]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/sfc/efx.c
Merge tag 'arc-5.1-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include <net/gre.h>
27 #include <net/udp_tunnel.h>
28 #include "efx.h"
29 #include "nic.h"
30 #include "io.h"
31 #include "selftest.h"
32 #include "sriov.h"
33
34 #include "mcdi.h"
35 #include "mcdi_pcol.h"
36 #include "workarounds.h"
37
38 /**************************************************************************
39 *
40 * Type name strings
41 *
42 **************************************************************************
43 */
44
45 /* Loopback mode names (see LOOPBACK_MODE()) */
46 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
47 const char *const efx_loopback_mode_names[] = {
48 [LOOPBACK_NONE] = "NONE",
49 [LOOPBACK_DATA] = "DATAPATH",
50 [LOOPBACK_GMAC] = "GMAC",
51 [LOOPBACK_XGMII] = "XGMII",
52 [LOOPBACK_XGXS] = "XGXS",
53 [LOOPBACK_XAUI] = "XAUI",
54 [LOOPBACK_GMII] = "GMII",
55 [LOOPBACK_SGMII] = "SGMII",
56 [LOOPBACK_XGBR] = "XGBR",
57 [LOOPBACK_XFI] = "XFI",
58 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
59 [LOOPBACK_GMII_FAR] = "GMII_FAR",
60 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
61 [LOOPBACK_XFI_FAR] = "XFI_FAR",
62 [LOOPBACK_GPHY] = "GPHY",
63 [LOOPBACK_PHYXS] = "PHYXS",
64 [LOOPBACK_PCS] = "PCS",
65 [LOOPBACK_PMAPMD] = "PMA/PMD",
66 [LOOPBACK_XPORT] = "XPORT",
67 [LOOPBACK_XGMII_WS] = "XGMII_WS",
68 [LOOPBACK_XAUI_WS] = "XAUI_WS",
69 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
70 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
71 [LOOPBACK_GMII_WS] = "GMII_WS",
72 [LOOPBACK_XFI_WS] = "XFI_WS",
73 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
74 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
75 };
76
77 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
78 const char *const efx_reset_type_names[] = {
79 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
80 [RESET_TYPE_ALL] = "ALL",
81 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
82 [RESET_TYPE_WORLD] = "WORLD",
83 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
84 [RESET_TYPE_DATAPATH] = "DATAPATH",
85 [RESET_TYPE_MC_BIST] = "MC_BIST",
86 [RESET_TYPE_DISABLE] = "DISABLE",
87 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
88 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
89 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
92 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
93 };
94
95 /* UDP tunnel type names */
96 static const char *const efx_udp_tunnel_type_names[] = {
97 [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan",
98 [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve",
99 };
100
101 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen)
102 {
103 if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) &&
104 efx_udp_tunnel_type_names[type] != NULL)
105 snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]);
106 else
107 snprintf(buf, buflen, "type %d", type);
108 }
109
110 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
111 * queued onto this work queue. This is not a per-nic work queue, because
112 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
113 */
114 static struct workqueue_struct *reset_workqueue;
115
116 /* How often and how many times to poll for a reset while waiting for a
117 * BIST that another function started to complete.
118 */
119 #define BIST_WAIT_DELAY_MS 100
120 #define BIST_WAIT_DELAY_COUNT 100
121
122 /**************************************************************************
123 *
124 * Configurable values
125 *
126 *************************************************************************/
127
128 /*
129 * Use separate channels for TX and RX events
130 *
131 * Set this to 1 to use separate channels for TX and RX. It allows us
132 * to control interrupt affinity separately for TX and RX.
133 *
134 * This is only used in MSI-X interrupt mode
135 */
136 bool efx_separate_tx_channels;
137 module_param(efx_separate_tx_channels, bool, 0444);
138 MODULE_PARM_DESC(efx_separate_tx_channels,
139 "Use separate channels for TX and RX");
140
141 /* This is the weight assigned to each of the (per-channel) virtual
142 * NAPI devices.
143 */
144 static int napi_weight = 64;
145
146 /* This is the time (in jiffies) between invocations of the hardware
147 * monitor.
148 * On Falcon-based NICs, this will:
149 * - Check the on-board hardware monitor;
150 * - Poll the link state and reconfigure the hardware as necessary.
151 * On Siena-based NICs for power systems with EEH support, this will give EEH a
152 * chance to start.
153 */
154 static unsigned int efx_monitor_interval = 1 * HZ;
155
156 /* Initial interrupt moderation settings. They can be modified after
157 * module load with ethtool.
158 *
159 * The default for RX should strike a balance between increasing the
160 * round-trip latency and reducing overhead.
161 */
162 static unsigned int rx_irq_mod_usec = 60;
163
164 /* Initial interrupt moderation settings. They can be modified after
165 * module load with ethtool.
166 *
167 * This default is chosen to ensure that a 10G link does not go idle
168 * while a TX queue is stopped after it has become full. A queue is
169 * restarted when it drops below half full. The time this takes (assuming
170 * worst case 3 descriptors per packet and 1024 descriptors) is
171 * 512 / 3 * 1.2 = 205 usec.
172 */
173 static unsigned int tx_irq_mod_usec = 150;
174
175 /* This is the first interrupt mode to try out of:
176 * 0 => MSI-X
177 * 1 => MSI
178 * 2 => legacy
179 */
180 static unsigned int interrupt_mode;
181
182 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
183 * i.e. the number of CPUs among which we may distribute simultaneous
184 * interrupt handling.
185 *
186 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
187 * The default (0) means to assign an interrupt to each core.
188 */
189 static unsigned int rss_cpus;
190 module_param(rss_cpus, uint, 0444);
191 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
192
193 static bool phy_flash_cfg;
194 module_param(phy_flash_cfg, bool, 0644);
195 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
196
197 static unsigned irq_adapt_low_thresh = 8000;
198 module_param(irq_adapt_low_thresh, uint, 0644);
199 MODULE_PARM_DESC(irq_adapt_low_thresh,
200 "Threshold score for reducing IRQ moderation");
201
202 static unsigned irq_adapt_high_thresh = 16000;
203 module_param(irq_adapt_high_thresh, uint, 0644);
204 MODULE_PARM_DESC(irq_adapt_high_thresh,
205 "Threshold score for increasing IRQ moderation");
206
207 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
208 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
209 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
210 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
211 module_param(debug, uint, 0);
212 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
213
214 /**************************************************************************
215 *
216 * Utility functions and prototypes
217 *
218 *************************************************************************/
219
220 static int efx_soft_enable_interrupts(struct efx_nic *efx);
221 static void efx_soft_disable_interrupts(struct efx_nic *efx);
222 static void efx_remove_channel(struct efx_channel *channel);
223 static void efx_remove_channels(struct efx_nic *efx);
224 static const struct efx_channel_type efx_default_channel_type;
225 static void efx_remove_port(struct efx_nic *efx);
226 static void efx_init_napi_channel(struct efx_channel *channel);
227 static void efx_fini_napi(struct efx_nic *efx);
228 static void efx_fini_napi_channel(struct efx_channel *channel);
229 static void efx_fini_struct(struct efx_nic *efx);
230 static void efx_start_all(struct efx_nic *efx);
231 static void efx_stop_all(struct efx_nic *efx);
232
233 #define EFX_ASSERT_RESET_SERIALISED(efx) \
234 do { \
235 if ((efx->state == STATE_READY) || \
236 (efx->state == STATE_RECOVERY) || \
237 (efx->state == STATE_DISABLED)) \
238 ASSERT_RTNL(); \
239 } while (0)
240
241 static int efx_check_disabled(struct efx_nic *efx)
242 {
243 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
244 netif_err(efx, drv, efx->net_dev,
245 "device is disabled due to earlier errors\n");
246 return -EIO;
247 }
248 return 0;
249 }
250
251 /**************************************************************************
252 *
253 * Event queue processing
254 *
255 *************************************************************************/
256
257 /* Process channel's event queue
258 *
259 * This function is responsible for processing the event queue of a
260 * single channel. The caller must guarantee that this function will
261 * never be concurrently called more than once on the same channel,
262 * though different channels may be being processed concurrently.
263 */
264 static int efx_process_channel(struct efx_channel *channel, int budget)
265 {
266 struct efx_tx_queue *tx_queue;
267 struct list_head rx_list;
268 int spent;
269
270 if (unlikely(!channel->enabled))
271 return 0;
272
273 /* Prepare the batch receive list */
274 EFX_WARN_ON_PARANOID(channel->rx_list != NULL);
275 INIT_LIST_HEAD(&rx_list);
276 channel->rx_list = &rx_list;
277
278 efx_for_each_channel_tx_queue(tx_queue, channel) {
279 tx_queue->pkts_compl = 0;
280 tx_queue->bytes_compl = 0;
281 }
282
283 spent = efx_nic_process_eventq(channel, budget);
284 if (spent && efx_channel_has_rx_queue(channel)) {
285 struct efx_rx_queue *rx_queue =
286 efx_channel_get_rx_queue(channel);
287
288 efx_rx_flush_packet(channel);
289 efx_fast_push_rx_descriptors(rx_queue, true);
290 }
291
292 /* Update BQL */
293 efx_for_each_channel_tx_queue(tx_queue, channel) {
294 if (tx_queue->bytes_compl) {
295 netdev_tx_completed_queue(tx_queue->core_txq,
296 tx_queue->pkts_compl, tx_queue->bytes_compl);
297 }
298 }
299
300 /* Receive any packets we queued up */
301 netif_receive_skb_list(channel->rx_list);
302 channel->rx_list = NULL;
303
304 return spent;
305 }
306
307 /* NAPI poll handler
308 *
309 * NAPI guarantees serialisation of polls of the same device, which
310 * provides the guarantee required by efx_process_channel().
311 */
312 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
313 {
314 int step = efx->irq_mod_step_us;
315
316 if (channel->irq_mod_score < irq_adapt_low_thresh) {
317 if (channel->irq_moderation_us > step) {
318 channel->irq_moderation_us -= step;
319 efx->type->push_irq_moderation(channel);
320 }
321 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
322 if (channel->irq_moderation_us <
323 efx->irq_rx_moderation_us) {
324 channel->irq_moderation_us += step;
325 efx->type->push_irq_moderation(channel);
326 }
327 }
328
329 channel->irq_count = 0;
330 channel->irq_mod_score = 0;
331 }
332
333 static int efx_poll(struct napi_struct *napi, int budget)
334 {
335 struct efx_channel *channel =
336 container_of(napi, struct efx_channel, napi_str);
337 struct efx_nic *efx = channel->efx;
338 int spent;
339
340 netif_vdbg(efx, intr, efx->net_dev,
341 "channel %d NAPI poll executing on CPU %d\n",
342 channel->channel, raw_smp_processor_id());
343
344 spent = efx_process_channel(channel, budget);
345
346 if (spent < budget) {
347 if (efx_channel_has_rx_queue(channel) &&
348 efx->irq_rx_adaptive &&
349 unlikely(++channel->irq_count == 1000)) {
350 efx_update_irq_mod(efx, channel);
351 }
352
353 #ifdef CONFIG_RFS_ACCEL
354 /* Perhaps expire some ARFS filters */
355 schedule_work(&channel->filter_work);
356 #endif
357
358 /* There is no race here; although napi_disable() will
359 * only wait for napi_complete(), this isn't a problem
360 * since efx_nic_eventq_read_ack() will have no effect if
361 * interrupts have already been disabled.
362 */
363 if (napi_complete_done(napi, spent))
364 efx_nic_eventq_read_ack(channel);
365 }
366
367 return spent;
368 }
369
370 /* Create event queue
371 * Event queue memory allocations are done only once. If the channel
372 * is reset, the memory buffer will be reused; this guards against
373 * errors during channel reset and also simplifies interrupt handling.
374 */
375 static int efx_probe_eventq(struct efx_channel *channel)
376 {
377 struct efx_nic *efx = channel->efx;
378 unsigned long entries;
379
380 netif_dbg(efx, probe, efx->net_dev,
381 "chan %d create event queue\n", channel->channel);
382
383 /* Build an event queue with room for one event per tx and rx buffer,
384 * plus some extra for link state events and MCDI completions. */
385 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
386 EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
387 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
388
389 return efx_nic_probe_eventq(channel);
390 }
391
392 /* Prepare channel's event queue */
393 static int efx_init_eventq(struct efx_channel *channel)
394 {
395 struct efx_nic *efx = channel->efx;
396 int rc;
397
398 EFX_WARN_ON_PARANOID(channel->eventq_init);
399
400 netif_dbg(efx, drv, efx->net_dev,
401 "chan %d init event queue\n", channel->channel);
402
403 rc = efx_nic_init_eventq(channel);
404 if (rc == 0) {
405 efx->type->push_irq_moderation(channel);
406 channel->eventq_read_ptr = 0;
407 channel->eventq_init = true;
408 }
409 return rc;
410 }
411
412 /* Enable event queue processing and NAPI */
413 void efx_start_eventq(struct efx_channel *channel)
414 {
415 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
416 "chan %d start event queue\n", channel->channel);
417
418 /* Make sure the NAPI handler sees the enabled flag set */
419 channel->enabled = true;
420 smp_wmb();
421
422 napi_enable(&channel->napi_str);
423 efx_nic_eventq_read_ack(channel);
424 }
425
426 /* Disable event queue processing and NAPI */
427 void efx_stop_eventq(struct efx_channel *channel)
428 {
429 if (!channel->enabled)
430 return;
431
432 napi_disable(&channel->napi_str);
433 channel->enabled = false;
434 }
435
436 static void efx_fini_eventq(struct efx_channel *channel)
437 {
438 if (!channel->eventq_init)
439 return;
440
441 netif_dbg(channel->efx, drv, channel->efx->net_dev,
442 "chan %d fini event queue\n", channel->channel);
443
444 efx_nic_fini_eventq(channel);
445 channel->eventq_init = false;
446 }
447
448 static void efx_remove_eventq(struct efx_channel *channel)
449 {
450 netif_dbg(channel->efx, drv, channel->efx->net_dev,
451 "chan %d remove event queue\n", channel->channel);
452
453 efx_nic_remove_eventq(channel);
454 }
455
456 /**************************************************************************
457 *
458 * Channel handling
459 *
460 *************************************************************************/
461
462 /* Allocate and initialise a channel structure. */
463 static struct efx_channel *
464 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
465 {
466 struct efx_channel *channel;
467 struct efx_rx_queue *rx_queue;
468 struct efx_tx_queue *tx_queue;
469 int j;
470
471 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
472 if (!channel)
473 return NULL;
474
475 channel->efx = efx;
476 channel->channel = i;
477 channel->type = &efx_default_channel_type;
478
479 for (j = 0; j < EFX_TXQ_TYPES; j++) {
480 tx_queue = &channel->tx_queue[j];
481 tx_queue->efx = efx;
482 tx_queue->queue = i * EFX_TXQ_TYPES + j;
483 tx_queue->channel = channel;
484 }
485
486 #ifdef CONFIG_RFS_ACCEL
487 INIT_WORK(&channel->filter_work, efx_filter_rfs_expire);
488 #endif
489
490 rx_queue = &channel->rx_queue;
491 rx_queue->efx = efx;
492 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
493
494 return channel;
495 }
496
497 /* Allocate and initialise a channel structure, copying parameters
498 * (but not resources) from an old channel structure.
