]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/sfc/ef100_nic.c
d35cafd422b1cb21ae0e978a949972f9179c1424
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / sfc / ef100_nic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 * Copyright 2019-2020 Xilinx Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation, incorporated herein by reference.
10 */
11
12 #include "ef100_nic.h"
13 #include "efx_common.h"
14 #include "efx_channels.h"
15 #include "io.h"
16 #include "selftest.h"
17 #include "ef100_regs.h"
18 #include "mcdi.h"
19 #include "mcdi_pcol.h"
20 #include "mcdi_port_common.h"
21 #include "mcdi_functions.h"
22 #include "mcdi_filters.h"
23 #include "ef100_rx.h"
24 #include "ef100_tx.h"
25 #include "ef100_netdev.h"
26
27 #define EF100_MAX_VIS 4096
28 #define EF100_NUM_MCDI_BUFFERS 1
29 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
30
31 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
32
33 /* MCDI
34 */
35 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
36 {
37 struct ef100_nic_data *nic_data = efx->nic_data;
38
39 if (dma_addr)
40 *dma_addr = nic_data->mcdi_buf.dma_addr +
41 bufid * ALIGN(MCDI_BUF_LEN, 256);
42 return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
43 }
44
45 static int ef100_get_warm_boot_count(struct efx_nic *efx)
46 {
47 efx_dword_t reg;
48
49 efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
50
51 if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
52 netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
53 efx->state = STATE_DISABLED;
54 return -ENETDOWN;
55 } else {
56 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
57 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
58 }
59 }
60
61 static void ef100_mcdi_request(struct efx_nic *efx,
62 const efx_dword_t *hdr, size_t hdr_len,
63 const efx_dword_t *sdu, size_t sdu_len)
64 {
65 dma_addr_t dma_addr;
66 u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
67
68 memcpy(pdu, hdr, hdr_len);
69 memcpy(pdu + hdr_len, sdu, sdu_len);
70 wmb();
71
72 /* The hardware provides 'low' and 'high' (doorbell) registers
73 * for passing the 64-bit address of an MCDI request to
74 * firmware. However the dwords are swapped by firmware. The
75 * least significant bits of the doorbell are then 0 for all
76 * MCDI requests due to alignment.
77 */
78 _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD));
79 _efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD));
80 }
81
82 static bool ef100_mcdi_poll_response(struct efx_nic *efx)
83 {
84 const efx_dword_t hdr =
85 *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
86
87 rmb();
88 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
89 }
90
91 static void ef100_mcdi_read_response(struct efx_nic *efx,
92 efx_dword_t *outbuf, size_t offset,
93 size_t outlen)
94 {
95 const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
96
97 memcpy(outbuf, pdu + offset, outlen);
98 }
99
100 static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
101 {
102 struct ef100_nic_data *nic_data = efx->nic_data;
103 int rc;
104
105 rc = ef100_get_warm_boot_count(efx);
106 if (rc < 0) {
107 /* The firmware is presumably in the process of
108 * rebooting. However, we are supposed to report each
109 * reboot just once, so we must only do that once we
110 * can read and store the updated warm boot count.
111 */
112 return 0;
113 }
114
115 if (rc == nic_data->warm_boot_count)
116 return 0;
117
118 nic_data->warm_boot_count = rc;
119
120 return -EIO;
121 }
122
123 static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
124 {
125 }
126
127 /* MCDI calls
128 */
129 static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
130 {
131 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
132 size_t outlen;
133 int rc;
134
135 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
136
137 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
138 outbuf, sizeof(outbuf), &outlen);
139 if (rc)
140 return rc;
141 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
142 return -EIO;
143
144 ether_addr_copy(mac_address,
145 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
146 return 0;
147 }
148
149 static int efx_ef100_init_datapath_caps(struct efx_nic *efx)
150 {
151 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
152 struct ef100_nic_data *nic_data = efx->nic_data;
153 u8 vi_window_mode;
154 size_t outlen;
155 int rc;
156
157 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
158
159 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
160 outbuf, sizeof(outbuf), &outlen);
161 if (rc)
162 return rc;
163 if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
164 netif_err(efx, drv, efx->net_dev,
165 "unable to read datapath firmware capabilities\n");
166 return -EIO;
167 }
168
169 nic_data->datapath_caps = MCDI_DWORD(outbuf,
170 GET_CAPABILITIES_OUT_FLAGS1);
171 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
172 GET_CAPABILITIES_V2_OUT_FLAGS2);
173 if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
174 nic_data->datapath_caps3 = 0;
175 else
176 nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
177 GET_CAPABILITIES_V7_OUT_FLAGS3);
178
179 vi_window_mode = MCDI_BYTE(outbuf,
180 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
181 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
182 if (rc)
183 return rc;
184
185 if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
186 struct net_device *net_dev = efx->net_dev;
187 netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
188 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
189 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
190
191 net_dev->features |= tso;
192 net_dev->hw_features |= tso;
193 net_dev->hw_enc_features |= tso;
194 /* EF100 HW can only offload outer checksums if they are UDP,
195 * so for GRE_CSUM we have to use GSO_PARTIAL.
