]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/sfc/efx.c
Merge tag 'renesas-dt5-for-v3.15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29
30 #include "mcdi.h"
31 #include "workarounds.h"
32
33 /**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42 const char *const efx_loopback_mode_names[] = {
43 [LOOPBACK_NONE] = "NONE",
44 [LOOPBACK_DATA] = "DATAPATH",
45 [LOOPBACK_GMAC] = "GMAC",
46 [LOOPBACK_XGMII] = "XGMII",
47 [LOOPBACK_XGXS] = "XGXS",
48 [LOOPBACK_XAUI] = "XAUI",
49 [LOOPBACK_GMII] = "GMII",
50 [LOOPBACK_SGMII] = "SGMII",
51 [LOOPBACK_XGBR] = "XGBR",
52 [LOOPBACK_XFI] = "XFI",
53 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
54 [LOOPBACK_GMII_FAR] = "GMII_FAR",
55 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
56 [LOOPBACK_XFI_FAR] = "XFI_FAR",
57 [LOOPBACK_GPHY] = "GPHY",
58 [LOOPBACK_PHYXS] = "PHYXS",
59 [LOOPBACK_PCS] = "PCS",
60 [LOOPBACK_PMAPMD] = "PMA/PMD",
61 [LOOPBACK_XPORT] = "XPORT",
62 [LOOPBACK_XGMII_WS] = "XGMII_WS",
63 [LOOPBACK_XAUI_WS] = "XAUI_WS",
64 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
65 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66 [LOOPBACK_GMII_WS] = "GMII_WS",
67 [LOOPBACK_XFI_WS] = "XFI_WS",
68 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
69 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
70 };
71
72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73 const char *const efx_reset_type_names[] = {
74 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
75 [RESET_TYPE_ALL] = "ALL",
76 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
77 [RESET_TYPE_WORLD] = "WORLD",
78 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79 [RESET_TYPE_DISABLE] = "DISABLE",
80 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
81 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
82 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
83 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
84 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
85 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
86 [RESET_TYPE_MC_BIST] = "MC_BIST",
87 };
88
89 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
90 * queued onto this work queue. This is not a per-nic work queue, because
91 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92 */
93 static struct workqueue_struct *reset_workqueue;
94
95 /* How often and how many times to poll for a reset while waiting for a
96 * BIST that another function started to complete.
97 */
98 #define BIST_WAIT_DELAY_MS 100
99 #define BIST_WAIT_DELAY_COUNT 100
100
101 /**************************************************************************
102 *
103 * Configurable values
104 *
105 *************************************************************************/
106
107 /*
108 * Use separate channels for TX and RX events
109 *
110 * Set this to 1 to use separate channels for TX and RX. It allows us
111 * to control interrupt affinity separately for TX and RX.
112 *
113 * This is only used in MSI-X interrupt mode
114 */
115 static bool separate_tx_channels;
116 module_param(separate_tx_channels, bool, 0444);
117 MODULE_PARM_DESC(separate_tx_channels,
118 "Use separate channels for TX and RX");
119
120 /* This is the weight assigned to each of the (per-channel) virtual
121 * NAPI devices.
122 */
123 static int napi_weight = 64;
124
125 /* This is the time (in jiffies) between invocations of the hardware
126 * monitor.
127 * On Falcon-based NICs, this will:
128 * - Check the on-board hardware monitor;
129 * - Poll the link state and reconfigure the hardware as necessary.
130 * On Siena-based NICs for power systems with EEH support, this will give EEH a
131 * chance to start.
132 */
133 static unsigned int efx_monitor_interval = 1 * HZ;
134
135 /* Initial interrupt moderation settings. They can be modified after
136 * module load with ethtool.
137 *
138 * The default for RX should strike a balance between increasing the
139 * round-trip latency and reducing overhead.
140 */
141 static unsigned int rx_irq_mod_usec = 60;
142
143 /* Initial interrupt moderation settings. They can be modified after
144 * module load with ethtool.
145 *
146 * This default is chosen to ensure that a 10G link does not go idle
147 * while a TX queue is stopped after it has become full. A queue is
148 * restarted when it drops below half full. The time this takes (assuming
149 * worst case 3 descriptors per packet and 1024 descriptors) is
150 * 512 / 3 * 1.2 = 205 usec.
151 */
152 static unsigned int tx_irq_mod_usec = 150;
153
154 /* This is the first interrupt mode to try out of:
155 * 0 => MSI-X
156 * 1 => MSI
157 * 2 => legacy
158 */
159 static unsigned int interrupt_mode;
160
161 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
162 * i.e. the number of CPUs among which we may distribute simultaneous
163 * interrupt handling.
164 *
165 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
166 * The default (0) means to assign an interrupt to each core.
167 */
168 static unsigned int rss_cpus;
169 module_param(rss_cpus, uint, 0444);
170 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
171
172 static bool phy_flash_cfg;
173 module_param(phy_flash_cfg, bool, 0644);
174 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
175
176 static unsigned irq_adapt_low_thresh = 8000;
177 module_param(irq_adapt_low_thresh, uint, 0644);
178 MODULE_PARM_DESC(irq_adapt_low_thresh,
179 "Threshold score for reducing IRQ moderation");
180
181 static unsigned irq_adapt_high_thresh = 16000;
182 module_param(irq_adapt_high_thresh, uint, 0644);
183 MODULE_PARM_DESC(irq_adapt_high_thresh,
184 "Threshold score for increasing IRQ moderation");
185
186 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
187 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
188 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
189 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
190 module_param(debug, uint, 0);
191 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
192
193 /**************************************************************************
194 *
195 * Utility functions and prototypes
196 *
197 *************************************************************************/
198
199 static int efx_soft_enable_interrupts(struct efx_nic *efx);
200 static void efx_soft_disable_interrupts(struct efx_nic *efx);
201 static void efx_remove_channel(struct efx_channel *channel);
202 static void efx_remove_channels(struct efx_nic *efx);
203 static const struct efx_channel_type efx_default_channel_type;
204 static void efx_remove_port(struct efx_nic *efx);
205 static void efx_init_napi_channel(struct efx_channel *channel);
206 static void efx_fini_napi(struct efx_nic *efx);
207 static void efx_fini_napi_channel(struct efx_channel *channel);
208 static void efx_fini_struct(struct efx_nic *efx);
209 static void efx_start_all(struct efx_nic *efx);
210 static void efx_stop_all(struct efx_nic *efx);
211
212 #define EFX_ASSERT_RESET_SERIALISED(efx) \
213 do { \
214 if ((efx->state == STATE_READY) || \
215 (efx->state == STATE_RECOVERY) || \
216 (efx->state == STATE_DISABLED)) \
217 ASSERT_RTNL(); \
218 } while (0)
219
220 static int efx_check_disabled(struct efx_nic *efx)
221 {
222 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
223 netif_err(efx, drv, efx->net_dev,
224 "device is disabled due to earlier errors\n");
225 return -EIO;
226 }
227 return 0;
228 }
229
230 /**************************************************************************
231 *
232 * Event queue processing
233 *
234 *************************************************************************/
235
236 /* Process channel's event queue
237 *
238 * This function is responsible for processing the event queue of a
239 * single channel. The caller must guarantee that this function will
240 * never be concurrently called more than once on the same channel,
241 * though different channels may be being processed concurrently.
242 */
243 static int efx_process_channel(struct efx_channel *channel, int budget)
244 {
245 int spent;
246
247 if (unlikely(!channel->enabled))
248 return 0;
249
250 spent = efx_nic_process_eventq(channel, budget);
251 if (spent && efx_channel_has_rx_queue(channel)) {
252 struct efx_rx_queue *rx_queue =
253 efx_channel_get_rx_queue(channel);
254
255 efx_rx_flush_packet(channel);
256 efx_fast_push_rx_descriptors(rx_queue, true);
257 }
258
259 return spent;
260 }
261
262 /* NAPI poll handler
263 *
264 * NAPI guarantees serialisation of polls of the same device, which
265 * provides the guarantee required by efx_process_channel().
266 */
267 static int efx_poll(struct napi_struct *napi, int budget)
268 {
269 struct efx_channel *channel =
270 container_of(napi, struct efx_channel, napi_str);
271 struct efx_nic *efx = channel->efx;
272 int spent;
273
274 netif_vdbg(efx, intr, efx->net_dev,
275 "channel %d NAPI poll executing on CPU %d\n",
276 channel->channel, raw_smp_processor_id());
277
278 spent = efx_process_channel(channel, budget);
279
280 if (spent < budget) {
281 if (efx_channel_has_rx_queue(channel) &&
282 efx->irq_rx_adaptive &&
283 unlikely(++channel->irq_count == 1000)) {
284 if (unlikely(channel->irq_mod_score <
285 irq_adapt_low_thresh)) {
286 if (channel->irq_moderation > 1) {
287 channel->irq_moderation -= 1;
288 efx->type->push_irq_moderation(channel);
289 }
290 } else if (unlikely(channel->irq_mod_score >
291 irq_adapt_high_thresh)) {
292 if (channel->irq_moderation <
293 efx->irq_rx_moderation) {
294 channel->irq_moderation += 1;
295 efx->type->push_irq_moderation(channel);
296 }
297 }
298 channel->irq_count = 0;
299 channel->irq_mod_score = 0;
300 }
301
302 efx_filter_rfs_expire(channel);
303
304 /* There is no race here; although napi_disable() will
305 * only wait for napi_complete(), this isn't a problem
306 * since efx_nic_eventq_read_ack() will have no effect if
307 * interrupts have already been disabled.
308 */
309 napi_complete(napi);
310 efx_nic_eventq_read_ack(channel);
311 }
312
313 return spent;
314 }
315
316 /* Create event queue
317 * Event queue memory allocations are done only once. If the channel
318 * is reset, the memory buffer will be reused; this guards against
319 * errors during channel reset and also simplifies interrupt handling.
320 */
321 static int efx_probe_eventq(struct efx_channel *channel)
322 {
323 struct efx_nic *efx = channel->efx;
324 unsigned long entries;
325
326 netif_dbg(efx, probe, efx->net_dev,
327 "chan %d create event queue\n", channel->channel);
328
329 /* Build an event queue with room for one event per tx and rx buffer,
330 * plus some extra for link state events and MCDI completions. */
331 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
332 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
333 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
334
335 return efx_nic_probe_eventq(channel);
336 }
337
338 /* Prepare channel's event queue */
339 static int efx_init_eventq(struct efx_channel *channel)
340 {
341 struct efx_nic *efx = channel->efx;
342 int rc;
343
344 EFX_WARN_ON_PARANOID(channel->eventq_init);
345
346 netif_dbg(efx, drv, efx->net_dev,
347 "chan %d init event queue\n", channel->channel);
348
349 rc = efx_nic_init_eventq(channel);
350 if (rc == 0) {
351 efx->type->push_irq_moderation(channel);
352 channel->eventq_read_ptr = 0;
353 channel->eventq_init = true;
354 }
355 return rc;
356 }
357
358 /* Enable event queue processing and NAPI */
359 static void efx_start_eventq(struct efx_channel *channel)
360 {
361 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
362 "chan %d start event queue\n", channel->channel);
363
364 /* Make sure the NAPI handler sees the enabled flag set */
365 channel->enabled = true;
366 smp_wmb();
367
368 napi_enable(&channel->napi_str);
369 efx_nic_eventq_read_ack(channel);
370 }
371
372 /* Disable event queue processing and NAPI */
373 static void efx_stop_eventq(struct efx_channel *channel)
374 {
375 if (!channel->enabled)
376 return;
377
378 napi_disable(&channel->napi_str);
379 channel->enabled = false;
380 }
381
382 static void efx_fini_eventq(struct efx_channel *channel)
383 {
384 if (!channel->eventq_init)
385 return;
386
387 netif_dbg(channel->efx, drv, channel->efx->net_dev,
388 "chan %d fini event queue\n", channel->channel);
389
390 efx_nic_fini_eventq(channel);
391 channel->eventq_init = false;
392 }
393
394 static void efx_remove_eventq(struct efx_channel *channel)
395 {
396 netif_dbg(channel->efx, drv, channel->efx->net_dev,
397 "chan %d remove event queue\n", channel->channel);
398
399 efx_nic_remove_eventq(channel);
400 }
401
402 /**************************************************************************
403 *
404 * Channel handling
405 *
406 *************************************************************************/
407
408 /* Allocate and initialise a channel structure. */
409 static struct efx_channel *
410 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
411 {
412 struct efx_channel *channel;
413 struct efx_rx_queue *rx_queue;
414 struct efx_tx_queue *tx_queue;
415 int j;
416
417 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
418 if (!channel)
419 return NULL;
420
421 channel->efx = efx;
422 channel->channel = i;
423 channel->type = &efx_default_channel_type;
424
425 for (j = 0; j < EFX_TXQ_TYPES; j++) {
426 tx_queue = &channel->tx_queue[j];
427 tx_queue->efx = efx;
428 tx_queue->queue = i * EFX_TXQ_TYPES + j;
429 tx_queue->channel = channel;
430 }
431
432 rx_queue = &channel->rx_queue;
433 rx_queue->efx = efx;
434 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
435 (unsigned long)rx_queue);
436
437 return channel;
438 }
439
440 /* Allocate and initialise a channel structure, copying parameters
441 * (but not resources) from an old channel structure.
