]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/sfc/efx.c
sfc: Take mac_lock before calling efx_ef10_filter_table_probe
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 #include "sriov.h"
30
31 #include "mcdi.h"
32 #include "workarounds.h"
33
34 /**************************************************************************
35 *
36 * Type name strings
37 *
38 **************************************************************************
39 */
40
41 /* Loopback mode names (see LOOPBACK_MODE()) */
42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43 const char *const efx_loopback_mode_names[] = {
44 [LOOPBACK_NONE] = "NONE",
45 [LOOPBACK_DATA] = "DATAPATH",
46 [LOOPBACK_GMAC] = "GMAC",
47 [LOOPBACK_XGMII] = "XGMII",
48 [LOOPBACK_XGXS] = "XGXS",
49 [LOOPBACK_XAUI] = "XAUI",
50 [LOOPBACK_GMII] = "GMII",
51 [LOOPBACK_SGMII] = "SGMII",
52 [LOOPBACK_XGBR] = "XGBR",
53 [LOOPBACK_XFI] = "XFI",
54 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
55 [LOOPBACK_GMII_FAR] = "GMII_FAR",
56 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
57 [LOOPBACK_XFI_FAR] = "XFI_FAR",
58 [LOOPBACK_GPHY] = "GPHY",
59 [LOOPBACK_PHYXS] = "PHYXS",
60 [LOOPBACK_PCS] = "PCS",
61 [LOOPBACK_PMAPMD] = "PMA/PMD",
62 [LOOPBACK_XPORT] = "XPORT",
63 [LOOPBACK_XGMII_WS] = "XGMII_WS",
64 [LOOPBACK_XAUI_WS] = "XAUI_WS",
65 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
66 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67 [LOOPBACK_GMII_WS] = "GMII_WS",
68 [LOOPBACK_XFI_WS] = "XFI_WS",
69 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
70 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
71 };
72
73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74 const char *const efx_reset_type_names[] = {
75 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
76 [RESET_TYPE_ALL] = "ALL",
77 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
78 [RESET_TYPE_WORLD] = "WORLD",
79 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80 [RESET_TYPE_DATAPATH] = "DATAPATH",
81 [RESET_TYPE_MC_BIST] = "MC_BIST",
82 [RESET_TYPE_DISABLE] = "DISABLE",
83 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
84 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
85 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
86 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
87 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
88 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
89 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
90 };
91
92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
93 * queued onto this work queue. This is not a per-nic work queue, because
94 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
95 */
96 static struct workqueue_struct *reset_workqueue;
97
98 /* How often and how many times to poll for a reset while waiting for a
99 * BIST that another function started to complete.
100 */
101 #define BIST_WAIT_DELAY_MS 100
102 #define BIST_WAIT_DELAY_COUNT 100
103
104 /**************************************************************************
105 *
106 * Configurable values
107 *
108 *************************************************************************/
109
110 /*
111 * Use separate channels for TX and RX events
112 *
113 * Set this to 1 to use separate channels for TX and RX. It allows us
114 * to control interrupt affinity separately for TX and RX.
115 *
116 * This is only used in MSI-X interrupt mode
117 */
118 bool efx_separate_tx_channels;
119 module_param(efx_separate_tx_channels, bool, 0444);
120 MODULE_PARM_DESC(efx_separate_tx_channels,
121 "Use separate channels for TX and RX");
122
123 /* This is the weight assigned to each of the (per-channel) virtual
124 * NAPI devices.
125 */
126 static int napi_weight = 64;
127
128 /* This is the time (in jiffies) between invocations of the hardware
129 * monitor.
130 * On Falcon-based NICs, this will:
131 * - Check the on-board hardware monitor;
132 * - Poll the link state and reconfigure the hardware as necessary.
133 * On Siena-based NICs for power systems with EEH support, this will give EEH a
134 * chance to start.
135 */
136 static unsigned int efx_monitor_interval = 1 * HZ;
137
138 /* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
140 *
141 * The default for RX should strike a balance between increasing the
142 * round-trip latency and reducing overhead.
143 */
144 static unsigned int rx_irq_mod_usec = 60;
145
146 /* Initial interrupt moderation settings. They can be modified after
147 * module load with ethtool.
148 *
149 * This default is chosen to ensure that a 10G link does not go idle
150 * while a TX queue is stopped after it has become full. A queue is
151 * restarted when it drops below half full. The time this takes (assuming
152 * worst case 3 descriptors per packet and 1024 descriptors) is
153 * 512 / 3 * 1.2 = 205 usec.
154 */
155 static unsigned int tx_irq_mod_usec = 150;
156
157 /* This is the first interrupt mode to try out of:
158 * 0 => MSI-X
159 * 1 => MSI
160 * 2 => legacy
161 */
162 static unsigned int interrupt_mode;
163
164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165 * i.e. the number of CPUs among which we may distribute simultaneous
166 * interrupt handling.
167 *
168 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169 * The default (0) means to assign an interrupt to each core.
170 */
171 static unsigned int rss_cpus;
172 module_param(rss_cpus, uint, 0444);
173 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
174
175 static bool phy_flash_cfg;
176 module_param(phy_flash_cfg, bool, 0644);
177 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
178
179 static unsigned irq_adapt_low_thresh = 8000;
180 module_param(irq_adapt_low_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_low_thresh,
182 "Threshold score for reducing IRQ moderation");
183
184 static unsigned irq_adapt_high_thresh = 16000;
185 module_param(irq_adapt_high_thresh, uint, 0644);
186 MODULE_PARM_DESC(irq_adapt_high_thresh,
187 "Threshold score for increasing IRQ moderation");
188
189 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
190 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
191 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
192 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
193 module_param(debug, uint, 0);
194 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
195
196 /**************************************************************************
197 *
198 * Utility functions and prototypes
199 *
200 *************************************************************************/
201
202 static int efx_soft_enable_interrupts(struct efx_nic *efx);
203 static void efx_soft_disable_interrupts(struct efx_nic *efx);
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_channels(struct efx_nic *efx);
206 static const struct efx_channel_type efx_default_channel_type;
207 static void efx_remove_port(struct efx_nic *efx);
208 static void efx_init_napi_channel(struct efx_channel *channel);
209 static void efx_fini_napi(struct efx_nic *efx);
210 static void efx_fini_napi_channel(struct efx_channel *channel);
211 static void efx_fini_struct(struct efx_nic *efx);
212 static void efx_start_all(struct efx_nic *efx);
213 static void efx_stop_all(struct efx_nic *efx);
214
215 #define EFX_ASSERT_RESET_SERIALISED(efx) \
216 do { \
217 if ((efx->state == STATE_READY) || \
218 (efx->state == STATE_RECOVERY) || \
219 (efx->state == STATE_DISABLED)) \
220 ASSERT_RTNL(); \
221 } while (0)
222
223 static int efx_check_disabled(struct efx_nic *efx)
224 {
225 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
226 netif_err(efx, drv, efx->net_dev,
227 "device is disabled due to earlier errors\n");
228 return -EIO;
229 }
230 return 0;
231 }
232
233 /**************************************************************************
234 *
235 * Event queue processing
236 *
237 *************************************************************************/
238
239 /* Process channel's event queue
240 *
241 * This function is responsible for processing the event queue of a
242 * single channel. The caller must guarantee that this function will
243 * never be concurrently called more than once on the same channel,
244 * though different channels may be being processed concurrently.
245 */
246 static int efx_process_channel(struct efx_channel *channel, int budget)
247 {
248 struct efx_tx_queue *tx_queue;
249 int spent;
250
251 if (unlikely(!channel->enabled))
252 return 0;
253
254 efx_for_each_channel_tx_queue(tx_queue, channel) {
255 tx_queue->pkts_compl = 0;
256 tx_queue->bytes_compl = 0;
257 }
258
259 spent = efx_nic_process_eventq(channel, budget);
260 if (spent && efx_channel_has_rx_queue(channel)) {
261 struct efx_rx_queue *rx_queue =
262 efx_channel_get_rx_queue(channel);
263
264 efx_rx_flush_packet(channel);
265 efx_fast_push_rx_descriptors(rx_queue, true);
266 }
267
268 /* Update BQL */
269 efx_for_each_channel_tx_queue(tx_queue, channel) {
270 if (tx_queue->bytes_compl) {
271 netdev_tx_completed_queue(tx_queue->core_txq,
272 tx_queue->pkts_compl, tx_queue->bytes_compl);
273 }
274 }
275
276 return spent;
277 }
278
279 /* NAPI poll handler
280 *
281 * NAPI guarantees serialisation of polls of the same device, which
282 * provides the guarantee required by efx_process_channel().
283 */
284 static int efx_poll(struct napi_struct *napi, int budget)
285 {
286 struct efx_channel *channel =
287 container_of(napi, struct efx_channel, napi_str);
288 struct efx_nic *efx = channel->efx;
289 int spent;
290
291 if (!efx_channel_lock_napi(channel))
292 return budget;
293
294 netif_vdbg(efx, intr, efx->net_dev,
295 "channel %d NAPI poll executing on CPU %d\n",
296 channel->channel, raw_smp_processor_id());
297
298 spent = efx_process_channel(channel, budget);
299
300 if (spent < budget) {
301 if (efx_channel_has_rx_queue(channel) &&
302 efx->irq_rx_adaptive &&
303 unlikely(++channel->irq_count == 1000)) {
304 if (unlikely(channel->irq_mod_score <
305 irq_adapt_low_thresh)) {
306 if (channel->irq_moderation > 1) {
307 channel->irq_moderation -= 1;
308 efx->type->push_irq_moderation(channel);
309 }
310 } else if (unlikely(channel->irq_mod_score >
311 irq_adapt_high_thresh)) {
312 if (channel->irq_moderation <
313 efx->irq_rx_moderation) {
314 channel->irq_moderation += 1;
315 efx->type->push_irq_moderation(channel);
316 }
317 }
318 channel->irq_count = 0;
319 channel->irq_mod_score = 0;
320 }
321
322 efx_filter_rfs_expire(channel);
323
324 /* There is no race here; although napi_disable() will
325 * only wait for napi_complete(), this isn't a problem
326 * since efx_nic_eventq_read_ack() will have no effect if
327 * interrupts have already been disabled.
328 */
329 napi_complete(napi);
330 efx_nic_eventq_read_ack(channel);
331 }
332
333 efx_channel_unlock_napi(channel);
334 return spent;
335 }
336
337 /* Create event queue
338 * Event queue memory allocations are done only once. If the channel
339 * is reset, the memory buffer will be reused; this guards against
340 * errors during channel reset and also simplifies interrupt handling.
341 */
342 static int efx_probe_eventq(struct efx_channel *channel)
343 {
344 struct efx_nic *efx = channel->efx;
345 unsigned long entries;
346
347 netif_dbg(efx, probe, efx->net_dev,
348 "chan %d create event queue\n", channel->channel);
349
350 /* Build an event queue with room for one event per tx and rx buffer,
351 * plus some extra for link state events and MCDI completions. */
352 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
353 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
354 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
355
356 return efx_nic_probe_eventq(channel);
357 }
358
359 /* Prepare channel's event queue */
360 static int efx_init_eventq(struct efx_channel *channel)
361 {
362 struct efx_nic *efx = channel->efx;
363 int rc;
364
365 EFX_WARN_ON_PARANOID(channel->eventq_init);
366
367 netif_dbg(efx, drv, efx->net_dev,
368 "chan %d init event queue\n", channel->channel);
369
370 rc = efx_nic_init_eventq(channel);
371 if (rc == 0) {
372 efx->type->push_irq_moderation(channel);
373 channel->eventq_read_ptr = 0;
374 channel->eventq_init = true;
375 }
376 return rc;
377 }
378
379 /* Enable event queue processing and NAPI */
380 void efx_start_eventq(struct efx_channel *channel)
381 {
382 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
383 "chan %d start event queue\n", channel->channel);
384
385 /* Make sure the NAPI handler sees the enabled flag set */
386 channel->enabled = true;
387 smp_wmb();
388
389 efx_channel_enable(channel);
390 napi_enable(&channel->napi_str);
391 efx_nic_eventq_read_ack(channel);
392 }
393
394 /* Disable event queue processing and NAPI */
395 void efx_stop_eventq(struct efx_channel *channel)
396 {
397 if (!channel->enabled)
398 return;
399
400 napi_disable(&channel->napi_str);
401 while (!efx_channel_disable(channel))
402 usleep_range(1000, 20000);
403 channel->enabled = false;
404 }
405
406 static void efx_fini_eventq(struct efx_channel *channel)
407 {
408 if (!channel->eventq_init)
409 return;
410
411 netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 "chan %d fini event queue\n", channel->channel);
413
414 efx_nic_fini_eventq(channel);
415 channel->eventq_init = false;
416 }
417
418 static void efx_remove_eventq(struct efx_channel *channel)
419 {
420 netif_dbg(channel->efx, drv, channel->efx->net_dev,
421 "chan %d remove event queue\n", channel->channel);
422
423 efx_nic_remove_eventq(channel);
424 }
425
426 /**************************************************************************
427 *
428 * Channel handling
429 *
430 *************************************************************************/
431
432 /* Allocate and initialise a channel structure. */
433 static struct efx_channel *
434 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
435 {
436 struct efx_channel *channel;
437 struct efx_rx_queue *rx_queue;
438 struct efx_tx_queue *tx_queue;
439 int j;
440
441 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
442 if (!channel)
443 return NULL;
444
445 channel->efx = efx;
446 channel->channel = i;
447 channel->type = &efx_default_channel_type;
448
449 for (j = 0; j < EFX_TXQ_TYPES; j++) {
450 tx_queue = &channel->tx_queue[j];
451 tx_queue->efx = efx;
452 tx_queue->queue = i * EFX_TXQ_TYPES + j;
453 tx_queue->channel = channel;
454 }
455
456 rx_queue = &channel->rx_queue;
457 rx_queue->efx = efx;
458 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
459 (unsigned long)rx_queue);
460
461 return channel;
462 }
463
464 /* Allocate and initialise a channel structure, copying parameters
465 * (but not resources) from an old channel structure.
