]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/sfc/efx.c
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include <net/gre.h>
27 #include <net/udp_tunnel.h>
28 #include "efx.h"
29 #include "nic.h"
30 #include "selftest.h"
31 #include "sriov.h"
32
33 #include "mcdi.h"
34 #include "mcdi_pcol.h"
35 #include "workarounds.h"
36
37 /**************************************************************************
38 *
39 * Type name strings
40 *
41 **************************************************************************
42 */
43
44 /* Loopback mode names (see LOOPBACK_MODE()) */
45 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
46 const char *const efx_loopback_mode_names[] = {
47 [LOOPBACK_NONE] = "NONE",
48 [LOOPBACK_DATA] = "DATAPATH",
49 [LOOPBACK_GMAC] = "GMAC",
50 [LOOPBACK_XGMII] = "XGMII",
51 [LOOPBACK_XGXS] = "XGXS",
52 [LOOPBACK_XAUI] = "XAUI",
53 [LOOPBACK_GMII] = "GMII",
54 [LOOPBACK_SGMII] = "SGMII",
55 [LOOPBACK_XGBR] = "XGBR",
56 [LOOPBACK_XFI] = "XFI",
57 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
58 [LOOPBACK_GMII_FAR] = "GMII_FAR",
59 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
60 [LOOPBACK_XFI_FAR] = "XFI_FAR",
61 [LOOPBACK_GPHY] = "GPHY",
62 [LOOPBACK_PHYXS] = "PHYXS",
63 [LOOPBACK_PCS] = "PCS",
64 [LOOPBACK_PMAPMD] = "PMA/PMD",
65 [LOOPBACK_XPORT] = "XPORT",
66 [LOOPBACK_XGMII_WS] = "XGMII_WS",
67 [LOOPBACK_XAUI_WS] = "XAUI_WS",
68 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
69 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
70 [LOOPBACK_GMII_WS] = "GMII_WS",
71 [LOOPBACK_XFI_WS] = "XFI_WS",
72 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
73 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
74 };
75
76 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
77 const char *const efx_reset_type_names[] = {
78 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
79 [RESET_TYPE_ALL] = "ALL",
80 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
81 [RESET_TYPE_WORLD] = "WORLD",
82 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
83 [RESET_TYPE_DATAPATH] = "DATAPATH",
84 [RESET_TYPE_MC_BIST] = "MC_BIST",
85 [RESET_TYPE_DISABLE] = "DISABLE",
86 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
87 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
88 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
89 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
90 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
91 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
92 };
93
94 /* UDP tunnel type names */
95 static const char *const efx_udp_tunnel_type_names[] = {
96 [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan",
97 [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve",
98 };
99
100 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen)
101 {
102 if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) &&
103 efx_udp_tunnel_type_names[type] != NULL)
104 snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]);
105 else
106 snprintf(buf, buflen, "type %d", type);
107 }
108
109 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
110 * queued onto this work queue. This is not a per-nic work queue, because
111 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
112 */
113 static struct workqueue_struct *reset_workqueue;
114
115 /* How often and how many times to poll for a reset while waiting for a
116 * BIST that another function started to complete.
117 */
118 #define BIST_WAIT_DELAY_MS 100
119 #define BIST_WAIT_DELAY_COUNT 100
120
121 /**************************************************************************
122 *
123 * Configurable values
124 *
125 *************************************************************************/
126
127 /*
128 * Use separate channels for TX and RX events
129 *
130 * Set this to 1 to use separate channels for TX and RX. It allows us
131 * to control interrupt affinity separately for TX and RX.
132 *
133 * This is only used in MSI-X interrupt mode
134 */
135 bool efx_separate_tx_channels;
136 module_param(efx_separate_tx_channels, bool, 0444);
137 MODULE_PARM_DESC(efx_separate_tx_channels,
138 "Use separate channels for TX and RX");
139
140 /* This is the weight assigned to each of the (per-channel) virtual
141 * NAPI devices.
142 */
143 static int napi_weight = 64;
144
145 /* This is the time (in jiffies) between invocations of the hardware
146 * monitor.
147 * On Falcon-based NICs, this will:
148 * - Check the on-board hardware monitor;
149 * - Poll the link state and reconfigure the hardware as necessary.
150 * On Siena-based NICs for power systems with EEH support, this will give EEH a
151 * chance to start.
152 */
153 static unsigned int efx_monitor_interval = 1 * HZ;
154
155 /* Initial interrupt moderation settings. They can be modified after
156 * module load with ethtool.
157 *
158 * The default for RX should strike a balance between increasing the
159 * round-trip latency and reducing overhead.
160 */
161 static unsigned int rx_irq_mod_usec = 60;
162
163 /* Initial interrupt moderation settings. They can be modified after
164 * module load with ethtool.
165 *
166 * This default is chosen to ensure that a 10G link does not go idle
167 * while a TX queue is stopped after it has become full. A queue is
168 * restarted when it drops below half full. The time this takes (assuming
169 * worst case 3 descriptors per packet and 1024 descriptors) is
170 * 512 / 3 * 1.2 = 205 usec.
171 */
172 static unsigned int tx_irq_mod_usec = 150;
173
174 /* This is the first interrupt mode to try out of:
175 * 0 => MSI-X
176 * 1 => MSI
177 * 2 => legacy
178 */
179 static unsigned int interrupt_mode;
180
181 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
182 * i.e. the number of CPUs among which we may distribute simultaneous
183 * interrupt handling.
184 *
185 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
186 * The default (0) means to assign an interrupt to each core.
187 */
188 static unsigned int rss_cpus;
189 module_param(rss_cpus, uint, 0444);
190 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
191
192 static bool phy_flash_cfg;
193 module_param(phy_flash_cfg, bool, 0644);
194 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
195
196 static unsigned irq_adapt_low_thresh = 8000;
197 module_param(irq_adapt_low_thresh, uint, 0644);
198 MODULE_PARM_DESC(irq_adapt_low_thresh,
199 "Threshold score for reducing IRQ moderation");
200
201 static unsigned irq_adapt_high_thresh = 16000;
202 module_param(irq_adapt_high_thresh, uint, 0644);
203 MODULE_PARM_DESC(irq_adapt_high_thresh,
204 "Threshold score for increasing IRQ moderation");
205
206 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
207 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
208 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
209 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
210 module_param(debug, uint, 0);
211 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
212
213 /**************************************************************************
214 *
215 * Utility functions and prototypes
216 *
217 *************************************************************************/
218
219 static int efx_soft_enable_interrupts(struct efx_nic *efx);
220 static void efx_soft_disable_interrupts(struct efx_nic *efx);
221 static void efx_remove_channel(struct efx_channel *channel);
222 static void efx_remove_channels(struct efx_nic *efx);
223 static const struct efx_channel_type efx_default_channel_type;
224 static void efx_remove_port(struct efx_nic *efx);
225 static void efx_init_napi_channel(struct efx_channel *channel);
226 static void efx_fini_napi(struct efx_nic *efx);
227 static void efx_fini_napi_channel(struct efx_channel *channel);
228 static void efx_fini_struct(struct efx_nic *efx);
229 static void efx_start_all(struct efx_nic *efx);
230 static void efx_stop_all(struct efx_nic *efx);
231
232 #define EFX_ASSERT_RESET_SERIALISED(efx) \
233 do { \
234 if ((efx->state == STATE_READY) || \
235 (efx->state == STATE_RECOVERY) || \
236 (efx->state == STATE_DISABLED)) \
237 ASSERT_RTNL(); \
238 } while (0)
239
240 static int efx_check_disabled(struct efx_nic *efx)
241 {
242 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
243 netif_err(efx, drv, efx->net_dev,
244 "device is disabled due to earlier errors\n");
245 return -EIO;
246 }
247 return 0;
248 }
249
250 /**************************************************************************
251 *
252 * Event queue processing
253 *
254 *************************************************************************/
255
256 /* Process channel's event queue
257 *
258 * This function is responsible for processing the event queue of a
259 * single channel. The caller must guarantee that this function will
260 * never be concurrently called more than once on the same channel,
261 * though different channels may be being processed concurrently.
262 */
263 static int efx_process_channel(struct efx_channel *channel, int budget)
264 {
265 struct efx_tx_queue *tx_queue;
266 int spent;
267
268 if (unlikely(!channel->enabled))
269 return 0;
270
271 efx_for_each_channel_tx_queue(tx_queue, channel) {
272 tx_queue->pkts_compl = 0;
273 tx_queue->bytes_compl = 0;
274 }
275
276 spent = efx_nic_process_eventq(channel, budget);
277 if (spent && efx_channel_has_rx_queue(channel)) {
278 struct efx_rx_queue *rx_queue =
279 efx_channel_get_rx_queue(channel);
280
281 efx_rx_flush_packet(channel);
282 efx_fast_push_rx_descriptors(rx_queue, true);
283 }
284
285 /* Update BQL */
286 efx_for_each_channel_tx_queue(tx_queue, channel) {
287 if (tx_queue->bytes_compl) {
288 netdev_tx_completed_queue(tx_queue->core_txq,
289 tx_queue->pkts_compl, tx_queue->bytes_compl);
290 }
291 }
292
293 return spent;
294 }
295
296 /* NAPI poll handler
297 *
298 * NAPI guarantees serialisation of polls of the same device, which
299 * provides the guarantee required by efx_process_channel().
300 */
301 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
302 {
303 int step = efx->irq_mod_step_us;
304
305 if (channel->irq_mod_score < irq_adapt_low_thresh) {
306 if (channel->irq_moderation_us > step) {
307 channel->irq_moderation_us -= step;
308 efx->type->push_irq_moderation(channel);
309 }
310 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
311 if (channel->irq_moderation_us <
312 efx->irq_rx_moderation_us) {
313 channel->irq_moderation_us += step;
314 efx->type->push_irq_moderation(channel);
315 }
316 }
317
318 channel->irq_count = 0;
319 channel->irq_mod_score = 0;
320 }
321
322 static int efx_poll(struct napi_struct *napi, int budget)
323 {
324 struct efx_channel *channel =
325 container_of(napi, struct efx_channel, napi_str);
326 struct efx_nic *efx = channel->efx;
327 int spent;
328
329 netif_vdbg(efx, intr, efx->net_dev,
330 "channel %d NAPI poll executing on CPU %d\n",
331 channel->channel, raw_smp_processor_id());
332
333 spent = efx_process_channel(channel, budget);
334
335 if (spent < budget) {
336 if (efx_channel_has_rx_queue(channel) &&
337 efx->irq_rx_adaptive &&
338 unlikely(++channel->irq_count == 1000)) {
339 efx_update_irq_mod(efx, channel);
340 }
341
342 efx_filter_rfs_expire(channel);
343
344 /* There is no race here; although napi_disable() will
345 * only wait for napi_complete(), this isn't a problem
346 * since efx_nic_eventq_read_ack() will have no effect if
347 * interrupts have already been disabled.
348 */
349 if (napi_complete_done(napi, spent))
350 efx_nic_eventq_read_ack(channel);
351 }
352
353 return spent;
354 }
355
356 /* Create event queue
357 * Event queue memory allocations are done only once. If the channel
358 * is reset, the memory buffer will be reused; this guards against
359 * errors during channel reset and also simplifies interrupt handling.
360 */
361 static int efx_probe_eventq(struct efx_channel *channel)
362 {
363 struct efx_nic *efx = channel->efx;
364 unsigned long entries;
365
366 netif_dbg(efx, probe, efx->net_dev,
367 "chan %d create event queue\n", channel->channel);
368
369 /* Build an event queue with room for one event per tx and rx buffer,
370 * plus some extra for link state events and MCDI completions. */
371 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
372 EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
373 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
374
375 return efx_nic_probe_eventq(channel);
376 }
377
378 /* Prepare channel's event queue */
379 static int efx_init_eventq(struct efx_channel *channel)
380 {
381 struct efx_nic *efx = channel->efx;
382 int rc;
383
384 EFX_WARN_ON_PARANOID(channel->eventq_init);
385
386 netif_dbg(efx, drv, efx->net_dev,
387 "chan %d init event queue\n", channel->channel);
388
389 rc = efx_nic_init_eventq(channel);
390 if (rc == 0) {
391 efx->type->push_irq_moderation(channel);
392 channel->eventq_read_ptr = 0;
393 channel->eventq_init = true;
394 }
395 return rc;
396 }
397
398 /* Enable event queue processing and NAPI */
399 void efx_start_eventq(struct efx_channel *channel)
400 {
401 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
402 "chan %d start event queue\n", channel->channel);
403
404 /* Make sure the NAPI handler sees the enabled flag set */
405 channel->enabled = true;
406 smp_wmb();
407
408 napi_enable(&channel->napi_str);
409 efx_nic_eventq_read_ack(channel);
410 }
411
412 /* Disable event queue processing and NAPI */
413 void efx_stop_eventq(struct efx_channel *channel)
414 {
415 if (!channel->enabled)
416 return;
417
418 napi_disable(&channel->napi_str);
419 channel->enabled = false;
420 }
421
422 static void efx_fini_eventq(struct efx_channel *channel)
423 {
424 if (!channel->eventq_init)
425 return;
426
427 netif_dbg(channel->efx, drv, channel->efx->net_dev,
428 "chan %d fini event queue\n", channel->channel);
429
430 efx_nic_fini_eventq(channel);
431 channel->eventq_init = false;
432 }
433
434 static void efx_remove_eventq(struct efx_channel *channel)
435 {
436 netif_dbg(channel->efx, drv, channel->efx->net_dev,
437 "chan %d remove event queue\n", channel->channel);
438
439 efx_nic_remove_eventq(channel);
440 }
441
442 /**************************************************************************
443 *
444 * Channel handling
445 *
446 *************************************************************************/
447
448 /* Allocate and initialise a channel structure. */
449 static struct efx_channel *
450 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
451 {
452 struct efx_channel *channel;
453 struct efx_rx_queue *rx_queue;
454 struct efx_tx_queue *tx_queue;
455 int j;
456
457 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
458 if (!channel)
459 return NULL;
460
461 channel->efx = efx;
462 channel->channel = i;
463 channel->type = &efx_default_channel_type;
464
465 for (j = 0; j < EFX_TXQ_TYPES; j++) {
466 tx_queue = &channel->tx_queue[j];
467 tx_queue->efx = efx;
468 tx_queue->queue = i * EFX_TXQ_TYPES + j;
469 tx_queue->channel = channel;
470 }
471
472 rx_queue = &channel->rx_queue;
473 rx_queue->efx = efx;
474 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
475 (unsigned long)rx_queue);
476
477 return channel;
478 }
479
480 /* Allocate and initialise a channel structure, copying parameters
481 * (but not resources) from an old channel structure.