442 */
443 static struct efx_channel *
444 efx_copy_channel(const struct efx_channel *old_channel)
445 {
446 struct efx_channel *channel;
447 struct efx_rx_queue *rx_queue;
448 struct efx_tx_queue *tx_queue;
449 int j;
450
451 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
452 if (!channel)
453 return NULL;
454
455 *channel = *old_channel;
456
457 channel->napi_dev = NULL;
458 memset(&channel->eventq, 0, sizeof(channel->eventq));
459
460 for (j = 0; j < EFX_TXQ_TYPES; j++) {
461 tx_queue = &channel->tx_queue[j];
462 if (tx_queue->channel)
463 tx_queue->channel = channel;
464 tx_queue->buffer = NULL;
465 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
466 }
467
468 rx_queue = &channel->rx_queue;
469 rx_queue->buffer = NULL;
470 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
471 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
472 (unsigned long)rx_queue);
473
474 return channel;
475 }
476
477 static int efx_probe_channel(struct efx_channel *channel)
478 {
479 struct efx_tx_queue *tx_queue;
480 struct efx_rx_queue *rx_queue;
481 int rc;
482
483 netif_dbg(channel->efx, probe, channel->efx->net_dev,
484 "creating channel %d\n", channel->channel);
485
486 rc = channel->type->pre_probe(channel);
487 if (rc)
488 goto fail;
489
490 rc = efx_probe_eventq(channel);
491 if (rc)
492 goto fail;
493
494 efx_for_each_channel_tx_queue(tx_queue, channel) {
495 rc = efx_probe_tx_queue(tx_queue);
496 if (rc)
497 goto fail;
498 }
499
500 efx_for_each_channel_rx_queue(rx_queue, channel) {
501 rc = efx_probe_rx_queue(rx_queue);
502 if (rc)
503 goto fail;
504 }
505
506 return 0;
507
508 fail:
509 efx_remove_channel(channel);
510 return rc;
511 }
512
513 static void
514 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
515 {
516 struct efx_nic *efx = channel->efx;
517 const char *type;
518 int number;
519
520 number = channel->channel;
521 if (efx->tx_channel_offset == 0) {
522 type = "";
523 } else if (channel->channel < efx->tx_channel_offset) {
524 type = "-rx";
525 } else {
526 type = "-tx";
527 number -= efx->tx_channel_offset;
528 }
529 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
530 }
531
532 static void efx_set_channel_names(struct efx_nic *efx)
533 {
534 struct efx_channel *channel;
535
536 efx_for_each_channel(channel, efx)
537 channel->type->get_name(channel,
538 efx->msi_context[channel->channel].name,
539 sizeof(efx->msi_context[0].name));
540 }
541
542 static int efx_probe_channels(struct efx_nic *efx)
543 {
544 struct efx_channel *channel;
545 int rc;
546
547 /* Restart special buffer allocation */
548 efx->next_buffer_table = 0;
549
550 /* Probe channels in reverse, so that any 'extra' channels
551 * use the start of the buffer table. This allows the traffic
552 * channels to be resized without moving them or wasting the
553 * entries before them.
554 */
555 efx_for_each_channel_rev(channel, efx) {
556 rc = efx_probe_channel(channel);
557 if (rc) {
558 netif_err(efx, probe, efx->net_dev,
559 "failed to create channel %d\n",
560 channel->channel);
561 goto fail;
562 }
563 }
564 efx_set_channel_names(efx);
565
566 return 0;
567
568 fail:
569 efx_remove_channels(efx);
570 return rc;
571 }
572
573 /* Channels are shutdown and reinitialised whilst the NIC is running
574 * to propagate configuration changes (mtu, checksum offload), or
575 * to clear hardware error conditions
576 */
577 static void efx_start_datapath(struct efx_nic *efx)
578 {
579 bool old_rx_scatter = efx->rx_scatter;
580 struct efx_tx_queue *tx_queue;
581 struct efx_rx_queue *rx_queue;
582 struct efx_channel *channel;
583 size_t rx_buf_len;
584
585 /* Calculate the rx buffer allocation parameters required to
586 * support the current MTU, including padding for header
587 * alignment and overruns.
588 */
589 efx->rx_dma_len = (efx->rx_prefix_size +
590 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
591 efx->type->rx_buffer_padding);
592 rx_buf_len = (sizeof(struct efx_rx_page_state) +
593 efx->rx_ip_align + efx->rx_dma_len);
594 if (rx_buf_len <= PAGE_SIZE) {
595 efx->rx_scatter = efx->type->always_rx_scatter;
596 efx->rx_buffer_order = 0;
597 } else if (efx->type->can_rx_scatter) {
598 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
599 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
600 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
601 EFX_RX_BUF_ALIGNMENT) >
602 PAGE_SIZE);
603 efx->rx_scatter = true;
604 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
605 efx->rx_buffer_order = 0;
606 } else {
607 efx->rx_scatter = false;
608 efx->rx_buffer_order = get_order(rx_buf_len);
609 }
610
611 efx_rx_config_page_split(efx);
612 if (efx->rx_buffer_order)
613 netif_dbg(efx, drv, efx->net_dev,
614 "RX buf len=%u; page order=%u batch=%u\n",
615 efx->rx_dma_len, efx->rx_buffer_order,
616 efx->rx_pages_per_batch);
617 else
618 netif_dbg(efx, drv, efx->net_dev,
619 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
620 efx->rx_dma_len, efx->rx_page_buf_step,
621 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
622
623 /* RX filters may also have scatter-enabled flags */
624 if (efx->rx_scatter != old_rx_scatter)
625 efx->type->filter_update_rx_scatter(efx);
626
627 /* We must keep at least one descriptor in a TX ring empty.
628 * We could avoid this when the queue size does not exactly
629 * match the hardware ring size, but it's not that important.
630 * Therefore we stop the queue when one more skb might fill
631 * the ring completely. We wake it when half way back to
632 * empty.
633 */
634 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
635 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
636
637 /* Initialise the channels */
638 efx_for_each_channel(channel, efx) {
639 efx_for_each_channel_tx_queue(tx_queue, channel) {
640 efx_init_tx_queue(tx_queue);
641 atomic_inc(&efx->active_queues);
642 }
643
644 efx_for_each_channel_rx_queue(rx_queue, channel) {
645 efx_init_rx_queue(rx_queue);
646 atomic_inc(&efx->active_queues);
647 efx_stop_eventq(channel);
648 efx_fast_push_rx_descriptors(rx_queue, false);
649 efx_start_eventq(channel);
650 }
651
652 WARN_ON(channel->rx_pkt_n_frags);
653 }
654
655 efx_ptp_start_datapath(efx);
656
657 if (netif_device_present(efx->net_dev))
658 netif_tx_wake_all_queues(efx->net_dev);
659 }
660
661 static void efx_stop_datapath(struct efx_nic *efx)
662 {
663 struct efx_channel *channel;
664 struct efx_tx_queue *tx_queue;
665 struct efx_rx_queue *rx_queue;
666 int rc;
667
668 EFX_ASSERT_RESET_SERIALISED(efx);
669 BUG_ON(efx->port_enabled);
670
671 efx_ptp_stop_datapath(efx);
672
673 /* Stop RX refill */
674 efx_for_each_channel(channel, efx) {
675 efx_for_each_channel_rx_queue(rx_queue, channel)
676 rx_queue->refill_enabled = false;
677 }
678
679 efx_for_each_channel(channel, efx) {
680 /* RX packet processing is pipelined, so wait for the
681 * NAPI handler to complete. At least event queue 0
682 * might be kept active by non-data events, so don't
683 * use napi_synchronize() but actually disable NAPI
684 * temporarily.
685 */
686 if (efx_channel_has_rx_queue(channel)) {
687 efx_stop_eventq(channel);
688 efx_start_eventq(channel);
689 }
690 }
691
692 rc = efx->type->fini_dmaq(efx);
693 if (rc && EFX_WORKAROUND_7803(efx)) {
694 /* Schedule a reset to recover from the flush failure. The
695 * descriptor caches reference memory we're about to free,
696 * but falcon_reconfigure_mac_wrapper() won't reconnect
697 * the MACs because of the pending reset.
698 */
699 netif_err(efx, drv, efx->net_dev,
700 "Resetting to recover from flush failure\n");
701 efx_schedule_reset(efx, RESET_TYPE_ALL);
702 } else if (rc) {
703 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
704 } else {
705 netif_dbg(efx, drv, efx->net_dev,
706 "successfully flushed all queues\n");
707 }
708
709 efx_for_each_channel(channel, efx) {
710 efx_for_each_channel_rx_queue(rx_queue, channel)
711 efx_fini_rx_queue(rx_queue);
712 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
713 efx_fini_tx_queue(tx_queue);
714 }
715 }
716
717 static void efx_remove_channel(struct efx_channel *channel)
718 {
719 struct efx_tx_queue *tx_queue;
720 struct efx_rx_queue *rx_queue;
721
722 netif_dbg(channel->efx, drv, channel->efx->net_dev,
723 "destroy chan %d\n", channel->channel);
724
725 efx_for_each_channel_rx_queue(rx_queue, channel)
726 efx_remove_rx_queue(rx_queue);
727 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
728 efx_remove_tx_queue(tx_queue);
729 efx_remove_eventq(channel);
730 channel->type->post_remove(channel);
731 }
732
733 static void efx_remove_channels(struct efx_nic *efx)
734 {
735 struct efx_channel *channel;
736
737 efx_for_each_channel(channel, efx)
738 efx_remove_channel(channel);
739 }
740
741 int
742 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
743 {
744 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
745 u32 old_rxq_entries, old_txq_entries;
746 unsigned i, next_buffer_table = 0;
747 int rc, rc2;
748
749 rc = efx_check_disabled(efx);
750 if (rc)
751 return rc;
752
753 /* Not all channels should be reallocated. We must avoid
754 * reallocating their buffer table entries.