196 */
197 net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
198 }
199 efx->num_mac_stats = MCDI_WORD(outbuf,
200 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
201 netif_dbg(efx, probe, efx->net_dev,
202 "firmware reports num_mac_stats = %u\n",
203 efx->num_mac_stats);
204 return 0;
205 }
206
207 /* Event handling
208 */
209 static int ef100_ev_probe(struct efx_channel *channel)
210 {
211 /* Allocate an extra descriptor for the QMDA status completion entry */
212 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
213 (channel->eventq_mask + 2) *
214 sizeof(efx_qword_t),
215 GFP_KERNEL);
216 }
217
218 static int ef100_ev_init(struct efx_channel *channel)
219 {
220 struct ef100_nic_data *nic_data = channel->efx->nic_data;
221
222 /* initial phase is 0 */
223 clear_bit(channel->channel, nic_data->evq_phases);
224
225 return efx_mcdi_ev_init(channel, false, false);
226 }
227
228 static void ef100_ev_read_ack(struct efx_channel *channel)
229 {
230 efx_dword_t evq_prime;
231
232 EFX_POPULATE_DWORD_2(evq_prime,
233 ERF_GZ_EVQ_ID, channel->channel,
234 ERF_GZ_IDX, channel->eventq_read_ptr &
235 channel->eventq_mask);
236
237 efx_writed(channel->efx, &evq_prime,
238 efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
239 }
240
241 static int ef100_ev_process(struct efx_channel *channel, int quota)
242 {
243 struct efx_nic *efx = channel->efx;
244 struct ef100_nic_data *nic_data;
245 bool evq_phase, old_evq_phase;
246 unsigned int read_ptr;
247 efx_qword_t *p_event;
248 int spent = 0;
249 bool ev_phase;
250 int ev_type;
251
252 if (unlikely(!channel->enabled))
253 return 0;
254
255 nic_data = efx->nic_data;
256 evq_phase = test_bit(channel->channel, nic_data->evq_phases);
257 old_evq_phase = evq_phase;
258 read_ptr = channel->eventq_read_ptr;
259 BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
260
261 while (spent < quota) {
262 p_event = efx_event(channel, read_ptr);
263
264 ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
265 if (ev_phase != evq_phase)
266 break;
267
268 netif_vdbg(efx, drv, efx->net_dev,
269 "processing event on %d " EFX_QWORD_FMT "\n",
270 channel->channel, EFX_QWORD_VAL(*p_event));
271
272 ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
273
274 switch (ev_type) {
275 case ESE_GZ_EF100_EV_RX_PKTS:
276 efx_ef100_ev_rx(channel, p_event);
277 ++spent;
278 break;
279 case ESE_GZ_EF100_EV_MCDI:
280 efx_mcdi_process_event(channel, p_event);
281 break;
282 case ESE_GZ_EF100_EV_TX_COMPLETION:
283 ef100_ev_tx(channel, p_event);
284 break;
285 case ESE_GZ_EF100_EV_DRIVER:
286 netif_info(efx, drv, efx->net_dev,
287 "Driver initiated event " EFX_QWORD_FMT "\n",
288 EFX_QWORD_VAL(*p_event));
289 break;
290 default:
291 netif_info(efx, drv, efx->net_dev,
292 "Unhandled event " EFX_QWORD_FMT "\n",
293 EFX_QWORD_VAL(*p_event));
294 }
295
296 ++read_ptr;
297 if ((read_ptr & channel->eventq_mask) == 0)
298 evq_phase = !evq_phase;
299 }
300
301 channel->eventq_read_ptr = read_ptr;
302 if (evq_phase != old_evq_phase)
303 change_bit(channel->channel, nic_data->evq_phases);
304
305 return spent;
306 }
307
308 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
309 {
310 struct efx_msi_context *context = dev_id;
311 struct efx_nic *efx = context->efx;
312
313 netif_vdbg(efx, intr, efx->net_dev,
314 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
315
316 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
317 /* Note test interrupts */
318 if (context->index == efx->irq_level)
319 efx->last_irq_cpu = raw_smp_processor_id();
320
321 /* Schedule processing of the channel */
322 efx_schedule_channel_irq(efx->channel[context->index]);
323 }
324
325 return IRQ_HANDLED;
326 }
327
328 static int ef100_phy_probe(struct efx_nic *efx)
329 {
330 struct efx_mcdi_phy_data *phy_data;
331 int rc;
332
333 /* Probe for the PHY */
334 efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
335 if (!efx->phy_data)
336 return -ENOMEM;
337
338 rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
339 if (rc)
340 return rc;
341
342 /* Populate driver and ethtool settings */
343 phy_data = efx->phy_data;
344 mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
345 efx->link_advertising);
346 efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
347 false);
348
349 /* Default to Autonegotiated flow control if the PHY supports it */
350 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
351 if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
352 efx->wanted_fc |= EFX_FC_AUTO;
353 efx_link_set_wanted_fc(efx, efx->wanted_fc);
354
355 /* Push settings to the PHY. Failure is not fatal, the user can try to
356 * fix it using ethtool.