466 */
467 static struct efx_channel *
468 efx_copy_channel(const struct efx_channel *old_channel)
469 {
470 struct efx_channel *channel;
471 struct efx_rx_queue *rx_queue;
472 struct efx_tx_queue *tx_queue;
473 int j;
474
475 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
476 if (!channel)
477 return NULL;
478
479 *channel = *old_channel;
480
481 channel->napi_dev = NULL;
482 memset(&channel->eventq, 0, sizeof(channel->eventq));
483
484 for (j = 0; j < EFX_TXQ_TYPES; j++) {
485 tx_queue = &channel->tx_queue[j];
486 if (tx_queue->channel)
487 tx_queue->channel = channel;
488 tx_queue->buffer = NULL;
489 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
490 }
491
492 rx_queue = &channel->rx_queue;
493 rx_queue->buffer = NULL;
494 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
495 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
496 (unsigned long)rx_queue);
497
498 return channel;
499 }
500
501 static int efx_probe_channel(struct efx_channel *channel)
502 {
503 struct efx_tx_queue *tx_queue;
504 struct efx_rx_queue *rx_queue;
505 int rc;
506
507 netif_dbg(channel->efx, probe, channel->efx->net_dev,
508 "creating channel %d\n", channel->channel);
509
510 rc = channel->type->pre_probe(channel);
511 if (rc)
512 goto fail;
513
514 rc = efx_probe_eventq(channel);
515 if (rc)
516 goto fail;
517
518 efx_for_each_channel_tx_queue(tx_queue, channel) {
519 rc = efx_probe_tx_queue(tx_queue);
520 if (rc)
521 goto fail;
522 }
523
524 efx_for_each_channel_rx_queue(rx_queue, channel) {
525 rc = efx_probe_rx_queue(rx_queue);
526 if (rc)
527 goto fail;
528 }
529
530 return 0;
531
532 fail:
533 efx_remove_channel(channel);
534 return rc;
535 }
536
537 static void
538 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
539 {
540 struct efx_nic *efx = channel->efx;
541 const char *type;
542 int number;
543
544 number = channel->channel;
545 if (efx->tx_channel_offset == 0) {
546 type = "";
547 } else if (channel->channel < efx->tx_channel_offset) {
548 type = "-rx";
549 } else {
550 type = "-tx";
551 number -= efx->tx_channel_offset;
552 }
553 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
554 }
555
556 static void efx_set_channel_names(struct efx_nic *efx)
557 {
558 struct efx_channel *channel;
559
560 efx_for_each_channel(channel, efx)
561 channel->type->get_name(channel,
562 efx->msi_context[channel->channel].name,
563 sizeof(efx->msi_context[0].name));
564 }
565
566 static int efx_probe_channels(struct efx_nic *efx)
567 {
568 struct efx_channel *channel;
569 int rc;
570
571 /* Restart special buffer allocation */
572 efx->next_buffer_table = 0;
573
574 /* Probe channels in reverse, so that any 'extra' channels
575 * use the start of the buffer table. This allows the traffic
576 * channels to be resized without moving them or wasting the
577 * entries before them.
578 */
579 efx_for_each_channel_rev(channel, efx) {
580 rc = efx_probe_channel(channel);
581 if (rc) {
582 netif_err(efx, probe, efx->net_dev,
583 "failed to create channel %d\n",
584 channel->channel);
585 goto fail;
586 }
587 }
588 efx_set_channel_names(efx);
589
590 return 0;
591
592 fail:
593 efx_remove_channels(efx);
594 return rc;
595 }
596
597 /* Channels are shutdown and reinitialised whilst the NIC is running
598 * to propagate configuration changes (mtu, checksum offload), or
599 * to clear hardware error conditions
600 */
601 static void efx_start_datapath(struct efx_nic *efx)
602 {
603 netdev_features_t old_features = efx->net_dev->features;
604 bool old_rx_scatter = efx->rx_scatter;
605 struct efx_tx_queue *tx_queue;
606 struct efx_rx_queue *rx_queue;
607 struct efx_channel *channel;
608 size_t rx_buf_len;
609
610 /* Calculate the rx buffer allocation parameters required to
611 * support the current MTU, including padding for header
612 * alignment and overruns.
613 */
614 efx->rx_dma_len = (efx->rx_prefix_size +
615 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
616 efx->type->rx_buffer_padding);
617 rx_buf_len = (sizeof(struct efx_rx_page_state) +
618 efx->rx_ip_align + efx->rx_dma_len);
619 if (rx_buf_len <= PAGE_SIZE) {
620 efx->rx_scatter = efx->type->always_rx_scatter;
621 efx->rx_buffer_order = 0;
622 } else if (efx->type->can_rx_scatter) {
623 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
624 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
625 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
626 EFX_RX_BUF_ALIGNMENT) >
627 PAGE_SIZE);
628 efx->rx_scatter = true;
629 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
630 efx->rx_buffer_order = 0;
631 } else {
632 efx->rx_scatter = false;
633 efx->rx_buffer_order = get_order(rx_buf_len);
634 }
635
636 efx_rx_config_page_split(efx);
637 if (efx->rx_buffer_order)
638 netif_dbg(efx, drv, efx->net_dev,
639 "RX buf len=%u; page order=%u batch=%u\n",
640 efx->rx_dma_len, efx->rx_buffer_order,
641 efx->rx_pages_per_batch);
642 else
643 netif_dbg(efx, drv, efx->net_dev,
644 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
645 efx->rx_dma_len, efx->rx_page_buf_step,
646 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
647
648 /* Restore previously fixed features in hw_features and remove
649 * features which are fixed now
650 */
651 efx->net_dev->hw_features |= efx->net_dev->features;
652 efx->net_dev->hw_features &= ~efx->fixed_features;
653 efx->net_dev->features |= efx->fixed_features;
654 if (efx->net_dev->features != old_features)
655 netdev_features_change(efx->net_dev);
656
657 /* RX filters may also have scatter-enabled flags */
658 if (efx->rx_scatter != old_rx_scatter)
659 efx->type->filter_update_rx_scatter(efx);
660
661 /* We must keep at least one descriptor in a TX ring empty.
662 * We could avoid this when the queue size does not exactly
663 * match the hardware ring size, but it's not that important.
664 * Therefore we stop the queue when one more skb might fill
665 * the ring completely. We wake it when half way back to
666 * empty.
667 */
668 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
669 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
670
671 /* Initialise the channels */
672 efx_for_each_channel(channel, efx) {
673 efx_for_each_channel_tx_queue(tx_queue, channel) {
674 efx_init_tx_queue(tx_queue);
675 atomic_inc(&efx->active_queues);
676 }
677
678 efx_for_each_channel_rx_queue(rx_queue, channel) {
679 efx_init_rx_queue(rx_queue);
680 atomic_inc(&efx->active_queues);
681 efx_stop_eventq(channel);
682 efx_fast_push_rx_descriptors(rx_queue, false);
683 efx_start_eventq(channel);
684 }
685
686 WARN_ON(channel->rx_pkt_n_frags);
687 }
688
689 efx_ptp_start_datapath(efx);
690
691 if (netif_device_present(efx->net_dev))
692 netif_tx_wake_all_queues(efx->net_dev);
693 }
694
695 static void efx_stop_datapath(struct efx_nic *efx)
696 {
697 struct efx_channel *channel;
698 struct efx_tx_queue *tx_queue;
699 struct efx_rx_queue *rx_queue;
700 int rc;
701
702 EFX_ASSERT_RESET_SERIALISED(efx);
703 BUG_ON(efx->port_enabled);
704
705 efx_ptp_stop_datapath(efx);
706
707 /* Stop RX refill */
708 efx_for_each_channel(channel, efx) {
709 efx_for_each_channel_rx_queue(rx_queue, channel)
710 rx_queue->refill_enabled = false;
711 }
712
713 efx_for_each_channel(channel, efx) {
714 /* RX packet processing is pipelined, so wait for the
715 * NAPI handler to complete. At least event queue 0
716 * might be kept active by non-data events, so don't
717 * use napi_synchronize() but actually disable NAPI
718 * temporarily.
719 */
720 if (efx_channel_has_rx_queue(channel)) {
721 efx_stop_eventq(channel);
722 efx_start_eventq(channel);
723 }
724 }
725
726 rc = efx->type->fini_dmaq(efx);
727 if (rc && EFX_WORKAROUND_7803(efx)) {
728 /* Schedule a reset to recover from the flush failure. The
729 * descriptor caches reference memory we're about to free,
730 * but falcon_reconfigure_mac_wrapper() won't reconnect
731 * the MACs because of the pending reset.
732 */
733 netif_err(efx, drv, efx->net_dev,
734 "Resetting to recover from flush failure\n");
735 efx_schedule_reset(efx, RESET_TYPE_ALL);
736 } else if (rc) {
737 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
738 } else {
739 netif_dbg(efx, drv, efx->net_dev,
740 "successfully flushed all queues\n");
741 }
742
743 efx_for_each_channel(channel, efx) {
744 efx_for_each_channel_rx_queue(rx_queue, channel)
745 efx_fini_rx_queue(rx_queue);
746 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
747 efx_fini_tx_queue(tx_queue);
748 }
749 }
750
751 static void efx_remove_channel(struct efx_channel *channel)
752 {
753 struct efx_tx_queue *tx_queue;
754 struct efx_rx_queue *rx_queue;
755
756 netif_dbg(channel->efx, drv, channel->efx->net_dev,
757 "destroy chan %d\n", channel->channel);
758
759 efx_for_each_channel_rx_queue(rx_queue, channel)
760 efx_remove_rx_queue(rx_queue);
761 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
762 efx_remove_tx_queue(tx_queue);
763 efx_remove_eventq(channel);
764 channel->type->post_remove(channel);
765 }
766
767 static void efx_remove_channels(struct efx_nic *efx)
768 {
769 struct efx_channel *channel;
770
771 efx_for_each_channel(channel, efx)
772 efx_remove_channel(channel);
773 }
774
775 int
776 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
777 {
778 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
779 u32 old_rxq_entries, old_txq_entries;
780 unsigned i, next_buffer_table = 0;
781 int rc, rc2;
782
783 rc = efx_check_disabled(efx);
784 if (rc)
785 return rc;
786
787 /* Not all channels should be reallocated. We must avoid
788 * reallocating their buffer table entries.
789 */
790 efx_for_each_channel(channel, efx) {
791 struct efx_rx_queue *rx_queue;
792 struct efx_tx_queue *tx_queue;
793
794 if (channel->type->copy)
795 continue;
796 next_buffer_table = max(next_buffer_table,
797 channel->eventq.index +
798 channel->eventq.entries);
799 efx_for_each_channel_rx_queue(rx_queue, channel)
800 next_buffer_table = max(next_buffer_table,
801 rx_queue->rxd.index +
802 rx_queue->rxd.entries);
803 efx_for_each_channel_tx_queue(tx_queue, channel)
804 next_buffer_table = max(next_buffer_table,
805 tx_queue->txd.index +
806 tx_queue->txd.entries);
807 }
808
809 efx_device_detach_sync(efx);
810 efx_stop_all(efx);
811 efx_soft_disable_interrupts(efx);
812
813 /* Clone channels (where possible) */
814 memset(other_channel, 0, sizeof(other_channel));
815 for (i = 0; i < efx->n_channels; i++) {
816 channel = efx->channel[i];
817 if (channel->type->copy)
818 channel = channel->type->copy(channel);
819 if (!channel) {
820 rc = -ENOMEM;
821 goto out;
822 }
823 other_channel[i] = channel;
824 }
825
826 /* Swap entry counts and channel pointers */
827 old_rxq_entries = efx->rxq_entries;
828 old_txq_entries = efx->txq_entries;
829 efx->rxq_entries = rxq_entries;
830 efx->txq_entries = txq_entries;
831 for (i = 0; i < efx->n_channels; i++) {
832 channel = efx->channel[i];
833 efx->channel[i] = other_channel[i];
834 other_channel[i] = channel;
835 }
836
837 /* Restart buffer table allocation */
838 efx->next_buffer_table = next_buffer_table;
839
840 for (i = 0; i < efx->n_channels; i++) {
841 channel = efx->channel[i];
842 if (!channel->type->copy)
843 continue;
844 rc = efx_probe_channel(channel);
845 if (rc)
846 goto rollback;
847 efx_init_napi_channel(efx->channel[i]);
848 }
849
850 out:
851 /* Destroy unused channel structures */
852 for (i = 0; i < efx->n_channels; i++) {
853 channel = other_channel[i];
854 if (channel && channel->type->copy) {
855 efx_fini_napi_channel(channel);
856 efx_remove_channel(channel);
857 kfree(channel);
858 }
859 }
860
861 rc2 = efx_soft_enable_interrupts(efx);
862 if (rc2) {
863 rc = rc ? rc : rc2;
864 netif_err(efx, drv, efx->net_dev,
865 "unable to restart interrupts on channel reallocation\n");
866 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
867 } else {
868 efx_start_all(efx);
869 netif_device_attach(efx->net_dev);
870 }
871 return rc;
872
873 rollback:
874 /* Swap back */
875 efx->rxq_entries = old_rxq_entries;
876 efx->txq_entries = old_txq_entries;
877 for (i = 0; i < efx->n_channels; i++) {
878 channel = efx->channel[i];
879 efx->channel[i] = other_channel[i];
880 other_channel[i] = channel;
881 }
882 goto out;
883 }
884
885 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
886 {
887 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
888 }
889
890 static const struct efx_channel_type efx_default_channel_type = {
891 .pre_probe = efx_channel_dummy_op_int,
892 .post_remove = efx_channel_dummy_op_void,
893 .get_name = efx_get_channel_name,
894 .copy = efx_copy_channel,
895 .keep_eventq = false,
896 };
897
898 int efx_channel_dummy_op_int(struct efx_channel *channel)
899 {
900 return 0;
901 }
902
903 void efx_channel_dummy_op_void(struct efx_channel *channel)
904 {
905 }
906
907 /**************************************************************************
908 *
909 * Port handling
910 *
911 **************************************************************************/
912
913 /* This ensures that the kernel is kept informed (via
914 * netif_carrier_on/off) of the link status, and also maintains the
915 * link status's stop on the port's TX queue.