499 */
500 static struct efx_channel *
501 efx_copy_channel(const struct efx_channel *old_channel)
502 {
503 struct efx_channel *channel;
504 struct efx_rx_queue *rx_queue;
505 struct efx_tx_queue *tx_queue;
506 int j;
507
508 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
509 if (!channel)
510 return NULL;
511
512 *channel = *old_channel;
513
514 channel->napi_dev = NULL;
515 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
516 channel->napi_str.napi_id = 0;
517 channel->napi_str.state = 0;
518 memset(&channel->eventq, 0, sizeof(channel->eventq));
519
520 for (j = 0; j < EFX_TXQ_TYPES; j++) {
521 tx_queue = &channel->tx_queue[j];
522 if (tx_queue->channel)
523 tx_queue->channel = channel;
524 tx_queue->buffer = NULL;
525 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
526 }
527
528 rx_queue = &channel->rx_queue;
529 rx_queue->buffer = NULL;
530 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
531 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
532 #ifdef CONFIG_RFS_ACCEL
533 INIT_WORK(&channel->filter_work, efx_filter_rfs_expire);
534 #endif
535
536 return channel;
537 }
538
539 static int efx_probe_channel(struct efx_channel *channel)
540 {
541 struct efx_tx_queue *tx_queue;
542 struct efx_rx_queue *rx_queue;
543 int rc;
544
545 netif_dbg(channel->efx, probe, channel->efx->net_dev,
546 "creating channel %d\n", channel->channel);
547
548 rc = channel->type->pre_probe(channel);
549 if (rc)
550 goto fail;
551
552 rc = efx_probe_eventq(channel);
553 if (rc)
554 goto fail;
555
556 efx_for_each_channel_tx_queue(tx_queue, channel) {
557 rc = efx_probe_tx_queue(tx_queue);
558 if (rc)
559 goto fail;
560 }
561
562 efx_for_each_channel_rx_queue(rx_queue, channel) {
563 rc = efx_probe_rx_queue(rx_queue);
564 if (rc)
565 goto fail;
566 }
567
568 channel->rx_list = NULL;
569
570 return 0;
571
572 fail:
573 efx_remove_channel(channel);
574 return rc;
575 }
576
577 static void
578 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
579 {
580 struct efx_nic *efx = channel->efx;
581 const char *type;
582 int number;
583
584 number = channel->channel;
585 if (efx->tx_channel_offset == 0) {
586 type = "";
587 } else if (channel->channel < efx->tx_channel_offset) {
588 type = "-rx";
589 } else {
590 type = "-tx";
591 number -= efx->tx_channel_offset;
592 }
593 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
594 }
595
596 static void efx_set_channel_names(struct efx_nic *efx)
597 {
598 struct efx_channel *channel;
599
600 efx_for_each_channel(channel, efx)
601 channel->type->get_name(channel,
602 efx->msi_context[channel->channel].name,
603 sizeof(efx->msi_context[0].name));
604 }
605
606 static int efx_probe_channels(struct efx_nic *efx)
607 {
608 struct efx_channel *channel;
609 int rc;
610
611 /* Restart special buffer allocation */
612 efx->next_buffer_table = 0;
613
614 /* Probe channels in reverse, so that any 'extra' channels
615 * use the start of the buffer table. This allows the traffic
616 * channels to be resized without moving them or wasting the
617 * entries before them.
618 */
619 efx_for_each_channel_rev(channel, efx) {
620 rc = efx_probe_channel(channel);
621 if (rc) {
622 netif_err(efx, probe, efx->net_dev,
623 "failed to create channel %d\n",
624 channel->channel);
625 goto fail;
626 }
627 }
628 efx_set_channel_names(efx);
629
630 return 0;
631
632 fail:
633 efx_remove_channels(efx);
634 return rc;
635 }
636
637 /* Channels are shutdown and reinitialised whilst the NIC is running
638 * to propagate configuration changes (mtu, checksum offload), or
639 * to clear hardware error conditions
640 */
641 static void efx_start_datapath(struct efx_nic *efx)
642 {
643 netdev_features_t old_features = efx->net_dev->features;
644 bool old_rx_scatter = efx->rx_scatter;
645 struct efx_tx_queue *tx_queue;
646 struct efx_rx_queue *rx_queue;
647 struct efx_channel *channel;
648 size_t rx_buf_len;
649
650 /* Calculate the rx buffer allocation parameters required to
651 * support the current MTU, including padding for header
652 * alignment and overruns.
653 */
654 efx->rx_dma_len = (efx->rx_prefix_size +
655 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
656 efx->type->rx_buffer_padding);
657 rx_buf_len = (sizeof(struct efx_rx_page_state) +
658 efx->rx_ip_align + efx->rx_dma_len);
659 if (rx_buf_len <= PAGE_SIZE) {
660 efx->rx_scatter = efx->type->always_rx_scatter;
661 efx->rx_buffer_order = 0;
662 } else if (efx->type->can_rx_scatter) {
663 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
664 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
665 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
666 EFX_RX_BUF_ALIGNMENT) >
667 PAGE_SIZE);
668 efx->rx_scatter = true;
669 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
670 efx->rx_buffer_order = 0;
671 } else {
672 efx->rx_scatter = false;
673 efx->rx_buffer_order = get_order(rx_buf_len);
674 }
675
676 efx_rx_config_page_split(efx);
677 if (efx->rx_buffer_order)
678 netif_dbg(efx, drv, efx->net_dev,
679 "RX buf len=%u; page order=%u batch=%u\n",
680 efx->rx_dma_len, efx->rx_buffer_order,
681 efx->rx_pages_per_batch);
682 else
683 netif_dbg(efx, drv, efx->net_dev,
684 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
685 efx->rx_dma_len, efx->rx_page_buf_step,
686 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
687
688 /* Restore previously fixed features in hw_features and remove
689 * features which are fixed now
690 */
691 efx->net_dev->hw_features |= efx->net_dev->features;
692 efx->net_dev->hw_features &= ~efx->fixed_features;
693 efx->net_dev->features |= efx->fixed_features;
694 if (efx->net_dev->features != old_features)
695 netdev_features_change(efx->net_dev);
696
697 /* RX filters may also have scatter-enabled flags */
698 if (efx->rx_scatter != old_rx_scatter)
699 efx->type->filter_update_rx_scatter(efx);
700
701 /* We must keep at least one descriptor in a TX ring empty.
702 * We could avoid this when the queue size does not exactly
703 * match the hardware ring size, but it's not that important.
704 * Therefore we stop the queue when one more skb might fill
705 * the ring completely. We wake it when half way back to
706 * empty.
707 */
708 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
709 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
710
711 /* Initialise the channels */
712 efx_for_each_channel(channel, efx) {
713 efx_for_each_channel_tx_queue(tx_queue, channel) {
714 efx_init_tx_queue(tx_queue);
715 atomic_inc(&efx->active_queues);
716 }
717
718 efx_for_each_channel_rx_queue(rx_queue, channel) {
719 efx_init_rx_queue(rx_queue);
720 atomic_inc(&efx->active_queues);
721 efx_stop_eventq(channel);
722 efx_fast_push_rx_descriptors(rx_queue, false);
723 efx_start_eventq(channel);
724 }
725
726 WARN_ON(channel->rx_pkt_n_frags);
727 }
728
729 efx_ptp_start_datapath(efx);
730
731 if (netif_device_present(efx->net_dev))
732 netif_tx_wake_all_queues(efx->net_dev);
733 }
734
735 static void efx_stop_datapath(struct efx_nic *efx)
736 {
737 struct efx_channel *channel;
738 struct efx_tx_queue *tx_queue;
739 struct efx_rx_queue *rx_queue;
740 int rc;
741
742 EFX_ASSERT_RESET_SERIALISED(efx);
743 BUG_ON(efx->port_enabled);
744
745 efx_ptp_stop_datapath(efx);
746
747 /* Stop RX refill */
748 efx_for_each_channel(channel, efx) {
749 efx_for_each_channel_rx_queue(rx_queue, channel)
750 rx_queue->refill_enabled = false;
751 }
752
753 efx_for_each_channel(channel, efx) {
754 /* RX packet processing is pipelined, so wait for the
755 * NAPI handler to complete. At least event queue 0
756 * might be kept active by non-data events, so don't
757 * use napi_synchronize() but actually disable NAPI
758 * temporarily.
759 */
760 if (efx_channel_has_rx_queue(channel)) {
761 efx_stop_eventq(channel);
762 efx_start_eventq(channel);
763 }
764 }
765
766 rc = efx->type->fini_dmaq(efx);
767 if (rc) {
768 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
769 } else {
770 netif_dbg(efx, drv, efx->net_dev,
771 "successfully flushed all queues\n");
772 }
773
774 efx_for_each_channel(channel, efx) {
775 efx_for_each_channel_rx_queue(rx_queue, channel)
776 efx_fini_rx_queue(rx_queue);
777 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
778 efx_fini_tx_queue(tx_queue);
779 }
780 }
781
782 static void efx_remove_channel(struct efx_channel *channel)
783 {
784 struct efx_tx_queue *tx_queue;
785 struct efx_rx_queue *rx_queue;
786
787 netif_dbg(channel->efx, drv, channel->efx->net_dev,
788 "destroy chan %d\n", channel->channel);
789
790 efx_for_each_channel_rx_queue(rx_queue, channel)
791 efx_remove_rx_queue(rx_queue);
792 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
793 efx_remove_tx_queue(tx_queue);
794 efx_remove_eventq(channel);
795 channel->type->post_remove(channel);
796 }
797
798 static void efx_remove_channels(struct efx_nic *efx)
799 {
800 struct efx_channel *channel;
801
802 efx_for_each_channel(channel, efx)
803 efx_remove_channel(channel);
804 }
805
806 int
807 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
808 {
809 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
810 u32 old_rxq_entries, old_txq_entries;
811 unsigned i, next_buffer_table = 0;
812 int rc, rc2;
813
814 rc = efx_check_disabled(efx);
815 if (rc)
816 return rc;
817
818 /* Not all channels should be reallocated. We must avoid
819 * reallocating their buffer table entries.
820 */
821 efx_for_each_channel(channel, efx) {
822 struct efx_rx_queue *rx_queue;
823 struct efx_tx_queue *tx_queue;
824
825 if (channel->type->copy)
826 continue;
827 next_buffer_table = max(next_buffer_table,
828 channel->eventq.index +
829 channel->eventq.entries);
830 efx_for_each_channel_rx_queue(rx_queue, channel)
831 next_buffer_table = max(next_buffer_table,
832 rx_queue->rxd.index +
833 rx_queue->rxd.entries);
834 efx_for_each_channel_tx_queue(tx_queue, channel)
835 next_buffer_table = max(next_buffer_table,
836 tx_queue->txd.index +
837 tx_queue->txd.entries);
838 }
839
840 efx_device_detach_sync(efx);
841 efx_stop_all(efx);
842 efx_soft_disable_interrupts(efx);
843
844 /* Clone channels (where possible) */
845 memset(other_channel, 0, sizeof(other_channel));
846 for (i = 0; i < efx->n_channels; i++) {
847 channel = efx->channel[i];
848 if (channel->type->copy)
849 channel = channel->type->copy(channel);
850 if (!channel) {
851 rc = -ENOMEM;
852 goto out;
853 }
854 other_channel[i] = channel;
855 }
856
857 /* Swap entry counts and channel pointers */
858 old_rxq_entries = efx->rxq_entries;
859 old_txq_entries = efx->txq_entries;
860 efx->rxq_entries = rxq_entries;
861 efx->txq_entries = txq_entries;
862 for (i = 0; i < efx->n_channels; i++) {
863 channel = efx->channel[i];
864 efx->channel[i] = other_channel[i];
865 other_channel[i] = channel;
866 }
867
868 /* Restart buffer table allocation */
869 efx->next_buffer_table = next_buffer_table;
870
871 for (i = 0; i < efx->n_channels; i++) {
872 channel = efx->channel[i];
873 if (!channel->type->copy)
874 continue;
875 rc = efx_probe_channel(channel);
876 if (rc)
877 goto rollback;
878 efx_init_napi_channel(efx->channel[i]);
879 }
880
881 out:
882 /* Destroy unused channel structures */
883 for (i = 0; i < efx->n_channels; i++) {
884 channel = other_channel[i];
885 if (channel && channel->type->copy) {
886 efx_fini_napi_channel(channel);
887 efx_remove_channel(channel);
888 kfree(channel);
889 }
890 }
891
892 rc2 = efx_soft_enable_interrupts(efx);
893 if (rc2) {
894 rc = rc ? rc : rc2;
895 netif_err(efx, drv, efx->net_dev,
896 "unable to restart interrupts on channel reallocation\n");
897 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
898 } else {
899 efx_start_all(efx);
900 efx_device_attach_if_not_resetting(efx);
901 }
902 return rc;
903
904 rollback:
905 /* Swap back */
906 efx->rxq_entries = old_rxq_entries;
907 efx->txq_entries = old_txq_entries;
908 for (i = 0; i < efx->n_channels; i++) {
909 channel = efx->channel[i];
910 efx->channel[i] = other_channel[i];
911 other_channel[i] = channel;
912 }
913 goto out;
914 }
915
916 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
917 {
918 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
919 }
920
921 static bool efx_default_channel_want_txqs(struct efx_channel *channel)
922 {
923 return channel->channel - channel->efx->tx_channel_offset <
924 channel->efx->n_tx_channels;
925 }
926
927 static const struct efx_channel_type efx_default_channel_type = {
928 .pre_probe = efx_channel_dummy_op_int,
929 .post_remove = efx_channel_dummy_op_void,
930 .get_name = efx_get_channel_name,
931 .copy = efx_copy_channel,
932 .want_txqs = efx_default_channel_want_txqs,
933 .keep_eventq = false,
934 .want_pio = true,
935 };
936
937 int efx_channel_dummy_op_int(struct efx_channel *channel)
938 {
939 return 0;
940 }
941
942 void efx_channel_dummy_op_void(struct efx_channel *channel)
943 {
944 }
945
946 /**************************************************************************
947 *
948 * Port handling
949 *
950 **************************************************************************/
951
952 /* This ensures that the kernel is kept informed (via
953 * netif_carrier_on/off) of the link status, and also maintains the
954 * link status's stop on the port's TX queue.
955 */
956 void efx_link_status_changed(struct efx_nic *efx)
957 {
958 struct efx_link_state *link_state = &efx->link_state;
959
960 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
961 * that no events are triggered between unregister_netdev() and the
962 * driver unloading. A more general condition is that NETDEV_CHANGE
963 * can only be generated between NETDEV_UP and NETDEV_DOWN */
964 if (!netif_running(efx->net_dev))
965 return;
966
967 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
968 efx->n_link_state_changes++;
969
970 if (link_state->up)
971 netif_carrier_on(efx->net_dev);
972 else
973 netif_carrier_off(efx->net_dev);
974 }
975
976 /* Status message for kernel log */
977 if (link_state->up)
978 netif_info(efx, link, efx->net_dev,
979 "link up at %uMbps %s-duplex (MTU %d)\n",
980 link_state->speed, link_state->fd ? "full" : "half",
981 efx->net_dev->mtu);
982 else
983 netif_info(efx, link, efx->net_dev, "link down\n");
984 }
985
986 void efx_link_set_advertising(struct efx_nic *efx,
987 const unsigned long *advertising)
988 {
989 memcpy(efx->link_advertising, advertising,
990 sizeof(__ETHTOOL_DECLARE_LINK_MODE_MASK()));
991
992 efx->link_advertising[0] |= ADVERTISED_Autoneg;
993 if (advertising[0] & ADVERTISED_Pause)
994 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
995 else
996 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
997 if (advertising[0] & ADVERTISED_Asym_Pause)
998 efx->wanted_fc ^= EFX_FC_TX;
999 }
1000
1001 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not
1002 * force the Autoneg bit on.