357 */
358 rc = efx_mcdi_port_reconfigure(efx);
359 if (rc && rc != -EPERM)
360 netif_warn(efx, drv, efx->net_dev,
361 "could not initialise PHY settings\n");
362
363 return 0;
364 }
365
366 static int ef100_filter_table_probe(struct efx_nic *efx)
367 {
368 return efx_mcdi_filter_table_probe(efx, true);
369 }
370
371 static int ef100_filter_table_up(struct efx_nic *efx)
372 {
373 int rc;
374
375 rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
376 if (rc) {
377 efx_mcdi_filter_table_down(efx);
378 return rc;
379 }
380
381 rc = efx_mcdi_filter_add_vlan(efx, 0);
382 if (rc) {
383 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
384 efx_mcdi_filter_table_down(efx);
385 }
386
387 return rc;
388 }
389
390 static void ef100_filter_table_down(struct efx_nic *efx)
391 {
392 efx_mcdi_filter_del_vlan(efx, 0);
393 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
394 efx_mcdi_filter_table_down(efx);
395 }
396
397 /* Other
398 */
399 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
400 {
401 WARN_ON(!mutex_is_locked(&efx->mac_lock));
402
403 efx_mcdi_filter_sync_rx_mode(efx);
404
405 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
406 return efx_mcdi_set_mtu(efx);
407 return efx_mcdi_set_mac(efx);
408 }
409
410 static enum reset_type ef100_map_reset_reason(enum reset_type reason)
411 {
412 if (reason == RESET_TYPE_TX_WATCHDOG)
413 return reason;
414 return RESET_TYPE_DISABLE;
415 }
416
417 static int ef100_map_reset_flags(u32 *flags)
418 {
419 /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
420 if ((*flags & EF100_RESET_PORT)) {
421 *flags &= ~EF100_RESET_PORT;
422 return RESET_TYPE_ALL;
423 }
424 if (*flags & ETH_RESET_MGMT) {
425 *flags &= ~ETH_RESET_MGMT;
426 return RESET_TYPE_DISABLE;
427 }
428
429 return -EINVAL;
430 }
431
432 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
433 {
434 int rc;
435
436 dev_close(efx->net_dev);
437
438 if (reset_type == RESET_TYPE_TX_WATCHDOG) {
439 netif_device_attach(efx->net_dev);
440 __clear_bit(reset_type, &efx->reset_pending);
441 rc = dev_open(efx->net_dev, NULL);
442 } else if (reset_type == RESET_TYPE_ALL) {
443 rc = efx_mcdi_reset(efx, reset_type);
444 if (rc)
445 return rc;
446
447 netif_device_attach(efx->net_dev);
448
449 rc = dev_open(efx->net_dev, NULL);
450 } else {
451 rc = 1; /* Leave the device closed */
452 }
453 return rc;
454 }
455
456 static void ef100_common_stat_mask(unsigned long *mask)
457 {
458 __set_bit(EF100_STAT_port_rx_packets, mask);
459 __set_bit(EF100_STAT_port_tx_packets, mask);
460 __set_bit(EF100_STAT_port_rx_bytes, mask);
461 __set_bit(EF100_STAT_port_tx_bytes, mask);
462 __set_bit(EF100_STAT_port_rx_multicast, mask);
463 __set_bit(EF100_STAT_port_rx_bad, mask);
464 __set_bit(EF100_STAT_port_rx_align_error, mask);
465 __set_bit(EF100_STAT_port_rx_overflow, mask);
466 }
467
468 static void ef100_ethtool_stat_mask(unsigned long *mask)
469 {
470 __set_bit(EF100_STAT_port_tx_pause, mask);
471 __set_bit(EF100_STAT_port_tx_unicast, mask);
472 __set_bit(EF100_STAT_port_tx_multicast, mask);
473 __set_bit(EF100_STAT_port_tx_broadcast, mask);
474 __set_bit(EF100_STAT_port_tx_lt64, mask);
475 __set_bit(EF100_STAT_port_tx_64, mask);
476 __set_bit(EF100_STAT_port_tx_65_to_127, mask);
477 __set_bit(EF100_STAT_port_tx_128_to_255, mask);
478 __set_bit(EF100_STAT_port_tx_256_to_511, mask);
479 __set_bit(EF100_STAT_port_tx_512_to_1023, mask);
480 __set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
481 __set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
482 __set_bit(EF100_STAT_port_rx_good, mask);
483 __set_bit(EF100_STAT_port_rx_pause, mask);
484 __set_bit(EF100_STAT_port_rx_unicast, mask);
485 __set_bit(EF100_STAT_port_rx_broadcast, mask);
486 __set_bit(EF100_STAT_port_rx_lt64, mask);
487 __set_bit(EF100_STAT_port_rx_64, mask);
488 __set_bit(EF100_STAT_port_rx_65_to_127, mask);
489 __set_bit(EF100_STAT_port_rx_128_to_255, mask);
490 __set_bit(EF100_STAT_port_rx_256_to_511, mask);
491 __set_bit(EF100_STAT_port_rx_512_to_1023, mask);
492 __set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
493 __set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
494 __set_bit(EF100_STAT_port_rx_gtjumbo, mask);
495 __set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
496 __set_bit(EF100_STAT_port_rx_length_error, mask);
497 __set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
498 __set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
499 __set_bit(GENERIC_STAT_rx_noskb_drops, mask);
500 }
501
502 #define EF100_DMA_STAT(ext_name, mcdi_name) \
503 [EF100_STAT_ ## ext_name] = \
504 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
505
506 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
507 EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
508 EF100_DMA_STAT(port_tx_packets, TX_PKTS),
509 EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
510 EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
511 EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
512 EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
513 EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
514 EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
515 EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
516 EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
517 EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