482 */
483 static struct efx_channel *
484 efx_copy_channel(const struct efx_channel *old_channel)
485 {
486 struct efx_channel *channel;
487 struct efx_rx_queue *rx_queue;
488 struct efx_tx_queue *tx_queue;
489 int j;
490
491 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
492 if (!channel)
493 return NULL;
494
495 *channel = *old_channel;
496
497 channel->napi_dev = NULL;
498 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
499 channel->napi_str.napi_id = 0;
500 channel->napi_str.state = 0;
501 memset(&channel->eventq, 0, sizeof(channel->eventq));
502
503 for (j = 0; j < EFX_TXQ_TYPES; j++) {
504 tx_queue = &channel->tx_queue[j];
505 if (tx_queue->channel)
506 tx_queue->channel = channel;
507 tx_queue->buffer = NULL;
508 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
509 }
510
511 rx_queue = &channel->rx_queue;
512 rx_queue->buffer = NULL;
513 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
514 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
515 (unsigned long)rx_queue);
516
517 return channel;
518 }
519
520 static int efx_probe_channel(struct efx_channel *channel)
521 {
522 struct efx_tx_queue *tx_queue;
523 struct efx_rx_queue *rx_queue;
524 int rc;
525
526 netif_dbg(channel->efx, probe, channel->efx->net_dev,
527 "creating channel %d\n", channel->channel);
528
529 rc = channel->type->pre_probe(channel);
530 if (rc)
531 goto fail;
532
533 rc = efx_probe_eventq(channel);
534 if (rc)
535 goto fail;
536
537 efx_for_each_channel_tx_queue(tx_queue, channel) {
538 rc = efx_probe_tx_queue(tx_queue);
539 if (rc)
540 goto fail;
541 }
542
543 efx_for_each_channel_rx_queue(rx_queue, channel) {
544 rc = efx_probe_rx_queue(rx_queue);
545 if (rc)
546 goto fail;
547 }
548
549 return 0;
550
551 fail:
552 efx_remove_channel(channel);
553 return rc;
554 }
555
556 static void
557 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
558 {
559 struct efx_nic *efx = channel->efx;
560 const char *type;
561 int number;
562
563 number = channel->channel;
564 if (efx->tx_channel_offset == 0) {
565 type = "";
566 } else if (channel->channel < efx->tx_channel_offset) {
567 type = "-rx";
568 } else {
569 type = "-tx";
570 number -= efx->tx_channel_offset;
571 }
572 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
573 }
574
575 static void efx_set_channel_names(struct efx_nic *efx)
576 {
577 struct efx_channel *channel;
578
579 efx_for_each_channel(channel, efx)
580 channel->type->get_name(channel,
581 efx->msi_context[channel->channel].name,
582 sizeof(efx->msi_context[0].name));
583 }
584
585 static int efx_probe_channels(struct efx_nic *efx)
586 {
587 struct efx_channel *channel;
588 int rc;
589
590 /* Restart special buffer allocation */
591 efx->next_buffer_table = 0;
592
593 /* Probe channels in reverse, so that any 'extra' channels
594 * use the start of the buffer table. This allows the traffic
595 * channels to be resized without moving them or wasting the
596 * entries before them.
597 */
598 efx_for_each_channel_rev(channel, efx) {
599 rc = efx_probe_channel(channel);
600 if (rc) {
601 netif_err(efx, probe, efx->net_dev,
602 "failed to create channel %d\n",
603 channel->channel);
604 goto fail;
605 }
606 }
607 efx_set_channel_names(efx);
608
609 return 0;
610
611 fail:
612 efx_remove_channels(efx);
613 return rc;
614 }
615
616 /* Channels are shutdown and reinitialised whilst the NIC is running
617 * to propagate configuration changes (mtu, checksum offload), or
618 * to clear hardware error conditions
619 */
620 static void efx_start_datapath(struct efx_nic *efx)
621 {
622 netdev_features_t old_features = efx->net_dev->features;
623 bool old_rx_scatter = efx->rx_scatter;
624 struct efx_tx_queue *tx_queue;
625 struct efx_rx_queue *rx_queue;
626 struct efx_channel *channel;
627 size_t rx_buf_len;
628
629 /* Calculate the rx buffer allocation parameters required to
630 * support the current MTU, including padding for header
631 * alignment and overruns.
632 */
633 efx->rx_dma_len = (efx->rx_prefix_size +
634 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
635 efx->type->rx_buffer_padding);
636 rx_buf_len = (sizeof(struct efx_rx_page_state) +
637 efx->rx_ip_align + efx->rx_dma_len);
638 if (rx_buf_len <= PAGE_SIZE) {
639 efx->rx_scatter = efx->type->always_rx_scatter;
640 efx->rx_buffer_order = 0;
641 } else if (efx->type->can_rx_scatter) {
642 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
643 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
644 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
645 EFX_RX_BUF_ALIGNMENT) >
646 PAGE_SIZE);
647 efx->rx_scatter = true;
648 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
649 efx->rx_buffer_order = 0;
650 } else {
651 efx->rx_scatter = false;
652 efx->rx_buffer_order = get_order(rx_buf_len);
653 }
654
655 efx_rx_config_page_split(efx);
656 if (efx->rx_buffer_order)
657 netif_dbg(efx, drv, efx->net_dev,
658 "RX buf len=%u; page order=%u batch=%u\n",
659 efx->rx_dma_len, efx->rx_buffer_order,
660 efx->rx_pages_per_batch);
661 else
662 netif_dbg(efx, drv, efx->net_dev,
663 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
664 efx->rx_dma_len, efx->rx_page_buf_step,
665 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
666
667 /* Restore previously fixed features in hw_features and remove
668 * features which are fixed now
669 */
670 efx->net_dev->hw_features |= efx->net_dev->features;
671 efx->net_dev->hw_features &= ~efx->fixed_features;
672 efx->net_dev->features |= efx->fixed_features;
673 if (efx->net_dev->features != old_features)
674 netdev_features_change(efx->net_dev);
675
676 /* RX filters may also have scatter-enabled flags */
677 if (efx->rx_scatter != old_rx_scatter)
678 efx->type->filter_update_rx_scatter(efx);
679
680 /* We must keep at least one descriptor in a TX ring empty.
681 * We could avoid this when the queue size does not exactly
682 * match the hardware ring size, but it's not that important.
683 * Therefore we stop the queue when one more skb might fill
684 * the ring completely. We wake it when half way back to
685 * empty.
686 */
687 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
688 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
689
690 /* Initialise the channels */
691 efx_for_each_channel(channel, efx) {
692 efx_for_each_channel_tx_queue(tx_queue, channel) {
693 efx_init_tx_queue(tx_queue);
694 atomic_inc(&efx->active_queues);
695 }
696
697 efx_for_each_channel_rx_queue(rx_queue, channel) {
698 efx_init_rx_queue(rx_queue);
699 atomic_inc(&efx->active_queues);
700 efx_stop_eventq(channel);
701 efx_fast_push_rx_descriptors(rx_queue, false);
702 efx_start_eventq(channel);
703 }
704
705 WARN_ON(channel->rx_pkt_n_frags);
706 }
707
708 efx_ptp_start_datapath(efx);
709
710 if (netif_device_present(efx->net_dev))
711 netif_tx_wake_all_queues(efx->net_dev);
712 }
713
714 static void efx_stop_datapath(struct efx_nic *efx)
715 {
716 struct efx_channel *channel;
717 struct efx_tx_queue *tx_queue;
718 struct efx_rx_queue *rx_queue;
719 int rc;
720
721 EFX_ASSERT_RESET_SERIALISED(efx);
722 BUG_ON(efx->port_enabled);
723
724 efx_ptp_stop_datapath(efx);
725
726 /* Stop RX refill */
727 efx_for_each_channel(channel, efx) {
728 efx_for_each_channel_rx_queue(rx_queue, channel)
729 rx_queue->refill_enabled = false;
730 }
731
732 efx_for_each_channel(channel, efx) {
733 /* RX packet processing is pipelined, so wait for the
734 * NAPI handler to complete. At least event queue 0
735 * might be kept active by non-data events, so don't
736 * use napi_synchronize() but actually disable NAPI
737 * temporarily.
738 */
739 if (efx_channel_has_rx_queue(channel)) {
740 efx_stop_eventq(channel);
741 efx_start_eventq(channel);
742 }
743 }
744
745 rc = efx->type->fini_dmaq(efx);
746 if (rc) {
747 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
748 } else {
749 netif_dbg(efx, drv, efx->net_dev,
750 "successfully flushed all queues\n");
751 }
752
753 efx_for_each_channel(channel, efx) {
754 efx_for_each_channel_rx_queue(rx_queue, channel)
755 efx_fini_rx_queue(rx_queue);
756 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
757 efx_fini_tx_queue(tx_queue);
758 }
759 }
760
761 static void efx_remove_channel(struct efx_channel *channel)
762 {
763 struct efx_tx_queue *tx_queue;
764 struct efx_rx_queue *rx_queue;
765
766 netif_dbg(channel->efx, drv, channel->efx->net_dev,
767 "destroy chan %d\n", channel->channel);
768
769 efx_for_each_channel_rx_queue(rx_queue, channel)
770 efx_remove_rx_queue(rx_queue);
771 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
772 efx_remove_tx_queue(tx_queue);
773 efx_remove_eventq(channel);
774 channel->type->post_remove(channel);
775 }
776
777 static void efx_remove_channels(struct efx_nic *efx)
778 {
779 struct efx_channel *channel;
780
781 efx_for_each_channel(channel, efx)
782 efx_remove_channel(channel);
783 }
784
785 int
786 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
787 {
788 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
789 u32 old_rxq_entries, old_txq_entries;
790 unsigned i, next_buffer_table = 0;
791 int rc, rc2;
792
793 rc = efx_check_disabled(efx);
794 if (rc)
795 return rc;
796
797 /* Not all channels should be reallocated. We must avoid
798 * reallocating their buffer table entries.
799 */
800 efx_for_each_channel(channel, efx) {
801 struct efx_rx_queue *rx_queue;
802 struct efx_tx_queue *tx_queue;
803
804 if (channel->type->copy)
805 continue;
806 next_buffer_table = max(next_buffer_table,
807 channel->eventq.index +
808 channel->eventq.entries);
809 efx_for_each_channel_rx_queue(rx_queue, channel)
810 next_buffer_table = max(next_buffer_table,
811 rx_queue->rxd.index +
812 rx_queue->rxd.entries);
813 efx_for_each_channel_tx_queue(tx_queue, channel)
814 next_buffer_table = max(next_buffer_table,
815 tx_queue->txd.index +
816 tx_queue->txd.entries);
817 }
818
819 efx_device_detach_sync(efx);
820 efx_stop_all(efx);
821 efx_soft_disable_interrupts(efx);
822
823 /* Clone channels (where possible) */
824 memset(other_channel, 0, sizeof(other_channel));
825 for (i = 0; i < efx->n_channels; i++) {
826 channel = efx->channel[i];
827 if (channel->type->copy)
828 channel = channel->type->copy(channel);
829 if (!channel) {
830 rc = -ENOMEM;
831 goto out;
832 }
833 other_channel[i] = channel;
834 }
835
836 /* Swap entry counts and channel pointers */
837 old_rxq_entries = efx->rxq_entries;
838 old_txq_entries = efx->txq_entries;
839 efx->rxq_entries = rxq_entries;
840 efx->txq_entries = txq_entries;
841 for (i = 0; i < efx->n_channels; i++) {
842 channel = efx->channel[i];
843 efx->channel[i] = other_channel[i];
844 other_channel[i] = channel;
845 }
846
847 /* Restart buffer table allocation */
848 efx->next_buffer_table = next_buffer_table;
849
850 for (i = 0; i < efx->n_channels; i++) {
851 channel = efx->channel[i];
852 if (!channel->type->copy)
853 continue;
854 rc = efx_probe_channel(channel);
855 if (rc)
856 goto rollback;
857 efx_init_napi_channel(efx->channel[i]);
858 }
859
860 out:
861 /* Destroy unused channel structures */
862 for (i = 0; i < efx->n_channels; i++) {
863 channel = other_channel[i];
864 if (channel && channel->type->copy) {
865 efx_fini_napi_channel(channel);
866 efx_remove_channel(channel);
867 kfree(channel);
868 }
869 }
870
871 rc2 = efx_soft_enable_interrupts(efx);
872 if (rc2) {
873 rc = rc ? rc : rc2;
874 netif_err(efx, drv, efx->net_dev,
875 "unable to restart interrupts on channel reallocation\n");
876 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
877 } else {
878 efx_start_all(efx);
879 efx_device_attach_if_not_resetting(efx);
880 }
881 return rc;
882
883 rollback:
884 /* Swap back */
885 efx->rxq_entries = old_rxq_entries;
886 efx->txq_entries = old_txq_entries;
887 for (i = 0; i < efx->n_channels; i++) {
888 channel = efx->channel[i];
889 efx->channel[i] = other_channel[i];
890 other_channel[i] = channel;
891 }
892 goto out;
893 }
894
895 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
896 {
897 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
898 }
899
900 static const struct efx_channel_type efx_default_channel_type = {
901 .pre_probe = efx_channel_dummy_op_int,
902 .post_remove = efx_channel_dummy_op_void,
903 .get_name = efx_get_channel_name,
904 .copy = efx_copy_channel,
905 .keep_eventq = false,
906 };
907
908 int efx_channel_dummy_op_int(struct efx_channel *channel)
909 {
910 return 0;
911 }
912
913 void efx_channel_dummy_op_void(struct efx_channel *channel)
914 {
915 }
916
917 /**************************************************************************
918 *
919 * Port handling
920 *
921 **************************************************************************/
922
923 /* This ensures that the kernel is kept informed (via
924 * netif_carrier_on/off) of the link status, and also maintains the
925 * link status's stop on the port's TX queue.
