if (info->port != efx_port_num(efx))
3438 return -ENODEV;
3439
3440 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3441 if (rc)
3442 return rc;
3443 if (protected &&
3444 (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3445 type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3446 /* Hide protected partitions that don't provide defaults. */
3447 return -ENODEV;
3448
3449 if (protected)
3450 /* Protected partitions are read only. */
3451 erase_size = 0;
3452
3453 /* If we've already exposed a partition of this type, hide this
3454 * duplicate. All operations on MTDs are keyed by the type anyway,
3455 * so we can't act on the duplicate.
3456 */
3457 if (__test_and_set_bit(type_idx, found))
3458 return -EEXIST;
3459
3460 part->nvram_type = type;
3461
3462 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3463 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3464 outbuf, sizeof(outbuf), &outlen);
3465 if (rc)
3466 return rc;
3467 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3468 return -EIO;
3469 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3470 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3471 part->fw_subtype = MCDI_DWORD(outbuf,
3472 NVRAM_METADATA_OUT_SUBTYPE);
3473
3474 part->common.dev_type_name = "EF10 NVRAM manager";
3475 part->common.type_name = info->name;
3476
3477 part->common.mtd.type = MTD_NORFLASH;
3478 part->common.mtd.flags = MTD_CAP_NORFLASH;
3479 part->common.mtd.size = size;
3480 part->common.mtd.erasesize = erase_size;
3481 /* sfc_status is read-only */
3482 if (!erase_size)
3483 part->common.mtd.flags |= MTD_NO_ERASE;
3484
3485 return 0;
3486 }
3487
3488 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3489 {
3490 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3491 DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3492 struct efx_mcdi_mtd_partition *parts;
3493 size_t outlen, n_parts_total, i, n_parts;
3494 unsigned int type;
3495 int rc;
3496
3497 ASSERT_RTNL();
3498
3499 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3500 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3501 outbuf, sizeof(outbuf), &outlen);
3502 if (rc)
3503 return rc;
3504 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3505 return -EIO;
3506
3507 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3508 if (n_parts_total >
3509 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3510 return -EIO;
3511
3512 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3513 if (!parts)
3514 return -ENOMEM;
3515
3516 n_parts = 0;
3517 for (i = 0; i < n_parts_total; i++) {
3518 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3519 i);
3520 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3521 found);
3522 if (rc == -EEXIST || rc == -ENODEV)
3523 continue;
3524 if (rc)
3525 goto fail;
3526 n_parts++;
3527 }
3528
3529 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3530 fail:
3531 if (rc)
3532 kfree(parts);
3533 return rc;
3534 }
3535
3536 #endif /* CONFIG_SFC_MTD */
3537
3538 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3539 {
3540 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3541 }
3542
3543 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3544 u32 host_time) {}
3545
3546 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3547 bool temp)
3548 {
3549 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3550 int rc;
3551
3552 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3553 channel->sync_events_state == SYNC_EVENTS_VALID ||
3554 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3555 return 0;
3556 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3557
3558 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3559 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3560 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3561 channel->channel);
3562
3563 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3564 inbuf, sizeof(inbuf), NULL, 0, NULL);
3565
3566 if (rc != 0)
3567 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3568 SYNC_EVENTS_DISABLED;
3569
3570 return rc;
3571 }
3572
3573 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3574 bool temp)
3575 {
3576 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3577 int rc;
3578
3579 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3580 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3581 return 0;
3582 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3583 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3584 return 0;
3585 }
3586 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3587 SYNC_EVENTS_DISABLED;
3588
3589 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3590 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3591 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3592 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3593 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3594 channel->channel);
3595
3596 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3597 inbuf, sizeof(inbuf), NULL, 0, NULL);
3598
3599 return rc;
3600 }
3601
3602 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3603 bool temp)
3604 {
3605 int (*set)(struct efx_channel *channel, bool temp);
3606 struct efx_channel *channel;
3607
3608 set = en ?