518 EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
519 EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
520 EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
521 EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
522 EF100_DMA_STAT(port_rx_packets, RX_PKTS),
523 EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
524 EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
525 EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
526 EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
527 EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
528 EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
529 EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
530 EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
531 EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
532 EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
533 EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
534 EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
535 EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
536 EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
537 EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
538 EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
539 EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
540 EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
541 EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
542 EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
543 EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
544 EFX_GENERIC_SW_STAT(rx_noskb_drops),
545 };
546
547 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
548 {
549 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
550
551 ef100_ethtool_stat_mask(mask);
552 return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
553 mask, names);
554 }
555
556 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
557 struct rtnl_link_stats64 *core_stats)
558 {
559 struct ef100_nic_data *nic_data = efx->nic_data;
560 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
561 size_t stats_count = 0, index;
562 u64 *stats = nic_data->stats;
563
564 ef100_ethtool_stat_mask(mask);
565
566 if (full_stats) {
567 for_each_set_bit(index, mask, EF100_STAT_COUNT) {
568 if (ef100_stat_desc[index].name) {
569 *full_stats++ = stats[index];
570 ++stats_count;
571 }
572 }
573 }
574
575 if (!core_stats)
576 return stats_count;
577
578 core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
579 core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
580 core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
581 core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
582 core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
583 stats[GENERIC_STAT_rx_nodesc_trunc] +
584 stats[GENERIC_STAT_rx_noskb_drops];
585 core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
586 core_stats->rx_length_errors =
587 stats[EF100_STAT_port_rx_gtjumbo] +
588 stats[EF100_STAT_port_rx_length_error];
589 core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
590 core_stats->rx_frame_errors =
591 stats[EF100_STAT_port_rx_align_error];
592 core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
593 core_stats->rx_errors = (core_stats->rx_length_errors +
594 core_stats->rx_crc_errors +
595 core_stats->rx_frame_errors);
596
597 return stats_count;
598 }
599
600 static size_t ef100_update_stats(struct efx_nic *efx,
601 u64 *full_stats,
602 struct rtnl_link_stats64 *core_stats)
603 {
604 __le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
605 struct ef100_nic_data *nic_data = efx->nic_data;
606 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
607 u64 *stats = nic_data->stats;
608
609 ef100_common_stat_mask(mask);
610 ef100_ethtool_stat_mask(mask);
611
612 if (!mc_stats)
613 return 0;
614
615 efx_nic_copy_stats(efx, mc_stats);
616 efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
617 stats, mc_stats, false);
618
619 kfree(mc_stats);
620
621 return ef100_update_stats_common(efx, full_stats, core_stats);
622 }
623
624 static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
625 struct netdev_phys_item_id *ppid)
626 {
627 struct ef100_nic_data *nic_data = efx->nic_data;
628
629 if (!is_valid_ether_addr(nic_data->port_id))
630 return -EOPNOTSUPP;
631
632 ppid->id_len = ETH_ALEN;
633 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
634
635 return 0;
636 }
637
638 static int efx_ef100_irq_test_generate(struct efx_nic *efx)
639 {
640 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
641
642 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
643
644 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
645 return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
646 inbuf, sizeof(inbuf), NULL, 0, NULL);
647 }
648
649 #define EFX_EF100_TEST 1
650
651 static void efx_ef100_ev_test_generate(struct efx_channel *channel)
652 {
653 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
654 struct efx_nic *efx = channel->efx;
655 efx_qword_t event;
656 int rc;
657
658 EFX_POPULATE_QWORD_2(event,
659 ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
660 ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
661
662 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
663
664 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
665 * already swapped the data to little-endian order.