916 */
917 void efx_link_status_changed(struct efx_nic *efx)
918 {
919 struct efx_link_state *link_state = &efx->link_state;
920
921 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
922 * that no events are triggered between unregister_netdev() and the
923 * driver unloading. A more general condition is that NETDEV_CHANGE
924 * can only be generated between NETDEV_UP and NETDEV_DOWN */
925 if (!netif_running(efx->net_dev))
926 return;
927
928 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
929 efx->n_link_state_changes++;
930
931 if (link_state->up)
932 netif_carrier_on(efx->net_dev);
933 else
934 netif_carrier_off(efx->net_dev);
935 }
936
937 /* Status message for kernel log */
938 if (link_state->up)
939 netif_info(efx, link, efx->net_dev,
940 "link up at %uMbps %s-duplex (MTU %d)\n",
941 link_state->speed, link_state->fd ? "full" : "half",
942 efx->net_dev->mtu);
943 else
944 netif_info(efx, link, efx->net_dev, "link down\n");
945 }
946
947 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
948 {
949 efx->link_advertising = advertising;
950 if (advertising) {
951 if (advertising & ADVERTISED_Pause)
952 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
953 else
954 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
955 if (advertising & ADVERTISED_Asym_Pause)
956 efx->wanted_fc ^= EFX_FC_TX;
957 }
958 }
959
960 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
961 {
962 efx->wanted_fc = wanted_fc;
963 if (efx->link_advertising) {
964 if (wanted_fc & EFX_FC_RX)
965 efx->link_advertising |= (ADVERTISED_Pause |
966 ADVERTISED_Asym_Pause);
967 else
968 efx->link_advertising &= ~(ADVERTISED_Pause |
969 ADVERTISED_Asym_Pause);
970 if (wanted_fc & EFX_FC_TX)
971 efx->link_advertising ^= ADVERTISED_Asym_Pause;
972 }
973 }
974
975 static void efx_fini_port(struct efx_nic *efx);
976
977 /* We assume that efx->type->reconfigure_mac will always try to sync RX
978 * filters and therefore needs to read-lock the filter table against freeing
979 */
980 void efx_mac_reconfigure(struct efx_nic *efx)
981 {
982 down_read(&efx->filter_sem);
983 efx->type->reconfigure_mac(efx);
984 up_read(&efx->filter_sem);
985 }
986
987 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
988 * the MAC appropriately. All other PHY configuration changes are pushed
989 * through phy_op->set_settings(), and pushed asynchronously to the MAC
990 * through efx_monitor().
991 *
992 * Callers must hold the mac_lock
993 */
994 int __efx_reconfigure_port(struct efx_nic *efx)
995 {
996 enum efx_phy_mode phy_mode;
997 int rc;
998
999 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1000
1001 /* Disable PHY transmit in mac level loopbacks */
1002 phy_mode = efx->phy_mode;
1003 if (LOOPBACK_INTERNAL(efx))
1004 efx->phy_mode |= PHY_MODE_TX_DISABLED;
1005 else
1006 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1007
1008 rc = efx->type->reconfigure_port(efx);
1009
1010 if (rc)
1011 efx->phy_mode = phy_mode;
1012
1013 return rc;
1014 }
1015
1016 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1017 * disabled. */
1018 int efx_reconfigure_port(struct efx_nic *efx)
1019 {
1020 int rc;
1021
1022 EFX_ASSERT_RESET_SERIALISED(efx);
1023
1024 mutex_lock(&efx->mac_lock);
1025 rc = __efx_reconfigure_port(efx);
1026 mutex_unlock(&efx->mac_lock);
1027
1028 return rc;
1029 }
1030
1031 /* Asynchronous work item for changing MAC promiscuity and multicast
1032 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1033 * MAC directly. */
1034 static void efx_mac_work(struct work_struct *data)
1035 {
1036 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1037
1038 mutex_lock(&efx->mac_lock);
1039 if (efx->port_enabled)
1040 efx_mac_reconfigure(efx);
1041 mutex_unlock(&efx->mac_lock);
1042 }
1043
1044 static int efx_probe_port(struct efx_nic *efx)
1045 {
1046 int rc;
1047
1048 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1049
1050 if (phy_flash_cfg)
1051 efx->phy_mode = PHY_MODE_SPECIAL;
1052
1053 /* Connect up MAC/PHY operations table */
1054 rc = efx->type->probe_port(efx);
1055 if (rc)
1056 return rc;
1057
1058 /* Initialise MAC address to permanent address */
1059 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1060
1061 return 0;
1062 }
1063
1064 static int efx_init_port(struct efx_nic *efx)
1065 {
1066 int rc;
1067
1068 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1069
1070 mutex_lock(&efx->mac_lock);
1071
1072 rc = efx->phy_op->init(efx);
1073 if (rc)
1074 goto fail1;
1075
1076 efx->port_initialized = true;
1077
1078 /* Reconfigure the MAC before creating dma queues (required for
1079 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1080 efx_mac_reconfigure(efx);
1081
1082 /* Ensure the PHY advertises the correct flow control settings */
1083 rc = efx->phy_op->reconfigure(efx);
1084 if (rc && rc != -EPERM)
1085 goto fail2;
1086
1087 mutex_unlock(&efx->mac_lock);
1088 return 0;
1089
1090 fail2:
1091 efx->phy_op->fini(efx);
1092 fail1:
1093 mutex_unlock(&efx->mac_lock);
1094 return rc;
1095 }
1096
1097 static void efx_start_port(struct efx_nic *efx)
1098 {
1099 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1100 BUG_ON(efx->port_enabled);
1101
1102 mutex_lock(&efx->mac_lock);
1103 efx->port_enabled = true;
1104
1105 /* Ensure MAC ingress/egress is enabled */
1106 efx_mac_reconfigure(efx);
1107
1108 mutex_unlock(&efx->mac_lock);
1109 }
1110
1111 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1112 * and the async self-test, wait for them to finish and prevent them
1113 * being scheduled again. This doesn't cover online resets, which
1114 * should only be cancelled when removing the device.
1115 */
1116 static void efx_stop_port(struct efx_nic *efx)
1117 {
1118 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1119
1120 EFX_ASSERT_RESET_SERIALISED(efx);
1121
1122 mutex_lock(&efx->mac_lock);
1123 efx->port_enabled = false;
1124 mutex_unlock(&efx->mac_lock);
1125
1126 /* Serialise against efx_set_multicast_list() */
1127 netif_addr_lock_bh(efx->net_dev);
1128 netif_addr_unlock_bh(efx->net_dev);
1129
1130 cancel_delayed_work_sync(&efx->monitor_work);
1131 efx_selftest_async_cancel(efx);
1132 cancel_work_sync(&efx->mac_work);
1133 }
1134
1135 static void efx_fini_port(struct efx_nic *efx)
1136 {
1137 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1138
1139 if (!efx->port_initialized)
1140 return;
1141
1142 efx->phy_op->fini(efx);
1143 efx->port_initialized = false;
1144
1145 efx->link_state.up = false;
1146 efx_link_status_changed(efx);
1147 }
1148
1149 static void efx_remove_port(struct efx_nic *efx)
1150 {
1151 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1152
1153 efx->type->remove_port(efx);
1154 }
1155
1156 /**************************************************************************
1157 *
1158 * NIC handling
1159 *
1160 **************************************************************************/
1161
1162 static LIST_HEAD(efx_primary_list);
1163 static LIST_HEAD(efx_unassociated_list);
1164
1165 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1166 {
1167 return left->type == right->type &&
1168 left->vpd_sn && right->vpd_sn &&
1169 !strcmp(left->vpd_sn, right->vpd_sn);
1170 }
1171
1172 static void efx_associate(struct efx_nic *efx)
1173 {
1174 struct efx_nic *other, *next;
1175
1176 if (efx->primary == efx) {
1177 /* Adding primary function; look for secondaries */
1178
1179 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1180 list_add_tail(&efx->node, &efx_primary_list);
1181
1182 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1183 node) {
1184 if (efx_same_controller(efx, other)) {
1185 list_del(&other->node);
1186 netif_dbg(other, probe, other->net_dev,
1187 "moving to secondary list of %s %s\n",
1188 pci_name(efx->pci_dev),
1189 efx->net_dev->name);
1190 list_add_tail(&other->node,
1191 &efx->secondary_list);
1192 other->primary = efx;
1193 }
1194 }
1195 } else {
1196 /* Adding secondary function; look for primary */
1197
1198 list_for_each_entry(other, &efx_primary_list, node) {
1199 if (efx_same_controller(efx, other)) {
1200 netif_dbg(efx, probe, efx->net_dev,
1201 "adding to secondary list of %s %s\n",
1202 pci_name(other->pci_dev),
1203 other->net_dev->name);
1204 list_add_tail(&efx->node,
1205 &other->secondary_list);
1206 efx->primary = other;
1207 return;
1208 }
1209 }
1210
1211 netif_dbg(efx, probe, efx->net_dev,
1212 "adding to unassociated list\n");
1213 list_add_tail(&efx->node, &efx_unassociated_list);
1214 }
1215 }
1216
1217 static void efx_dissociate(struct efx_nic *efx)
1218 {
1219 struct efx_nic *other, *next;
1220
1221 list_del(&efx->node);
1222 efx->primary = NULL;
1223
1224 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1225 list_del(&other->node);
1226 netif_dbg(other, probe, other->net_dev,
1227 "moving to unassociated list\n");
1228 list_add_tail(&other->node, &efx_unassociated_list);
1229 other->primary = NULL;
1230 }
1231 }
1232
1233 /* This configures the PCI device to enable I/O and DMA. */
1234 static int efx_init_io(struct efx_nic *efx)
1235 {
1236 struct pci_dev *pci_dev = efx->pci_dev;
1237 dma_addr_t dma_mask = efx->type->max_dma_mask;
1238 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1239 int rc, bar;
1240
1241 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1242
1243 bar = efx->type->mem_bar;
1244
1245 rc = pci_enable_device(pci_dev);
1246 if (rc) {
1247 netif_err(efx, probe, efx->net_dev,
1248 "failed to enable PCI device\n");
1249 goto fail1;
1250 }
1251
1252 pci_set_master(pci_dev);
1253
1254 /* Set the PCI DMA mask. Try all possibilities from our
1255 * genuine mask down to 32 bits, because some architectures
1256 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1257 * masks event though they reject 46 bit masks.
1258 */
1259 while (dma_mask > 0x7fffffffUL) {
1260 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1261 if (rc == 0)
1262 break;
1263 dma_mask >>= 1;
1264 }
1265 if (rc) {
1266 netif_err(efx, probe, efx->net_dev,
1267 "could not find a suitable DMA mask\n");
1268 goto fail2;
1269 }
1270 netif_dbg(efx, probe, efx->net_dev,
1271 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1272
1273 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1274 rc = pci_request_region(pci_dev, bar, "sfc");
1275 if (rc) {
1276 netif_err(efx, probe, efx->net_dev,
1277 "request for memory BAR failed\n");
1278 rc = -EIO;
1279 goto fail3;
1280 }
1281 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1282 if (!efx->membase) {
1283 netif_err(efx, probe, efx->net_dev,
1284 "could not map memory BAR at %llx+%x\n",
1285 (unsigned long long)efx->membase_phys, mem_map_size);
1286 rc = -ENOMEM;
1287 goto fail4;
1288 }
1289 netif_dbg(efx, probe, efx->net_dev,
1290 "memory BAR at %llx+%x (virtual %p)\n",
1291 (unsigned long long)efx->membase_phys, mem_map_size,
1292 efx->membase);
1293
1294 return 0;
1295
1296 fail4:
1297 pci_release_region(efx->pci_dev, bar);
1298 fail3:
1299 efx->membase_phys = 0;
1300 fail2:
1301 pci_disable_device(efx->pci_dev);
1302 fail1:
1303 return rc;
1304 }
1305
1306 static void efx_fini_io(struct efx_nic *efx)
1307 {
1308 int bar;
1309
1310 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1311
1312 if (efx->membase) {
1313 iounmap(efx->membase);
1314 efx->membase = NULL;
1315 }
1316
1317 if (efx->membase_phys) {
1318 bar = efx->type->mem_bar;
1319 pci_release_region(efx->pci_dev, bar);
1320 efx->membase_phys = 0;
1321 }
1322
1323 /* Don't disable bus-mastering if VFs are assigned */
1324 if (!pci_vfs_assigned(efx->pci_dev))
1325 pci_disable_device(efx->pci_dev);
1326 }
1327
1328 void efx_set_default_rx_indir_table(struct efx_nic *efx)
1329 {
1330 size_t i;
1331
1332 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1333 efx->rx_indir_table[i] =
1334 ethtool_rxfh_indir_default(i, efx->rss_spread);
1335 }
1336
1337 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1338 {
1339 cpumask_var_t thread_mask;
1340 unsigned int count;
1341 int cpu;
1342
1343 if (rss_cpus) {
1344 count = rss_cpus;
1345 } else {
1346 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1347 netif_warn(efx, probe, efx->net_dev,
1348 "RSS disabled due to allocation failure\n");
1349 return 1;
1350 }
1351
1352 count = 0;
1353 for_each_online_cpu(cpu) {
1354 if (!cpumask_test_cpu(cpu, thread_mask)) {
1355 ++count;
1356 cpumask_or(thread_mask, thread_mask,
1357 topology_sibling_cpumask(cpu));
1358 }
1359 }
1360
1361 free_cpumask_var(thread_mask);
1362 }
1363
1364 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1365 * table entries that are inaccessible to VFs
1366 */
1367 #ifdef CONFIG_SFC_SRIOV
1368 if (efx->type->sriov_wanted) {
1369 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1370 count > efx_vf_size(efx)) {
1371 netif_warn(efx, probe, efx->net_dev,
1372 "Reducing number of RSS channels from %u to %u for "
1373 "VF support. Increase vf-msix-limit to use more "
1374 "channels on the PF.\n",
1375 count, efx_vf_size(efx));
1376 count = efx_vf_size(efx);
1377 }
1378 }
1379 #endif
1380
1381 return count;
1382 }
1383
1384 /* Probe the number and type of interrupts we are able to obtain, and
1385 * the resulting numbers of channels and RX queues.