755 */
756 efx_for_each_channel(channel, efx) {
757 struct efx_rx_queue *rx_queue;
758 struct efx_tx_queue *tx_queue;
759
760 if (channel->type->copy)
761 continue;
762 next_buffer_table = max(next_buffer_table,
763 channel->eventq.index +
764 channel->eventq.entries);
765 efx_for_each_channel_rx_queue(rx_queue, channel)
766 next_buffer_table = max(next_buffer_table,
767 rx_queue->rxd.index +
768 rx_queue->rxd.entries);
769 efx_for_each_channel_tx_queue(tx_queue, channel)
770 next_buffer_table = max(next_buffer_table,
771 tx_queue->txd.index +
772 tx_queue->txd.entries);
773 }
774
775 efx_device_detach_sync(efx);
776 efx_stop_all(efx);
777 efx_soft_disable_interrupts(efx);
778
779 /* Clone channels (where possible) */
780 memset(other_channel, 0, sizeof(other_channel));
781 for (i = 0; i < efx->n_channels; i++) {
782 channel = efx->channel[i];
783 if (channel->type->copy)
784 channel = channel->type->copy(channel);
785 if (!channel) {
786 rc = -ENOMEM;
787 goto out;
788 }
789 other_channel[i] = channel;
790 }
791
792 /* Swap entry counts and channel pointers */
793 old_rxq_entries = efx->rxq_entries;
794 old_txq_entries = efx->txq_entries;
795 efx->rxq_entries = rxq_entries;
796 efx->txq_entries = txq_entries;
797 for (i = 0; i < efx->n_channels; i++) {
798 channel = efx->channel[i];
799 efx->channel[i] = other_channel[i];
800 other_channel[i] = channel;
801 }
802
803 /* Restart buffer table allocation */
804 efx->next_buffer_table = next_buffer_table;
805
806 for (i = 0; i < efx->n_channels; i++) {
807 channel = efx->channel[i];
808 if (!channel->type->copy)
809 continue;
810 rc = efx_probe_channel(channel);
811 if (rc)
812 goto rollback;
813 efx_init_napi_channel(efx->channel[i]);
814 }
815
816 out:
817 /* Destroy unused channel structures */
818 for (i = 0; i < efx->n_channels; i++) {
819 channel = other_channel[i];
820 if (channel && channel->type->copy) {
821 efx_fini_napi_channel(channel);
822 efx_remove_channel(channel);
823 kfree(channel);
824 }
825 }
826
827 rc2 = efx_soft_enable_interrupts(efx);
828 if (rc2) {
829 rc = rc ? rc : rc2;
830 netif_err(efx, drv, efx->net_dev,
831 "unable to restart interrupts on channel reallocation\n");
832 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
833 } else {
834 efx_start_all(efx);
835 netif_device_attach(efx->net_dev);
836 }
837 return rc;
838
839 rollback:
840 /* Swap back */
841 efx->rxq_entries = old_rxq_entries;
842 efx->txq_entries = old_txq_entries;
843 for (i = 0; i < efx->n_channels; i++) {
844 channel = efx->channel[i];
845 efx->channel[i] = other_channel[i];
846 other_channel[i] = channel;
847 }
848 goto out;
849 }
850
851 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
852 {
853 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
854 }
855
856 static const struct efx_channel_type efx_default_channel_type = {
857 .pre_probe = efx_channel_dummy_op_int,
858 .post_remove = efx_channel_dummy_op_void,
859 .get_name = efx_get_channel_name,
860 .copy = efx_copy_channel,
861 .keep_eventq = false,
862 };
863
864 int efx_channel_dummy_op_int(struct efx_channel *channel)
865 {
866 return 0;
867 }
868
869 void efx_channel_dummy_op_void(struct efx_channel *channel)
870 {
871 }
872
873 /**************************************************************************
874 *
875 * Port handling
876 *
877 **************************************************************************/
878
879 /* This ensures that the kernel is kept informed (via
880 * netif_carrier_on/off) of the link status, and also maintains the
881 * link status's stop on the port's TX queue.
882 */
883 void efx_link_status_changed(struct efx_nic *efx)
884 {
885 struct efx_link_state *link_state = &efx->link_state;
886
887 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
888 * that no events are triggered between unregister_netdev() and the
889 * driver unloading. A more general condition is that NETDEV_CHANGE
890 * can only be generated between NETDEV_UP and NETDEV_DOWN */
891 if (!netif_running(efx->net_dev))
892 return;
893
894 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
895 efx->n_link_state_changes++;
896
897 if (link_state->up)
898 netif_carrier_on(efx->net_dev);
899 else
900 netif_carrier_off(efx->net_dev);
901 }
902
903 /* Status message for kernel log */
904 if (link_state->up)
905 netif_info(efx, link, efx->net_dev,
906 "link up at %uMbps %s-duplex (MTU %d)\n",
907 link_state->speed, link_state->fd ? "full" : "half",
908 efx->net_dev->mtu);
909 else
910 netif_info(efx, link, efx->net_dev, "link down\n");
911 }
912
913 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
914 {
915 efx->link_advertising = advertising;
916 if (advertising) {
917 if (advertising & ADVERTISED_Pause)
918 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
919 else
920 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
921 if (advertising & ADVERTISED_Asym_Pause)
922 efx->wanted_fc ^= EFX_FC_TX;
923 }
924 }
925
926 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
927 {
928 efx->wanted_fc = wanted_fc;
929 if (efx->link_advertising) {
930 if (wanted_fc & EFX_FC_RX)
931 efx->link_advertising |= (ADVERTISED_Pause |
932 ADVERTISED_Asym_Pause);
933 else
934 efx->link_advertising &= ~(ADVERTISED_Pause |
935 ADVERTISED_Asym_Pause);
936 if (wanted_fc & EFX_FC_TX)
937 efx->link_advertising ^= ADVERTISED_Asym_Pause;
938 }
939 }
940
941 static void efx_fini_port(struct efx_nic *efx);
942
943 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
944 * the MAC appropriately. All other PHY configuration changes are pushed
945 * through phy_op->set_settings(), and pushed asynchronously to the MAC
946 * through efx_monitor().
947 *
948 * Callers must hold the mac_lock
949 */
950 int __efx_reconfigure_port(struct efx_nic *efx)
951 {
952 enum efx_phy_mode phy_mode;
953 int rc;
954
955 WARN_ON(!mutex_is_locked(&efx->mac_lock));
956
957 /* Disable PHY transmit in mac level loopbacks */
958 phy_mode = efx->phy_mode;
959 if (LOOPBACK_INTERNAL(efx))
960 efx->phy_mode |= PHY_MODE_TX_DISABLED;
961 else
962 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
963
964 rc = efx->type->reconfigure_port(efx);
965
966 if (rc)
967 efx->phy_mode = phy_mode;
968
969 return rc;
970 }
971
972 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
973 * disabled. */
974 int efx_reconfigure_port(struct efx_nic *efx)
975 {
976 int rc;
977
978 EFX_ASSERT_RESET_SERIALISED(efx);
979
980 mutex_lock(&efx->mac_lock);
981 rc = __efx_reconfigure_port(efx);
982 mutex_unlock(&efx->mac_lock);
983
984 return rc;
985 }
986
987 /* Asynchronous work item for changing MAC promiscuity and multicast
988 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
989 * MAC directly. */
990 static void efx_mac_work(struct work_struct *data)
991 {
992 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
993
994 mutex_lock(&efx->mac_lock);
995 if (efx->port_enabled)
996 efx->type->reconfigure_mac(efx);
997 mutex_unlock(&efx->mac_lock);
998 }
999
1000 static int efx_probe_port(struct efx_nic *efx)
1001 {
1002 int rc;
1003
1004 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1005
1006 if (phy_flash_cfg)
1007 efx->phy_mode = PHY_MODE_SPECIAL;
1008
1009 /* Connect up MAC/PHY operations table */
1010 rc = efx->type->probe_port(efx);
1011 if (rc)
1012 return rc;
1013
1014 /* Initialise MAC address to permanent address */
1015 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1016
1017 return 0;
1018 }
1019
1020 static int efx_init_port(struct efx_nic *efx)
1021 {
1022 int rc;
1023
1024 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1025
1026 mutex_lock(&efx->mac_lock);
1027
1028 rc = efx->phy_op->init(efx);
1029 if (rc)
1030 goto fail1;
1031
1032 efx->port_initialized = true;
1033
1034 /* Reconfigure the MAC before creating dma queues (required for
1035 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1036 efx->type->reconfigure_mac(efx);
1037
1038 /* Ensure the PHY advertises the correct flow control settings */
1039 rc = efx->phy_op->reconfigure(efx);
1040 if (rc)
1041 goto fail2;
1042
1043 mutex_unlock(&efx->mac_lock);
1044 return 0;
1045
1046 fail2:
1047 efx->phy_op->fini(efx);
1048 fail1:
1049 mutex_unlock(&efx->mac_lock);
1050 return rc;
1051 }
1052
1053 static void efx_start_port(struct efx_nic *efx)
1054 {
1055 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1056 BUG_ON(efx->port_enabled);
1057
1058 mutex_lock(&efx->mac_lock);
1059 efx->port_enabled = true;
1060
1061 /* Ensure MAC ingress/egress is enabled */
1062 efx->type->reconfigure_mac(efx);
1063
1064 mutex_unlock(&efx->mac_lock);
1065 }
1066
1067 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1068 * and the async self-test, wait for them to finish and prevent them
1069 * being scheduled again. This doesn't cover online resets, which
1070 * should only be cancelled when removing the device.
1071 */
1072 static void efx_stop_port(struct efx_nic *efx)
1073 {
1074 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1075
1076 EFX_ASSERT_RESET_SERIALISED(efx);
1077
1078 mutex_lock(&efx->mac_lock);
1079 efx->port_enabled = false;
1080 mutex_unlock(&efx->mac_lock);
1081
1082 /* Serialise against efx_set_multicast_list() */
1083 netif_addr_lock_bh(efx->net_dev);
1084 netif_addr_unlock_bh(efx->net_dev);
1085
1086 cancel_delayed_work_sync(&efx->monitor_work);
1087 efx_selftest_async_cancel(efx);
1088 cancel_work_sync(&efx->mac_work);
1089 }
1090
1091 static void efx_fini_port(struct efx_nic *efx)
1092 {
1093 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1094
1095 if (!efx->port_initialized)
1096 return;
1097
1098 efx->phy_op->fini(efx);
1099 efx->port_initialized = false;
1100
1101 efx->link_state.up = false;
1102 efx_link_status_changed(efx);
1103 }
1104
1105 static void efx_remove_port(struct efx_nic *efx)
1106 {
1107 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1108
1109 efx->type->remove_port(efx);
1110 }
1111
1112 /**************************************************************************
1113 *
1114 * NIC handling
1115 *
1116 **************************************************************************/
1117
1118 static LIST_HEAD(efx_primary_list);
1119 static LIST_HEAD(efx_unassociated_list);
1120
1121 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1122 {
1123 return left->type == right->type &&
1124 left->vpd_sn && right->vpd_sn &&
1125 !strcmp(left->vpd_sn, right->vpd_sn);
1126 }
1127
1128 static void efx_associate(struct efx_nic *efx)
1129 {
1130 struct efx_nic *other, *next;
1131
1132 if (efx->primary == efx) {
1133 /* Adding primary function; look for secondaries */
1134
1135 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1136 list_add_tail(&efx->node, &efx_primary_list);
1137
1138 list_for_each_entry_safe(other, next, &efx_unassociated_list,
1139 node) {
1140 if (efx_same_controller(efx, other)) {
1141 list_del(&other->node);
1142 netif_dbg(other, probe, other->net_dev,
1143 "moving to secondary list of %s %s\n",
1144 pci_name(efx->pci_dev),
1145 efx->net_dev->name);
1146 list_add_tail(&other->node,
1147 &efx->secondary_list);
1148 other->primary = efx;
1149 }
1150 }
1151 } else {
1152 /* Adding secondary function; look for primary */
1153
1154 list_for_each_entry(other, &efx_primary_list, node) {
1155 if (efx_same_controller(efx, other)) {
1156 netif_dbg(efx, probe, efx->net_dev,
1157 "adding to secondary list of %s %s\n",
1158 pci_name(other->pci_dev),
1159 other->net_dev->name);
1160 list_add_tail(&efx->node,
1161 &other->secondary_list);
1162 efx->primary = other;
1163 return;
1164 }
1165 }
1166
1167 netif_dbg(efx, probe, efx->net_dev,
1168 "adding to unassociated list\n");
1169 list_add_tail(&efx->node, &efx_unassociated_list);
1170 }
1171 }
1172
1173 static void efx_dissociate(struct efx_nic *efx)
1174 {
1175 struct efx_nic *other, *next;
1176
1177 list_del(&efx->node);
1178 efx->primary = NULL;
1179
1180 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1181 list_del(&other->node);
1182 netif_dbg(other, probe, other->net_dev,
1183 "moving to unassociated list\n");
1184 list_add_tail(&other->node, &efx_unassociated_list);
1185 other->primary = NULL;
1186 }
1187 }
1188
1189 /* This configures the PCI device to enable I/O and DMA. */
1190 static int efx_init_io(struct efx_nic *efx)
1191 {
1192 struct pci_dev *pci_dev = efx->pci_dev;
1193 dma_addr_t dma_mask = efx->type->max_dma_mask;
1194 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1195 int rc;
1196
1197 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1198
1199 rc = pci_enable_device(pci_dev);
1200 if (rc) {
1201 netif_err(efx, probe, efx->net_dev,
1202 "failed to enable PCI device\n");
1203 goto fail1;
1204 }
1205
1206 pci_set_master(pci_dev);
1207
1208 /* Set the PCI DMA mask. Try all possibilities from our
1209 * genuine mask down to 32 bits, because some architectures
1210 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1211 * masks event though they reject 46 bit masks.