3609 efx_ef10_rx_enable_timestamping :
3610 efx_ef10_rx_disable_timestamping;
3611
3612 channel = efx_ptp_channel(efx);
3613 if (channel) {
3614 int rc = set(channel, temp);
3615 if (en && rc != 0) {
3616 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3617 return rc;
3618 }
3619 }
3620
3621 return 0;
3622 }
3623
3624 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3625 struct hwtstamp_config *init)
3626 {
3627 return -EOPNOTSUPP;
3628 }
3629
3630 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3631 struct hwtstamp_config *init)
3632 {
3633 int rc;
3634
3635 switch (init->rx_filter) {
3636 case HWTSTAMP_FILTER_NONE:
3637 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3638 /* if TX timestamping is still requested then leave PTP on */
3639 return efx_ptp_change_mode(efx,
3640 init->tx_type != HWTSTAMP_TX_OFF, 0);
3641 case HWTSTAMP_FILTER_ALL:
3642 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3643 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3644 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3645 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3646 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3647 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3648 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3649 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3650 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3651 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3652 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3653 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654 case HWTSTAMP_FILTER_NTP_ALL:
3655 init->rx_filter = HWTSTAMP_FILTER_ALL;
3656 rc = efx_ptp_change_mode(efx, true, 0);
3657 if (!rc)
3658 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3659 if (rc)
3660 efx_ptp_change_mode(efx, false, 0);
3661 return rc;
3662 default:
3663 return -ERANGE;
3664 }
3665 }
3666
3667 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3668 struct netdev_phys_item_id *ppid)
3669 {
3670 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3671
3672 if (!is_valid_ether_addr(nic_data->port_id))
3673 return -EOPNOTSUPP;
3674
3675 ppid->id_len = ETH_ALEN;
3676 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3677
3678 return 0;
3679 }
3680
3681 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3682 {
3683 if (proto != htons(ETH_P_8021Q))
3684 return -EINVAL;
3685
3686 return efx_ef10_add_vlan(efx, vid);
3687 }
3688
3689 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3690 {
3691 if (proto != htons(ETH_P_8021Q))
3692 return -EINVAL;
3693
3694 return efx_ef10_del_vlan(efx, vid);
3695 }
3696
3697 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3698 * ports table, ensuring that any TSO descriptors that were made on a now-
3699 * removed tunnel port will be blown away and won't break things when we try
3700 * to transmit them using the new ports table.
3701 */
3702 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3703 {
3704 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3705 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3706 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3707 bool will_reset = false;
3708 size_t num_entries = 0;
3709 size_t inlen, outlen;
3710 size_t i;
3711 int rc;
3712 efx_dword_t flags_and_num_entries;
3713
3714 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3715
3716 nic_data->udp_tunnels_dirty = false;
3717
3718 if (!(nic_data->datapath_caps &
3719 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3720 efx_device_attach_if_not_resetting(efx);
3721 return 0;
3722 }
3723
3724 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3725 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3726
3727 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3728 if (nic_data->udp_tunnels[i].count &&
3729 nic_data->udp_tunnels[i].port) {
3730 efx_dword_t entry;
3731
3732 EFX_POPULATE_DWORD_2(entry,
3733 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3734 ntohs(nic_data->udp_tunnels[i].port),
3735 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3736 nic_data->udp_tunnels[i].type);
3737 *_MCDI_ARRAY_DWORD(inbuf,
3738 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3739 num_entries++) = entry;
3740 }
3741 }
3742
3743 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3744 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3745 EFX_WORD_1_LBN);
3746 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3747 EFX_WORD_1_WIDTH);
3748 EFX_POPULATE_DWORD_2(flags_and_num_entries,
3749 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3750 !!unloading,
3751 EFX_WORD_1, num_entries);
3752 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3753 flags_and_num_entries;
3754
3755 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3756
3757 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3758 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3759 if (rc == -EIO) {
3760 /* Most likely the MC rebooted due to another function also
3761 * setting its tunnel port list. Mark the tunnel port list as
3762 * dirty, so it will be pushed upon coming up from the reboot.
3763 */
3764 nic_data->udp_tunnels_dirty = true;
3765 return 0;
3766 }
3767
3768 if (rc) {
3769 /* expected not available on unprivileged functions */
3770 if (rc != -EPERM)
3771 netif_warn(efx, drv, efx->net_dev,
3772 "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3773 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3774 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3775 netif_info(efx, drv, efx->net_dev,
3776 "Rebooting MC due to UDP tunnel port list change\n");
3777 will_reset = true;
3778 if (unloading)
3779 /* Delay for the MC reset to complete. This will make
3780 * unloading other functions a bit smoother. This is a
3781 * race, but the other unload will work whichever way
3782 * it goes, this just avoids an unnecessary error
3783 * message.