1386 */
1387 static int efx_probe_interrupts(struct efx_nic *efx)
1388 {
1389 unsigned int extra_channels = 0;
1390 unsigned int i, j;
1391 int rc;
1392
1393 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1394 if (efx->extra_channel_type[i])
1395 ++extra_channels;
1396
1397 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1398 struct msix_entry xentries[EFX_MAX_CHANNELS];
1399 unsigned int n_channels;
1400
1401 n_channels = efx_wanted_parallelism(efx);
1402 if (efx_separate_tx_channels)
1403 n_channels *= 2;
1404 n_channels += extra_channels;
1405 n_channels = min(n_channels, efx->max_channels);
1406
1407 for (i = 0; i < n_channels; i++)
1408 xentries[i].entry = i;
1409 rc = pci_enable_msix_range(efx->pci_dev,
1410 xentries, 1, n_channels);
1411 if (rc < 0) {
1412 /* Fall back to single channel MSI */
1413 efx->interrupt_mode = EFX_INT_MODE_MSI;
1414 netif_err(efx, drv, efx->net_dev,
1415 "could not enable MSI-X\n");
1416 } else if (rc < n_channels) {
1417 netif_err(efx, drv, efx->net_dev,
1418 "WARNING: Insufficient MSI-X vectors"
1419 " available (%d < %u).\n", rc, n_channels);
1420 netif_err(efx, drv, efx->net_dev,
1421 "WARNING: Performance may be reduced.\n");
1422 n_channels = rc;
1423 }
1424
1425 if (rc > 0) {
1426 efx->n_channels = n_channels;
1427 if (n_channels > extra_channels)
1428 n_channels -= extra_channels;
1429 if (efx_separate_tx_channels) {
1430 efx->n_tx_channels = min(max(n_channels / 2,
1431 1U),
1432 efx->max_tx_channels);
1433 efx->n_rx_channels = max(n_channels -
1434 efx->n_tx_channels,
1435 1U);
1436 } else {
1437 efx->n_tx_channels = min(n_channels,
1438 efx->max_tx_channels);
1439 efx->n_rx_channels = n_channels;
1440 }
1441 for (i = 0; i < efx->n_channels; i++)
1442 efx_get_channel(efx, i)->irq =
1443 xentries[i].vector;
1444 }
1445 }
1446
1447 /* Try single interrupt MSI */
1448 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1449 efx->n_channels = 1;
1450 efx->n_rx_channels = 1;
1451 efx->n_tx_channels = 1;
1452 rc = pci_enable_msi(efx->pci_dev);
1453 if (rc == 0) {
1454 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1455 } else {
1456 netif_err(efx, drv, efx->net_dev,
1457 "could not enable MSI\n");
1458 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1459 }
1460 }
1461
1462 /* Assume legacy interrupts */
1463 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1464 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1465 efx->n_rx_channels = 1;
1466 efx->n_tx_channels = 1;
1467 efx->legacy_irq = efx->pci_dev->irq;
1468 }
1469
1470 /* Assign extra channels if possible */
1471 j = efx->n_channels;
1472 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1473 if (!efx->extra_channel_type[i])
1474 continue;
1475 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1476 efx->n_channels <= extra_channels) {
1477 efx->extra_channel_type[i]->handle_no_channel(efx);
1478 } else {
1479 --j;
1480 efx_get_channel(efx, j)->type =
1481 efx->extra_channel_type[i];
1482 }
1483 }
1484
1485 /* RSS might be usable on VFs even if it is disabled on the PF */
1486 #ifdef CONFIG_SFC_SRIOV
1487 if (efx->type->sriov_wanted) {
1488 efx->rss_spread = ((efx->n_rx_channels > 1 ||
1489 !efx->type->sriov_wanted(efx)) ?
1490 efx->n_rx_channels : efx_vf_size(efx));
1491 return 0;
1492 }
1493 #endif
1494 efx->rss_spread = efx->n_rx_channels;
1495
1496 return 0;
1497 }
1498
1499 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1500 {
1501 struct efx_channel *channel, *end_channel;
1502 int rc;
1503
1504 BUG_ON(efx->state == STATE_DISABLED);
1505
1506 efx->irq_soft_enabled = true;
1507 smp_wmb();
1508
1509 efx_for_each_channel(channel, efx) {
1510 if (!channel->type->keep_eventq) {
1511 rc = efx_init_eventq(channel);
1512 if (rc)
1513 goto fail;
1514 }
1515 efx_start_eventq(channel);
1516 }
1517
1518 efx_mcdi_mode_event(efx);
1519
1520 return 0;
1521 fail:
1522 end_channel = channel;
1523 efx_for_each_channel(channel, efx) {
1524 if (channel == end_channel)
1525 break;
1526 efx_stop_eventq(channel);
1527 if (!channel->type->keep_eventq)
1528 efx_fini_eventq(channel);
1529 }
1530
1531 return rc;
1532 }
1533
1534 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1535 {
1536 struct efx_channel *channel;
1537
1538 if (efx->state == STATE_DISABLED)
1539 return;
1540
1541 efx_mcdi_mode_poll(efx);
1542
1543 efx->irq_soft_enabled = false;
1544 smp_wmb();
1545
1546 if (efx->legacy_irq)
1547 synchronize_irq(efx->legacy_irq);
1548
1549 efx_for_each_channel(channel, efx) {
1550 if (channel->irq)
1551 synchronize_irq(channel->irq);
1552
1553 efx_stop_eventq(channel);
1554 if (!channel->type->keep_eventq)
1555 efx_fini_eventq(channel);
1556 }
1557
1558 /* Flush the asynchronous MCDI request queue */
1559 efx_mcdi_flush_async(efx);
1560 }
1561
1562 static int efx_enable_interrupts(struct efx_nic *efx)
1563 {
1564 struct efx_channel *channel, *end_channel;
1565 int rc;
1566
1567 BUG_ON(efx->state == STATE_DISABLED);
1568
1569 if (efx->eeh_disabled_legacy_irq) {
1570 enable_irq(efx->legacy_irq);
1571 efx->eeh_disabled_legacy_irq = false;
1572 }
1573
1574 efx->type->irq_enable_master(efx);
1575
1576 efx_for_each_channel(channel, efx) {
1577 if (channel->type->keep_eventq) {
1578 rc = efx_init_eventq(channel);
1579 if (rc)
1580 goto fail;
1581 }
1582 }
1583
1584 rc = efx_soft_enable_interrupts(efx);
1585 if (rc)
1586 goto fail;
1587
1588 return 0;
1589
1590 fail:
1591 end_channel = channel;
1592 efx_for_each_channel(channel, efx) {
1593 if (channel == end_channel)
1594 break;
1595 if (channel->type->keep_eventq)
1596 efx_fini_eventq(channel);
1597 }
1598
1599 efx->type->irq_disable_non_ev(efx);
1600
1601 return rc;
1602 }
1603
1604 static void efx_disable_interrupts(struct efx_nic *efx)
1605 {
1606 struct efx_channel *channel;
1607
1608 efx_soft_disable_interrupts(efx);
1609
1610 efx_for_each_channel(channel, efx) {
1611 if (channel->type->keep_eventq)
1612 efx_fini_eventq(channel);
1613 }
1614
1615 efx->type->irq_disable_non_ev(efx);
1616 }
1617
1618 static void efx_remove_interrupts(struct efx_nic *efx)
1619 {
1620 struct efx_channel *channel;
1621
1622 /* Remove MSI/MSI-X interrupts */
1623 efx_for_each_channel(channel, efx)
1624 channel->irq = 0;
1625 pci_disable_msi(efx->pci_dev);
1626 pci_disable_msix(efx->pci_dev);
1627
1628 /* Remove legacy interrupt */
1629 efx->legacy_irq = 0;
1630 }
1631
1632 static void efx_set_channels(struct efx_nic *efx)
1633 {
1634 struct efx_channel *channel;
1635 struct efx_tx_queue *tx_queue;
1636
1637 efx->tx_channel_offset =
1638 efx_separate_tx_channels ?
1639 efx->n_channels - efx->n_tx_channels : 0;
1640
1641 /* We need to mark which channels really have RX and TX
1642 * queues, and adjust the TX queue numbers if we have separate
1643 * RX-only and TX-only channels.
1644 */
1645 efx_for_each_channel(channel, efx) {
1646 if (channel->channel < efx->n_rx_channels)
1647 channel->rx_queue.core_index = channel->channel;
1648 else
1649 channel->rx_queue.core_index = -1;
1650
1651 efx_for_each_channel_tx_queue(tx_queue, channel)
1652 tx_queue->queue -= (efx->tx_channel_offset *
1653 EFX_TXQ_TYPES);
1654 }
1655 }
1656
1657 static int efx_probe_nic(struct efx_nic *efx)
1658 {
1659 int rc;
1660
1661 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1662
1663 /* Carry out hardware-type specific initialisation */
1664 rc = efx->type->probe(efx);
1665 if (rc)
1666 return rc;
1667
1668 do {
1669 if (!efx->max_channels || !efx->max_tx_channels) {
1670 netif_err(efx, drv, efx->net_dev,
1671 "Insufficient resources to allocate"
1672 " any channels\n");
1673 rc = -ENOSPC;
1674 goto fail1;
1675 }
1676
1677 /* Determine the number of channels and queues by trying
1678 * to hook in MSI-X interrupts.
1679 */
1680 rc = efx_probe_interrupts(efx);
1681 if (rc)
1682 goto fail1;
1683
1684 efx_set_channels(efx);
1685
1686 /* dimension_resources can fail with EAGAIN */
1687 rc = efx->type->dimension_resources(efx);
1688 if (rc != 0 && rc != -EAGAIN)
1689 goto fail2;
1690
1691 if (rc == -EAGAIN)
1692 /* try again with new max_channels */
1693 efx_remove_interrupts(efx);
1694
1695 } while (rc == -EAGAIN);
1696
1697 if (efx->n_channels > 1)
1698 netdev_rss_key_fill(&efx->rx_hash_key,
1699 sizeof(efx->rx_hash_key));
1700 efx_set_default_rx_indir_table(efx);
1701
1702 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1703 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1704
1705 /* Initialise the interrupt moderation settings */
1706 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1707 true);
1708
1709 return 0;
1710
1711 fail2:
1712 efx_remove_interrupts(efx);
1713 fail1:
1714 efx->type->remove(efx);
1715 return rc;
1716 }
1717
1718 static void efx_remove_nic(struct efx_nic *efx)
1719 {
1720 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1721
1722 efx_remove_interrupts(efx);
1723 efx->type->remove(efx);
1724 }
1725
1726 static int efx_probe_filters(struct efx_nic *efx)
1727 {
1728 int rc;
1729
1730 spin_lock_init(&efx->filter_lock);
1731 init_rwsem(&efx->filter_sem);
1732 mutex_lock(&efx->mac_lock);
1733 down_write(&efx->filter_sem);
1734 rc = efx->type->filter_table_probe(efx);
1735 if (rc)
1736 goto out_unlock;
1737
1738 #ifdef CONFIG_RFS_ACCEL
1739 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1740 struct efx_channel *channel;
1741 int i, success = 1;
1742
1743 efx_for_each_channel(channel, efx) {
1744 channel->rps_flow_id =
1745 kcalloc(efx->type->max_rx_ip_filters,
1746 sizeof(*channel->rps_flow_id),
1747 GFP_KERNEL);
1748 if (!channel->rps_flow_id)
1749 success = 0;
1750 else
1751 for (i = 0;
1752 i < efx->type->max_rx_ip_filters;
1753 ++i)
1754 channel->rps_flow_id[i] =
1755 RPS_FLOW_ID_INVALID;
1756 }
1757
1758 if (!success) {
1759 efx_for_each_channel(channel, efx)
1760 kfree(channel->rps_flow_id);
1761 efx->type->filter_table_remove(efx);
1762 rc = -ENOMEM;
1763 goto out_unlock;
1764 }
1765
1766 efx->rps_expire_index = efx->rps_expire_channel = 0;
1767 }
1768 #endif
1769 out_unlock:
1770 up_write(&efx->filter_sem);
1771 mutex_unlock(&efx->mac_lock);
1772 return rc;
1773 }
1774
1775 static void efx_remove_filters(struct efx_nic *efx)
1776 {
1777 #ifdef CONFIG_RFS_ACCEL
1778 struct efx_channel *channel;
1779
1780 efx_for_each_channel(channel, efx)
1781 kfree(channel->rps_flow_id);
1782 #endif
1783 down_write(&efx->filter_sem);
1784 efx->type->filter_table_remove(efx);
1785 up_write(&efx->filter_sem);
1786 }
1787
1788 static void efx_restore_filters(struct efx_nic *efx)
1789 {
1790 down_read(&efx->filter_sem);
1791 efx->type->filter_table_restore(efx);
1792 up_read(&efx->filter_sem);
1793 }
1794
1795 /**************************************************************************
1796 *
1797 * NIC startup/shutdown
1798 *
1799 *************************************************************************/
1800
1801 static int efx_probe_all(struct efx_nic *efx)
1802 {
1803 int rc;
1804
1805 rc = efx_probe_nic(efx);
1806 if (rc) {
1807 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1808 goto fail1;
1809 }
1810
1811 rc = efx_probe_port(efx);
1812 if (rc) {
1813 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1814 goto fail2;
1815 }
1816
1817 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1818 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1819 rc = -EINVAL;
1820 goto fail3;
1821 }
1822 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1823
1824 #ifdef CONFIG_SFC_SRIOV
1825 rc = efx->type->vswitching_probe(efx);
1826 if (rc) /* not fatal; the PF will still work fine */
1827 netif_warn(efx, probe, efx->net_dev,
1828 "failed to setup vswitching rc=%d;"
1829 " VFs may not function\n", rc);
1830 #endif
1831
1832 rc = efx_probe_filters(efx);
1833 if (rc) {
1834 netif_err(efx, probe, efx->net_dev,
1835 "failed to create filter tables\n");
1836 goto fail4;
1837 }
1838
1839 rc = efx_probe_channels(efx);
1840 if (rc)
1841 goto fail5;
1842
1843 return 0;
1844
1845 fail5:
1846 efx_remove_filters(efx);
1847 fail4:
1848 #ifdef CONFIG_SFC_SRIOV
1849 efx->type->vswitching_remove(efx);
1850 #endif
1851 fail3:
1852 efx_remove_port(efx);
1853 fail2:
1854 efx_remove_nic(efx);
1855 fail1:
1856 return rc;
1857 }
1858
1859 /* If the interface is supposed to be running but is not, start
1860 * the hardware and software data path, regular activity for the port
1861 * (MAC statistics, link polling, etc.) and schedule the port to be
1862 * reconfigured. Interrupts must already be enabled. This function
1863 * is safe to call multiple times, so long as the NIC is not disabled.