666 */
667 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
668 sizeof(efx_qword_t));
669
670 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
671 NULL, 0, NULL);
672 if (rc && (rc != -ENETDOWN))
673 goto fail;
674
675 return;
676
677 fail:
678 WARN_ON(true);
679 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
680 }
681
682 static unsigned int ef100_check_caps(const struct efx_nic *efx,
683 u8 flag, u32 offset)
684 {
685 const struct ef100_nic_data *nic_data = efx->nic_data;
686
687 switch (offset) {
688 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
689 return nic_data->datapath_caps & BIT_ULL(flag);
690 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
691 return nic_data->datapath_caps2 & BIT_ULL(flag);
692 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
693 return nic_data->datapath_caps3 & BIT_ULL(flag);
694 default:
695 return 0;
696 }
697 }
698
699 /* NIC level access functions
700 */
701 #define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \
702 NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
703 NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
704 NETIF_F_HW_VLAN_CTAG_TX)
705
706 const struct efx_nic_type ef100_pf_nic_type = {
707 .revision = EFX_REV_EF100,
708 .is_vf = false,
709 .probe = ef100_probe_pf,
710 .offload_features = EF100_OFFLOAD_FEATURES,
711 .mcdi_max_ver = 2,
712 .mcdi_request = ef100_mcdi_request,
713 .mcdi_poll_response = ef100_mcdi_poll_response,
714 .mcdi_read_response = ef100_mcdi_read_response,
715 .mcdi_poll_reboot = ef100_mcdi_poll_reboot,
716 .mcdi_reboot_detected = ef100_mcdi_reboot_detected,
717 .irq_enable_master = efx_port_dummy_op_void,
718 .irq_test_generate = efx_ef100_irq_test_generate,
719 .irq_disable_non_ev = efx_port_dummy_op_void,
720 .push_irq_moderation = efx_channel_dummy_op_void,
721 .min_interrupt_mode = EFX_INT_MODE_MSIX,
722 .map_reset_reason = ef100_map_reset_reason,
723 .map_reset_flags = ef100_map_reset_flags,
724 .reset = ef100_reset,
725
726 .check_caps = ef100_check_caps,
727
728 .ev_probe = ef100_ev_probe,
729 .ev_init = ef100_ev_init,
730 .ev_fini = efx_mcdi_ev_fini,
731 .ev_remove = efx_mcdi_ev_remove,
732 .irq_handle_msi = ef100_msi_interrupt,
733 .ev_process = ef100_ev_process,
734 .ev_read_ack = ef100_ev_read_ack,
735 .ev_test_generate = efx_ef100_ev_test_generate,
736 .tx_probe = ef100_tx_probe,
737 .tx_init = ef100_tx_init,
738 .tx_write = ef100_tx_write,
739 .tx_enqueue = ef100_enqueue_skb,
740 .rx_probe = efx_mcdi_rx_probe,
741 .rx_init = efx_mcdi_rx_init,
742 .rx_remove = efx_mcdi_rx_remove,
743 .rx_write = ef100_rx_write,
744 .rx_packet = __ef100_rx_packet,
745 .rx_buf_hash_valid = ef100_rx_buf_hash_valid,
746 .fini_dmaq = efx_fini_dmaq,
747 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
748 .filter_table_probe = ef100_filter_table_up,
749 .filter_table_restore = efx_mcdi_filter_table_restore,
750 .filter_table_remove = ef100_filter_table_down,
751 .filter_insert = efx_mcdi_filter_insert,
752 .filter_remove_safe = efx_mcdi_filter_remove_safe,
753 .filter_get_safe = efx_mcdi_filter_get_safe,
754 .filter_clear_rx = efx_mcdi_filter_clear_rx,
755 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
756 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
757 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
758 #ifdef CONFIG_RFS_ACCEL
759 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
760 #endif
761
762 .get_phys_port_id = efx_ef100_get_phys_port_id,
763
764 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
765 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
766 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
767 .rx_hash_key_size = 40,
768 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
769 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
770 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
771 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
772 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
773
774 .reconfigure_mac = ef100_reconfigure_mac,
775 .reconfigure_port = efx_mcdi_port_reconfigure,
776 .test_nvram = efx_new_mcdi_nvram_test_all,
777 .describe_stats = ef100_describe_stats,
778 .start_stats = efx_mcdi_mac_start_stats,
779 .update_stats = ef100_update_stats,
780 .pull_stats = efx_mcdi_mac_pull_stats,
781 .stop_stats = efx_mcdi_mac_stop_stats,
782
783 /* Per-type bar/size configuration not used on ef100. Location of
784 * registers is defined by extended capabilities.