1003 */
1004 void efx_link_clear_advertising(struct efx_nic *efx)
1005 {
1006 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
1007 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
1008 }
1009
1010 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
1011 {
1012 efx->wanted_fc = wanted_fc;
1013 if (efx->link_advertising[0]) {
1014 if (wanted_fc & EFX_FC_RX)
1015 efx->link_advertising[0] |= (ADVERTISED_Pause |
1016 ADVERTISED_Asym_Pause);
1017 else
1018 efx->link_advertising[0] &= ~(ADVERTISED_Pause |
1019 ADVERTISED_Asym_Pause);
1020 if (wanted_fc & EFX_FC_TX)
1021 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
1022 }
1023 }
1024
1025 static void efx_fini_port(struct efx_nic *efx);
1026
1027 /* We assume that efx->type->reconfigure_mac will always try to sync RX
1028 * filters and therefore needs to read-lock the filter table against freeing
1029 */
1030 void efx_mac_reconfigure(struct efx_nic *efx)
1031 {
1032 down_read(&efx->filter_sem);
1033 efx->type->reconfigure_mac(efx);
1034 up_read(&efx->filter_sem);
1035 }
1036
1037 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
1038 * the MAC appropriately. All other PHY configuration changes are pushed
1039 * through phy_op->set_settings(), and pushed asynchronously to the MAC
1040 * through efx_monitor().
1041 *
1042 * Callers must hold the mac_lock
1043 */
1044 int __efx_reconfigure_port(struct efx_nic *efx)
1045 {
1046 enum efx_phy_mode phy_mode;
1047 int rc;
1048
1049 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1050
1051 /* Disable PHY transmit in mac level loopbacks */
1052 phy_mode = efx->phy_mode;
1053 if (LOOPBACK_INTERNAL(efx))
1054 efx->phy_mode |= PHY_MODE_TX_DISABLED;
1055 else
1056 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1057
1058 rc = efx->type->reconfigure_port(efx);
1059
1060 if (rc)
1061 efx->phy_mode = phy_mode;
1062
1063 return rc;
1064 }
1065
1066 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1067 * disabled. */
1068 int efx_reconfigure_port(struct efx_nic *efx)
1069 {
1070 int rc;
1071
1072 EFX_ASSERT_RESET_SERIALISED(efx);
1073
1074 mutex_lock(&efx->mac_lock);
1075 rc = __efx_reconfigure_port(efx);
1076 mutex_unlock(&efx->mac_lock);
1077
1078 return rc;
1079 }
1080
1081 /* Asynchronous work item for changing MAC promiscuity and multicast
1082 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1083 * MAC directly. */
1084 static void efx_mac_work(struct work_struct *data)
1085 {
1086 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1087
1088 mutex_lock(&efx->mac_lock);
1089 if (efx->port_enabled)
1090 efx_mac_reconfigure(efx);
1091 mutex_unlock(&efx->mac_lock);
1092 }
1093
1094 static int efx_probe_port(struct efx_nic *efx)
1095 {
1096 int rc;
1097
1098 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1099
1100 if (phy_flash_cfg)
1101 efx->phy_mode = PHY_MODE_SPECIAL;
1102
1103 /* Connect up MAC/PHY operations table */
1104 rc = efx->type->probe_port(efx);
1105 if (rc)
1106 return rc;
1107
1108 /* Initialise MAC address to permanent address */
1109 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1110
1111 return 0;
1112 }
1113
1114 static int efx_init_port(struct efx_nic *efx)
1115 {
1116 int rc;
1117
1118 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1119
1120 mutex_lock(&efx->mac_lock);
1121
1122 rc = efx->phy_op->init(efx);
1123 if (rc)
1124 goto fail1;
1125
1126 efx->port_initialized = true;
1127
1128 /* Reconfigure the MAC before creating dma queues (required for
1129 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1130 efx_mac_reconfigure(efx);
1131
1132 /* Ensure the PHY advertises the correct flow control settings */
1133 rc = efx->phy_op->reconfigure(efx);
1134 if (rc && rc != -EPERM)
1135 goto fail2;
1136
1137 mutex_unlock(&efx->mac_lock);
1138 return 0;
1139
1140 fail2:
1141 efx->phy_op->fini(efx);
1142 fail1:
1143 mutex_unlock(&efx->mac_lock);
1144 return rc;
1145 }
1146
1147 static void efx_start_port(struct efx_nic *efx)
1148 {
1149 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1150 BUG_ON(efx->port_enabled);
1151
1152 mutex_lock(&efx->mac_lock);
1153 efx->port_enabled = true;
1154
1155 /* Ensure MAC ingress/egress is enabled */
1156 efx_mac_reconfigure(efx);
1157
1158 mutex_unlock(&efx->mac_lock);
1159 }
1160
1161 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1162 * and the async self-test, wait for them to finish and prevent them
1163 * being scheduled again. This doesn't cover online resets, which
1164 * should only be cancelled when removing the device.
1165 */
1166 static void efx_stop_port(struct efx_nic *efx)
1167 {
1168 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1169
1170 EFX_ASSERT_RESET_SERIALISED(efx);
1171
1172 mutex_lock(&efx->mac_lock);
1173 efx->port_enabled = false;
1174 mutex_unlock(&efx->mac_lock);
1175
1176 /* Serialise against efx_set_multicast_list() */
1177 netif_addr_lock_bh(efx->net_dev);
1178 netif_addr_unlock_bh(efx->net_dev);
1179
1180 cancel_delayed_work_sync(&efx->monitor_work);
1181 efx_selftest_async_cancel(efx);
1182 cancel_work_sync(&efx->mac_work);
1183 }
1184
1185 static void efx_fini_port(struct efx_nic *efx)
1186 {
1187 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1188
1189 if (!efx->port_initialized)
1190 return;
1191
1192 efx->phy_op->fini(efx);
1193 efx->port_initialized = false;
1194
1195 efx->link_state.up = false;
1196 efx_link_status_changed(efx);
1197 }
1198
1199 static void efx_remove_port(struct efx_nic *efx)
1200 {
1201 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1202
1203 efx->type->remove_port(efx);
1204 }
1205
1206 /**************************************************************************
1207 *
1208 * NIC handling
1209 *
1210 **************************************************************************/
1211
1212 static LIST_HEAD(efx_primary_list);
1213 static LIST_HEAD(efx_unassociated_list);
1214
1215 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1216 {
1217 return left->type == right->type &&
1218 left->vpd_sn && right->vpd_sn &&
1219 !strcmp(left->vpd_sn, right->vpd_sn);
1220 }
1221
1222 static void efx_associate(struct efx_nic *efx)
1223 {
1224 struct efx_nic *other, *next;
1225
1226 if (efx->primary == efx) {
1227 /* Adding primary function; look for secondaries */
1228
1229 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1230 list_add_tail(&efx->node, &efx_primary_list);
1231
1232 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1233 node) {
1234 if (efx_same_controller(efx, other)) {
1235 list_del(&other->node);
1236 netif_dbg(other, probe, other->net_dev,
1237 "moving to secondary list of %s %s\n",
1238 pci_name(efx->pci_dev),
1239 efx->net_dev->name);
1240 list_add_tail(&other->node,
1241 &efx->secondary_list);
1242 other->primary = efx;
1243 }
1244 }
1245 } else {
1246 /* Adding secondary function; look for primary */
1247
1248 list_for_each_entry(other, &efx_primary_list, node) {
1249 if (efx_same_controller(efx, other)) {
1250 netif_dbg(efx, probe, efx->net_dev,
1251 "adding to secondary list of %s %s\n",
1252 pci_name(other->pci_dev),
1253 other->net_dev->name);
1254 list_add_tail(&efx->node,
1255 &other->secondary_list);
1256 efx->primary = other;
1257 return;
1258 }
1259 }
1260
1261 netif_dbg(efx, probe, efx->net_dev,
1262 "adding to unassociated list\n");
1263 list_add_tail(&efx->node, &efx_unassociated_list);
1264 }
1265 }
1266
1267 static void efx_dissociate(struct efx_nic *efx)
1268 {
1269 struct efx_nic *other, *next;
1270
1271 list_del(&efx->node);
1272 efx->primary = NULL;
1273
1274 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1275 list_del(&other->node);
1276 netif_dbg(other, probe, other->net_dev,
1277 "moving to unassociated list\n");
1278 list_add_tail(&other->node, &efx_unassociated_list);
1279 other->primary = NULL;
1280 }
1281 }
1282
1283 /* This configures the PCI device to enable I/O and DMA. */
1284 static int efx_init_io(struct efx_nic *efx)
1285 {
1286 struct pci_dev *pci_dev = efx->pci_dev;
1287 dma_addr_t dma_mask = efx->type->max_dma_mask;
1288 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1289 int rc, bar;
1290
1291 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1292
1293 bar = efx->type->mem_bar(efx);
1294
1295 rc = pci_enable_device(pci_dev);
1296 if (rc) {
1297 netif_err(efx, probe, efx->net_dev,
1298 "failed to enable PCI device\n");
1299 goto fail1;
1300 }
1301
1302 pci_set_master(pci_dev);
1303
1304 /* Set the PCI DMA mask. Try all possibilities from our genuine mask
1305 * down to 32 bits, because some architectures will allow 40 bit
1306 * masks event though they reject 46 bit masks.
1307 */
1308 while (dma_mask > 0x7fffffffUL) {
1309 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1310 if (rc == 0)
1311 break;
1312 dma_mask >>= 1;
1313 }
1314 if (rc) {
1315 netif_err(efx, probe, efx->net_dev,
1316 "could not find a suitable DMA mask\n");
1317 goto fail2;
1318 }
1319 netif_dbg(efx, probe, efx->net_dev,
1320 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1321
1322 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1323 rc = pci_request_region(pci_dev, bar, "sfc");
1324 if (rc) {
1325 netif_err(efx, probe, efx->net_dev,
1326 "request for memory BAR failed\n");
1327 rc = -EIO;
1328 goto fail3;
1329 }
1330 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1331 if (!efx->membase) {
1332 netif_err(efx, probe, efx->net_dev,
1333 "could not map memory BAR at %llx+%x\n",
1334 (unsigned long long)efx->membase_phys, mem_map_size);
1335 rc = -ENOMEM;
1336 goto fail4;
1337 }
1338 netif_dbg(efx, probe, efx->net_dev,
1339 "memory BAR at %llx+%x (virtual %p)\n",
1340 (unsigned long long)efx->membase_phys, mem_map_size,
1341 efx->membase);
1342
1343 return 0;
1344
1345 fail4:
1346 pci_release_region(efx->pci_dev, bar);
1347 fail3:
1348 efx->membase_phys = 0;
1349 fail2:
1350 pci_disable_device(efx->pci_dev);
1351 fail1:
1352 return rc;
1353 }
1354
1355 static void efx_fini_io(struct efx_nic *efx)
1356 {
1357 int bar;
1358
1359 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1360
1361 if (efx->membase) {
1362 iounmap(efx->membase);
1363 efx->membase = NULL;
1364 }
1365
1366 if (efx->membase_phys) {
1367 bar = efx->type->mem_bar(efx);
1368 pci_release_region(efx->pci_dev, bar);
1369 efx->membase_phys = 0;
1370 }
1371
1372 /* Don't disable bus-mastering if VFs are assigned */
1373 if (!pci_vfs_assigned(efx->pci_dev))
1374 pci_disable_device(efx->pci_dev);
1375 }
1376
1377 void efx_set_default_rx_indir_table(struct efx_nic *efx,
1378 struct efx_rss_context *ctx)
1379 {
1380 size_t i;
1381
1382 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
1383 ctx->rx_indir_table[i] =
1384 ethtool_rxfh_indir_default(i, efx->rss_spread);
1385 }
1386
1387 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1388 {
1389 cpumask_var_t thread_mask;
1390 unsigned int count;
1391 int cpu;
1392
1393 if (rss_cpus) {
1394 count = rss_cpus;
1395 } else {
1396 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1397 netif_warn(efx, probe, efx->net_dev,
1398 "RSS disabled due to allocation failure\n");
1399 return 1;
1400 }
1401
1402 count = 0;
1403 for_each_online_cpu(cpu) {
1404 if (!cpumask_test_cpu(cpu, thread_mask)) {
1405 ++count;
1406 cpumask_or(thread_mask, thread_mask,
1407 topology_sibling_cpumask(cpu));
1408 }
1409 }
1410
1411 free_cpumask_var(thread_mask);
1412 }
1413
1414 if (count > EFX_MAX_RX_QUEUES) {
1415 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1416 "Reducing number of rx queues from %u to %u.\n",
1417 count, EFX_MAX_RX_QUEUES);
1418 count = EFX_MAX_RX_QUEUES;
1419 }
1420
1421 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1422 * table entries that are inaccessible to VFs
1423 */
1424 #ifdef CONFIG_SFC_SRIOV
1425 if (efx->type->sriov_wanted) {
1426 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1427 count > efx_vf_size(efx)) {
1428 netif_warn(efx, probe, efx->net_dev,
1429 "Reducing number of RSS channels from %u to %u for "
1430 "VF support. Increase vf-msix-limit to use more "
1431 "channels on the PF.\n",
1432 count, efx_vf_size(efx));
1433 count = efx_vf_size(efx);
1434 }
1435 }
1436 #endif
1437
1438 return count;
1439 }
1440
1441 /* Probe the number and type of interrupts we are able to obtain, and
1442 * the resulting numbers of channels and RX queues.