926 */
927 void efx_link_status_changed(struct efx_nic *efx)
928 {
929 struct efx_link_state *link_state = &efx->link_state;
930
931 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
932 * that no events are triggered between unregister_netdev() and the
933 * driver unloading. A more general condition is that NETDEV_CHANGE
934 * can only be generated between NETDEV_UP and NETDEV_DOWN */
935 if (!netif_running(efx->net_dev))
936 return;
937
938 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
939 efx->n_link_state_changes++;
940
941 if (link_state->up)
942 netif_carrier_on(efx->net_dev);
943 else
944 netif_carrier_off(efx->net_dev);
945 }
946
947 /* Status message for kernel log */
948 if (link_state->up)
949 netif_info(efx, link, efx->net_dev,
950 "link up at %uMbps %s-duplex (MTU %d)\n",
951 link_state->speed, link_state->fd ? "full" : "half",
952 efx->net_dev->mtu);
953 else
954 netif_info(efx, link, efx->net_dev, "link down\n");
955 }
956
957 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
958 {
959 efx->link_advertising = advertising;
960 if (advertising) {
961 if (advertising & ADVERTISED_Pause)
962 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
963 else
964 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
965 if (advertising & ADVERTISED_Asym_Pause)
966 efx->wanted_fc ^= EFX_FC_TX;
967 }
968 }
969
970 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
971 {
972 efx->wanted_fc = wanted_fc;
973 if (efx->link_advertising) {
974 if (wanted_fc & EFX_FC_RX)
975 efx->link_advertising |= (ADVERTISED_Pause |
976 ADVERTISED_Asym_Pause);
977 else
978 efx->link_advertising &= ~(ADVERTISED_Pause |
979 ADVERTISED_Asym_Pause);
980 if (wanted_fc & EFX_FC_TX)
981 efx->link_advertising ^= ADVERTISED_Asym_Pause;
982 }
983 }
984
985 static void efx_fini_port(struct efx_nic *efx);
986
987 /* We assume that efx->type->reconfigure_mac will always try to sync RX
988 * filters and therefore needs to read-lock the filter table against freeing
989 */
990 void efx_mac_reconfigure(struct efx_nic *efx)
991 {
992 down_read(&efx->filter_sem);
993 efx->type->reconfigure_mac(efx);
994 up_read(&efx->filter_sem);
995 }
996
997 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
998 * the MAC appropriately. All other PHY configuration changes are pushed
999 * through phy_op->set_settings(), and pushed asynchronously to the MAC
1000 * through efx_monitor().
1001 *
1002 * Callers must hold the mac_lock
1003 */
1004 int __efx_reconfigure_port(struct efx_nic *efx)
1005 {
1006 enum efx_phy_mode phy_mode;
1007 int rc;
1008
1009 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1010
1011 /* Disable PHY transmit in mac level loopbacks */
1012 phy_mode = efx->phy_mode;
1013 if (LOOPBACK_INTERNAL(efx))
1014 efx->phy_mode |= PHY_MODE_TX_DISABLED;
1015 else
1016 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1017
1018 rc = efx->type->reconfigure_port(efx);
1019
1020 if (rc)
1021 efx->phy_mode = phy_mode;
1022
1023 return rc;
1024 }
1025
1026 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1027 * disabled. */
1028 int efx_reconfigure_port(struct efx_nic *efx)
1029 {
1030 int rc;
1031
1032 EFX_ASSERT_RESET_SERIALISED(efx);
1033
1034 mutex_lock(&efx->mac_lock);
1035 rc = __efx_reconfigure_port(efx);
1036 mutex_unlock(&efx->mac_lock);
1037
1038 return rc;
1039 }
1040
1041 /* Asynchronous work item for changing MAC promiscuity and multicast
1042 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1043 * MAC directly. */
1044 static void efx_mac_work(struct work_struct *data)
1045 {
1046 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1047
1048 mutex_lock(&efx->mac_lock);
1049 if (efx->port_enabled)
1050 efx_mac_reconfigure(efx);
1051 mutex_unlock(&efx->mac_lock);
1052 }
1053
1054 static int efx_probe_port(struct efx_nic *efx)
1055 {
1056 int rc;
1057
1058 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1059
1060 if (phy_flash_cfg)
1061 efx->phy_mode = PHY_MODE_SPECIAL;
1062
1063 /* Connect up MAC/PHY operations table */
1064 rc = efx->type->probe_port(efx);
1065 if (rc)
1066 return rc;
1067
1068 /* Initialise MAC address to permanent address */
1069 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1070
1071 return 0;
1072 }
1073
1074 static int efx_init_port(struct efx_nic *efx)
1075 {
1076 int rc;
1077
1078 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1079
1080 mutex_lock(&efx->mac_lock);
1081
1082 rc = efx->phy_op->init(efx);
1083 if (rc)
1084 goto fail1;
1085
1086 efx->port_initialized = true;
1087
1088 /* Reconfigure the MAC before creating dma queues (required for
1089 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1090 efx_mac_reconfigure(efx);
1091
1092 /* Ensure the PHY advertises the correct flow control settings */
1093 rc = efx->phy_op->reconfigure(efx);
1094 if (rc && rc != -EPERM)
1095 goto fail2;
1096
1097 mutex_unlock(&efx->mac_lock);
1098 return 0;
1099
1100 fail2:
1101 efx->phy_op->fini(efx);
1102 fail1:
1103 mutex_unlock(&efx->mac_lock);
1104 return rc;
1105 }
1106
1107 static void efx_start_port(struct efx_nic *efx)
1108 {
1109 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1110 BUG_ON(efx->port_enabled);
1111
1112 mutex_lock(&efx->mac_lock);
1113 efx->port_enabled = true;
1114
1115 /* Ensure MAC ingress/egress is enabled */
1116 efx_mac_reconfigure(efx);
1117
1118 mutex_unlock(&efx->mac_lock);
1119 }
1120
1121 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1122 * and the async self-test, wait for them to finish and prevent them
1123 * being scheduled again. This doesn't cover online resets, which
1124 * should only be cancelled when removing the device.
1125 */
1126 static void efx_stop_port(struct efx_nic *efx)
1127 {
1128 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1129
1130 EFX_ASSERT_RESET_SERIALISED(efx);
1131
1132 mutex_lock(&efx->mac_lock);
1133 efx->port_enabled = false;
1134 mutex_unlock(&efx->mac_lock);
1135
1136 /* Serialise against efx_set_multicast_list() */
1137 netif_addr_lock_bh(efx->net_dev);
1138 netif_addr_unlock_bh(efx->net_dev);
1139
1140 cancel_delayed_work_sync(&efx->monitor_work);
1141 efx_selftest_async_cancel(efx);
1142 cancel_work_sync(&efx->mac_work);
1143 }
1144
1145 static void efx_fini_port(struct efx_nic *efx)
1146 {
1147 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1148
1149 if (!efx->port_initialized)
1150 return;
1151
1152 efx->phy_op->fini(efx);
1153 efx->port_initialized = false;
1154
1155 efx->link_state.up = false;
1156 efx_link_status_changed(efx);
1157 }
1158
1159 static void efx_remove_port(struct efx_nic *efx)
1160 {
1161 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1162
1163 efx->type->remove_port(efx);
1164 }
1165
1166 /**************************************************************************
1167 *
1168 * NIC handling
1169 *
1170 **************************************************************************/
1171
1172 static LIST_HEAD(efx_primary_list);
1173 static LIST_HEAD(efx_unassociated_list);
1174
1175 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1176 {
1177 return left->type == right->type &&
1178 left->vpd_sn && right->vpd_sn &&
1179 !strcmp(left->vpd_sn, right->vpd_sn);
1180 }
1181
1182 static void efx_associate(struct efx_nic *efx)
1183 {
1184 struct efx_nic *other, *next;
1185
1186 if (efx->primary == efx) {
1187 /* Adding primary function; look for secondaries */
1188
1189 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1190 list_add_tail(&efx->node, &efx_primary_list);
1191
1192 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1193 node) {
1194 if (efx_same_controller(efx, other)) {
1195 list_del(&other->node);
1196 netif_dbg(other, probe, other->net_dev,
1197 "moving to secondary list of %s %s\n",
1198 pci_name(efx->pci_dev),
1199 efx->net_dev->name);
1200 list_add_tail(&other->node,
1201 &efx->secondary_list);
1202 other->primary = efx;
1203 }
1204 }
1205 } else {
1206 /* Adding secondary function; look for primary */
1207
1208 list_for_each_entry(other, &efx_primary_list, node) {
1209 if (efx_same_controller(efx, other)) {
1210 netif_dbg(efx, probe, efx->net_dev,
1211 "adding to secondary list of %s %s\n",
1212 pci_name(other->pci_dev),
1213 other->net_dev->name);
1214 list_add_tail(&efx->node,
1215 &other->secondary_list);
1216 efx->primary = other;
1217 return;
1218 }
1219 }
1220
1221 netif_dbg(efx, probe, efx->net_dev,
1222 "adding to unassociated list\n");
1223 list_add_tail(&efx->node, &efx_unassociated_list);
1224 }
1225 }
1226
1227 static void efx_dissociate(struct efx_nic *efx)
1228 {
1229 struct efx_nic *other, *next;
1230
1231 list_del(&efx->node);
1232 efx->primary = NULL;
1233
1234 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1235 list_del(&other->node);
1236 netif_dbg(other, probe, other->net_dev,
1237 "moving to unassociated list\n");
1238 list_add_tail(&other->node, &efx_unassociated_list);
1239 other->primary = NULL;
1240 }
1241 }
1242
1243 /* This configures the PCI device to enable I/O and DMA. */
1244 static int efx_init_io(struct efx_nic *efx)
1245 {
1246 struct pci_dev *pci_dev = efx->pci_dev;
1247 dma_addr_t dma_mask = efx->type->max_dma_mask;
1248 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1249 int rc, bar;
1250
1251 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1252
1253 bar = efx->type->mem_bar;
1254
1255 rc = pci_enable_device(pci_dev);
1256 if (rc) {
1257 netif_err(efx, probe, efx->net_dev,
1258 "failed to enable PCI device\n");
1259 goto fail1;
1260 }
1261
1262 pci_set_master(pci_dev);
1263
1264 /* Set the PCI DMA mask. Try all possibilities from our
1265 * genuine mask down to 32 bits, because some architectures
1266 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1267 * masks event though they reject 46 bit masks.
1268 */
1269 while (dma_mask > 0x7fffffffUL) {
1270 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1271 if (rc == 0)
1272 break;
1273 dma_mask >>= 1;
1274 }
1275 if (rc) {
1276 netif_err(efx, probe, efx->net_dev,
1277 "could not find a suitable DMA mask\n");
1278 goto fail2;
1279 }
1280 netif_dbg(efx, probe, efx->net_dev,
1281 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1282
1283 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1284 rc = pci_request_region(pci_dev, bar, "sfc");
1285 if (rc) {
1286 netif_err(efx, probe, efx->net_dev,
1287 "request for memory BAR failed\n");
1288 rc = -EIO;
1289 goto fail3;
1290 }
1291 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1292 if (!efx->membase) {
1293 netif_err(efx, probe, efx->net_dev,
1294 "could not map memory BAR at %llx+%x\n",
1295 (unsigned long long)efx->membase_phys, mem_map_size);
1296 rc = -ENOMEM;
1297 goto fail4;
1298 }
1299 netif_dbg(efx, probe, efx->net_dev,
1300 "memory BAR at %llx+%x (virtual %p)\n",
1301 (unsigned long long)efx->membase_phys, mem_map_size,
1302 efx->membase);
1303
1304 return 0;
1305
1306 fail4:
1307 pci_release_region(efx->pci_dev, bar);
1308 fail3:
1309 efx->membase_phys = 0;
1310 fail2:
1311 pci_disable_device(efx->pci_dev);
1312 fail1:
1313 return rc;
1314 }
1315
1316 static void efx_fini_io(struct efx_nic *efx)
1317 {
1318 int bar;
1319
1320 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1321
1322 if (efx->membase) {
1323 iounmap(efx->membase);
1324 efx->membase = NULL;
1325 }
1326
1327 if (efx->membase_phys) {
1328 bar = efx->type->mem_bar;
1329 pci_release_region(efx->pci_dev, bar);
1330 efx->membase_phys = 0;
1331 }
1332
1333 /* Don't disable bus-mastering if VFs are assigned */
1334 if (!pci_vfs_assigned(efx->pci_dev))
1335 pci_disable_device(efx->pci_dev);
1336 }
1337
1338 void efx_set_default_rx_indir_table(struct efx_nic *efx)
1339 {
1340 size_t i;
1341
1342 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1343 efx->rx_indir_table[i] =
1344 ethtool_rxfh_indir_default(i, efx->rss_spread);
1345 }
1346
1347 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1348 {
1349 cpumask_var_t thread_mask;
1350 unsigned int count;
1351 int cpu;
1352
1353 if (rss_cpus) {
1354 count = rss_cpus;
1355 } else {
1356 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1357 netif_warn(efx, probe, efx->net_dev,
1358 "RSS disabled due to allocation failure\n");
1359 return 1;
1360 }
1361
1362 count = 0;
1363 for_each_online_cpu(cpu) {
1364 if (!cpumask_test_cpu(cpu, thread_mask)) {
1365 ++count;
1366 cpumask_or(thread_mask, thread_mask,
1367 topology_sibling_cpumask(cpu));
1368 }
1369 }
1370
1371 free_cpumask_var(thread_mask);
1372 }
1373
1374 if (count > EFX_MAX_RX_QUEUES) {
1375 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1376 "Reducing number of rx queues from %u to %u.\n",
1377 count, EFX_MAX_RX_QUEUES);
1378 count = EFX_MAX_RX_QUEUES;
1379 }
1380
1381 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1382 * table entries that are inaccessible to VFs
1383 */
1384 #ifdef CONFIG_SFC_SRIOV
1385 if (efx->type->sriov_wanted) {
1386 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1387 count > efx_vf_size(efx)) {
1388 netif_warn(efx, probe, efx->net_dev,
1389 "Reducing number of RSS channels from %u to %u for "
1390 "VF support. Increase vf-msix-limit to use more "
1391 "channels on the PF.\n",
1392 count, efx_vf_size(efx));
1393 count = efx_vf_size(efx);
1394 }
1395 }
1396 #endif
1397
1398 return count;
1399 }
1400
1401 /* Probe the number and type of interrupts we are able to obtain, and
1402 * the resulting numbers of channels and RX queues.