785 */
786 .mem_bar = NULL,
787 .mem_map_size = NULL,
788
789 };
790
791 const struct efx_nic_type ef100_vf_nic_type = {
792 .revision = EFX_REV_EF100,
793 .is_vf = true,
794 .probe = ef100_probe_vf,
795 .offload_features = EF100_OFFLOAD_FEATURES,
796 .mcdi_max_ver = 2,
797 .mcdi_request = ef100_mcdi_request,
798 .mcdi_poll_response = ef100_mcdi_poll_response,
799 .mcdi_read_response = ef100_mcdi_read_response,
800 .mcdi_poll_reboot = ef100_mcdi_poll_reboot,
801 .mcdi_reboot_detected = ef100_mcdi_reboot_detected,
802 .irq_enable_master = efx_port_dummy_op_void,
803 .irq_test_generate = efx_ef100_irq_test_generate,
804 .irq_disable_non_ev = efx_port_dummy_op_void,
805 .push_irq_moderation = efx_channel_dummy_op_void,
806 .min_interrupt_mode = EFX_INT_MODE_MSIX,
807 .map_reset_reason = ef100_map_reset_reason,
808 .map_reset_flags = ef100_map_reset_flags,
809 .reset = ef100_reset,
810 .check_caps = ef100_check_caps,
811 .ev_probe = ef100_ev_probe,
812 .ev_init = ef100_ev_init,
813 .ev_fini = efx_mcdi_ev_fini,
814 .ev_remove = efx_mcdi_ev_remove,
815 .irq_handle_msi = ef100_msi_interrupt,
816 .ev_process = ef100_ev_process,
817 .ev_read_ack = ef100_ev_read_ack,
818 .ev_test_generate = efx_ef100_ev_test_generate,
819 .tx_probe = ef100_tx_probe,
820 .tx_init = ef100_tx_init,
821 .tx_write = ef100_tx_write,
822 .tx_enqueue = ef100_enqueue_skb,
823 .rx_probe = efx_mcdi_rx_probe,
824 .rx_init = efx_mcdi_rx_init,
825 .rx_remove = efx_mcdi_rx_remove,
826 .rx_write = ef100_rx_write,
827 .rx_packet = __ef100_rx_packet,
828 .rx_buf_hash_valid = ef100_rx_buf_hash_valid,
829 .fini_dmaq = efx_fini_dmaq,
830 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
831 .filter_table_probe = ef100_filter_table_up,
832 .filter_table_restore = efx_mcdi_filter_table_restore,
833 .filter_table_remove = ef100_filter_table_down,
834 .filter_insert = efx_mcdi_filter_insert,
835 .filter_remove_safe = efx_mcdi_filter_remove_safe,
836 .filter_get_safe = efx_mcdi_filter_get_safe,
837 .filter_clear_rx = efx_mcdi_filter_clear_rx,
838 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
839 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
840 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
841 #ifdef CONFIG_RFS_ACCEL
842 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
843 #endif
844
845 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
846 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
847 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
848 .rx_hash_key_size = 40,
849 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
850 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
851 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
852
853 .reconfigure_mac = ef100_reconfigure_mac,
854 .test_nvram = efx_new_mcdi_nvram_test_all,
855 .describe_stats = ef100_describe_stats,
856 .start_stats = efx_mcdi_mac_start_stats,
857 .update_stats = ef100_update_stats,
858 .pull_stats = efx_mcdi_mac_pull_stats,
859 .stop_stats = efx_mcdi_mac_stop_stats,
860
861 .mem_bar = NULL,
862 .mem_map_size = NULL,
863
864 };
865
866 static int compare_versions(const char *a, const char *b)
867 {
868 int a_major, a_minor, a_point, a_patch;
869 int b_major, b_minor, b_point, b_patch;
870 int a_matched, b_matched;
871
872 a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
873 b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
874
875 if (a_matched == 4 && b_matched != 4)
876 return +1;
877
878 if (a_matched != 4 && b_matched == 4)
879 return -1;
880
881 if (a_matched != 4 && b_matched != 4)
882 return 0;
883
884 if (a_major != b_major)
885 return a_major - b_major;
886
887 if (a_minor != b_minor)
888 return a_minor - b_minor;
889
890 if (a_point != b_point)
891 return a_point - b_point;
892
893 return a_patch - b_patch;
894 }
895
896 enum ef100_tlv_state_machine {
897 EF100_TLV_TYPE,
898 EF100_TLV_TYPE_CONT,
899 EF100_TLV_LENGTH,
900 EF100_TLV_VALUE
901 };
902
903 struct ef100_tlv_state {
904 enum ef100_tlv_state_machine state;
905 u64 value;
906 u32 value_offset;
907 u16 type;
908 u8 len;
909 };
910
911 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
912 {
913 switch (state->state) {
914 case EF100_TLV_TYPE:
915 state->type = byte & 0x7f;
916 state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
917 : EF100_TLV_LENGTH;
918 /* Clear ready to read in a new entry */
919 state->value = 0;
920 state->value_offset = 0;
921 return 0;
922 case EF100_TLV_TYPE_CONT:
923 state->type |= byte << 7;
924 state->state = EF100_TLV_LENGTH;
925 return 0;
926 case EF100_TLV_LENGTH:
927 state->len = byte;
928 /* We only handle TLVs that fit in a u64 */
929 if (state->len > sizeof(state->value))
930 return -EOPNOTSUPP;
931 /* len may be zero, implying a value of zero */
932 state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
933 return 0;
934 case EF100_TLV_VALUE:
935 state->value |= ((u64)byte) << (state->value_offset * 8);
936 state->value_offset++;
937 if (state->value_offset >= state->len)
938 state->state = EF100_TLV_TYPE;
939 return 0;
940 default: /* state machine error, can't happen */
941 WARN_ON_ONCE(1);
942 return -EIO;
943 }
944 }
945
946 static int ef100_process_design_param(struct efx_nic *efx,
947 const struct ef100_tlv_state *reader)
948 {
949 struct ef100_nic_data *nic_data = efx->nic_data;
950
951 switch (reader->type) {
952 case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
953 return 0;
954 case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
955 /* Driver doesn't support timestamping yet, so we don't care */
956 return 0;
957 case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
958 /* Driver doesn't support unsolicited-event credits yet, so
959 * we don't care
960 */
961 return 0;
962 case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
963 /* Driver doesn't manage the NMMU (so we don't care) */
964 return 0;
965 case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
966 /* Driver uses CHECKSUM_COMPLETE, so we don't care about
967 * protocol checksum validation
968 */
969 return 0;
970 case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
971 nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
972 return 0;
973 case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
974 /* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
975 if (!reader->value) {
976 netif_err(efx, probe, efx->net_dev,
977 "TSO_MAX_HDR_NUM_SEGS < 1\n");
978 return -EOPNOTSUPP;
979 }
980 return 0;
981 case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
982 case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
983 /* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
984 * EFX_MIN_DMAQ_SIZE, so we just need to check that
985 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
986 * This is very unlikely to fail.