1443 */
1444 static int efx_probe_interrupts(struct efx_nic *efx)
1445 {
1446 unsigned int extra_channels = 0;
1447 unsigned int i, j;
1448 int rc;
1449
1450 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1451 if (efx->extra_channel_type[i])
1452 ++extra_channels;
1453
1454 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1455 struct msix_entry xentries[EFX_MAX_CHANNELS];
1456 unsigned int n_channels;
1457
1458 n_channels = efx_wanted_parallelism(efx);
1459 if (efx_separate_tx_channels)
1460 n_channels *= 2;
1461 n_channels += extra_channels;
1462 n_channels = min(n_channels, efx->max_channels);
1463
1464 for (i = 0; i < n_channels; i++)
1465 xentries[i].entry = i;
1466 rc = pci_enable_msix_range(efx->pci_dev,
1467 xentries, 1, n_channels);
1468 if (rc < 0) {
1469 /* Fall back to single channel MSI */
1470 netif_err(efx, drv, efx->net_dev,
1471 "could not enable MSI-X\n");
1472 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI)
1473 efx->interrupt_mode = EFX_INT_MODE_MSI;
1474 else
1475 return rc;
1476 } else if (rc < n_channels) {
1477 netif_err(efx, drv, efx->net_dev,
1478 "WARNING: Insufficient MSI-X vectors"
1479 " available (%d < %u).\n", rc, n_channels);
1480 netif_err(efx, drv, efx->net_dev,
1481 "WARNING: Performance may be reduced.\n");
1482 n_channels = rc;
1483 }
1484
1485 if (rc > 0) {
1486 efx->n_channels = n_channels;
1487 if (n_channels > extra_channels)
1488 n_channels -= extra_channels;
1489 if (efx_separate_tx_channels) {
1490 efx->n_tx_channels = min(max(n_channels / 2,
1491 1U),
1492 efx->max_tx_channels);
1493 efx->n_rx_channels = max(n_channels -
1494 efx->n_tx_channels,
1495 1U);
1496 } else {
1497 efx->n_tx_channels = min(n_channels,
1498 efx->max_tx_channels);
1499 efx->n_rx_channels = n_channels;
1500 }
1501 for (i = 0; i < efx->n_channels; i++)
1502 efx_get_channel(efx, i)->irq =
1503 xentries[i].vector;
1504 }
1505 }
1506
1507 /* Try single interrupt MSI */
1508 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1509 efx->n_channels = 1;
1510 efx->n_rx_channels = 1;
1511 efx->n_tx_channels = 1;
1512 rc = pci_enable_msi(efx->pci_dev);
1513 if (rc == 0) {
1514 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1515 } else {
1516 netif_err(efx, drv, efx->net_dev,
1517 "could not enable MSI\n");
1518 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY)
1519 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1520 else
1521 return rc;
1522 }
1523 }
1524
1525 /* Assume legacy interrupts */
1526 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1527 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1528 efx->n_rx_channels = 1;
1529 efx->n_tx_channels = 1;
1530 efx->legacy_irq = efx->pci_dev->irq;
1531 }
1532
1533 /* Assign extra channels if possible */
1534 efx->n_extra_tx_channels = 0;
1535 j = efx->n_channels;
1536 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1537 if (!efx->extra_channel_type[i])
1538 continue;
1539 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1540 efx->n_channels <= extra_channels) {
1541 efx->extra_channel_type[i]->handle_no_channel(efx);
1542 } else {
1543 --j;
1544 efx_get_channel(efx, j)->type =
1545 efx->extra_channel_type[i];
1546 if (efx_channel_has_tx_queues(efx_get_channel(efx, j)))
1547 efx->n_extra_tx_channels++;
1548 }
1549 }
1550
1551 /* RSS might be usable on VFs even if it is disabled on the PF */
1552 #ifdef CONFIG_SFC_SRIOV
1553 if (efx->type->sriov_wanted) {
1554 efx->rss_spread = ((efx->n_rx_channels > 1 ||
1555 !efx->type->sriov_wanted(efx)) ?
1556 efx->n_rx_channels : efx_vf_size(efx));
1557 return 0;
1558 }
1559 #endif
1560 efx->rss_spread = efx->n_rx_channels;
1561
1562 return 0;
1563 }
1564
1565 #if defined(CONFIG_SMP)
1566 static void efx_set_interrupt_affinity(struct efx_nic *efx)
1567 {
1568 struct efx_channel *channel;
1569 unsigned int cpu;
1570
1571 efx_for_each_channel(channel, efx) {
1572 cpu = cpumask_local_spread(channel->channel,
1573 pcibus_to_node(efx->pci_dev->bus));
1574 irq_set_affinity_hint(channel->irq, cpumask_of(cpu));
1575 }
1576 }
1577
1578 static void efx_clear_interrupt_affinity(struct efx_nic *efx)
1579 {
1580 struct efx_channel *channel;
1581
1582 efx_for_each_channel(channel, efx)
1583 irq_set_affinity_hint(channel->irq, NULL);
1584 }
1585 #else
1586 static void
1587 efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
1588 {
1589 }
1590
1591 static void
1592 efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
1593 {
1594 }
1595 #endif /* CONFIG_SMP */
1596
1597 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1598 {
1599 struct efx_channel *channel, *end_channel;
1600 int rc;
1601
1602 BUG_ON(efx->state == STATE_DISABLED);
1603
1604 efx->irq_soft_enabled = true;
1605 smp_wmb();
1606
1607 efx_for_each_channel(channel, efx) {
1608 if (!channel->type->keep_eventq) {
1609 rc = efx_init_eventq(channel);
1610 if (rc)
1611 goto fail;
1612 }
1613 efx_start_eventq(channel);
1614 }
1615
1616 efx_mcdi_mode_event(efx);
1617
1618 return 0;
1619 fail:
1620 end_channel = channel;
1621 efx_for_each_channel(channel, efx) {
1622 if (channel == end_channel)
1623 break;
1624 efx_stop_eventq(channel);
1625 if (!channel->type->keep_eventq)
1626 efx_fini_eventq(channel);
1627 }
1628
1629 return rc;
1630 }
1631
1632 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1633 {
1634 struct efx_channel *channel;
1635
1636 if (efx->state == STATE_DISABLED)
1637 return;
1638
1639 efx_mcdi_mode_poll(efx);
1640
1641 efx->irq_soft_enabled = false;
1642 smp_wmb();
1643
1644 if (efx->legacy_irq)
1645 synchronize_irq(efx->legacy_irq);
1646
1647 efx_for_each_channel(channel, efx) {
1648 if (channel->irq)
1649 synchronize_irq(channel->irq);
1650
1651 efx_stop_eventq(channel);
1652 if (!channel->type->keep_eventq)
1653 efx_fini_eventq(channel);
1654 }
1655
1656 /* Flush the asynchronous MCDI request queue */
1657 efx_mcdi_flush_async(efx);
1658 }
1659
1660 static int efx_enable_interrupts(struct efx_nic *efx)
1661 {
1662 struct efx_channel *channel, *end_channel;
1663 int rc;
1664
1665 BUG_ON(efx->state == STATE_DISABLED);
1666
1667 if (efx->eeh_disabled_legacy_irq) {
1668 enable_irq(efx->legacy_irq);
1669 efx->eeh_disabled_legacy_irq = false;
1670 }
1671
1672 efx->type->irq_enable_master(efx);
1673
1674 efx_for_each_channel(channel, efx) {
1675 if (channel->type->keep_eventq) {
1676 rc = efx_init_eventq(channel);
1677 if (rc)
1678 goto fail;
1679 }
1680 }
1681
1682 rc = efx_soft_enable_interrupts(efx);
1683 if (rc)
1684 goto fail;
1685
1686 return 0;
1687
1688 fail:
1689 end_channel = channel;
1690 efx_for_each_channel(channel, efx) {
1691 if (channel == end_channel)
1692 break;
1693 if (channel->type->keep_eventq)
1694 efx_fini_eventq(channel);
1695 }
1696
1697 efx->type->irq_disable_non_ev(efx);
1698
1699 return rc;
1700 }
1701
1702 static void efx_disable_interrupts(struct efx_nic *efx)
1703 {
1704 struct efx_channel *channel;
1705
1706 efx_soft_disable_interrupts(efx);
1707
1708 efx_for_each_channel(channel, efx) {
1709 if (channel->type->keep_eventq)
1710 efx_fini_eventq(channel);
1711 }
1712
1713 efx->type->irq_disable_non_ev(efx);
1714 }
1715
1716 static void efx_remove_interrupts(struct efx_nic *efx)
1717 {
1718 struct efx_channel *channel;
1719
1720 /* Remove MSI/MSI-X interrupts */
1721 efx_for_each_channel(channel, efx)
1722 channel->irq = 0;
1723 pci_disable_msi(efx->pci_dev);
1724 pci_disable_msix(efx->pci_dev);
1725
1726 /* Remove legacy interrupt */
1727 efx->legacy_irq = 0;
1728 }
1729
1730 static void efx_set_channels(struct efx_nic *efx)
1731 {
1732 struct efx_channel *channel;
1733 struct efx_tx_queue *tx_queue;
1734
1735 efx->tx_channel_offset =
1736 efx_separate_tx_channels ?
1737 efx->n_channels - efx->n_tx_channels : 0;
1738
1739 /* We need to mark which channels really have RX and TX
1740 * queues, and adjust the TX queue numbers if we have separate
1741 * RX-only and TX-only channels.
1742 */
1743 efx_for_each_channel(channel, efx) {
1744 if (channel->channel < efx->n_rx_channels)
1745 channel->rx_queue.core_index = channel->channel;
1746 else
1747 channel->rx_queue.core_index = -1;
1748
1749 efx_for_each_channel_tx_queue(tx_queue, channel)
1750 tx_queue->queue -= (efx->tx_channel_offset *
1751 EFX_TXQ_TYPES);
1752 }
1753 }
1754
1755 static int efx_probe_nic(struct efx_nic *efx)
1756 {
1757 int rc;
1758
1759 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1760
1761 /* Carry out hardware-type specific initialisation */
1762 rc = efx->type->probe(efx);
1763 if (rc)
1764 return rc;
1765
1766 do {
1767 if (!efx->max_channels || !efx->max_tx_channels) {
1768 netif_err(efx, drv, efx->net_dev,
1769 "Insufficient resources to allocate"
1770 " any channels\n");
1771 rc = -ENOSPC;
1772 goto fail1;
1773 }
1774
1775 /* Determine the number of channels and queues by trying
1776 * to hook in MSI-X interrupts.
1777 */
1778 rc = efx_probe_interrupts(efx);
1779 if (rc)
1780 goto fail1;
1781
1782 efx_set_channels(efx);
1783
1784 /* dimension_resources can fail with EAGAIN */
1785 rc = efx->type->dimension_resources(efx);
1786 if (rc != 0 && rc != -EAGAIN)
1787 goto fail2;
1788
1789 if (rc == -EAGAIN)
1790 /* try again with new max_channels */
1791 efx_remove_interrupts(efx);
1792
1793 } while (rc == -EAGAIN);
1794
1795 if (efx->n_channels > 1)
1796 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
1797 sizeof(efx->rss_context.rx_hash_key));
1798 efx_set_default_rx_indir_table(efx, &efx->rss_context);
1799
1800 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1801 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1802
1803 /* Initialise the interrupt moderation settings */
1804 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1805 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1806 true);
1807
1808 return 0;
1809
1810 fail2:
1811 efx_remove_interrupts(efx);
1812 fail1:
1813 efx->type->remove(efx);
1814 return rc;
1815 }
1816
1817 static void efx_remove_nic(struct efx_nic *efx)
1818 {
1819 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1820
1821 efx_remove_interrupts(efx);
1822 efx->type->remove(efx);
1823 }
1824
1825 static int efx_probe_filters(struct efx_nic *efx)
1826 {
1827 int rc;
1828
1829 init_rwsem(&efx->filter_sem);
1830 mutex_lock(&efx->mac_lock);
1831 down_write(&efx->filter_sem);
1832 rc = efx->type->filter_table_probe(efx);
1833 if (rc)
1834 goto out_unlock;
1835
1836 #ifdef CONFIG_RFS_ACCEL
1837 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1838 struct efx_channel *channel;
1839 int i, success = 1;
1840
1841 efx_for_each_channel(channel, efx) {
1842 channel->rps_flow_id =
1843 kcalloc(efx->type->max_rx_ip_filters,
1844 sizeof(*channel->rps_flow_id),
1845 GFP_KERNEL);
1846 if (!channel->rps_flow_id)
1847 success = 0;
1848 else
1849 for (i = 0;
1850 i < efx->type->max_rx_ip_filters;
1851 ++i)
1852 channel->rps_flow_id[i] =
1853 RPS_FLOW_ID_INVALID;
1854 }
1855
1856 if (!success) {
1857 efx_for_each_channel(channel, efx)
1858 kfree(channel->rps_flow_id);
1859 efx->type->filter_table_remove(efx);
1860 rc = -ENOMEM;
1861 goto out_unlock;
1862 }
1863
1864 efx->rps_expire_index = efx->rps_expire_channel = 0;
1865 }
1866 #endif
1867 out_unlock:
1868 up_write(&efx->filter_sem);
1869 mutex_unlock(&efx->mac_lock);
1870 return rc;
1871 }
1872
1873 static void efx_remove_filters(struct efx_nic *efx)
1874 {
1875 #ifdef CONFIG_RFS_ACCEL
1876 struct efx_channel *channel;
1877
1878 efx_for_each_channel(channel, efx)
1879 kfree(channel->rps_flow_id);
1880 #endif
1881 down_write(&efx->filter_sem);
1882 efx->type->filter_table_remove(efx);
1883 up_write(&efx->filter_sem);
1884 }
1885
1886
1887 /**************************************************************************
1888 *
1889 * NIC startup/shutdown
1890 *
1891 *************************************************************************/
1892
1893 static int efx_probe_all(struct efx_nic *efx)
1894 {
1895 int rc;
1896
1897 rc = efx_probe_nic(efx);
1898 if (rc) {
1899 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1900 goto fail1;
1901 }
1902
1903 rc = efx_probe_port(efx);
1904 if (rc) {
1905 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1906 goto fail2;
1907 }
1908
1909 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1910 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1911 rc = -EINVAL;
1912 goto fail3;
1913 }
1914 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1915
1916 #ifdef CONFIG_SFC_SRIOV
1917 rc = efx->type->vswitching_probe(efx);
1918 if (rc) /* not fatal; the PF will still work fine */
1919 netif_warn(efx, probe, efx->net_dev,
1920 "failed to setup vswitching rc=%d;"
1921 " VFs may not function\n", rc);
1922 #endif
1923
1924 rc = efx_probe_filters(efx);
1925 if (rc) {
1926 netif_err(efx, probe, efx->net_dev,
1927 "failed to create filter tables\n");
1928 goto fail4;
1929 }
1930
1931 rc = efx_probe_channels(efx);
1932 if (rc)
1933 goto fail5;
1934
1935 return 0;
1936
1937 fail5:
1938 efx_remove_filters(efx);
1939 fail4:
1940 #ifdef CONFIG_SFC_SRIOV
1941 efx->type->vswitching_remove(efx);
1942 #endif
1943 fail3:
1944 efx_remove_port(efx);
1945 fail2:
1946 efx_remove_nic(efx);
1947 fail1:
1948 return rc;
1949 }
1950
1951 /* If the interface is supposed to be running but is not, start
1952 * the hardware and software data path, regular activity for the port
1953 * (MAC statistics, link polling, etc.) and schedule the port to be
1954 * reconfigured. Interrupts must already be enabled. This function
1955 * is safe to call multiple times, so long as the NIC is not disabled.
1956 * Requires the RTNL lock.
1957 */
1958 static void efx_start_all(struct efx_nic *efx)
1959 {
1960 EFX_ASSERT_RESET_SERIALISED(efx);
1961 BUG_ON(efx->state == STATE_DISABLED);
1962
1963 /* Check that it is appropriate to restart the interface. All
1964 * of these flags are safe to read under just the rtnl lock */
1965 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1966 efx->reset_pending)
1967 return;
1968
1969 efx_start_port(efx);
1970 efx_start_datapath(efx);
1971
1972 /* Start the hardware monitor if there is one */
1973 if (efx->type->monitor != NULL)
1974 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1975 efx_monitor_interval);
1976
1977 /* Link state detection is normally event-driven; we have
1978 * to poll now because we could have missed a change
1979 */
1980 mutex_lock(&efx->mac_lock);
1981 if (efx->phy_op->poll(efx))
1982 efx_link_status_changed(efx);
1983 mutex_unlock(&efx->mac_lock);
1984
1985 efx->type->start_stats(efx);
1986 efx->type->pull_stats(efx);
1987 spin_lock_bh(&efx->stats_lock);
1988 efx->type->update_stats(efx, NULL, NULL);
1989 spin_unlock_bh(&efx->stats_lock);
1990 }
1991
1992 /* Quiesce the hardware and software data path, and regular activity
1993 * for the port without bringing the link down. Safe to call multiple
1994 * times with the NIC in almost any state, but interrupts should be
1995 * enabled. Requires the RTNL lock.