1403 */
1404 static int efx_probe_interrupts(struct efx_nic *efx)
1405 {
1406 unsigned int extra_channels = 0;
1407 unsigned int i, j;
1408 int rc;
1409
1410 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1411 if (efx->extra_channel_type[i])
1412 ++extra_channels;
1413
1414 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1415 struct msix_entry xentries[EFX_MAX_CHANNELS];
1416 unsigned int n_channels;
1417
1418 n_channels = efx_wanted_parallelism(efx);
1419 if (efx_separate_tx_channels)
1420 n_channels *= 2;
1421 n_channels += extra_channels;
1422 n_channels = min(n_channels, efx->max_channels);
1423
1424 for (i = 0; i < n_channels; i++)
1425 xentries[i].entry = i;
1426 rc = pci_enable_msix_range(efx->pci_dev,
1427 xentries, 1, n_channels);
1428 if (rc < 0) {
1429 /* Fall back to single channel MSI */
1430 netif_err(efx, drv, efx->net_dev,
1431 "could not enable MSI-X\n");
1432 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI)
1433 efx->interrupt_mode = EFX_INT_MODE_MSI;
1434 else
1435 return rc;
1436 } else if (rc < n_channels) {
1437 netif_err(efx, drv, efx->net_dev,
1438 "WARNING: Insufficient MSI-X vectors"
1439 " available (%d < %u).\n", rc, n_channels);
1440 netif_err(efx, drv, efx->net_dev,
1441 "WARNING: Performance may be reduced.\n");
1442 n_channels = rc;
1443 }
1444
1445 if (rc > 0) {
1446 efx->n_channels = n_channels;
1447 if (n_channels > extra_channels)
1448 n_channels -= extra_channels;
1449 if (efx_separate_tx_channels) {
1450 efx->n_tx_channels = min(max(n_channels / 2,
1451 1U),
1452 efx->max_tx_channels);
1453 efx->n_rx_channels = max(n_channels -
1454 efx->n_tx_channels,
1455 1U);
1456 } else {
1457 efx->n_tx_channels = min(n_channels,
1458 efx->max_tx_channels);
1459 efx->n_rx_channels = n_channels;
1460 }
1461 for (i = 0; i < efx->n_channels; i++)
1462 efx_get_channel(efx, i)->irq =
1463 xentries[i].vector;
1464 }
1465 }
1466
1467 /* Try single interrupt MSI */
1468 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1469 efx->n_channels = 1;
1470 efx->n_rx_channels = 1;
1471 efx->n_tx_channels = 1;
1472 rc = pci_enable_msi(efx->pci_dev);
1473 if (rc == 0) {
1474 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1475 } else {
1476 netif_err(efx, drv, efx->net_dev,
1477 "could not enable MSI\n");
1478 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY)
1479 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1480 else
1481 return rc;
1482 }
1483 }
1484
1485 /* Assume legacy interrupts */
1486 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1487 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1488 efx->n_rx_channels = 1;
1489 efx->n_tx_channels = 1;
1490 efx->legacy_irq = efx->pci_dev->irq;
1491 }
1492
1493 /* Assign extra channels if possible */
1494 j = efx->n_channels;
1495 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1496 if (!efx->extra_channel_type[i])
1497 continue;
1498 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1499 efx->n_channels <= extra_channels) {
1500 efx->extra_channel_type[i]->handle_no_channel(efx);
1501 } else {
1502 --j;
1503 efx_get_channel(efx, j)->type =
1504 efx->extra_channel_type[i];
1505 }
1506 }
1507
1508 /* RSS might be usable on VFs even if it is disabled on the PF */
1509 #ifdef CONFIG_SFC_SRIOV
1510 if (efx->type->sriov_wanted) {
1511 efx->rss_spread = ((efx->n_rx_channels > 1 ||
1512 !efx->type->sriov_wanted(efx)) ?
1513 efx->n_rx_channels : efx_vf_size(efx));
1514 return 0;
1515 }
1516 #endif
1517 efx->rss_spread = efx->n_rx_channels;
1518
1519 return 0;
1520 }
1521
1522 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1523 {
1524 struct efx_channel *channel, *end_channel;
1525 int rc;
1526
1527 BUG_ON(efx->state == STATE_DISABLED);
1528
1529 efx->irq_soft_enabled = true;
1530 smp_wmb();
1531
1532 efx_for_each_channel(channel, efx) {
1533 if (!channel->type->keep_eventq) {
1534 rc = efx_init_eventq(channel);
1535 if (rc)
1536 goto fail;
1537 }
1538 efx_start_eventq(channel);
1539 }
1540
1541 efx_mcdi_mode_event(efx);
1542
1543 return 0;
1544 fail:
1545 end_channel = channel;
1546 efx_for_each_channel(channel, efx) {
1547 if (channel == end_channel)
1548 break;
1549 efx_stop_eventq(channel);
1550 if (!channel->type->keep_eventq)
1551 efx_fini_eventq(channel);
1552 }
1553
1554 return rc;
1555 }
1556
1557 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1558 {
1559 struct efx_channel *channel;
1560
1561 if (efx->state == STATE_DISABLED)
1562 return;
1563
1564 efx_mcdi_mode_poll(efx);
1565
1566 efx->irq_soft_enabled = false;
1567 smp_wmb();
1568
1569 if (efx->legacy_irq)
1570 synchronize_irq(efx->legacy_irq);
1571
1572 efx_for_each_channel(channel, efx) {
1573 if (channel->irq)
1574 synchronize_irq(channel->irq);
1575
1576 efx_stop_eventq(channel);
1577 if (!channel->type->keep_eventq)
1578 efx_fini_eventq(channel);
1579 }
1580
1581 /* Flush the asynchronous MCDI request queue */
1582 efx_mcdi_flush_async(efx);
1583 }
1584
1585 static int efx_enable_interrupts(struct efx_nic *efx)
1586 {
1587 struct efx_channel *channel, *end_channel;
1588 int rc;
1589
1590 BUG_ON(efx->state == STATE_DISABLED);
1591
1592 if (efx->eeh_disabled_legacy_irq) {
1593 enable_irq(efx->legacy_irq);
1594 efx->eeh_disabled_legacy_irq = false;
1595 }
1596
1597 efx->type->irq_enable_master(efx);
1598
1599 efx_for_each_channel(channel, efx) {
1600 if (channel->type->keep_eventq) {
1601 rc = efx_init_eventq(channel);
1602 if (rc)
1603 goto fail;
1604 }
1605 }
1606
1607 rc = efx_soft_enable_interrupts(efx);
1608 if (rc)
1609 goto fail;
1610
1611 return 0;
1612
1613 fail:
1614 end_channel = channel;
1615 efx_for_each_channel(channel, efx) {
1616 if (channel == end_channel)
1617 break;
1618 if (channel->type->keep_eventq)
1619 efx_fini_eventq(channel);
1620 }
1621
1622 efx->type->irq_disable_non_ev(efx);
1623
1624 return rc;
1625 }
1626
1627 static void efx_disable_interrupts(struct efx_nic *efx)
1628 {
1629 struct efx_channel *channel;
1630
1631 efx_soft_disable_interrupts(efx);
1632
1633 efx_for_each_channel(channel, efx) {
1634 if (channel->type->keep_eventq)
1635 efx_fini_eventq(channel);
1636 }
1637
1638 efx->type->irq_disable_non_ev(efx);
1639 }
1640
1641 static void efx_remove_interrupts(struct efx_nic *efx)
1642 {
1643 struct efx_channel *channel;
1644
1645 /* Remove MSI/MSI-X interrupts */
1646 efx_for_each_channel(channel, efx)
1647 channel->irq = 0;
1648 pci_disable_msi(efx->pci_dev);
1649 pci_disable_msix(efx->pci_dev);
1650
1651 /* Remove legacy interrupt */
1652 efx->legacy_irq = 0;
1653 }
1654
1655 static void efx_set_channels(struct efx_nic *efx)
1656 {
1657 struct efx_channel *channel;
1658 struct efx_tx_queue *tx_queue;
1659
1660 efx->tx_channel_offset =
1661 efx_separate_tx_channels ?
1662 efx->n_channels - efx->n_tx_channels : 0;
1663
1664 /* We need to mark which channels really have RX and TX
1665 * queues, and adjust the TX queue numbers if we have separate
1666 * RX-only and TX-only channels.
1667 */
1668 efx_for_each_channel(channel, efx) {
1669 if (channel->channel < efx->n_rx_channels)
1670 channel->rx_queue.core_index = channel->channel;
1671 else
1672 channel->rx_queue.core_index = -1;
1673
1674 efx_for_each_channel_tx_queue(tx_queue, channel)
1675 tx_queue->queue -= (efx->tx_channel_offset *
1676 EFX_TXQ_TYPES);
1677 }
1678 }
1679
1680 static int efx_probe_nic(struct efx_nic *efx)
1681 {
1682 int rc;
1683
1684 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1685
1686 /* Carry out hardware-type specific initialisation */
1687 rc = efx->type->probe(efx);
1688 if (rc)
1689 return rc;
1690
1691 do {
1692 if (!efx->max_channels || !efx->max_tx_channels) {
1693 netif_err(efx, drv, efx->net_dev,
1694 "Insufficient resources to allocate"
1695 " any channels\n");
1696 rc = -ENOSPC;
1697 goto fail1;
1698 }
1699
1700 /* Determine the number of channels and queues by trying
1701 * to hook in MSI-X interrupts.
1702 */
1703 rc = efx_probe_interrupts(efx);
1704 if (rc)
1705 goto fail1;
1706
1707 efx_set_channels(efx);
1708
1709 /* dimension_resources can fail with EAGAIN */
1710 rc = efx->type->dimension_resources(efx);
1711 if (rc != 0 && rc != -EAGAIN)
1712 goto fail2;
1713
1714 if (rc == -EAGAIN)
1715 /* try again with new max_channels */
1716 efx_remove_interrupts(efx);
1717
1718 } while (rc == -EAGAIN);
1719
1720 if (efx->n_channels > 1)
1721 netdev_rss_key_fill(&efx->rx_hash_key,
1722 sizeof(efx->rx_hash_key));
1723 efx_set_default_rx_indir_table(efx);
1724
1725 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1726 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1727
1728 /* Initialise the interrupt moderation settings */
1729 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1730 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1731 true);
1732
1733 return 0;
1734
1735 fail2:
1736 efx_remove_interrupts(efx);
1737 fail1:
1738 efx->type->remove(efx);
1739 return rc;
1740 }
1741
1742 static void efx_remove_nic(struct efx_nic *efx)
1743 {
1744 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1745
1746 efx_remove_interrupts(efx);
1747 efx->type->remove(efx);
1748 }
1749
1750 static int efx_probe_filters(struct efx_nic *efx)
1751 {
1752 int rc;
1753
1754 spin_lock_init(&efx->filter_lock);
1755 init_rwsem(&efx->filter_sem);
1756 mutex_lock(&efx->mac_lock);
1757 down_write(&efx->filter_sem);
1758 rc = efx->type->filter_table_probe(efx);
1759 if (rc)
1760 goto out_unlock;
1761
1762 #ifdef CONFIG_RFS_ACCEL
1763 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1764 struct efx_channel *channel;
1765 int i, success = 1;
1766
1767 efx_for_each_channel(channel, efx) {
1768 channel->rps_flow_id =
1769 kcalloc(efx->type->max_rx_ip_filters,
1770 sizeof(*channel->rps_flow_id),
1771 GFP_KERNEL);
1772 if (!channel->rps_flow_id)
1773 success = 0;
1774 else
1775 for (i = 0;
1776 i < efx->type->max_rx_ip_filters;
1777 ++i)
1778 channel->rps_flow_id[i] =
1779 RPS_FLOW_ID_INVALID;
1780 }
1781
1782 if (!success) {
1783 efx_for_each_channel(channel, efx)
1784 kfree(channel->rps_flow_id);
1785 efx->type->filter_table_remove(efx);
1786 rc = -ENOMEM;
1787 goto out_unlock;
1788 }
1789
1790 efx->rps_expire_index = efx->rps_expire_channel = 0;
1791 }
1792 #endif
1793 out_unlock:
1794 up_write(&efx->filter_sem);
1795 mutex_unlock(&efx->mac_lock);
1796 return rc;
1797 }
1798
1799 static void efx_remove_filters(struct efx_nic *efx)
1800 {
1801 #ifdef CONFIG_RFS_ACCEL
1802 struct efx_channel *channel;
1803
1804 efx_for_each_channel(channel, efx)
1805 kfree(channel->rps_flow_id);
1806 #endif
1807 down_write(&efx->filter_sem);
1808 efx->type->filter_table_remove(efx);
1809 up_write(&efx->filter_sem);
1810 }
1811
1812 static void efx_restore_filters(struct efx_nic *efx)
1813 {
1814 down_read(&efx->filter_sem);
1815 efx->type->filter_table_restore(efx);
1816 up_read(&efx->filter_sem);
1817 }
1818
1819 /**************************************************************************
1820 *
1821 * NIC startup/shutdown
1822 *
1823 *************************************************************************/
1824
1825 static int efx_probe_all(struct efx_nic *efx)
1826 {
1827 int rc;
1828
1829 rc = efx_probe_nic(efx);
1830 if (rc) {
1831 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1832 goto fail1;
1833 }
1834
1835 rc = efx_probe_port(efx);
1836 if (rc) {
1837 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1838 goto fail2;
1839 }
1840
1841 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1842 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1843 rc = -EINVAL;
1844 goto fail3;
1845 }
1846 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1847
1848 #ifdef CONFIG_SFC_SRIOV
1849 rc = efx->type->vswitching_probe(efx);
1850 if (rc) /* not fatal; the PF will still work fine */
1851 netif_warn(efx, probe, efx->net_dev,
1852 "failed to setup vswitching rc=%d;"
1853 " VFs may not function\n", rc);
1854 #endif
1855
1856 rc = efx_probe_filters(efx);
1857 if (rc) {
1858 netif_err(efx, probe, efx->net_dev,
1859 "failed to create filter tables\n");
1860 goto fail4;
1861 }
1862
1863 rc = efx_probe_channels(efx);
1864 if (rc)
1865 goto fail5;
1866
1867 return 0;
1868
1869 fail5:
1870 efx_remove_filters(efx);
1871 fail4:
1872 #ifdef CONFIG_SFC_SRIOV
1873 efx->type->vswitching_remove(efx);
1874 #endif
1875 fail3:
1876 efx_remove_port(efx);
1877 fail2:
1878 efx_remove_nic(efx);
1879 fail1:
1880 return rc;
1881 }
1882
1883 /* If the interface is supposed to be running but is not, start
1884 * the hardware and software data path, regular activity for the port
1885 * (MAC statistics, link polling, etc.) and schedule the port to be
1886 * reconfigured. Interrupts must already be enabled. This function
1887 * is safe to call multiple times, so long as the NIC is not disabled.