987 */
988 if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
989 EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
990 netif_err(efx, probe, efx->net_dev,
991 "%s size granularity is %llu, can't guarantee safety\n",
992 reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
993 reader->value);
994 return -EOPNOTSUPP;
995 }
996 return 0;
997 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
998 nic_data->tso_max_payload_len = min_t(u64, reader->value, GSO_MAX_SIZE);
999 efx->net_dev->gso_max_size = nic_data->tso_max_payload_len;
1000 return 0;
1001 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
1002 nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
1003 efx->net_dev->gso_max_segs = nic_data->tso_max_payload_num_segs;
1004 return 0;
1005 case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
1006 nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
1007 return 0;
1008 case ESE_EF100_DP_GZ_COMPAT:
1009 if (reader->value) {
1010 netif_err(efx, probe, efx->net_dev,
1011 "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
1012 reader->value);
1013 return -EOPNOTSUPP;
1014 }
1015 return 0;
1016 case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
1017 /* Driver doesn't use mem2mem transfers */
1018 return 0;
1019 case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
1020 /* Driver doesn't currently use EVQ_TIMER */
1021 return 0;
1022 case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
1023 /* Driver doesn't manage the NMMU (so we don't care) */
1024 return 0;
1025 case ESE_EF100_DP_GZ_VI_STRIDES:
1026 /* We never try to set the VI stride, and we don't rely on
1027 * being able to find VIs past VI 0 until after we've learned
1028 * the current stride from MC_CMD_GET_CAPABILITIES.
1029 * So the value of this shouldn't matter.
1030 */
1031 if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
1032 netif_dbg(efx, probe, efx->net_dev,
1033 "NIC has other than default VI_STRIDES (mask "
1034 "%#llx), early probing might use wrong one\n",
1035 reader->value);
1036 return 0;
1037 case ESE_EF100_DP_GZ_RX_MAX_RUNT:
1038 /* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
1039 * care whether it indicates runt or overlength for any given
1040 * packet, so we don't care about this parameter.
1041 */
1042 return 0;
1043 default:
1044 /* Host interface says "Drivers should ignore design parameters
1045 * that they do not recognise."
1046 */
1047 netif_dbg(efx, probe, efx->net_dev,
1048 "Ignoring unrecognised design parameter %u\n",
1049 reader->type);
1050 return 0;
1051 }
1052 }
1053
1054 static int ef100_check_design_params(struct efx_nic *efx)
1055 {
1056 struct ef100_tlv_state reader = {};
1057 u32 total_len, offset = 0;
1058 efx_dword_t reg;
1059 int rc = 0, i;
1060 u32 data;
1061
1062 efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
1063 total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
1064 netif_dbg(efx, probe, efx->net_dev, "%u bytes of design parameters\n",
1065 total_len);
1066 while (offset < total_len) {
1067 efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
1068 data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
1069 for (i = 0; i < sizeof(data); i++) {
1070 rc = ef100_tlv_feed(&reader, data);
1071 /* Got a complete value? */
1072 if (!rc && reader.state == EF100_TLV_TYPE)
1073 rc = ef100_process_design_param(efx, &reader);
1074 if (rc)
1075 goto out;
1076 data >>= 8;
1077 offset++;
1078 }
1079 }
1080 /* Check we didn't end halfway through a TLV entry, which could either
1081 * mean that the TLV stream is truncated or just that it's corrupted
1082 * and our state machine is out of sync.
1083 */
1084 if (reader.state != EF100_TLV_TYPE) {
1085 if (reader.state == EF100_TLV_TYPE_CONT)
1086 netif_err(efx, probe, efx->net_dev,
1087 "truncated design parameter (incomplete type %u)\n",
1088 reader.type);
1089 else
1090 netif_err(efx, probe, efx->net_dev,
1091 "truncated design parameter %u\n",
1092 reader.type);
1093 rc = -EIO;
1094 }
1095 out:
1096 return rc;
1097 }
1098
1099 /* NIC probe and remove
1100 */
1101 static int ef100_probe_main(struct efx_nic *efx)
1102 {
1103 unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
1104 struct net_device *net_dev = efx->net_dev;
1105 struct ef100_nic_data *nic_data;
1106 char fw_version[32];
1107 int i, rc;
1108
1109 if (WARN_ON(bar_size == 0))
1110 return -EIO;
1111
1112 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1113 if (!nic_data)
1114 return -ENOMEM;
1115 efx->nic_data = nic_data;
1116 nic_data->efx = efx;
1117 net_dev->features |= efx->type->offload_features;
1118 net_dev->hw_features |= efx->type->offload_features;
1119 net_dev->hw_enc_features |= efx->type->offload_features;
1120 net_dev->vlan_features |= NETIF_F_HW_CSUM | NETIF_F_SG |
1121 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO;
1122
1123 /* Populate design-parameter defaults */
1124 nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1125 nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1126 nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1127 nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1128 net_dev->gso_max_segs = ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT;
1129 /* Read design parameters */
1130 rc = ef100_check_design_params(efx);
1131 if (rc) {
1132 netif_err(efx, probe, efx->net_dev,
1133 "Unsupported design parameters\n");
1134 goto fail;
1135 }
1136
1137 /* we assume later that we can copy from this buffer in dwords */
1138 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1139
1140 /* MCDI buffers must be 256 byte aligned. */
1141 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1142 GFP_KERNEL);
1143 if (rc)
1144 goto fail;
1145
1146 /* Get the MC's warm boot count. In case it's rebooting right
1147 * now, be prepared to retry.