1996 */
1997 static void efx_stop_all(struct efx_nic *efx)
1998 {
1999 EFX_ASSERT_RESET_SERIALISED(efx);
2000
2001 /* port_enabled can be read safely under the rtnl lock */
2002 if (!efx->port_enabled)
2003 return;
2004
2005 /* update stats before we go down so we can accurately count
2006 * rx_nodesc_drops
2007 */
2008 efx->type->pull_stats(efx);
2009 spin_lock_bh(&efx->stats_lock);
2010 efx->type->update_stats(efx, NULL, NULL);
2011 spin_unlock_bh(&efx->stats_lock);
2012 efx->type->stop_stats(efx);
2013 efx_stop_port(efx);
2014
2015 /* Stop the kernel transmit interface. This is only valid if
2016 * the device is stopped or detached; otherwise the watchdog
2017 * may fire immediately.
2018 */
2019 WARN_ON(netif_running(efx->net_dev) &&
2020 netif_device_present(efx->net_dev));
2021 netif_tx_disable(efx->net_dev);
2022
2023 efx_stop_datapath(efx);
2024 }
2025
2026 static void efx_remove_all(struct efx_nic *efx)
2027 {
2028 efx_remove_channels(efx);
2029 efx_remove_filters(efx);
2030 #ifdef CONFIG_SFC_SRIOV
2031 efx->type->vswitching_remove(efx);
2032 #endif
2033 efx_remove_port(efx);
2034 efx_remove_nic(efx);
2035 }
2036
2037 /**************************************************************************
2038 *
2039 * Interrupt moderation
2040 *
2041 **************************************************************************/
2042 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
2043 {
2044 if (usecs == 0)
2045 return 0;
2046 if (usecs * 1000 < efx->timer_quantum_ns)
2047 return 1; /* never round down to 0 */
2048 return usecs * 1000 / efx->timer_quantum_ns;
2049 }
2050
2051 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
2052 {
2053 /* We must round up when converting ticks to microseconds
2054 * because we round down when converting the other way.
2055 */
2056 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
2057 }
2058
2059 /* Set interrupt moderation parameters */
2060 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
2061 unsigned int rx_usecs, bool rx_adaptive,
2062 bool rx_may_override_tx)
2063 {
2064 struct efx_channel *channel;
2065 unsigned int timer_max_us;
2066
2067 EFX_ASSERT_RESET_SERIALISED(efx);
2068
2069 timer_max_us = efx->timer_max_ns / 1000;
2070
2071 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
2072 return -EINVAL;
2073
2074 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
2075 !rx_may_override_tx) {
2076 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
2077 "RX and TX IRQ moderation must be equal\n");
2078 return -EINVAL;
2079 }
2080
2081 efx->irq_rx_adaptive = rx_adaptive;
2082 efx->irq_rx_moderation_us = rx_usecs;
2083 efx_for_each_channel(channel, efx) {
2084 if (efx_channel_has_rx_queue(channel))
2085 channel->irq_moderation_us = rx_usecs;
2086 else if (efx_channel_has_tx_queues(channel))
2087 channel->irq_moderation_us = tx_usecs;
2088 }
2089
2090 return 0;
2091 }
2092
2093 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
2094 unsigned int *rx_usecs, bool *rx_adaptive)
2095 {
2096 *rx_adaptive = efx->irq_rx_adaptive;
2097 *rx_usecs = efx->irq_rx_moderation_us;
2098
2099 /* If channels are shared between RX and TX, so is IRQ
2100 * moderation. Otherwise, IRQ moderation is the same for all
2101 * TX channels and is not adaptive.
2102 */
2103 if (efx->tx_channel_offset == 0) {
2104 *tx_usecs = *rx_usecs;
2105 } else {
2106 struct efx_channel *tx_channel;
2107
2108 tx_channel = efx->channel[efx->tx_channel_offset];
2109 *tx_usecs = tx_channel->irq_moderation_us;
2110 }
2111 }
2112
2113 /**************************************************************************
2114 *
2115 * Hardware monitor
2116 *
2117 **************************************************************************/
2118
2119 /* Run periodically off the general workqueue */
2120 static void efx_monitor(struct work_struct *data)
2121 {
2122 struct efx_nic *efx = container_of(data, struct efx_nic,
2123 monitor_work.work);
2124
2125 netif_vdbg(efx, timer, efx->net_dev,
2126 "hardware monitor executing on CPU %d\n",
2127 raw_smp_processor_id());
2128 BUG_ON(efx->type->monitor == NULL);
2129
2130 /* If the mac_lock is already held then it is likely a port
2131 * reconfiguration is already in place, which will likely do
2132 * most of the work of monitor() anyway. */
2133 if (mutex_trylock(&efx->mac_lock)) {
2134 if (efx->port_enabled)
2135 efx->type->monitor(efx);
2136 mutex_unlock(&efx->mac_lock);
2137 }
2138
2139 queue_delayed_work(efx->workqueue, &efx->monitor_work,
2140 efx_monitor_interval);
2141 }
2142
2143 /**************************************************************************
2144 *
2145 * ioctls
2146 *
2147 *************************************************************************/
2148
2149 /* Net device ioctl
2150 * Context: process, rtnl_lock() held.
2151 */
2152 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2153 {
2154 struct efx_nic *efx = netdev_priv(net_dev);
2155 struct mii_ioctl_data *data = if_mii(ifr);
2156
2157 if (cmd == SIOCSHWTSTAMP)
2158 return efx_ptp_set_ts_config(efx, ifr);
2159 if (cmd == SIOCGHWTSTAMP)
2160 return efx_ptp_get_ts_config(efx, ifr);
2161
2162 /* Convert phy_id from older PRTAD/DEVAD format */
2163 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2164 (data->phy_id & 0xfc00) == 0x0400)
2165 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2166
2167 return mdio_mii_ioctl(&efx->mdio, data, cmd);
2168 }
2169
2170 /**************************************************************************
2171 *
2172 * NAPI interface
2173 *
2174 **************************************************************************/
2175
2176 static void efx_init_napi_channel(struct efx_channel *channel)
2177 {
2178 struct efx_nic *efx = channel->efx;
2179
2180 channel->napi_dev = efx->net_dev;
2181 netif_napi_add(channel->napi_dev, &channel->napi_str,
2182 efx_poll, napi_weight);
2183 }
2184
2185 static void efx_init_napi(struct efx_nic *efx)
2186 {
2187 struct efx_channel *channel;
2188
2189 efx_for_each_channel(channel, efx)
2190 efx_init_napi_channel(channel);
2191 }
2192
2193 static void efx_fini_napi_channel(struct efx_channel *channel)
2194 {
2195 if (channel->napi_dev)
2196 netif_napi_del(&channel->napi_str);
2197
2198 channel->napi_dev = NULL;
2199 }
2200
2201 static void efx_fini_napi(struct efx_nic *efx)
2202 {
2203 struct efx_channel *channel;
2204
2205 efx_for_each_channel(channel, efx)
2206 efx_fini_napi_channel(channel);
2207 }
2208
2209 /**************************************************************************
2210 *
2211 * Kernel net device interface
2212 *
2213 *************************************************************************/
2214
2215 /* Context: process, rtnl_lock() held. */
2216 int efx_net_open(struct net_device *net_dev)
2217 {
2218 struct efx_nic *efx = netdev_priv(net_dev);
2219 int rc;
2220
2221 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2222 raw_smp_processor_id());
2223
2224 rc = efx_check_disabled(efx);
2225 if (rc)
2226 return rc;
2227 if (efx->phy_mode & PHY_MODE_SPECIAL)
2228 return -EBUSY;
2229 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2230 return -EIO;
2231
2232 /* Notify the kernel of the link state polled during driver load,
2233 * before the monitor starts running */
2234 efx_link_status_changed(efx);
2235
2236 efx_start_all(efx);
2237 if (efx->state == STATE_DISABLED || efx->reset_pending)
2238 netif_device_detach(efx->net_dev);
2239 efx_selftest_async_start(efx);
2240 return 0;
2241 }
2242
2243 /* Context: process, rtnl_lock() held.
2244 * Note that the kernel will ignore our return code; this method
2245 * should really be a void.
2246 */
2247 int efx_net_stop(struct net_device *net_dev)
2248 {
2249 struct efx_nic *efx = netdev_priv(net_dev);
2250
2251 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2252 raw_smp_processor_id());
2253
2254 /* Stop the device and flush all the channels */
2255 efx_stop_all(efx);
2256
2257 return 0;
2258 }
2259
2260 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2261 static void efx_net_stats(struct net_device *net_dev,
2262 struct rtnl_link_stats64 *stats)
2263 {
2264 struct efx_nic *efx = netdev_priv(net_dev);
2265
2266 spin_lock_bh(&efx->stats_lock);
2267 efx->type->update_stats(efx, NULL, stats);
2268 spin_unlock_bh(&efx->stats_lock);
2269 }
2270
2271 /* Context: netif_tx_lock held, BHs disabled. */
2272 static void efx_watchdog(struct net_device *net_dev)
2273 {
2274 struct efx_nic *efx = netdev_priv(net_dev);
2275
2276 netif_err(efx, tx_err, efx->net_dev,
2277 "TX stuck with port_enabled=%d: resetting channels\n",
2278 efx->port_enabled);
2279
2280 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2281 }
2282
2283
2284 /* Context: process, rtnl_lock() held. */
2285 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2286 {
2287 struct efx_nic *efx = netdev_priv(net_dev);
2288 int rc;
2289
2290 rc = efx_check_disabled(efx);
2291 if (rc)
2292 return rc;
2293
2294 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2295
2296 efx_device_detach_sync(efx);
2297 efx_stop_all(efx);
2298
2299 mutex_lock(&efx->mac_lock);
2300 net_dev->mtu = new_mtu;
2301 efx_mac_reconfigure(efx);
2302 mutex_unlock(&efx->mac_lock);
2303
2304 efx_start_all(efx);
2305 efx_device_attach_if_not_resetting(efx);
2306 return 0;
2307 }
2308
2309 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2310 {
2311 struct efx_nic *efx = netdev_priv(net_dev);
2312 struct sockaddr *addr = data;
2313 u8 *new_addr = addr->sa_data;
2314 u8 old_addr[6];
2315 int rc;
2316
2317 if (!is_valid_ether_addr(new_addr)) {
2318 netif_err(efx, drv, efx->net_dev,
2319 "invalid ethernet MAC address requested: %pM\n",
2320 new_addr);
2321 return -EADDRNOTAVAIL;
2322 }
2323
2324 /* save old address */
2325 ether_addr_copy(old_addr, net_dev->dev_addr);
2326 ether_addr_copy(net_dev->dev_addr, new_addr);
2327 if (efx->type->set_mac_address) {
2328 rc = efx->type->set_mac_address(efx);
2329 if (rc) {
2330 ether_addr_copy(net_dev->dev_addr, old_addr);
2331 return rc;
2332 }
2333 }
2334
2335 /* Reconfigure the MAC */
2336 mutex_lock(&efx->mac_lock);
2337 efx_mac_reconfigure(efx);
2338 mutex_unlock(&efx->mac_lock);
2339
2340 return 0;
2341 }
2342
2343 /* Context: netif_addr_lock held, BHs disabled. */
2344 static void efx_set_rx_mode(struct net_device *net_dev)
2345 {
2346 struct efx_nic *efx = netdev_priv(net_dev);
2347
2348 if (efx->port_enabled)
2349 queue_work(efx->workqueue, &efx->mac_work);
2350 /* Otherwise efx_start_port() will do this */
2351 }
2352
2353 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2354 {
2355 struct efx_nic *efx = netdev_priv(net_dev);
2356 int rc;
2357
2358 /* If disabling RX n-tuple filtering, clear existing filters */
2359 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2360 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2361 if (rc)
2362 return rc;
2363 }
2364
2365 /* If Rx VLAN filter is changed, update filters via mac_reconfigure.
2366 * If rx-fcs is changed, mac_reconfigure updates that too.
2367 */
2368 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
2369 NETIF_F_RXFCS)) {
2370 /* efx_set_rx_mode() will schedule MAC work to update filters
2371 * when a new features are finally set in net_dev.