1212 */
1213 while (dma_mask > 0x7fffffffUL) {
1214 if (dma_supported(&pci_dev->dev, dma_mask)) {
1215 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1216 if (rc == 0)
1217 break;
1218 }
1219 dma_mask >>= 1;
1220 }
1221 if (rc) {
1222 netif_err(efx, probe, efx->net_dev,
1223 "could not find a suitable DMA mask\n");
1224 goto fail2;
1225 }
1226 netif_dbg(efx, probe, efx->net_dev,
1227 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1228
1229 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1230 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1231 if (rc) {
1232 netif_err(efx, probe, efx->net_dev,
1233 "request for memory BAR failed\n");
1234 rc = -EIO;
1235 goto fail3;
1236 }
1237 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1238 if (!efx->membase) {
1239 netif_err(efx, probe, efx->net_dev,
1240 "could not map memory BAR at %llx+%x\n",
1241 (unsigned long long)efx->membase_phys, mem_map_size);
1242 rc = -ENOMEM;
1243 goto fail4;
1244 }
1245 netif_dbg(efx, probe, efx->net_dev,
1246 "memory BAR at %llx+%x (virtual %p)\n",
1247 (unsigned long long)efx->membase_phys, mem_map_size,
1248 efx->membase);
1249
1250 return 0;
1251
1252 fail4:
1253 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1254 fail3:
1255 efx->membase_phys = 0;
1256 fail2:
1257 pci_disable_device(efx->pci_dev);
1258 fail1:
1259 return rc;
1260 }
1261
1262 static void efx_fini_io(struct efx_nic *efx)
1263 {
1264 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1265
1266 if (efx->membase) {
1267 iounmap(efx->membase);
1268 efx->membase = NULL;
1269 }
1270
1271 if (efx->membase_phys) {
1272 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1273 efx->membase_phys = 0;
1274 }
1275
1276 pci_disable_device(efx->pci_dev);
1277 }
1278
1279 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1280 {
1281 cpumask_var_t thread_mask;
1282 unsigned int count;
1283 int cpu;
1284
1285 if (rss_cpus) {
1286 count = rss_cpus;
1287 } else {
1288 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1289 netif_warn(efx, probe, efx->net_dev,
1290 "RSS disabled due to allocation failure\n");
1291 return 1;
1292 }
1293
1294 count = 0;
1295 for_each_online_cpu(cpu) {
1296 if (!cpumask_test_cpu(cpu, thread_mask)) {
1297 ++count;
1298 cpumask_or(thread_mask, thread_mask,
1299 topology_thread_cpumask(cpu));
1300 }
1301 }
1302
1303 free_cpumask_var(thread_mask);
1304 }
1305
1306 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1307 * table entries that are inaccessible to VFs
1308 */
1309 if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1310 count > efx_vf_size(efx)) {
1311 netif_warn(efx, probe, efx->net_dev,
1312 "Reducing number of RSS channels from %u to %u for "
1313 "VF support. Increase vf-msix-limit to use more "
1314 "channels on the PF.\n",
1315 count, efx_vf_size(efx));
1316 count = efx_vf_size(efx);
1317 }
1318
1319 return count;
1320 }
1321
1322 /* Probe the number and type of interrupts we are able to obtain, and
1323 * the resulting numbers of channels and RX queues.
1324 */
1325 static int efx_probe_interrupts(struct efx_nic *efx)
1326 {
1327 unsigned int extra_channels = 0;
1328 unsigned int i, j;
1329 int rc;
1330
1331 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1332 if (efx->extra_channel_type[i])
1333 ++extra_channels;
1334
1335 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1336 struct msix_entry xentries[EFX_MAX_CHANNELS];
1337 unsigned int n_channels;
1338
1339 n_channels = efx_wanted_parallelism(efx);
1340 if (separate_tx_channels)
1341 n_channels *= 2;
1342 n_channels += extra_channels;
1343 n_channels = min(n_channels, efx->max_channels);
1344
1345 for (i = 0; i < n_channels; i++)
1346 xentries[i].entry = i;
1347 rc = pci_enable_msix_range(efx->pci_dev,
1348 xentries, 1, n_channels);
1349 if (rc < 0) {
1350 /* Fall back to single channel MSI */
1351 efx->interrupt_mode = EFX_INT_MODE_MSI;
1352 netif_err(efx, drv, efx->net_dev,
1353 "could not enable MSI-X\n");
1354 } else if (rc < n_channels) {
1355 netif_err(efx, drv, efx->net_dev,
1356 "WARNING: Insufficient MSI-X vectors"
1357 " available (%d < %u).\n", rc, n_channels);
1358 netif_err(efx, drv, efx->net_dev,
1359 "WARNING: Performance may be reduced.\n");
1360 n_channels = rc;
1361 }
1362
1363 if (rc > 0) {
1364 efx->n_channels = n_channels;
1365 if (n_channels > extra_channels)
1366 n_channels -= extra_channels;
1367 if (separate_tx_channels) {
1368 efx->n_tx_channels = max(n_channels / 2, 1U);
1369 efx->n_rx_channels = max(n_channels -
1370 efx->n_tx_channels,
1371 1U);
1372 } else {
1373 efx->n_tx_channels = n_channels;
1374 efx->n_rx_channels = n_channels;
1375 }
1376 for (i = 0; i < efx->n_channels; i++)
1377 efx_get_channel(efx, i)->irq =
1378 xentries[i].vector;
1379 }
1380 }
1381
1382 /* Try single interrupt MSI */
1383 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1384 efx->n_channels = 1;
1385 efx->n_rx_channels = 1;
1386 efx->n_tx_channels = 1;
1387 rc = pci_enable_msi(efx->pci_dev);
1388 if (rc == 0) {
1389 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1390 } else {
1391 netif_err(efx, drv, efx->net_dev,
1392 "could not enable MSI\n");
1393 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1394 }
1395 }
1396
1397 /* Assume legacy interrupts */
1398 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1399 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1400 efx->n_rx_channels = 1;
1401 efx->n_tx_channels = 1;
1402 efx->legacy_irq = efx->pci_dev->irq;
1403 }
1404
1405 /* Assign extra channels if possible */
1406 j = efx->n_channels;
1407 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1408 if (!efx->extra_channel_type[i])
1409 continue;
1410 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1411 efx->n_channels <= extra_channels) {
1412 efx->extra_channel_type[i]->handle_no_channel(efx);
1413 } else {
1414 --j;
1415 efx_get_channel(efx, j)->type =
1416 efx->extra_channel_type[i];
1417 }
1418 }
1419
1420 /* RSS might be usable on VFs even if it is disabled on the PF */
1421 efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1422 efx->n_rx_channels : efx_vf_size(efx));
1423
1424 return 0;
1425 }
1426
1427 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1428 {
1429 struct efx_channel *channel, *end_channel;
1430 int rc;
1431
1432 BUG_ON(efx->state == STATE_DISABLED);
1433
1434 efx->irq_soft_enabled = true;
1435 smp_wmb();
1436
1437 efx_for_each_channel(channel, efx) {
1438 if (!channel->type->keep_eventq) {
1439 rc = efx_init_eventq(channel);
1440 if (rc)
1441 goto fail;
1442 }
1443 efx_start_eventq(channel);
1444 }
1445
1446 efx_mcdi_mode_event(efx);
1447
1448 return 0;
1449 fail:
1450 end_channel = channel;
1451 efx_for_each_channel(channel, efx) {
1452 if (channel == end_channel)
1453 break;
1454 efx_stop_eventq(channel);
1455 if (!channel->type->keep_eventq)
1456 efx_fini_eventq(channel);
1457 }
1458
1459 return rc;
1460 }
1461
1462 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1463 {
1464 struct efx_channel *channel;
1465
1466 if (efx->state == STATE_DISABLED)
1467 return;
1468
1469 efx_mcdi_mode_poll(efx);
1470
1471 efx->irq_soft_enabled = false;
1472 smp_wmb();
1473
1474 if (efx->legacy_irq)
1475 synchronize_irq(efx->legacy_irq);
1476
1477 efx_for_each_channel(channel, efx) {
1478 if (channel->irq)
1479 synchronize_irq(channel->irq);
1480
1481 efx_stop_eventq(channel);
1482 if (!channel->type->keep_eventq)
1483 efx_fini_eventq(channel);
1484 }
1485
1486 /* Flush the asynchronous MCDI request queue */
1487 efx_mcdi_flush_async(efx);
1488 }
1489
1490 static int efx_enable_interrupts(struct efx_nic *efx)
1491 {
1492 struct efx_channel *channel, *end_channel;
1493 int rc;
1494
1495 BUG_ON(efx->state == STATE_DISABLED);
1496
1497 if (efx->eeh_disabled_legacy_irq) {
1498 enable_irq(efx->legacy_irq);
1499 efx->eeh_disabled_legacy_irq = false;
1500 }
1501
1502 efx->type->irq_enable_master(efx);
1503
1504 efx_for_each_channel(channel, efx) {
1505 if (channel->type->keep_eventq) {
1506 rc = efx_init_eventq(channel);
1507 if (rc)
1508 goto fail;
1509 }
1510 }
1511
1512 rc = efx_soft_enable_interrupts(efx);
1513 if (rc)
1514 goto fail;
1515
1516 return 0;
1517
1518 fail:
1519 end_channel = channel;
1520 efx_for_each_channel(channel, efx) {
1521 if (channel == end_channel)
1522 break;
1523 if (channel->type->keep_eventq)
1524 efx_fini_eventq(channel);
1525 }
1526
1527 efx->type->irq_disable_non_ev(efx);
1528
1529 return rc;
1530 }
1531
1532 static void efx_disable_interrupts(struct efx_nic *efx)
1533 {
1534 struct efx_channel *channel;
1535
1536 efx_soft_disable_interrupts(efx);
1537
1538 efx_for_each_channel(channel, efx) {
1539 if (channel->type->keep_eventq)
1540 efx_fini_eventq(channel);
1541 }
1542
1543 efx->type->irq_disable_non_ev(efx);
1544 }
1545
1546 static void efx_remove_interrupts(struct efx_nic *efx)
1547 {
1548 struct efx_channel *channel;
1549
1550 /* Remove MSI/MSI-X interrupts */
1551 efx_for_each_channel(channel, efx)
1552 channel->irq = 0;
1553 pci_disable_msi(efx->pci_dev);
1554 pci_disable_msix(efx->pci_dev);
1555
1556 /* Remove legacy interrupt */
1557 efx->legacy_irq = 0;
1558 }
1559
1560 static void efx_set_channels(struct efx_nic *efx)
1561 {
1562 struct efx_channel *channel;
1563 struct efx_tx_queue *tx_queue;
1564
1565 efx->tx_channel_offset =
1566 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1567
1568 /* We need to mark which channels really have RX and TX
1569 * queues, and adjust the TX queue numbers if we have separate
1570 * RX-only and TX-only channels.