1888 * Requires the RTNL lock.
1889 */
1890 static void efx_start_all(struct efx_nic *efx)
1891 {
1892 EFX_ASSERT_RESET_SERIALISED(efx);
1893 BUG_ON(efx->state == STATE_DISABLED);
1894
1895 /* Check that it is appropriate to restart the interface. All
1896 * of these flags are safe to read under just the rtnl lock */
1897 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1898 efx->reset_pending)
1899 return;
1900
1901 efx_start_port(efx);
1902 efx_start_datapath(efx);
1903
1904 /* Start the hardware monitor if there is one */
1905 if (efx->type->monitor != NULL)
1906 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1907 efx_monitor_interval);
1908
1909 /* Link state detection is normally event-driven; we have
1910 * to poll now because we could have missed a change
1911 */
1912 mutex_lock(&efx->mac_lock);
1913 if (efx->phy_op->poll(efx))
1914 efx_link_status_changed(efx);
1915 mutex_unlock(&efx->mac_lock);
1916
1917 efx->type->start_stats(efx);
1918 efx->type->pull_stats(efx);
1919 spin_lock_bh(&efx->stats_lock);
1920 efx->type->update_stats(efx, NULL, NULL);
1921 spin_unlock_bh(&efx->stats_lock);
1922 }
1923
1924 /* Quiesce the hardware and software data path, and regular activity
1925 * for the port without bringing the link down. Safe to call multiple
1926 * times with the NIC in almost any state, but interrupts should be
1927 * enabled. Requires the RTNL lock.
1928 */
1929 static void efx_stop_all(struct efx_nic *efx)
1930 {
1931 EFX_ASSERT_RESET_SERIALISED(efx);
1932
1933 /* port_enabled can be read safely under the rtnl lock */
1934 if (!efx->port_enabled)
1935 return;
1936
1937 /* update stats before we go down so we can accurately count
1938 * rx_nodesc_drops
1939 */
1940 efx->type->pull_stats(efx);
1941 spin_lock_bh(&efx->stats_lock);
1942 efx->type->update_stats(efx, NULL, NULL);
1943 spin_unlock_bh(&efx->stats_lock);
1944 efx->type->stop_stats(efx);
1945 efx_stop_port(efx);
1946
1947 /* Stop the kernel transmit interface. This is only valid if
1948 * the device is stopped or detached; otherwise the watchdog
1949 * may fire immediately.
1950 */
1951 WARN_ON(netif_running(efx->net_dev) &&
1952 netif_device_present(efx->net_dev));
1953 netif_tx_disable(efx->net_dev);
1954
1955 efx_stop_datapath(efx);
1956 }
1957
1958 static void efx_remove_all(struct efx_nic *efx)
1959 {
1960 efx_remove_channels(efx);
1961 efx_remove_filters(efx);
1962 #ifdef CONFIG_SFC_SRIOV
1963 efx->type->vswitching_remove(efx);
1964 #endif
1965 efx_remove_port(efx);
1966 efx_remove_nic(efx);
1967 }
1968
1969 /**************************************************************************
1970 *
1971 * Interrupt moderation
1972 *
1973 **************************************************************************/
1974 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
1975 {
1976 if (usecs == 0)
1977 return 0;
1978 if (usecs * 1000 < efx->timer_quantum_ns)
1979 return 1; /* never round down to 0 */
1980 return usecs * 1000 / efx->timer_quantum_ns;
1981 }
1982
1983 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
1984 {
1985 /* We must round up when converting ticks to microseconds
1986 * because we round down when converting the other way.
1987 */
1988 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1989 }
1990
1991 /* Set interrupt moderation parameters */
1992 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1993 unsigned int rx_usecs, bool rx_adaptive,
1994 bool rx_may_override_tx)
1995 {
1996 struct efx_channel *channel;
1997 unsigned int timer_max_us;
1998
1999 EFX_ASSERT_RESET_SERIALISED(efx);
2000
2001 timer_max_us = efx->timer_max_ns / 1000;
2002
2003 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
2004 return -EINVAL;
2005
2006 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
2007 !rx_may_override_tx) {
2008 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
2009 "RX and TX IRQ moderation must be equal\n");
2010 return -EINVAL;
2011 }
2012
2013 efx->irq_rx_adaptive = rx_adaptive;
2014 efx->irq_rx_moderation_us = rx_usecs;
2015 efx_for_each_channel(channel, efx) {
2016 if (efx_channel_has_rx_queue(channel))
2017 channel->irq_moderation_us = rx_usecs;
2018 else if (efx_channel_has_tx_queues(channel))
2019 channel->irq_moderation_us = tx_usecs;
2020 }
2021
2022 return 0;
2023 }
2024
2025 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
2026 unsigned int *rx_usecs, bool *rx_adaptive)
2027 {
2028 *rx_adaptive = efx->irq_rx_adaptive;
2029 *rx_usecs = efx->irq_rx_moderation_us;
2030
2031 /* If channels are shared between RX and TX, so is IRQ
2032 * moderation. Otherwise, IRQ moderation is the same for all
2033 * TX channels and is not adaptive.
2034 */
2035 if (efx->tx_channel_offset == 0) {
2036 *tx_usecs = *rx_usecs;
2037 } else {
2038 struct efx_channel *tx_channel;
2039
2040 tx_channel = efx->channel[efx->tx_channel_offset];
2041 *tx_usecs = tx_channel->irq_moderation_us;
2042 }
2043 }
2044
2045 /**************************************************************************
2046 *
2047 * Hardware monitor
2048 *
2049 **************************************************************************/
2050
2051 /* Run periodically off the general workqueue */
2052 static void efx_monitor(struct work_struct *data)
2053 {
2054 struct efx_nic *efx = container_of(data, struct efx_nic,
2055 monitor_work.work);
2056
2057 netif_vdbg(efx, timer, efx->net_dev,
2058 "hardware monitor executing on CPU %d\n",
2059 raw_smp_processor_id());
2060 BUG_ON(efx->type->monitor == NULL);
2061
2062 /* If the mac_lock is already held then it is likely a port
2063 * reconfiguration is already in place, which will likely do
2064 * most of the work of monitor() anyway. */
2065 if (mutex_trylock(&efx->mac_lock)) {
2066 if (efx->port_enabled)
2067 efx->type->monitor(efx);
2068 mutex_unlock(&efx->mac_lock);
2069 }
2070
2071 queue_delayed_work(efx->workqueue, &efx->monitor_work,
2072 efx_monitor_interval);
2073 }
2074
2075 /**************************************************************************
2076 *
2077 * ioctls
2078 *
2079 *************************************************************************/
2080
2081 /* Net device ioctl
2082 * Context: process, rtnl_lock() held.
2083 */
2084 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2085 {
2086 struct efx_nic *efx = netdev_priv(net_dev);
2087 struct mii_ioctl_data *data = if_mii(ifr);
2088
2089 if (cmd == SIOCSHWTSTAMP)
2090 return efx_ptp_set_ts_config(efx, ifr);
2091 if (cmd == SIOCGHWTSTAMP)
2092 return efx_ptp_get_ts_config(efx, ifr);
2093
2094 /* Convert phy_id from older PRTAD/DEVAD format */
2095 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2096 (data->phy_id & 0xfc00) == 0x0400)
2097 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2098
2099 return mdio_mii_ioctl(&efx->mdio, data, cmd);
2100 }
2101
2102 /**************************************************************************
2103 *
2104 * NAPI interface
2105 *
2106 **************************************************************************/
2107
2108 static void efx_init_napi_channel(struct efx_channel *channel)
2109 {
2110 struct efx_nic *efx = channel->efx;
2111
2112 channel->napi_dev = efx->net_dev;
2113 netif_napi_add(channel->napi_dev, &channel->napi_str,
2114 efx_poll, napi_weight);
2115 }
2116
2117 static void efx_init_napi(struct efx_nic *efx)
2118 {
2119 struct efx_channel *channel;
2120
2121 efx_for_each_channel(channel, efx)
2122 efx_init_napi_channel(channel);
2123 }
2124
2125 static void efx_fini_napi_channel(struct efx_channel *channel)
2126 {
2127 if (channel->napi_dev)
2128 netif_napi_del(&channel->napi_str);
2129
2130 channel->napi_dev = NULL;
2131 }
2132
2133 static void efx_fini_napi(struct efx_nic *efx)
2134 {
2135 struct efx_channel *channel;
2136
2137 efx_for_each_channel(channel, efx)
2138 efx_fini_napi_channel(channel);
2139 }
2140
2141 /**************************************************************************
2142 *
2143 * Kernel netpoll interface
2144 *
2145 *************************************************************************/
2146
2147 #ifdef CONFIG_NET_POLL_CONTROLLER
2148
2149 /* Although in the common case interrupts will be disabled, this is not
2150 * guaranteed. However, all our work happens inside the NAPI callback,
2151 * so no locking is required.
2152 */
2153 static void efx_netpoll(struct net_device *net_dev)
2154 {
2155 struct efx_nic *efx = netdev_priv(net_dev);
2156 struct efx_channel *channel;
2157
2158 efx_for_each_channel(channel, efx)
2159 efx_schedule_channel(channel);
2160 }
2161
2162 #endif
2163
2164 /**************************************************************************
2165 *
2166 * Kernel net device interface
2167 *
2168 *************************************************************************/
2169
2170 /* Context: process, rtnl_lock() held. */
2171 int efx_net_open(struct net_device *net_dev)
2172 {
2173 struct efx_nic *efx = netdev_priv(net_dev);
2174 int rc;
2175
2176 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2177 raw_smp_processor_id());
2178
2179 rc = efx_check_disabled(efx);
2180 if (rc)
2181 return rc;
2182 if (efx->phy_mode & PHY_MODE_SPECIAL)
2183 return -EBUSY;
2184 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2185 return -EIO;
2186
2187 /* Notify the kernel of the link state polled during driver load,
2188 * before the monitor starts running */
2189 efx_link_status_changed(efx);
2190
2191 efx_start_all(efx);
2192 if (efx->state == STATE_DISABLED || efx->reset_pending)
2193 netif_device_detach(efx->net_dev);
2194 efx_selftest_async_start(efx);
2195 return 0;
2196 }
2197
2198 /* Context: process, rtnl_lock() held.
2199 * Note that the kernel will ignore our return code; this method
2200 * should really be a void.
2201 */
2202 int efx_net_stop(struct net_device *net_dev)
2203 {
2204 struct efx_nic *efx = netdev_priv(net_dev);
2205
2206 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2207 raw_smp_processor_id());
2208
2209 /* Stop the device and flush all the channels */
2210 efx_stop_all(efx);
2211
2212 return 0;
2213 }
2214
2215 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2216 static void efx_net_stats(struct net_device *net_dev,
2217 struct rtnl_link_stats64 *stats)
2218 {
2219 struct efx_nic *efx = netdev_priv(net_dev);
2220
2221 spin_lock_bh(&efx->stats_lock);
2222 efx->type->update_stats(efx, NULL, stats);
2223 spin_unlock_bh(&efx->stats_lock);
2224 }
2225
2226 /* Context: netif_tx_lock held, BHs disabled. */
2227 static void efx_watchdog(struct net_device *net_dev)
2228 {
2229 struct efx_nic *efx = netdev_priv(net_dev);
2230
2231 netif_err(efx, tx_err, efx->net_dev,
2232 "TX stuck with port_enabled=%d: resetting channels\n",
2233 efx->port_enabled);
2234
2235 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2236 }
2237
2238
2239 /* Context: process, rtnl_lock() held. */
2240 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2241 {
2242 struct efx_nic *efx = netdev_priv(net_dev);
2243 int rc;
2244
2245 rc = efx_check_disabled(efx);
2246 if (rc)
2247 return rc;
2248
2249 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2250
2251 efx_device_detach_sync(efx);
2252 efx_stop_all(efx);
2253
2254 mutex_lock(&efx->mac_lock);
2255 net_dev->mtu = new_mtu;
2256 efx_mac_reconfigure(efx);
2257 mutex_unlock(&efx->mac_lock);
2258
2259 efx_start_all(efx);
2260 efx_device_attach_if_not_resetting(efx);
2261 return 0;
2262 }
2263
2264 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2265 {
2266 struct efx_nic *efx = netdev_priv(net_dev);
2267 struct sockaddr *addr = data;
2268 u8 *new_addr = addr->sa_data;
2269 u8 old_addr[6];
2270 int rc;
2271
2272 if (!is_valid_ether_addr(new_addr)) {
2273 netif_err(efx, drv, efx->net_dev,
2274 "invalid ethernet MAC address requested: %pM\n",
2275 new_addr);
2276 return -EADDRNOTAVAIL;
2277 }
2278
2279 /* save old address */
2280 ether_addr_copy(old_addr, net_dev->dev_addr);
2281 ether_addr_copy(net_dev->dev_addr, new_addr);
2282 if (efx->type->set_mac_address) {
2283 rc = efx->type->set_mac_address(efx);
2284 if (rc) {
2285 ether_addr_copy(net_dev->dev_addr, old_addr);
2286 return rc;
2287 }
2288 }
2289
2290 /* Reconfigure the MAC */
2291 mutex_lock(&efx->mac_lock);
2292 efx_mac_reconfigure(efx);
2293 mutex_unlock(&efx->mac_lock);
2294
2295 return 0;
2296 }
2297
2298 /* Context: netif_addr_lock held, BHs disabled. */
2299 static void efx_set_rx_mode(struct net_device *net_dev)
2300 {
2301 struct efx_nic *efx = netdev_priv(net_dev);
2302
2303 if (efx->port_enabled)
2304 queue_work(efx->workqueue, &efx->mac_work);
2305 /* Otherwise efx_start_port() will do this */
2306 }
2307
2308 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2309 {
2310 struct efx_nic *efx = netdev_priv(net_dev);
2311 int rc;
2312
2313 /* If disabling RX n-tuple filtering, clear existing filters */
2314 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2315 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2316 if (rc)
2317 return rc;
2318 }
2319
2320 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2321 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2322 /* efx_set_rx_mode() will schedule MAC work to update filters
2323 * when a new features are finally set in net_dev.