1864 * Requires the RTNL lock.
1865 */
1866 static void efx_start_all(struct efx_nic *efx)
1867 {
1868 EFX_ASSERT_RESET_SERIALISED(efx);
1869 BUG_ON(efx->state == STATE_DISABLED);
1870
1871 /* Check that it is appropriate to restart the interface. All
1872 * of these flags are safe to read under just the rtnl lock */
1873 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1874 efx->reset_pending)
1875 return;
1876
1877 efx_start_port(efx);
1878 efx_start_datapath(efx);
1879
1880 /* Start the hardware monitor if there is one */
1881 if (efx->type->monitor != NULL)
1882 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1883 efx_monitor_interval);
1884
1885 /* If link state detection is normally event-driven, we have
1886 * to poll now because we could have missed a change
1887 */
1888 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1889 mutex_lock(&efx->mac_lock);
1890 if (efx->phy_op->poll(efx))
1891 efx_link_status_changed(efx);
1892 mutex_unlock(&efx->mac_lock);
1893 }
1894
1895 efx->type->start_stats(efx);
1896 efx->type->pull_stats(efx);
1897 spin_lock_bh(&efx->stats_lock);
1898 efx->type->update_stats(efx, NULL, NULL);
1899 spin_unlock_bh(&efx->stats_lock);
1900 }
1901
1902 /* Quiesce the hardware and software data path, and regular activity
1903 * for the port without bringing the link down. Safe to call multiple
1904 * times with the NIC in almost any state, but interrupts should be
1905 * enabled. Requires the RTNL lock.
1906 */
1907 static void efx_stop_all(struct efx_nic *efx)
1908 {
1909 EFX_ASSERT_RESET_SERIALISED(efx);
1910
1911 /* port_enabled can be read safely under the rtnl lock */
1912 if (!efx->port_enabled)
1913 return;
1914
1915 /* update stats before we go down so we can accurately count
1916 * rx_nodesc_drops
1917 */
1918 efx->type->pull_stats(efx);
1919 spin_lock_bh(&efx->stats_lock);
1920 efx->type->update_stats(efx, NULL, NULL);
1921 spin_unlock_bh(&efx->stats_lock);
1922 efx->type->stop_stats(efx);
1923 efx_stop_port(efx);
1924
1925 /* Stop the kernel transmit interface. This is only valid if
1926 * the device is stopped or detached; otherwise the watchdog
1927 * may fire immediately.
1928 */
1929 WARN_ON(netif_running(efx->net_dev) &&
1930 netif_device_present(efx->net_dev));
1931 netif_tx_disable(efx->net_dev);
1932
1933 efx_stop_datapath(efx);
1934 }
1935
1936 static void efx_remove_all(struct efx_nic *efx)
1937 {
1938 efx_remove_channels(efx);
1939 efx_remove_filters(efx);
1940 #ifdef CONFIG_SFC_SRIOV
1941 efx->type->vswitching_remove(efx);
1942 #endif
1943 efx_remove_port(efx);
1944 efx_remove_nic(efx);
1945 }
1946
1947 /**************************************************************************
1948 *
1949 * Interrupt moderation
1950 *
1951 **************************************************************************/
1952
1953 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1954 {
1955 if (usecs == 0)
1956 return 0;
1957 if (usecs * 1000 < quantum_ns)
1958 return 1; /* never round down to 0 */
1959 return usecs * 1000 / quantum_ns;
1960 }
1961
1962 /* Set interrupt moderation parameters */
1963 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1964 unsigned int rx_usecs, bool rx_adaptive,
1965 bool rx_may_override_tx)
1966 {
1967 struct efx_channel *channel;
1968 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1969 efx->timer_quantum_ns,
1970 1000);
1971 unsigned int tx_ticks;
1972 unsigned int rx_ticks;
1973
1974 EFX_ASSERT_RESET_SERIALISED(efx);
1975
1976 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1977 return -EINVAL;
1978
1979 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1980 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1981
1982 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1983 !rx_may_override_tx) {
1984 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1985 "RX and TX IRQ moderation must be equal\n");
1986 return -EINVAL;
1987 }
1988
1989 efx->irq_rx_adaptive = rx_adaptive;
1990 efx->irq_rx_moderation = rx_ticks;
1991 efx_for_each_channel(channel, efx) {
1992 if (efx_channel_has_rx_queue(channel))
1993 channel->irq_moderation = rx_ticks;
1994 else if (efx_channel_has_tx_queues(channel))
1995 channel->irq_moderation = tx_ticks;
1996 }
1997
1998 return 0;
1999 }
2000
2001 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
2002 unsigned int *rx_usecs, bool *rx_adaptive)
2003 {
2004 /* We must round up when converting ticks to microseconds
2005 * because we round down when converting the other way.
2006 */
2007
2008 *rx_adaptive = efx->irq_rx_adaptive;
2009 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
2010 efx->timer_quantum_ns,
2011 1000);
2012
2013 /* If channels are shared between RX and TX, so is IRQ
2014 * moderation. Otherwise, IRQ moderation is the same for all
2015 * TX channels and is not adaptive.
2016 */
2017 if (efx->tx_channel_offset == 0)
2018 *tx_usecs = *rx_usecs;
2019 else
2020 *tx_usecs = DIV_ROUND_UP(
2021 efx->channel[efx->tx_channel_offset]->irq_moderation *
2022 efx->timer_quantum_ns,
2023 1000);
2024 }
2025
2026 /**************************************************************************
2027 *
2028 * Hardware monitor
2029 *
2030 **************************************************************************/
2031
2032 /* Run periodically off the general workqueue */
2033 static void efx_monitor(struct work_struct *data)
2034 {
2035 struct efx_nic *efx = container_of(data, struct efx_nic,
2036 monitor_work.work);
2037
2038 netif_vdbg(efx, timer, efx->net_dev,
2039 "hardware monitor executing on CPU %d\n",
2040 raw_smp_processor_id());
2041 BUG_ON(efx->type->monitor == NULL);
2042
2043 /* If the mac_lock is already held then it is likely a port
2044 * reconfiguration is already in place, which will likely do
2045 * most of the work of monitor() anyway. */
2046 if (mutex_trylock(&efx->mac_lock)) {
2047 if (efx->port_enabled)
2048 efx->type->monitor(efx);
2049 mutex_unlock(&efx->mac_lock);
2050 }
2051
2052 queue_delayed_work(efx->workqueue, &efx->monitor_work,
2053 efx_monitor_interval);
2054 }
2055
2056 /**************************************************************************
2057 *
2058 * ioctls
2059 *
2060 *************************************************************************/
2061
2062 /* Net device ioctl
2063 * Context: process, rtnl_lock() held.
2064 */
2065 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2066 {
2067 struct efx_nic *efx = netdev_priv(net_dev);
2068 struct mii_ioctl_data *data = if_mii(ifr);
2069
2070 if (cmd == SIOCSHWTSTAMP)
2071 return efx_ptp_set_ts_config(efx, ifr);
2072 if (cmd == SIOCGHWTSTAMP)
2073 return efx_ptp_get_ts_config(efx, ifr);
2074
2075 /* Convert phy_id from older PRTAD/DEVAD format */
2076 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2077 (data->phy_id & 0xfc00) == 0x0400)
2078 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2079
2080 return mdio_mii_ioctl(&efx->mdio, data, cmd);
2081 }
2082
2083 /**************************************************************************
2084 *
2085 * NAPI interface
2086 *
2087 **************************************************************************/
2088
2089 static void efx_init_napi_channel(struct efx_channel *channel)
2090 {
2091 struct efx_nic *efx = channel->efx;
2092
2093 channel->napi_dev = efx->net_dev;
2094 netif_napi_add(channel->napi_dev, &channel->napi_str,
2095 efx_poll, napi_weight);
2096 efx_channel_busy_poll_init(channel);
2097 }
2098
2099 static void efx_init_napi(struct efx_nic *efx)
2100 {
2101 struct efx_channel *channel;
2102
2103 efx_for_each_channel(channel, efx)
2104 efx_init_napi_channel(channel);
2105 }
2106
2107 static void efx_fini_napi_channel(struct efx_channel *channel)
2108 {
2109 if (channel->napi_dev) {
2110 netif_napi_del(&channel->napi_str);
2111 napi_hash_del(&channel->napi_str);
2112 }
2113 channel->napi_dev = NULL;
2114 }
2115
2116 static void efx_fini_napi(struct efx_nic *efx)
2117 {
2118 struct efx_channel *channel;
2119
2120 efx_for_each_channel(channel, efx)
2121 efx_fini_napi_channel(channel);
2122 }
2123
2124 /**************************************************************************
2125 *
2126 * Kernel netpoll interface
2127 *
2128 *************************************************************************/
2129
2130 #ifdef CONFIG_NET_POLL_CONTROLLER
2131
2132 /* Although in the common case interrupts will be disabled, this is not
2133 * guaranteed. However, all our work happens inside the NAPI callback,
2134 * so no locking is required.
2135 */
2136 static void efx_netpoll(struct net_device *net_dev)
2137 {
2138 struct efx_nic *efx = netdev_priv(net_dev);
2139 struct efx_channel *channel;
2140
2141 efx_for_each_channel(channel, efx)
2142 efx_schedule_channel(channel);
2143 }
2144
2145 #endif
2146
2147 #ifdef CONFIG_NET_RX_BUSY_POLL
2148 static int efx_busy_poll(struct napi_struct *napi)
2149 {
2150 struct efx_channel *channel =
2151 container_of(napi, struct efx_channel, napi_str);
2152 struct efx_nic *efx = channel->efx;
2153 int budget = 4;
2154 int old_rx_packets, rx_packets;
2155
2156 if (!netif_running(efx->net_dev))
2157 return LL_FLUSH_FAILED;
2158
2159 if (!efx_channel_try_lock_poll(channel))
2160 return LL_FLUSH_BUSY;
2161
2162 old_rx_packets = channel->rx_queue.rx_packets;
2163 efx_process_channel(channel, budget);
2164
2165 rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2166
2167 /* There is no race condition with NAPI here.
2168 * NAPI will automatically be rescheduled if it yielded during busy
2169 * polling, because it was not able to take the lock and thus returned
2170 * the full budget.
2171 */
2172 efx_channel_unlock_poll(channel);
2173
2174 return rx_packets;
2175 }
2176 #endif
2177
2178 /**************************************************************************
2179 *
2180 * Kernel net device interface
2181 *
2182 *************************************************************************/
2183
2184 /* Context: process, rtnl_lock() held. */
2185 int efx_net_open(struct net_device *net_dev)
2186 {
2187 struct efx_nic *efx = netdev_priv(net_dev);
2188 int rc;
2189
2190 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2191 raw_smp_processor_id());
2192
2193 rc = efx_check_disabled(efx);
2194 if (rc)
2195 return rc;
2196 if (efx->phy_mode & PHY_MODE_SPECIAL)
2197 return -EBUSY;
2198 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2199 return -EIO;
2200
2201 /* Notify the kernel of the link state polled during driver load,
2202 * before the monitor starts running */
2203 efx_link_status_changed(efx);
2204
2205 efx_start_all(efx);
2206 efx_selftest_async_start(efx);
2207 return 0;
2208 }
2209
2210 /* Context: process, rtnl_lock() held.
2211 * Note that the kernel will ignore our return code; this method
2212 * should really be a void.