1571 */
1572 efx_for_each_channel(channel, efx) {
1573 if (channel->channel < efx->n_rx_channels)
1574 channel->rx_queue.core_index = channel->channel;
1575 else
1576 channel->rx_queue.core_index = -1;
1577
1578 efx_for_each_channel_tx_queue(tx_queue, channel)
1579 tx_queue->queue -= (efx->tx_channel_offset *
1580 EFX_TXQ_TYPES);
1581 }
1582 }
1583
1584 static int efx_probe_nic(struct efx_nic *efx)
1585 {
1586 size_t i;
1587 int rc;
1588
1589 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1590
1591 /* Carry out hardware-type specific initialisation */
1592 rc = efx->type->probe(efx);
1593 if (rc)
1594 return rc;
1595
1596 /* Determine the number of channels and queues by trying to hook
1597 * in MSI-X interrupts. */
1598 rc = efx_probe_interrupts(efx);
1599 if (rc)
1600 goto fail1;
1601
1602 efx_set_channels(efx);
1603
1604 rc = efx->type->dimension_resources(efx);
1605 if (rc)
1606 goto fail2;
1607
1608 if (efx->n_channels > 1)
1609 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1610 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1611 efx->rx_indir_table[i] =
1612 ethtool_rxfh_indir_default(i, efx->rss_spread);
1613
1614 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1615 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1616
1617 /* Initialise the interrupt moderation settings */
1618 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1619 true);
1620
1621 return 0;
1622
1623 fail2:
1624 efx_remove_interrupts(efx);
1625 fail1:
1626 efx->type->remove(efx);
1627 return rc;
1628 }
1629
1630 static void efx_remove_nic(struct efx_nic *efx)
1631 {
1632 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1633
1634 efx_remove_interrupts(efx);
1635 efx->type->remove(efx);
1636 }
1637
1638 static int efx_probe_filters(struct efx_nic *efx)
1639 {
1640 int rc;
1641
1642 spin_lock_init(&efx->filter_lock);
1643
1644 rc = efx->type->filter_table_probe(efx);
1645 if (rc)
1646 return rc;
1647
1648 #ifdef CONFIG_RFS_ACCEL
1649 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1650 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1651 sizeof(*efx->rps_flow_id),
1652 GFP_KERNEL);
1653 if (!efx->rps_flow_id) {
1654 efx->type->filter_table_remove(efx);
1655 return -ENOMEM;
1656 }
1657 }
1658 #endif
1659
1660 return 0;
1661 }
1662
1663 static void efx_remove_filters(struct efx_nic *efx)
1664 {
1665 #ifdef CONFIG_RFS_ACCEL
1666 kfree(efx->rps_flow_id);
1667 #endif
1668 efx->type->filter_table_remove(efx);
1669 }
1670
1671 static void efx_restore_filters(struct efx_nic *efx)
1672 {
1673 efx->type->filter_table_restore(efx);
1674 }
1675
1676 /**************************************************************************
1677 *
1678 * NIC startup/shutdown
1679 *
1680 *************************************************************************/
1681
1682 static int efx_probe_all(struct efx_nic *efx)
1683 {
1684 int rc;
1685
1686 rc = efx_probe_nic(efx);
1687 if (rc) {
1688 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1689 goto fail1;
1690 }
1691
1692 rc = efx_probe_port(efx);
1693 if (rc) {
1694 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1695 goto fail2;
1696 }
1697
1698 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1699 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1700 rc = -EINVAL;
1701 goto fail3;
1702 }
1703 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1704
1705 rc = efx_probe_filters(efx);
1706 if (rc) {
1707 netif_err(efx, probe, efx->net_dev,
1708 "failed to create filter tables\n");
1709 goto fail3;
1710 }
1711
1712 rc = efx_probe_channels(efx);
1713 if (rc)
1714 goto fail4;
1715
1716 return 0;
1717
1718 fail4:
1719 efx_remove_filters(efx);
1720 fail3:
1721 efx_remove_port(efx);
1722 fail2:
1723 efx_remove_nic(efx);
1724 fail1:
1725 return rc;
1726 }
1727
1728 /* If the interface is supposed to be running but is not, start
1729 * the hardware and software data path, regular activity for the port
1730 * (MAC statistics, link polling, etc.) and schedule the port to be
1731 * reconfigured. Interrupts must already be enabled. This function
1732 * is safe to call multiple times, so long as the NIC is not disabled.
1733 * Requires the RTNL lock.
1734 */
1735 static void efx_start_all(struct efx_nic *efx)
1736 {
1737 EFX_ASSERT_RESET_SERIALISED(efx);
1738 BUG_ON(efx->state == STATE_DISABLED);
1739
1740 /* Check that it is appropriate to restart the interface. All
1741 * of these flags are safe to read under just the rtnl lock */
1742 if (efx->port_enabled || !netif_running(efx->net_dev))
1743 return;
1744
1745 efx_start_port(efx);
1746 efx_start_datapath(efx);
1747
1748 /* Start the hardware monitor if there is one */
1749 if (efx->type->monitor != NULL)
1750 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1751 efx_monitor_interval);
1752
1753 /* If link state detection is normally event-driven, we have
1754 * to poll now because we could have missed a change
1755 */
1756 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1757 mutex_lock(&efx->mac_lock);
1758 if (efx->phy_op->poll(efx))
1759 efx_link_status_changed(efx);
1760 mutex_unlock(&efx->mac_lock);
1761 }
1762
1763 efx->type->start_stats(efx);
1764 efx->type->pull_stats(efx);
1765 spin_lock_bh(&efx->stats_lock);
1766 efx->type->update_stats(efx, NULL, NULL);
1767 spin_unlock_bh(&efx->stats_lock);
1768 }
1769
1770 /* Quiesce the hardware and software data path, and regular activity
1771 * for the port without bringing the link down. Safe to call multiple
1772 * times with the NIC in almost any state, but interrupts should be
1773 * enabled. Requires the RTNL lock.
1774 */
1775 static void efx_stop_all(struct efx_nic *efx)
1776 {
1777 EFX_ASSERT_RESET_SERIALISED(efx);
1778
1779 /* port_enabled can be read safely under the rtnl lock */
1780 if (!efx->port_enabled)
1781 return;
1782
1783 /* update stats before we go down so we can accurately count
1784 * rx_nodesc_drops
1785 */
1786 efx->type->pull_stats(efx);
1787 spin_lock_bh(&efx->stats_lock);
1788 efx->type->update_stats(efx, NULL, NULL);
1789 spin_unlock_bh(&efx->stats_lock);
1790 efx->type->stop_stats(efx);
1791 efx_stop_port(efx);
1792
1793 /* Stop the kernel transmit interface. This is only valid if
1794 * the device is stopped or detached; otherwise the watchdog
1795 * may fire immediately.
1796 */
1797 WARN_ON(netif_running(efx->net_dev) &&
1798 netif_device_present(efx->net_dev));
1799 netif_tx_disable(efx->net_dev);
1800
1801 efx_stop_datapath(efx);
1802 }
1803
1804 static void efx_remove_all(struct efx_nic *efx)
1805 {
1806 efx_remove_channels(efx);
1807 efx_remove_filters(efx);
1808 efx_remove_port(efx);
1809 efx_remove_nic(efx);
1810 }
1811
1812 /**************************************************************************
1813 *
1814 * Interrupt moderation
1815 *
1816 **************************************************************************/
1817
1818 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1819 {
1820 if (usecs == 0)
1821 return 0;
1822 if (usecs * 1000 < quantum_ns)
1823 return 1; /* never round down to 0 */
1824 return usecs * 1000 / quantum_ns;
1825 }
1826
1827 /* Set interrupt moderation parameters */
1828 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1829 unsigned int rx_usecs, bool rx_adaptive,
1830 bool rx_may_override_tx)
1831 {
1832 struct efx_channel *channel;
1833 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1834 efx->timer_quantum_ns,
1835 1000);
1836 unsigned int tx_ticks;
1837 unsigned int rx_ticks;
1838
1839 EFX_ASSERT_RESET_SERIALISED(efx);
1840
1841 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1842 return -EINVAL;
1843
1844 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1845 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1846
1847 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1848 !rx_may_override_tx) {
1849 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1850 "RX and TX IRQ moderation must be equal\n");
1851 return -EINVAL;
1852 }
1853
1854 efx->irq_rx_adaptive = rx_adaptive;
1855 efx->irq_rx_moderation = rx_ticks;
1856 efx_for_each_channel(channel, efx) {
1857 if (efx_channel_has_rx_queue(channel))
1858 channel->irq_moderation = rx_ticks;
1859 else if (efx_channel_has_tx_queues(channel))
1860 channel->irq_moderation = tx_ticks;
1861 }
1862
1863 return 0;
1864 }
1865
1866 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1867 unsigned int *rx_usecs, bool *rx_adaptive)
1868 {
1869 /* We must round up when converting ticks to microseconds
1870 * because we round down when converting the other way.
1871 */
1872
1873 *rx_adaptive = efx->irq_rx_adaptive;
1874 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1875 efx->timer_quantum_ns,
1876 1000);
1877
1878 /* If channels are shared between RX and TX, so is IRQ
1879 * moderation. Otherwise, IRQ moderation is the same for all
1880 * TX channels and is not adaptive.
1881 */
1882 if (efx->tx_channel_offset == 0)
1883 *tx_usecs = *rx_usecs;
1884 else
1885 *tx_usecs = DIV_ROUND_UP(
1886 efx->channel[efx->tx_channel_offset]->irq_moderation *
1887 efx->timer_quantum_ns,
1888 1000);
1889 }
1890
1891 /**************************************************************************
1892 *
1893 * Hardware monitor
1894 *
1895 **************************************************************************/
1896
1897 /* Run periodically off the general workqueue */
1898 static void efx_monitor(struct work_struct *data)
1899 {
1900 struct efx_nic *efx = container_of(data, struct efx_nic,
1901 monitor_work.work);
1902
1903 netif_vdbg(efx, timer, efx->net_dev,
1904 "hardware monitor executing on CPU %d\n",
1905 raw_smp_processor_id());
1906 BUG_ON(efx->type->monitor == NULL);
1907
1908 /* If the mac_lock is already held then it is likely a port
1909 * reconfiguration is already in place, which will likely do
1910 * most of the work of monitor() anyway. */
1911 if (mutex_trylock(&efx->mac_lock)) {
1912 if (efx->port_enabled)
1913 efx->type->monitor(efx);
1914 mutex_unlock(&efx->mac_lock);
1915 }
1916
1917 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1918 efx_monitor_interval);
1919 }
1920
1921 /**************************************************************************
1922 *
1923 * ioctls
1924 *
1925 *************************************************************************/
1926
1927 /* Net device ioctl
1928 * Context: process, rtnl_lock() held.
1929 */
1930 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1931 {
1932 struct efx_nic *efx = netdev_priv(net_dev);
1933 struct mii_ioctl_data *data = if_mii(ifr);
1934
1935 if (cmd == SIOCSHWTSTAMP)
1936 return efx_ptp_set_ts_config(efx, ifr);
1937 if (cmd == SIOCGHWTSTAMP)
1938 return efx_ptp_get_ts_config(efx, ifr);
1939
1940 /* Convert phy_id from older PRTAD/DEVAD format */
1941 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1942 (data->phy_id & 0xfc00) == 0x0400)
1943 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1944
1945 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1946 }
1947
1948 /**************************************************************************
1949 *
1950 * NAPI interface
1951 *
1952 **************************************************************************/
1953
1954 static void efx_init_napi_channel(struct efx_channel *channel)
1955 {
1956 struct efx_nic *efx = channel->efx;
1957
1958 channel->napi_dev = efx->net_dev;
1959 netif_napi_add(channel->napi_dev, &channel->napi_str,
1960 efx_poll, napi_weight);
1961 }
1962
1963 static void efx_init_napi(struct efx_nic *efx)
1964 {
1965 struct efx_channel *channel;
1966
1967 efx_for_each_channel(channel, efx)
1968 efx_init_napi_channel(channel);
1969 }
1970
1971 static void efx_fini_napi_channel(struct efx_channel *channel)
1972 {
1973 if (channel->napi_dev)
1974 netif_napi_del(&channel->napi_str);
1975 channel->napi_dev = NULL;
1976 }
1977
1978 static void efx_fini_napi(struct efx_nic *efx)
1979 {
1980 struct efx_channel *channel;
1981
1982 efx_for_each_channel(channel, efx)
1983 efx_fini_napi_channel(channel);
1984 }
1985
1986 /**************************************************************************
1987 *
1988 * Kernel netpoll interface
1989 *
1990 *************************************************************************/
1991
1992 #ifdef CONFIG_NET_POLL_CONTROLLER
1993
1994 /* Although in the common case interrupts will be disabled, this is not
1995 * guaranteed. However, all our work happens inside the NAPI callback,
1996 * so no locking is required.
1997 */
1998 static void efx_netpoll(struct net_device *net_dev)
1999 {
2000 struct efx_nic *efx = netdev_priv(net_dev);
2001 struct efx_channel *channel;
2002
2003 efx_for_each_channel(channel, efx)
2004 efx_schedule_channel(channel);
2005 }
2006
2007 #endif
2008
2009 /**************************************************************************
2010 *
2011 * Kernel net device interface
2012 *
2013 *************************************************************************/
2014
2015 /* Context: process, rtnl_lock() held. */
2016 static int efx_net_open(struct net_device *net_dev)
2017 {
2018 struct efx_nic *efx = netdev_priv(net_dev);
2019 int rc;
2020
2021 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2022 raw_smp_processor_id());
2023
2024 rc = efx_check_disabled(efx);
2025 if (rc)
2026 return rc;
2027 if (efx->phy_mode & PHY_MODE_SPECIAL)
2028 return -EBUSY;
2029 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2030 return -EIO;
2031
2032 /* Notify the kernel of the link state polled during driver load,
2033 * before the monitor starts running */
2034 efx_link_status_changed(efx);
2035
2036 efx_start_all(efx);
2037 efx_selftest_async_start(efx);
2038 return 0;
2039 }
2040
2041 /* Context: process, rtnl_lock() held.
2042 * Note that the kernel will ignore our return code; this method
2043 * should really be a void.