2324 */
2325 efx_set_rx_mode(net_dev);
2326 }
2327
2328 return 0;
2329 }
2330
2331 static int efx_get_phys_port_id(struct net_device *net_dev,
2332 struct netdev_phys_item_id *ppid)
2333 {
2334 struct efx_nic *efx = netdev_priv(net_dev);
2335
2336 if (efx->type->get_phys_port_id)
2337 return efx->type->get_phys_port_id(efx, ppid);
2338 else
2339 return -EOPNOTSUPP;
2340 }
2341
2342 static int efx_get_phys_port_name(struct net_device *net_dev,
2343 char *name, size_t len)
2344 {
2345 struct efx_nic *efx = netdev_priv(net_dev);
2346
2347 if (snprintf(name, len, "p%u", efx->port_num) >= len)
2348 return -EINVAL;
2349 return 0;
2350 }
2351
2352 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2353 {
2354 struct efx_nic *efx = netdev_priv(net_dev);
2355
2356 if (efx->type->vlan_rx_add_vid)
2357 return efx->type->vlan_rx_add_vid(efx, proto, vid);
2358 else
2359 return -EOPNOTSUPP;
2360 }
2361
2362 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2363 {
2364 struct efx_nic *efx = netdev_priv(net_dev);
2365
2366 if (efx->type->vlan_rx_kill_vid)
2367 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
2368 else
2369 return -EOPNOTSUPP;
2370 }
2371
2372 static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in)
2373 {
2374 switch (in) {
2375 case UDP_TUNNEL_TYPE_VXLAN:
2376 return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
2377 case UDP_TUNNEL_TYPE_GENEVE:
2378 return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
2379 default:
2380 return -1;
2381 }
2382 }
2383
2384 static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti)
2385 {
2386 struct efx_nic *efx = netdev_priv(dev);
2387 struct efx_udp_tunnel tnl;
2388 int efx_tunnel_type;
2389
2390 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
2391 if (efx_tunnel_type < 0)
2392 return;
2393
2394 tnl.type = (u16)efx_tunnel_type;
2395 tnl.port = ti->port;
2396
2397 if (efx->type->udp_tnl_add_port)
2398 (void)efx->type->udp_tnl_add_port(efx, tnl);
2399 }
2400
2401 static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti)
2402 {
2403 struct efx_nic *efx = netdev_priv(dev);
2404 struct efx_udp_tunnel tnl;
2405 int efx_tunnel_type;
2406
2407 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
2408 if (efx_tunnel_type < 0)
2409 return;
2410
2411 tnl.type = (u16)efx_tunnel_type;
2412 tnl.port = ti->port;
2413
2414 if (efx->type->udp_tnl_del_port)
2415 (void)efx->type->udp_tnl_del_port(efx, tnl);
2416 }
2417
2418 static const struct net_device_ops efx_netdev_ops = {
2419 .ndo_open = efx_net_open,
2420 .ndo_stop = efx_net_stop,
2421 .ndo_get_stats64 = efx_net_stats,
2422 .ndo_tx_timeout = efx_watchdog,
2423 .ndo_start_xmit = efx_hard_start_xmit,
2424 .ndo_validate_addr = eth_validate_addr,
2425 .ndo_do_ioctl = efx_ioctl,
2426 .ndo_change_mtu = efx_change_mtu,
2427 .ndo_set_mac_address = efx_set_mac_address,
2428 .ndo_set_rx_mode = efx_set_rx_mode,
2429 .ndo_set_features = efx_set_features,
2430 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
2431 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
2432 #ifdef CONFIG_SFC_SRIOV
2433 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2434 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2435 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2436 .ndo_get_vf_config = efx_sriov_get_vf_config,
2437 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
2438 #endif
2439 .ndo_get_phys_port_id = efx_get_phys_port_id,
2440 .ndo_get_phys_port_name = efx_get_phys_port_name,
2441 #ifdef CONFIG_NET_POLL_CONTROLLER
2442 .ndo_poll_controller = efx_netpoll,
2443 #endif
2444 .ndo_setup_tc = efx_setup_tc,
2445 #ifdef CONFIG_RFS_ACCEL
2446 .ndo_rx_flow_steer = efx_filter_rfs,
2447 #endif
2448 .ndo_udp_tunnel_add = efx_udp_tunnel_add,
2449 .ndo_udp_tunnel_del = efx_udp_tunnel_del,
2450 };
2451
2452 static void efx_update_name(struct efx_nic *efx)
2453 {
2454 strcpy(efx->name, efx->net_dev->name);
2455 efx_mtd_rename(efx);
2456 efx_set_channel_names(efx);
2457 }
2458
2459 static int efx_netdev_event(struct notifier_block *this,
2460 unsigned long event, void *ptr)
2461 {
2462 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2463
2464 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2465 event == NETDEV_CHANGENAME)
2466 efx_update_name(netdev_priv(net_dev));
2467
2468 return NOTIFY_DONE;
2469 }
2470
2471 static struct notifier_block efx_netdev_notifier = {
2472 .notifier_call = efx_netdev_event,
2473 };
2474
2475 static ssize_t
2476 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2477 {
2478 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2479 return sprintf(buf, "%d\n", efx->phy_type);
2480 }
2481 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2482
2483 #ifdef CONFIG_SFC_MCDI_LOGGING
2484 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2485 char *buf)
2486 {
2487 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2488 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2489
2490 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2491 }
2492 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2493 const char *buf, size_t count)
2494 {
2495 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2496 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2497 bool enable = count > 0 && *buf != '0';
2498
2499 mcdi->logging_enabled = enable;
2500 return count;
2501 }
2502 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2503 #endif
2504
2505 static int efx_register_netdev(struct efx_nic *efx)
2506 {
2507 struct net_device *net_dev = efx->net_dev;
2508 struct efx_channel *channel;
2509 int rc;
2510
2511 net_dev->watchdog_timeo = 5 * HZ;
2512 net_dev->irq = efx->pci_dev->irq;
2513 net_dev->netdev_ops = &efx_netdev_ops;
2514 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2515 net_dev->priv_flags |= IFF_UNICAST_FLT;
2516 net_dev->ethtool_ops = &efx_ethtool_ops;
2517 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2518 net_dev->min_mtu = EFX_MIN_MTU;
2519 net_dev->max_mtu = EFX_MAX_MTU;
2520
2521 rtnl_lock();
2522
2523 /* Enable resets to be scheduled and check whether any were
2524 * already requested. If so, the NIC is probably hosed so we
2525 * abort.
2526 */
2527 efx->state = STATE_READY;
2528 smp_mb(); /* ensure we change state before checking reset_pending */
2529 if (efx->reset_pending) {
2530 netif_err(efx, probe, efx->net_dev,
2531 "aborting probe due to scheduled reset\n");
2532 rc = -EIO;
2533 goto fail_locked;
2534 }
2535
2536 rc = dev_alloc_name(net_dev, net_dev->name);
2537 if (rc < 0)
2538 goto fail_locked;
2539 efx_update_name(efx);
2540
2541 /* Always start with carrier off; PHY events will detect the link */
2542 netif_carrier_off(net_dev);
2543
2544 rc = register_netdevice(net_dev);
2545 if (rc)
2546 goto fail_locked;
2547
2548 efx_for_each_channel(channel, efx) {
2549 struct efx_tx_queue *tx_queue;
2550 efx_for_each_channel_tx_queue(tx_queue, channel)
2551 efx_init_tx_queue_core_txq(tx_queue);
2552 }
2553
2554 efx_associate(efx);
2555
2556 rtnl_unlock();
2557
2558 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2559 if (rc) {
2560 netif_err(efx, drv, efx->net_dev,
2561 "failed to init net dev attributes\n");
2562 goto fail_registered;
2563 }
2564 #ifdef CONFIG_SFC_MCDI_LOGGING
2565 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2566 if (rc) {
2567 netif_err(efx, drv, efx->net_dev,
2568 "failed to init net dev attributes\n");
2569 goto fail_attr_mcdi_logging;
2570 }
2571 #endif
2572
2573 return 0;
2574
2575 #ifdef CONFIG_SFC_MCDI_LOGGING
2576 fail_attr_mcdi_logging:
2577 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2578 #endif
2579 fail_registered:
2580 rtnl_lock();
2581 efx_dissociate(efx);
2582 unregister_netdevice(net_dev);
2583 fail_locked:
2584 efx->state = STATE_UNINIT;
2585 rtnl_unlock();
2586 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2587 return rc;
2588 }
2589
2590 static void efx_unregister_netdev(struct efx_nic *efx)
2591 {
2592 if (!efx->net_dev)
2593 return;
2594
2595 BUG_ON(netdev_priv(efx->net_dev) != efx);
2596
2597 if (efx_dev_registered(efx)) {
2598 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2599 #ifdef CONFIG_SFC_MCDI_LOGGING
2600 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2601 #endif
2602 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2603 unregister_netdev(efx->net_dev);
2604 }
2605 }
2606
2607 /**************************************************************************
2608 *
2609 * Device reset and suspend
2610 *
2611 **************************************************************************/
2612
2613 /* Tears down the entire software state and most of the hardware state
2614 * before reset. */
2615 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2616 {
2617 EFX_ASSERT_RESET_SERIALISED(efx);
2618
2619 if (method == RESET_TYPE_MCDI_TIMEOUT)
2620 efx->type->prepare_flr(efx);
2621
2622 efx_stop_all(efx);
2623 efx_disable_interrupts(efx);
2624
2625 mutex_lock(&efx->mac_lock);
2626 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2627 method != RESET_TYPE_DATAPATH)
2628 efx->phy_op->fini(efx);
2629 efx->type->fini(efx);
2630 }
2631
2632 /* This function will always ensure that the locks acquired in
2633 * efx_reset_down() are released. A failure return code indicates
2634 * that we were unable to reinitialise the hardware, and the
2635 * driver should be disabled. If ok is false, then the rx and tx
2636 * engines are not restarted, pending a RESET_DISABLE. */
2637 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2638 {
2639 int rc;
2640
2641 EFX_ASSERT_RESET_SERIALISED(efx);
2642
2643 if (method == RESET_TYPE_MCDI_TIMEOUT)
2644 efx->type->finish_flr(efx);
2645
2646 /* Ensure that SRAM is initialised even if we're disabling the device */
2647 rc = efx->type->init(efx);
2648 if (rc) {
2649 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2650 goto fail;
2651 }
2652
2653 if (!ok)
2654 goto fail;
2655
2656 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2657 method != RESET_TYPE_DATAPATH) {
2658 rc = efx->phy_op->init(efx);
2659 if (rc)
2660 goto fail;
2661 rc = efx->phy_op->reconfigure(efx);
2662 if (rc && rc != -EPERM)
2663 netif_err(efx, drv, efx->net_dev,
2664 "could not restore PHY settings\n");
2665 }
2666
2667 rc = efx_enable_interrupts(efx);
2668 if (rc)
2669 goto fail;
2670
2671 #ifdef CONFIG_SFC_SRIOV
2672 rc = efx->type->vswitching_restore(efx);
2673 if (rc) /* not fatal; the PF will still work fine */
2674 netif_warn(efx, probe, efx->net_dev,
2675 "failed to restore vswitching rc=%d;"
2676 " VFs may not function\n", rc);
2677 #endif
2678
2679 down_read(&efx->filter_sem);
2680 efx_restore_filters(efx);
2681 up_read(&efx->filter_sem);
2682 if (efx->type->sriov_reset)
2683 efx->type->sriov_reset(efx);
2684
2685 mutex_unlock(&efx->mac_lock);
2686
2687 efx_start_all(efx);
2688
2689 if (efx->type->udp_tnl_push_ports)
2690 efx->type->udp_tnl_push_ports(efx);
2691
2692 return 0;
2693
2694 fail:
2695 efx->port_initialized = false;
2696
2697 mutex_unlock(&efx->mac_lock);
2698
2699 return rc;
2700 }
2701
2702 /* Reset the NIC using the specified method. Note that the reset may
2703 * fail, in which case the card will be left in an unusable state.
2704 *
2705 * Caller must hold the rtnl_lock.
2706 */
2707 int efx_reset(struct efx_nic *efx, enum reset_type method)
2708 {
2709 int rc, rc2;
2710 bool disabled;
2711
2712 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2713 RESET_TYPE(method));
2714
2715 efx_device_detach_sync(efx);
2716 efx_reset_down(efx, method);
2717
2718 rc = efx->type->reset(efx, method);
2719 if (rc) {
2720 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2721 goto out;
2722 }
2723
2724 /* Clear flags for the scopes we covered. We assume the NIC and
2725 * driver are now quiescent so that there is no race here.
2726 */
2727 if (method < RESET_TYPE_MAX_METHOD)
2728 efx->reset_pending &= -(1 << (method + 1));
2729 else /* it doesn't fit into the well-ordered scope hierarchy */
2730 __clear_bit(method, &efx->reset_pending);
2731
2732 /* Reinitialise bus-mastering, which may have been turned off before
2733 * the reset was scheduled. This is still appropriate, even in the
2734 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2735 * can respond to requests. */
2736 pci_set_master(efx->pci_dev);
2737
2738 out:
2739 /* Leave device stopped if necessary */
2740 disabled = rc ||
2741 method == RESET_TYPE_DISABLE ||
2742 method == RESET_TYPE_RECOVER_OR_DISABLE;
2743 rc2 = efx_reset_up(efx, method, !disabled);
2744 if (rc2) {
2745 disabled = true;
2746 if (!rc)
2747 rc = rc2;
2748 }
2749
2750 if (disabled) {
2751 dev_close(efx->net_dev);
2752 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2753 efx->state = STATE_DISABLED;
2754 } else {
2755 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2756 efx_device_attach_if_not_resetting(efx);
2757 }
2758 return rc;
2759 }
2760
2761 /* Try recovery mechanisms.