2372 */
2373 efx_set_rx_mode(net_dev);
2374 }
2375
2376 return 0;
2377 }
2378
2379 static int efx_get_phys_port_id(struct net_device *net_dev,
2380 struct netdev_phys_item_id *ppid)
2381 {
2382 struct efx_nic *efx = netdev_priv(net_dev);
2383
2384 if (efx->type->get_phys_port_id)
2385 return efx->type->get_phys_port_id(efx, ppid);
2386 else
2387 return -EOPNOTSUPP;
2388 }
2389
2390 static int efx_get_phys_port_name(struct net_device *net_dev,
2391 char *name, size_t len)
2392 {
2393 struct efx_nic *efx = netdev_priv(net_dev);
2394
2395 if (snprintf(name, len, "p%u", efx->port_num) >= len)
2396 return -EINVAL;
2397 return 0;
2398 }
2399
2400 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2401 {
2402 struct efx_nic *efx = netdev_priv(net_dev);
2403
2404 if (efx->type->vlan_rx_add_vid)
2405 return efx->type->vlan_rx_add_vid(efx, proto, vid);
2406 else
2407 return -EOPNOTSUPP;
2408 }
2409
2410 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2411 {
2412 struct efx_nic *efx = netdev_priv(net_dev);
2413
2414 if (efx->type->vlan_rx_kill_vid)
2415 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
2416 else
2417 return -EOPNOTSUPP;
2418 }
2419
2420 static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in)
2421 {
2422 switch (in) {
2423 case UDP_TUNNEL_TYPE_VXLAN:
2424 return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
2425 case UDP_TUNNEL_TYPE_GENEVE:
2426 return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
2427 default:
2428 return -1;
2429 }
2430 }
2431
2432 static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti)
2433 {
2434 struct efx_nic *efx = netdev_priv(dev);
2435 struct efx_udp_tunnel tnl;
2436 int efx_tunnel_type;
2437
2438 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
2439 if (efx_tunnel_type < 0)
2440 return;
2441
2442 tnl.type = (u16)efx_tunnel_type;
2443 tnl.port = ti->port;
2444
2445 if (efx->type->udp_tnl_add_port)
2446 (void)efx->type->udp_tnl_add_port(efx, tnl);
2447 }
2448
2449 static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti)
2450 {
2451 struct efx_nic *efx = netdev_priv(dev);
2452 struct efx_udp_tunnel tnl;
2453 int efx_tunnel_type;
2454
2455 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
2456 if (efx_tunnel_type < 0)
2457 return;
2458
2459 tnl.type = (u16)efx_tunnel_type;
2460 tnl.port = ti->port;
2461
2462 if (efx->type->udp_tnl_del_port)
2463 (void)efx->type->udp_tnl_del_port(efx, tnl);
2464 }
2465
2466 static const struct net_device_ops efx_netdev_ops = {
2467 .ndo_open = efx_net_open,
2468 .ndo_stop = efx_net_stop,
2469 .ndo_get_stats64 = efx_net_stats,
2470 .ndo_tx_timeout = efx_watchdog,
2471 .ndo_start_xmit = efx_hard_start_xmit,
2472 .ndo_validate_addr = eth_validate_addr,
2473 .ndo_do_ioctl = efx_ioctl,
2474 .ndo_change_mtu = efx_change_mtu,
2475 .ndo_set_mac_address = efx_set_mac_address,
2476 .ndo_set_rx_mode = efx_set_rx_mode,
2477 .ndo_set_features = efx_set_features,
2478 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
2479 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
2480 #ifdef CONFIG_SFC_SRIOV
2481 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2482 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2483 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2484 .ndo_get_vf_config = efx_sriov_get_vf_config,
2485 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
2486 #endif
2487 .ndo_get_phys_port_id = efx_get_phys_port_id,
2488 .ndo_get_phys_port_name = efx_get_phys_port_name,
2489 .ndo_setup_tc = efx_setup_tc,
2490 #ifdef CONFIG_RFS_ACCEL
2491 .ndo_rx_flow_steer = efx_filter_rfs,
2492 #endif
2493 .ndo_udp_tunnel_add = efx_udp_tunnel_add,
2494 .ndo_udp_tunnel_del = efx_udp_tunnel_del,
2495 };
2496
2497 static void efx_update_name(struct efx_nic *efx)
2498 {
2499 strcpy(efx->name, efx->net_dev->name);
2500 efx_mtd_rename(efx);
2501 efx_set_channel_names(efx);
2502 }
2503
2504 static int efx_netdev_event(struct notifier_block *this,
2505 unsigned long event, void *ptr)
2506 {
2507 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2508
2509 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2510 event == NETDEV_CHANGENAME)
2511 efx_update_name(netdev_priv(net_dev));
2512
2513 return NOTIFY_DONE;
2514 }
2515
2516 static struct notifier_block efx_netdev_notifier = {
2517 .notifier_call = efx_netdev_event,
2518 };
2519
2520 static ssize_t
2521 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2522 {
2523 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2524 return sprintf(buf, "%d\n", efx->phy_type);
2525 }
2526 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2527
2528 #ifdef CONFIG_SFC_MCDI_LOGGING
2529 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2530 char *buf)
2531 {
2532 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2533 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2534
2535 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2536 }
2537 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2538 const char *buf, size_t count)
2539 {
2540 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2541 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2542 bool enable = count > 0 && *buf != '0';
2543
2544 mcdi->logging_enabled = enable;
2545 return count;
2546 }
2547 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2548 #endif
2549
2550 static int efx_register_netdev(struct efx_nic *efx)
2551 {
2552 struct net_device *net_dev = efx->net_dev;
2553 struct efx_channel *channel;
2554 int rc;
2555
2556 net_dev->watchdog_timeo = 5 * HZ;
2557 net_dev->irq = efx->pci_dev->irq;
2558 net_dev->netdev_ops = &efx_netdev_ops;
2559 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2560 net_dev->priv_flags |= IFF_UNICAST_FLT;
2561 net_dev->ethtool_ops = &efx_ethtool_ops;
2562 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2563 net_dev->min_mtu = EFX_MIN_MTU;
2564 net_dev->max_mtu = EFX_MAX_MTU;
2565
2566 rtnl_lock();
2567
2568 /* Enable resets to be scheduled and check whether any were
2569 * already requested. If so, the NIC is probably hosed so we
2570 * abort.
2571 */
2572 efx->state = STATE_READY;
2573 smp_mb(); /* ensure we change state before checking reset_pending */
2574 if (efx->reset_pending) {
2575 netif_err(efx, probe, efx->net_dev,
2576 "aborting probe due to scheduled reset\n");
2577 rc = -EIO;
2578 goto fail_locked;
2579 }
2580
2581 rc = dev_alloc_name(net_dev, net_dev->name);
2582 if (rc < 0)
2583 goto fail_locked;
2584 efx_update_name(efx);
2585
2586 /* Always start with carrier off; PHY events will detect the link */
2587 netif_carrier_off(net_dev);
2588
2589 rc = register_netdevice(net_dev);
2590 if (rc)
2591 goto fail_locked;
2592
2593 efx_for_each_channel(channel, efx) {
2594 struct efx_tx_queue *tx_queue;
2595 efx_for_each_channel_tx_queue(tx_queue, channel)
2596 efx_init_tx_queue_core_txq(tx_queue);
2597 }
2598
2599 efx_associate(efx);
2600
2601 rtnl_unlock();
2602
2603 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2604 if (rc) {
2605 netif_err(efx, drv, efx->net_dev,
2606 "failed to init net dev attributes\n");
2607 goto fail_registered;
2608 }
2609 #ifdef CONFIG_SFC_MCDI_LOGGING
2610 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2611 if (rc) {
2612 netif_err(efx, drv, efx->net_dev,
2613 "failed to init net dev attributes\n");
2614 goto fail_attr_mcdi_logging;
2615 }
2616 #endif
2617
2618 return 0;
2619
2620 #ifdef CONFIG_SFC_MCDI_LOGGING
2621 fail_attr_mcdi_logging:
2622 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2623 #endif
2624 fail_registered:
2625 rtnl_lock();
2626 efx_dissociate(efx);
2627 unregister_netdevice(net_dev);
2628 fail_locked:
2629 efx->state = STATE_UNINIT;
2630 rtnl_unlock();
2631 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2632 return rc;
2633 }
2634
2635 static void efx_unregister_netdev(struct efx_nic *efx)
2636 {
2637 if (!efx->net_dev)
2638 return;
2639
2640 BUG_ON(netdev_priv(efx->net_dev) != efx);
2641
2642 if (efx_dev_registered(efx)) {
2643 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2644 #ifdef CONFIG_SFC_MCDI_LOGGING
2645 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2646 #endif
2647 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2648 unregister_netdev(efx->net_dev);
2649 }
2650 }
2651
2652 /**************************************************************************
2653 *
2654 * Device reset and suspend
2655 *
2656 **************************************************************************/
2657
2658 /* Tears down the entire software state and most of the hardware state
2659 * before reset. */
2660 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2661 {
2662 EFX_ASSERT_RESET_SERIALISED(efx);
2663
2664 if (method == RESET_TYPE_MCDI_TIMEOUT)
2665 efx->type->prepare_flr(efx);
2666
2667 efx_stop_all(efx);
2668 efx_disable_interrupts(efx);
2669
2670 mutex_lock(&efx->mac_lock);
2671 down_write(&efx->filter_sem);
2672 mutex_lock(&efx->rss_lock);
2673 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2674 method != RESET_TYPE_DATAPATH)
2675 efx->phy_op->fini(efx);
2676 efx->type->fini(efx);
2677 }
2678
2679 /* This function will always ensure that the locks acquired in
2680 * efx_reset_down() are released. A failure return code indicates
2681 * that we were unable to reinitialise the hardware, and the
2682 * driver should be disabled. If ok is false, then the rx and tx
2683 * engines are not restarted, pending a RESET_DISABLE. */
2684 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2685 {
2686 int rc;
2687
2688 EFX_ASSERT_RESET_SERIALISED(efx);
2689
2690 if (method == RESET_TYPE_MCDI_TIMEOUT)
2691 efx->type->finish_flr(efx);
2692
2693 /* Ensure that SRAM is initialised even if we're disabling the device */
2694 rc = efx->type->init(efx);
2695 if (rc) {
2696 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2697 goto fail;
2698 }
2699
2700 if (!ok)
2701 goto fail;
2702
2703 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2704 method != RESET_TYPE_DATAPATH) {
2705 rc = efx->phy_op->init(efx);
2706 if (rc)
2707 goto fail;
2708 rc = efx->phy_op->reconfigure(efx);
2709 if (rc && rc != -EPERM)
2710 netif_err(efx, drv, efx->net_dev,
2711 "could not restore PHY settings\n");
2712 }
2713
2714 rc = efx_enable_interrupts(efx);
2715 if (rc)
2716 goto fail;
2717
2718 #ifdef CONFIG_SFC_SRIOV
2719 rc = efx->type->vswitching_restore(efx);
2720 if (rc) /* not fatal; the PF will still work fine */
2721 netif_warn(efx, probe, efx->net_dev,
2722 "failed to restore vswitching rc=%d;"
2723 " VFs may not function\n", rc);
2724 #endif
2725
2726 if (efx->type->rx_restore_rss_contexts)
2727 efx->type->rx_restore_rss_contexts(efx);
2728 mutex_unlock(&efx->rss_lock);
2729 efx->type->filter_table_restore(efx);
2730 up_write(&efx->filter_sem);
2731 if (efx->type->sriov_reset)
2732 efx->type->sriov_reset(efx);
2733
2734 mutex_unlock(&efx->mac_lock);
2735
2736 efx_start_all(efx);
2737
2738 if (efx->type->udp_tnl_push_ports)
2739 efx->type->udp_tnl_push_ports(efx);
2740
2741 return 0;
2742
2743 fail:
2744 efx->port_initialized = false;
2745
2746 mutex_unlock(&efx->rss_lock);
2747 up_write(&efx->filter_sem);
2748 mutex_unlock(&efx->mac_lock);
2749
2750 return rc;
2751 }
2752
2753 /* Reset the NIC using the specified method. Note that the reset may
2754 * fail, in which case the card will be left in an unusable state.
2755 *
2756 * Caller must hold the rtnl_lock.
2757 */
2758 int efx_reset(struct efx_nic *efx, enum reset_type method)
2759 {
2760 int rc, rc2;
2761 bool disabled;
2762
2763 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2764 RESET_TYPE(method));
2765
2766 efx_device_detach_sync(efx);
2767 efx_reset_down(efx, method);
2768
2769 rc = efx->type->reset(efx, method);
2770 if (rc) {
2771 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2772 goto out;
2773 }
2774
2775 /* Clear flags for the scopes we covered. We assume the NIC and
2776 * driver are now quiescent so that there is no race here.
2777 */
2778 if (method < RESET_TYPE_MAX_METHOD)
2779 efx->reset_pending &= -(1 << (method + 1));
2780 else /* it doesn't fit into the well-ordered scope hierarchy */
2781 __clear_bit(method, &efx->reset_pending);
2782
2783 /* Reinitialise bus-mastering, which may have been turned off before
2784 * the reset was scheduled. This is still appropriate, even in the
2785 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2786 * can respond to requests. */
2787 pci_set_master(efx->pci_dev);
2788
2789 out:
2790 /* Leave device stopped if necessary */
2791 disabled = rc ||
2792 method == RESET_TYPE_DISABLE ||
2793 method == RESET_TYPE_RECOVER_OR_DISABLE;
2794 rc2 = efx_reset_up(efx, method, !disabled);
2795 if (rc2) {
2796 disabled = true;
2797 if (!rc)
2798 rc = rc2;
2799 }
2800
2801 if (disabled) {
2802 dev_close(efx->net_dev);
2803 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2804 efx->state = STATE_DISABLED;
2805 } else {
2806 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2807 efx_device_attach_if_not_resetting(efx);
2808 }
2809 return rc;
2810 }
2811
2812 /* Try recovery mechanisms.
2813 * For now only EEH is supported.
2814 * Returns 0 if the recovery mechanisms are unsuccessful.
2815 * Returns a non-zero value otherwise.
2816 */
2817 int efx_try_recovery(struct efx_nic *efx)
2818 {
2819 #ifdef CONFIG_EEH
2820 /* A PCI error can occur and not be seen by EEH because nothing
2821 * happens on the PCI bus. In this case the driver may fail and
2822 * schedule a 'recover or reset', leading to this recovery handler.
2823 * Manually call the eeh failure check function.
2824 */
2825 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2826 if (eeh_dev_check_failure(eehdev)) {
2827 /* The EEH mechanisms will handle the error and reset the
2828 * device if necessary.
2829 */
2830 return 1;
2831 }
2832 #endif
2833 return 0;
2834 }
2835
2836 static void efx_wait_for_bist_end(struct efx_nic *efx)
2837 {
2838 int i;
2839
2840 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2841 if (efx_mcdi_poll_reboot(efx))
2842 goto out;
2843 msleep(BIST_WAIT_DELAY_MS);
2844 }
2845
2846 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2847 out:
2848 /* Either way unset the BIST flag. If we found no reboot we probably
2849 * won't recover, but we should try.
2850 */
2851 efx->mc_bist_for_other_fn = false;
2852 }
2853
2854 /* The worker thread exists so that code that cannot sleep can
2855 * schedule a reset for later.
2856 */
2857 static void efx_reset_work(struct work_struct *data)
2858 {
2859 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2860 unsigned long pending;
2861 enum reset_type method;
2862
2863 pending = READ_ONCE(efx->reset_pending);
2864 method = fls(pending) - 1;
2865
2866 if (method == RESET_TYPE_MC_BIST)
2867 efx_wait_for_bist_end(efx);
2868
2869 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2870 method == RESET_TYPE_RECOVER_OR_ALL) &&
2871 efx_try_recovery(efx))
2872 return;
2873
2874 if (!pending)
2875 return;
2876
2877 rtnl_lock();
2878
2879 /* We checked the state in efx_schedule_reset() but it may
2880 * have changed by now. Now that we have the RTNL lock,
2881 * it cannot change again.
2882 */
2883 if (efx->state == STATE_READY)
2884 (void)efx_reset(efx, method);
2885
2886 rtnl_unlock();
2887 }
2888
2889 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2890 {
2891 enum reset_type method;
2892
2893 if (efx->state == STATE_RECOVERY) {
2894 netif_dbg(efx, drv, efx->net_dev,
2895 "recovering: skip scheduling %s reset\n",
2896 RESET_TYPE(type));
2897 return;
2898 }
2899
2900 switch (type) {
2901 case RESET_TYPE_INVISIBLE:
2902 case RESET_TYPE_ALL:
2903 case RESET_TYPE_RECOVER_OR_ALL:
2904 case RESET_TYPE_WORLD:
2905 case RESET_TYPE_DISABLE:
2906 case RESET_TYPE_RECOVER_OR_DISABLE:
2907 case RESET_TYPE_DATAPATH:
2908 case RESET_TYPE_MC_BIST:
2909 case RESET_TYPE_MCDI_TIMEOUT:
2910 method = type;
2911 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2912 RESET_TYPE(method));
2913 break;
2914 default:
2915 method = efx->type->map_reset_reason(type);
2916 netif_dbg(efx, drv, efx->net_dev,
2917 "scheduling %s reset for %s\n",
2918 RESET_TYPE(method), RESET_TYPE(type));
2919 break;
2920 }
2921
2922 set_bit(method, &efx->reset_pending);
2923 smp_mb(); /* ensure we change reset_pending before checking state */
2924
2925 /* If we're not READY then just leave the flags set as the cue
2926 * to abort probing or reschedule the reset later.