3784 */
3785 msleep(100);
3786 }
3787 if (!will_reset && !unloading) {
3788 /* The caller will have detached, relying on the MC reset to
3789 * trigger a re-attach. Since there won't be an MC reset, we
3790 * have to do the attach ourselves.
3791 */
3792 efx_device_attach_if_not_resetting(efx);
3793 }
3794
3795 return rc;
3796 }
3797
3798 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3799 {
3800 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3801 int rc = 0;
3802
3803 mutex_lock(&nic_data->udp_tunnels_lock);
3804 if (nic_data->udp_tunnels_dirty) {
3805 /* Make sure all TX are stopped while we modify the table, else
3806 * we might race against an efx_features_check().
3807 */
3808 efx_device_detach_sync(efx);
3809 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3810 }
3811 mutex_unlock(&nic_data->udp_tunnels_lock);
3812 return rc;
3813 }
3814
3815 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
3816 __be16 port)
3817 {
3818 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3819 size_t i;
3820
3821 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3822 if (!nic_data->udp_tunnels[i].count)
3823 continue;
3824 if (nic_data->udp_tunnels[i].port == port)
3825 return &nic_data->udp_tunnels[i];
3826 }
3827 return NULL;
3828 }
3829
3830 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
3831 struct efx_udp_tunnel tnl)
3832 {
3833 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3834 struct efx_udp_tunnel *match;
3835 char typebuf[8];
3836 size_t i;
3837 int rc;
3838
3839 if (!(nic_data->datapath_caps &
3840 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3841 return 0;
3842
3843 efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
3844 netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
3845 typebuf, ntohs(tnl.port));
3846
3847 mutex_lock(&nic_data->udp_tunnels_lock);
3848 /* Make sure all TX are stopped while we add to the table, else we
3849 * might race against an efx_features_check().
3850 */
3851 efx_device_detach_sync(efx);
3852
3853 match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
3854 if (match != NULL) {
3855 if (match->type == tnl.type) {
3856 netif_dbg(efx, drv, efx->net_dev,
3857 "Referencing existing tunnel entry\n");
3858 match->count++;
3859 /* No need to cause an MCDI update */
3860 rc = 0;
3861 goto unlock_out;
3862 }
3863 efx_get_udp_tunnel_type_name(match->type,
3864 typebuf, sizeof(typebuf));
3865 netif_dbg(efx, drv, efx->net_dev,
3866 "UDP port %d is already in use by %s\n",
3867 ntohs(tnl.port), typebuf);
3868 rc = -EEXIST;
3869 goto unlock_out;
3870 }
3871
3872 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3873 if (!nic_data->udp_tunnels[i].count) {
3874 nic_data->udp_tunnels[i] = tnl;
3875 nic_data->udp_tunnels[i].count = 1;
3876 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3877 goto unlock_out;
3878 }
3879
3880 netif_dbg(efx, drv, efx->net_dev,
3881 "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
3882 typebuf, ntohs(tnl.port));
3883
3884 rc = -ENOMEM;
3885
3886 unlock_out:
3887 mutex_unlock(&nic_data->udp_tunnels_lock);
3888 return rc;
3889 }
3890
3891 /* Called under the TX lock with the TX queue running, hence no-one can be
3892 * in the middle of updating the UDP tunnels table. However, they could
3893 * have tried and failed the MCDI, in which case they'll have set the dirty
3894 * flag before dropping their locks.
3895 */
3896 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3897 {
3898 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3899
3900 if (!(nic_data->datapath_caps &
3901 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3902 return false;
3903
3904 if (nic_data->udp_tunnels_dirty)
3905 /* SW table may not match HW state, so just assume we can't
3906 * use any UDP tunnel offloads.