2213 */
2214 int efx_net_stop(struct net_device *net_dev)
2215 {
2216 struct efx_nic *efx = netdev_priv(net_dev);
2217
2218 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2219 raw_smp_processor_id());
2220
2221 /* Stop the device and flush all the channels */
2222 efx_stop_all(efx);
2223
2224 return 0;
2225 }
2226
2227 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2228 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2229 struct rtnl_link_stats64 *stats)
2230 {
2231 struct efx_nic *efx = netdev_priv(net_dev);
2232
2233 spin_lock_bh(&efx->stats_lock);
2234 efx->type->update_stats(efx, NULL, stats);
2235 spin_unlock_bh(&efx->stats_lock);
2236
2237 return stats;
2238 }
2239
2240 /* Context: netif_tx_lock held, BHs disabled. */
2241 static void efx_watchdog(struct net_device *net_dev)
2242 {
2243 struct efx_nic *efx = netdev_priv(net_dev);
2244
2245 netif_err(efx, tx_err, efx->net_dev,
2246 "TX stuck with port_enabled=%d: resetting channels\n",
2247 efx->port_enabled);
2248
2249 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2250 }
2251
2252
2253 /* Context: process, rtnl_lock() held. */
2254 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2255 {
2256 struct efx_nic *efx = netdev_priv(net_dev);
2257 int rc;
2258
2259 rc = efx_check_disabled(efx);
2260 if (rc)
2261 return rc;
2262 if (new_mtu > EFX_MAX_MTU)
2263 return -EINVAL;
2264
2265 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2266
2267 efx_device_detach_sync(efx);
2268 efx_stop_all(efx);
2269
2270 mutex_lock(&efx->mac_lock);
2271 net_dev->mtu = new_mtu;
2272 efx_mac_reconfigure(efx);
2273 mutex_unlock(&efx->mac_lock);
2274
2275 efx_start_all(efx);
2276 netif_device_attach(efx->net_dev);
2277 return 0;
2278 }
2279
2280 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2281 {
2282 struct efx_nic *efx = netdev_priv(net_dev);
2283 struct sockaddr *addr = data;
2284 u8 *new_addr = addr->sa_data;
2285 u8 old_addr[6];
2286 int rc;
2287
2288 if (!is_valid_ether_addr(new_addr)) {
2289 netif_err(efx, drv, efx->net_dev,
2290 "invalid ethernet MAC address requested: %pM\n",
2291 new_addr);
2292 return -EADDRNOTAVAIL;
2293 }
2294
2295 /* save old address */
2296 ether_addr_copy(old_addr, net_dev->dev_addr);
2297 ether_addr_copy(net_dev->dev_addr, new_addr);
2298 if (efx->type->set_mac_address) {
2299 rc = efx->type->set_mac_address(efx);
2300 if (rc) {
2301 ether_addr_copy(net_dev->dev_addr, old_addr);
2302 return rc;
2303 }
2304 }
2305
2306 /* Reconfigure the MAC */
2307 mutex_lock(&efx->mac_lock);
2308 efx_mac_reconfigure(efx);
2309 mutex_unlock(&efx->mac_lock);
2310
2311 return 0;
2312 }
2313
2314 /* Context: netif_addr_lock held, BHs disabled. */
2315 static void efx_set_rx_mode(struct net_device *net_dev)
2316 {
2317 struct efx_nic *efx = netdev_priv(net_dev);
2318
2319 if (efx->port_enabled)
2320 queue_work(efx->workqueue, &efx->mac_work);
2321 /* Otherwise efx_start_port() will do this */
2322 }
2323
2324 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2325 {
2326 struct efx_nic *efx = netdev_priv(net_dev);
2327 int rc;
2328
2329 /* If disabling RX n-tuple filtering, clear existing filters */
2330 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2331 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2332 if (rc)
2333 return rc;
2334 }
2335
2336 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2337 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2338 /* efx_set_rx_mode() will schedule MAC work to update filters
2339 * when a new features are finally set in net_dev.
2340 */
2341 efx_set_rx_mode(net_dev);
2342 }
2343
2344 return 0;
2345 }
2346
2347 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2348 {
2349 struct efx_nic *efx = netdev_priv(net_dev);
2350
2351 if (efx->type->vlan_rx_add_vid)
2352 return efx->type->vlan_rx_add_vid(efx, proto, vid);
2353 else
2354 return -EOPNOTSUPP;
2355 }
2356
2357 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2358 {
2359 struct efx_nic *efx = netdev_priv(net_dev);
2360
2361 if (efx->type->vlan_rx_kill_vid)
2362 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
2363 else
2364 return -EOPNOTSUPP;
2365 }
2366
2367 static const struct net_device_ops efx_netdev_ops = {
2368 .ndo_open = efx_net_open,
2369 .ndo_stop = efx_net_stop,
2370 .ndo_get_stats64 = efx_net_stats,
2371 .ndo_tx_timeout = efx_watchdog,
2372 .ndo_start_xmit = efx_hard_start_xmit,
2373 .ndo_validate_addr = eth_validate_addr,
2374 .ndo_do_ioctl = efx_ioctl,
2375 .ndo_change_mtu = efx_change_mtu,
2376 .ndo_set_mac_address = efx_set_mac_address,
2377 .ndo_set_rx_mode = efx_set_rx_mode,
2378 .ndo_set_features = efx_set_features,
2379 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
2380 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
2381 #ifdef CONFIG_SFC_SRIOV
2382 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2383 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2384 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2385 .ndo_get_vf_config = efx_sriov_get_vf_config,
2386 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
2387 .ndo_get_phys_port_id = efx_sriov_get_phys_port_id,
2388 #endif
2389 #ifdef CONFIG_NET_POLL_CONTROLLER
2390 .ndo_poll_controller = efx_netpoll,
2391 #endif
2392 .ndo_setup_tc = efx_setup_tc,
2393 #ifdef CONFIG_NET_RX_BUSY_POLL
2394 .ndo_busy_poll = efx_busy_poll,
2395 #endif
2396 #ifdef CONFIG_RFS_ACCEL
2397 .ndo_rx_flow_steer = efx_filter_rfs,
2398 #endif
2399 };
2400
2401 static void efx_update_name(struct efx_nic *efx)
2402 {
2403 strcpy(efx->name, efx->net_dev->name);
2404 efx_mtd_rename(efx);
2405 efx_set_channel_names(efx);
2406 }
2407
2408 static int efx_netdev_event(struct notifier_block *this,
2409 unsigned long event, void *ptr)
2410 {
2411 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2412
2413 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2414 event == NETDEV_CHANGENAME)
2415 efx_update_name(netdev_priv(net_dev));
2416
2417 return NOTIFY_DONE;
2418 }
2419
2420 static struct notifier_block efx_netdev_notifier = {
2421 .notifier_call = efx_netdev_event,
2422 };
2423
2424 static ssize_t
2425 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2426 {
2427 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2428 return sprintf(buf, "%d\n", efx->phy_type);
2429 }
2430 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2431
2432 #ifdef CONFIG_SFC_MCDI_LOGGING
2433 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2434 char *buf)
2435 {
2436 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2437 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2438
2439 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2440 }
2441 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2442 const char *buf, size_t count)
2443 {
2444 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2445 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2446 bool enable = count > 0 && *buf != '0';
2447
2448 mcdi->logging_enabled = enable;
2449 return count;
2450 }
2451 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2452 #endif
2453
2454 static int efx_register_netdev(struct efx_nic *efx)
2455 {
2456 struct net_device *net_dev = efx->net_dev;
2457 struct efx_channel *channel;
2458 int rc;
2459
2460 net_dev->watchdog_timeo = 5 * HZ;
2461 net_dev->irq = efx->pci_dev->irq;
2462 net_dev->netdev_ops = &efx_netdev_ops;
2463 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2464 net_dev->priv_flags |= IFF_UNICAST_FLT;
2465 net_dev->ethtool_ops = &efx_ethtool_ops;
2466 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2467
2468 rtnl_lock();
2469
2470 /* Enable resets to be scheduled and check whether any were
2471 * already requested. If so, the NIC is probably hosed so we
2472 * abort.
2473 */
2474 efx->state = STATE_READY;
2475 smp_mb(); /* ensure we change state before checking reset_pending */
2476 if (efx->reset_pending) {
2477 netif_err(efx, probe, efx->net_dev,
2478 "aborting probe due to scheduled reset\n");
2479 rc = -EIO;
2480 goto fail_locked;
2481 }
2482
2483 rc = dev_alloc_name(net_dev, net_dev->name);
2484 if (rc < 0)
2485 goto fail_locked;
2486 efx_update_name(efx);
2487
2488 /* Always start with carrier off; PHY events will detect the link */
2489 netif_carrier_off(net_dev);
2490
2491 rc = register_netdevice(net_dev);
2492 if (rc)
2493 goto fail_locked;
2494
2495 efx_for_each_channel(channel, efx) {
2496 struct efx_tx_queue *tx_queue;
2497 efx_for_each_channel_tx_queue(tx_queue, channel)
2498 efx_init_tx_queue_core_txq(tx_queue);
2499 }
2500
2501 efx_associate(efx);
2502
2503 rtnl_unlock();
2504
2505 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2506 if (rc) {
2507 netif_err(efx, drv, efx->net_dev,
2508 "failed to init net dev attributes\n");
2509 goto fail_registered;
2510 }
2511 #ifdef CONFIG_SFC_MCDI_LOGGING
2512 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2513 if (rc) {
2514 netif_err(efx, drv, efx->net_dev,
2515 "failed to init net dev attributes\n");
2516 goto fail_attr_mcdi_logging;
2517 }
2518 #endif
2519
2520 return 0;
2521
2522 #ifdef CONFIG_SFC_MCDI_LOGGING
2523 fail_attr_mcdi_logging:
2524 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2525 #endif
2526 fail_registered:
2527 rtnl_lock();
2528 efx_dissociate(efx);
2529 unregister_netdevice(net_dev);
2530 fail_locked:
2531 efx->state = STATE_UNINIT;
2532 rtnl_unlock();
2533 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2534 return rc;
2535 }
2536
2537 static void efx_unregister_netdev(struct efx_nic *efx)
2538 {
2539 if (!efx->net_dev)
2540 return;
2541
2542 BUG_ON(netdev_priv(efx->net_dev) != efx);
2543
2544 if (efx_dev_registered(efx)) {
2545 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2546 #ifdef CONFIG_SFC_MCDI_LOGGING
2547 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2548 #endif
2549 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2550 unregister_netdev(efx->net_dev);
2551 }
2552 }
2553
2554 /**************************************************************************
2555 *
2556 * Device reset and suspend
2557 *
2558 **************************************************************************/
2559
2560 /* Tears down the entire software state and most of the hardware state
2561 * before reset. */
2562 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2563 {
2564 EFX_ASSERT_RESET_SERIALISED(efx);
2565
2566 if (method == RESET_TYPE_MCDI_TIMEOUT)
2567 efx->type->prepare_flr(efx);
2568
2569 efx_stop_all(efx);
2570 efx_disable_interrupts(efx);
2571
2572 mutex_lock(&efx->mac_lock);
2573 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2574 method != RESET_TYPE_DATAPATH)
2575 efx->phy_op->fini(efx);
2576 efx->type->fini(efx);
2577 }
2578
2579 /* This function will always ensure that the locks acquired in
2580 * efx_reset_down() are released. A failure return code indicates
2581 * that we were unable to reinitialise the hardware, and the
2582 * driver should be disabled. If ok is false, then the rx and tx
2583 * engines are not restarted, pending a RESET_DISABLE. */
2584 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2585 {
2586 int rc;
2587
2588 EFX_ASSERT_RESET_SERIALISED(efx);
2589
2590 if (method == RESET_TYPE_MCDI_TIMEOUT)
2591 efx->type->finish_flr(efx);
2592
2593 /* Ensure that SRAM is initialised even if we're disabling the device */
2594 rc = efx->type->init(efx);
2595 if (rc) {
2596 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2597 goto fail;
2598 }
2599
2600 if (!ok)
2601 goto fail;
2602
2603 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2604 method != RESET_TYPE_DATAPATH) {
2605 rc = efx->phy_op->init(efx);
2606 if (rc)
2607 goto fail;
2608 rc = efx->phy_op->reconfigure(efx);
2609 if (rc && rc != -EPERM)
2610 netif_err(efx, drv, efx->net_dev,
2611 "could not restore PHY settings\n");
2612 }
2613
2614 rc = efx_enable_interrupts(efx);
2615 if (rc)
2616 goto fail;
2617
2618 #ifdef CONFIG_SFC_SRIOV
2619 rc = efx->type->vswitching_restore(efx);
2620 if (rc) /* not fatal; the PF will still work fine */
2621 netif_warn(efx, probe, efx->net_dev,
2622 "failed to restore vswitching rc=%d;"
2623 " VFs may not function\n", rc);
2624 #endif
2625
2626 down_read(&efx->filter_sem);
2627 efx_restore_filters(efx);
2628 up_read(&efx->filter_sem);
2629 if (efx->type->sriov_reset)
2630 efx->type->sriov_reset(efx);
2631
2632 mutex_unlock(&efx->mac_lock);
2633
2634 efx_start_all(efx);
2635
2636 return 0;
2637
2638 fail:
2639 efx->port_initialized = false;
2640
2641 mutex_unlock(&efx->mac_lock);
2642
2643 return rc;
2644 }
2645
2646 /* Reset the NIC using the specified method. Note that the reset may
2647 * fail, in which case the card will be left in an unusable state.
2648 *
2649 * Caller must hold the rtnl_lock.
2650 */
2651 int efx_reset(struct efx_nic *efx, enum reset_type method)
2652 {
2653 int rc, rc2;
2654 bool disabled;
2655
2656 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2657 RESET_TYPE(method));
2658
2659 efx_device_detach_sync(efx);
2660 efx_reset_down(efx, method);
2661
2662 rc = efx->type->reset(efx, method);
2663 if (rc) {
2664 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2665 goto out;
2666 }
2667
2668 /* Clear flags for the scopes we covered. We assume the NIC and
2669 * driver are now quiescent so that there is no race here.