2927 */
2928 if (READ_ONCE(efx->state) != STATE_READY)
2929 return;
2930
2931 /* efx_process_channel() will no longer read events once a
2932 * reset is scheduled. So switch back to poll'd MCDI completions. */
2933 efx_mcdi_mode_poll(efx);
2934
2935 queue_work(reset_workqueue, &efx->reset_work);
2936 }
2937
2938 /**************************************************************************
2939 *
2940 * List of NICs we support
2941 *
2942 **************************************************************************/
2943
2944 /* PCI device ID table */
2945 static const struct pci_device_id efx_pci_table[] = {
2946 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2947 .driver_data = (unsigned long) &siena_a0_nic_type},
2948 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2949 .driver_data = (unsigned long) &siena_a0_nic_type},
2950 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2951 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2952 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
2953 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2954 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
2955 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2956 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
2957 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2958 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
2959 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2960 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
2961 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2962 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */
2963 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2964 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */
2965 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2966 {0} /* end of list */
2967 };
2968
2969 /**************************************************************************
2970 *
2971 * Dummy PHY/MAC operations
2972 *
2973 * Can be used for some unimplemented operations
2974 * Needed so all function pointers are valid and do not have to be tested
2975 * before use
2976 *
2977 **************************************************************************/
2978 int efx_port_dummy_op_int(struct efx_nic *efx)
2979 {
2980 return 0;
2981 }
2982 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2983
2984 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2985 {
2986 return false;
2987 }
2988
2989 static const struct efx_phy_operations efx_dummy_phy_operations = {
2990 .init = efx_port_dummy_op_int,
2991 .reconfigure = efx_port_dummy_op_int,
2992 .poll = efx_port_dummy_op_poll,
2993 .fini = efx_port_dummy_op_void,
2994 };
2995
2996 /**************************************************************************
2997 *
2998 * Data housekeeping
2999 *
3000 **************************************************************************/
3001
3002 /* This zeroes out and then fills in the invariants in a struct
3003 * efx_nic (including all sub-structures).
3004 */
3005 static int efx_init_struct(struct efx_nic *efx,
3006 struct pci_dev *pci_dev, struct net_device *net_dev)
3007 {
3008 int rc = -ENOMEM, i;
3009
3010 /* Initialise common structures */
3011 INIT_LIST_HEAD(&efx->node);
3012 INIT_LIST_HEAD(&efx->secondary_list);
3013 spin_lock_init(&efx->biu_lock);
3014 #ifdef CONFIG_SFC_MTD
3015 INIT_LIST_HEAD(&efx->mtd_list);
3016 #endif
3017 INIT_WORK(&efx->reset_work, efx_reset_work);
3018 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
3019 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
3020 efx->pci_dev = pci_dev;
3021 efx->msg_enable = debug;
3022 efx->state = STATE_UNINIT;
3023 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
3024
3025 efx->net_dev = net_dev;
3026 efx->rx_prefix_size = efx->type->rx_prefix_size;
3027 efx->rx_ip_align =
3028 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
3029 efx->rx_packet_hash_offset =
3030 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
3031 efx->rx_packet_ts_offset =
3032 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
3033 INIT_LIST_HEAD(&efx->rss_context.list);
3034 mutex_init(&efx->rss_lock);
3035 spin_lock_init(&efx->stats_lock);
3036 efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
3037 efx->num_mac_stats = MC_CMD_MAC_NSTATS;
3038 BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
3039 mutex_init(&efx->mac_lock);
3040 #ifdef CONFIG_RFS_ACCEL
3041 mutex_init(&efx->rps_mutex);
3042 spin_lock_init(&efx->rps_hash_lock);
3043 /* Failure to allocate is not fatal, but may degrade ARFS performance */
3044 efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
3045 sizeof(*efx->rps_hash_table), GFP_KERNEL);
3046 #endif
3047 efx->phy_op = &efx_dummy_phy_operations;
3048 efx->mdio.dev = net_dev;
3049 INIT_WORK(&efx->mac_work, efx_mac_work);
3050 init_waitqueue_head(&efx->flush_wq);
3051
3052 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
3053 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
3054 if (!efx->channel[i])
3055 goto fail;
3056 efx->msi_context[i].efx = efx;
3057 efx->msi_context[i].index = i;
3058 }
3059
3060 /* Higher numbered interrupt modes are less capable! */
3061 if (WARN_ON_ONCE(efx->type->max_interrupt_mode >
3062 efx->type->min_interrupt_mode)) {
3063 rc = -EIO;
3064 goto fail;
3065 }
3066 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
3067 interrupt_mode);
3068 efx->interrupt_mode = min(efx->type->min_interrupt_mode,
3069 interrupt_mode);
3070
3071 /* Would be good to use the net_dev name, but we're too early */
3072 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
3073 pci_name(pci_dev));
3074 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
3075 if (!efx->workqueue)
3076 goto fail;
3077
3078 return 0;
3079
3080 fail:
3081 efx_fini_struct(efx);
3082 return rc;
3083 }
3084
3085 static void efx_fini_struct(struct efx_nic *efx)
3086 {
3087 int i;
3088
3089 #ifdef CONFIG_RFS_ACCEL
3090 kfree(efx->rps_hash_table);
3091 #endif
3092
3093 for (i = 0; i < EFX_MAX_CHANNELS; i++)
3094 kfree(efx->channel[i]);
3095
3096 kfree(efx->vpd_sn);
3097
3098 if (efx->workqueue) {
3099 destroy_workqueue(efx->workqueue);
3100 efx->workqueue = NULL;
3101 }
3102 }
3103
3104 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
3105 {
3106 u64 n_rx_nodesc_trunc = 0;
3107 struct efx_channel *channel;
3108
3109 efx_for_each_channel(channel, efx)
3110 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
3111 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
3112 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
3113 }
3114
3115 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
3116 const struct efx_filter_spec *right)
3117 {
3118 if ((left->match_flags ^ right->match_flags) |
3119 ((left->flags ^ right->flags) &
3120 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3121 return false;
3122
3123 return memcmp(&left->outer_vid, &right->outer_vid,
3124 sizeof(struct efx_filter_spec) -
3125 offsetof(struct efx_filter_spec, outer_vid)) == 0;
3126 }
3127
3128 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
3129 {
3130 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3131 return jhash2((const u32 *)&spec->outer_vid,
3132 (sizeof(struct efx_filter_spec) -
3133 offsetof(struct efx_filter_spec, outer_vid)) / 4,
3134 0);
3135 }
3136
3137 #ifdef CONFIG_RFS_ACCEL
3138 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
3139 bool *force)
3140 {
3141 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
3142 /* ARFS is currently updating this entry, leave it */
3143 return false;
3144 }
3145 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
3146 /* ARFS tried and failed to update this, so it's probably out
3147 * of date. Remove the filter and the ARFS rule entry.
3148 */
3149 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
3150 *force = true;
3151 return true;
3152 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
3153 /* ARFS has moved on, so old filter is not needed. Since we did
3154 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
3155 * not be removed by efx_rps_hash_del() subsequently.
3156 */
3157 *force = true;
3158 return true;
3159 }
3160 /* Remove it iff ARFS wants to. */
3161 return true;
3162 }
3163
3164 static
3165 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
3166 const struct efx_filter_spec *spec)
3167 {
3168 u32 hash = efx_filter_spec_hash(spec);
3169
3170 lockdep_assert_held(&efx->rps_hash_lock);
3171 if (!efx->rps_hash_table)
3172 return NULL;
3173 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
3174 }
3175
3176 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
3177 const struct efx_filter_spec *spec)
3178 {
3179 struct efx_arfs_rule *rule;
3180 struct hlist_head *head;
3181 struct hlist_node *node;
3182
3183 head = efx_rps_hash_bucket(efx, spec);
3184 if (!head)
3185 return NULL;
3186 hlist_for_each(node, head) {
3187 rule = container_of(node, struct efx_arfs_rule, node);
3188 if (efx_filter_spec_equal(spec, &rule->spec))
3189 return rule;
3190 }
3191 return NULL;
3192 }
3193
3194 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
3195 const struct efx_filter_spec *spec,
3196 bool *new)
3197 {
3198 struct efx_arfs_rule *rule;
3199 struct hlist_head *head;
3200 struct hlist_node *node;
3201
3202 head = efx_rps_hash_bucket(efx, spec);
3203 if (!head)
3204 return NULL;
3205 hlist_for_each(node, head) {
3206 rule = container_of(node, struct efx_arfs_rule, node);
3207 if (efx_filter_spec_equal(spec, &rule->spec)) {
3208 *new = false;
3209 return rule;
3210 }
3211 }
3212 rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
3213 *new = true;
3214 if (rule) {
3215 memcpy(&rule->spec, spec, sizeof(rule->spec));
3216 hlist_add_head(&rule->node, head);
3217 }
3218 return rule;
3219 }
3220
3221 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
3222 {
3223 struct efx_arfs_rule *rule;
3224 struct hlist_head *head;
3225 struct hlist_node *node;
3226
3227 head = efx_rps_hash_bucket(efx, spec);
3228 if (WARN_ON(!head))
3229 return;
3230 hlist_for_each(node, head) {
3231 rule = container_of(node, struct efx_arfs_rule, node);
3232 if (efx_filter_spec_equal(spec, &rule->spec)) {
3233 /* Someone already reused the entry. We know that if
3234 * this check doesn't fire (i.e. filter_id == REMOVING)
3235 * then the REMOVING mark was put there by our caller,
3236 * because caller is holding a lock on filter table and
3237 * only holders of that lock set REMOVING.
3238 */
3239 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
3240 return;
3241 hlist_del(node);
3242 kfree(rule);
3243 return;
3244 }
3245 }
3246 /* We didn't find it. */
3247 WARN_ON(1);
3248 }
3249 #endif
3250
3251 /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because
3252 * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
3253 */
3254 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
3255 {
3256 struct list_head *head = &efx->rss_context.list;
3257 struct efx_rss_context *ctx, *new;
3258 u32 id = 1; /* Don't use zero, that refers to the master RSS context */
3259
3260 WARN_ON(!mutex_is_locked(&efx->rss_lock));
3261
3262 /* Search for first gap in the numbering */
3263 list_for_each_entry(ctx, head, list) {
3264 if (ctx->user_id != id)
3265 break;
3266 id++;
3267 /* Check for wrap. If this happens, we have nearly 2^32
3268 * allocated RSS contexts, which seems unlikely.
3269 */
3270 if (WARN_ON_ONCE(!id))
3271 return NULL;
3272 }
3273
3274 /* Create the new entry */
3275 new = kmalloc(sizeof(struct efx_rss_context), GFP_KERNEL);
3276 if (!new)
3277 return NULL;
3278 new->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
3279 new->rx_hash_udp_4tuple = false;
3280
3281 /* Insert the new entry into the gap */
3282 new->user_id = id;
3283 list_add_tail(&new->list, &ctx->list);
3284 return new;
3285 }
3286
3287 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
3288 {
3289 struct list_head *head = &efx->rss_context.list;
3290 struct efx_rss_context *ctx;
3291
3292 WARN_ON(!mutex_is_locked(&efx->rss_lock));
3293
3294 list_for_each_entry(ctx, head, list)
3295 if (ctx->user_id == id)
3296 return ctx;
3297 return NULL;
3298 }
3299
3300 void efx_free_rss_context_entry(struct efx_rss_context *ctx)
3301 {
3302 list_del(&ctx->list);
3303 kfree(ctx);
3304 }
3305
3306 /**************************************************************************
3307 *
3308 * PCI interface
3309 *
3310 **************************************************************************/
3311
3312 /* Main body of final NIC shutdown code
3313 * This is called only at module unload (or hotplug removal).
3314 */
3315 static void efx_pci_remove_main(struct efx_nic *efx)
3316 {
3317 /* Flush reset_work. It can no longer be scheduled since we
3318 * are not READY.
3319 */
3320 BUG_ON(efx->state == STATE_READY);
3321 cancel_work_sync(&efx->reset_work);
3322
3323 efx_disable_interrupts(efx);
3324 efx_clear_interrupt_affinity(efx);
3325 efx_nic_fini_interrupt(efx);
3326 efx_fini_port(efx);
3327 efx->type->fini(efx);
3328 efx_fini_napi(efx);
3329 efx_remove_all(efx);
3330 }
3331
3332 /* Final NIC shutdown
3333 * This is called only at module unload (or hotplug removal). A PF can call
3334 * this on its VFs to ensure they are unbound first.
3335 */
3336 static void efx_pci_remove(struct pci_dev *pci_dev)
3337 {
3338 struct efx_nic *efx;
3339
3340 efx = pci_get_drvdata(pci_dev);
3341 if (!efx)
3342 return;
3343
3344 /* Mark the NIC as fini, then stop the interface */
3345 rtnl_lock();
3346 efx_dissociate(efx);
3347 dev_close(efx->net_dev);
3348 efx_disable_interrupts(efx);
3349 efx->state = STATE_UNINIT;
3350 rtnl_unlock();
3351
3352 if (efx->type->sriov_fini)
3353 efx->type->sriov_fini(efx);
3354
3355 efx_unregister_netdev(efx);
3356
3357 efx_mtd_remove(efx);
3358
3359 efx_pci_remove_main(efx);
3360
3361 efx_fini_io(efx);
3362 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3363
3364 efx_fini_struct(efx);
3365 free_netdev(efx->net_dev);
3366
3367 pci_disable_pcie_error_reporting(pci_dev);
3368 };
3369
3370 /* NIC VPD information
3371 * Called during probe to display the part number of the
3372 * installed NIC. VPD is potentially very large but this should
3373 * always appear within the first 512 bytes.
3374 */
3375 #define SFC_VPD_LEN 512
3376 static void efx_probe_vpd_strings(struct efx_nic *efx)
3377 {
3378 struct pci_dev *dev = efx->pci_dev;
3379 char vpd_data[SFC_VPD_LEN];
3380 ssize_t vpd_size;
3381 int ro_start, ro_size, i, j;
3382
3383 /* Get the vpd data from the device */
3384 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
3385 if (vpd_size <= 0) {
3386 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
3387 return;
3388 }
3389
3390 /* Get the Read only section */
3391 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3392 if (ro_start < 0) {
3393 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3394 return;
3395 }
3396
3397 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3398 j = ro_size;
3399 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3400 if (i + j > vpd_size)
3401 j = vpd_size - i;
3402
3403 /* Get the Part number */
3404 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3405 if (i < 0) {
3406 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3407 return;
3408 }
3409
3410 j = pci_vpd_info_field_size(&vpd_data[i]);
3411 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3412 if (i + j > vpd_size) {
3413 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3414 return;
3415 }
3416
3417 netif_info(efx, drv, efx->net_dev,
3418 "Part Number : %.*s\n", j, &vpd_data[i]);
3419
3420 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3421 j = ro_size;
3422 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3423 if (i < 0) {
3424 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3425 return;
3426 }
3427
3428 j = pci_vpd_info_field_size(&vpd_data[i]);
3429 i += PCI_VPD_INFO_FLD_HDR_SIZE;
3430 if (i + j > vpd_size) {
3431 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3432 return;
3433 }
3434
3435 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3436 if (!efx->vpd_sn)
3437 return;
3438
3439 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3440 }
3441
3442
3443 /* Main body of NIC initialisation
3444 * This is called at module load (or hotplug insertion, theoretically).