2762 * For now only EEH is supported.
2763 * Returns 0 if the recovery mechanisms are unsuccessful.
2764 * Returns a non-zero value otherwise.
2765 */
2766 int efx_try_recovery(struct efx_nic *efx)
2767 {
2768 #ifdef CONFIG_EEH
2769 /* A PCI error can occur and not be seen by EEH because nothing
2770 * happens on the PCI bus. In this case the driver may fail and
2771 * schedule a 'recover or reset', leading to this recovery handler.
2772 * Manually call the eeh failure check function.
2773 */
2774 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2775 if (eeh_dev_check_failure(eehdev)) {
2776 /* The EEH mechanisms will handle the error and reset the
2777 * device if necessary.
2778 */
2779 return 1;
2780 }
2781 #endif
2782 return 0;
2783 }
2784
2785 static void efx_wait_for_bist_end(struct efx_nic *efx)
2786 {
2787 int i;
2788
2789 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2790 if (efx_mcdi_poll_reboot(efx))
2791 goto out;
2792 msleep(BIST_WAIT_DELAY_MS);
2793 }
2794
2795 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2796 out:
2797 /* Either way unset the BIST flag. If we found no reboot we probably
2798 * won't recover, but we should try.
2799 */
2800 efx->mc_bist_for_other_fn = false;
2801 }
2802
2803 /* The worker thread exists so that code that cannot sleep can
2804 * schedule a reset for later.
2805 */
2806 static void efx_reset_work(struct work_struct *data)
2807 {
2808 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2809 unsigned long pending;
2810 enum reset_type method;
2811
2812 pending = READ_ONCE(efx->reset_pending);
2813 method = fls(pending) - 1;
2814
2815 if (method == RESET_TYPE_MC_BIST)
2816 efx_wait_for_bist_end(efx);
2817
2818 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2819 method == RESET_TYPE_RECOVER_OR_ALL) &&
2820 efx_try_recovery(efx))
2821 return;
2822
2823 if (!pending)
2824 return;
2825
2826 rtnl_lock();
2827
2828 /* We checked the state in efx_schedule_reset() but it may
2829 * have changed by now. Now that we have the RTNL lock,
2830 * it cannot change again.
2831 */
2832 if (efx->state == STATE_READY)
2833 (void)efx_reset(efx, method);
2834
2835 rtnl_unlock();
2836 }
2837
2838 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2839 {
2840 enum reset_type method;
2841
2842 if (efx->state == STATE_RECOVERY) {
2843 netif_dbg(efx, drv, efx->net_dev,
2844 "recovering: skip scheduling %s reset\n",
2845 RESET_TYPE(type));
2846 return;
2847 }
2848
2849 switch (type) {
2850 case RESET_TYPE_INVISIBLE:
2851 case RESET_TYPE_ALL:
2852 case RESET_TYPE_RECOVER_OR_ALL:
2853 case RESET_TYPE_WORLD:
2854 case RESET_TYPE_DISABLE:
2855 case RESET_TYPE_RECOVER_OR_DISABLE:
2856 case RESET_TYPE_DATAPATH:
2857 case RESET_TYPE_MC_BIST:
2858 case RESET_TYPE_MCDI_TIMEOUT:
2859 method = type;
2860 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2861 RESET_TYPE(method));
2862 break;
2863 default:
2864 method = efx->type->map_reset_reason(type);
2865 netif_dbg(efx, drv, efx->net_dev,
2866 "scheduling %s reset for %s\n",
2867 RESET_TYPE(method), RESET_TYPE(type));
2868 break;
2869 }
2870
2871 set_bit(method, &efx->reset_pending);
2872 smp_mb(); /* ensure we change reset_pending before checking state */
2873
2874 /* If we're not READY then just leave the flags set as the cue
2875 * to abort probing or reschedule the reset later.
2876 */
2877 if (READ_ONCE(efx->state) != STATE_READY)
2878 return;
2879
2880 /* efx_process_channel() will no longer read events once a
2881 * reset is scheduled. So switch back to poll'd MCDI completions. */
2882 efx_mcdi_mode_poll(efx);
2883
2884 queue_work(reset_workqueue, &efx->reset_work);
2885 }
2886
2887 /**************************************************************************
2888 *
2889 * List of NICs we support
2890 *
2891 **************************************************************************/
2892
2893 /* PCI device ID table */
2894 static const struct pci_device_id efx_pci_table[] = {
2895 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2896 .driver_data = (unsigned long) &siena_a0_nic_type},
2897 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2898 .driver_data = (unsigned long) &siena_a0_nic_type},
2899 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2900 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2901 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
2902 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2903 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
2904 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2905 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
2906 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2907 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
2908 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2909 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
2910 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2911 {0} /* end of list */
2912 };
2913
2914 /**************************************************************************
2915 *
2916 * Dummy PHY/MAC operations
2917 *
2918 * Can be used for some unimplemented operations
2919 * Needed so all function pointers are valid and do not have to be tested
2920 * before use
2921 *
2922 **************************************************************************/
2923 int efx_port_dummy_op_int(struct efx_nic *efx)
2924 {
2925 return 0;
2926 }
2927 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2928
2929 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2930 {
2931 return false;
2932 }
2933
2934 static const struct efx_phy_operations efx_dummy_phy_operations = {
2935 .init = efx_port_dummy_op_int,
2936 .reconfigure = efx_port_dummy_op_int,
2937 .poll = efx_port_dummy_op_poll,
2938 .fini = efx_port_dummy_op_void,
2939 };
2940
2941 /**************************************************************************
2942 *
2943 * Data housekeeping
2944 *
2945 **************************************************************************/
2946
2947 /* This zeroes out and then fills in the invariants in a struct
2948 * efx_nic (including all sub-structures).
2949 */
2950 static int efx_init_struct(struct efx_nic *efx,
2951 struct pci_dev *pci_dev, struct net_device *net_dev)
2952 {
2953 int rc = -ENOMEM, i;
2954
2955 /* Initialise common structures */
2956 INIT_LIST_HEAD(&efx->node);
2957 INIT_LIST_HEAD(&efx->secondary_list);
2958 spin_lock_init(&efx->biu_lock);
2959 #ifdef CONFIG_SFC_MTD
2960 INIT_LIST_HEAD(&efx->mtd_list);
2961 #endif
2962 INIT_WORK(&efx->reset_work, efx_reset_work);
2963 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2964 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2965 efx->pci_dev = pci_dev;
2966 efx->msg_enable = debug;
2967 efx->state = STATE_UNINIT;
2968 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2969
2970 efx->net_dev = net_dev;
2971 efx->rx_prefix_size = efx->type->rx_prefix_size;
2972 efx->rx_ip_align =
2973 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2974 efx->rx_packet_hash_offset =
2975 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2976 efx->rx_packet_ts_offset =
2977 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2978 spin_lock_init(&efx->stats_lock);
2979 mutex_init(&efx->mac_lock);
2980 efx->phy_op = &efx_dummy_phy_operations;
2981 efx->mdio.dev = net_dev;
2982 INIT_WORK(&efx->mac_work, efx_mac_work);
2983 init_waitqueue_head(&efx->flush_wq);
2984
2985 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2986 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2987 if (!efx->channel[i])
2988 goto fail;
2989 efx->msi_context[i].efx = efx;
2990 efx->msi_context[i].index = i;
2991 }
2992
2993 /* Higher numbered interrupt modes are less capable! */
2994 if (WARN_ON_ONCE(efx->type->max_interrupt_mode >
2995 efx->type->min_interrupt_mode)) {
2996 rc = -EIO;
2997 goto fail;
2998 }
2999 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
3000 interrupt_mode);
3001 efx->interrupt_mode = min(efx->type->min_interrupt_mode,
3002 interrupt_mode);
3003
3004 /* Would be good to use the net_dev name, but we're too early */
3005 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
3006 pci_name(pci_dev));
3007 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
3008 if (!efx->workqueue)
3009 goto fail;
3010
3011 return 0;
3012
3013 fail:
3014 efx_fini_struct(efx);
3015 return rc;
3016 }
3017
3018 static void efx_fini_struct(struct efx_nic *efx)
3019 {
3020 int i;
3021
3022 for (i = 0; i < EFX_MAX_CHANNELS; i++)
3023 kfree(efx->channel[i]);
3024
3025 kfree(efx->vpd_sn);
3026
3027 if (efx->workqueue) {
3028 destroy_workqueue(efx->workqueue);
3029 efx->workqueue = NULL;
3030 }
3031 }
3032
3033 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
3034 {
3035 u64 n_rx_nodesc_trunc = 0;
3036 struct efx_channel *channel;
3037
3038 efx_for_each_channel(channel, efx)
3039 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
3040 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
3041 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
3042 }
3043
3044 /**************************************************************************
3045 *
3046 * PCI interface
3047 *
3048 **************************************************************************/
3049
3050 /* Main body of final NIC shutdown code
3051 * This is called only at module unload (or hotplug removal).
3052 */
3053 static void efx_pci_remove_main(struct efx_nic *efx)
3054 {
3055 /* Flush reset_work. It can no longer be scheduled since we
3056 * are not READY.
3057 */
3058 BUG_ON(efx->state == STATE_READY);
3059 cancel_work_sync(&efx->reset_work);
3060
3061 efx_disable_interrupts(efx);
3062 efx_nic_fini_interrupt(efx);
3063 efx_fini_port(efx);
3064 efx->type->fini(efx);
3065 efx_fini_napi(efx);
3066 efx_remove_all(efx);
3067 }
3068
3069 /* Final NIC shutdown
3070 * This is called only at module unload (or hotplug removal). A PF can call
3071 * this on its VFs to ensure they are unbound first.
3072 */
3073 static void efx_pci_remove(struct pci_dev *pci_dev)
3074 {
3075 struct efx_nic *efx;
3076
3077 efx = pci_get_drvdata(pci_dev);
3078 if (!efx)
3079 return;
3080
3081 /* Mark the NIC as fini, then stop the interface */
3082 rtnl_lock();
3083 efx_dissociate(efx);
3084 dev_close(efx->net_dev);
3085 efx_disable_interrupts(efx);
3086 efx->state = STATE_UNINIT;
3087 rtnl_unlock();
3088
3089 if (efx->type->sriov_fini)
3090 efx->type->sriov_fini(efx);
3091
3092 efx_unregister_netdev(efx);
3093
3094 efx_mtd_remove(efx);
3095
3096 efx_pci_remove_main(efx);
3097
3098 efx_fini_io(efx);
3099 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3100
3101 efx_fini_struct(efx);
3102 free_netdev(efx->net_dev);
3103
3104 pci_disable_pcie_error_reporting(pci_dev);
3105 };
3106
3107 /* NIC VPD information
3108 * Called during probe to display the part number of the
3109 * installed NIC. VPD is potentially very large but this should
3110 * always appear within the first 512 bytes.
3111 */
3112 #define SFC_VPD_LEN 512
3113 static void efx_probe_vpd_strings(struct efx_nic *efx)
3114 {
3115 struct pci_dev *dev = efx->pci_dev;
3116 char vpd_data[SFC_VPD_LEN];
3117 ssize_t vpd_size;
3118 int ro_start, ro_size, i, j;
3119
3120 /* Get the vpd data from the device */
3121 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
3122 if (vpd_size <= 0) {
3123 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
3124 return;
3125 }
3126
3127 /* Get the Read only section */
3128 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3129 if (ro_start < 0) {
3130 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3131 return;
3132 }
3133
3134 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3135 j = ro_size;
3136 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3137 if (i + j > vpd_size)
3138 j = vpd_size - i;
3139
3140 /* Get the Part number */
3141 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3142 if (i < 0) {
3143 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3144 return;
3145 }
3146
3147 j = pci_vpd_info_field_size(&vpd_data[i]);
3148 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3149 if (i + j > vpd_size) {
3150 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3151 return;
3152 }
3153
3154 netif_info(efx, drv, efx->net_dev,
3155 "Part Number : %.*s\n", j, &vpd_data[i]);
3156
3157 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3158 j = ro_size;
3159 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3160 if (i < 0) {
3161 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3162 return;
3163 }
3164
3165 j = pci_vpd_info_field_size(&vpd_data[i]);
3166 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3167 if (i + j > vpd_size) {
3168 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3169 return;
3170 }
3171
3172 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3173 if (!efx->vpd_sn)
3174 return;
3175
3176 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3177 }
3178
3179
3180 /* Main body of NIC initialisation
3181 * This is called at module load (or hotplug insertion, theoretically).
3182 */
3183 static int efx_pci_probe_main(struct efx_nic *efx)
3184 {
3185 int rc;
3186
3187 /* Do start-of-day initialisation */
3188 rc = efx_probe_all(efx);
3189 if (rc)
3190 goto fail1;
3191
3192 efx_init_napi(efx);
3193
3194 rc = efx->type->init(efx);
3195 if (rc) {
3196 netif_err(efx, probe, efx->net_dev,
3197 "failed to initialise NIC\n");
3198 goto fail3;
3199 }
3200
3201 rc = efx_init_port(efx);
3202 if (rc) {
3203 netif_err(efx, probe, efx->net_dev,
3204 "failed to initialise port\n");
3205 goto fail4;
3206 }
3207
3208 rc = efx_nic_init_interrupt(efx);
3209 if (rc)
3210 goto fail5;
3211 rc = efx_enable_interrupts(efx);
3212 if (rc)
3213 goto fail6;
3214
3215 return 0;
3216
3217 fail6:
3218 efx_nic_fini_interrupt(efx);
3219 fail5:
3220 efx_fini_port(efx);
3221 fail4:
3222 efx->type->fini(efx);
3223 fail3:
3224 efx_fini_napi(efx);
3225 efx_remove_all(efx);
3226 fail1:
3227 return rc;
3228 }
3229
3230 static int efx_pci_probe_post_io(struct efx_nic *efx)
3231 {
3232 struct net_device *net_dev = efx->net_dev;
3233 int rc = efx_pci_probe_main(efx);
3234
3235 if (rc)
3236 return rc;
3237
3238 if (efx->type->sriov_init) {
3239 rc = efx->type->sriov_init(efx);
3240 if (rc)
3241 netif_err(efx, probe, efx->net_dev,
3242 "SR-IOV can't be enabled rc %d\n", rc);
3243 }
3244
3245 /* Determine netdevice features */
3246 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3247 NETIF_F_TSO | NETIF_F_RXCSUM);
3248 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
3249 net_dev->features |= NETIF_F_TSO6;
3250 /* Check whether device supports TSO */
3251 if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
3252 net_dev->features &= ~NETIF_F_ALL_TSO;
3253 /* Mask for features that also apply to VLAN devices */
3254 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
3255 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3256 NETIF_F_RXCSUM);
3257
3258 net_dev->hw_features = net_dev->features & ~efx->fixed_features;
3259
3260 /* Disable VLAN filtering by default. It may be enforced if
3261 * the feature is fixed (i.e. VLAN filters are required to
3262 * receive VLAN tagged packets due to vPort restrictions).