3907 */
3908 return false;
3909
3910 return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
3911 }
3912
3913 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
3914 struct efx_udp_tunnel tnl)
3915 {
3916 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3917 struct efx_udp_tunnel *match;
3918 char typebuf[8];
3919 int rc;
3920
3921 if (!(nic_data->datapath_caps &
3922 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3923 return 0;
3924
3925 efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
3926 netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
3927 typebuf, ntohs(tnl.port));
3928
3929 mutex_lock(&nic_data->udp_tunnels_lock);
3930 /* Make sure all TX are stopped while we remove from the table, else we
3931 * might race against an efx_features_check().
3932 */
3933 efx_device_detach_sync(efx);
3934
3935 match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
3936 if (match != NULL) {
3937 if (match->type == tnl.type) {
3938 if (--match->count) {
3939 /* Port is still in use, so nothing to do */
3940 netif_dbg(efx, drv, efx->net_dev,
3941 "UDP tunnel port %d remains active\n",
3942 ntohs(tnl.port));
3943 rc = 0;
3944 goto out_unlock;
3945 }
3946 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3947 goto out_unlock;
3948 }
3949 efx_get_udp_tunnel_type_name(match->type,
3950 typebuf, sizeof(typebuf));
3951 netif_warn(efx, drv, efx->net_dev,
3952 "UDP port %d is actually in use by %s, not removing\n",
3953 ntohs(tnl.port), typebuf);
3954 }
3955 rc = -ENOENT;
3956
3957 out_unlock:
3958 mutex_unlock(&nic_data->udp_tunnels_lock);
3959 return rc;
3960 }
3961
3962 #define EF10_OFFLOAD_FEATURES \
3963 (NETIF_F_IP_CSUM | \
3964 NETIF_F_HW_VLAN_CTAG_FILTER | \
3965 NETIF_F_IPV6_CSUM | \
3966 NETIF_F_RXHASH | \
3967 NETIF_F_NTUPLE)
3968
3969 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
3970 .is_vf = true,
3971 .mem_bar = efx_ef10_vf_mem_bar,
3972 .mem_map_size = efx_ef10_mem_map_size,
3973 .probe = efx_ef10_probe_vf,
3974 .remove = efx_ef10_remove,
3975 .dimension_resources = efx_ef10_dimension_resources,
3976 .init = efx_ef10_init_nic,
3977 .fini = efx_port_dummy_op_void,
3978 .map_reset_reason = efx_ef10_map_reset_reason,
3979 .map_reset_flags = efx_ef10_map_reset_flags,
3980 .reset = efx_ef10_reset,
3981 .probe_port = efx_mcdi_port_probe,
3982 .remove_port = efx_mcdi_port_remove,
3983 .fini_dmaq = efx_ef10_fini_dmaq,
3984 .prepare_flr = efx_ef10_prepare_flr,
3985 .finish_flr = efx_port_dummy_op_void,
3986 .describe_stats = efx_ef10_describe_stats,
3987 .update_stats = efx_ef10_update_stats_vf,
3988 .start_stats = efx_port_dummy_op_void,
3989 .pull_stats = efx_port_dummy_op_void,
3990 .stop_stats = efx_port_dummy_op_void,
3991 .set_id_led = efx_mcdi_set_id_led,
3992 .push_irq_moderation = efx_ef10_push_irq_moderation,
3993 .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
3994 .check_mac_fault = efx_mcdi_mac_check_fault,
3995 .reconfigure_port = efx_mcdi_port_reconfigure,
3996 .get_wol = efx_ef10_get_wol_vf,
3997 .set_wol = efx_ef10_set_wol_vf,
3998 .resume_wol = efx_port_dummy_op_void,
3999 .mcdi_request = efx_ef10_mcdi_request,
4000 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4001 .mcdi_read_response = efx_ef10_mcdi_read_response,
4002 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4003 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4004 .irq_enable_master = efx_port_dummy_op_void,
4005 .irq_test_generate = efx_ef10_irq_test_generate,
4006 .irq_disable_non_ev = efx_port_dummy_op_void,
4007 .irq_handle_msi = efx_ef10_msi_interrupt,
4008 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4009 .tx_probe = efx_ef10_tx_probe,
4010 .tx_init = efx_ef10_tx_init,
4011 .tx_remove = efx_mcdi_tx_remove,
4012 .tx_write = efx_ef10_tx_write,
4013 .tx_limit_len = efx_ef10_tx_limit_len,
4014 .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4015 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4016 .rx_probe = efx_mcdi_rx_probe,
4017 .rx_init = efx_mcdi_rx_init,
4018 .rx_remove = efx_mcdi_rx_remove,
4019 .rx_write = efx_ef10_rx_write,
4020 .rx_defer_refill = efx_ef10_rx_defer_refill,
4021 .ev_probe = efx_mcdi_ev_probe,
4022 .ev_init = efx_ef10_ev_init,
4023 .ev_fini = efx_mcdi_ev_fini,