2044 */
2045 static int efx_net_stop(struct net_device *net_dev)
2046 {
2047 struct efx_nic *efx = netdev_priv(net_dev);
2048
2049 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2050 raw_smp_processor_id());
2051
2052 /* Stop the device and flush all the channels */
2053 efx_stop_all(efx);
2054
2055 return 0;
2056 }
2057
2058 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2059 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2060 struct rtnl_link_stats64 *stats)
2061 {
2062 struct efx_nic *efx = netdev_priv(net_dev);
2063
2064 spin_lock_bh(&efx->stats_lock);
2065 efx->type->update_stats(efx, NULL, stats);
2066 spin_unlock_bh(&efx->stats_lock);
2067
2068 return stats;
2069 }
2070
2071 /* Context: netif_tx_lock held, BHs disabled. */
2072 static void efx_watchdog(struct net_device *net_dev)
2073 {
2074 struct efx_nic *efx = netdev_priv(net_dev);
2075
2076 netif_err(efx, tx_err, efx->net_dev,
2077 "TX stuck with port_enabled=%d: resetting channels\n",
2078 efx->port_enabled);
2079
2080 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2081 }
2082
2083
2084 /* Context: process, rtnl_lock() held. */
2085 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2086 {
2087 struct efx_nic *efx = netdev_priv(net_dev);
2088 int rc;
2089
2090 rc = efx_check_disabled(efx);
2091 if (rc)
2092 return rc;
2093 if (new_mtu > EFX_MAX_MTU)
2094 return -EINVAL;
2095
2096 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2097
2098 efx_device_detach_sync(efx);
2099 efx_stop_all(efx);
2100
2101 mutex_lock(&efx->mac_lock);
2102 net_dev->mtu = new_mtu;
2103 efx->type->reconfigure_mac(efx);
2104 mutex_unlock(&efx->mac_lock);
2105
2106 efx_start_all(efx);
2107 netif_device_attach(efx->net_dev);
2108 return 0;
2109 }
2110
2111 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2112 {
2113 struct efx_nic *efx = netdev_priv(net_dev);
2114 struct sockaddr *addr = data;
2115 u8 *new_addr = addr->sa_data;
2116
2117 if (!is_valid_ether_addr(new_addr)) {
2118 netif_err(efx, drv, efx->net_dev,
2119 "invalid ethernet MAC address requested: %pM\n",
2120 new_addr);
2121 return -EADDRNOTAVAIL;
2122 }
2123
2124 ether_addr_copy(net_dev->dev_addr, new_addr);
2125 efx_sriov_mac_address_changed(efx);
2126
2127 /* Reconfigure the MAC */
2128 mutex_lock(&efx->mac_lock);
2129 efx->type->reconfigure_mac(efx);
2130 mutex_unlock(&efx->mac_lock);
2131
2132 return 0;
2133 }
2134
2135 /* Context: netif_addr_lock held, BHs disabled. */
2136 static void efx_set_rx_mode(struct net_device *net_dev)
2137 {
2138 struct efx_nic *efx = netdev_priv(net_dev);
2139
2140 if (efx->port_enabled)
2141 queue_work(efx->workqueue, &efx->mac_work);
2142 /* Otherwise efx_start_port() will do this */
2143 }
2144
2145 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2146 {
2147 struct efx_nic *efx = netdev_priv(net_dev);
2148
2149 /* If disabling RX n-tuple filtering, clear existing filters */
2150 if (net_dev->features & ~data & NETIF_F_NTUPLE)
2151 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2152
2153 return 0;
2154 }
2155
2156 static const struct net_device_ops efx_farch_netdev_ops = {
2157 .ndo_open = efx_net_open,
2158 .ndo_stop = efx_net_stop,
2159 .ndo_get_stats64 = efx_net_stats,
2160 .ndo_tx_timeout = efx_watchdog,
2161 .ndo_start_xmit = efx_hard_start_xmit,
2162 .ndo_validate_addr = eth_validate_addr,
2163 .ndo_do_ioctl = efx_ioctl,
2164 .ndo_change_mtu = efx_change_mtu,
2165 .ndo_set_mac_address = efx_set_mac_address,
2166 .ndo_set_rx_mode = efx_set_rx_mode,
2167 .ndo_set_features = efx_set_features,
2168 #ifdef CONFIG_SFC_SRIOV
2169 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2170 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2171 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2172 .ndo_get_vf_config = efx_sriov_get_vf_config,
2173 #endif
2174 #ifdef CONFIG_NET_POLL_CONTROLLER
2175 .ndo_poll_controller = efx_netpoll,
2176 #endif
2177 .ndo_setup_tc = efx_setup_tc,
2178 #ifdef CONFIG_RFS_ACCEL
2179 .ndo_rx_flow_steer = efx_filter_rfs,
2180 #endif
2181 };
2182
2183 static const struct net_device_ops efx_ef10_netdev_ops = {
2184 .ndo_open = efx_net_open,
2185 .ndo_stop = efx_net_stop,
2186 .ndo_get_stats64 = efx_net_stats,
2187 .ndo_tx_timeout = efx_watchdog,
2188 .ndo_start_xmit = efx_hard_start_xmit,
2189 .ndo_validate_addr = eth_validate_addr,
2190 .ndo_do_ioctl = efx_ioctl,
2191 .ndo_change_mtu = efx_change_mtu,
2192 .ndo_set_mac_address = efx_set_mac_address,
2193 .ndo_set_rx_mode = efx_set_rx_mode,
2194 .ndo_set_features = efx_set_features,
2195 #ifdef CONFIG_NET_POLL_CONTROLLER
2196 .ndo_poll_controller = efx_netpoll,
2197 #endif
2198 #ifdef CONFIG_RFS_ACCEL
2199 .ndo_rx_flow_steer = efx_filter_rfs,
2200 #endif
2201 };
2202
2203 static void efx_update_name(struct efx_nic *efx)
2204 {
2205 strcpy(efx->name, efx->net_dev->name);
2206 efx_mtd_rename(efx);
2207 efx_set_channel_names(efx);
2208 }
2209
2210 static int efx_netdev_event(struct notifier_block *this,
2211 unsigned long event, void *ptr)
2212 {
2213 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2214
2215 if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2216 net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2217 event == NETDEV_CHANGENAME)
2218 efx_update_name(netdev_priv(net_dev));
2219
2220 return NOTIFY_DONE;
2221 }
2222
2223 static struct notifier_block efx_netdev_notifier = {
2224 .notifier_call = efx_netdev_event,
2225 };
2226
2227 static ssize_t
2228 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2229 {
2230 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2231 return sprintf(buf, "%d\n", efx->phy_type);
2232 }
2233 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2234
2235 static int efx_register_netdev(struct efx_nic *efx)
2236 {
2237 struct net_device *net_dev = efx->net_dev;
2238 struct efx_channel *channel;
2239 int rc;
2240
2241 net_dev->watchdog_timeo = 5 * HZ;
2242 net_dev->irq = efx->pci_dev->irq;
2243 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2244 net_dev->netdev_ops = &efx_ef10_netdev_ops;
2245 net_dev->priv_flags |= IFF_UNICAST_FLT;
2246 } else {
2247 net_dev->netdev_ops = &efx_farch_netdev_ops;
2248 }
2249 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2250 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2251
2252 rtnl_lock();
2253
2254 /* Enable resets to be scheduled and check whether any were
2255 * already requested. If so, the NIC is probably hosed so we
2256 * abort.
2257 */
2258 efx->state = STATE_READY;
2259 smp_mb(); /* ensure we change state before checking reset_pending */
2260 if (efx->reset_pending) {
2261 netif_err(efx, probe, efx->net_dev,
2262 "aborting probe due to scheduled reset\n");
2263 rc = -EIO;
2264 goto fail_locked;
2265 }
2266
2267 rc = dev_alloc_name(net_dev, net_dev->name);
2268 if (rc < 0)
2269 goto fail_locked;
2270 efx_update_name(efx);
2271
2272 /* Always start with carrier off; PHY events will detect the link */
2273 netif_carrier_off(net_dev);
2274
2275 rc = register_netdevice(net_dev);
2276 if (rc)
2277 goto fail_locked;
2278
2279 efx_for_each_channel(channel, efx) {
2280 struct efx_tx_queue *tx_queue;
2281 efx_for_each_channel_tx_queue(tx_queue, channel)
2282 efx_init_tx_queue_core_txq(tx_queue);
2283 }
2284
2285 efx_associate(efx);
2286
2287 rtnl_unlock();
2288
2289 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2290 if (rc) {
2291 netif_err(efx, drv, efx->net_dev,
2292 "failed to init net dev attributes\n");
2293 goto fail_registered;
2294 }
2295
2296 return 0;
2297
2298 fail_registered:
2299 rtnl_lock();
2300 efx_dissociate(efx);
2301 unregister_netdevice(net_dev);
2302 fail_locked:
2303 efx->state = STATE_UNINIT;
2304 rtnl_unlock();
2305 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2306 return rc;
2307 }
2308
2309 static void efx_unregister_netdev(struct efx_nic *efx)
2310 {
2311 if (!efx->net_dev)
2312 return;
2313
2314 BUG_ON(netdev_priv(efx->net_dev) != efx);
2315
2316 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2317 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2318
2319 rtnl_lock();
2320 unregister_netdevice(efx->net_dev);
2321 efx->state = STATE_UNINIT;
2322 rtnl_unlock();
2323 }
2324
2325 /**************************************************************************
2326 *
2327 * Device reset and suspend
2328 *
2329 **************************************************************************/
2330
2331 /* Tears down the entire software state and most of the hardware state
2332 * before reset. */
2333 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2334 {
2335 EFX_ASSERT_RESET_SERIALISED(efx);
2336
2337 efx_stop_all(efx);
2338 efx_disable_interrupts(efx);
2339
2340 mutex_lock(&efx->mac_lock);
2341 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2342 efx->phy_op->fini(efx);
2343 efx->type->fini(efx);
2344 }
2345
2346 /* This function will always ensure that the locks acquired in
2347 * efx_reset_down() are released. A failure return code indicates
2348 * that we were unable to reinitialise the hardware, and the
2349 * driver should be disabled. If ok is false, then the rx and tx
2350 * engines are not restarted, pending a RESET_DISABLE. */
2351 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2352 {
2353 int rc;
2354
2355 EFX_ASSERT_RESET_SERIALISED(efx);
2356
2357 rc = efx->type->init(efx);
2358 if (rc) {
2359 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2360 goto fail;
2361 }
2362
2363 if (!ok)
2364 goto fail;
2365
2366 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2367 rc = efx->phy_op->init(efx);
2368 if (rc)
2369 goto fail;
2370 if (efx->phy_op->reconfigure(efx))
2371 netif_err(efx, drv, efx->net_dev,
2372 "could not restore PHY settings\n");
2373 }
2374
2375 rc = efx_enable_interrupts(efx);
2376 if (rc)
2377 goto fail;
2378 efx_restore_filters(efx);
2379 efx_sriov_reset(efx);
2380
2381 mutex_unlock(&efx->mac_lock);
2382
2383 efx_start_all(efx);
2384
2385 return 0;
2386
2387 fail:
2388 efx->port_initialized = false;
2389
2390 mutex_unlock(&efx->mac_lock);
2391
2392 return rc;
2393 }
2394
2395 /* Reset the NIC using the specified method. Note that the reset may
2396 * fail, in which case the card will be left in an unusable state.
2397 *
2398 * Caller must hold the rtnl_lock.
2399 */
2400 int efx_reset(struct efx_nic *efx, enum reset_type method)
2401 {
2402 int rc, rc2;
2403 bool disabled;
2404
2405 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2406 RESET_TYPE(method));
2407
2408 efx_device_detach_sync(efx);
2409 efx_reset_down(efx, method);
2410
2411 rc = efx->type->reset(efx, method);
2412 if (rc) {
2413 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2414 goto out;
2415 }
2416
2417 /* Clear flags for the scopes we covered. We assume the NIC and
2418 * driver are now quiescent so that there is no race here.
2419 */
2420 efx->reset_pending &= -(1 << (method + 1));
2421
2422 /* Reinitialise bus-mastering, which may have been turned off before
2423 * the reset was scheduled. This is still appropriate, even in the
2424 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2425 * can respond to requests. */
2426 pci_set_master(efx->pci_dev);
2427
2428 out:
2429 /* Leave device stopped if necessary */
2430 disabled = rc ||
2431 method == RESET_TYPE_DISABLE ||
2432 method == RESET_TYPE_RECOVER_OR_DISABLE;
2433 rc2 = efx_reset_up(efx, method, !disabled);
2434 if (rc2) {
2435 disabled = true;
2436 if (!rc)
2437 rc = rc2;
2438 }
2439
2440 if (disabled) {
2441 dev_close(efx->net_dev);
2442 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2443 efx->state = STATE_DISABLED;
2444 } else {
2445 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2446 netif_device_attach(efx->net_dev);
2447 }
2448 return rc;
2449 }
2450
2451 /* Try recovery mechanisms.