1148 */
1149 i = 0;
1150 for (;;) {
1151 rc = ef100_get_warm_boot_count(efx);
1152 if (rc >= 0)
1153 break;
1154 if (++i == 5)
1155 goto fail;
1156 ssleep(1);
1157 }
1158 nic_data->warm_boot_count = rc;
1159
1160 /* In case we're recovering from a crash (kexec), we want to
1161 * cancel any outstanding request by the previous user of this
1162 * function. We send a special message using the least
1163 * significant bits of the 'high' (doorbell) register.
1164 */
1165 _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1166
1167 /* Post-IO section. */
1168
1169 rc = efx_mcdi_init(efx);
1170 if (!rc && efx->mcdi->fn_flags &
1171 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) {
1172 netif_info(efx, probe, efx->net_dev,
1173 "No network port on this PCI function");
1174 rc = -ENODEV;
1175 }
1176 if (rc)
1177 goto fail;
1178 /* Reset (most) configuration for this function */
1179 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1180 if (rc)
1181 goto fail;
1182 /* Enable event logging */
1183 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
1184 if (rc)
1185 goto fail;
1186
1187 rc = efx_get_pf_index(efx, &nic_data->pf_index);
1188 if (rc)
1189 goto fail;
1190
1191 rc = efx_ef100_init_datapath_caps(efx);
1192 if (rc < 0)
1193 goto fail;
1194
1195 efx->max_vis = EF100_MAX_VIS;
1196
1197 rc = efx_mcdi_port_get_number(efx);
1198 if (rc < 0)
1199 goto fail;
1200 efx->port_num = rc;
1201
1202 efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1203 netif_dbg(efx, drv, efx->net_dev, "Firmware version %s\n", fw_version);
1204
1205 if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1206 netif_info(efx, drv, efx->net_dev, "Firmware uses old event descriptors\n");
1207 rc = -EINVAL;
1208 goto fail;
1209 }
1210
1211 if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1212 netif_info(efx, drv, efx->net_dev, "Firmware uses unsolicited-event credits\n");
1213 rc = -EINVAL;
1214 goto fail;
1215 }
1216
1217 rc = ef100_phy_probe(efx);
1218 if (rc)
1219 goto fail;
1220
1221 down_write(&efx->filter_sem);
1222 rc = ef100_filter_table_probe(efx);
1223 up_write(&efx->filter_sem);
1224 if (rc)
1225 goto fail;
1226
1227 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
1228 sizeof(efx->rss_context.rx_hash_key));
1229
1230 /* Don't fail init if RSS setup doesn't work. */
1231 efx_mcdi_push_default_indir_table(efx, efx->n_rx_channels);
1232
1233 rc = ef100_register_netdev(efx);
1234 if (rc)
1235 goto fail;
1236
1237 return 0;
1238 fail:
1239 return rc;
1240 }
1241
1242 int ef100_probe_pf(struct efx_nic *efx)
1243 {
1244 struct net_device *net_dev = efx->net_dev;
1245 struct ef100_nic_data *nic_data;
1246 int rc = ef100_probe_main(efx);
1247
1248 if (rc)
1249 goto fail;
1250
1251 nic_data = efx->nic_data;
1252 rc = ef100_get_mac_address(efx, net_dev->perm_addr);
1253 if (rc)
1254 goto fail;
1255 /* Assign MAC address */
1256 memcpy(net_dev->dev_addr, net_dev->perm_addr, ETH_ALEN);
1257 memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
1258
1259 return 0;
1260
1261 fail:
1262 return rc;
1263 }
1264
1265 int ef100_probe_vf(struct efx_nic *efx)
1266 {
1267 return ef100_probe_main(efx);
1268 }
1269
1270 void ef100_remove(struct efx_nic *efx)
1271 {
1272 struct ef100_nic_data *nic_data = efx->nic_data;
1273
1274 ef100_unregister_netdev(efx);
1275
1276 down_write(&efx->filter_sem);
1277 efx_mcdi_filter_table_remove(efx);
1278 up_write(&efx->filter_sem);
1279 efx_fini_channels(efx);
1280 kfree(efx->phy_data);
1281 efx->phy_data = NULL;
1282 efx_mcdi_detach(efx);
1283 efx_mcdi_fini(efx);
1284 if (nic_data)
1285 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1286 kfree(nic_data);
1287 efx->nic_data = NULL;
1288 }