2670 */
2671 if (method < RESET_TYPE_MAX_METHOD)
2672 efx->reset_pending &= -(1 << (method + 1));
2673 else /* it doesn't fit into the well-ordered scope hierarchy */
2674 __clear_bit(method, &efx->reset_pending);
2675
2676 /* Reinitialise bus-mastering, which may have been turned off before
2677 * the reset was scheduled. This is still appropriate, even in the
2678 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2679 * can respond to requests. */
2680 pci_set_master(efx->pci_dev);
2681
2682 out:
2683 /* Leave device stopped if necessary */
2684 disabled = rc ||
2685 method == RESET_TYPE_DISABLE ||
2686 method == RESET_TYPE_RECOVER_OR_DISABLE;
2687 rc2 = efx_reset_up(efx, method, !disabled);
2688 if (rc2) {
2689 disabled = true;
2690 if (!rc)
2691 rc = rc2;
2692 }
2693
2694 if (disabled) {
2695 dev_close(efx->net_dev);
2696 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2697 efx->state = STATE_DISABLED;
2698 } else {
2699 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2700 netif_device_attach(efx->net_dev);
2701 }
2702 return rc;
2703 }
2704
2705 /* Try recovery mechanisms.
2706 * For now only EEH is supported.
2707 * Returns 0 if the recovery mechanisms are unsuccessful.
2708 * Returns a non-zero value otherwise.
2709 */
2710 int efx_try_recovery(struct efx_nic *efx)
2711 {
2712 #ifdef CONFIG_EEH
2713 /* A PCI error can occur and not be seen by EEH because nothing
2714 * happens on the PCI bus. In this case the driver may fail and
2715 * schedule a 'recover or reset', leading to this recovery handler.
2716 * Manually call the eeh failure check function.
2717 */
2718 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2719 if (eeh_dev_check_failure(eehdev)) {
2720 /* The EEH mechanisms will handle the error and reset the
2721 * device if necessary.
2722 */
2723 return 1;
2724 }
2725 #endif
2726 return 0;
2727 }
2728
2729 static void efx_wait_for_bist_end(struct efx_nic *efx)
2730 {
2731 int i;
2732
2733 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2734 if (efx_mcdi_poll_reboot(efx))
2735 goto out;
2736 msleep(BIST_WAIT_DELAY_MS);
2737 }
2738
2739 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2740 out:
2741 /* Either way unset the BIST flag. If we found no reboot we probably
2742 * won't recover, but we should try.
2743 */
2744 efx->mc_bist_for_other_fn = false;
2745 }
2746
2747 /* The worker thread exists so that code that cannot sleep can
2748 * schedule a reset for later.
2749 */
2750 static void efx_reset_work(struct work_struct *data)
2751 {
2752 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2753 unsigned long pending;
2754 enum reset_type method;
2755
2756 pending = ACCESS_ONCE(efx->reset_pending);
2757 method = fls(pending) - 1;
2758
2759 if (method == RESET_TYPE_MC_BIST)
2760 efx_wait_for_bist_end(efx);
2761
2762 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2763 method == RESET_TYPE_RECOVER_OR_ALL) &&
2764 efx_try_recovery(efx))
2765 return;
2766
2767 if (!pending)
2768 return;
2769
2770 rtnl_lock();
2771
2772 /* We checked the state in efx_schedule_reset() but it may
2773 * have changed by now. Now that we have the RTNL lock,
2774 * it cannot change again.
2775 */
2776 if (efx->state == STATE_READY)
2777 (void)efx_reset(efx, method);
2778
2779 rtnl_unlock();
2780 }
2781
2782 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2783 {
2784 enum reset_type method;
2785
2786 if (efx->state == STATE_RECOVERY) {
2787 netif_dbg(efx, drv, efx->net_dev,
2788 "recovering: skip scheduling %s reset\n",
2789 RESET_TYPE(type));
2790 return;
2791 }
2792
2793 switch (type) {
2794 case RESET_TYPE_INVISIBLE:
2795 case RESET_TYPE_ALL:
2796 case RESET_TYPE_RECOVER_OR_ALL:
2797 case RESET_TYPE_WORLD:
2798 case RESET_TYPE_DISABLE:
2799 case RESET_TYPE_RECOVER_OR_DISABLE:
2800 case RESET_TYPE_DATAPATH:
2801 case RESET_TYPE_MC_BIST:
2802 case RESET_TYPE_MCDI_TIMEOUT:
2803 method = type;
2804 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2805 RESET_TYPE(method));
2806 break;
2807 default:
2808 method = efx->type->map_reset_reason(type);
2809 netif_dbg(efx, drv, efx->net_dev,
2810 "scheduling %s reset for %s\n",
2811 RESET_TYPE(method), RESET_TYPE(type));
2812 break;
2813 }
2814
2815 set_bit(method, &efx->reset_pending);
2816 smp_mb(); /* ensure we change reset_pending before checking state */
2817
2818 /* If we're not READY then just leave the flags set as the cue
2819 * to abort probing or reschedule the reset later.
2820 */
2821 if (ACCESS_ONCE(efx->state) != STATE_READY)
2822 return;
2823
2824 /* efx_process_channel() will no longer read events once a
2825 * reset is scheduled. So switch back to poll'd MCDI completions. */
2826 efx_mcdi_mode_poll(efx);
2827
2828 queue_work(reset_workqueue, &efx->reset_work);
2829 }
2830
2831 /**************************************************************************
2832 *
2833 * List of NICs we support
2834 *
2835 **************************************************************************/
2836
2837 /* PCI device ID table */
2838 static const struct pci_device_id efx_pci_table[] = {
2839 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2840 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2841 .driver_data = (unsigned long) &falcon_a1_nic_type},
2842 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2843 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2844 .driver_data = (unsigned long) &falcon_b0_nic_type},
2845 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2846 .driver_data = (unsigned long) &siena_a0_nic_type},
2847 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2848 .driver_data = (unsigned long) &siena_a0_nic_type},
2849 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2850 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2851 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
2852 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2853 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
2854 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2855 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
2856 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2857 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
2858 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2859 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
2860 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2861 {0} /* end of list */
2862 };
2863
2864 /**************************************************************************
2865 *
2866 * Dummy PHY/MAC operations
2867 *
2868 * Can be used for some unimplemented operations
2869 * Needed so all function pointers are valid and do not have to be tested
2870 * before use
2871 *
2872 **************************************************************************/
2873 int efx_port_dummy_op_int(struct efx_nic *efx)
2874 {
2875 return 0;
2876 }
2877 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2878
2879 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2880 {
2881 return false;
2882 }
2883
2884 static const struct efx_phy_operations efx_dummy_phy_operations = {
2885 .init = efx_port_dummy_op_int,
2886 .reconfigure = efx_port_dummy_op_int,
2887 .poll = efx_port_dummy_op_poll,
2888 .fini = efx_port_dummy_op_void,
2889 };
2890
2891 /**************************************************************************
2892 *
2893 * Data housekeeping
2894 *
2895 **************************************************************************/
2896
2897 /* This zeroes out and then fills in the invariants in a struct
2898 * efx_nic (including all sub-structures).
2899 */
2900 static int efx_init_struct(struct efx_nic *efx,
2901 struct pci_dev *pci_dev, struct net_device *net_dev)
2902 {
2903 int i;
2904
2905 /* Initialise common structures */
2906 INIT_LIST_HEAD(&efx->node);
2907 INIT_LIST_HEAD(&efx->secondary_list);
2908 spin_lock_init(&efx->biu_lock);
2909 #ifdef CONFIG_SFC_MTD
2910 INIT_LIST_HEAD(&efx->mtd_list);
2911 #endif
2912 INIT_WORK(&efx->reset_work, efx_reset_work);
2913 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2914 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2915 efx->pci_dev = pci_dev;
2916 efx->msg_enable = debug;
2917 efx->state = STATE_UNINIT;
2918 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2919
2920 efx->net_dev = net_dev;
2921 efx->rx_prefix_size = efx->type->rx_prefix_size;
2922 efx->rx_ip_align =
2923 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2924 efx->rx_packet_hash_offset =
2925 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2926 efx->rx_packet_ts_offset =
2927 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2928 spin_lock_init(&efx->stats_lock);
2929 mutex_init(&efx->mac_lock);
2930 efx->phy_op = &efx_dummy_phy_operations;
2931 efx->mdio.dev = net_dev;
2932 INIT_WORK(&efx->mac_work, efx_mac_work);
2933 init_waitqueue_head(&efx->flush_wq);
2934
2935 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2936 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2937 if (!efx->channel[i])
2938 goto fail;
2939 efx->msi_context[i].efx = efx;
2940 efx->msi_context[i].index = i;
2941 }
2942
2943 /* Higher numbered interrupt modes are less capable! */
2944 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2945 interrupt_mode);
2946
2947 /* Would be good to use the net_dev name, but we're too early */
2948 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2949 pci_name(pci_dev));
2950 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2951 if (!efx->workqueue)
2952 goto fail;
2953
2954 return 0;
2955
2956 fail:
2957 efx_fini_struct(efx);
2958 return -ENOMEM;
2959 }
2960
2961 static void efx_fini_struct(struct efx_nic *efx)
2962 {
2963 int i;
2964
2965 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2966 kfree(efx->channel[i]);
2967
2968 kfree(efx->vpd_sn);
2969
2970 if (efx->workqueue) {
2971 destroy_workqueue(efx->workqueue);
2972 efx->workqueue = NULL;
2973 }
2974 }
2975
2976 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2977 {
2978 u64 n_rx_nodesc_trunc = 0;
2979 struct efx_channel *channel;
2980
2981 efx_for_each_channel(channel, efx)
2982 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2983 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2984 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2985 }
2986
2987 /**************************************************************************
2988 *
2989 * PCI interface
2990 *
2991 **************************************************************************/
2992
2993 /* Main body of final NIC shutdown code
2994 * This is called only at module unload (or hotplug removal).
2995 */
2996 static void efx_pci_remove_main(struct efx_nic *efx)
2997 {
2998 /* Flush reset_work. It can no longer be scheduled since we
2999 * are not READY.
3000 */
3001 BUG_ON(efx->state == STATE_READY);
3002 cancel_work_sync(&efx->reset_work);
3003
3004 efx_disable_interrupts(efx);
3005 efx_nic_fini_interrupt(efx);
3006 efx_fini_port(efx);
3007 efx->type->fini(efx);
3008 efx_fini_napi(efx);
3009 efx_remove_all(efx);
3010 }
3011
3012 /* Final NIC shutdown
3013 * This is called only at module unload (or hotplug removal). A PF can call
3014 * this on its VFs to ensure they are unbound first.
3015 */
3016 static void efx_pci_remove(struct pci_dev *pci_dev)
3017 {
3018 struct efx_nic *efx;
3019
3020 efx = pci_get_drvdata(pci_dev);
3021 if (!efx)
3022 return;
3023
3024 /* Mark the NIC as fini, then stop the interface */
3025 rtnl_lock();
3026 efx_dissociate(efx);
3027 dev_close(efx->net_dev);
3028 efx_disable_interrupts(efx);
3029 efx->state = STATE_UNINIT;
3030 rtnl_unlock();
3031
3032 if (efx->type->sriov_fini)
3033 efx->type->sriov_fini(efx);
3034
3035 efx_unregister_netdev(efx);
3036
3037 efx_mtd_remove(efx);
3038
3039 efx_pci_remove_main(efx);
3040
3041 efx_fini_io(efx);
3042 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3043
3044 efx_fini_struct(efx);
3045 free_netdev(efx->net_dev);
3046
3047 pci_disable_pcie_error_reporting(pci_dev);
3048 };
3049
3050 /* NIC VPD information
3051 * Called during probe to display the part number of the
3052 * installed NIC. VPD is potentially very large but this should
3053 * always appear within the first 512 bytes.
3054 */
3055 #define SFC_VPD_LEN 512
3056 static void efx_probe_vpd_strings(struct efx_nic *efx)
3057 {
3058 struct pci_dev *dev = efx->pci_dev;
3059 char vpd_data[SFC_VPD_LEN];
3060 ssize_t vpd_size;
3061 int ro_start, ro_size, i, j;
3062
3063 /* Get the vpd data from the device */
3064 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
3065 if (vpd_size <= 0) {
3066 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
3067 return;
3068 }
3069
3070 /* Get the Read only section */
3071 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3072 if (ro_start < 0) {
3073 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3074 return;
3075 }
3076
3077 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3078 j = ro_size;
3079 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3080 if (i + j > vpd_size)
3081 j = vpd_size - i;
3082
3083 /* Get the Part number */
3084 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3085 if (i < 0) {
3086 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3087 return;
3088 }
3089
3090 j = pci_vpd_info_field_size(&vpd_data[i]);
3091 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3092 if (i + j > vpd_size) {
3093 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3094 return;
3095 }
3096
3097 netif_info(efx, drv, efx->net_dev,
3098 "Part Number : %.*s\n", j, &vpd_data[i]);
3099
3100 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3101 j = ro_size;
3102 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3103 if (i < 0) {
3104 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3105 return;
3106 }
3107
3108 j = pci_vpd_info_field_size(&vpd_data[i]);
3109 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3110 if (i + j > vpd_size) {
3111 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3112 return;
3113 }
3114
3115 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3116 if (!efx->vpd_sn)
3117 return;
3118
3119 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3120 }
3121
3122
3123 /* Main body of NIC initialisation
3124 * This is called at module load (or hotplug insertion, theoretically).