4024 .ev_remove = efx_mcdi_ev_remove,
4025 .ev_process = efx_ef10_ev_process,
4026 .ev_read_ack = efx_ef10_ev_read_ack,
4027 .ev_test_generate = efx_ef10_ev_test_generate,
4028 .filter_table_probe = efx_mcdi_filter_table_probe,
4029 .filter_table_restore = efx_mcdi_filter_table_restore,
4030 .filter_table_remove = efx_mcdi_filter_table_remove,
4031 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4032 .filter_insert = efx_mcdi_filter_insert,
4033 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4034 .filter_get_safe = efx_mcdi_filter_get_safe,
4035 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4036 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4037 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4038 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4039 #ifdef CONFIG_RFS_ACCEL
4040 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4041 #endif
4042 #ifdef CONFIG_SFC_MTD
4043 .mtd_probe = efx_port_dummy_op_int,
4044 #endif
4045 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4046 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4047 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4048 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4049 #ifdef CONFIG_SFC_SRIOV
4050 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4051 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4052 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4053 #endif
4054 .get_mac_address = efx_ef10_get_mac_address_vf,
4055 .set_mac_address = efx_ef10_set_mac_address,
4056
4057 .get_phys_port_id = efx_ef10_get_phys_port_id,
4058 .revision = EFX_REV_HUNT_A0,
4059 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4060 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4061 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4062 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4063 .can_rx_scatter = true,
4064 .always_rx_scatter = true,
4065 .min_interrupt_mode = EFX_INT_MODE_MSIX,
4066 .max_interrupt_mode = EFX_INT_MODE_MSIX,
4067 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4068 .offload_features = EF10_OFFLOAD_FEATURES,
4069 .mcdi_max_ver = 2,
4070 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4071 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4072 1 << HWTSTAMP_FILTER_ALL,
4073 .rx_hash_key_size = 40,
4074 };
4075
4076 const struct efx_nic_type efx_hunt_a0_nic_type = {
4077 .is_vf = false,
4078 .mem_bar = efx_ef10_pf_mem_bar,
4079 .mem_map_size = efx_ef10_mem_map_size,
4080 .probe = efx_ef10_probe_pf,
4081 .remove = efx_ef10_remove,
4082 .dimension_resources = efx_ef10_dimension_resources,
4083 .init = efx_ef10_init_nic,
4084 .fini = efx_port_dummy_op_void,
4085 .map_reset_reason = efx_ef10_map_reset_reason,
4086 .map_reset_flags = efx_ef10_map_reset_flags,
4087 .reset = efx_ef10_reset,
4088 .probe_port = efx_mcdi_port_probe,
4089 .remove_port = efx_mcdi_port_remove,
4090 .fini_dmaq = efx_ef10_fini_dmaq,
4091 .prepare_flr = efx_ef10_prepare_flr,
4092 .finish_flr = efx_port_dummy_op_void,
4093 .describe_stats = efx_ef10_describe_stats,
4094 .update_stats = efx_ef10_update_stats_pf,
4095 .start_stats = efx_mcdi_mac_start_stats,
4096 .pull_stats = efx_mcdi_mac_pull_stats,
4097 .stop_stats = efx_mcdi_mac_stop_stats,
4098 .set_id_led = efx_mcdi_set_id_led,
4099 .push_irq_moderation = efx_ef10_push_irq_moderation,
4100 .reconfigure_mac = efx_ef10_mac_reconfigure,
4101 .check_mac_fault = efx_mcdi_mac_check_fault,
4102 .reconfigure_port = efx_mcdi_port_reconfigure,
4103 .get_wol = efx_ef10_get_wol,
4104 .set_wol = efx_ef10_set_wol,
4105 .resume_wol = efx_port_dummy_op_void,
4106 .test_chip = efx_ef10_test_chip,
4107 .test_nvram = efx_mcdi_nvram_test_all,
4108 .mcdi_request = efx_ef10_mcdi_request,
4109 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4110 .mcdi_read_response = efx_ef10_mcdi_read_response,
4111 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4112 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4113 .irq_enable_master = efx_port_dummy_op_void,
4114 .irq_test_generate = efx_ef10_irq_test_generate,
4115 .irq_disable_non_ev = efx_port_dummy_op_void,
4116 .irq_handle_msi = efx_ef10_msi_interrupt,