2452 * For now only EEH is supported.
2453 * Returns 0 if the recovery mechanisms are unsuccessful.
2454 * Returns a non-zero value otherwise.
2455 */
2456 int efx_try_recovery(struct efx_nic *efx)
2457 {
2458 #ifdef CONFIG_EEH
2459 /* A PCI error can occur and not be seen by EEH because nothing
2460 * happens on the PCI bus. In this case the driver may fail and
2461 * schedule a 'recover or reset', leading to this recovery handler.
2462 * Manually call the eeh failure check function.
2463 */
2464 struct eeh_dev *eehdev =
2465 of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2466
2467 if (eeh_dev_check_failure(eehdev)) {
2468 /* The EEH mechanisms will handle the error and reset the
2469 * device if necessary.
2470 */
2471 return 1;
2472 }
2473 #endif
2474 return 0;
2475 }
2476
2477 static void efx_wait_for_bist_end(struct efx_nic *efx)
2478 {
2479 int i;
2480
2481 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2482 if (efx_mcdi_poll_reboot(efx))
2483 goto out;
2484 msleep(BIST_WAIT_DELAY_MS);
2485 }
2486
2487 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2488 out:
2489 /* Either way unset the BIST flag. If we found no reboot we probably
2490 * won't recover, but we should try.
2491 */
2492 efx->mc_bist_for_other_fn = false;
2493 }
2494
2495 /* The worker thread exists so that code that cannot sleep can
2496 * schedule a reset for later.
2497 */
2498 static void efx_reset_work(struct work_struct *data)
2499 {
2500 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2501 unsigned long pending;
2502 enum reset_type method;
2503
2504 pending = ACCESS_ONCE(efx->reset_pending);
2505 method = fls(pending) - 1;
2506
2507 if (method == RESET_TYPE_MC_BIST)
2508 efx_wait_for_bist_end(efx);
2509
2510 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2511 method == RESET_TYPE_RECOVER_OR_ALL) &&
2512 efx_try_recovery(efx))
2513 return;
2514
2515 if (!pending)
2516 return;
2517
2518 rtnl_lock();
2519
2520 /* We checked the state in efx_schedule_reset() but it may
2521 * have changed by now. Now that we have the RTNL lock,
2522 * it cannot change again.
2523 */
2524 if (efx->state == STATE_READY)
2525 (void)efx_reset(efx, method);
2526
2527 rtnl_unlock();
2528 }
2529
2530 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2531 {
2532 enum reset_type method;
2533
2534 if (efx->state == STATE_RECOVERY) {
2535 netif_dbg(efx, drv, efx->net_dev,
2536 "recovering: skip scheduling %s reset\n",
2537 RESET_TYPE(type));
2538 return;
2539 }
2540
2541 switch (type) {
2542 case RESET_TYPE_INVISIBLE:
2543 case RESET_TYPE_ALL:
2544 case RESET_TYPE_RECOVER_OR_ALL:
2545 case RESET_TYPE_WORLD:
2546 case RESET_TYPE_DISABLE:
2547 case RESET_TYPE_RECOVER_OR_DISABLE:
2548 case RESET_TYPE_MC_BIST:
2549 method = type;
2550 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2551 RESET_TYPE(method));
2552 break;
2553 default:
2554 method = efx->type->map_reset_reason(type);
2555 netif_dbg(efx, drv, efx->net_dev,
2556 "scheduling %s reset for %s\n",
2557 RESET_TYPE(method), RESET_TYPE(type));
2558 break;
2559 }
2560
2561 set_bit(method, &efx->reset_pending);
2562 smp_mb(); /* ensure we change reset_pending before checking state */
2563
2564 /* If we're not READY then just leave the flags set as the cue
2565 * to abort probing or reschedule the reset later.
2566 */
2567 if (ACCESS_ONCE(efx->state) != STATE_READY)
2568 return;
2569
2570 /* efx_process_channel() will no longer read events once a
2571 * reset is scheduled. So switch back to poll'd MCDI completions. */
2572 efx_mcdi_mode_poll(efx);
2573
2574 queue_work(reset_workqueue, &efx->reset_work);
2575 }
2576
2577 /**************************************************************************
2578 *
2579 * List of NICs we support
2580 *
2581 **************************************************************************/
2582
2583 /* PCI device ID table */
2584 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2585 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2586 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2587 .driver_data = (unsigned long) &falcon_a1_nic_type},
2588 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2589 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2590 .driver_data = (unsigned long) &falcon_b0_nic_type},
2591 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2592 .driver_data = (unsigned long) &siena_a0_nic_type},
2593 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2594 .driver_data = (unsigned long) &siena_a0_nic_type},
2595 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2596 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2597 {0} /* end of list */
2598 };
2599
2600 /**************************************************************************
2601 *
2602 * Dummy PHY/MAC operations
2603 *
2604 * Can be used for some unimplemented operations
2605 * Needed so all function pointers are valid and do not have to be tested
2606 * before use
2607 *
2608 **************************************************************************/
2609 int efx_port_dummy_op_int(struct efx_nic *efx)
2610 {
2611 return 0;
2612 }
2613 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2614
2615 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2616 {
2617 return false;
2618 }
2619
2620 static const struct efx_phy_operations efx_dummy_phy_operations = {
2621 .init = efx_port_dummy_op_int,
2622 .reconfigure = efx_port_dummy_op_int,
2623 .poll = efx_port_dummy_op_poll,
2624 .fini = efx_port_dummy_op_void,
2625 };
2626
2627 /**************************************************************************
2628 *
2629 * Data housekeeping
2630 *
2631 **************************************************************************/
2632
2633 /* This zeroes out and then fills in the invariants in a struct
2634 * efx_nic (including all sub-structures).
2635 */
2636 static int efx_init_struct(struct efx_nic *efx,
2637 struct pci_dev *pci_dev, struct net_device *net_dev)
2638 {
2639 int i;
2640
2641 /* Initialise common structures */
2642 INIT_LIST_HEAD(&efx->node);
2643 INIT_LIST_HEAD(&efx->secondary_list);
2644 spin_lock_init(&efx->biu_lock);
2645 #ifdef CONFIG_SFC_MTD
2646 INIT_LIST_HEAD(&efx->mtd_list);
2647 #endif
2648 INIT_WORK(&efx->reset_work, efx_reset_work);
2649 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2650 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2651 efx->pci_dev = pci_dev;
2652 efx->msg_enable = debug;
2653 efx->state = STATE_UNINIT;
2654 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2655
2656 efx->net_dev = net_dev;
2657 efx->rx_prefix_size = efx->type->rx_prefix_size;
2658 efx->rx_ip_align =
2659 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2660 efx->rx_packet_hash_offset =
2661 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2662 efx->rx_packet_ts_offset =
2663 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2664 spin_lock_init(&efx->stats_lock);
2665 mutex_init(&efx->mac_lock);
2666 efx->phy_op = &efx_dummy_phy_operations;
2667 efx->mdio.dev = net_dev;
2668 INIT_WORK(&efx->mac_work, efx_mac_work);
2669 init_waitqueue_head(&efx->flush_wq);
2670
2671 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2672 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2673 if (!efx->channel[i])
2674 goto fail;
2675 efx->msi_context[i].efx = efx;
2676 efx->msi_context[i].index = i;
2677 }
2678
2679 /* Higher numbered interrupt modes are less capable! */
2680 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2681 interrupt_mode);
2682
2683 /* Would be good to use the net_dev name, but we're too early */
2684 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2685 pci_name(pci_dev));
2686 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2687 if (!efx->workqueue)
2688 goto fail;
2689
2690 return 0;
2691
2692 fail:
2693 efx_fini_struct(efx);
2694 return -ENOMEM;
2695 }
2696
2697 static void efx_fini_struct(struct efx_nic *efx)
2698 {
2699 int i;
2700
2701 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2702 kfree(efx->channel[i]);
2703
2704 kfree(efx->vpd_sn);
2705
2706 if (efx->workqueue) {
2707 destroy_workqueue(efx->workqueue);
2708 efx->workqueue = NULL;
2709 }
2710 }
2711
2712 /**************************************************************************
2713 *
2714 * PCI interface
2715 *
2716 **************************************************************************/
2717
2718 /* Main body of final NIC shutdown code
2719 * This is called only at module unload (or hotplug removal).
2720 */
2721 static void efx_pci_remove_main(struct efx_nic *efx)
2722 {
2723 /* Flush reset_work. It can no longer be scheduled since we
2724 * are not READY.
2725 */
2726 BUG_ON(efx->state == STATE_READY);
2727 cancel_work_sync(&efx->reset_work);
2728
2729 efx_disable_interrupts(efx);
2730 efx_nic_fini_interrupt(efx);
2731 efx_fini_port(efx);
2732 efx->type->fini(efx);
2733 efx_fini_napi(efx);
2734 efx_remove_all(efx);
2735 }
2736
2737 /* Final NIC shutdown
2738 * This is called only at module unload (or hotplug removal).
2739 */
2740 static void efx_pci_remove(struct pci_dev *pci_dev)
2741 {
2742 struct efx_nic *efx;
2743
2744 efx = pci_get_drvdata(pci_dev);
2745 if (!efx)
2746 return;
2747
2748 /* Mark the NIC as fini, then stop the interface */
2749 rtnl_lock();
2750 efx_dissociate(efx);
2751 dev_close(efx->net_dev);
2752 efx_disable_interrupts(efx);
2753 rtnl_unlock();
2754
2755 efx_sriov_fini(efx);
2756 efx_unregister_netdev(efx);
2757
2758 efx_mtd_remove(efx);
2759
2760 efx_pci_remove_main(efx);
2761
2762 efx_fini_io(efx);
2763 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2764
2765 efx_fini_struct(efx);
2766 free_netdev(efx->net_dev);
2767
2768 pci_disable_pcie_error_reporting(pci_dev);
2769 };
2770
2771 /* NIC VPD information
2772 * Called during probe to display the part number of the
2773 * installed NIC. VPD is potentially very large but this should
2774 * always appear within the first 512 bytes.
2775 */
2776 #define SFC_VPD_LEN 512
2777 static void efx_probe_vpd_strings(struct efx_nic *efx)
2778 {
2779 struct pci_dev *dev = efx->pci_dev;
2780 char vpd_data[SFC_VPD_LEN];
2781 ssize_t vpd_size;
2782 int ro_start, ro_size, i, j;
2783
2784 /* Get the vpd data from the device */
2785 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2786 if (vpd_size <= 0) {
2787 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2788 return;
2789 }
2790
2791 /* Get the Read only section */
2792 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2793 if (ro_start < 0) {
2794 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2795 return;
2796 }
2797
2798 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2799 j = ro_size;
2800 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2801 if (i + j > vpd_size)
2802 j = vpd_size - i;
2803
2804 /* Get the Part number */
2805 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2806 if (i < 0) {
2807 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2808 return;
2809 }
2810
2811 j = pci_vpd_info_field_size(&vpd_data[i]);
2812 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2813 if (i + j > vpd_size) {
2814 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2815 return;
2816 }
2817
2818 netif_info(efx, drv, efx->net_dev,
2819 "Part Number : %.*s\n", j, &vpd_data[i]);
2820
2821 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2822 j = ro_size;
2823 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2824 if (i < 0) {
2825 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2826 return;
2827 }
2828
2829 j = pci_vpd_info_field_size(&vpd_data[i]);
2830 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2831 if (i + j > vpd_size) {
2832 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2833 return;
2834 }
2835
2836 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2837 if (!efx->vpd_sn)
2838 return;
2839
2840 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2841 }
2842
2843
2844 /* Main body of NIC initialisation
2845 * This is called at module load (or hotplug insertion, theoretically).