3125 */
3126 static int efx_pci_probe_main(struct efx_nic *efx)
3127 {
3128 int rc;
3129
3130 /* Do start-of-day initialisation */
3131 rc = efx_probe_all(efx);
3132 if (rc)
3133 goto fail1;
3134
3135 efx_init_napi(efx);
3136
3137 rc = efx->type->init(efx);
3138 if (rc) {
3139 netif_err(efx, probe, efx->net_dev,
3140 "failed to initialise NIC\n");
3141 goto fail3;
3142 }
3143
3144 rc = efx_init_port(efx);
3145 if (rc) {
3146 netif_err(efx, probe, efx->net_dev,
3147 "failed to initialise port\n");
3148 goto fail4;
3149 }
3150
3151 rc = efx_nic_init_interrupt(efx);
3152 if (rc)
3153 goto fail5;
3154 rc = efx_enable_interrupts(efx);
3155 if (rc)
3156 goto fail6;
3157
3158 return 0;
3159
3160 fail6:
3161 efx_nic_fini_interrupt(efx);
3162 fail5:
3163 efx_fini_port(efx);
3164 fail4:
3165 efx->type->fini(efx);
3166 fail3:
3167 efx_fini_napi(efx);
3168 efx_remove_all(efx);
3169 fail1:
3170 return rc;
3171 }
3172
3173 /* NIC initialisation
3174 *
3175 * This is called at module load (or hotplug insertion,
3176 * theoretically). It sets up PCI mappings, resets the NIC,
3177 * sets up and registers the network devices with the kernel and hooks
3178 * the interrupt service routine. It does not prepare the device for
3179 * transmission; this is left to the first time one of the network
3180 * interfaces is brought up (i.e. efx_net_open).
3181 */
3182 static int efx_pci_probe(struct pci_dev *pci_dev,
3183 const struct pci_device_id *entry)
3184 {
3185 struct net_device *net_dev;
3186 struct efx_nic *efx;
3187 int rc;
3188
3189 /* Allocate and initialise a struct net_device and struct efx_nic */
3190 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3191 EFX_MAX_RX_QUEUES);
3192 if (!net_dev)
3193 return -ENOMEM;
3194 efx = netdev_priv(net_dev);
3195 efx->type = (const struct efx_nic_type *) entry->driver_data;
3196 efx->fixed_features |= NETIF_F_HIGHDMA;
3197 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3198 NETIF_F_TSO | NETIF_F_RXCSUM);
3199 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
3200 net_dev->features |= NETIF_F_TSO6;
3201 /* Mask for features that also apply to VLAN devices */
3202 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
3203 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3204 NETIF_F_RXCSUM);
3205 net_dev->features |= efx->fixed_features;
3206 net_dev->hw_features = net_dev->features & ~efx->fixed_features;
3207 pci_set_drvdata(pci_dev, efx);
3208 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3209 rc = efx_init_struct(efx, pci_dev, net_dev);
3210 if (rc)
3211 goto fail1;
3212
3213 netif_info(efx, probe, efx->net_dev,
3214 "Solarflare NIC detected\n");
3215
3216 if (!efx->type->is_vf)
3217 efx_probe_vpd_strings(efx);
3218
3219 /* Set up basic I/O (BAR mappings etc) */
3220 rc = efx_init_io(efx);
3221 if (rc)
3222 goto fail2;
3223
3224 rc = efx_pci_probe_main(efx);
3225 if (rc)
3226 goto fail3;
3227
3228 rc = efx_register_netdev(efx);
3229 if (rc)
3230 goto fail4;
3231
3232 if (efx->type->sriov_init) {
3233 rc = efx->type->sriov_init(efx);
3234 if (rc)
3235 netif_err(efx, probe, efx->net_dev,
3236 "SR-IOV can't be enabled rc %d\n", rc);
3237 }
3238
3239 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3240
3241 /* Try to create MTDs, but allow this to fail */
3242 rtnl_lock();
3243 rc = efx_mtd_probe(efx);
3244 rtnl_unlock();
3245 if (rc && rc != -EPERM)
3246 netif_warn(efx, probe, efx->net_dev,
3247 "failed to create MTDs (%d)\n", rc);
3248
3249 rc = pci_enable_pcie_error_reporting(pci_dev);
3250 if (rc && rc != -EINVAL)
3251 netif_notice(efx, probe, efx->net_dev,
3252 "PCIE error reporting unavailable (%d).\n",
3253 rc);
3254
3255 return 0;
3256
3257 fail4:
3258 efx_pci_remove_main(efx);
3259 fail3:
3260 efx_fini_io(efx);
3261 fail2:
3262 efx_fini_struct(efx);
3263 fail1:
3264 WARN_ON(rc > 0);
3265 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3266 free_netdev(net_dev);
3267 return rc;
3268 }
3269
3270 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3271 * enabled on success
3272 */
3273 #ifdef CONFIG_SFC_SRIOV
3274 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3275 {
3276 int rc;
3277 struct efx_nic *efx = pci_get_drvdata(dev);
3278
3279 if (efx->type->sriov_configure) {
3280 rc = efx->type->sriov_configure(efx, num_vfs);
3281 if (rc)
3282 return rc;
3283 else
3284 return num_vfs;
3285 } else
3286 return -EOPNOTSUPP;
3287 }
3288 #endif
3289
3290 static int efx_pm_freeze(struct device *dev)
3291 {
3292 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3293
3294 rtnl_lock();
3295
3296 if (efx->state != STATE_DISABLED) {
3297 efx->state = STATE_UNINIT;
3298
3299 efx_device_detach_sync(efx);
3300
3301 efx_stop_all(efx);
3302 efx_disable_interrupts(efx);
3303 }
3304
3305 rtnl_unlock();
3306
3307 return 0;
3308 }
3309
3310 static int efx_pm_thaw(struct device *dev)
3311 {
3312 int rc;
3313 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3314
3315 rtnl_lock();
3316
3317 if (efx->state != STATE_DISABLED) {
3318 rc = efx_enable_interrupts(efx);
3319 if (rc)
3320 goto fail;
3321
3322 mutex_lock(&efx->mac_lock);
3323 efx->phy_op->reconfigure(efx);
3324 mutex_unlock(&efx->mac_lock);
3325
3326 efx_start_all(efx);
3327
3328 netif_device_attach(efx->net_dev);
3329
3330 efx->state = STATE_READY;
3331
3332 efx->type->resume_wol(efx);
3333 }
3334
3335 rtnl_unlock();
3336
3337 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3338 queue_work(reset_workqueue, &efx->reset_work);
3339
3340 return 0;
3341
3342 fail:
3343 rtnl_unlock();
3344
3345 return rc;
3346 }
3347
3348 static int efx_pm_poweroff(struct device *dev)
3349 {
3350 struct pci_dev *pci_dev = to_pci_dev(dev);
3351 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3352
3353 efx->type->fini(efx);
3354
3355 efx->reset_pending = 0;
3356
3357 pci_save_state(pci_dev);
3358 return pci_set_power_state(pci_dev, PCI_D3hot);
3359 }
3360
3361 /* Used for both resume and restore */
3362 static int efx_pm_resume(struct device *dev)
3363 {
3364 struct pci_dev *pci_dev = to_pci_dev(dev);
3365 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3366 int rc;
3367
3368 rc = pci_set_power_state(pci_dev, PCI_D0);
3369 if (rc)
3370 return rc;
3371 pci_restore_state(pci_dev);
3372 rc = pci_enable_device(pci_dev);
3373 if (rc)
3374 return rc;
3375 pci_set_master(efx->pci_dev);
3376 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3377 if (rc)
3378 return rc;
3379 rc = efx->type->init(efx);
3380 if (rc)
3381 return rc;
3382 rc = efx_pm_thaw(dev);
3383 return rc;
3384 }
3385
3386 static int efx_pm_suspend(struct device *dev)
3387 {
3388 int rc;
3389
3390 efx_pm_freeze(dev);
3391 rc = efx_pm_poweroff(dev);
3392 if (rc)
3393 efx_pm_resume(dev);
3394 return rc;
3395 }
3396
3397 static const struct dev_pm_ops efx_pm_ops = {
3398 .suspend = efx_pm_suspend,
3399 .resume = efx_pm_resume,
3400 .freeze = efx_pm_freeze,
3401 .thaw = efx_pm_thaw,
3402 .poweroff = efx_pm_poweroff,
3403 .restore = efx_pm_resume,
3404 };
3405
3406 /* A PCI error affecting this device was detected.
3407 * At this point MMIO and DMA may be disabled.
3408 * Stop the software path and request a slot reset.
3409 */
3410 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3411 enum pci_channel_state state)
3412 {
3413 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3414 struct efx_nic *efx = pci_get_drvdata(pdev);
3415
3416 if (state == pci_channel_io_perm_failure)
3417 return PCI_ERS_RESULT_DISCONNECT;
3418
3419 rtnl_lock();
3420
3421 if (efx->state != STATE_DISABLED) {
3422 efx->state = STATE_RECOVERY;
3423 efx->reset_pending = 0;
3424
3425 efx_device_detach_sync(efx);
3426
3427 efx_stop_all(efx);
3428 efx_disable_interrupts(efx);
3429
3430 status = PCI_ERS_RESULT_NEED_RESET;
3431 } else {
3432 /* If the interface is disabled we don't want to do anything
3433 * with it.
3434 */
3435 status = PCI_ERS_RESULT_RECOVERED;
3436 }
3437
3438 rtnl_unlock();
3439
3440 pci_disable_device(pdev);
3441
3442 return status;
3443 }
3444
3445 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3446 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3447 {
3448 struct efx_nic *efx = pci_get_drvdata(pdev);
3449 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3450 int rc;
3451
3452 if (pci_enable_device(pdev)) {
3453 netif_err(efx, hw, efx->net_dev,
3454 "Cannot re-enable PCI device after reset.\n");
3455 status = PCI_ERS_RESULT_DISCONNECT;
3456 }
3457
3458 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3459 if (rc) {
3460 netif_err(efx, hw, efx->net_dev,
3461 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3462 /* Non-fatal error. Continue. */
3463 }
3464
3465 return status;
3466 }
3467
3468 /* Perform the actual reset and resume I/O operations. */
3469 static void efx_io_resume(struct pci_dev *pdev)
3470 {
3471 struct efx_nic *efx = pci_get_drvdata(pdev);
3472 int rc;
3473
3474 rtnl_lock();
3475
3476 if (efx->state == STATE_DISABLED)
3477 goto out;
3478
3479 rc = efx_reset(efx, RESET_TYPE_ALL);
3480 if (rc) {
3481 netif_err(efx, hw, efx->net_dev,
3482 "efx_reset failed after PCI error (%d)\n", rc);
3483 } else {
3484 efx->state = STATE_READY;
3485 netif_dbg(efx, hw, efx->net_dev,
3486 "Done resetting and resuming IO after PCI error.\n");
3487 }
3488
3489 out:
3490 rtnl_unlock();
3491 }
3492
3493 /* For simplicity and reliability, we always require a slot reset and try to
3494 * reset the hardware when a pci error affecting the device is detected.
3495 * We leave both the link_reset and mmio_enabled callback unimplemented:
3496 * with our request for slot reset the mmio_enabled callback will never be
3497 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3498 */
3499 static const struct pci_error_handlers efx_err_handlers = {
3500 .error_detected = efx_io_error_detected,
3501 .slot_reset = efx_io_slot_reset,
3502 .resume = efx_io_resume,
3503 };
3504
3505 static struct pci_driver efx_pci_driver = {
3506 .name = KBUILD_MODNAME,
3507 .id_table = efx_pci_table,
3508 .probe = efx_pci_probe,
3509 .remove = efx_pci_remove,
3510 .driver.pm = &efx_pm_ops,
3511 .err_handler = &efx_err_handlers,
3512 #ifdef CONFIG_SFC_SRIOV
3513 .sriov_configure = efx_pci_sriov_configure,
3514 #endif
3515 };
3516
3517 /**************************************************************************
3518 *
3519 * Kernel module interface
3520 *
3521 *************************************************************************/
3522
3523 module_param(interrupt_mode, uint, 0444);
3524 MODULE_PARM_DESC(interrupt_mode,
3525 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3526
3527 static int __init efx_init_module(void)
3528 {
3529 int rc;
3530
3531 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3532
3533 rc = register_netdevice_notifier(&efx_netdev_notifier);
3534 if (rc)
3535 goto err_notifier;
3536
3537 #ifdef CONFIG_SFC_SRIOV
3538 rc = efx_init_sriov();
3539 if (rc)
3540 goto err_sriov;
3541 #endif
3542
3543 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3544 if (!reset_workqueue) {
3545 rc = -ENOMEM;
3546 goto err_reset;
3547 }
3548
3549 rc = pci_register_driver(&efx_pci_driver);
3550 if (rc < 0)
3551 goto err_pci;
3552
3553 return 0;
3554
3555 err_pci:
3556 destroy_workqueue(reset_workqueue);
3557 err_reset:
3558 #ifdef CONFIG_SFC_SRIOV
3559 efx_fini_sriov();
3560 err_sriov:
3561 #endif
3562 unregister_netdevice_notifier(&efx_netdev_notifier);
3563 err_notifier:
3564 return rc;
3565 }
3566
3567 static void __exit efx_exit_module(void)
3568 {
3569 printk(KERN_INFO "Solarflare NET driver unloading\n");
3570
3571 pci_unregister_driver(&efx_pci_driver);
3572 destroy_workqueue(reset_workqueue);
3573 #ifdef CONFIG_SFC_SRIOV
3574 efx_fini_sriov();
3575 #endif
3576 unregister_netdevice_notifier(&efx_netdev_notifier);
3577
3578 }
3579
3580 module_init(efx_init_module);
3581 module_exit(efx_exit_module);
3582
3583 MODULE_AUTHOR("Solarflare Communications and "
3584 "Michael Brown <mbrown@fensystems.co.uk>");
3585 MODULE_DESCRIPTION("Solarflare network driver");
3586 MODULE_LICENSE("GPL");
3587 MODULE_DEVICE_TABLE(pci, efx_pci_table);