4117 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4118 .tx_probe = efx_ef10_tx_probe,
4119 .tx_init = efx_ef10_tx_init,
4120 .tx_remove = efx_mcdi_tx_remove,
4121 .tx_write = efx_ef10_tx_write,
4122 .tx_limit_len = efx_ef10_tx_limit_len,
4123 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4124 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4125 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4126 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4127 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4128 .rx_probe = efx_mcdi_rx_probe,
4129 .rx_init = efx_mcdi_rx_init,
4130 .rx_remove = efx_mcdi_rx_remove,
4131 .rx_write = efx_ef10_rx_write,
4132 .rx_defer_refill = efx_ef10_rx_defer_refill,
4133 .ev_probe = efx_mcdi_ev_probe,
4134 .ev_init = efx_ef10_ev_init,
4135 .ev_fini = efx_mcdi_ev_fini,
4136 .ev_remove = efx_mcdi_ev_remove,
4137 .ev_process = efx_ef10_ev_process,
4138 .ev_read_ack = efx_ef10_ev_read_ack,
4139 .ev_test_generate = efx_ef10_ev_test_generate,
4140 .filter_table_probe = efx_mcdi_filter_table_probe,
4141 .filter_table_restore = efx_mcdi_filter_table_restore,
4142 .filter_table_remove = efx_mcdi_filter_table_remove,
4143 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4144 .filter_insert = efx_mcdi_filter_insert,
4145 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4146 .filter_get_safe = efx_mcdi_filter_get_safe,
4147 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4148 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4149 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4150 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4151 #ifdef CONFIG_RFS_ACCEL
4152 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4153 #endif
4154 #ifdef CONFIG_SFC_MTD
4155 .mtd_probe = efx_ef10_mtd_probe,
4156 .mtd_rename = efx_mcdi_mtd_rename,
4157 .mtd_read = efx_mcdi_mtd_read,
4158 .mtd_erase = efx_mcdi_mtd_erase,
4159 .mtd_write = efx_mcdi_mtd_write,
4160 .mtd_sync = efx_mcdi_mtd_sync,
4161 #endif
4162 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4163 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4164 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4165 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4166 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4167 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4168 .udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
4169 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4170 .udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
4171 #ifdef CONFIG_SFC_SRIOV
4172 .sriov_configure = efx_ef10_sriov_configure,
4173 .sriov_init = efx_ef10_sriov_init,
4174 .sriov_fini = efx_ef10_sriov_fini,
4175 .sriov_wanted = efx_ef10_sriov_wanted,
4176 .sriov_reset = efx_ef10_sriov_reset,
4177 .sriov_flr = efx_ef10_sriov_flr,
4178 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4179 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4180 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4181 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4182 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4183 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4184 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4185 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4186 #endif
4187 .get_mac_address = efx_ef10_get_mac_address_pf,
4188 .set_mac_address = efx_ef10_set_mac_address,
4189 .tso_versions = efx_ef10_tso_versions,
4190
4191 .get_phys_port_id = efx_ef10_get_phys_port_id,
4192 .revision = EFX_REV_HUNT_A0,
4193 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4194 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4195 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4196 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4197 .can_rx_scatter = true,
4198 .always_rx_scatter = true,
4199 .option_descriptors = true,
4200 .min_interrupt_mode = EFX_INT_MODE_LEGACY,
4201 .max_interrupt_mode = EFX_INT_MODE_MSIX,
4202 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4203 .offload_features = EF10_OFFLOAD_FEATURES,
4204 .mcdi_max_ver = 2,
4205 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4206 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4207 1 << HWTSTAMP_FILTER_ALL,
4208 .rx_hash_key_size = 40,
4209 };