2846 */
2847 static int efx_pci_probe_main(struct efx_nic *efx)
2848 {
2849 int rc;
2850
2851 /* Do start-of-day initialisation */
2852 rc = efx_probe_all(efx);
2853 if (rc)
2854 goto fail1;
2855
2856 efx_init_napi(efx);
2857
2858 rc = efx->type->init(efx);
2859 if (rc) {
2860 netif_err(efx, probe, efx->net_dev,
2861 "failed to initialise NIC\n");
2862 goto fail3;
2863 }
2864
2865 rc = efx_init_port(efx);
2866 if (rc) {
2867 netif_err(efx, probe, efx->net_dev,
2868 "failed to initialise port\n");
2869 goto fail4;
2870 }
2871
2872 rc = efx_nic_init_interrupt(efx);
2873 if (rc)
2874 goto fail5;
2875 rc = efx_enable_interrupts(efx);
2876 if (rc)
2877 goto fail6;
2878
2879 return 0;
2880
2881 fail6:
2882 efx_nic_fini_interrupt(efx);
2883 fail5:
2884 efx_fini_port(efx);
2885 fail4:
2886 efx->type->fini(efx);
2887 fail3:
2888 efx_fini_napi(efx);
2889 efx_remove_all(efx);
2890 fail1:
2891 return rc;
2892 }
2893
2894 /* NIC initialisation
2895 *
2896 * This is called at module load (or hotplug insertion,
2897 * theoretically). It sets up PCI mappings, resets the NIC,
2898 * sets up and registers the network devices with the kernel and hooks
2899 * the interrupt service routine. It does not prepare the device for
2900 * transmission; this is left to the first time one of the network
2901 * interfaces is brought up (i.e. efx_net_open).
2902 */
2903 static int efx_pci_probe(struct pci_dev *pci_dev,
2904 const struct pci_device_id *entry)
2905 {
2906 struct net_device *net_dev;
2907 struct efx_nic *efx;
2908 int rc;
2909
2910 /* Allocate and initialise a struct net_device and struct efx_nic */
2911 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2912 EFX_MAX_RX_QUEUES);
2913 if (!net_dev)
2914 return -ENOMEM;
2915 efx = netdev_priv(net_dev);
2916 efx->type = (const struct efx_nic_type *) entry->driver_data;
2917 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2918 NETIF_F_HIGHDMA | NETIF_F_TSO |
2919 NETIF_F_RXCSUM);
2920 if (efx->type->offload_features & NETIF_F_V6_CSUM)
2921 net_dev->features |= NETIF_F_TSO6;
2922 /* Mask for features that also apply to VLAN devices */
2923 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2924 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2925 NETIF_F_RXCSUM);
2926 /* All offloads can be toggled */
2927 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2928 pci_set_drvdata(pci_dev, efx);
2929 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2930 rc = efx_init_struct(efx, pci_dev, net_dev);
2931 if (rc)
2932 goto fail1;
2933
2934 netif_info(efx, probe, efx->net_dev,
2935 "Solarflare NIC detected\n");
2936
2937 efx_probe_vpd_strings(efx);
2938
2939 /* Set up basic I/O (BAR mappings etc) */
2940 rc = efx_init_io(efx);
2941 if (rc)
2942 goto fail2;
2943
2944 rc = efx_pci_probe_main(efx);
2945 if (rc)
2946 goto fail3;
2947
2948 rc = efx_register_netdev(efx);
2949 if (rc)
2950 goto fail4;
2951
2952 rc = efx_sriov_init(efx);
2953 if (rc)
2954 netif_err(efx, probe, efx->net_dev,
2955 "SR-IOV can't be enabled rc %d\n", rc);
2956
2957 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2958
2959 /* Try to create MTDs, but allow this to fail */
2960 rtnl_lock();
2961 rc = efx_mtd_probe(efx);
2962 rtnl_unlock();
2963 if (rc)
2964 netif_warn(efx, probe, efx->net_dev,
2965 "failed to create MTDs (%d)\n", rc);
2966
2967 rc = pci_enable_pcie_error_reporting(pci_dev);
2968 if (rc && rc != -EINVAL)
2969 netif_warn(efx, probe, efx->net_dev,
2970 "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2971
2972 return 0;
2973
2974 fail4:
2975 efx_pci_remove_main(efx);
2976 fail3:
2977 efx_fini_io(efx);
2978 fail2:
2979 efx_fini_struct(efx);
2980 fail1:
2981 WARN_ON(rc > 0);
2982 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2983 free_netdev(net_dev);
2984 return rc;
2985 }
2986
2987 static int efx_pm_freeze(struct device *dev)
2988 {
2989 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2990
2991 rtnl_lock();
2992
2993 if (efx->state != STATE_DISABLED) {
2994 efx->state = STATE_UNINIT;
2995
2996 efx_device_detach_sync(efx);
2997
2998 efx_stop_all(efx);
2999 efx_disable_interrupts(efx);
3000 }
3001
3002 rtnl_unlock();
3003
3004 return 0;
3005 }
3006
3007 static int efx_pm_thaw(struct device *dev)
3008 {
3009 int rc;
3010 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3011
3012 rtnl_lock();
3013
3014 if (efx->state != STATE_DISABLED) {
3015 rc = efx_enable_interrupts(efx);
3016 if (rc)
3017 goto fail;
3018
3019 mutex_lock(&efx->mac_lock);
3020 efx->phy_op->reconfigure(efx);
3021 mutex_unlock(&efx->mac_lock);
3022
3023 efx_start_all(efx);
3024
3025 netif_device_attach(efx->net_dev);
3026
3027 efx->state = STATE_READY;
3028
3029 efx->type->resume_wol(efx);
3030 }
3031
3032 rtnl_unlock();
3033
3034 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3035 queue_work(reset_workqueue, &efx->reset_work);
3036
3037 return 0;
3038
3039 fail:
3040 rtnl_unlock();
3041
3042 return rc;
3043 }
3044
3045 static int efx_pm_poweroff(struct device *dev)
3046 {
3047 struct pci_dev *pci_dev = to_pci_dev(dev);
3048 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3049
3050 efx->type->fini(efx);
3051
3052 efx->reset_pending = 0;
3053
3054 pci_save_state(pci_dev);
3055 return pci_set_power_state(pci_dev, PCI_D3hot);
3056 }
3057
3058 /* Used for both resume and restore */
3059 static int efx_pm_resume(struct device *dev)
3060 {
3061 struct pci_dev *pci_dev = to_pci_dev(dev);
3062 struct efx_nic *efx = pci_get_drvdata(pci_dev);
3063 int rc;
3064
3065 rc = pci_set_power_state(pci_dev, PCI_D0);
3066 if (rc)
3067 return rc;
3068 pci_restore_state(pci_dev);
3069 rc = pci_enable_device(pci_dev);
3070 if (rc)
3071 return rc;
3072 pci_set_master(efx->pci_dev);
3073 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3074 if (rc)
3075 return rc;
3076 rc = efx->type->init(efx);
3077 if (rc)
3078 return rc;
3079 rc = efx_pm_thaw(dev);
3080 return rc;
3081 }
3082
3083 static int efx_pm_suspend(struct device *dev)
3084 {
3085 int rc;
3086
3087 efx_pm_freeze(dev);
3088 rc = efx_pm_poweroff(dev);
3089 if (rc)
3090 efx_pm_resume(dev);
3091 return rc;
3092 }
3093
3094 static const struct dev_pm_ops efx_pm_ops = {
3095 .suspend = efx_pm_suspend,
3096 .resume = efx_pm_resume,
3097 .freeze = efx_pm_freeze,
3098 .thaw = efx_pm_thaw,
3099 .poweroff = efx_pm_poweroff,
3100 .restore = efx_pm_resume,
3101 };
3102
3103 /* A PCI error affecting this device was detected.
3104 * At this point MMIO and DMA may be disabled.
3105 * Stop the software path and request a slot reset.
3106 */
3107 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3108 enum pci_channel_state state)
3109 {
3110 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3111 struct efx_nic *efx = pci_get_drvdata(pdev);
3112
3113 if (state == pci_channel_io_perm_failure)
3114 return PCI_ERS_RESULT_DISCONNECT;
3115
3116 rtnl_lock();
3117
3118 if (efx->state != STATE_DISABLED) {
3119 efx->state = STATE_RECOVERY;
3120 efx->reset_pending = 0;
3121
3122 efx_device_detach_sync(efx);
3123
3124 efx_stop_all(efx);
3125 efx_disable_interrupts(efx);
3126
3127 status = PCI_ERS_RESULT_NEED_RESET;
3128 } else {
3129 /* If the interface is disabled we don't want to do anything
3130 * with it.
3131 */
3132 status = PCI_ERS_RESULT_RECOVERED;
3133 }
3134
3135 rtnl_unlock();
3136
3137 pci_disable_device(pdev);
3138
3139 return status;
3140 }
3141
3142 /* Fake a successfull reset, which will be performed later in efx_io_resume. */
3143 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3144 {
3145 struct efx_nic *efx = pci_get_drvdata(pdev);
3146 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3147 int rc;
3148
3149 if (pci_enable_device(pdev)) {
3150 netif_err(efx, hw, efx->net_dev,
3151 "Cannot re-enable PCI device after reset.\n");
3152 status = PCI_ERS_RESULT_DISCONNECT;
3153 }
3154
3155 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3156 if (rc) {
3157 netif_err(efx, hw, efx->net_dev,
3158 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3159 /* Non-fatal error. Continue. */
3160 }
3161
3162 return status;
3163 }
3164
3165 /* Perform the actual reset and resume I/O operations. */
3166 static void efx_io_resume(struct pci_dev *pdev)
3167 {
3168 struct efx_nic *efx = pci_get_drvdata(pdev);
3169 int rc;
3170
3171 rtnl_lock();
3172
3173 if (efx->state == STATE_DISABLED)
3174 goto out;
3175
3176 rc = efx_reset(efx, RESET_TYPE_ALL);
3177 if (rc) {
3178 netif_err(efx, hw, efx->net_dev,
3179 "efx_reset failed after PCI error (%d)\n", rc);
3180 } else {
3181 efx->state = STATE_READY;
3182 netif_dbg(efx, hw, efx->net_dev,
3183 "Done resetting and resuming IO after PCI error.\n");
3184 }
3185
3186 out:
3187 rtnl_unlock();
3188 }
3189
3190 /* For simplicity and reliability, we always require a slot reset and try to
3191 * reset the hardware when a pci error affecting the device is detected.
3192 * We leave both the link_reset and mmio_enabled callback unimplemented:
3193 * with our request for slot reset the mmio_enabled callback will never be
3194 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3195 */
3196 static struct pci_error_handlers efx_err_handlers = {
3197 .error_detected = efx_io_error_detected,
3198 .slot_reset = efx_io_slot_reset,
3199 .resume = efx_io_resume,
3200 };
3201
3202 static struct pci_driver efx_pci_driver = {
3203 .name = KBUILD_MODNAME,
3204 .id_table = efx_pci_table,
3205 .probe = efx_pci_probe,
3206 .remove = efx_pci_remove,
3207 .driver.pm = &efx_pm_ops,
3208 .err_handler = &efx_err_handlers,
3209 };
3210
3211 /**************************************************************************
3212 *
3213 * Kernel module interface
3214 *
3215 *************************************************************************/
3216
3217 module_param(interrupt_mode, uint, 0444);
3218 MODULE_PARM_DESC(interrupt_mode,
3219 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3220
3221 static int __init efx_init_module(void)
3222 {
3223 int rc;
3224
3225 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3226
3227 rc = register_netdevice_notifier(&efx_netdev_notifier);
3228 if (rc)
3229 goto err_notifier;
3230
3231 rc = efx_init_sriov();
3232 if (rc)
3233 goto err_sriov;
3234
3235 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3236 if (!reset_workqueue) {
3237 rc = -ENOMEM;
3238 goto err_reset;
3239 }
3240
3241 rc = pci_register_driver(&efx_pci_driver);
3242 if (rc < 0)
3243 goto err_pci;
3244
3245 return 0;
3246
3247 err_pci:
3248 destroy_workqueue(reset_workqueue);
3249 err_reset:
3250 efx_fini_sriov();
3251 err_sriov:
3252 unregister_netdevice_notifier(&efx_netdev_notifier);
3253 err_notifier:
3254 return rc;
3255 }
3256
3257 static void __exit efx_exit_module(void)
3258 {
3259 printk(KERN_INFO "Solarflare NET driver unloading\n");
3260
3261 pci_unregister_driver(&efx_pci_driver);
3262 destroy_workqueue(reset_workqueue);
3263 efx_fini_sriov();
3264 unregister_netdevice_notifier(&efx_netdev_notifier);
3265
3266 }
3267
3268 module_init(efx_init_module);
3269 module_exit(efx_exit_module);
3270
3271 MODULE_AUTHOR("Solarflare Communications and "
3272 "Michael Brown <mbrown@fensystems.co.uk>");
3273 MODULE_DESCRIPTION("Solarflare network driver");
3274 MODULE_LICENSE("GPL");
3275 MODULE_DEVICE_TABLE(pci, efx_pci_table);