3445 */
3446 static int efx_pci_probe_main(struct efx_nic *efx)
3447 {
3448 int rc;
3449
3450 /* Do start-of-day initialisation */
3451 rc = efx_probe_all(efx);
3452 if (rc)
3453 goto fail1;
3454
3455 efx_init_napi(efx);
3456
3457 down_write(&efx->filter_sem);
3458 rc = efx->type->init(efx);
3459 up_write(&efx->filter_sem);
3460 if (rc) {
3461 netif_err(efx, probe, efx->net_dev,
3462 "failed to initialise NIC\n");
3463 goto fail3;
3464 }
3465
3466 rc = efx_init_port(efx);
3467 if (rc) {
3468 netif_err(efx, probe, efx->net_dev,
3469 "failed to initialise port\n");
3470 goto fail4;
3471 }
3472
3473 rc = efx_nic_init_interrupt(efx);
3474 if (rc)
3475 goto fail5;
3476
3477 efx_set_interrupt_affinity(efx);
3478 rc = efx_enable_interrupts(efx);
3479 if (rc)
3480 goto fail6;
3481
3482 return 0;
3483
3484 fail6:
3485 efx_clear_interrupt_affinity(efx);
3486 efx_nic_fini_interrupt(efx);
3487 fail5:
3488 efx_fini_port(efx);
3489 fail4:
3490 efx->type->fini(efx);
3491 fail3:
3492 efx_fini_napi(efx);
3493 efx_remove_all(efx);
3494 fail1:
3495 return rc;
3496 }
3497
3498 static int efx_pci_probe_post_io(struct efx_nic *efx)
3499 {
3500 struct net_device *net_dev = efx->net_dev;
3501 int rc = efx_pci_probe_main(efx);
3502
3503 if (rc)
3504 return rc;
3505
3506 if (efx->type->sriov_init) {
3507 rc = efx->type->sriov_init(efx);
3508 if (rc)
3509 netif_err(efx, probe, efx->net_dev,
3510 "SR-IOV can't be enabled rc %d\n", rc);
3511 }
3512
3513 /* Determine netdevice features */
3514 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3515 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
3516 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
3517 net_dev->features |= NETIF_F_TSO6;
3518 /* Check whether device supports TSO */
3519 if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
3520 net_dev->features &= ~NETIF_F_ALL_TSO;
3521 /* Mask for features that also apply to VLAN devices */
3522 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
3523 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3524 NETIF_F_RXCSUM);
3525
3526 net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
3527
3528 /* Disable receiving frames with bad FCS, by default. */
3529 net_dev->features &= ~NETIF_F_RXALL;
3530
3531 /* Disable VLAN filtering by default. It may be enforced if
3532 * the feature is fixed (i.e. VLAN filters are required to
3533 * receive VLAN tagged packets due to vPort restrictions).
3534 */
3535 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3536 net_dev->features |= efx->fixed_features;
3537
3538 rc = efx_register_netdev(efx);
3539 if (!rc)
3540 return 0;
3541
3542 efx_pci_remove_main(efx);
3543 return rc;
3544 }
3545
3546 /* NIC initialisation
3547 *
3548 * This is called at module load (or hotplug insertion,
3549 * theoretically). It sets up PCI mappings, resets the NIC,
3550 * sets up and registers the network devices with the kernel and hooks
3551 * the interrupt service routine. It does not prepare the device for
3552 * transmission; this is left to the first time one of the network
3553 * interfaces is brought up (i.e. efx_net_open).
3554 */
3555 static int efx_pci_probe(struct pci_dev *pci_dev,
3556 const struct pci_device_id *entry)
3557 {
3558 struct net_device *net_dev;
3559 struct efx_nic *efx;
3560 int rc;
3561
3562 /* Allocate and initialise a struct net_device and struct efx_nic */
3563 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3564 EFX_MAX_RX_QUEUES);
3565 if (!net_dev)
3566 return -ENOMEM;
3567 efx = netdev_priv(net_dev);
3568 efx->type = (const struct efx_nic_type *) entry->driver_data;
3569 efx->fixed_features |= NETIF_F_HIGHDMA;
3570
3571 pci_set_drvdata(pci_dev, efx);
3572 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3573 rc = efx_init_struct(efx, pci_dev, net_dev);
3574 if (rc)
3575 goto fail1;
3576
3577 netif_info(efx, probe, efx->net_dev,
3578 "Solarflare NIC detected\n");
3579
3580 if (!efx->type->is_vf)
3581 efx_probe_vpd_strings(efx);
3582
3583 /* Set up basic I/O (BAR mappings etc) */
3584 rc = efx_init_io(efx);
3585 if (rc)
3586 goto fail2;
3587
3588 rc = efx_pci_probe_post_io(efx);
3589 if (rc) {
3590 /* On failure, retry once immediately.
3591 * If we aborted probe due to a scheduled reset, dismiss it.
3592 */
3593 efx->reset_pending = 0;
3594 rc = efx_pci_probe_post_io(efx);
3595 if (rc) {
3596 /* On another failure, retry once more
3597 * after a 50-305ms delay.
3598 */
3599 unsigned char r;
3600
3601 get_random_bytes(&r, 1);
3602 msleep((unsigned int)r + 50);
3603 efx->reset_pending = 0;
3604 rc = efx_pci_probe_post_io(efx);
3605 }
3606 }
3607 if (rc)
3608 goto fail3;
3609
3610 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3611
3612 /* Try to create MTDs, but allow this to fail */
3613 rtnl_lock();
3614 rc = efx_mtd_probe(efx);
3615 rtnl_unlock();
3616 if (rc && rc != -EPERM)
3617 netif_warn(efx, probe, efx->net_dev,
3618 "failed to create MTDs (%d)\n", rc);
3619
3620 rc = pci_enable_pcie_error_reporting(pci_dev);
3621 if (rc && rc != -EINVAL)
3622 netif_notice(efx, probe, efx->net_dev,
3623 "PCIE error reporting unavailable (%d).\n",
3624 rc);
3625
3626 if (efx->type->udp_tnl_push_ports)
3627 efx->type->udp_tnl_push_ports(efx);
3628
3629 return 0;
3630
3631 fail3:
3632 efx_fini_io(efx);
3633 fail2:
3634 efx_fini_struct(efx);
3635 fail1:
3636 WARN_ON(rc > 0);
3637 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3638 free_netdev(net_dev);
3639 return rc;
3640 }
3641
3642 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3643 * enabled on success
3644 */
3645 #ifdef CONFIG_SFC_SRIOV
3646 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3647 {
3648 int rc;
3649 struct efx_nic *efx = pci_get_drvdata(dev);
3650
3651 if (efx->type->sriov_configure) {
3652 rc = efx->type->sriov_configure(efx, num_vfs);
3653 if (rc)
3654 return rc;
3655 else
3656 return num_vfs;
3657 } else
3658 return -EOPNOTSUPP;
3659 }
3660 #endif
3661
3662 static int efx_pm_freeze(struct device *dev)
3663 {
3664 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3665
3666 rtnl_lock();
3667
3668 if (efx->state != STATE_DISABLED) {
3669 efx->state = STATE_UNINIT;
3670
3671 efx_device_detach_sync(efx);
3672
3673 efx_stop_all(efx);
3674 efx_disable_interrupts(efx);
3675 }
3676
3677 rtnl_unlock();
3678
3679 return 0;
3680 }
3681
3682 static int efx_pm_thaw(struct device *dev)
3683 {
3684 int rc;
3685 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3686
3687 rtnl_lock();
3688
3689 if (efx->state != STATE_DISABLED) {
3690 rc = efx_enable_interrupts(efx);
3691 if (rc)
3692 goto fail;
3693
3694 mutex_lock(&efx->mac_lock);
3695 efx->phy_op->reconfigure(efx);
3696 mutex_unlock(&efx->mac_lock);
3697
3698 efx_start_all(efx);
3699
3700 efx_device_attach_if_not_resetting(efx);
3701
3702 efx->state = STATE_READY;
3703
3704 efx->type->resume_wol(efx);
3705 }
3706
3707 rtnl_unlock();
3708
3709 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3710 queue_work(reset_workqueue, &efx->reset_work);
3711
3712 return 0;
3713
3714 fail:
3715 rtnl_unlock();
3716
3717 return rc;
3718 }
3719
3720 static int efx_pm_poweroff(struct device *dev)
3721 {
3722 struct pci_dev *pci_dev = to_pci_dev(dev);
3723 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3724
3725 efx->type->fini(efx);
3726
3727 efx->reset_pending = 0;
3728
3729 pci_save_state(pci_dev);
3730 return pci_set_power_state(pci_dev, PCI_D3hot);
3731 }
3732
3733 /* Used for both resume and restore */
3734 static int efx_pm_resume(struct device *dev)
3735 {
3736 struct pci_dev *pci_dev = to_pci_dev(dev);
3737 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3738 int rc;
3739
3740 rc = pci_set_power_state(pci_dev, PCI_D0);
3741 if (rc)
3742 return rc;
3743 pci_restore_state(pci_dev);
3744 rc = pci_enable_device(pci_dev);
3745 if (rc)
3746 return rc;
3747 pci_set_master(efx->pci_dev);
3748 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3749 if (rc)
3750 return rc;
3751 down_write(&efx->filter_sem);
3752 rc = efx->type->init(efx);
3753 up_write(&efx->filter_sem);
3754 if (rc)
3755 return rc;
3756 rc = efx_pm_thaw(dev);
3757 return rc;
3758 }
3759
3760 static int efx_pm_suspend(struct device *dev)
3761 {
3762 int rc;
3763
3764 efx_pm_freeze(dev);
3765 rc = efx_pm_poweroff(dev);
3766 if (rc)
3767 efx_pm_resume(dev);
3768 return rc;
3769 }
3770
3771 static const struct dev_pm_ops efx_pm_ops = {
3772 .suspend = efx_pm_suspend,
3773 .resume = efx_pm_resume,
3774 .freeze = efx_pm_freeze,
3775 .thaw = efx_pm_thaw,
3776 .poweroff = efx_pm_poweroff,
3777 .restore = efx_pm_resume,
3778 };
3779
3780 /* A PCI error affecting this device was detected.
3781 * At this point MMIO and DMA may be disabled.
3782 * Stop the software path and request a slot reset.
3783 */
3784 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3785 enum pci_channel_state state)
3786 {
3787 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3788 struct efx_nic *efx = pci_get_drvdata(pdev);
3789
3790 if (state == pci_channel_io_perm_failure)
3791 return PCI_ERS_RESULT_DISCONNECT;
3792
3793 rtnl_lock();
3794
3795 if (efx->state != STATE_DISABLED) {
3796 efx->state = STATE_RECOVERY;
3797 efx->reset_pending = 0;
3798
3799 efx_device_detach_sync(efx);
3800
3801 efx_stop_all(efx);
3802 efx_disable_interrupts(efx);
3803
3804 status = PCI_ERS_RESULT_NEED_RESET;
3805 } else {
3806 /* If the interface is disabled we don't want to do anything
3807 * with it.
3808 */
3809 status = PCI_ERS_RESULT_RECOVERED;
3810 }
3811
3812 rtnl_unlock();
3813
3814 pci_disable_device(pdev);
3815
3816 return status;
3817 }
3818
3819 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3820 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3821 {
3822 struct efx_nic *efx = pci_get_drvdata(pdev);
3823 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3824
3825 if (pci_enable_device(pdev)) {
3826 netif_err(efx, hw, efx->net_dev,
3827 "Cannot re-enable PCI device after reset.\n");
3828 status = PCI_ERS_RESULT_DISCONNECT;
3829 }
3830
3831 return status;
3832 }
3833
3834 /* Perform the actual reset and resume I/O operations. */
3835 static void efx_io_resume(struct pci_dev *pdev)
3836 {
3837 struct efx_nic *efx = pci_get_drvdata(pdev);
3838 int rc;
3839
3840 rtnl_lock();
3841
3842 if (efx->state == STATE_DISABLED)
3843 goto out;
3844
3845 rc = efx_reset(efx, RESET_TYPE_ALL);
3846 if (rc) {
3847 netif_err(efx, hw, efx->net_dev,
3848 "efx_reset failed after PCI error (%d)\n", rc);
3849 } else {
3850 efx->state = STATE_READY;
3851 netif_dbg(efx, hw, efx->net_dev,
3852 "Done resetting and resuming IO after PCI error.\n");
3853 }
3854
3855 out:
3856 rtnl_unlock();
3857 }
3858
3859 /* For simplicity and reliability, we always require a slot reset and try to
3860 * reset the hardware when a pci error affecting the device is detected.
3861 * We leave both the link_reset and mmio_enabled callback unimplemented:
3862 * with our request for slot reset the mmio_enabled callback will never be
3863 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3864 */
3865 static const struct pci_error_handlers efx_err_handlers = {
3866 .error_detected = efx_io_error_detected,
3867 .slot_reset = efx_io_slot_reset,
3868 .resume = efx_io_resume,
3869 };
3870
3871 static struct pci_driver efx_pci_driver = {
3872 .name = KBUILD_MODNAME,
3873 .id_table = efx_pci_table,
3874 .probe = efx_pci_probe,
3875 .remove = efx_pci_remove,
3876 .driver.pm = &efx_pm_ops,
3877 .err_handler = &efx_err_handlers,
3878 #ifdef CONFIG_SFC_SRIOV
3879 .sriov_configure = efx_pci_sriov_configure,
3880 #endif
3881 };
3882
3883 /**************************************************************************
3884 *
3885 * Kernel module interface
3886 *
3887 *************************************************************************/
3888
3889 module_param(interrupt_mode, uint, 0444);
3890 MODULE_PARM_DESC(interrupt_mode,
3891 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3892
3893 static int __init efx_init_module(void)
3894 {
3895 int rc;
3896
3897 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3898
3899 rc = register_netdevice_notifier(&efx_netdev_notifier);
3900 if (rc)
3901 goto err_notifier;
3902
3903 #ifdef CONFIG_SFC_SRIOV
3904 rc = efx_init_sriov();
3905 if (rc)
3906 goto err_sriov;
3907 #endif
3908
3909 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3910 if (!reset_workqueue) {
3911 rc = -ENOMEM;
3912 goto err_reset;
3913 }
3914
3915 rc = pci_register_driver(&efx_pci_driver);
3916 if (rc < 0)
3917 goto err_pci;
3918
3919 return 0;
3920
3921 err_pci:
3922 destroy_workqueue(reset_workqueue);
3923 err_reset:
3924 #ifdef CONFIG_SFC_SRIOV
3925 efx_fini_sriov();
3926 err_sriov:
3927 #endif
3928 unregister_netdevice_notifier(&efx_netdev_notifier);
3929 err_notifier:
3930 return rc;
3931 }
3932
3933 static void __exit efx_exit_module(void)
3934 {
3935 printk(KERN_INFO "Solarflare NET driver unloading\n");
3936
3937 pci_unregister_driver(&efx_pci_driver);
3938 destroy_workqueue(reset_workqueue);
3939 #ifdef CONFIG_SFC_SRIOV
3940 efx_fini_sriov();
3941 #endif
3942 unregister_netdevice_notifier(&efx_netdev_notifier);
3943
3944 }
3945
3946 module_init(efx_init_module);
3947 module_exit(efx_exit_module);
3948
3949 MODULE_AUTHOR("Solarflare Communications and "
3950 "Michael Brown <mbrown@fensystems.co.uk>");
3951 MODULE_DESCRIPTION("Solarflare network driver");
3952 MODULE_LICENSE("GPL");
3953 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3954 MODULE_VERSION(EFX_DRIVER_VERSION);