3263 */
3264 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3265 net_dev->features |= efx->fixed_features;
3266
3267 rc = efx_register_netdev(efx);
3268 if (!rc)
3269 return 0;
3270
3271 efx_pci_remove_main(efx);
3272 return rc;
3273 }
3274
3275 /* NIC initialisation
3276 *
3277 * This is called at module load (or hotplug insertion,
3278 * theoretically). It sets up PCI mappings, resets the NIC,
3279 * sets up and registers the network devices with the kernel and hooks
3280 * the interrupt service routine. It does not prepare the device for
3281 * transmission; this is left to the first time one of the network
3282 * interfaces is brought up (i.e. efx_net_open).
3283 */
3284 static int efx_pci_probe(struct pci_dev *pci_dev,
3285 const struct pci_device_id *entry)
3286 {
3287 struct net_device *net_dev;
3288 struct efx_nic *efx;
3289 int rc;
3290
3291 /* Allocate and initialise a struct net_device and struct efx_nic */
3292 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3293 EFX_MAX_RX_QUEUES);
3294 if (!net_dev)
3295 return -ENOMEM;
3296 efx = netdev_priv(net_dev);
3297 efx->type = (const struct efx_nic_type *) entry->driver_data;
3298 efx->fixed_features |= NETIF_F_HIGHDMA;
3299
3300 pci_set_drvdata(pci_dev, efx);
3301 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3302 rc = efx_init_struct(efx, pci_dev, net_dev);
3303 if (rc)
3304 goto fail1;
3305
3306 netif_info(efx, probe, efx->net_dev,
3307 "Solarflare NIC detected\n");
3308
3309 if (!efx->type->is_vf)
3310 efx_probe_vpd_strings(efx);
3311
3312 /* Set up basic I/O (BAR mappings etc) */
3313 rc = efx_init_io(efx);
3314 if (rc)
3315 goto fail2;
3316
3317 rc = efx_pci_probe_post_io(efx);
3318 if (rc) {
3319 /* On failure, retry once immediately.
3320 * If we aborted probe due to a scheduled reset, dismiss it.
3321 */
3322 efx->reset_pending = 0;
3323 rc = efx_pci_probe_post_io(efx);
3324 if (rc) {
3325 /* On another failure, retry once more
3326 * after a 50-305ms delay.
3327 */
3328 unsigned char r;
3329
3330 get_random_bytes(&r, 1);
3331 msleep((unsigned int)r + 50);
3332 efx->reset_pending = 0;
3333 rc = efx_pci_probe_post_io(efx);
3334 }
3335 }
3336 if (rc)
3337 goto fail3;
3338
3339 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3340
3341 /* Try to create MTDs, but allow this to fail */
3342 rtnl_lock();
3343 rc = efx_mtd_probe(efx);
3344 rtnl_unlock();
3345 if (rc && rc != -EPERM)
3346 netif_warn(efx, probe, efx->net_dev,
3347 "failed to create MTDs (%d)\n", rc);
3348
3349 rc = pci_enable_pcie_error_reporting(pci_dev);
3350 if (rc && rc != -EINVAL)
3351 netif_notice(efx, probe, efx->net_dev,
3352 "PCIE error reporting unavailable (%d).\n",
3353 rc);
3354
3355 if (efx->type->udp_tnl_push_ports)
3356 efx->type->udp_tnl_push_ports(efx);
3357
3358 return 0;
3359
3360 fail3:
3361 efx_fini_io(efx);
3362 fail2:
3363 efx_fini_struct(efx);
3364 fail1:
3365 WARN_ON(rc > 0);
3366 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3367 free_netdev(net_dev);
3368 return rc;
3369 }
3370
3371 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3372 * enabled on success
3373 */
3374 #ifdef CONFIG_SFC_SRIOV
3375 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3376 {
3377 int rc;
3378 struct efx_nic *efx = pci_get_drvdata(dev);
3379
3380 if (efx->type->sriov_configure) {
3381 rc = efx->type->sriov_configure(efx, num_vfs);
3382 if (rc)
3383 return rc;
3384 else
3385 return num_vfs;
3386 } else
3387 return -EOPNOTSUPP;
3388 }
3389 #endif
3390
3391 static int efx_pm_freeze(struct device *dev)
3392 {
3393 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3394
3395 rtnl_lock();
3396
3397 if (efx->state != STATE_DISABLED) {
3398 efx->state = STATE_UNINIT;
3399
3400 efx_device_detach_sync(efx);
3401
3402 efx_stop_all(efx);
3403 efx_disable_interrupts(efx);
3404 }
3405
3406 rtnl_unlock();
3407
3408 return 0;
3409 }
3410
3411 static int efx_pm_thaw(struct device *dev)
3412 {
3413 int rc;
3414 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3415
3416 rtnl_lock();
3417
3418 if (efx->state != STATE_DISABLED) {
3419 rc = efx_enable_interrupts(efx);
3420 if (rc)
3421 goto fail;
3422
3423 mutex_lock(&efx->mac_lock);
3424 efx->phy_op->reconfigure(efx);
3425 mutex_unlock(&efx->mac_lock);
3426
3427 efx_start_all(efx);
3428
3429 efx_device_attach_if_not_resetting(efx);
3430
3431 efx->state = STATE_READY;
3432
3433 efx->type->resume_wol(efx);
3434 }
3435
3436 rtnl_unlock();
3437
3438 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3439 queue_work(reset_workqueue, &efx->reset_work);
3440
3441 return 0;
3442
3443 fail:
3444 rtnl_unlock();
3445
3446 return rc;
3447 }
3448
3449 static int efx_pm_poweroff(struct device *dev)
3450 {
3451 struct pci_dev *pci_dev = to_pci_dev(dev);
3452 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3453
3454 efx->type->fini(efx);
3455
3456 efx->reset_pending = 0;
3457
3458 pci_save_state(pci_dev);
3459 return pci_set_power_state(pci_dev, PCI_D3hot);
3460 }
3461
3462 /* Used for both resume and restore */
3463 static int efx_pm_resume(struct device *dev)
3464 {
3465 struct pci_dev *pci_dev = to_pci_dev(dev);
3466 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3467 int rc;
3468
3469 rc = pci_set_power_state(pci_dev, PCI_D0);
3470 if (rc)
3471 return rc;
3472 pci_restore_state(pci_dev);
3473 rc = pci_enable_device(pci_dev);
3474 if (rc)
3475 return rc;
3476 pci_set_master(efx->pci_dev);
3477 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3478 if (rc)
3479 return rc;
3480 rc = efx->type->init(efx);
3481 if (rc)
3482 return rc;
3483 rc = efx_pm_thaw(dev);
3484 return rc;
3485 }
3486
3487 static int efx_pm_suspend(struct device *dev)
3488 {
3489 int rc;
3490
3491 efx_pm_freeze(dev);
3492 rc = efx_pm_poweroff(dev);
3493 if (rc)
3494 efx_pm_resume(dev);
3495 return rc;
3496 }
3497
3498 static const struct dev_pm_ops efx_pm_ops = {
3499 .suspend = efx_pm_suspend,
3500 .resume = efx_pm_resume,
3501 .freeze = efx_pm_freeze,
3502 .thaw = efx_pm_thaw,
3503 .poweroff = efx_pm_poweroff,
3504 .restore = efx_pm_resume,
3505 };
3506
3507 /* A PCI error affecting this device was detected.
3508 * At this point MMIO and DMA may be disabled.
3509 * Stop the software path and request a slot reset.
3510 */
3511 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3512 enum pci_channel_state state)
3513 {
3514 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3515 struct efx_nic *efx = pci_get_drvdata(pdev);
3516
3517 if (state == pci_channel_io_perm_failure)
3518 return PCI_ERS_RESULT_DISCONNECT;
3519
3520 rtnl_lock();
3521
3522 if (efx->state != STATE_DISABLED) {
3523 efx->state = STATE_RECOVERY;
3524 efx->reset_pending = 0;
3525
3526 efx_device_detach_sync(efx);
3527
3528 efx_stop_all(efx);
3529 efx_disable_interrupts(efx);
3530
3531 status = PCI_ERS_RESULT_NEED_RESET;
3532 } else {
3533 /* If the interface is disabled we don't want to do anything
3534 * with it.
3535 */
3536 status = PCI_ERS_RESULT_RECOVERED;
3537 }
3538
3539 rtnl_unlock();
3540
3541 pci_disable_device(pdev);
3542
3543 return status;
3544 }
3545
3546 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3547 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3548 {
3549 struct efx_nic *efx = pci_get_drvdata(pdev);
3550 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3551 int rc;
3552
3553 if (pci_enable_device(pdev)) {
3554 netif_err(efx, hw, efx->net_dev,
3555 "Cannot re-enable PCI device after reset.\n");
3556 status = PCI_ERS_RESULT_DISCONNECT;
3557 }
3558
3559 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3560 if (rc) {
3561 netif_err(efx, hw, efx->net_dev,
3562 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3563 /* Non-fatal error. Continue. */
3564 }
3565
3566 return status;
3567 }
3568
3569 /* Perform the actual reset and resume I/O operations. */
3570 static void efx_io_resume(struct pci_dev *pdev)
3571 {
3572 struct efx_nic *efx = pci_get_drvdata(pdev);
3573 int rc;
3574
3575 rtnl_lock();
3576
3577 if (efx->state == STATE_DISABLED)
3578 goto out;
3579
3580 rc = efx_reset(efx, RESET_TYPE_ALL);
3581 if (rc) {
3582 netif_err(efx, hw, efx->net_dev,
3583 "efx_reset failed after PCI error (%d)\n", rc);
3584 } else {
3585 efx->state = STATE_READY;
3586 netif_dbg(efx, hw, efx->net_dev,
3587 "Done resetting and resuming IO after PCI error.\n");
3588 }
3589
3590 out:
3591 rtnl_unlock();
3592 }
3593
3594 /* For simplicity and reliability, we always require a slot reset and try to
3595 * reset the hardware when a pci error affecting the device is detected.
3596 * We leave both the link_reset and mmio_enabled callback unimplemented:
3597 * with our request for slot reset the mmio_enabled callback will never be
3598 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3599 */
3600 static const struct pci_error_handlers efx_err_handlers = {
3601 .error_detected = efx_io_error_detected,
3602 .slot_reset = efx_io_slot_reset,
3603 .resume = efx_io_resume,
3604 };
3605
3606 static struct pci_driver efx_pci_driver = {
3607 .name = KBUILD_MODNAME,
3608 .id_table = efx_pci_table,
3609 .probe = efx_pci_probe,
3610 .remove = efx_pci_remove,
3611 .driver.pm = &efx_pm_ops,
3612 .err_handler = &efx_err_handlers,
3613 #ifdef CONFIG_SFC_SRIOV
3614 .sriov_configure = efx_pci_sriov_configure,
3615 #endif
3616 };
3617
3618 /**************************************************************************
3619 *
3620 * Kernel module interface
3621 *
3622 *************************************************************************/
3623
3624 module_param(interrupt_mode, uint, 0444);
3625 MODULE_PARM_DESC(interrupt_mode,
3626 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3627
3628 static int __init efx_init_module(void)
3629 {
3630 int rc;
3631
3632 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3633
3634 rc = register_netdevice_notifier(&efx_netdev_notifier);
3635 if (rc)
3636 goto err_notifier;
3637
3638 #ifdef CONFIG_SFC_SRIOV
3639 rc = efx_init_sriov();
3640 if (rc)
3641 goto err_sriov;
3642 #endif
3643
3644 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3645 if (!reset_workqueue) {
3646 rc = -ENOMEM;
3647 goto err_reset;
3648 }
3649
3650 rc = pci_register_driver(&efx_pci_driver);
3651 if (rc < 0)
3652 goto err_pci;
3653
3654 return 0;
3655
3656 err_pci:
3657 destroy_workqueue(reset_workqueue);
3658 err_reset:
3659 #ifdef CONFIG_SFC_SRIOV
3660 efx_fini_sriov();
3661 err_sriov:
3662 #endif
3663 unregister_netdevice_notifier(&efx_netdev_notifier);
3664 err_notifier:
3665 return rc;
3666 }
3667
3668 static void __exit efx_exit_module(void)
3669 {
3670 printk(KERN_INFO "Solarflare NET driver unloading\n");
3671
3672 pci_unregister_driver(&efx_pci_driver);
3673 destroy_workqueue(reset_workqueue);
3674 #ifdef CONFIG_SFC_SRIOV
3675 efx_fini_sriov();
3676 #endif
3677 unregister_netdevice_notifier(&efx_netdev_notifier);
3678
3679 }
3680
3681 module_init(efx_init_module);
3682 module_exit(efx_exit_module);
3683
3684 MODULE_AUTHOR("Solarflare Communications and "
3685 "Michael Brown <mbrown@fensystems.co.uk>");
3686 MODULE_DESCRIPTION("Solarflare network driver");
3687 MODULE_LICENSE("GPL");
3688 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3689 MODULE_VERSION(EFX_DRIVER_VERSION);